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ABSTRACT

Measuring the glucose concentration in liquids is crucial for

ensuring the safety of products for individuals with diabetes.

This process not only aids in diabetes management but also

highlights the importance of taking additional precautions

after a diabetes diagnosis. Currently, glucose test strips are

widely used to measure the glucose concentration of liquids.

It’s safe, e�ective, easy to use, and a cheap alternative to

other complex technology with the same use. However, it

has sevral setbacks, such as its inability to accurately mea-

sure the glucose concentration of cold liquids (0°C - 10°C).

This lack of variability can lead to more inconvenience for

individuals than bene�ts. Therefore, in this paper, we pro-

pose the usage of millimeter-wave (mmWave) sensing as a

contactless, versatile, and easy method to measure glucose

levels in cold liquids accurately.
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1 INTRODUCTION
As recently recorded by the U.S. Centers for Disease Con-

trol and Prevention (CDC), a staggering 29.7 million Ameri-

cans have been diagnosed with diabetes as of 2021—in other

words, around 9% of the population [5]. This alarming rise

in diabetes cases underscores the critical need for e�ective

monitoring methods to manage its impact on health. Dia-

betes is a metabolic disorder a�ecting the body’s ability to

metabolize and is characterized by high blood glucose levels.

This disease has many complications as it requires constant

monitoring of blood glucose levels and its rate of change. If

these tasks are neglected, it can lead to fatal damage to the

body, such as seizures and loss of consciousness [6]. Accurate

measurement of glucose levels in a low-cost and practical

way is essential for e�ective monitoring and treatment of

diabetes and ensuring the nutritional quality of beverages. In

addition to its applications for regular diabetes management,

this technology can also signi�cantly bene�t other prevalent

health conditions, including aging rehabilitation, gestational

diabetes, and cardiovascular diseases [7, 13, 16].

Figure 1: The overview of MetaGlucose, a low-cost and

practical cold liquid glucose level measurement for

health.

Measuring glucose levels in cold liquids is essential for

ensuring accurate and reliable monitoring in various real-

world scenarios where temperature �uctuations can impact

measurement accuracy [14]. For instance, in medical diagnos-

tics, beverages, or stored samples, liquids are often subject
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to varying temperatures. Ensuring that glucose sensors can

perform accurately in cold conditions enhances their reli-

ability and applicability across diverse environments. This

capability is particularly important for diabetic patients who

need to monitor their glucose levels consistently, regardless

of ambient temperature, and for quality control in the food

and beverage industry where cold storage is common.

Traditional methods, such as low-cost glucose test strips,

are commonly used due to their a�ordability and ease of use.

However, these methods often fail to accurately measure

glucose levels at low temperatures, particularly in cold bever-

ages. Cold temperatures can a�ect the chemical composition

of the strips, leading to inaccurate glucose level readings

[1]. Another popular tool is glucose monitors, which are

invasive, harmful, costly, and extremely uncomfortable for

patients [29]. Besides, there has been some exploration using

mmWave sensing to measure glucose in liquids, demonstrat-

ing the technology’s potential. However, these experiments

were predominantly conducted at room temperature (around

20°C) [17]. The e�cacy of mmWave sensing in cold environ-

ments remains unexplored, leaving a gap in the research.

Therefore, we propose an innovative method that uses

mmWave sensing as a low-cost, non-invasive, and e�cient

tool to measure glucose levels in cold liquids, called MetaGlu-

cose, as shown in Figure 1. This work culminates in several

salient advantages, such as (1) low-cost: utilizing a�ord-

able components to create an accessible solution (low-cost

sensors), (2) practical: maintaining accuracy and reliability

across a wide range of temperatures, especially in cold con-

ditions, and (3) e�cient: accentuating e�ciency in ensuring

ease of use in everyday settings, including various liquid

types, cup types, and sensing distance.

