An Improved Parameterized Algorithm for Treewidth*

Tuukka Korhonen™
tuukka.korhonen@uib.no
Department of Informatics, University of Bergen
Norway

ABSTRACT

We give an algorithm that takes as input an n-vertex graph G
and an integer k, runs in time 20(k2)n0(1)’ and outputs a tree
decomposition of G of width at most k, if such a decomposition
exists. This resolves the long-standing open problem of whether
there is a 2205 n0() time algorithm for treewidth. In particular,
our algorithm is the first improvement on the dependency on k
in algorithms for treewidth since the 20 101 time algorithm
given by Bodlaender and Kloks [ICALP 1991] and Lagergren and
Arnborg [ICALP 1991].

We also give an algorithm that given an n-vertex graph G, an
integer k, and a rational ¢ € (0,1), in time kOk/&) nO() either
outputs a tree decomposition of G of width at most (1 + ¢)k or de-
termines that the treewidth of G is larger than k. Prior to our work,
no approximation algorithms for treewidth with approximation
ratio less than 2, other than the exact algorithms, were known. Both
of our algorithms work in polynomial space.

CCS CONCEPTS

« Theory of computation — Graph algorithms analysis; Pa-
rameterized complexity and exact algorithms.

KEYWORDS

treewidth, parameterized complexity

ACM Reference Format:

Tuukka Korhonen and Daniel Lokshtanov. 2023. An Improved Parameterized
Algorithm for Treewidth. In Proceedings of the 55th Annual ACM Symposium
on Theory of Computing (STOC °23), June 20-23, 2023, Orlando, FL, USA. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3564246.3585245

1 INTRODUCTION

A tree decomposition of a graph G is a pair (T, bag) where T is a
tree and bag is a function assigning to each node t of T a set bag(t)
(called a bag) of vertices of G. The function bag must satisfy the
tree decomposition axioms: (i) for every edge uv of G at least one
bag bag(t) contains both u and v, and (ii) for every vertex v of G,

“Due to space limits, most of technicals details are omitted or just sketched. The full
version of the paper is available on arXiv [35].

Supported by Research Council of Norway via the project BWCA (grant no. 314528).
iSupported by NSF award CCF-2008838.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

STOC °23, June 20-23, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9913-5/23/06.
https://doi.org/10.1145/3564246.3585245

Daniel Lokshtanov*
daniello@ucsb.edu

Department of Computer Science, University of California

Santa Barbara
USA

the set {t € V(T) | v € bag(t)} induces a non-empty and connected
subtree of T. The width of a tree decomposition (T, bag) is the size
of a largest bag minus one, and the treewidth of a graph G is the
minimum width of a tree decomposition of G. The treewidth of a
graph G measures, in some sense, how far away G is from being a
tree. The treewidth of G is at most 1 if and only if every connected
component of G is a tree, while the treewidth of a complete graph
on n vertices is equal to n — 1 [23].

Treewidth and tree decompositions play a central role in graph
theory and graph algorithms, and the concept has been indepen-
dently rediscovered several times [7, 33, 41] under different names
in different contexts. It is a key tool in the celebrated Graph Minors
project of Robertson and Seymour [41-43]. Many problems that
are intractable on general graphs are solvable in linear time if a tree
decomposition of the input graph G of constant width is provided
as an input (see e.g. [9] and references within). Indeed, the classic
Courcelle’s Theorem [21] states that such an algorithm exists for
every problem expressible in Monadic Second Order Logic (see
also [19]).

Therefore it should not come as a surprise that a significant
amount of attention has been devoted to designing algorithms to
determine, given as input a graph G and an integer k, whether the
treewidth of G is at most k (and to produce a tree decomposition
of width at most k in the “yes” case). This problem is known to be
NP-complete [3], however, in many settings tree decompositions
are only relevant if the treewidth of the input graph is sufficiently
small, directing research towards algorithms with running times of
the form f (k) - n9%) or f(k)-n®™) . Algorithms with running time
of the first type are called slicewise polynomial, since they run in
polynomial time when k is considered a constant. Algorithms of the
second type are called fixed-parameter tractable (FPT) as they run in
polynomial time if k is considered a constant, and furthermore the
exponent of the polynomial remains the same for different values
of k. We refer to the textbooks [22, 25, 29, 39] for an introduction
to parameterized algorithms.

The first slicewise polynomial algorithm for treewidth was given
by Arnborg, Corneil and Proskurowski [3], with running time
0(nk+2). Subsequently, Robertson and Seymour [42], gave a non-
constructive (see Bodlaender [10] for a discussion of the non-con-
structive nature of [42]) f (k)n? time algorithm for treewidth, and
Bodlaender [10], building on work of Fellows and Langston [28]
made this algorithm constructive. The function f in the running
time both of the algorithm of Robertson and Seymour [42] and
of Bodlaender [10] is unspecified and was not even known to be
computable at the time of publication.

The algorithm of Robertson and Seymour [42] follows a “two-
step” approach. In the first step they compute a tree decomposition
of G of width at most 4k + 3 in time O(33%n?), or conclude that the

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3564246.3585245
https://doi.org/10.1145/3564246.3585245
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3564246.3585245&domain=pdf&date_stamp=2023-06-02

STOC ’23, June 20-23, 2023, Orlando, FL, USA

treewidth of G is more than k. In the second step they do dynamic
programming over the tree decomposition found in the first step.
The second step is the only non-constructive part of their algorithm,
and runs in time f(k)n where the function f is unspecified.

Matousek and Thomas [38], Lagergren [36], and Reed [40] gave
improved algorithms for the first step. The algorithms of Matousek
and Thomas and Lagergren run in time KOy log? n, and the al-
gorithm of Reed runs in time KOy log n. All three algorithms
either conclude that the treewidth of G is more than k, or produce a
tree decomposition of width at most O(k). The algorithm of Lager-
gren [36] is given as a parallel algorithm with kO k) log® n running
time on O(k%n) processors.

For the second step, constructive 20 time dynamic pro-
gramming algorithms were discovered in 1991 independently by
Lagergren and Arnborg [37], and Bodlaender and Kloks [16, 17].
None of [16, 17, 37] explicitly mention the dependence on k, but
the 20*) bound directly follows from the analysis in [17] and
is mentioned in [11]. Combined with the algorithm for the first
step by Lagergren [36], this led to a 200K log? n time algorithm
for treewidth. In 1993, Bodlaender showed that the first phase of
the algorithms can be replaced by an ingenious recursion scheme,
and designed a linear 200K 1 time algorithm for treewidth [8, 11].
Much more recently, Elberfeld, Jakoby, and Tantau [26] gave an
algorithm for treewidth that uses space f(k) log n and time n/ (%),

Downey and Fellows asked in their monograph from 1999 whether
the dependence on k in Bodlaender’s algorithm could be improved
from 20(K%) to 20(K) [24, Chapter 6.3]. Later, in 2006, Telle [12,
Problem 2.7.1] asked the less ambitious question of whether there
is any fixed-parameter algorithm for treewidth whose running time
as a function of k is better than 20 (k") The problem of obtaining a
2000 time algorithm was also asked by Bodlaender, Drange,
Dregi, Fomin, Lokshtanov, and Pilipczuk [13] and called a “long-
standing open problem” by Bodlaender, Jaffke, and Telle [15]. In
this paper, we resolve this problem.

THEOREM 1. There is an algorithm that takes as input an n-vertex
graph G and an integer k, and in time 20(K) n4 either outputs a
tree decomposition of G of width at most k or concludes that the
treewidth of G is larger than k. Moreover, the algorithm works in

space polynomial in n.

An interesting feature of our algorithm is that it runs in poly-
nomial space, and in particular that it is not based on dynamic
programming. All previously known parameterized algorithms for
computing treewidth exactly [3, 11, 17, 37, 42] are based on dynamic
programming and use space exponential in k. The running time
dependence on n of the algorithm of Theorem 1 is significantly
worse than that of Bodlaender [11]. The dependence on n of our
algorithm can probably be improved, nevertheless we believe that
an algorithm with running time 20(k) n2 or better should require
new and interesting ideas.

Our second contribution is a new parameterized approximation
algorithm for treewidth.

THEOREM 2. There is an algorithm that takes as input an n-vertex
graph G, an integerk, and a rational ¢ € (0,1), and in time kO Kk/e) y4
either outputs a tree decomposition of G of width at most (1 + ¢)k

529

Tuukka Korhonen and Daniel Lokshtanov

or concludes that the treewidth of G is larger than k. Moreover, the
algorithm works in space polynomial in n.

There is a rich history of approximation algorithms for treewidth.
In terms of polynomial time approximation algorithms, the best
known approximation algorithm [27] by Feige, Hajiaghayi and Lee
has approximation factor O(+/log k), improving upon a O(log n)-
approximation algorithm [14] and a O(log k)-approximation algo-
rithm [1]. On the other hand, Wu, Austrin, Pitassi and Liu [44]
showed that assuming the Small Set Expansion Conjecture (and
P # NP), there is no constant factor approximation algorithm for
treewidth.

Treewidth is one of the unusual cases where the first FPT-ap-
proximation algorithm (an approximation algorithm with running
time f (k)n© M) pre-dates the first polynomial time approximation
algorithm. The first such algorithm, a 4-approximation algorithm
running in time 0(3%kn?), is the “first step” of the f(k)n? time
non-constructive algorithm by Robertson and Seymour for exactly
computing treewidth [42]. Subsequent research, summarized in
Table 1 attained different trade-offs between the running time de-
pendence on n, the running time dependence f(k) on k, and the
approximation factor. The algorithm of Theorem 2 is the first FPT-
approximation algorithm for treewidth with approximation ratio
below 2 and running time 2°<k2)n0(1) (or even 2°(k3)n0(1), dis-
counting Theorem 1). Note that by setting ¢ = ﬁ, the algorithm
of Theorem 2 gives an exact algorithm with only a slightly slower
(ko(kz) n*) running time than the algorithm of Theorem 1, in par-
ticular, being sufficient for resolving the open problem of obtaining
a 2090 time algorithm for treewidth. This is worth noting
since the algorithm of Theorem 2 is in fact considerably simpler
than the algorithm of Theorem 1.

Methods. Both the exact algorithm of Theorem 1 and the approxi-
mation algorithm of Theorem 2 are based on a generalization of the
local improvement method introduced by Korhonen [34], which in
turn was inspired by a proof of Bellenbaum and Diestel [6]. In each
local improvement step we are given a tree decomposition (T, bag)
of G of width more than k, and the goal is to either conclude that
the treewidth of G is more than k, or to find a “better” tree decom-
position of G. Here better means that either the width of the output
tree decomposition is strictly smaller than that of (T, bag), or that
the width of the output decomposition is the same as the width of
(T, bag), but there are fewer bags of maximum size.

We show that the local improvement step is in fact equivalent to
solving the following problem, which we call SUBSET TREEWIDTH:
given as input a graph G and a set W of vertices, conclude that
the treewidth of G is at least |[W| — 1, or find a tree decomposition
(T’,bag’) such that W is contained in the union of the non-leaf
bags of (T’,bag’) and all non-leaf bags have size at most |W| —
1 (the formal definition of this problem in Section 2 is worded
differently, but can easily be seen to be equivalent). Observe here
that if the treewidth of G is strictly less than |W| — 1 then every
tree decomposition (T, bag’) of G of width at most |W| — 2 is a
valid output for SUBSET TREEWIDTH (after possibly adding empty
dummy leaf bags).

