
An Improved Parameterized Algorithm for Treewidth∗

Tuukka Korhonen†

tuukka.korhonen@uib.no
Department of Informatics, University of Bergen

Norway

Daniel Lokshtanov‡

daniello@ucsb.edu
Department of Computer Science, University of California

Santa Barbara
USA

ABSTRACT

We give an algorithm that takes as input an =-vertex graph �

and an integer : , runs in time 2O(:2)=O(1) , and outputs a tree

decomposition of � of width at most : , if such a decomposition

exists. This resolves the long-standing open problem of whether

there is a 2> (:
3)=O(1) time algorithm for treewidth. In particular,

our algorithm is the �rst improvement on the dependency on :

in algorithms for treewidth since the 2O(:3)=O(1) time algorithm

given by Bodlaender and Kloks [ICALP 1991] and Lagergren and

Arnborg [ICALP 1991].

We also give an algorithm that given an =-vertex graph � , an

integer : , and a rational Y ∈ (0, 1), in time :O(:/Y)=O(1) either

outputs a tree decomposition of � of width at most (1 + Y): or de-

termines that the treewidth of� is larger than : . Prior to our work,

no approximation algorithms for treewidth with approximation

ratio less than 2, other than the exact algorithms, were known. Both

of our algorithms work in polynomial space.

CCS CONCEPTS

• Theory of computation→ Graph algorithms analysis; Pa-

rameterized complexity and exact algorithms.

KEYWORDS

treewidth, parameterized complexity

ACM Reference Format:

Tuukka Korhonen andDaniel Lokshtanov. 2023. An Improved Parameterized

Algorithm for Treewidth. In Proceedings of the 55th Annual ACM Symposium

on Theory of Computing (STOC ’23), June 20–23, 2023, Orlando, FL, USA.ACM,

New York, NY, USA, 14 pages. https://doi.org/10.1145/3564246.3585245

1 INTRODUCTION

A tree decomposition of a graph � is a pair (), bag) where) is a

tree and bag is a function assigning to each node C of) a set bag(C)

(called a bag) of vertices of � . The function bag must satisfy the

tree decomposition axioms: (i) for every edge DE of � at least one

bag bag(C) contains both D and E , and (ii) for every vertex E of � ,

∗Due to space limits, most of technicals details are omitted or just sketched. The full
version of the paper is available on arXiv [35].
†Supported by Research Council of Norway via the project BWCA (grant no. 314528).
‡Supported by NSF award CCF-2008838.

STOC ’23, June 20–23, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9913-5/23/06.
https://doi.org/10.1145/3564246.3585245

the set {C ∈ + ()) | E ∈ bag(C)} induces a non-empty and connected

subtree of) . The width of a tree decomposition (), bag) is the size

of a largest bag minus one, and the treewidth of a graph � is the

minimum width of a tree decomposition of � . The treewidth of a

graph � measures, in some sense, how far away � is from being a

tree. The treewidth of � is at most 1 if and only if every connected

component of � is a tree, while the treewidth of a complete graph

on = vertices is equal to = − 1 [23].

Treewidth and tree decompositions play a central role in graph

theory and graph algorithms, and the concept has been indepen-

dently rediscovered several times [7, 33, 41] under di�erent names

in di�erent contexts. It is a key tool in the celebrated Graph Minors

project of Robertson and Seymour [41–43]. Many problems that

are intractable on general graphs are solvable in linear time if a tree

decomposition of the input graph� of constant width is provided

as an input (see e.g. [9] and references within). Indeed, the classic

Courcelle’s Theorem [21] states that such an algorithm exists for

every problem expressible in Monadic Second Order Logic (see

also [19]).

Therefore it should not come as a surprise that a signi�cant

amount of attention has been devoted to designing algorithms to

determine, given as input a graph � and an integer : , whether the

treewidth of� is at most : (and to produce a tree decomposition

of width at most : in the “yes” case). This problem is known to be

NP-complete [3], however, in many settings tree decompositions

are only relevant if the treewidth of the input graph is su�ciently

small, directing research towards algorithms with running times of

the form 5 (:) ·=6 (:) or 5 (:) ·=$ (1) . Algorithms with running time

of the �rst type are called slicewise polynomial, since they run in

polynomial time when : is considered a constant. Algorithms of the

second type are called �xed-parameter tractable (FPT) as they run in

polynomial time if : is considered a constant, and furthermore the

exponent of the polynomial remains the same for di�erent values

of : . We refer to the textbooks [22, 25, 29, 39] for an introduction

to parameterized algorithms.

The �rst slicewise polynomial algorithm for treewidth was given

by Arnborg, Corneil and Proskurowski [3], with running time

$ (=:+2). Subsequently, Robertson and Seymour [42], gave a non-

constructive (see Bodlaender [10] for a discussion of the non-con-

structive nature of [42]) 5 (:)=2 time algorithm for treewidth, and

Bodlaender [10], building on work of Fellows and Langston [28]

made this algorithm constructive. The function 5 in the running

time both of the algorithm of Robertson and Seymour [42] and

of Bodlaender [10] is unspeci�ed and was not even known to be

computable at the time of publication.

The algorithm of Robertson and Seymour [42] follows a “two-

step” approach. In the �rst step they compute a tree decomposition

of� of width at most 4: + 3 in time$ (33:=2), or conclude that the

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

528

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3564246.3585245
https://doi.org/10.1145/3564246.3585245
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3564246.3585245&domain=pdf&date_stamp=2023-06-02

STOC ’23, June 20–23, 2023, Orlando, FL, USA Tuukka Korhonen and Daniel Lokshtanov

treewidth of � is more than : . In the second step they do dynamic

programming over the tree decomposition found in the �rst step.

The second step is the only non-constructive part of their algorithm,

and runs in time 5 (:)= where the function 5 is unspeci�ed.

Matoušek and Thomas [38], Lagergren [36], and Reed [40] gave

improved algorithms for the �rst step. The algorithms of Matoušek

and Thomas and Lagergren run in time :O(:)= log2 =, and the al-

gorithm of Reed runs in time :O(:)= log=. All three algorithms

either conclude that the treewidth of� is more than : , or produce a

tree decomposition of width at most $ (:). The algorithm of Lager-

gren [36] is given as a parallel algorithm with :O(:) log3 = running

time on O(:2=) processors.

For the second step, constructive 2O(:3)= time dynamic pro-

gramming algorithms were discovered in 1991 independently by

Lagergren and Arnborg [37], and Bodlaender and Kloks [16, 17].

None of [16, 17, 37] explicitly mention the dependence on : , but

the 2O(:3) bound directly follows from the analysis in [17] and

is mentioned in [11]. Combined with the algorithm for the �rst

step by Lagergren [36], this led to a 2O(:3)= log2 = time algorithm

for treewidth. In 1993, Bodlaender showed that the �rst phase of

the algorithms can be replaced by an ingenious recursion scheme,

and designed a linear 2O(:3)= time algorithm for treewidth [8, 11].

Much more recently, Elberfeld, Jakoby, and Tantau [26] gave an

algorithm for treewidth that uses space 5 (:) log= and time =5 (:) .

Downey and Fellows asked in theirmonograph from 1999whether

the dependence on : in Bodlaender’s algorithm could be improved

from 2O(:3) to 2O(:) [24, Chapter 6.3]. Later, in 2006, Telle [12,

Problem 2.7.1] asked the less ambitious question of whether there

is any �xed-parameter algorithm for treewidth whose running time

as a function of : is better than 2O(:3) . The problem of obtaining a

2> (:
3)=O(1) time algorithm was also asked by Bodlaender, Drange,

Dregi, Fomin, Lokshtanov, and Pilipczuk [13] and called a “long-

standing open problem” by Bodlaender, Ja�ke, and Telle [15]. In

this paper, we resolve this problem.

Theorem 1. There is an algorithm that takes as input an =-vertex

graph � and an integer : , and in time 2O(:2)=4 either outputs a

tree decomposition of � of width at most : or concludes that the

treewidth of � is larger than : . Moreover, the algorithm works in

space polynomial in =.

An interesting feature of our algorithm is that it runs in poly-

nomial space, and in particular that it is not based on dynamic

programming. All previously known parameterized algorithms for

computing treewidth exactly [3, 11, 17, 37, 42] are based on dynamic

programming and use space exponential in : . The running time

dependence on = of the algorithm of Theorem 1 is signi�cantly

worse than that of Bodlaender [11]. The dependence on = of our

algorithm can probably be improved, nevertheless we believe that

an algorithm with running time 2O(:2)=2 or better should require

new and interesting ideas.

Our second contribution is a new parameterized approximation

algorithm for treewidth.

Theorem 2. There is an algorithm that takes as input an =-vertex

graph� , an integer : , and a rational Y ∈ (0, 1), and in time :O(:/Y)=4

either outputs a tree decomposition of � of width at most (1 + Y):

or concludes that the treewidth of � is larger than : . Moreover, the

algorithm works in space polynomial in =.

There is a rich history of approximation algorithms for treewidth.

In terms of polynomial time approximation algorithms, the best

known approximation algorithm [27] by Feige, Hajiaghayi and Lee

has approximation factor O(
√

log:), improving upon a O(log=)-

approximation algorithm [14] and a O(log:)-approximation algo-

rithm [1]. On the other hand, Wu, Austrin, Pitassi and Liu [44]

showed that assuming the Small Set Expansion Conjecture (and

P ≠ NP), there is no constant factor approximation algorithm for

treewidth.

Treewidth is one of the unusual cases where the �rst FPT-ap-

proximation algorithm (an approximation algorithm with running

time 5 (:)=$ (1)) pre-dates the �rst polynomial time approximation

algorithm. The �rst such algorithm, a 4-approximation algorithm

running in time O(33:=2), is the “�rst step” of the 5 (:)=2 time

non-constructive algorithm by Robertson and Seymour for exactly

computing treewidth [42]. Subsequent research, summarized in

Table 1 attained di�erent trade-o�s between the running time de-

pendence on =, the running time dependence 5 (:) on : , and the

approximation factor. The algorithm of Theorem 2 is the �rst FPT-

approximation algorithm for treewidth with approximation ratio

below 2 and running time 2> (:
2)=$ (1) (or even 2> (:

3)=$ (1) , dis-

counting Theorem 1). Note that by setting Y = 1
:+1

, the algorithm

of Theorem 2 gives an exact algorithm with only a slightly slower

(:O(:2)=4) running time than the algorithm of Theorem 1, in par-

ticular, being su�cient for resolving the open problem of obtaining

a 2> (:
3)=O(1) time algorithm for treewidth. This is worth noting

since the algorithm of Theorem 2 is in fact considerably simpler

than the algorithm of Theorem 1.

Methods. Both the exact algorithm of Theorem 1 and the approxi-

mation algorithm of Theorem 2 are based on a generalization of the

local improvement method introduced by Korhonen [34], which in

turn was inspired by a proof of Bellenbaum and Diestel [6]. In each

local improvement step we are given a tree decomposition (), bag)

of � of width more than : , and the goal is to either conclude that

the treewidth of � is more than : , or to �nd a “better” tree decom-

position of� . Here better means that either the width of the output

tree decomposition is strictly smaller than that of (), bag), or that

the width of the output decomposition is the same as the width of

(), bag), but there are fewer bags of maximum size.