However, it is important to note that mmWave sensing

toward liquid glucose levels still faces several technical chal-

lenges. (i) Temperature Variations: The dielectric proper-

ties of liquids change with temperature, a�ecting the accu-

racy of glucose measurements. To ensure consistent sensor

accuracy across a wide range of temperatures, particularly

in cold liquids, thorough noise reduction �lters are essential.

The system integrates real-time temperature monitoring and

employs advanced mmWave Signal to spectrogram trans-

formation techniques to account for these variations. (ii)

Complex Liquid Matrices: The presence of solutes and

particles in beverages can a�ect mmWave signal propagation.

Di�erentiating the glucose signal from other components

in complex liquid matrices necessitates sophisticated deep

learning-based analytical models. The system uses cross-

validation techniques to isolate the glucose concentration

accurately, even in the presence of interfering substances.

Our main contributions are summarized as follows:

• We propose MetaGlucose to use mmWave sensing for

glucose measurement in cold liquids, addressing a sig-

ni�cant gap in current research. To our best knowl-

edge, it is the �rst work to advance the �eld of glucose

monitoring, o�ering a low-cost, practical, and robust

solution for measuring sugar levels in cold liquids.

• We develop and implement a practical and robust sys-

tem that leverages mmWave technology to provide

accurate glucose readings with physical AI technology.

The system utilizes advanced temperature compen-

sation techniques, ensemble learning methods, and

feature extraction techniques to identify the glucose

concentration accurately, even in the presence of in-

terfering substances.

• We conduct comprehensive evaluations to validate the

system’s performance in various conditions, especially

at low temperatures. Results show that MetaGlucose

achieves an accuracy of 99% for liquid glucose level

measurement in the range of 0°C to 40°C.

2 BACKGROUND
Diabetes poses severe risks to individuals, including damage

to blood vessels and kidneys, and increased risk of heart at-

tacks and strokes, etc [2]. Consuming high-sugar beverages

can can cause dangerous blood glucose spikes in diabetics.

Healthier choices include tea and co�ee, whereas soda and

fruit juice are least advisable [3]. Our experimentation in-

volves testing glucose levels in drinks across the spectrum.

mmWave sensing, primarily used in communication and

imaging, exceeds all mentioned criteria. It has gained traction

due to its potential in biomedical applications. Operating in

the 30-300 GHz frequency spectrum, mmWave sensors o�er

high resolution and material penetration capabilities [21].

By placing the mmWave sensor near or in the proximity of a

certain object, it transmits signals and measures the returned

signal’s strength and amplitude, providing a non-invasive

method to gauge liquid glucose concentrations.

Preliminary Results: To further validate the shortcomings

of glucose test strips, we measured the glucose levels of the

same liquid at di�erent temperatures. We added identical

amounts of sugar to two cups and adjusted the temperatures

from 0°C to 10°C. This resulted in varying outcomes from

the glucose test strips, suggesting di�erent glucose levels.

Such discrepancies can mislead patients about the safety of

beverages and present a signi�cant challenge for individuals

and healthcare providers requiring reliable glucose readings

under varying conditions.

3 SYSTEM DESIGN
The proposed system utilizes mmWave sensors to measure

glucose levels in cold liquids. The system consists of three

main components: the mmWave sensor, a signal processing

unit, and an analytical model module, shown in Fig 2.
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Figure 2: The system design of the mmWave sensing model for glucose level measurement.

mmWave Sensor: The mmWave sensor is at the core of

the system, utilizing its high-frequency capabilities to pene-

trate cold liquids and measure glucose levels. The choice of

a 24 GHz frequency range is crucial as it ensures adequate

penetration depth while maintaining high-resolution mea-

surements [15]. The sensor is designed to operate e�ciently

across a broad temperature spectrum, ensuring consistent

performance even in cold conditions.