The first key insight behind our algorithms is that if W is a maxi-
mum size bag of the tree decomposition (T, bag), and an algorithm

An Improved Parameterized Algorithm for Treewidth

STOC ’23, June 20-23, 2023, Orlando, FL, USA

Table 1: Overview of treewidth algorithms with running time f(k) - g(n), each either outputting a tree decomposition of width
at most a(k) or determining that the treewidth of the input graph is larger than k. Most of the rows are based on a similar

tables in [13] and [34].

Reference Appx. a(k) f(k) g(n)
Arnborg, Corneil, and Proskurowski [3] exact o(1) nk+2
Robertson and Seymour [42] 4k +3 0(3%) n?
Matousek and Thomas [38] 6k +5 kO nlog?n
Lagergren [36] 8k +7 kO k) nlog?n
Reed [40] 8k +0(1) kO k) nlogn
Bodlaender [11] exact 20(k) n
Amir [2] 4.5k 0(23k1312) n?
Amir [2] (3+2/3)k | O(237kk3) n?
Amir [2] O(klogk) | O(klogk) nt
Feige, Hajiaghayi, and Lee [27] O (k+/logk) o(1) noM
Fomin, Todinca, and Villanger [32] exact o(1) 1.7347"
Fomin et al. [30] O(k?) o(k") nlogn
Bodlaender et al. [13] 3k+4 20(k) nlogn
Bodlaender et al. [13] 5k +4 20(k) n
Korhonen [34] 2k +1 20(k) n
Belbasi and Fiirer [5] 5k +4 27-61k nlogn
Belbasi and Fiirer [4] 5k +4 26-755k nlogn
This paper exact 20k n
This paper (1+o)k kO (k/e) nt

for SuBsET TREEWIDTH on input (G, W) outputs the decomposition
(T’,bag’), then a tree decomposition better than (T, bag) (in the
sense above) can be computed from (T, bag) and (T’, bag’) in poly-
nomial time. The proof of this statement is given in Section 5 and
is a non-trivial generalization of corresponding improvement argu-
ments by Bellenbaum and Diestel [6] and Korhonen [34]. Indeed, in
retrospect, the 2-approximation algorithm of Korhonen [34] can be
thought of as using this approach with the additional assumption
that |[W| > 2k + 3, where k is the treewidth of G, and in this case a
solution to SUBSET TREEWIDTH whose non-leaf bags form the star
K 3 exists. The exact algorithm of Theorem 1 is based on solving
SuBsET TREEWIDTH without any additional assumptions, while the
approximation algorithm of Theorem 2 is based on solving SUBSET
TREEWIDTH with the additional assumption that |[W| > k(1+¢) +2.

The second key insight is that the SUBSET TREEWIDTH problem
is more approachable than the treewidth problem, because the
problem formulation allows us to focus on one small set W and
“discard” all parts of the graph (by placing them into leaves of
(T’, bag’)) that are not relevant for providing connectivity between
vertices of W. Both the algorithm of Theorem 1 and of Theorem 2 are
based on branching on important separators (see e.g. [22, Chapter
8]), a carefully chosen measure to quantify the progress made by the
algorithms, and a “safe separation” reduction rule for the SUBSET
TREEWIDTH problem. This rule states that if the algorithm has
identified two vertex sets By and Bj that can be chosen as bags of
(T’,bag’), and S is a minimum size (Bj, By)-separator, then it is
safe to also make S a bag of (T, bag’) and recurse on the connected
components of G \ S. A generalization of this reduction rule was
formulated for the treewidth problem by Bodlaender and Koster [18,
Lemma 11]. However it is not clear how to utilize this reduction

530

rule to directly obtain efficient algorithms for treewidth. On the
other hand, for SUBSET TREEWIDTH, this reduction rule is the main
engine of our algorithms.

Organization. Due to space limits, most of technicals details are
omitted or just sketched. The full version of the paper is available
on arXiv [35]. The rest of the paper is organized as follows. In
Section 2 we formally define the SUBSET TREEWIDTH problem, give
statements of intermediate theorems on how Theorems 1 and 2
follow from algorithms for SUBSET TREEWIDTH, and then present
an overview of the proofs. In Section 3 we present notation and
preliminary results. In Section 4 we give a “pulling lemma” for tree
decompositions, which will be used for our algorithms. We note
that the Section 5 of the full version also contains results about
important separators that we omit here for space constraints. In
Section 5 we show that algorithms for SUBSET TREEWIDTH imply
algorithms for treewidth. In Section 6 of the full version we give
the algorithm for SUBSET TREEWIDTH that implies Theorem 2, and
in Section 7 of the full version we give the algorithm that implies
Theorem 1.

2 OVERVIEW

In this section we state the main intermediate theorems leading
into Theorems 1 and 2 and overview the proofs of them. The proofs
of Theorem 1 and of Theorem 2 neatly split in two parts. The first
part is common to the proofs of Theorem 1 and Theorem 2, while
the second part requires separate proofs. The first and common part
is the overall scheme of the algorithms, namely that we proceed
by “local improvement”. Each local improvement step is reduced to
another problem, which we call SuBSET TREEWIDTH. In the second

STOC ’23, June 20-23, 2023, Orlando, FL, USA

part we give two different algorithms for the SUBSET TREEWIDTH
problem, one exact, leading to a proof of Theorem 1, and one ap-
proximate, leading to a proof of Theorem 2. We start by discussing
the first part.

2.1 Reduction to Subset Treewidth

Suppose that we are given as input the graph G and integer 7,
and the task is to either return that the treewidth of G is more
than , or find a “good enough” tree decomposition of G. For an
exact algorithm this simply means a tree decomposition of width
at most 7, for a (1 + ¢)-approximation algorithm this means a tree
decomposition of width at most 7(1 + ¢). Assume now that we are
also given as input a tree decomposition (T, bag) of G of width at
most O(7). Initially such a tree decomposition can be obtained by an
approximation algorithm, such as the 4-approximation algorithm
of Robertson and Seymour [42] with running time O(337n?). If
the tree decomposition (T, bag) is already good enough, then we
can output it and halt. Otherwise, a largest bag W of (T, bag) is
too large. We would like to make (T,bag) better by getting rid
of this bag W that is too large. More formally we want to find
a tree decomposition (T”’,bag’’) of G of width at most |W| — 1
and with strictly fewer bags of size |[W| than (T, bag) has. On the
surface this does not really look any easier than trying to find a tree
decomposition of width at most |W| — 2. Somewhat miraculously it
turns out that it is in fact easier, because this problem is equivalent
to the SUBSET TREEWIDTH problem, which we will define shortly. To
define the SUBSET TREEWIDTH problem we first need to introduce
some notation.

Let G be a graph and X C V(G). The graph torsog(X) has
vertices V(torsog (X)) = X and has uv € E(torsog(X)) ifu,v €
X and there is a path from u to v whose all internal vertices (if
any) are in V(G) \ X. In particular, note that E(torsog(X)) 2
E(G[X]). An equivalent definition of torsog(X) is that it is the
graph obtained from G[X] by making Ng(C) a clique for every
connected component C of G \ X. A torso tree decomposition in a
graph G is a pair (X, (T,bag)), where X C V(G) and (T, bag) is
a tree decomposition of torsog(X). The width of the torso tree
decomposition (X, (T, bag)) is simply the width of (T, bag). For a
set W C V(G), we say that (X, (T, bag)) covers W if W C X. We
are now ready to define the SUBSET TREEWIDTH problem.

SUBSET TREEWIDTH Parameter: k
Input: Graph G, integer k, and a set of vertices W of size
[W|=k+2.

Question: Return a torso tree decomposition of width at most
k in G that covers W or conclude that the treewidth of G is at

least k + 1.

Note that at least one of the two cases in the definition of SUBSET
TREEWIDTH must apply. In particular, if G has a tree decomposition
(T’,bag’) of width at most k then (V(G), (T’, bag”)) is a torso tree
decomposition of width at most k in G that covers W. The two
cases need not be mutually exclusive: there exists graphs G with
treewidth at least k + 1 and sets W of size k + 2 that nevertheless
can be covered by a torso tree decomposition of width k. In such a
case an algorithm for SUBSET TREEWIDTH may output either one of
the two options.

531

Tuukka Korhonen and Daniel Lokshtanov

The SuBseT TREEWIDTH problem directly reduces to treewidth:
using a hypothetical treewidth algorithm we can determine whether
the treewidth of G is at most k. If no, then report that the tree-
width of G is at least k + 1. Otherwise output (V(G), (T’, bag’))
where (T’, bag’) is the width k tree decomposition returned by the
treewidth algorithm. Our algorithms for treewidth are based on
the result that we can reduce in the other direction as well. We
encapsulate this insight in the following lemma.

Lemma 2.1. Let (T,bag) be a tree decomposition of G and W be
a largest bag of (T, bag). If there exists a torso tree decomposition
(X, (T’,bag’)) inG that covers W and has width at most |W|—2, then
there exists a tree decomposition (T”’,bag’’) of G of width at most
|W |—1 with strictly fewer bags of size |W|. Moreover, given G, (T, bag)
and (X, (T’,bag’)) we can compute (T”',bag’’) in polynomial time.

Lemma 2.1 is more carefully stated and proved as Lemma 5.6 in
Section 5. Before giving a proof sketch of Lemma 2.1 in Section 2.2,
we show how Lemma 2.1, together with an algorithm (or approxi-
mation algorithm) for SUBSET TREEWIDTH yields an algorithm (or
approximation algorithm) for treewidth.

Indeed, starting with a tree decomposition (T, bag) of width O(r)
but more than 7, we can call an algorithm for SUBSET TREEWIDTH on
alargestbag W of (T, bag), and either conclude that the treewidth of
G is more than 7 or obtain a torso tree decomposition (X, (T, bag’))
that covers W and has width at most |W| — 2. Lemma 2.1 now yields
a tree decomposition (7", bag’’) with no larger width and strictly
fewer bags of size |W|. We now repeat the process with (T””, bag’’)
as the new (T, bag). After at most O(zn) iterations we will either
have obtained a tree decomposition of G of width at most 7 or
concluded that the treewidth of G is more than 7. We now state this
as a theorem. For the running times, we use m = |V(G)| + |[E(G)|
to denote the size of the graph and we assume that the function
T (k) is increasing.

THEOREM 3. Given an algorithm for SUBSET TREEWIDTH with
running time T (k) - m€, an algorithm for treewidth with running
time T(O(k)) - O((nk)<+1) + kOWnt + 2000 12 can be constructed.
Moreover, if the algorithm for SUBSET TREEWIDTH works in polynomial
space, then the algorithm for treewidth works in polynomial space.

Theorem 3 is proved in Section 5. We remark that the addi-
tive 20 n? term comes from starting by applying the factor 4-
approximation algorithm of Robertson and Seymour [42]. This
additive term could be avoided by replacing this approximation
algorithm by Bodlaender’s recursive compression technique [11],
at the expense of a KO multiplicative factor in the running time.
In light of Theorem 3 it is natural to focus on parameterized algo-
rithms for SUBSET TREEWIDTH, which is precisely our line of attack.
In Section 7 of the full version we give a 20K i time polynomial
space algorithm for SUBSET TREEWIDTH.

TueOREM 4. There is a 20) nm time polynomial space algorithm
for SUBSET TREEWIDTH.