We show that the local improvement step is in fact equivalent to

solving the following problem, which we call Subset Treewidth:

given as input a graph � and a set, of vertices, conclude that

the treewidth of � is at least |, | − 1, or �nd a tree decomposition

() ′, bag′) such that, is contained in the union of the non-leaf

bags of () ′, bag′) and all non-leaf bags have size at most |, | −

1 (the formal de�nition of this problem in Section 2 is worded

di�erently, but can easily be seen to be equivalent). Observe here

that if the treewidth of � is strictly less than |, | − 1 then every

tree decomposition () ′, bag′) of � of width at most |, | − 2 is a

valid output for Subset Treewidth (after possibly adding empty

dummy leaf bags).

The �rst key insight behind our algorithms is that if, is a maxi-

mum size bag of the tree decomposition (), bag), and an algorithm

529

An Improved Parameterized Algorithm for Treewidth STOC ’23, June 20–23, 2023, Orlando, FL, USA

Table 1: Overview of treewidth algorithms with running time 5 (:) · 6(=), each either outputting a tree decomposition of width

at most U (:) or determining that the treewidth of the input graph is larger than : . Most of the rows are based on a similar

tables in [13] and [34].

Reference Appx. U (:) 5 (:) 6(=)

Arnborg, Corneil, and Proskurowski [3] exact O(1) =:+2

Robertson and Seymour [42] 4: + 3 O(33:) =2

Matoušek and Thomas [38] 6: + 5 :O(:) = log2 =

Lagergren [36] 8: + 7 :O(:) = log2 =

Reed [40] 8: + O(1) :O(:) = log=

Bodlaender [11] exact 2O(:3) n

Amir [2] 4.5: O(23::3/2) =2

Amir [2] (3 + 2/3): O(23.7::3) =2

Amir [2] O(: log:) O(: log:) =4

Feige, Hajiaghayi, and Lee [27] O(:
√

log:) O(1) =O(1)

Fomin, Todinca, and Villanger [32] exact O(1) 1.7347=

Fomin et al. [30] O(:2) O(:7) = log=

Bodlaender et al. [13] 3: + 4 2O(:) = log=

Bodlaender et al. [13] 5: + 4 2O(:) =

Korhonen [34] 2: + 1 2O(:) =

Belbasi and Fürer [5] 5: + 4 27.61: = log=

Belbasi and Fürer [4] 5: + 4 26.755: = log=

This paper exact 2O(:2) =4

This paper (1 + Y): :O(:/Y) =4

for Subset Treewidth on input (�,,) outputs the decomposition

() ′, bag′), then a tree decomposition better than (), bag) (in the

sense above) can be computed from (), bag) and () ′, bag′) in poly-

nomial time. The proof of this statement is given in Section 5 and

is a non-trivial generalization of corresponding improvement argu-

ments by Bellenbaum and Diestel [6] and Korhonen [34]. Indeed, in

retrospect, the 2-approximation algorithm of Korhonen [34] can be

thought of as using this approach with the additional assumption

that |, | ≥ 2: + 3, where : is the treewidth of � , and in this case a

solution to Subset Treewidth whose non-leaf bags form the star

 1,3 exists. The exact algorithm of Theorem 1 is based on solving

Subset Treewidth without any additional assumptions, while the

approximation algorithm of Theorem 2 is based on solving Subset

Treewidth with the additional assumption that |, | ≥ : (1 + Y) + 2.

The second key insight is that the Subset Treewidth problem

is more approachable than the treewidth problem, because the

problem formulation allows us to focus on one small set, and

“discard” all parts of the graph (by placing them into leaves of

() ′, bag′)) that are not relevant for providing connectivity between

vertices of, . Both the algorithm of Theorem 1 and of Theorem 2 are

based on branching on important separators (see e.g. [22, Chapter

8]), a carefully chosen measure to quantify the progress made by the

algorithms, and a “safe separation” reduction rule for the Subset

Treewidth problem. This rule states that if the algorithm has

identi�ed two vertex sets �1 and �2 that can be chosen as bags of

() ′, bag′), and (is a minimum size (�1, �2)-separator, then it is

safe to also make (a bag of () ′, bag′) and recurse on the connected

components of � \ (. A generalization of this reduction rule was

formulated for the treewidth problem by Bodlaender and Koster [18,

Lemma 11]. However it is not clear how to utilize this reduction

rule to directly obtain e�cient algorithms for treewidth. On the

other hand, for Subset Treewidth, this reduction rule is the main

engine of our algorithms.

Organization. Due to space limits, most of technicals details are

omitted or just sketched. The full version of the paper is available

on arXiv [35]. The rest of the paper is organized as follows. In

Section 2 we formally de�ne the Subset Treewidth problem, give

statements of intermediate theorems on how Theorems 1 and 2

follow from algorithms for Subset Treewidth, and then present

an overview of the proofs. In Section 3 we present notation and

preliminary results. In Section 4 we give a “pulling lemma” for tree

decompositions, which will be used for our algorithms. We note

that the Section 5 of the full version also contains results about

important separators that we omit here for space constraints. In

Section 5 we show that algorithms for Subset Treewidth imply

algorithms for treewidth. In Section 6 of the full version we give

the algorithm for Subset Treewidth that implies Theorem 2, and

in Section 7 of the full version we give the algorithm that implies

Theorem 1.

2 OVERVIEW

In this section we state the main intermediate theorems leading

into Theorems 1 and 2 and overview the proofs of them. The proofs

of Theorem 1 and of Theorem 2 neatly split in two parts. The �rst

part is common to the proofs of Theorem 1 and Theorem 2, while

the second part requires separate proofs. The �rst and common part

is the overall scheme of the algorithms, namely that we proceed

by “local improvement”. Each local improvement step is reduced to

another problem, which we call Subset Treewidth. In the second

530

STOC ’23, June 20–23, 2023, Orlando, FL, USA Tuukka Korhonen and Daniel Lokshtanov

part we give two di�erent algorithms for the Subset Treewidth

problem, one exact, leading to a proof of Theorem 1, and one ap-

proximate, leading to a proof of Theorem 2. We start by discussing

the �rst part.

2.1 Reduction to Subset Treewidth

Suppose that we are given as input the graph � and integer g ,

and the task is to either return that the treewidth of � is more

than g , or �nd a “good enough” tree decomposition of � . For an

exact algorithm this simply means a tree decomposition of width

at most g , for a (1 + Y)-approximation algorithm this means a tree

decomposition of width at most g (1 + Y). Assume now that we are

also given as input a tree decomposition (), bag) of � of width at

mostO(g). Initially such a tree decomposition can be obtained by an

approximation algorithm, such as the 4-approximation algorithm

of Robertson and Seymour [42] with running time O(33g=2). If

the tree decomposition (), bag) is already good enough, then we

can output it and halt. Otherwise, a largest bag, of (), bag) is

too large. We would like to make (), bag) better by getting rid

of this bag, that is too large. More formally we want to �nd

a tree decomposition () ′′, bag′′) of � of width at most |, | − 1

and with strictly fewer bags of size |, | than (), bag) has. On the

surface this does not really look any easier than trying to �nd a tree

decomposition of width at most |, | − 2. Somewhat miraculously it

turns out that it is in fact easier, because this problem is equivalent

to the Subset Treewidth problem, which we will de�ne shortly. To

de�ne the Subset Treewidth problem we �rst need to introduce

some notation.

Let � be a graph and - ⊆ + (�). The graph torso� (-) has

vertices + (torso� (-)) = - and has DE ∈ � (torso� (-)) if D, E ∈

- and there is a path from D to E whose all internal vertices (if

any) are in + (�) \ - . In particular, note that � (torso� (-)) ⊇

� (� [-]). An equivalent de�nition of torso� (-) is that it is the

graph obtained from � [-] by making #� (�) a clique for every

connected component � of � \ - . A torso tree decomposition in a

graph � is a pair (-, (), bag)), where - ⊆ + (�) and (), bag) is

a tree decomposition of torso� (-). The width of the torso tree

decomposition (-, (), bag)) is simply the width of (), bag). For a

set, ⊆ + (�), we say that (-, (), bag)) covers, if, ⊆ - . We

are now ready to de�ne the Subset Treewidth problem.

Subset Treewidth Parameter: :

Input: Graph � , integer : , and a set of vertices , of size

|, | = : + 2.

Question: Return a torso tree decomposition of width at most

: in � that covers, or conclude that the treewidth of � is at

least : + 1.

Note that at least one of the two cases in the de�nition of Subset

Treewidthmust apply. In particular, if� has a tree decomposition

() ′, bag′) of width at most : then (+ (�), () ′, bag′)) is a torso tree

decomposition of width at most : in � that covers, . The two

cases need not be mutually exclusive: there exists graphs � with

treewidth at least : + 1 and sets, of size : + 2 that nevertheless

can be covered by a torso tree decomposition of width : . In such a

case an algorithm for Subset treewidth may output either one of

the two options.

The Subset Treewidth problem directly reduces to treewidth:

using a hypothetical treewidth algorithmwe can determinewhether

the treewidth of � is at most : . If no, then report that the tree-

width of � is at least : + 1. Otherwise output (+ (�), () ′, bag′))

where () ′, bag′) is the width : tree decomposition returned by the

treewidth algorithm. Our algorithms for treewidth are based on

the result that we can reduce in the other direction as well. We

encapsulate this insight in the following lemma.

Lemma 2.1. Let (), bag) be a tree decomposition of � and, be

a largest bag of (), bag). If there exists a torso tree decomposition

(-, () ′, bag′)) in� that covers, and has width at most |, |−2, then

there exists a tree decomposition () ′′, bag′′) of � of width at most

|, |−1with strictly fewer bags of size |, |. Moreover, given� , (), bag)

and (-, () ′, bag′)) we can compute () ′′, bag′′) in polynomial time.

Lemma 2.1 is more carefully stated and proved as Lemma 5.6 in

Section 5. Before giving a proof sketch of Lemma 2.1 in Section 2.2,

we show how Lemma 2.1, together with an algorithm (or approxi-

mation algorithm) for Subset Treewidth yields an algorithm (or

approximation algorithm) for treewidth.

Indeed, startingwith a tree decomposition (), bag) ofwidthO(g)

but more than g , we can call an algorithm for Subset Treewidth on

a largest bag, of (), bag), and either conclude that the treewidth of

� is more than g or obtain a torso tree decomposition (-, () ′, bag′))

that covers, and has width at most |, | −2. Lemma 2.1 now yields

a tree decomposition () ′′, bag′′) with no larger width and strictly

fewer bags of size |, |. We now repeat the process with () ′′, bag′′)

as the new (), bag). After at most O(g=) iterations we will either

have obtained a tree decomposition of � of width at most g or

concluded that the treewidth of� is more than g . We now state this

as a theorem. For the running times, we use< = |+ (�) | + |� (�) |

to denote the size of the graph and we assume that the function

) (:) is increasing.

Theorem 3. Given an algorithm for Subset Treewidth with

running time) (:) ·<2 , an algorithm for treewidth with running

time) (O(:)) · O((=:)2+1) + :O(1)=4 + 2O(:)=2 can be constructed.

Moreover, if the algorithm for Subset Treewidthworks in polynomial

space, then the algorithm for treewidth works in polynomial space.

Theorem 3 is proved in Section 5. We remark that the addi-

tive 2O(:)=2 term comes from starting by applying the factor 4-

approximation algorithm of Robertson and Seymour [42]. This

additive term could be avoided by replacing this approximation

algorithm by Bodlaender’s recursive compression technique [11],

at the expense of a :O(1) multiplicative factor in the running time.

In light of Theorem 3 it is natural to focus on parameterized algo-

rithms for Subset Treewidth, which is precisely our line of attack.

In Section 7 of the full version we give a 2O(:2)=< time polynomial

space algorithm for Subset Treewidth.

Theorem 4. There is a 2O(:2)=< time polynomial space algorithm

for Subset Treewidth.