Signal Processing Unit: This module plays a crucial role in

�ltering and preprocessing the raw signals from themmWave

sensor. It includes:

(i) Noise Reduction Filters: These �lters are carefully designed

to minimize signal attenuation and scattering, particularly

at low temperatures, which can a�ect glucose measurement

accuracy. By using advanced techniques like wavelet denois-

ing [26], the �lters e�ectively isolate the glucose signal from

background noise, This ensures that only relevant signal

information is retained, improving the signal-to-noise ratio

and the overall reliability of the measurement process.

(ii) mmWave Signal to Spectrogram Transformation: To better

compensate for temperature variations and achieve accurate

glucose level measurement, it is essential to transform the

mmWave response signal from a one-dimensional spectral-

temporal function into a two-dimensional spectral-image

function. Given the advantage that continuous-time short-

time Fourier Transform (STFT) o�ers in terms of real-time

processing e�ciency compared to the computationally in-

tensive two-dimensional wavelet transform, we adopt STFT

[9] for this transformation. The formula of STFT is:

STFT{Į (Ī)}(Ĝ , ă) =

+
Į (Ī)ĭ (Ī − ă)ě− Ġ2ÿ Ĝ Ī ĚĪ, (1)

where Į (Ī) is the signal, ĭ (Ī) is the window function, Ĝ is

the frequency, and ă is the time shift of the window. The

resulting spectrogram o�ers a detailed two-dimensional rep-

resentation of the signal’s frequency over time, enabling

more precise glucose level analysis and measurement.

Analytical Models: To handle the complexity of liquid ma-

trices, this module employs sophisticated analytical models

and cross-validation techniques. Key features include:

(i) Deep Learning-based Analytical Models: To solve the prob-

lem of mapping spectrogram images to glucose level values,

we implement a neural network-based approach. E�cient-

NetV2 [23] is employed due to its superior performance in

computational e�ciency and accuracy. E�cientNetV2 em-

ploys compound scaling, signi�cantly enhancing the model’s

performance in processing mmWave data. The formula for

compound scaling is as follows: depth: Ě = Ăč , width:ĭ =

ÿč , resolution: Ĩ = Āč ,where Ă , ÿ , andĀ are constants that

determine the degree to which each dimension is scaled by

a compound coe�cient č . This method ensures a balanced

scaling across all dimensions, ensuring accurate and robust

glucose level estimation. E�cientNetV2’s ability to balance

speed and precision enhances the reliability of glucose level

measurement, making it highly suitable for real-time and

low-power applications.

(ii) Cross-Validation Techniques: To ensure the accuracy and

reliability of the glucose level measurements, the system em-

ploys rigorous cross-validation techniques. These techniques

involve comparing the sensor’s readings with known glucose

concentrations under similar conditions, verifying the con-

sistency and reliability of the results. Methods such as 5-fold

cross-validation [8] and leave-one-out cross-validation [25]

are used to validate the models. These methods help in as-

sessing the generalizability and robustness of the predictive

models, ensuring that the system performs well across dif-

ferent datasets and conditions, thereby instilling con�dence

in the measurement outcomes.

4 EVALUATION SETUP

4.1 Experimental Preparation
The evaluation setup involves measuring glucose levels in

various cold liquid samples, as shown in Figure 3. The sam-

ples are prepared by dissolving sugar in water and cooling

them to temperatures ranging from 0°C to 10°C. A digital

thermometer [4] was placed to record the temperature of

the liquid. The ground truth of the glucose concentrations is

pre-designed through recording and calculating the sugar-

to-water ratio/concentration.

Application Protocol: We begin by con�rming the accu-

racy of the mmWave sensor by recording the sugar-to-water

ratio/concentration of 5 trials: In trial 1, we combined one
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cup of water (250 mL) with one packet of sugar (22 grams),

resulting in a known glucose concentration of 0.0880 g/mL

(Level 1). In trial 2, we combined one cup of water with two

packets of sugar (44 grams) to get a glucose concentration of

0.176 g/mL (Level 2). For trial 3, we mixed one cup of water

with 3 packets (66 grams) of sugar to get a concentration

of 0.264 g/mL (Level 3). Trial 4 includes one cup of water

with 4 packets (88 grams) of sugar to get a concentration

of 0.352 g/mL (Level 4). Finally, trial 5 consisted of one cup

of water to act as our control group, no sugar (Level 0). We

then measure the glucose concentration using the mmWave

sensor and compare the results to determine its accuracy.