A proof sketch for Theorem 4 is given in Section 2.3. Putting
Theorems 3 and 4 together implies Theorem 1. The argument prov-
ing Theorem 3 (assuming Lemma 2.1) also works for approximation
algorithms. In particular the same argument shows that in order to

An Improved Parameterized Algorithm for Treewidth

obtain a (1 + ¢)-approximation algorithm for treewidth, it is suffi-
cient to design an algorithm for SUBSET TREEWIDTH that is only
required to work correctly on instances where |W| > (1 + ¢)7 + 2
(and 7 is the treewidth of G). Towards designing such an algorithm
we define an intermediate problem, called PARTITIONED SUBSET
TREEWIDTH.

PARTITIONED SUBSET TREEWIDTH Parameters: k, ¢
Input: Graph G, integer k, set of vertices W of size |W| = k+2,
and t cliques Wy, ..., W; of G such that Uf.zl Wy =W.
Question: Return a torso tree decomposition of width at most
k in G that covers W or conclude that the treewidth of G is at
least k + 1.

The PARTITIONED SUBSET TREEWIDTH problem arises naturally
when designing a recursive branching algorithm for SUBSET TREE-
WIDTH. Every instance of SUBSET TREEWIDTH is an instance of PAR-
TITIONED SUBSET TREEWIDTH with t = [W| =k + 2 and W; = {w;}
(where W = {wy, wa, ..., wyy|}). However, PARTITIONED SUBSET
TREEWIDTH appears substantially easier when ¢ is much smaller
than k. The following theorem, proved in Section 6 of the full ver-
sion, formalizes this intuition.

Tueorem 5. Thereisak®*t) nm time polynomial space algorithm
for PARTITIONED SUBSET TREEWIDTH.

We give a proof sketch of Theorem 5 in Section 2.3. In light of
Theorem 5 it is natural to ask whether it is possible to reduce Sus-
SET TREEWIDTH to PARTITIONED SUBSET TREEWIDTH with ¢ much
smaller than k. While we do not know of a way to do this for exact
algorithms, we obtain such a reduction for the variant of SUBSET
TREEWIDTH which is sufficient for (1 + ¢)-approximating treewidth.
In particular, it is possible to show, using standard methods, that for
every graph G, vertex set W and positive integer ¢ there exists a par-
tition of W into t sets Wi, . . ., W; such that making all of W1, ..., W;
into cliques increases the treewidth of G by at most 3[|W|/t] (we
give a proof of essentially this fact with parameter values relevant
to our applications in Lemma 5.7). Thus, for instances of SUBSET
TREEWIDTH where 7(1+¢)+2 < |W| = O(r) (and 7 is the treewidth
of G), setting t = O(1/¢) shows that there exists a partition of W
into at most ¢ = O(1/¢) sets such that making all of Wy, ..., W; into
cliques increases the treewidth of G to at most 7(1+¢). The proof of
Theorem 3 (assuming Lemma 2.1) coupled with this partitioning ar-
gument yields a reduction from (1 + ¢)-approximating treewidth to
solving PARTITIONED SUBSET TREEWIDTH exactly with t = O(1/e).

THEOREM 6. Given an algorithm for PARTITIONED SUBSET TREE-
wiDTH with running time T (k,t) - m€, we can construct an (1 + ¢)-
approximation algorithm for treewidth with running time

T(O(k),0(1/e)) - O((nk)*1) - (1+1/e)0H) 4 Oyt 4 20k 2.

Moreover, if the algorithm for PARTITIONED SUBSET TREEWIDTH works
in polynomial space, then the algorithm for treewidth works in poly-
nomial space.

Putting Theorems 6 and 5 together implies Theorem 2. We now
give a proof sketch of the main engine behind the proofs of Theo-
rems 3 and 6, namely Lemma 2.1.

532

STOC ’23, June 20-23, 2023, Orlando, FL, USA

2.2 Proof Sketch of Lemma 2.1

The proof of Lemma 2.1 proceeds as follows. Given G, (T, bag),
W and (X, (T’,bag’)) as in the premise of Lemma 2.1 we will con-
struct a tree decomposition (T””, bag’’) of G in polynomial time. We
will always succeed in making (T”/, bag’’), but (T"/, bag’’) might
not be “better” than (T, bag), in the sense that its width might
be more than |W| — 1, or it may have at least as many bags of
size |W| as (T, bag). We will show that in this case we can “im-
prove” (X, (T”,bag’)) instead! In particular we will find a torso
tree decomposition (X, (T*,bag*)) in G that covers W, with
|X*| < |X| and no larger width. Since G, (T, bag), W together with
(X*, (T*,bag*)) again satisfy the premise of Lemma 2.1 we can
repeat the process with (X*, (T*, bag*)) as the new (X, (T’, bag’)).
Since |X| cannot keep decreasing forever, eventually the tree de-
composition (T”/, bag’’) will satisfy the conclusion of the Lemma.
Thus it remains to sketch (i) how we construct (T”’, bag’’) and (ii)
how to improve (X, (T, bag’)) when (T’/,bag’’) is not better than
(T, bag). We start by describing the construction of (T”/, bag”’).

Constructing (T”,bag’’). We root (T, bag) at the node r of T
corresponding to W. For each connected component C of G \ X we
make a tree decomposition (T, bage) of G[N[C]] as follows. The
decomposition tree T is simply a copy of T. For each node ¢ of T let
tc be the copy of ¢ in T Thus rc is the copy of the root r of T in T¢.
For every node tc of Tc we set bage(tc) = bag(t) N N[C] plus all
vertices of N(C) that appear in at least one bag belowt in T. In other
words (T, bage) is simply the restriction of the tree decomposition
(T, bag) to the vertex set N[C], but additionally for every vertex
v of N(C) we add v to all bags on the path from r¢ to the subtree
of T where this vertex already occurs. Observe that C is disjoint
from X, which contains W, and therefore bag-(r¢) = N(C).

Now the tree decomposition (T”/,bag’’) consists of a copy of
(T’,bag’) together with the tree decomposition (T, bagc) of the
graph G[N[C]] for every connected component C of G\ X. For each
component C of G \ X we have that N(C) is a clique in torsog(X),
and that therefore (see e.g. [22, Chapter 6]) at least one bag of
(T’,bag’) contains N(C). We add an edge from r¢ to this bag. See
Figure 1 for a visualization of this construction.

It is quite easy to verify that (T”/,bag’’) is indeed a tree de-
composition of G, and that it can be constructed in polynomial
time. However it is not at all obvious that it should be better than
(T,bag) - it could even be worse, because we added vertices to
the bags bagc(tc) that were not there in the corresponding bag
bag(t) of (T,bag). Thus, all that remains is to show how to im-
prove (X, (T’,bag’)) when (T”,bag’’) is not better than (T, bag).
Working towards this goal we first state the main tool that we will
use to improve (X, (T’, bag’)).

A pulling lemma. The following lemma is very useful to improve
(X, (T’,bag’)), and also in many other arguments in this paper. We
call it the “pulling lemma” because in the proof the separator S
will be “pulled” along disjoint paths into a bag of the (torso) tree
decomposition. To state the pulling lemma we need to define the
notions of separations and linkedness. A separation in a graph G is
a partition of V(G) into three parts (A, S, B) such that no edge of
G has one endpoint in A and the other in B. We call S the separator
of the separation (A, S, B) and |S| is the order of the separation. A

STOC ’23, June 20-23, 2023, Orlando, FL, USA

(T, bag)

Tuukka Korhonen and Daniel Lokshtanov

(T”, bag”)

[,0’Xq 'J

e
(T, bag) \Tu“a ¢

(Tc,, bagc)

Figure 1: Construction of (T”,bag”’).

vertex set A is linked into a vertex set B in G if there exist |A| vertex
disjoint paths with one endpoint in A and one in B (paths on a
single vertex that start and end in A N B count).

Lemma 2.2 (Pulling lemma, simplified variant). Let G be a graph,
k be an integer, (X, (T, bag)) be a torso tree decomposition in G of
width k, Z C X be a vertex set in G that is a subset of at least
one bag of (T, bag), and (A, S, B) be a separation of G so that Z C
SU B and S is linked into Z. There exists a torso tree decomposition
(X NA)US, (T, bag’)) of width at most k. Moreover, S is a bag of
(T’,bag’). Furthermore, when G, (X, (T,bag)), (A, S, B), and Z are
given as inputs, the torso tree decomposition ((X NA)US, (T’, bag’))
can be constructed in polynomial time.

The formal version of Lemma 2.2 is proved as Lemma 4.1 in
Section 4. Analogous lemmas with similar proofs have been used
in the context of tree decompositions, for example by [6, 18], and
so we do not give a sketch of Lemma 2.2 in this overview.

Improving X when (T”,bag’’) is not better than (T, bag). We
now return our focus to the setting where we started with (T, bag),
a maximum size bag W, and (X, (T’,bag’)), and we used them to
make the new tree decomposition (T”’, bag’’) of G. If (T"’, bag’’)
is better than (T, bag) (in the sense of having strictly fewer bags
of size |W| and no larger bags) then (T, bag) already satisfies the
conclusion of Lemma 2.1. Hence, assume that (T’’, bag’’) is not
better than (T, bag). Our goal is to find a component C of G\ X and
a separation (P’,S’, Q”) such that N(C) € S'UQ’, W C S’UP’, S’ is
linked to N(C), and |S’| < |[N(C)|. Then (X, (T’,bag’)), Z = N(C)
and the separation (P, S’, Q’) will satisfy the premise of Lemma 2.2.
Setting X* = (X N P’) US’, Lemma 2.2 implies that there exists a
torso tree decomposition (X*, (T*, bag*)) of width at most that of
(X, (T’,bag’)). Moreover, because N(C) € X and N(C) is disjoint
from P’, it holds that

IX*| = X = X\ P/ +18"] < IX| = IN(O) +5"] < |X].

Since W € S’ UP’ and W C X, we have that X* covers W, and we
have found our improved torso tree decomposition (X*, (T*, bag*))
that covers W. We now show how such a component C and separa-
tion (P’,S’, Q’) can be identified.

533

Note that (T’,bag’) has no bags of size at least |W|. Therefore
every bag of size at least |[W| in (T"’, bag’’) appears in (T, bag¢) for
some component C of G\ X. Observe also that for the root r of T and
every component C of G \ X we have |bage(re)| < |W| = |bag(r)|.
Indeed, for every copy rc of the root we have that C is disjoint
from X, and that therefore bag-(rc) = N(C). But N(C) is a subset
of some bag of (T’,bag’), all of which have size at most |W| — 1.
Therefore, since (T”/, bag’’) is not better than (T, bag) at least one
of the two following statements must hold. (i) There exists a node ¢
in V(T) and component C of G \ X such that |bagc(tc)| > |bag(?)|,
or (ii) There exists a node t in V(T) and two distinct components
C1,C2 of G\ X such that |bagc, (ic,)| = |bagc, (tc,)| = |bag(t)| =
(W]

We show how to improve X in the first case. Let t be a node
in V(T) and C be a component C of G \ X such that |bag-(t¢c)| >
|bag(t)|. We consider two separations of G: (C, N(C), R) (where
R =V(G) \ N[C)]) is the “rest” and (U, B, L) where B = bag(t), L
(the “lower” set) is the set of all non-B vertices appearing in bags of
T below ¢, and U (the “upper”) set is defined as U = V(G) \ (BUL)
(consult Figure 2 for a visualization of these separations and how
they are used in the remainder of the argument).

We have that W is a subset of X and therefore disjoint from
C. Similarly, all vertices of W appear in at least one bag above ¢
(namely r), and therefore W is disjoint from L. It follows that S
defined as

S=(N(C)\L)U(BNR)
separates N(C) from W. Furthermore, by choice of t and B = bag(t)
we have that

IBANI[C][+[B\N[C]| = |B]|
< |bage(tc)| = [BNAN[C][+|N(C) NL|.
Here |bagc(tc)| = |BN N[C]| + IN(C) N L| follows from the con-

struction of the function bagc. From the above equation we have
that [BN R| = |B\ N[C]| < |[N(C) N L|. But then we have that

IN(O) = IN(O)\ LI+ IN(C) N L| > IN(C) \ L| + [BN R > |S].