A proof sketch for Theorem 4 is given in Section 2.3. Putting

Theorems 3 and 4 together implies Theorem 1. The argument prov-

ing Theorem 3 (assuming Lemma 2.1) also works for approximation

algorithms. In particular the same argument shows that in order to

531

An Improved Parameterized Algorithm for Treewidth STOC ’23, June 20–23, 2023, Orlando, FL, USA

obtain a (1 + Y)-approximation algorithm for treewidth, it is su�-

cient to design an algorithm for Subset Treewidth that is only

required to work correctly on instances where |, | ≥ (1 + Y)g + 2

(and g is the treewidth of �). Towards designing such an algorithm

we de�ne an intermediate problem, called Partitioned Subset

Treewidth.

Partitioned Subset Treewidth Parameters: : , C

Input: Graph� , integer : , set of vertices, of size |, | = : +2,

and C cliques,1, . . . ,,C of � such that
⋃C

8=1,C =, .

Question: Return a torso tree decomposition of width at most

: in � that covers, or conclude that the treewidth of � is at

least : + 1.

The Partitioned Subset Treewidth problem arises naturally

when designing a recursive branching algorithm for Subset Tree-

width. Every instance of Subset Treewidth is an instance of Par-

titioned Subset Treewidth with C = |, | = : + 2 and,8 = {F8 }

(where, = {F1,F2, . . . ,F |, |}). However, Partitioned Subset

Treewidth appears substantially easier when C is much smaller

than : . The following theorem, proved in Section 6 of the full ver-

sion, formalizes this intuition.

Theorem 5. There is a:O(:C)=< time polynomial space algorithm

for Partitioned Subset Treewidth.

We give a proof sketch of Theorem 5 in Section 2.3. In light of

Theorem 5 it is natural to ask whether it is possible to reduce Sub-

set Treewidth to Partitioned Subset Treewidth with C much

smaller than : . While we do not know of a way to do this for exact

algorithms, we obtain such a reduction for the variant of Subset

Treewidth which is su�cient for (1 + Y)-approximating treewidth.

In particular, it is possible to show, using standard methods, that for

every graph� , vertex set, and positive integer C there exists a par-

tition of, into C sets,1, . . . ,,C such that making all of,1, . . . ,,C

into cliques increases the treewidth of � by at most 3⌈|, |/C⌉ (we

give a proof of essentially this fact with parameter values relevant

to our applications in Lemma 5.7). Thus, for instances of Subset

Treewidthwhere g (1+Y) +2 ≤ |, | = $ (g) (and g is the treewidth

of �), setting C = O(1/Y) shows that there exists a partition of,

into at most C = O(1/Y) sets such that making all of,1, . . . ,,C into

cliques increases the treewidth of� to at most g (1+Y). The proof of

Theorem 3 (assuming Lemma 2.1) coupled with this partitioning ar-

gument yields a reduction from (1 + Y)-approximating treewidth to

solving Partitioned Subset Treewidth exactly with C = O(1/Y).

Theorem 6. Given an algorithm for Partitioned Subset Tree-

width with running time) (:, C) ·<2 , we can construct an (1 + Y)-

approximation algorithm for treewidth with running time

) (O(:),O(1/Y)) · O((=:)2+1) · (1 + 1/Y)O(:) +:O(1)=4 + 2O(:)=2 .

Moreover, if the algorithm for Partitioned Subset Treewidth works

in polynomial space, then the algorithm for treewidth works in poly-

nomial space.

Putting Theorems 6 and 5 together implies Theorem 2. We now

give a proof sketch of the main engine behind the proofs of Theo-

rems 3 and 6, namely Lemma 2.1.

2.2 Proof Sketch of Lemma 2.1

The proof of Lemma 2.1 proceeds as follows. Given � , (), bag),

, and (-, () ′, bag′)) as in the premise of Lemma 2.1 we will con-

struct a tree decomposition () ′′, bag′′) of� in polynomial time. We

will always succeed in making () ′′, bag′′), but () ′′, bag′′) might

not be “better” than (), bag), in the sense that its width might

be more than |, | − 1, or it may have at least as many bags of

size |, | as (), bag). We will show that in this case we can “im-

prove” (-, () ′, bag′)) instead! In particular we will �nd a torso

tree decomposition (-★, ()★, bag★)) in � that covers , , with

|-★ | < |- | and no larger width. Since� , (), bag),, together with

(-★, ()★, bag★)) again satisfy the premise of Lemma 2.1 we can

repeat the process with (-★, ()★, bag★)) as the new (-, () ′, bag′)).

Since |- | cannot keep decreasing forever, eventually the tree de-

composition () ′′, bag′′) will satisfy the conclusion of the Lemma.

Thus it remains to sketch (i) how we construct () ′′, bag′′) and (ii)

how to improve (-, () ′, bag′)) when () ′′, bag′′) is not better than

(), bag). We start by describing the construction of () ′′, bag′′).

Constructing () ′′, bag′′). We root (), bag) at the node A of)

corresponding to, . For each connected component� of� \- we

make a tree decomposition ()� , bag�) of � [# [�]] as follows. The

decomposition tree)� is simply a copy of) . For each node C of) let

C� be the copy of C in)� . Thus A� is the copy of the root A of) in)� .

For every node C� of)� we set bag� (C�) = bag(C) ∩ # [�] plus all

vertices of # (�) that appear in at least one bag below C in) . In other

words ()� , bag�) is simply the restriction of the tree decomposition

(), bag) to the vertex set # [�], but additionally for every vertex

E of # (�) we add E to all bags on the path from A� to the subtree

of)� where this vertex already occurs. Observe that � is disjoint

from - , which contains, , and therefore bag� (A�) = # (�).

Now the tree decomposition () ′′, bag′′) consists of a copy of

() ′, bag′) together with the tree decomposition ()� , bag�) of the

graph� [# [�]] for every connected component� of� \- . For each

component� of� \- we have that # (�) is a clique in torso� (-),

and that therefore (see e.g. [22, Chapter 6]) at least one bag of

() ′, bag′) contains # (�). We add an edge from A� to this bag. See

Figure 1 for a visualization of this construction.

It is quite easy to verify that () ′′, bag′′) is indeed a tree de-

composition of � , and that it can be constructed in polynomial

time. However it is not at all obvious that it should be better than

(), bag) - it could even be worse, because we added vertices to

the bags bag� (C�) that were not there in the corresponding bag

bag(C) of (), bag). Thus, all that remains is to show how to im-

prove (-, () ′, bag′)) when () ′′, bag′′) is not better than (), bag).

Working towards this goal we �rst state the main tool that we will

use to improve (-, () ′, bag′)).

A pulling lemma. The following lemma is very useful to improve

(-, () ′, bag′)), and also in many other arguments in this paper. We

call it the “pulling lemma” because in the proof the separator (

will be “pulled” along disjoint paths into a bag of the (torso) tree

decomposition. To state the pulling lemma we need to de�ne the

notions of separations and linkedness. A separation in a graph� is

a partition of + (�) into three parts (�, (, �) such that no edge of

� has one endpoint in � and the other in �. We call (the separator

of the separation (�, (, �) and |(| is the order of the separation. A

532

STOC ’23, June 20–23, 2023, Orlando, FL, USA Tuukka Korhonen and Daniel Lokshtanov

r
X

(T’, bag’)

C1
C2

C3

(T, bag)

+ =

X

(TC , bagC)

(T
C , bag

C)

(TC
, bag C

)

(T’’, bag’’)

1

2
2

3

3

1

Figure 1: Construction of () ′′, bag′′).

vertex set� is linked into a vertex set � in� if there exist |�| vertex

disjoint paths with one endpoint in � and one in � (paths on a

single vertex that start and end in � ∩ � count).

Lemma 2.2 (Pulling lemma, simpli�ed variant). Let � be a graph,

: be an integer, (-, (), bag)) be a torso tree decomposition in � of

width : , / ⊆ - be a vertex set in � that is a subset of at least

one bag of (), bag), and (�, (, �) be a separation of � so that / ⊆

(∪ � and (is linked into / . There exists a torso tree decomposition

((- ∩�) ∪ (, () ′, bag′)) of width at most : . Moreover, (is a bag of

() ′, bag′). Furthermore, when � , (-, (), bag)), (�, (, �), and / are

given as inputs, the torso tree decomposition ((- ∩�) ∪(, () ′, bag′))

can be constructed in polynomial time.

The formal version of Lemma 2.2 is proved as Lemma 4.1 in

Section 4. Analogous lemmas with similar proofs have been used

in the context of tree decompositions, for example by [6, 18], and

so we do not give a sketch of Lemma 2.2 in this overview.

Improving - when () ′′, bag′′) is not better than (), bag). We

now return our focus to the setting where we started with (), bag),

a maximum size bag, , and (-, () ′, bag′)), and we used them to

make the new tree decomposition () ′′, bag′′) of � . If () ′′, bag′′)

is better than (), bag) (in the sense of having strictly fewer bags

of size |, | and no larger bags) then (), bag) already satis�es the

conclusion of Lemma 2.1. Hence, assume that () ′′, bag′′) is not

better than (), bag). Our goal is to �nd a component� of� \- and

a separation (% ′, (′, & ′) such that# (�) ⊆ (′∪& ′,, ⊆ (′∪% ′, (′ is

linked to # (�), and |(′ | < |# (�) |. Then (-, () ′, bag′)), / = # (�)

and the separation (% ′, (′, & ′) will satisfy the premise of Lemma 2.2.

Setting -★
= (- ∩ % ′) ∪ (′, Lemma 2.2 implies that there exists a

torso tree decomposition (-★, ()★, bag★)) of width at most that of

(-, () ′, bag′)). Moreover, because # (�) ⊆ - and # (�) is disjoint

from % ′, it holds that

|-★ | = |- | − |- \ % ′ | + |(′ | ≤ |- | − |# (�) | + |(′ | < |- |.

Since, ⊆ (′ ∪ % ′ and, ⊆ - , we have that -★ covers, , and we

have found our improved torso tree decomposition (-★, ()★, bag★))

that covers, . We now show how such a component� and separa-

tion (% ′, (′, & ′) can be identi�ed.

Note that () ′, bag′) has no bags of size at least |, |. Therefore

every bag of size at least |, | in () ′′, bag′′) appears in ()� , bag�) for

some component� of� \- . Observe also that for the root A of) and

every component� of� \- we have |bag� (A�) | < |, | = |bag(A) |.

Indeed, for every copy A� of the root we have that � is disjoint

from - , and that therefore bag� (A�) = # (�). But # (�) is a subset

of some bag of () ′, bag′), all of which have size at most |, | − 1.

Therefore, since () ′′, bag′′) is not better than (), bag) at least one

of the two following statements must hold. (i) There exists a node C

in+ ()) and component� of� \- such that |bag� (C�) | > |bag(C) |,

or (ii) There exists a node C in + ()) and two distinct components

�1,�2 of � \ - such that |bag�1
(C�1

) | = |bag�2
(C�2

) | = |bag(C) | =

|, |.

We show how to improve - in the �rst case. Let C be a node

in + ()) and � be a component � of � \ - such that |bag� (C�) | >

|bag(C) |. We consider two separations of � : (�, # (�), ') (where

' = + (�) \ # [�]) is the “rest” and (* , �, !) where � = bag(C), !

(the “lower” set) is the set of all non-� vertices appearing in bags of

) below C , and* (the “upper”) set is de�ned as* = + (�) \ (� ∪ !)

(consult Figure 2 for a visualization of these separations and how

they are used in the remainder of the argument).