These �ve glucose levels are close to real-world conditions,

re�ecting di�erent liquids in health applications.

Figure 3: The experimental setup of the mmWave sen-

sor and the various conditions that are tested.

Data Collection and Preparation: As a result of high-

speed continuous data collection from MetaGlucose, 150,000

lines of feature array are collected and a 80%-20% split is

utilized to separate the training and testing data. To e�ec-

tively assess the performance of the model, we collect a

single group of data for training and test it against di�erent

scenarios that were not trained.

4.2 Performance Metrics

The performance of MetaGlucose for measuring glucose lev-

els in cold liquids was evaluated based on several factors to

ensure e�ectiveness across a multitude of variations:

Percentage accuracy:Measured as the percentage of cor-

rectly identi�ed glucose concentrations within a speci�ed

range and conditions (data range between 0-100%). A value

close to 100% signi�es higher accuracy, re�ecting the preci-

sion of the mmWave sensing system.

Standard deviation (STD): The data from each condition

and trial showed a low standard deviation, close to zero

(range 0-1), demonstrating the consistent reliability of the

glucose measurements. This low variability indicates the

results are both reliable and accurate.

5 METAGLUCOSE EVALUATION

5.1 Overall Performance
The results show the accuracy is consistently close to 100%

between the sensor readings and the actual glucose con-

centrations, indicating its high reliability. Furthermore, the

standard deviation remains around 0.2%, across all trials, it

exempli�es the system’s high precision and accuracy. These

results indicate a highly reliable relationship between the

mmWave sensing outputs and the actual glucose concen-

trations, highlighting the potential of this technology for

non-invasive glucose monitoring and its expansiveness to

provide real-time data to users and healthcare providers un-

der various conditions.

5.2 Impact of Temperature
In order to investigate the impact of temperature variations

of the liquid on the glucose readings by the mmWave sensor,

we take many measures into consideration. For each liquid,

we adjust the temperature by microwaving the liquid �rst for

30 seconds to reach a temperature of 40°C, and we measure

its concentration using the mmWave sensor. We let it cool

down to 30°C then 20°C and measure its concentration at

each temperature. For the trials with cold temperatures, we

leave it in the fridge for 30 minutes and measure its con-

centration at 10°C using the mmWave sensor. We put the

solutions in the freezer for another 30 minutes until they

reach approximately 0°C and measure the glucose concen-

tration using the mmWave sensor. Finally, we compare our

results, which show a consistent 99% accuracy between the

measured glucose level and the actual glucose level, as shown

in Figure 4.

Figure 4: Performance

under di�erent tempera-

tures.

Figure 5: Performance

among various liquid

types.

5.3 Impact of Liquid Type
To evaluate the performance of the mmWave sensor across

di�erent types of liquids, we use popular drinks with known

glucose concentrations: Coca-Cola (0.110 g/mL), apple juice

(0.116 g/mL), co�ee, and tea. For the co�ee and tea trials,

we aim to determine whether the mmWave sensor could

di�erentiate the sugar molecules from the other liquid com-

ponents. We add 2 packets of sugar to the co�ee and tea,
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detect the concentration using the mmWave sensor, then

add another packet (for a total of 3 packets of sugar) and

measure the concentration using the sensor in the same fash-

ion. For Coca-Cola and apple juice, we pour the liquid into

plastic cups. Finally, we analyze the sensor’s performance

variability concerning liquid type and its account for the

varying matrices of each liquid. The result shows high ac-

curacy as the percent accuracy stayed constant throughout

(all values are around 99%), as shown in Figure 5. The stan-

dard deviation is also maintained at values close to zero (0.2,

0.3, 0.4, 0.2). These results prove the mmWave sensor to be

highly sensitive, accurate, and precise, further validating it

as a promising and reliable tool for glucose monitoring.