Since S separates N (C) from W, there exists a separation (P, S, Q)
withW € SUPand N(C) € SUQ, and |S| < |[N(C)|.Let (P’,S’, Q)
be a separation with W € §’ U P’ and N(C) € §’ U Q’ and |S’|

An Improved Parameterized Algorithm for Treewidth

C NC R
U W
B ol 5
L

Figure 2: The set S separates N(C) from W and S| < |[N(O)|
because |[BNR| < [N(C) NL|.

being of minimum size. Then |S’| < |S] < |N(C)| and (by Menger’s
Theorem) the set S’ is linked into N(C). Now the component C and
separation (P’,S’, Q') satisfy all of the properties necessary to use
Lemma 2.2 to improve (X, (T, bag)). This concludes case (i) (that
there exists a node t in V(T) and component C of G \ X such that
Ibagc(tc)| > [bag(2))).

The second case (when there exists a node ¢ in V(T) and two dis-
tinct components C1, Cz of G\X with |bagc, (tc,)| = Ibagc, (tc,)| =
|bag(t)| = |W|) is handled in an analogous, but even more tech-
nical way. In particular in this case we are not able to necessarily
obtain an X* with |X*| < |X|, but instead we obtain an X* with
|X*| = |X| and a lower value of a carefully chosen potential func-
tion. This concludes the proof sketch of Lemma 2.1.

2.3 Overview of Theorems 4 and 5

We now overview our algorithms for SUBSET TREEWIDTH and PAR-
TITIONED SUBSET TREEWIDTH. Recall that every instance of Sus-
SET TREEWIDTH is also an instance of PARTITIONED SUBSET TREE-
WIDTH, so we will only work on instances of PARTITIONED SUBSET
TREEWIDTH. This will be useful also in the algorithm for SUBSET
TREEWIDTH, since the recursive subproblems turn out to naturally
correspond to PARTITIONED SUBSET TREEWIDTH.

We denote an instance of PARTITIONED SUBSET TREEWIDTH by
I =(G,{Wy,...,W;}, k). We call the cliques Wy, ..., W; the termi-
nal cliques of the instance. We say that a torso tree decomposition
(X, (T,bag)) in G is a solution of I if (X, (T, bag)) covers Ul{:l W;
and has width at most k. Here we do not anymore enforce that
| Ui, Wil < k+2, and it will in fact grow larger in the recursive
subproblems (but k or ¢ will not increase). Both of our algorithms
will either find a solution or conclude that no solution exists. In
particular, we do not use the freedom in the definitions of the prob-
lems that we could also determine that the treewidth of G is more
than k without determining that no solution exists.

We will first sketch a k90 time algorithm for PARTI-
TIONED SUBSET TREEWIDTH in the case when there are only two
terminal cliques W; and Wa. This algorithm showcases the most

534

STOC ’23, June 20-23, 2023, Orlando, FL, USA

important concepts behind both the k9t nm time algorithm of
Theorem 5 and the 20 k") nm time algorithm of Theorem 4, and in
fact generalizing this to the KOkt ym algorithm does not require
substantial new ideas but is rather a technical step.

Reduction rule. Let W;,W, be the two terminal cliques and S be a
minimum size (W, Wy)-separator, and (A, S, B) the corresponding
separation with W; € AU S and W, C BU S. We will argue that
we can make S into a new terminal clique and recursively solve the
problem on the graphs G[A U S] and G[B U S]. More formally, we
denote by G ® S the graph obtained from G by making S a clique,
and then denote by 7 <(A, S) the instance (G[AUS] ® S, {W1, S}, k)
and by 7 < (B, S) the instance (G[BU S] ® S, {Wa, S}, k). We argue
that there exists a solution of 7 if and only if there exists solutions
of both 7 < (A,S) and I <« (B, S).

Observe that because both 7 <« (A,S) and 7 < (B, S) contain
the separator S as a terminal clique but their graphs are disjoint
otherwise, any solution of 7 < (A,S) can be combined with any
solution of 7 < (B, S) into a solution of I by simply connecting
the tree decompositions by an edge between bags containing S.
To argue that if there exists a solution of 7 then there exists solu-
tions of both 7 <« (A,S) and I < (B, S), we apply the pulling lemma
(Lemma 2.2). Because S is a minimum size (W;, W,)-separator, by
Menger’s theorem S is linked into W; and into W;. Therefore, in
order to show that a solution of 7 < (A, S) exists, we consider a hy-
pothetical solution (X, (T, bag)) of 7, and apply the pulling lemma
with the separation (A, S, B) and Z = W, as the subset of a bag
with Z € S U B into which S is linked. This constructs a torso tree
decomposition ((X N A) U S, (T”,bag’)) of width at most k where
S is a bag, which can be observed to be a torso tree decomposition
also in G[A U S] ® S because S is a bag of (T, bag’), and to cover
W1 US because Wi € AUS and Wj C X, and therefore is a solution
of 7 < (A, S). The existence of a solution of 7 < (B, S) is proven in a
symmetric way.

Observe that this reduction rule makes progress as long as S #
Wi and S # W, and thus we apply the rule as long as there exists
any such minimum size (W, Wy)-separator S. Motivated by this,
we say that Wy is strictly linked into Wy if W is linked into W and
the only minimum size (W;, Wy)-separators are W; and perhaps W,
(if (W2 = [Wh)).

Leaf pushing. Assume now that we cannot make any more prog-
ress by the reduction rule, and let [W;| < |W5|, implying that Wj is
strictly linked into W5. Our goal is to now make progress by increas-
ing the size of W;. We observe that for any solution (X, (T, bag))
that minimizes |X|, it holds that if [is a leaf node of T and p is the
parent of I, then bag(l) \ bag(p) € Wi U W;. Furthermore, we can
assume that bag(p) = bag(l) \ {w}, where w is a “forget-vertex”
of I, and therefore bag(l) \ bag(p) € W; or bag(l) \ bag(p) € Wa.
Then, observe that if bag(l) \ bag(p) intersects W;, it must hold
that W; C bag(l) because W; is a clique. Therefore, (T, bag) ei-
ther contains a bag that contains both W; and W5, in which case
[Wi U Wa| < k + 1 and there is a trivial single-bag solution, or
(T, bag) has exactly two leaves and for one of them it holds that
Wi C bag(l) and bag(l) \ bag(p) € W; \ Wa.

Now, our goal will be, informally, to increase the size of W; by
guessing a vertex in bag(l) \ W; and adding it to W;. We let w be

STOC ’23, June 20-23, 2023, Orlando, FL, USA

the forget-vertex of [, and observe that the parent bag bag(p) =
bag(l) \ {w} is a (W, Wa)-separator. This shows that bag(l) \ W;
must be non-empty, because otherwise bag(p) would be a (W, Ws)-
separator of size |Wj| — 1, contradicting that W; is linked into Wa.
Denote G’ = G\ (W; \ {w}), and observe that in the graph G’
the set bag(l) \ Wi = bag(p) \ W1 is a ({w}, Wa \ W})-separator.
We will then show that the subset bag(l) \ W; of bag(l) can be
replaced by an important ({w}, Wz \ Wj)-separator (see Section 4.1
of the full version or [22, Chapter 8] for definitions of important
separators). In particular, we will argue that there is an important
({w}, Wy \ Wj)-separator S # {w} in the graph G’ so that there
exists a solution containing a bag W U S.

Let S be an important ({w}, Wz \ Wj)-separator in the graph
G’ so that it dominates bag(l) \ Wi and minimizes |S| among all
such important separators. Denote the separation corresponding to
Sby (A S,B) = (Rg({w},5), 5, V(G) \ (SURg ({w},S))), where
Re ({w}, S) denotes the vertices reachable from {w} in the graph
G’ \ S. It can be shown that S is linked into (A U S) N (bag(l) \ Wy).
Then, by adding W; \ {w} back to the graph and to the separation,
we get that (A, SUW; \ {w}, B) is a separation of G and SUW; \ {w}
is linked into (AUSU W \ {w}) Nbag(l) (the vertices in W; \ {w}
are linked by trivial one-vertex paths). We then apply the pulling
lemma (Lemma 2.2) with the hypothetical solution (X, (T, bag)),
the separation (B,S U W; \ {w}, A), and the subset of a bag Z =
(AUSUW; \ {w}) Nnbag(l), to argue that there exists a torso tree
decomposition ((XNB)USUW; \ {w}, (T”,bag’)) of width at most
k, containing a bag SUWj \ {w}. As |S| < |bag(l) \ Wi|, this can be
turned into a solution of 7 by inserting w into the bag SU W \ {w}.
Therefore there exists a solution of 7 with a bag W; U S, and in
particular it is safe to replace the terminal clique W; by W U S, also
replacing G by G ® (W U S).

Now, we are able to increase the size of W; by guessing the forget-
vertex w € Wj and an important separator S and branching to
(G® (W1 US), {W; US, Wa}, k). However, by applying the reduction
rule we might immediately lose most of the progress by finding
a (Wp U S, Wy)-separator S’ of size |S’| < |W; U S| and ending
up with an instance with terminal cliques {S’, W»}. Nevertheless,
we can ensure that such S’ must have size |S’| > |Wj| by using
the facts that W is strictly linked into W, and the way S was
selected. In particular, in the end, after applying the reduction rule
possibly several times, we can guarantee that if initially |W;| = W2,
then each resulting instance has terminal cliques of sizes at least
[Wi]| + 1 and |Ws|, and if initially [W;| < |Wa|, then each resulting
instance has terminal cliques of sizes at least |W;| + 1 and |Wp| + 1.
Therefore, if we consider min(|Wi|, |[Wz|) + min(min(|Wj|, |W2|) +
1, max(|Wy|, |[Wz])) as our measure of progress, we are guaranteed
to increase it by one by the branching.

As the sizes of terminal cliques are bounded by k+1, it is possible
to increase this measure by at most 2k times. Then, as the number
of important separators of size at most k is bounded by 4k [20], this
results in a branching tree of degree k4 and depth 2k, resulting in
a (kak)ZkpO) = 209 10(1) time algorithm. To improve this to
kO) nO(M) time, we observe that in order to make progress, it is
sufficient to guess only one vertex of the important separator S and
add it to W4, instead of guessing the whole important separator S. To
this end, we prove an “important separator hitting set lemma” that

535

Tuukka Korhonen and Daniel Lokshtanov

gives a set of size k that intersects all important separators of size
at most k, and therefore allows to guess one vertex in an important
separator of size at most k by a branching degree of k instead of
4k resulting in a (k2)2kp0(1) = [O(k),0() {ime algorithm.

More than two terminal cliques. Generalizing the kO k) 0 ()
time algorithm for two terminal cliques into the kO k1) O(1) algo-
rithm for ¢ terminal cliques of Theorem 5 does not require major
new ideas, but requires several technical considerations. In the algo-
rithm for ¢ terminal cliques, we will in addition to the leaf pushing
branching do branching on merging two different terminal cliques
into one, which should be done whenever we guess that there exists
a solution where the two terminal cliques are in a same bag. The
“real” definition of the measure of the instance will also be more
involved, in particular, instead of depending on the sizes of terminal
cliques, the measure depends on a notion of “flow potential” of a
terminal clique. The flow potential has a technical definition, but
for all terminal cliques W; except for a uniquely largest one it will
be equal to the flow from W; into the union of the other terminal
cliques. The measure of a uniquely largest terminal clique must be
special to encode that we make progress, for example, in the case
when there are two terminal cliques Wi and W, with |W| = |[W;|
and after branching we end up with two terminal cliques of sizes
|W1|+1 and |W;|. The measure will also take into account the num-
ber of terminal cliques, in particular, it will “encode” that decreasing
the number of terminal cliques with the expense of making the flow
potential of one terminal clique worse still means making overall
progress.