We have that, is a subset of - and therefore disjoint from

� . Similarly, all vertices of, appear in at least one bag above C

(namely A), and therefore, is disjoint from !. It follows that (

de�ned as

(= (# (�) \ !) ∪ (� ∩ ')

separates# (�) from, . Furthermore, by choice of C and � = bag(C)

we have that

|� ∩ # [�] | + |� \ # [�] | = |� |

< |bag� (C�) | = |� ∩ # [�] | + |# (�) ∩ ! |.

Here |bag� (C�) | = |� ∩ # [�] | + |# (�) ∩ ! | follows from the con-

struction of the function bag� . From the above equation we have

that |� ∩ ' | = |� \ # [�] | < |# (�) ∩ ! |. But then we have that

|# (�) | = |# (�) \ ! | + |# (�) ∩ ! | > |# (�) \ ! | + |� ∩ ' | ≥ |(|.

Since (separates# (�) from, , there exists a separation (%, (,&)

with, ⊆ (∪% and# (�) ⊆ (∪& , and |(| < |# (�) |. Let (% ′, (′, & ′)

be a separation with, ⊆ (′ ∪ % ′ and # (�) ⊆ (′ ∪ & ′ and |(′ |

533

An Improved Parameterized Algorithm for Treewidth STOC ’23, June 20–23, 2023, Orlando, FL, USA

C N(C) R

U

B

L

W

S

Figure 2: The set (separates # (�) from, and |(| < |# (�) |

because |� ∩ ' | < |# (�) ∩ ! |.

being of minimum size. Then |(′ | ≤ |(| < |# (�) | and (by Menger’s

Theorem) the set (′ is linked into # (�). Now the component� and

separation (% ′, (′, & ′) satisfy all of the properties necessary to use

Lemma 2.2 to improve (-, (), bag)). This concludes case (i) (that

there exists a node C in + ()) and component � of � \ - such that

|bag� (C�) | > |bag(C) |).

The second case (when there exists a node C in+ ()) and two dis-

tinct components�1,�2 of�\- with |bag�1
(C�1

) | = |bag�2
(C�2

) | =

|bag(C) | = |, |) is handled in an analogous, but even more tech-

nical way. In particular in this case we are not able to necessarily

obtain an -★ with |-★ | < |- |, but instead we obtain an -★ with

|-★ | = |- | and a lower value of a carefully chosen potential func-

tion. This concludes the proof sketch of Lemma 2.1.

2.3 Overview of Theorems 4 and 5

We now overview our algorithms for Subset Treewidth and Par-

titioned Subset Treewidth. Recall that every instance of Sub-

set Treewidth is also an instance of Partitioned Subset Tree-

width, so we will only work on instances of Partitioned Subset

Treewidth. This will be useful also in the algorithm for Subset

Treewidth, since the recursive subproblems turn out to naturally

correspond to Partitioned Subset Treewidth.

We denote an instance of Partitioned Subset Treewidth by

I = (�, {,1, . . . ,,C }, :). We call the cliques,1, . . . ,,C the termi-

nal cliques of the instance. We say that a torso tree decomposition

(-, (), bag)) in� is a solution of I if (-, (), bag)) covers
⋃C

8=1,8

and has width at most : . Here we do not anymore enforce that

|
⋃C

8=1,8 | ≤ : + 2, and it will in fact grow larger in the recursive

subproblems (but : or C will not increase). Both of our algorithms

will either �nd a solution or conclude that no solution exists. In

particular, we do not use the freedom in the de�nitions of the prob-

lems that we could also determine that the treewidth of� is more

than : without determining that no solution exists.

We will �rst sketch a :O(:)=O(1) time algorithm for Parti-

tioned Subset Treewidth in the case when there are only two

terminal cliques,1 and,2. This algorithm showcases the most

important concepts behind both the :O(:C)=< time algorithm of

Theorem 5 and the 2O(:2)=< time algorithm of Theorem 4, and in

fact generalizing this to the :O(:C)=< algorithm does not require

substantial new ideas but is rather a technical step.

Reduction rule. Let,1,,2 be the two terminal cliques and (be a

minimum size (,1,,2)-separator, and (�, (, �) the corresponding

separation with,1 ⊆ � ∪ (and,2 ⊆ � ∪ (. We will argue that

we can make (into a new terminal clique and recursively solve the

problem on the graphs � [� ∪ (] and � [� ∪ (]. More formally, we

denote by � ⊗ (the graph obtained from � by making (a clique,

and then denote by I ⊳ (�, () the instance (� [�∪(] ⊗(, {,1, (}, :)

and by I ⊳ (�, () the instance (� [� ∪ (] ⊗ (, {,2, (}, :). We argue

that there exists a solution of I if and only if there exists solutions

of both I ⊳ (�, () and I ⊳ (�, ().

Observe that because both I ⊳ (�, () and I ⊳ (�, () contain

the separator (as a terminal clique but their graphs are disjoint

otherwise, any solution of I ⊳ (�, () can be combined with any

solution of I ⊳ (�, () into a solution of I by simply connecting

the tree decompositions by an edge between bags containing (.

To argue that if there exists a solution of I then there exists solu-

tions of both I ⊳ (�, () and I ⊳ (�, (), we apply the pulling lemma

(Lemma 2.2). Because (is a minimum size (,1,,2)-separator, by

Menger’s theorem (is linked into,1 and into,2. Therefore, in

order to show that a solution of I ⊳ (�, () exists, we consider a hy-

pothetical solution (-, (), bag)) of I, and apply the pulling lemma

with the separation (�, (, �) and / = ,2 as the subset of a bag

with / ⊆ (∪ � into which (is linked. This constructs a torso tree

decomposition ((- ∩�) ∪ (, () ′, bag′)) of width at most : where

(is a bag, which can be observed to be a torso tree decomposition

also in � [� ∪ (] ⊗ (because (is a bag of () ′, bag′), and to cover

,1 ∪(because,1 ⊆ �∪(and,1 ⊆ - , and therefore is a solution

of I ⊳ (�, (). The existence of a solution of I ⊳ (�, () is proven in a

symmetric way.

Observe that this reduction rule makes progress as long as (≠

,1 and (≠,2, and thus we apply the rule as long as there exists

any such minimum size (,1,,2)-separator (. Motivated by this,

we say that,1 is strictly linked into,2 if,1 is linked into,2 and

the only minimum size (,1,,2)-separators are,1 and perhaps,2

(if |,2 | = |,1 |).

Leaf pushing. Assume now that we cannot make any more prog-

ress by the reduction rule, and let |,1 | ≤ |,2 |, implying that,1 is

strictly linked into,2. Our goal is to nowmake progress by increas-

ing the size of,1. We observe that for any solution (-, (), bag))

that minimizes |- |, it holds that if ; is a leaf node of) and ? is the

parent of ; , then bag(;) \ bag(?) ⊆,1 ∪,2. Furthermore, we can

assume that bag(?) = bag(;) \ {F}, where F is a “forget-vertex”

of ; , and therefore bag(;) \ bag(?) ⊆,1 or bag(;) \ bag(?) ⊆,2.

Then, observe that if bag(;) \ bag(?) intersects,8 , it must hold

that,8 ⊆ bag(;) because,8 is a clique. Therefore, (), bag) ei-

ther contains a bag that contains both,1 and,2, in which case

|,1 ∪,2 | ≤ : + 1 and there is a trivial single-bag solution, or

(), bag) has exactly two leaves and for one of them it holds that

,1 ⊆ bag(;) and bag(;) \ bag(?) ⊆,1 \,2.

Now, our goal will be, informally, to increase the size of,1 by

guessing a vertex in bag(;) \,1 and adding it to,1. We letF be

534

STOC ’23, June 20–23, 2023, Orlando, FL, USA Tuukka Korhonen and Daniel Lokshtanov

the forget-vertex of ; , and observe that the parent bag bag(?) =

bag(;) \ {F} is a (,1,,2)-separator. This shows that bag(;) \,1

must be non-empty, because otherwise bag(?) would be a (,1,,2)-

separator of size |,1 | − 1, contradicting that,1 is linked into,2.

Denote � ′
= � \ (,1 \ {F}), and observe that in the graph � ′

the set bag(;) \,1 = bag(?) \,1 is a ({F},,2 \,1)-separator.

We will then show that the subset bag(;) \,1 of bag(;) can be

replaced by an important ({F},,2 \,1)-separator (see Section 4.1

of the full version or [22, Chapter 8] for de�nitions of important

separators). In particular, we will argue that there is an important

({F},,2 \,1)-separator (≠ {F} in the graph � ′ so that there

exists a solution containing a bag,1 ∪ (.

Let (be an important ({F},,2 \,1)-separator in the graph

� ′ so that it dominates bag(;) \,1 and minimizes |(| among all

such important separators. Denote the separation corresponding to

(by (�, (, �) = ('�′ ({F}, (), (,+ (�) \ ((∪ '�′ ({F}, ())), where

'�′ ({F}, () denotes the vertices reachable from {F} in the graph

� ′ \ (. It can be shown that (is linked into (�∪ () ∩ (bag(;) \,1).

Then, by adding,1 \ {F} back to the graph and to the separation,

we get that (�, (∪,1 \{F}, �) is a separation of� and (∪,1 \{F}

is linked into (�∪ (∪,1 \ {F}) ∩ bag(;) (the vertices in,1 \ {F}

are linked by trivial one-vertex paths). We then apply the pulling

lemma (Lemma 2.2) with the hypothetical solution (-, (), bag)),

the separation (�, (∪,1 \ {F}, �), and the subset of a bag / =

(� ∪ (∪,1 \ {F}) ∩ bag(;), to argue that there exists a torso tree

decomposition ((- ∩�) ∪(∪,1 \ {F}, () ′, bag′)) of width at most

: , containing a bag (∪,1 \ {F}. As |(| ≤ |bag(;) \,1 |, this can be

turned into a solution of I by insertingF into the bag (∪,1 \ {F}.

Therefore there exists a solution of I with a bag,1 ∪ (, and in

particular it is safe to replace the terminal clique,1 by,1 ∪(, also

replacing � by � ⊗ (,1 ∪ ().

Now, we are able to increase the size of,1 by guessing the forget-

vertex F ∈ ,1 and an important separator (and branching to

(� ⊗ (,1∪(), {,1∪(,,2}, :). However, by applying the reduction

rule we might immediately lose most of the progress by �nding

a (,1 ∪ (,,2)-separator (
′ of size |(′ | < |,1 ∪ (| and ending

up with an instance with terminal cliques {(′,,2}. Nevertheless,

we can ensure that such (′ must have size |(′ | > |,1 | by using

the facts that ,1 is strictly linked into ,2 and the way (was

selected. In particular, in the end, after applying the reduction rule

possibly several times, we can guarantee that if initially |,1 | = |,2 |,

then each resulting instance has terminal cliques of sizes at least

|,1 | + 1 and |,2 |, and if initially |,1 | < |,2 |, then each resulting

instance has terminal cliques of sizes at least |,1 | + 1 and |,1 | + 1.

Therefore, if we consider min(|,1 |, |,2 |) +min(min(|,1 |, |,2 |) +

1,max(|,1 |, |,2 |)) as our measure of progress, we are guaranteed

to increase it by one by the branching.

As the sizes of terminal cliques are bounded by :+1, it is possible

to increase this measure by at most 2: times. Then, as the number

of important separators of size at most : is bounded by 4: [20], this

results in a branching tree of degree :4: and depth 2: , resulting in

a (:4:)2:=O(1)
= 2O(:2)=O(1) time algorithm. To improve this to

:O(:)=O(1) time, we observe that in order to make progress, it is

su�cient to guess only one vertex of the important separator (and

add it to,1, instead of guessing the whole important separator (. To

this end, we prove an “important separator hitting set lemma” that

gives a set of size : that intersects all important separators of size

at most : , and therefore allows to guess one vertex in an important

separator of size at most : by a branching degree of : instead of

4: , resulting in a (:2)2:=O(1)
= :O(:)=O(1) time algorithm.