5.4 Impact of Sensing Distance
We account for an assessment of whether changing the dis-

tance between the mmWave sensor and the liquid surface

a�ects glucose readings. We place the liquid medium at vary-

ing distances using a standard 12-inch ruler for precision,

including 15 centimeters, 30 cm, 45 cm, and 60 cm, all con-

duct at cold temperatures (10°C). We use the mmWave sensor

to detect the glucose concentrations at each distance. The re-

sults show the performance stays relatively constant (around

99% each trial) with a standard deviation close to zero, as

shown in Fig 6. This proves that, even as the distance be-

tween the mmWave sensor and the liquid medium changes,

there is no signi�cant impact on its ability to accurately read

glucose levels in cold liquids.

Figure 6: Performance

under di�erent sensing

distances.

Figure 7: Performance

among various cup types.

5.5 Impact of Cup
Another critical factor in determining the accuracy and reli-

ability of the mmWave sensing system is its ability to pene-

trate various materials, such as cup type. Thus, we choose

four commonly used materials: paper cups, plastic cups, glass

cups, and mugs. We measure the glucose concentration us-

ing the mmWave sensor in each cup. The results indicate

high accuracy of around 99% and low standard deviations of

around 1%, as shown in Figure 7.

6 RELATED WORK

Glucose LevelMeasurement: Several studies have explored

practical methods for glucose measurement in liquids, partic-

ularly focusing on overcoming the limitations of traditional

test strips. For example, infrared (IR) spectroscopy has been

investigated as a non-invasive method for glucose monitor-

ing, but its accuracy is a�ected by temperature variations

and requires complex calibration procedures [12, 27, 30]. An-

other technique is Raman spectroscopy, which o�ers high

sensitivity but is cost-prohibitive [11, 18, 22]. Additionally,

research by Zhu et al. demonstrated the potential of multiple

sensors for non-invasive glucose measurement in human

tissues, which requires precise calibration and is easily af-

fected by ambient environment factors such as temperature

and hydration levels [31]. Conversely, this paper proposes a

low-cost and practical method for measuring glucose levels

using mmWave sensing.

mmWave Sensing forGlucose:Advancements inmmWave

sensing o�er promise in various biomedical applications, in-

cluding glucose monitoring. Researchers developed a proto-

type mmWave sensing system for detecting glucose levels,

showing promising results at room temperature [24, 28].

Similarly, research conducted by SA Qureshi further imple-

ments the use of a mmWave-inspired sensor to detect glu-

cose levels in blood samples[19]. Besides, AE Omer used an

FMCQ mmWave radar to measure glucose concentrations in

blood samples and aqueous solutions[17]. Helena CG used

mmWave sensing for glucose concentration changes in pigs,

which can be applied in a broader, real-world context and

extent to individuals with diabetes[10]. Research by Saha S

used a glucose sensing system based on mmWaves using mi-

crostrip patch antennas[20]. However, the use of mmWave

sensing for glucose measurement in cold liquids hasn’t been

well studied. This paper addresses this gap by evaluating

mmWave sensor performance under cold conditions in liq-

uids (especially 0-10°C), providing a practical solution for

accurate glucose monitoring.

7 CONCLUSION

In this paper, we introduce a novel mmWave sensing-based

method for measuring glucose levels in cold liquids. Our

mmWave sensing system overcomes the challenges at low

temperatures using its high sensitivity and penetration ca-

pabilities. The system includes a 24 GHz mmWave sensor, a

signal processing unit, and a data analysis module equipped

with advanced machine learning algorithms. In our evalua-

tion, the system consistently achieved near 100% accuracy,

correlating closely with actual glucose concentrations. These

�ndings demonstrate mmWave sensing’s potential as a cost-

e�ective, practical solution for glucosemonitoring inmedical

and health applications, especially for cold beverages.
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