The 20K n0M) time algorithm. The 20901 time algo-
rithm for SUBSET TREEWIDTH of Theorem 4 also uses the same re-
duction rule and leaf pushing arguments. In particular, even though
the problem is originally SUBSET TREEWIDTH, applications of the
reduction rule and leaf pushing will naturally turn the problem into
PARTITIONED SUBSET TREEWIDTH.

For this algorithm, the main measure of progress will be a param-
eter g that states that there are no solutions that contain “internal
separations” of order < q. Here, an internal separation of a solution
(X, (T,bag)) means a separation (A, S, B) so that S is a subset of
some bag of (T, bag), and the terminal cliques intersect both A and
B. The goal will be to increase g, by first pushing two terminal
cliques to be of size at least > g by using a version of leaf pushing
that guesses the whole important separator instead of only one
vertex, and then guessing how a hypothetical internal separation of
order g would split the terminal cliques and breaking the instance
by an important separator of size g pushed towards the side with
two terminal cliques of size > q. We will also argue about internal
separations that contain only a small number of “original” terminal
vertices behind them, in particular, we will use an observation that
if a solution has an internal separation (A, S, B) so that at most
k + 1 — |S| original terminal vertices are “behind” terminal cliques
intersecting A, then the A-side of the solution can be replaced by
just a single bag containing S and the original terminal vertices
behind it.

3 PRELIMINARIES

We present definitions and preliminary results.

An Improved Parameterized Algorithm for Treewidth

For a positive integer n we denote [n] = {1,2,...,n} and for two
integers a, b with a < b we denote [a,b] = {a,a+1,...,b}.
3.1 Graphs

We denote the set of vertices of a graph G by V(G) and the set of
edges by E(G). When the graph G is clear from the context, we
use n = |V(G)| and m = |V(G)| + |E(G)|. For a vertex v € V(G) we
denote its neighborhood in G by Ng(v) and closed neighborhood
by Ng[v] = Ng(v) U{v}. For a set of vertices S C V(G) their neigh-
borhood is Ng(S) = Uyes N(v) \ S and the closed neighborhood
NG [S] = Ng(S)US. We drop the subscript if the graph is clear from
the context. We denote the subgraph of G induced by S € V(G) by
G[S], and we also use the notation G\ S = G[V(G) \ S]. We denote
by G ® S the graph obtained from G by making S a clique.

A tripartition (A, S, B) of V(G) (with possibly empty parts) is a
separation of G if there are no edges between A and B. The order
of the separation is |S|. A separation of G is a strict separation if
both A and B are non-empty. For two sets X, Y C V(G), an (X,Y)-
separator is a set S so that in the graph G\ S there are no paths from
X\ StoY\S. An (X, Y)-separator S is a minimal (X, Y)-separator
if no proper subset of S is an (X, Y)-separator. Note that S is an
(X, Y)-separator if and only if there exists a separation (A, S, B) of
GwithX CAUSandY C BUS.

For two sets of vertices X, S C V(G), we denote by Rg (X, S) the
set of vertices in G \ S reachable from X \ S. We define Rg (X,9) =
(XNS)UN(RG(X,S)) C S to denote the subset of S that can be seen
from X. Note that if S is an (X, Y)-separator then Rg (X, S) is also
an (X, Y)-separator and Rg (X, Rg(X, S)) = Rg(X,S). It follows
that if S is a minimal (X, Y)-separator, then S = Rg (X.,S).

For two sets of vertices X, Y C V(G), we denote by flowg (X, Y)
the maximum number of vertex-disjoint paths in G starting in X
and ending in Y. We may omit the subscript if the graph is clear
from the context. By Menger’s theorem, flow(X, Y) is equal to the
size of a minimum size (X, Y)-separator.

We say that a set X C V(G) is linked into a set Y C V(G) if
flow(X,Y) = |X|. Note that here the definition of linked is asym-
metric, in particular, the fact that X is linked into Y does not imply
that Y is linked into X. We say that X is strictly linked into Y if it
is linked into Y and for all (X, Y)-separators S of size |S| = |X] it
holds that S=X or S =Y.

3.2 Tree Decompositions

A tree decomposition of a graph G is a pair (T, bag), where T is a
tree and bag is a function bag : V(T) — 2V(G) that satisfies

(1) V(G) = Urev(r) bag(t)

(2) for every uv € E(G), there exists t € V(T) with {u,0} C
bag(t), and

(3) for every v € V(G), the set {t € V(T) | v € bag(t)} forms a
connected subtree of T.

We will call Item 1 of the definition the vertex condition, Item 2
the edge condition, and Item 3 the connectedness condition. The width
of a tree decomposition (T, bag) is max;cy (r) [bag(t)| — 1 and the
treewidth of a graph is the minimum width of a tree decomposition
of it. We usually call the vertices of the tree T nodes to distinguish
them from the vertices of the graph G.

536

STOC ’23, June 20-23, 2023, Orlando, FL, USA

We will need the following standard utility lemma that trans-
forms a tree decomposition into a no worse tree decomposition
with at most n nodes.

Lemma 3.1. Given a tree decomposition (T,bag) of G of width k
that has h bags of size k + 1, we can in time KoM |V(T)| construct
a tree decomposition of G of width k that has at most h bags of size
k + 1 and has at most n nodes.

PRrROOF. Aslong as there exists an edge uv € E(T) with bag(u) C
bag(v), we contract uv and let the bag of the resulting node be
bag(v). This can be implemented in KOO |V(T)| time by depth-
first search, and clearly does not increase the width or the number
of bags of size k + 1. This results in a tree decomposition with at
most n nodes (see e.g. [31, Chapter 14.2]). m]

We sometimes view a tree decomposition (T, bag) as rooted on
some specific node r € V(T). In this setting we use standard rooted
tree terminology, i.e., v € V(T) is an ancestor of u € V(T) if it is
on the unique path from u to r and a strict ancestor if also v # u,
and conversely u is a (strict) descendant of v. We say that a node
t € V(T) is the forget-node of a vertex v € V(G) if v € bag(t) and
either t = r or for the parent p of t it holds that v ¢ bag(p). Note
that every v € V(G) has a unique forget-node.

3.3 Torso Tree Decompositions

Let G be a graph and X € V(G). The graph torsog(X) has set
of vertices V(torsog(X)) = X and has uv € E(torsog(X)) if
u,v € X and there is a path from u to v whose internal vertices
are in V(G) \ X. In particular, note that E(torsog (X)) 2 E(G[X]).
An equivalent definition of torsog(X) is that it is the graph ob-
tained from G[X] by making Ng(C) a clique for every connected
component C of G \ X.

We will need a following lemma about the interplay of the torso
operation and induced subgraphs.

Lemma 3.2. Let X,Y be subsets of V(G). Then E(torsogy}(X N
Y)) C E(torsog(X)).

Proor. Ifuv € E(torsog[y](X NY)), then there is a path from
u to v in G[Y] with intermediate vertices in Y \ X. This path exists
also in G, implying that uv € E(torsog(X)). O

A torso tree decomposition in a graph G is a pair (X, (T, bag)),
where X C V(G) and (T, bag) is a tree decomposition of torsog (X).
For a set W C V(G), we say that (X, (T, bag)) covers W if W C X.

We observe the following equivalent viewpoint of torso tree
decompositions that might be useful for intuition about them.

Observation 3.3. There exists a torso tree decomposition (X, (T, bag))
in G if and only if there exists a tree decomposition of G whose non-leaf
nodes induce the tree decomposition (T, bag).

For tree decompositions it holds that for any connected induced
subgraph G[Y], the set of bags intersecting Y forms a connected
subtree of the decomposition (see e.g. [31, Chapter 14.1]). We will
use a corresponding property of torso tree decompositions.

Lemma 3.4. Let (X, (T,bag)) be a torso tree decomposition in G,
and let Y C V(G) so that G[Y] is connected. The nodes {t € V(T) |
bag(t) N'Y # 0} induce a (possibly empty) connected subtree of T.

STOC ’23, June 20-23, 2023, Orlando, FL, USA

ProoF. By the definition of torsog(X), any u — v-path in G[Y]
withu, v € X canbe mapped into an u—v-path in torsog (X)[YNX],
and therefore torsog(X)[Y N X] is connected, and therefore the
lemma follows from the corresponding property of tree decomposi-
tions. ml

Alternatively, Lemma 3.4 could be proven by using Lemma 3.3
and the property of tree decompositions. Lemma 3.4 implies that if
there are nodes s, x,y € V(T) so that {s} is an ({x}, {y})-separator
in T, then bag(s) is a (bag(x), bag(y))-separator in G. This impli-
cation is proven by letting Y to be any bag(x) — bag(y)-path and
observing that by Lemma 3.4, Y must now intersect bag(s).

4 PULLING LEMMA

We prove a lemma that will be used throughout Section 5, and
the Sections 6 and 7 of the full version to argue that a separator
S can be incorporated as a bag of a torso tree decomposition if it
satisfies certain properties. We call it the “pulling lemma” because
the separator S will be “pulled” along disjoint paths into a bag of
the tree decomposition. Lemmas analogous to this have been used
in the context of tree decompositions for example by [6, 18].

Lemma 4.1 (Pulling lemma). Let G be a graph and (X, (T,bag)) a
torso tree decomposition in G. Let (A, S, B) be a separation of G so that
there exists a noder € V(T) so that S is linked into bag(r) N (S U B).
There exists a torso tree decomposition ((X N A) U S, (T’,bag’)) so
that

()T =T

(2) forallt € V(T), |bag’(t)| < |bag(t)|, and

(3) S C bag’(r).
Moreover, when G, (X, (T,bag)), (A,S,B), and r are given as in-
puts, the torso tree decomposition ((X N A) U S, (T’,bag’)) can
be constructed in k0(1>(|V(T)| + m) time, where k is the width of
(X, (T, bag)).

ProoF. Index the vertices of S by S = {s1,s2,.. ., s|s| }. Because
S is linked into bag(r) N (S U B), there are vertex-disjoint paths
Py, ..., P}, so thatforeachi € [|S]], P; is a path from s; to bag(r)N
(S U B), and all vertices of P; are contained in S U B.

To construct (T’,bag’), we set T’ = T, and for each t € V(T) we
set

bag’(t) = (bag(¢) \ (SUB)) U {s; | P; Nbag(t) # 0}.

We have that |bag’(t)| < |bag(t)|, because for each inserted vertex
s; we removed a vertex in P; (note that the inserted vertex and the
removed vertex could both be the same vertex s;). By definition
every P; intersects bag(r), and thus S C bag’(r). Denote X’
(XNA)US. It remains to show that (T’, bag’) is a tree decomposition
of torso(X’).

First, the tree decomposition (T’, bag’) satisfies the vertex con-
dition because no vertices in X N A were removed, and as argued
before S C bag’(r). Second, (T’, bag’) satisfies the connectedness
condition because the occurrences of vertices in X N A were not
altered, and by Lemma 3.4 the sets {¢ | P; N bag(t) # 0} induce
connected subtrees of T.