More than two terminal cliques. Generalizing the :O(:)=O(1)

time algorithm for two terminal cliques into the :O(:C)=O(1) algo-

rithm for C terminal cliques of Theorem 5 does not require major

new ideas, but requires several technical considerations. In the algo-

rithm for C terminal cliques, we will in addition to the leaf pushing

branching do branching on merging two di�erent terminal cliques

into one, which should be done whenever we guess that there exists

a solution where the two terminal cliques are in a same bag. The

“real” de�nition of the measure of the instance will also be more

involved, in particular, instead of depending on the sizes of terminal

cliques, the measure depends on a notion of “�ow potential” of a

terminal clique. The �ow potential has a technical de�nition, but

for all terminal cliques,8 except for a uniquely largest one it will

be equal to the �ow from,8 into the union of the other terminal

cliques. The measure of a uniquely largest terminal clique must be

special to encode that we make progress, for example, in the case

when there are two terminal cliques,1 and,2 with |,1 | = |,2 |

and after branching we end up with two terminal cliques of sizes

|,1 | + 1 and |,2 |. The measure will also take into account the num-

ber of terminal cliques, in particular, it will “encode” that decreasing

the number of terminal cliques with the expense of making the �ow

potential of one terminal clique worse still means making overall

progress.

The 2O(:2)=O(1) time algorithm. The 2O(:2)=O(1) time algo-

rithm for Subset Treewidth of Theorem 4 also uses the same re-

duction rule and leaf pushing arguments. In particular, even though

the problem is originally Subset Treewidth, applications of the

reduction rule and leaf pushing will naturally turn the problem into

Partitioned Subset Treewidth.

For this algorithm, the main measure of progress will be a param-

eter @ that states that there are no solutions that contain “internal

separations” of order < @. Here, an internal separation of a solution

(-, (), bag)) means a separation (�, (, �) so that (is a subset of

some bag of (), bag), and the terminal cliques intersect both � and

�. The goal will be to increase @, by �rst pushing two terminal

cliques to be of size at least ≥ @ by using a version of leaf pushing

that guesses the whole important separator instead of only one

vertex, and then guessing how a hypothetical internal separation of

order @ would split the terminal cliques and breaking the instance

by an important separator of size @ pushed towards the side with

two terminal cliques of size ≥ @. We will also argue about internal

separations that contain only a small number of “original” terminal

vertices behind them, in particular, we will use an observation that

if a solution has an internal separation (�, (, �) so that at most

: + 1 − |(| original terminal vertices are “behind” terminal cliques

intersecting �, then the �-side of the solution can be replaced by

just a single bag containing (and the original terminal vertices

behind it.

3 PRELIMINARIES

We present de�nitions and preliminary results.

535

An Improved Parameterized Algorithm for Treewidth STOC ’23, June 20–23, 2023, Orlando, FL, USA

For a positive integer = we denote [=] = {1, 2, . . . , =} and for two

integers 0, 1 with 0 ≤ 1 we denote [0, 1] = {0, 0 + 1, . . . , 1}.

3.1 Graphs

We denote the set of vertices of a graph � by + (�) and the set of

edges by � (�). When the graph � is clear from the context, we

use = = |+ (�) | and< = |+ (�) | + |� (�) |. For a vertex E ∈ + (�) we

denote its neighborhood in� by #� (E) and closed neighborhood

by #� [E] = #� (E) ∪{E}. For a set of vertices (⊆ + (�) their neigh-

borhood is #� (() =
⋃

E∈(# (E) \ (and the closed neighborhood

#� [(] = #� (()∪(. We drop the subscript if the graph is clear from

the context. We denote the subgraph of � induced by (⊆ + (�) by

� [(], and we also use the notation� \(= � [+ (�) \(]. We denote

by � ⊗ (the graph obtained from � by making (a clique.

A tripartition (�, (, �) of + (�) (with possibly empty parts) is a

separation of � if there are no edges between � and �. The order

of the separation is |(|. A separation of � is a strict separation if

both � and � are non-empty. For two sets -,. ⊆ + (�), an (-,.)-

separator is a set (so that in the graph� \(there are no paths from

- \ (to . \ (. An (-,.)-separator (is a minimal (-,.)-separator

if no proper subset of (is an (-,.)-separator. Note that (is an

(-,.)-separator if and only if there exists a separation (�, (, �) of

� with - ⊆ � ∪ (and . ⊆ � ∪ (.

For two sets of vertices -, (⊆ + (�), we denote by '� (-, () the

set of vertices in� \ (reachable from - \ (. We de�ne '#
�
(-, () =

(-∩()∪# ('� (-, ()) ⊆ (to denote the subset of (that can be seen

from - . Note that if (is an (-,.)-separator then '#
�
(-, () is also

an (-,.)-separator and '� (-, '#
�
(-, ()) = '� (-, (). It follows

that if (is a minimal (-,.)-separator, then (= '#
�
(-, ().

For two sets of vertices -,. ⊆ + (�), we denote by flow� (-,.)

the maximum number of vertex-disjoint paths in � starting in -

and ending in . . We may omit the subscript if the graph is clear

from the context. By Menger’s theorem, flow(-,.) is equal to the

size of a minimum size (-,.)-separator.

We say that a set - ⊆ + (�) is linked into a set . ⊆ + (�) if

flow(-,.) = |- |. Note that here the de�nition of linked is asym-

metric, in particular, the fact that - is linked into . does not imply

that . is linked into - . We say that - is strictly linked into . if it

is linked into . and for all (-,.)-separators (of size |(| = |- | it

holds that (= - or (= . .

3.2 Tree Decompositions

A tree decomposition of a graph � is a pair (), bag), where) is a

tree and bag is a function bag : + ()) → 2+ (�) that satis�es

(1) + (�) =
⋃

C ∈+ ()) bag(C),

(2) for every DE ∈ � (�), there exists C ∈ + ()) with {D, E} ⊆

bag(C), and

(3) for every E ∈ + (�), the set {C ∈ + ()) | E ∈ bag(C)} forms a

connected subtree of) .

We will call Item 1 of the de�nition the vertex condition, Item 2

the edge condition, and Item 3 the connectedness condition. The width

of a tree decomposition (), bag) is maxC ∈+ ()) |bag(C) | − 1 and the

treewidth of a graph is the minimum width of a tree decomposition

of it. We usually call the vertices of the tree) nodes to distinguish

them from the vertices of the graph � .

We will need the following standard utility lemma that trans-

forms a tree decomposition into a no worse tree decomposition

with at most = nodes.

Lemma 3.1. Given a tree decomposition (), bag) of � of width :

that has ℎ bags of size : + 1, we can in time :O(1) |+ ()) | construct

a tree decomposition of � of width : that has at most ℎ bags of size

: + 1 and has at most = nodes.

Proof. As long as there exists an edgeDE ∈ � ()) with bag(D) ⊆

bag(E), we contract DE and let the bag of the resulting node be

bag(E). This can be implemented in :O(1) |+ ()) | time by depth-

�rst search, and clearly does not increase the width or the number

of bags of size : + 1. This results in a tree decomposition with at

most = nodes (see e.g. [31, Chapter 14.2]). □

We sometimes view a tree decomposition (), bag) as rooted on

some speci�c node A ∈ + ()). In this setting we use standard rooted

tree terminology, i.e., E ∈ + ()) is an ancestor of D ∈ + ()) if it is

on the unique path from D to A and a strict ancestor if also E ≠ D,

and conversely D is a (strict) descendant of E . We say that a node

C ∈ + ()) is the forget-node of a vertex E ∈ + (�) if E ∈ bag(C) and

either C = A or for the parent ? of C it holds that E ∉ bag(?). Note

that every E ∈ + (�) has a unique forget-node.

3.3 Torso Tree Decompositions

Let � be a graph and - ⊆ + (�). The graph torso� (-) has set

of vertices + (torso� (-)) = - and has DE ∈ � (torso� (-)) if

D, E ∈ - and there is a path from D to E whose internal vertices

are in+ (�) \- . In particular, note that � (torso� (-)) ⊇ � (� [-]).

An equivalent de�nition of torso� (-) is that it is the graph ob-

tained from � [-] by making #� (�) a clique for every connected

component � of � \ - .

We will need a following lemma about the interplay of the torso

operation and induced subgraphs.

Lemma 3.2. Let -,. be subsets of + (�). Then � (torso� [.] (- ∩

.)) ⊆ � (torso� (-)).

Proof. If DE ∈ � (torso� [.] (- ∩.)), then there is a path from

D to E in� [.] with intermediate vertices in . \- . This path exists

also in � , implying that DE ∈ � (torso� (-)). □

A torso tree decomposition in a graph � is a pair (-, (), bag)),

where- ⊆ + (�) and (), bag) is a tree decomposition of torso� (-).

For a set, ⊆ + (�), we say that (-, (), bag)) covers, if, ⊆ - .

We observe the following equivalent viewpoint of torso tree

decompositions that might be useful for intuition about them.

Observation 3.3. There exists a torso tree decomposition (-, (), bag))

in� if and only if there exists a tree decomposition of� whose non-leaf

nodes induce the tree decomposition (), bag).

For tree decompositions it holds that for any connected induced

subgraph � [.], the set of bags intersecting . forms a connected

subtree of the decomposition (see e.g. [31, Chapter 14.1]). We will

use a corresponding property of torso tree decompositions.

Lemma 3.4. Let (-, (), bag)) be a torso tree decomposition in � ,

and let . ⊆ + (�) so that � [.] is connected. The nodes {C ∈ + ()) |

bag(C) ∩ . ≠ ∅} induce a (possibly empty) connected subtree of) .

536

STOC ’23, June 20–23, 2023, Orlando, FL, USA Tuukka Korhonen and Daniel Lokshtanov

Proof. By the de�nition of torso� (-), any D − E-path in� [.]

withD, E ∈ - can bemapped into anD−E-path in torso� (-) [.∩-],

and therefore torso� (-) [. ∩ -] is connected, and therefore the

lemma follows from the corresponding property of tree decomposi-

tions. □

Alternatively, Lemma 3.4 could be proven by using Lemma 3.3

and the property of tree decompositions. Lemma 3.4 implies that if

there are nodes B, G,~ ∈ + ()) so that {B} is an ({G}, {~})-separator

in) , then bag(B) is a (bag(G), bag(~))-separator in � . This impli-

cation is proven by letting . to be any bag(G) − bag(~)-path and

observing that by Lemma 3.4, . must now intersect bag(B).

4 PULLING LEMMA

We prove a lemma that will be used throughout Section 5, and

the Sections 6 and 7 of the full version to argue that a separator

(can be incorporated as a bag of a torso tree decomposition if it

satis�es certain properties. We call it the “pulling lemma” because

the separator (will be “pulled” along disjoint paths into a bag of

the tree decomposition. Lemmas analogous to this have been used

in the context of tree decompositions for example by [6, 18].

Lemma 4.1 (Pulling lemma). Let � be a graph and (-, (), bag)) a

torso tree decomposition in� . Let (�, (, �) be a separation of� so that

there exists a node A ∈ + ()) so that (is linked into bag(A) ∩ ((∪ �).

There exists a torso tree decomposition ((- ∩�) ∪ (, () ′, bag′)) so

that

(1)) ′
=)

(2) for all C ∈ + ()), |bag′(C) | ≤ |bag(C) |, and

(3) (⊆ bag′(A).