For the edge condition, consider an edge uv € E(torso(X’)).
There is a path between u and v whose intermediate vertices are
contained in V(G) \ X’. If there would be an intermediate vertex

537

Tuukka Korhonen and Daniel Lokshtanov

in B, then u,v € S, implying {u,0} C bag’(r), so it remains to
consider the cases where there are no intermediate vertices or all
intermediate vertices are in A \ X’ = A \ X. It follows that if in
this case u,v € X, then uv € E(torso(X)), so the edge condition of
(T’,bag’) in this case holds by the edge condition of (T, bag). Also
ifu,0 € S, then again {u,0} C bag’(r), so the remaining case is
uv = s;u, wheres; € S\X andov € X\S. Now, s; and the intermediate
vertices on the path between s; and v are in a connected component
C of G\ X. Because v € X and bag(r) C X, this implies that N(C)
contains both v and at least one vertex on the path P;, and therefore
as N(C) is a clique in torso(X) there is a node t € V(T) with
N(C) C bag(t) and it will hold that {s;,v} C bag’(¢).

Because (T, bag) has width k and |S| < k + 1, the construction
clearly can be implemented in koM (|V(T)| + m) time. m}

Note that the condition |bag’(¢)| < |bag(t)| implies that the
width of (T, bag’) is at most the width of (T, bag).

5 COMPUTING TREEWIDTH BY SUBSET
TREEWIDTH

In this section we show that in order to improve a tree decomposi-
tion, it is sufficient to solve SUBSET TREEWIDTH. In particular, we
prove Theorems 3 and 6.

5.1 Improving a Tree Decomposition

We will define a weighted version of linkedness. For a weight
functiond : V(G) — Z and aset S C V(G), we denote d(S) =

ZUES d(U)

Definition 5.1 (d-linked). Let G be a graph, A,B € V(G), and
d : V(G) — Z a weight function. The set A is d-linked into B if for
any (A, B)-separator S it holds either that |S| > |A|, or that |S| = |A|
and d(S) > d(A).

Note that if A is d-linked into B then A is linked into B. We say
that an (A, B)-separator S with |S| < |A|, or with |S| = |A| and
d(S) < d(A) witnesses that A is not d-linked into B. Then, we say
that a torso tree decomposition (X, (T, bag)) is d-linked into a set of
vertices W C V(G) if for every node ¢t € V(T) it holds that bag(t)
is d-linked into W. We say that a pair (t,S), where t € V(T) and
S is a (bag(t), W)-separator witnessing that bag(t) is not d-linked
into W witnesses that (X, (T, bag)) is not d-linked into W.

Our goal is to show that any torso tree decomposition that covers
W can be made to be d-linked into W. In particular, we will show
that if (X, (T, bag)) is a torso tree decomposition that covers W,
then given a pair (t,S) that witnesses that (X, (T, bag)) is not d-
linked into W, we can, in some sense, improve (X, (T, bag)) while
maintaining that it covers W and not increasing its width. We define
¢q(X) = |X]| - n(k + 1) + d(X) as the measure in which sense we
will improve (X, (T, bag)).

Lemma 5.2. There is an algorithm that takes as input a graph G,
a set of vertices W C V(G), a torso tree decomposition (X, (T, bag))
in G of width k that covers W, a weight functiond : V(G) — [n],
and a pair (t,S) that witnesses that (X, (T, bag)) is not d-linked into
W, and in time kO (|V (T)| + m) returns a torso tree decomposition
(X’,(T’,bag’)) that covers W, has width at most k, has at most
|[V(T)| nodes, and has p4(X’) < ¢4(X).

An Improved Parameterized Algorithm for Treewidth

Proor. After a k21 m time flow computation we may assume
that S is a minimum size (bag(t), W)-separator, because if S was
not a minimum size (bag(t), W)-separator then any minimum size
(bag(t), W)-separator also witnesses that bag(t) is not d-linked
into W. This implies that S is linked into bag(#).

Let A = Rg(W,S) and B = V(G) \ (AU S). Note that W C
AU S and bag(t) € BU S. Denote X’ = (X N A) U S. We apply
the pulling lemma (Lemma 4.1) with the torso tree decomposition
(X, (T, bag)), the separation (A, S, B), and the node ¢ to construct
a torso tree decomposition (X’, (T’, bag’)) of width at most k and
at most |V(T)| nodes. As W € X and W C AU S, we have that
W C X', so (X’,(T’,bag’)) covers W. It remains to prove that
$a(X’) < $pa(X).

Because bag(t) C S U B and bag(t) C X, we have that |[X’| <
|X|—|bag(t)|+|S| and d(X”) < d(X)—d(bag(t))+d(S). Therefore, if
IS| < |bag(t)], then |X’| < |X]|, implying ¢4(X’) < ¢4(X) because
d(S) < n(k +1).If |S| = |bag(t)| and d(S) < d(bag(t)), then
[X’| < |X] and d(X”) < d(X), implying ¢4(X’) < ¢p4(X). O

Then, our goal is to show that either a torso tree decomposition
(X, (Tx,bagx)) of width k — 1 that covers a largest bag W of a
tree decomposition (T, bag) of width k can be used to improve
(T, bag), or we find a pair (¢, S) witnessing that (X, (Tx, bagy)) is
not d-linked into W for a certain function d, in which case we can
improve (X, (Tx, bagy)) by applying Lemma 5.2.

Let (T, bag) be a tree decomposition of G and r € V(T) a desig-
nated root-node of it. For a vertex v € V(G), let f; € V(T) be the
node of T with v € bag(f,) that has the smallest distance to the
root r in T among all nodes whose bags contain v, that is, f, is the
forget-node of v. We define a weight function d(7 pag) : V(G) —
[IV(T)|] for a vertex v € V(G) as the distance from f;, to r plus one.
Next we prove the main lemma of this section.

Lemma 5.3. Let (T,bag) be a tree decomposition of G of width k,
and r a node of (T, bag) withbag(r) = W with |W| = k + 1. There is
an algorithm that given a torso tree decomposition (X, (Tx, bagx))
that covers W and has width at most k — 1, in time k(1) (|V(T)| +
|V(Tx)| + m) either
(1) constructs a tree decomposition of G of width at most k, having
strictly less bags of size k + 1 than (T, bag), and having at
most n nodes, or
(2) returns a pair (t,S) wheret € V(Ix) and S € V(G) that
witnesses that (X, (Tx, bagx)) is not d(r pag) -linked into W.

Proor. We treat (T, bag) as rooted on the node r. Our goal is to
construct a tree decomposition (T”, bag’) of G, and then show that
if it does not satisfy the conditions of Lemma 1, then we find the
pair (t,S) of Lemma 2.

First, for every connected component C of G\ X, we will construct
a tree decomposition (T, bage) of N[C], so that N(C) is in the
root bag of (T, bagc). We again use f, € V(T) to denote the forget-
node of v in (T, bag). For a node t € V(T), denote by tN(©) the
vertices

tN©) = {v € N(C) | f, is a strict descendant of ¢ in T}.
To construct the tree decomposition (T, bage), we first set

Te =T[{t € V(T) | Cnbag(t) # 0}],

538

STOC ’23, June 20-23, 2023, Orlando, FL, USA

i.e., T is the subtree of T induced by bags that intersect C. Observe
that T¢ is connected because G[C] is connected. Then for each
t € V(T¢) we set

bage(t) = (bag(t) N N[C]) U tN(©).

We let the root node of (T, bagc) to be the node r¢ € V(T¢) that
is the closest to r in T. Note that because T¢ is a connected subtree
of T, the node r¢ is uniquely defined.

Claim 5.4. It holds that (T, bagc) is a tree decomposition of N|[C]
and N(C) C bage(re).

Proor. First, for the vertices C and edges in G[C] the decom-
position clearly satisfies the vertex and edge conditions because
(T, bag) satisfied the conditions. For edges between C and N(C)
and vertices in N(C), note that again each such edge must be in a
bag that intersects C, and because for every vertex of N(C) there
exists such an edge we have that every vertex of N(C) must occur
in some bag that intersects C. The decomposition satisfies the con-
nectedness condition for vertices in C directly by the connectedness
condition of (T, bag).

For vertices v € N(C), either (1) v € bag(r¢) and v is not in
tN©) for any t € V(T¢), or (2) fu € V(Te) \{rc}andv € tN©) for
all ¢ on the path from the parent of f; to the root rc. Therefore, the
connectedness condition is maintained for vertices in N(C). This
also shows that N(C) C bagc(rc), which finally implies the edge
condition also for edges in G[N(C)]. O

Now, our complete construction of (T’,bag’) is to attach the
tree decompositions (T¢, bagc) for all components C of G \ X from
their roots to the tree decomposition (Tx, bagy). Because N(C) is
a clique in torso(X), the decomposition (Tx, bagy) contains a bag
containing N(C) to which (T¢, bage) can be attached.

Next we show that this construction can be implemented in
KOO (|V(T)|+|V(Tx)| +m) time. In particular, first, the connected
components C and their neighborhoods can be found in KO m
time. Then, we observe that the sum of |V(T¢)| over all compo-
nents C is at most (k + 1)|V(T)| because (T, bag) has width k and
the components C are disjoint. By first computing pointers from
vertices of G to bags containing them, and then using the fact
that [N(C)| < k + 1, each tree decomposition (T¢, bagc) can be
constructed in k91 |V (T¢)| time, which sums up to KO v (T)].
Then, it remains to attach each tree decomposition (T¢, bagc) to
a node of (Tx, bagy) whose bag contains N(C). For this, observe
that if we consider (Tx, bagy) rooted, and for v € N(C) denote by
ff the forget-node of v in (Tx, bagy), then N(C) is contained in
the bag of the node f;X for v € N(C) such that £X maximizes the
distance from the root.

Next we give the main argument for extracting the witness of
Lemma 2 if (T’, bag’) does not satisfy Lemma 1.

Claim 5.5. Let C be a component of G\ X and x € V(Tx) a node
of (Tx, bagyx) with N(C) C bagy(x). For every node t € V(Ic) we
have either that

(1) |bage(t)| < |bag(t)| or bage(t) = bag(t), or that
(2) (bagx (x)\ V() U (bag(t) \ N[C]) witnesses that bagx (x)
is not d(T pag,r) -linked into W.

STOC ’23, June 20-23, 2023, Orlando, FL, USA

PrOOF. Lemma 1 is true if tN(©) is empty, so suppose N ©) s
non-empty and |bage(t)| > |bag(t)|. By the definition of bagc(t)
this implies that [NO)| > |bag(r) \ N[C]|. Note that tN(©) ¢
bagyx (x). We will show that in this case

S = (bagx (x) \ tN () U (bag(t) \ N[C])

separates bagy (x) from W. Therefore S witnesses that bagy (x)
isnot d(7 pag,r)-linked into W, because by [N > |bag()\N[C]|
we have that |S| < |bagy (x)],and moreover we have d(t pag r) (S) <
d(T pag,r) (Pagx (x)) because for every vertex v € tN(©) and v, €
bag(t), it holds that d(7pag,) (01) > d(T,pag,r) (v2) because fy, is a
strict descendant of ¢, and f;, is an ancestor of t.

To show that S separates bagy (x) from W, it is sufficient to
show that it separates tN(©) from W because bagx (x)\S = tN(©),
Consider a shortest path in G\S that starts in +V (©) and endsin W.If
this path would intersect N[C] anywhere else than in its first vertex,
then it would intersect V(€ twice because N(C) \ S = V() and
W N C = 0, which would contradict that it is a shortest path.
Therefore, it intersects N[C] only in its first vertex. Then, because
for each v € tN(©) the node t € V(T) separates f, from r in T, it
holds that bag(t) separates tV (©) from bag(r) = W. Therefore, the
path must intersect bag(t), and therefore as bag(t) and tN(©) are
disjoint, it must intersect bag(t) \ N[C]. However, bag(t) \ N[C] C
S, and therefore no such path exists in G \ S. O

Now, for all nodes of the constructed decompositions (T¢, bagc)
we check if Lemma 1 of Lemma 5.5 holds, and if it does not hold
we return the pair (x, (bagy (x) \ V() U (bag(t) \ N[C])). This
can be done in kKO |V(T7)| = kOD|V(T)| time.

Then, it remains to prove that if Lemma 1 of Lemma 5.5 holds
for all nodes of all decompositions (T, bagc), then (T, bag’) has
width at most k and has strictly less bags of size k + 1 than (T, bag).
First, clearly (T, bag’) has width at most k as none of the decompo-
sitions (T¢, bagc) have larger width than (T, bag) and (Tx, bagy)
has smaller width than (T, bag). It remains to prove that (T’, bag’)
has less bags of size k + 1 than (T, bag).

Consider any node ¢t € V(T), and suppose that there are two dis-
tinct components C; and Cy of G\ X so that both C; and C; intersect
bag(t) and |bagc, ()| = |bagc, (t)| = |bag(t)|. Now, by Lemma 1
of Lemma 5.5 it would hold that bagc, (t) = bagc,(t) = bag(t).
However, as bagc, (t) S N[C1], this would contradict that bag(t)
intersects Cy. Therefore, for any node t € V(T) there is at most one
corresponding node t in the decompositions (T¢, bagc) across all
components C with a bag of size |bag-(t)| = |bag(t)|. For the root
node r, as bag(r) € X, none of the components C intersect bag(r),
and therefore no decomposition (T¢, bagc) contains a node corre-
sponding to it. All other bags of (T’,bag’) come from (Tx, bagx)
and have size at most k, so as |bag(r)| = k + 1, it follows that
(T’,bag’) has strictly less bags of size k + 1 than (T, bag).

Finally, by Lemma 3.1 we can reduce the number of nodes of
(T’,bag’) to at most n within the same time. O

Then, we combine Lemmas 5.2 and 5.3 into a single lemma show-
ing that to improve (T, bag) it is sufficient to find a torso tree
decomposition in G that covers a largest bag of (T, bag) and has
width smaller than (T, bag).

539

Tuukka Korhonen and Daniel Lokshtanov

Lemma 5.6. Let (T,bag) be a tree decomposition of G of width
k and |V(T)| < n, and r a node of (T,bag) with bag(r) = W with
|W| = k+1. There is an algorithm that given a torso tree decomposition
(X, (Tx, bagy)) that covers W and has width at most k — 1, in time
KoM (IV(Tx)| + n®) constructs a tree decomposition of G of width
at most k, having strictly less bags of size k + 1 than (T, bag), and
having at most n nodes.

Proor. First, we apply Lemma 3.1 to reduce the number of nodes
of (Tx, bagx) to at most n. Then, we repeatedly apply Lemma 5.3
together with Lemma 5.2, in particular, if Lemma 5.3 returns the tree
decomposition of Lemma 1 we are done, and if it returns a pair (¢, S)
that witnesses that (X, (Tx, bagx)) is not d(7 pag) -linked into W
then we apply Lemma 5.2, which decreases ¢d(T,bag,r) (X) by at least
one. Because ¢4 (Thser) (X) is initially O (kn®) and ¢d(u’ag,r> (X) must
be non-negative, the total number of iterations is at most O (kn?),
giving a total running time of KO p3, plus KoM |V(Tx)| from the
application of Lemma 3.1. O

5.2 Reducing Treewidth to SUBSET TREEWIDTH

Now we can prove Theorem 3, in particular that algorithms for
SuBseT TREEWIDTH imply algorithms for treewidth (for definition
of SUBSET TREEWIDTH see Section 2.1). Recall that the running
time function T (k) is assumed to be increasing on k and we denote

m = |V(G)| +[E(G)].

THEOREM 3. Given an algorithm for SUBSET TREEWIDTH with
running time T (k) - m®, an algorithm for treewidth with running
time T(O(k)) - O((nk)*1) + kO pt 4200 n2 can be constructed.
Moreover, if the algorithm for SUBSET TREEWIDTH works in polynomial
space, then the algorithm for treewidth works in polynomial space.

ProOF. Let G denote the input graph. First, we use the 4-approx-
imation algorithm of [42] to obtain a tree decomposition (T, bag)
of G of width at most 4k + 3 in time 29(%) n2 and polynomial space
or to return that the treewidth of G is larger than k. By Lemma 3.1,
within the same running time we assume that |V (T)| < n, and we
can also assume that m < O(kn) because otherwise the treewidth
of G would be larger than k.

Then, we repeat the following process as long as the width of
(T, bag) is larger than k. Let W be a largest bag of (T, bag), and
note that in this case |[W| > k + 2. We use the algorithm for SUBSET
TREEWIDTH to either get a torso tree decomposition that covers W
and has width at most |W| — 2 or to conclude that the treewidth
of G is larger than |W| — 2 > k. If we conclude that the treewidth
of G is larger than k we are ready and can immediately return. If
the algorithm returns such a torso tree decomposition, we apply
Lemma 5.6 to improve (T, bag), in particular to decrease the number
of bags of size |W| and not increase the width.

We can decrease the number of largest bags while not increasing
the width at most O (kn) times before the width decreases from 4k +
3 to k, and therefore the algorithm works with O (kn) applications
of the algorithm for SUBSET TREEWIDTH and Lemma 5.6. In all
of the applications, the parameter k for SUBSET TREEWIDTH is at
most 4k + 2, where k is the original parameter for treewidth. This
results in a total running time of T(O(k)) - O((nk)*1) + KO pt 4
200k p2. m]

An Improved Parameterized Algorithm for Treewidth

We then turn to Theorem 6, in particular, to proving that algo-
rithms for PARTITIONED SUBSET TREEWIDTH imply approximation
algorithms for treewidth (for the definition of PARTITIONED SUBSET
TREEWIDTH see Section 2.1). The crucial lemma for this will the
following.

Lemma 5.7. Let G be a graph of treewidth at mostk, ¢ € (0,1) a
rational, and W C V(G) a set of vertices of size |W| < 4k + 4. There
exists a partition of W intot = O(1/¢) parts W1, . .., Wy, so that after
making each part into a clique the treewidth of G is at most k + ¢k.

Proor. If ¢ < 1/k we can return the trivial partition of W into
single vertices. Therefore we can assume that ek > 1.

Consider a rooted tree decomposition (T, bag) of G of width k.
By turning (T, bag) into a “nice tree decomposition”, we can assume
that the root bag of (T, bag) is empty, each node of T has at most
two children, and that |bag(u) \bag(v)|+|bag(v)\bag(u)| < 1holds
for any two adjacent nodes u,v € V(T) (see e.g. [22, Chapter 7]).
Recall that a node ¢t € V(T) with a parent p € V(T) is a forget-node
of avertexv € V(T) ifv € bag(t) \ bag(p). Respectively, such v is a
forget-vertex of t. Note that each node of T has at most one forget-
vertex and each vertex of G has exactly one forget-node. By further
stretching (T, bag) we can also assume that each forget-node has
exactly one child. We say that a node is a W-forget node if it is a
forget-node of a vertex w € W.

Let us process (T, bag) from the leaves towards the root, i.e., in
an order of a post-order traversal, and maintain a set of “removed”
nodes R C V(T). Suppose we are processing a node t and let D C
V(T) be the nodes of T that are descendants of t and reachable from
tin T \ R. Note that t € D and D C V(T) \ R. Now, if D contains
at least ek/2 W-forget-nodes or t is the root we add a part to the
partition of W and modify the tree decomposition as follows. We let
W’ C W be the vertices in W whose forget-nodes are in D. We add
W’ as a part of the partition, and add W’ to the bags of all nodes in
D. Then, we add all nodes in D to R.

Observe that [W’| < ek follows from the facts that we process
the tree in post-order, each node can have at most two children, each
node can be a forget-node of at most one vertex, each forget-node
has one child, and ek > 1. Therefore, the sizes of the bags of nodes
in D increased by at most ¢k, and moreover they will not increase
again because they were added to R. Therefore, the resulting tree
decomposition has width at most k + ¢k. We also observe that the
resulting tree decomposition is indeed a tree decomposition after
making such W’ into a clique: All the new edges are contained in
the bags of all nodes in D, and the subtree condition is maintained
because the forget-nodes of vertices in W’ are in D.

Now, each created part of the partition except the part corre-
sponding to the root has size at least €k/2, so in total the number
of parts is at most |W|/(ek/2) +1 < %+l=0(l/£). O

Now, by using Lemma 5.7 we can prove Theorem 6 similarly to

Theorem 3.

THEOREM 6. Given an algorithm for PARTITIONED SUBSET TREE-
wiIDTH with running time T (k,t) - m€, we can construct an (1 + ¢)-
approximation algorithm for treewidth with running time

T(O(k),0(1/e)) - O((nk)**) - (1+1/e) 00 4 Oyt 4 20(K) 2,

540

STOC ’23, June 20-23, 2023, Orlando, FL, USA

Moreover, if the algorithm for PARTITIONED SUBSET TREEWIDTH works
in polynomial space, then the algorithm for treewidth works in poly-
nomial space.

Proor. Let G denote the input graph. First, we use the 4-approx-
imation algorithm of [42] to obtain a tree decomposition (T, bag)
of G of width at most 4k + 3 in time 29(%) n2 and polynomial space
or to return that the treewidth of G is larger than k. By Lemma 3.1,
within the same running time we assume that |[V(T)| < n, and we
can also assume that m < O(kn) because otherwise the treewidth
of G would be larger than k.

Then, we repeat the following process as long as the width of
(T,bag) is larger than k + ¢k. Let W be a largest bag of (T, bag),
and note that in this case |W| > k+ ¢k +2 and |W| < 4k +4. We try
all partitions of W into t = O(1/¢) parts (where the bound for ¢ is
from Lemma 5.7). For each partition W, . .., W;, we make the parts
Wi, ..., W; into cliques in G, and then use the algorithm for PARTI-
TIONED SUBSET TREEWIDTH with this partition of W. By Lemma 5.7,
there exists such a partition so that after making W, ..., W; into
cliques the treewidth of G is at most k + ¢k, and therefore if the
algorithm for PARTITIONED SUBSET TREEWIDTH returns for every
partition that the treewidth of G is larger than |W| -2 > k + ¢k, we
can return that the treewidth of G is larger than k. Otherwise, the
algorithm for PARTITIONED SUBSET TREEWIDTH returned a torso
tree decomposition that covers W and has width at most |W| — 2,
and we proceed applying Lemma 5.6 similarly as in the proof of
Theorem 3.

The running time follows from the fact that there are at most
10k = (1+ l/e)o(k) partitions of W into t = O(1/¢) parts, and
we can decrease the number of largest bags while not increasing
the width at most O(nk) times, and therefore there we use in total
O(nk)-(1+1/ S)O(k) applications of the algorithm for PARTITIONED
SuBseT TREEWIDTH with t = O(1/¢). The parameter k for PARTI-
TIONED SUBSET TREEWIDTH is at most 4k + 2, where k is the original
parameter for treewidth. O

REFERENCES

[1] E. Amir. 2001. Efficient approximation for triangulation of minimum treewidth.
In Uncertainty in Artificial Intelligence: Proceedings of the Seventeenth Conference
(UAI-2001), San Francisco, CA. Morgan Kaufmann Publishers, 7-15.