Moreover, when � , (-, (), bag)), (�, (, �), and A are given as in-

puts, the torso tree decomposition ((- ∩ �) ∪ (, () ′, bag′)) can

be constructed in :O(1) (|+ ()) | +<) time, where : is the width of

(-, (), bag)).

Proof. Index the vertices of (by (= {B1, B2, . . . , B |(|}. Because

(is linked into bag(A) ∩ ((∪ �), there are vertex-disjoint paths

%1, . . . , % |(| , so that for each 8 ∈ [|(|], %8 is a path from B8 to bag(A)∩

((∪ �), and all vertices of %8 are contained in (∪ �.

To construct () ′, bag′), we set) ′
=) , and for each C ∈ + ()) we

set

bag′(C) = (bag(C) \ ((∪ �)) ∪ {B8 | %8 ∩ bag(C) ≠ ∅}.

We have that |bag′(C) | ≤ |bag(C) |, because for each inserted vertex

B8 we removed a vertex in %8 (note that the inserted vertex and the

removed vertex could both be the same vertex B8). By de�nition

every %8 intersects bag(A), and thus (⊆ bag′(A). Denote - ′
=

(-∩�)∪(. It remains to show that () ′, bag′) is a tree decomposition

of torso(- ′).

First, the tree decomposition () ′, bag′) satis�es the vertex con-

dition because no vertices in - ∩� were removed, and as argued

before (⊆ bag′(A). Second, () ′, bag′) satis�es the connectedness

condition because the occurrences of vertices in - ∩ � were not

altered, and by Lemma 3.4 the sets {C | %8 ∩ bag(C) ≠ ∅} induce

connected subtrees of) .

For the edge condition, consider an edge DE ∈ � (torso(- ′)).

There is a path between D and E whose intermediate vertices are

contained in + (�) \ - ′. If there would be an intermediate vertex

in �, then D, E ∈ (, implying {D, E} ⊆ bag′(A), so it remains to

consider the cases where there are no intermediate vertices or all

intermediate vertices are in � \ - ′
= � \ - . It follows that if in

this case D, E ∈ - , then DE ∈ � (torso(-)), so the edge condition of

() ′, bag′) in this case holds by the edge condition of (), bag). Also

if D, E ∈ (, then again {D, E} ⊆ bag′(A), so the remaining case is

DE = B8E , where B8 ∈ (\- and E ∈ - \(. Now, B8 and the intermediate

vertices on the path between B8 and E are in a connected component

� of � \ - . Because E ∈ - and bag(A) ⊆ - , this implies that # (�)

contains both E and at least one vertex on the path %8 , and therefore

as # (�) is a clique in torso(-) there is a node C ∈ + ()) with

(�) ⊆ bag(C) and it will hold that {B8 , E} ⊆ bag′(C).

Because (), bag) has width : and |(| ≤ : + 1, the construction

clearly can be implemented in :O(1) (|+ ()) | +<) time. □

Note that the condition |bag′(C) | ≤ |bag(C) | implies that the

width of () ′, bag′) is at most the width of (), bag).

5 COMPUTING TREEWIDTH BY SUBSET

TREEWIDTH

In this section we show that in order to improve a tree decomposi-

tion, it is su�cient to solve Subset Treewidth. In particular, we

prove Theorems 3 and 6.

5.1 Improving a Tree Decomposition

We will de�ne a weighted version of linkedness. For a weight

function 3 : + (�) → Z and a set (⊆ + (�), we denote 3 (() =
∑

E∈(3 (E).

De�nition 5.1 (3-linked). Let � be a graph, �, � ⊆ + (�), and

3 : + (�) → Z a weight function. The set � is 3-linked into � if for

any (�, �)-separator (it holds either that |(| > |�|, or that |(| = |�|

and 3 (() ≥ 3 (�).

Note that if � is 3-linked into � then � is linked into �. We say

that an (�, �)-separator (with |(| < |�|, or with |(| = |�| and

3 (() < 3 (�) witnesses that � is not 3-linked into �. Then, we say

that a torso tree decomposition (-, (), bag)) is3-linked into a set of

vertices, ⊆ + (�) if for every node C ∈ + ()) it holds that bag(C)

is 3-linked into, . We say that a pair (C, (), where C ∈ + ()) and

(is a (bag(C),,)-separator witnessing that bag(C) is not 3-linked

into, witnesses that (-, (), bag)) is not 3-linked into, .

Our goal is to show that any torso tree decomposition that covers

, can be made to be 3-linked into, . In particular, we will show

that if (-, (), bag)) is a torso tree decomposition that covers, ,

then given a pair (C, () that witnesses that (-, (), bag)) is not 3-

linked into, , we can, in some sense, improve (-, (), bag)) while

maintaining that it covers, and not increasing its width.We de�ne

q3 (-) = |- | · =(: + 1) + 3 (-) as the measure in which sense we

will improve (-, (), bag)).

Lemma 5.2. There is an algorithm that takes as input a graph � ,

a set of vertices, ⊆ + (�), a torso tree decomposition (-, (), bag))

in � of width : that covers, , a weight function 3 : + (�) → [=],

and a pair (C, () that witnesses that (-, (), bag)) is not 3-linked into

, , and in time :O(1) (|+ ()) | +<) returns a torso tree decomposition

(- ′, () ′, bag′)) that covers , , has width at most : , has at most

|+ ()) | nodes, and has q3 (-
′) < q3 (-).

537

An Improved Parameterized Algorithm for Treewidth STOC ’23, June 20–23, 2023, Orlando, FL, USA

Proof. After a :O(1)< time �ow computation we may assume

that (is a minimum size (bag(C),,)-separator, because if (was

not a minimum size (bag(C),,)-separator then any minimum size

(bag(C),,)-separator also witnesses that bag(C) is not 3-linked

into, . This implies that (is linked into bag(C).

Let � = '� (,,() and � = + (�) \ (� ∪ (). Note that, ⊆

� ∪ (and bag(C) ⊆ � ∪ (. Denote - ′
= (- ∩ �) ∪ (. We apply

the pulling lemma (Lemma 4.1) with the torso tree decomposition

(-, (), bag)), the separation (�, (, �), and the node C to construct

a torso tree decomposition (- ′, () ′, bag′)) of width at most : and

at most |+ ()) | nodes. As, ⊆ - and, ⊆ � ∪ (, we have that

, ⊆ - ′, so (- ′, () ′, bag′)) covers, . It remains to prove that

q3 (-
′) < q3 (-).

Because bag(C) ⊆ (∪ � and bag(C) ⊆ - , we have that |- ′ | ≤

|- |−|bag(C) |+|(| and3 (- ′) ≤ 3 (-)−3 (bag(C))+3 ((). Therefore, if

|(| < |bag(C) |, then |- ′ | < |- |, implying q3 (-
′) < q3 (-) because

3 (() < =(: + 1). If |(| = |bag(C) | and 3 (() < 3 (bag(C)), then

|- ′ | ≤ |- | and 3 (- ′) < 3 (-), implying q3 (-
′) < q3 (-). □

Then, our goal is to show that either a torso tree decomposition

(-, ()- , bag-)) of width : − 1 that covers a largest bag, of a

tree decomposition (), bag) of width : can be used to improve

(), bag), or we �nd a pair (C, () witnessing that (-, ()- , bag-)) is

not 3-linked into, for a certain function 3 , in which case we can

improve (-, ()- , bag-)) by applying Lemma 5.2.

Let (), bag) be a tree decomposition of � and A ∈ + ()) a desig-

nated root-node of it. For a vertex E ∈ + (�), let 5E ∈ + ()) be the

node of) with E ∈ bag(5E) that has the smallest distance to the

root A in) among all nodes whose bags contain E , that is, 5E is the

forget-node of E . We de�ne a weight function 3 (),bag,A) : + (�) →

[|+ ()) |] for a vertex E ∈ + (�) as the distance from 5E to A plus one.

Next we prove the main lemma of this section.

Lemma 5.3. Let (), bag) be a tree decomposition of � of width : ,

and A a node of (), bag) with bag(A) =, with |, | = : + 1. There is

an algorithm that given a torso tree decomposition (-, ()- , bag-))

that covers, and has width at most : − 1, in time :O(1) (|+ ()) | +

|+ ()-) | +<) either

(1) constructs a tree decomposition of� of width at most : , having

strictly less bags of size : + 1 than (), bag), and having at

most = nodes, or

(2) returns a pair (C, () where C ∈ + ()-) and (⊆ + (�) that

witnesses that (-, ()- , bag-)) is not 3 (),bag,A) -linked into, .

Proof. We treat (), bag) as rooted on the node A . Our goal is to

construct a tree decomposition () ′, bag′) of� , and then show that

if it does not satisfy the conditions of Lemma 1, then we �nd the

pair (C, () of Lemma 2.

First, for every connected component� of�\- , wewill construct

a tree decomposition ()� , bag�) of # [�], so that # (�) is in the

root bag of ()� , bag�). We again use 5E ∈ + ()) to denote the forget-

node of E in (), bag). For a node C ∈ + ()), denote by C# (�) the

vertices

C# (�)
= {E ∈ # (�) | 5E is a strict descendant of C in) }.

To construct the tree decomposition ()� , bag�), we �rst set

)� =) [{C ∈ + ()) | � ∩ bag(C) ≠ ∅}],

i.e.,)� is the subtree of) induced by bags that intersect� . Observe

that)� is connected because � [�] is connected. Then for each

C ∈ + ()�) we set

bag� (C) = (bag(C) ∩ # [�]) ∪ C# (�) .

We let the root node of ()� , bag�) to be the node A� ∈ + ()�) that

is the closest to A in) . Note that because)� is a connected subtree

of) , the node A� is uniquely de�ned.

Claim 5.4. It holds that ()� , bag�) is a tree decomposition of # [�]

and # (�) ⊆ bag� (A�).

Proof. First, for the vertices � and edges in � [�] the decom-

position clearly satis�es the vertex and edge conditions because

(), bag) satis�ed the conditions. For edges between � and # (�)

and vertices in # (�), note that again each such edge must be in a

bag that intersects � , and because for every vertex of # (�) there

exists such an edge we have that every vertex of # (�) must occur

in some bag that intersects � . The decomposition satis�es the con-

nectedness condition for vertices in� directly by the connectedness

condition of (), bag).

For vertices E ∈ # (�), either (1) E ∈ bag(A�) and E is not in

C# (�) for any C ∈ + ()�), or (2) 5E ∈ + ()�) \ {A� } and E ∈ C
(�) for

all C on the path from the parent of 5E to the root A� . Therefore, the

connectedness condition is maintained for vertices in # (�). This

also shows that # (�) ⊆ bag� (A�), which �nally implies the edge

condition also for edges in � [# (�)]. □

Now, our complete construction of () ′, bag′) is to attach the

tree decompositions ()� , bag�) for all components� of� \- from

their roots to the tree decomposition ()- , bag-). Because # (�) is

a clique in torso(-), the decomposition ()- , bag-) contains a bag

containing # (�) to which ()� , bag�) can be attached.

Next we show that this construction can be implemented in

:O(1) (|+ ()) | + |+ ()-) | +<) time. In particular, �rst, the connected

components � and their neighborhoods can be found in :O(1)<

time. Then, we observe that the sum of |+ ()�) | over all compo-

nents � is at most (: + 1) |+ ()) | because (), bag) has width : and

the components � are disjoint. By �rst computing pointers from

vertices of � to bags containing them, and then using the fact

that |# (�) | ≤ : + 1, each tree decomposition ()� , bag�) can be

constructed in :O(1) |+ ()�) | time, which sums up to :O(1) |+ ()) |.