Eyal Amir. 2010. Approximation Algorithms for Treewidth. Algorithmica 56, 4
(2010), 448-479. https://doi.org/10.1007/s00453-008-9180-4

Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. 1987. Complexity
of finding embeddings in a k-tree. SIAM 7. Alg. Disc. Meth. 8 (1987), 277-284.
Mahdi Belbasi and Martin Fiirer. 2021. Finding All Leftmost Separators of Size < k.
In Proceedings of 15th International Conference on Combinatorial Optimization
and Applications (COCOA) (Lecture Notes in Comput. Sci., Vol. 13135). Springer,
273-287.

Mahdi Belbasi and Martin Fiirer. 2022. An Improvement of Reed’s Treewidth
Approximation. J. Graph Algorithms Appl. 26, 2 (2022), 257-282.

Patrick Bellenbaum and Reinhard Diestel. 2002. Two short proofs concerning
tree-decompositions. Combinatorics, Probability and Computing 11, 6 (2002),
541-547.

Umberto Bertelé and Francesco Brioschi. 1972. Nonserial dynamic program-
ming. Academic Press, New York. xii+235 pages. Mathematics in Science and
Engineering, Vol. 91.

Hans L. Bodlaender. 1993. A linear time algorithm for finding tree-decompositions
of small treewidth. In Proceedings of the 25th Annual ACM Symposium on Theory
of Computing (STOC). ACM, 226-234. https://doi.org/10.1145/167088.167161

H. L. Bodlaender. 1993. A tourist guide through treewidth. Acta Cybernet. 11, 1-2
(1993), 1-21.

Hans L. Bodlaender. 1994. Improved Self-reduction Algorithms for Graphs with
Bounded Treewidth. Discret. Appl. Math. 54, 2-3 (1994), 101-115. https://doi.org/
10.1016/0166-218X(94)90018-3

[2]

https://doi.org/10.1007/s00453-008-9180-4
https://doi.org/10.1145/167088.167161
https://doi.org/10.1016/0166-218X(94)90018-3
https://doi.org/10.1016/0166-218X(94)90018-3

STOC ’23, June 20-23, 2023, Orlando, FL, USA

[11] Hans L. Bodlaender. 1996. A linear-time algorithm for finding tree-
decompositions of small treewidth. SIAM J. Computing 25, 6 (1996), 1305-1317.

[12] Hans L Bodlaender, Leizhen Cai, Jianer Chen, Michael R. Fellows, Jan Arne Telle,
and Daniel Marx. 2006. Open problems in parameterized and exact computation —
IWPEC 2006. Technical Report UU-CS-2006-052. Department of Information and
Computing Sciences, Utrecht University.

[13] Hans L. Bodlaender, Pal Grenéas Drange, Markus S. Dregi, Fedor V. Fomin, Daniel
Lokshtanov, and Michat Pilipczuk. 2016. A cn 5-approximation algorithm for
treewidth. SIAM J. Computing 45, 2 (2016), 317-378. https://doi.org/10.1137/
130947374

[14] Hans L. Bodlaender, John R. Gilbert, Hjalmtyr Hafsteinsson, and Ton Kloks. 1995.
Approximating Treewidth, Pathwidth, Frontsize, and Shortest Elimination Tree.
J. Algorithms 18, 2 (1995), 238-255.

[15] Hans L. Bodlaender, Lars Jaffke, and Jan Arne Telle. 2021. Typical Sequences

Revisited - Computing Width Parameters of Graphs. Theory Comput. Syst. (2021).

https://doi.org/10.1007/s00224-021-10030-3

Hans L. Bodlaender and Ton Kloks. 1991. Better Algorithms for the Pathwidth

and Treewidth of Graphs. In Proceedings of the 18th International Colloquium of

Automata, Languages and Programming (ICALP) (Lecture Notes in Comput. Sci.,

Vol. 510). Springer, 544-555. https://doi.org/10.1007/3-540-54233-7_162

Hans L. Bodlaender and Ton Kloks. 1996. Efficient and Constructive Algorithms

for the Pathwidth and Treewidth of Graphs. J. Algorithms 21, 2 (1996), 358-402.

[18] Hans L. Bodlaender and Arie M. C. A. Koster. 2006. Safe separators for treewidth.
Discret. Math. 306, 3 (2006), 337-350.

[19] Richard B. Borie, R. Gary Parker, and Craig A. Tovey. 1992. Automatic Generation
of Linear-Time Algorithms from Predicate Calculus Descriptions of Problems on
Recursively Constructed Graph Families. Algorithmica 7, 5&6 (1992), 555-581.

[20] Jianer Chen, Yang Liu, and Songjian Lu. 2009. An Improved Parameterized
Algorithm for the Minimum Node Multiway Cut Problem. Algorithmica 55, 1
(2009), 1-13.

[21] Bruno Courcelle. 1990. The monadic second-order logic of graphs I: Recognizable
sets of finite graphs. Information and Computation 85 (1990), 12-75.

[22] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx,

Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. 2015. Parameterized

Algorithms. Springer. http://dx.doi.org/10.1007/978-3-319-21275-3

Reinhard Diestel. 2005. Graph theory (3rd ed.). Graduate Texts in Mathematics,

Vol. 173. Springer-Verlag, Berlin. xvi+411 pages.

[24] Rodney G. Downey and Michael R. Fellows. 1999. Parameterized complexity.

Springer-Verlag, New York.

Rodney G. Downey and Michael R. Fellows. 2013. Fundamentals of Parameterized

Complexity. Springer.

Michael Elberfeld, Andreas Jakoby, and Till Tantau. 2010. Logspace Versions of

the Theorems of Bodlaender and Courcelle. In Proceedings of the 51th Annual

IEEE Symposium on Foundations of Computer Science, FOCS 2010. IEEE Computer

Society, 143-152. https://doi.org/10.1109/FOCS.2010.21

Uriel Feige, MohammadTaghi Hajiaghayi, and James R. Lee. 2008. Improved

Approximation Algorithms for Minimum Weight Vertex Separators. SIAM J.

Computing 38, 2 (2008), 629-657.

[16

[
=

[23

[25

[26

[27

541

(28]

[29]

(30]

[31

'S
o

=
22

Tuukka Korhonen and Daniel Lokshtanov

Michael R. Fellows and Michael A. Langston. 1989. On Search, Decision and the
Efficiency of Polynomial-Time Algorithms (Extended Abstract). In Proceedings of
the 21st Annual ACM Symposium on Theory of Computing (STOC). ACM, 501-512.
Jorg Flum and Martin Grohe. 2006. Parameterized Complexity Theory. Springer-
Verlag, Berlin. 493 pages.

Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, Michal Pilipczuk, and Marcin
Wrochna. 2018. Fully Polynomial-Time Parameterized Computations for Graphs
and Matrices of Low Treewidth. ACM Transactions on Algorithms 14, 3 (2018),
34:1-34:45. https://doi.org/10.1145/3186898

Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. 2019.
Kernelization: Theory of parameterized preprocessing. Cambridge University
Press.

Fedor V. Fomin, Ioan Todinca, and Yngve Villanger. 2015. Large Induced Sub-
graphs via Triangulations and CMSO. SIAM J. Comput. 44, 1 (2015), 54-87.
https://doi.org/10.1137/140964801

Rudolf Halin. 1976. S-functions for graphs. J. Geometry 8, 1-2 (1976), 171-186.
Tuukka Korhonen. 2021. A Single-Exponential Time 2-Approximation Algorithm
for Treewidth. In Proceedings of the 62nd Annual Symposium on Foundations of
Computer Science (FOCS). IEEE, 184-192. https://doi.org/10.1109/FOCS52979.
2021.00026

Tuukka Korhonen and Daniel Lokshtanov. 2022. An Improved Parameterized
Algorithm for Treewidth. CoRR abs/2211.07154 (2022). https://doi.org/10.48550/
arXiv.2211.07154 arXiv:2211.07154

Jens Lagergren. 1996. Efficient Parallel Algorithms for Graphs of Bounded Tree-
Width. Journal of Algorithms 20, 1 (1996), 20-44. https://doi.org/10.1006/jagm.
1996.0002

Jens Lagergren and Stefan Arnborg. 1991. Finding Minimal Forbidden Minors
Using a Finite Congruence. In Proceedings of the 18th International Colloquium of

Automata, Languages and Programming (ICALP) (Lecture Notes in Comput. Sci.,
Vol. 510). Springer, 532-543. https://doi.org/10.1007/3-540-54233-7_161

Jiri Matousek and Robin Thomas. 1991. Algorithms Finding Tree-Decompositions
of Graphs. . Algorithms 12, 1 (1991), 1-22.

Rolf Niedermeier. 2006. Invitation to fixed-parameter algorithms. Oxford Lecture
Series in Mathematics and its Applications, Vol. 31. Oxford University Press,
Oxford. xii+300 pages.

Bruce A. Reed. 1992. Finding Approximate Separators and Computing Tree
Width Quickly. In Proceedings of the 24th Annual ACM Symposium on Theory
of Computing, STOC 1992, S. Rao Kosaraju, Mike Fellows, Avi Wigderson, and
John A. Ellis (Eds.). ACM, 221-228. https://doi.org/10.1145/129712.129734

Neil Robertson and Paul D. Seymour. 1984. Graph Minors. III. Planar Tree-Width.
J. Combinatorial Theory Ser. B 36 (1984), 49-64.

Neil Robertson and Paul D. Seymour. 1995. Graph minors. XIII. The disjoint paths
problem. j. Combinatorial Theory Ser. B 63, 1 (1995), 65-110.

Neil Robertson and Paul D. Seymour. 2004. Graph Minors. XX. Wagner’s conjec-
ture. J. Combinatorial Theory Ser. B 92, 2 (2004), 325-357.

Yu Wu, Per Austrin, Toniann Pitassi, and David Liu. 2014. Inapproximability of
Treewidth and Related Problems. . Artif. Intell. Res. 49 (2014), 569-600.

Received 2022-11-07; accepted 2023-02-06

https://doi.org/10.1137/130947374
https://doi.org/10.1137/130947374
https://doi.org/10.1007/s00224-021-10030-3
https://doi.org/10.1007/3-540-54233-7_162
http://dx.doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1109/FOCS.2010.21
https://doi.org/10.1145/3186898
https://doi.org/10.1137/140964801
https://doi.org/10.1109/FOCS52979.2021.00026
https://doi.org/10.1109/FOCS52979.2021.00026
https://doi.org/10.48550/arXiv.2211.07154
https://doi.org/10.48550/arXiv.2211.07154
https://arxiv.org/abs/2211.07154
https://doi.org/10.1006/jagm.1996.0002
https://doi.org/10.1006/jagm.1996.0002
https://doi.org/10.1007/3-540-54233-7_161
https://doi.org/10.1145/129712.129734

	Abstract
	1 Introduction
	2 Overview
	2.1 Reduction to Subset Treewidth
	2.2 Proof Sketch of Lemma 2.1
	2.3 Overview of Theorems 4 and 5

	3 Preliminaries
	3.1 Graphs
	3.2 Tree Decompositions
	3.3 Torso Tree Decompositions

	4 Pulling Lemma
	5 Computing Treewidth by Subset Treewidth
	5.1 Improving a Tree Decomposition
	5.2 Reducing Treewidth to Subset Treewidth

	References