Then, it remains to attach each tree decomposition ()� , bag�) to

a node of ()- , bag-) whose bag contains # (�). For this, observe

that if we consider ()- , bag-) rooted, and for E ∈ # (�) denote by

5 -E the forget-node of E in ()- , bag-), then # (�) is contained in

the bag of the node 5 -E for E ∈ # (�) such that 5 -E maximizes the

distance from the root.

Next we give the main argument for extracting the witness of

Lemma 2 if () ′, bag′) does not satisfy Lemma 1.

Claim 5.5. Let � be a component of � \ - and G ∈ + ()-) a node

of ()- , bag-) with # (�) ⊆ bag- (G). For every node C ∈ + ()�) we

have either that

(1) |bag� (C) | < |bag(C) | or bag� (C) = bag(C), or that

(2) (bag- (G) \C# (�)) ∪ (bag(C) \# [�]) witnesses that bag- (G)

is not 3 (),bag,A) -linked into, .

538

STOC ’23, June 20–23, 2023, Orlando, FL, USA Tuukka Korhonen and Daniel Lokshtanov

Proof. Lemma 1 is true if C# (�) is empty, so suppose C# (�) is

non-empty and |bag� (C) | ≥ |bag(C) |. By the de�nition of bag� (C)

this implies that |C# (�) | ≥ |bag(C) \ # [�] |. Note that C# (�) ⊆

bag- (G). We will show that in this case

(= (bag- (G) \ C# (�)) ∪ (bag(C) \ # [�])

separates bag- (G) from, . Therefore (witnesses that bag- (G)

is not3 (),bag,A) -linked into, , because by |C# (�) | ≥ |bag(C)\# [�] |

wehave that |(| ≤ |bag- (G) |, andmoreoverwe have3 (),bag,A) (() <

3 (),bag,A) (bag- (G)) because for every vertex E1 ∈ C# (�) and E2 ∈

bag(C), it holds that 3 (),bag,A) (E1) > 3 (),bag,A) (E2) because 5E1 is a

strict descendant of C , and 5E2 is an ancestor of C .

To show that (separates bag- (G) from, , it is su�cient to

show that it separates C# (�) from, because bag- (G) \ (= C# (�) .

Consider a shortest path in�\(that starts in C# (�) and ends in, . If

this path would intersect# [�] anywhere else than in its �rst vertex,

then it would intersect C# (�) twice because # (�) \ (= C# (�) and

, ∩ � = ∅, which would contradict that it is a shortest path.

Therefore, it intersects # [�] only in its �rst vertex. Then, because

for each E ∈ C# (�) the node C ∈ + ()) separates 5E from A in) , it

holds that bag(C) separates C# (�) from bag(A) =, . Therefore, the

path must intersect bag(C), and therefore as bag(C) and C# (�) are

disjoint, it must intersect bag(C) \# [�]. However, bag(C) \# [�] ⊆

(, and therefore no such path exists in � \ (. □

Now, for all nodes of the constructed decompositions ()� , bag�)

we check if Lemma 1 of Lemma 5.5 holds, and if it does not hold

we return the pair (G, (bag- (G) \ C# (�)) ∪ (bag(C) \ # [�])). This

can be done in :O(1) |+ () ′) | = :O(1) |+ ()) | time.

Then, it remains to prove that if Lemma 1 of Lemma 5.5 holds

for all nodes of all decompositions ()� , bag�), then () ′, bag′) has

width at most : and has strictly less bags of size : + 1 than (), bag).

First, clearly () ′, bag′) has width at most : as none of the decompo-

sitions ()� , bag�) have larger width than (), bag) and ()- , bag-)

has smaller width than (), bag). It remains to prove that () ′, bag′)

has less bags of size : + 1 than (), bag).

Consider any node C ∈ + ()), and suppose that there are two dis-

tinct components�1 and�2 of� \- so that both�1 and�2 intersect

bag(C) and |bag�1
(C) | = |bag�2

(C) | = |bag(C) |. Now, by Lemma 1

of Lemma 5.5 it would hold that bag�1
(C) = bag�2

(C) = bag(C).

However, as bag�1
(C) ⊆ # [�1], this would contradict that bag(C)

intersects�2. Therefore, for any node C ∈ + ()) there is at most one

corresponding node C in the decompositions ()� , bag�) across all

components � with a bag of size |bag� (C) | = |bag(C) |. For the root

node A , as bag(A) ⊆ - , none of the components � intersect bag(A),

and therefore no decomposition ()� , bag�) contains a node corre-

sponding to it. All other bags of () ′, bag′) come from ()- , bag-)

and have size at most : , so as |bag(A) | = : + 1, it follows that

() ′, bag′) has strictly less bags of size : + 1 than (), bag).

Finally, by Lemma 3.1 we can reduce the number of nodes of

() ′, bag′) to at most = within the same time. □

Then, we combine Lemmas 5.2 and 5.3 into a single lemma show-

ing that to improve (), bag) it is su�cient to �nd a torso tree

decomposition in � that covers a largest bag of (), bag) and has

width smaller than (), bag).

Lemma 5.6. Let (), bag) be a tree decomposition of � of width

: and |+ ()) | ≤ =, and A a node of (), bag) with bag(A) =, with

|, | = :+1. There is an algorithm that given a torso tree decomposition

(-, ()- , bag-)) that covers, and has width at most : − 1, in time

:O(1) (|+ ()-) | + =
3) constructs a tree decomposition of � of width

at most : , having strictly less bags of size : + 1 than (), bag), and

having at most = nodes.

Proof. First, we apply Lemma 3.1 to reduce the number of nodes

of ()- , bag-) to at most =. Then, we repeatedly apply Lemma 5.3

together with Lemma 5.2, in particular, if Lemma 5.3 returns the tree

decomposition of Lemma 1 we are done, and if it returns a pair (C, ()

that witnesses that (-, ()- , bag-)) is not 3 (),bag,A) -linked into,

then we apply Lemma 5.2, which decreases q3 () ,bag,A)
(-) by at least

one. Becauseq3 () ,bag,A)
(-) is initiallyO(:=2) andq3 () ,bag,A)

(-)must

be non-negative, the total number of iterations is at most O(:=2),

giving a total running time of :O(1)=3, plus :O(1) |+ ()-) | from the

application of Lemma 3.1. □

5.2 Reducing Treewidth to Subset Treewidth

Now we can prove Theorem 3, in particular that algorithms for

Subset Treewidth imply algorithms for treewidth (for de�nition

of Subset Treewidth see Section 2.1). Recall that the running

time function) (:) is assumed to be increasing on : and we denote

< = |+ (�) | + |� (�) |.

Theorem 3. Given an algorithm for Subset Treewidth with

running time) (:) ·<2 , an algorithm for treewidth with running

time) (O(:)) · O((=:)2+1) + :O(1)=4 + 2O(:)=2 can be constructed.

Moreover, if the algorithm for Subset Treewidthworks in polynomial

space, then the algorithm for treewidth works in polynomial space.

Proof. Let� denote the input graph. First, we use the 4-approx-

imation algorithm of [42] to obtain a tree decomposition (), bag)

of� of width at most 4: + 3 in time 2O(:)=2 and polynomial space

or to return that the treewidth of � is larger than : . By Lemma 3.1,

within the same running time we assume that |+ ()) | ≤ =, and we

can also assume that< ≤ O(:=) because otherwise the treewidth

of � would be larger than : .

Then, we repeat the following process as long as the width of

(), bag) is larger than : . Let, be a largest bag of (), bag), and

note that in this case |, | ≥ : + 2. We use the algorithm for Subset

Treewidth to either get a torso tree decomposition that covers,

and has width at most |, | − 2 or to conclude that the treewidth

of � is larger than |, | − 2 ≥ : . If we conclude that the treewidth

of � is larger than : we are ready and can immediately return. If

the algorithm returns such a torso tree decomposition, we apply

Lemma 5.6 to improve (), bag), in particular to decrease the number

of bags of size |, | and not increase the width.

We can decrease the number of largest bags while not increasing

the width at most O(:=) times before the width decreases from 4:+

3 to : , and therefore the algorithm works with O(:=) applications

of the algorithm for Subset Treewidth and Lemma 5.6. In all

of the applications, the parameter : for Subset Treewidth is at

most 4: + 2, where : is the original parameter for treewidth. This

results in a total running time of) (O(:)) · O((=:)2+1) +:O(1)=4 +

2O(:)=2. □

539

An Improved Parameterized Algorithm for Treewidth STOC ’23, June 20–23, 2023, Orlando, FL, USA

We then turn to Theorem 6, in particular, to proving that algo-

rithms for Partitioned Subset Treewidth imply approximation

algorithms for treewidth (for the de�nition of Partitioned Subset

Treewidth see Section 2.1). The crucial lemma for this will the

following.

Lemma 5.7. Let � be a graph of treewidth at most : , Y ∈ (0, 1) a

rational, and, ⊆ + (�) a set of vertices of size |, | ≤ 4: + 4. There

exists a partition of, into C = O(1/Y) parts,1, . . . ,,C , so that after

making each part into a clique the treewidth of � is at most : + Y: .

Proof. If Y < 1/: we can return the trivial partition of, into

single vertices. Therefore we can assume that Y: ≥ 1.

Consider a rooted tree decomposition (), bag) of � of width : .

By turning (), bag) into a “nice tree decomposition”, we can assume

that the root bag of (), bag) is empty, each node of) has at most

two children, and that |bag(D)\bag(E) |+|bag(E)\bag(D) | ≤ 1 holds

for any two adjacent nodes D, E ∈ + ()) (see e.g. [22, Chapter 7]).

Recall that a node C ∈ + ()) with a parent ? ∈ + ()) is a forget-node

of a vertex E ∈ + ()) if E ∈ bag(C) \bag(?). Respectively, such E is a

forget-vertex of C . Note that each node of) has at most one forget-

vertex and each vertex of� has exactly one forget-node. By further

stretching (), bag) we can also assume that each forget-node has

exactly one child. We say that a node is a, -forget node if it is a

forget-node of a vertexF ∈, .

Let us process (), bag) from the leaves towards the root, i.e., in

an order of a post-order traversal, and maintain a set of “removed”

nodes ' ⊆ + ()). Suppose we are processing a node C and let � ⊆

+ ()) be the nodes of) that are descendants of C and reachable from

C in) \ '. Note that C ∈ � and � ⊆ + ()) \ '. Now, if � contains

at least Y:/2, -forget-nodes or C is the root we add a part to the

partition of, and modify the tree decomposition as follows. We let

, ′ ⊆, be the vertices in, whose forget-nodes are in � . We add

, ′ as a part of the partition, and add, ′ to the bags of all nodes in

� . Then, we add all nodes in � to '.

Observe that |, ′ | ≤ Y: follows from the facts that we process

the tree in post-order, each node can have at most two children, each

node can be a forget-node of at most one vertex, each forget-node

has one child, and Y: ≥ 1. Therefore, the sizes of the bags of nodes

in � increased by at most Y: , and moreover they will not increase

again because they were added to '. Therefore, the resulting tree

decomposition has width at most : + Y: . We also observe that the

resulting tree decomposition is indeed a tree decomposition after

making such, ′ into a clique: All the new edges are contained in

the bags of all nodes in � , and the subtree condition is maintained

because the forget-nodes of vertices in, ′ are in � .

Now, each created part of the partition except the part corre-

sponding to the root has size at least Y:/2, so in total the number

of parts is at most |, |/(Y:/2) + 1 ≤ 16
Y + 1 = O(1/Y). □

Now, by using Lemma 5.7 we can prove Theorem 6 similarly to

Theorem 3.

Theorem 6. Given an algorithm for Partitioned Subset Tree-

width with running time) (:, C) ·<2 , we can construct an (1 + Y)-

approximation algorithm for treewidth with running time

) (O(:),O(1/Y)) · O((=:)2+1) · (1 + 1/Y)O(:) +:O(1)=4 + 2O(:)=2 .

Moreover, if the algorithm for Partitioned Subset Treewidth works

in polynomial space, then the algorithm for treewidth works in poly-

nomial space.

Proof. Let� denote the input graph. First, we use the 4-approx-

imation algorithm of [42] to obtain a tree decomposition (), bag)

of� of width at most 4: + 3 in time 2O(:)=2 and polynomial space

or to return that the treewidth of � is larger than : . By Lemma 3.1,

within the same running time we assume that |+ ()) | ≤ =, and we

can also assume that< ≤ O(:=) because otherwise the treewidth

of � would be larger than : .

Then, we repeat the following process as long as the width of

(), bag) is larger than : + Y: . Let, be a largest bag of (), bag),

and note that in this case |, | ≥ : + Y: + 2 and |, | ≤ 4: + 4. We try

all partitions of, into C = O(1/Y) parts (where the bound for C is

from Lemma 5.7). For each partition,1, . . . ,,C , we make the parts

,1, . . . ,,C into cliques in � , and then use the algorithm for Parti-

tioned Subset Treewidthwith this partition of, . By Lemma 5.7,

there exists such a partition so that after making,1, . . . ,,C into

cliques the treewidth of � is at most : + Y: , and therefore if the

algorithm for Partitioned Subset Treewidth returns for every

partition that the treewidth of� is larger than |, | − 2 ≥ : + Y: , we

can return that the treewidth of � is larger than : . Otherwise, the

algorithm for Partitioned Subset Treewidth returned a torso

tree decomposition that covers, and has width at most |, | − 2,

and we proceed applying Lemma 5.6 similarly as in the proof of

Theorem 3.

The running time follows from the fact that there are at most

CO(:)
= (1 + 1/Y)O(:) partitions of, into C = O(1/Y) parts, and

we can decrease the number of largest bags while not increasing

the width at most O(=:) times, and therefore there we use in total

O(=:) · (1+1/Y)O(:) applications of the algorithm for Partitioned

Subset Treewidth with C = O(1/Y). The parameter : for Parti-

tioned Subset Treewidth is at most 4: +2, where : is the original

parameter for treewidth. □

REFERENCES
[1] E. Amir. 2001. E�cient approximation for triangulation of minimum treewidth.

In Uncertainty in Arti�cial Intelligence: Proceedings of the Seventeenth Conference
(UAI-2001), San Francisco, CA. Morgan Kaufmann Publishers, 7–15.

[2] Eyal Amir. 2010. Approximation Algorithms for Treewidth. Algorithmica 56, 4
(2010), 448–479. https://doi.org/10.1007/s00453-008-9180-4

[3] Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. 1987. Complexity
of �nding embeddings in a :-tree. SIAM J. Alg. Disc. Meth. 8 (1987), 277–284.

[4] Mahdi Belbasi andMartin Fürer. 2021. Finding All Leftmost Separators of Size ≤ : .
In Proceedings of 15th International Conference on Combinatorial Optimization
and Applications (COCOA) (Lecture Notes in Comput. Sci., Vol. 13135). Springer,
273–287.

[5] Mahdi Belbasi and Martin Fürer. 2022. An Improvement of Reed’s Treewidth
Approximation. J. Graph Algorithms Appl. 26, 2 (2022), 257–282.

[6] Patrick Bellenbaum and Reinhard Diestel. 2002. Two short proofs concerning
tree-decompositions. Combinatorics, Probability and Computing 11, 6 (2002),
541–547.

[7] Umberto Bertelè and Francesco Brioschi. 1972. Nonserial dynamic program-
ming. Academic Press, New York. xii+235 pages. Mathematics in Science and
Engineering, Vol. 91.

[8] Hans L. Bodlaender. 1993. A linear time algorithm for �nding tree-decompositions
of small treewidth. In Proceedings of the 25th Annual ACM Symposium on Theory
of Computing (STOC). ACM, 226–234. https://doi.org/10.1145/167088.167161

[9] H. L. Bodlaender. 1993. A tourist guide through treewidth. Acta Cybernet. 11, 1-2
(1993), 1–21.

[10] Hans L. Bodlaender. 1994. Improved Self-reduction Algorithms for Graphs with
Bounded Treewidth. Discret. Appl. Math. 54, 2-3 (1994), 101–115. https://doi.org/
10.1016/0166-218X(94)90018-3

540

https://doi.org/10.1007/s00453-008-9180-4
https://doi.org/10.1145/167088.167161
https://doi.org/10.1016/0166-218X(94)90018-3
https://doi.org/10.1016/0166-218X(94)90018-3

STOC ’23, June 20–23, 2023, Orlando, FL, USA Tuukka Korhonen and Daniel Lokshtanov

[11] Hans L. Bodlaender. 1996. A linear-time algorithm for �nding tree-
decompositions of small treewidth. SIAM J. Computing 25, 6 (1996), 1305–1317.

[12] Hans L Bodlaender, Leizhen Cai, Jianer Chen, Michael R. Fellows, Jan Arne Telle,
and Dániel Marx. 2006. Open problems in parameterized and exact computation –
IWPEC 2006. Technical Report UU-CS-2006-052. Department of Information and
Computing Sciences, Utrecht University.

[13] Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel

Lokshtanov, and Michał Pilipczuk. 2016. A 2:= 5-approximation algorithm for
treewidth. SIAM J. Computing 45, 2 (2016), 317–378. https://doi.org/10.1137/
130947374

[14] Hans L. Bodlaender, John R. Gilbert, Hjálmtyr Hafsteinsson, and Ton Kloks. 1995.
Approximating Treewidth, Pathwidth, Frontsize, and Shortest Elimination Tree.
J. Algorithms 18, 2 (1995), 238–255.

[15] Hans L. Bodlaender, Lars Ja�ke, and Jan Arne Telle. 2021. Typical Sequences
Revisited - Computing Width Parameters of Graphs. Theory Comput. Syst. (2021).
https://doi.org/10.1007/s00224-021-10030-3

[16] Hans L. Bodlaender and Ton Kloks. 1991. Better Algorithms for the Pathwidth
and Treewidth of Graphs. In Proceedings of the 18th International Colloquium of
Automata, Languages and Programming (ICALP) (Lecture Notes in Comput. Sci.,
Vol. 510). Springer, 544–555. https://doi.org/10.1007/3-540-54233-7_162

[17] Hans L. Bodlaender and Ton Kloks. 1996. E�cient and Constructive Algorithms
for the Pathwidth and Treewidth of Graphs. J. Algorithms 21, 2 (1996), 358–402.

[18] Hans L. Bodlaender and Arie M. C. A. Koster. 2006. Safe separators for treewidth.
Discret. Math. 306, 3 (2006), 337–350.

[19] Richard B. Borie, R. Gary Parker, and Craig A. Tovey. 1992. Automatic Generation
of Linear-Time Algorithms from Predicate Calculus Descriptions of Problems on
Recursively Constructed Graph Families. Algorithmica 7, 5&6 (1992), 555–581.

[20] Jianer Chen, Yang Liu, and Songjian Lu. 2009. An Improved Parameterized
Algorithm for the Minimum Node Multiway Cut Problem. Algorithmica 55, 1
(2009), 1–13.

[21] Bruno Courcelle. 1990. The monadic second-order logic of graphs I: Recognizable
sets of �nite graphs. Information and Computation 85 (1990), 12–75.

[22] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx,
Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. 2015. Parameterized
Algorithms. Springer. http://dx.doi.org/10.1007/978-3-319-21275-3

[23] Reinhard Diestel. 2005. Graph theory (3rd ed.). Graduate Texts in Mathematics,
Vol. 173. Springer-Verlag, Berlin. xvi+411 pages.

[24] Rodney G. Downey and Michael R. Fellows. 1999. Parameterized complexity.
Springer-Verlag, New York.

[25] Rodney G. Downey and Michael R. Fellows. 2013. Fundamentals of Parameterized
Complexity. Springer.

[26] Michael Elberfeld, Andreas Jakoby, and Till Tantau. 2010. Logspace Versions of
the Theorems of Bodlaender and Courcelle. In Proceedings of the 51th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2010. IEEE Computer
Society, 143–152. https://doi.org/10.1109/FOCS.2010.21

[27] Uriel Feige, MohammadTaghi Hajiaghayi, and James R. Lee. 2008. Improved
Approximation Algorithms for Minimum Weight Vertex Separators. SIAM J.
Computing 38, 2 (2008), 629–657.

[28] Michael R. Fellows and Michael A. Langston. 1989. On Search, Decision and the
E�ciency of Polynomial-Time Algorithms (Extended Abstract). In Proceedings of
the 21st Annual ACM Symposium on Theory of Computing (STOC). ACM, 501–512.

[29] Jörg Flum and Martin Grohe. 2006. Parameterized Complexity Theory. Springer-
Verlag, Berlin. 493 pages.

[30] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, Michal Pilipczuk, and Marcin
Wrochna. 2018. Fully Polynomial-Time Parameterized Computations for Graphs
and Matrices of Low Treewidth. ACM Transactions on Algorithms 14, 3 (2018),
34:1–34:45. https://doi.org/10.1145/3186898

[31] Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. 2019.
Kernelization: Theory of parameterized preprocessing. Cambridge University
Press.

[32] Fedor V. Fomin, Ioan Todinca, and Yngve Villanger. 2015. Large Induced Sub-
graphs via Triangulations and CMSO. SIAM J. Comput. 44, 1 (2015), 54–87.
https://doi.org/10.1137/140964801

[33] Rudolf Halin. 1976. (-functions for graphs. J. Geometry 8, 1-2 (1976), 171–186.
[34] Tuukka Korhonen. 2021. A Single-Exponential Time 2-Approximation Algorithm

for Treewidth. In Proceedings of the 62nd Annual Symposium on Foundations of
Computer Science (FOCS). IEEE, 184–192. https://doi.org/10.1109/FOCS52979.
2021.00026

[35] Tuukka Korhonen and Daniel Lokshtanov. 2022. An Improved Parameterized
Algorithm for Treewidth. CoRR abs/2211.07154 (2022). https://doi.org/10.48550/
arXiv.2211.07154 arXiv:2211.07154

[36] Jens Lagergren. 1996. E�cient Parallel Algorithms for Graphs of Bounded Tree-
Width. Journal of Algorithms 20, 1 (1996), 20–44. https://doi.org/10.1006/jagm.
1996.0002

[37] Jens Lagergren and Stefan Arnborg. 1991. Finding Minimal Forbidden Minors
Using a Finite Congruence. In Proceedings of the 18th International Colloquium of
Automata, Languages and Programming (ICALP) (Lecture Notes in Comput. Sci.,
Vol. 510). Springer, 532–543. https://doi.org/10.1007/3-540-54233-7_161

[38] Jirí Matousek and Robin Thomas. 1991. Algorithms Finding Tree-Decompositions
of Graphs. J. Algorithms 12, 1 (1991), 1–22.

[39] Rolf Niedermeier. 2006. Invitation to �xed-parameter algorithms. Oxford Lecture
Series in Mathematics and its Applications, Vol. 31. Oxford University Press,
Oxford. xii+300 pages.

[40] Bruce A. Reed. 1992. Finding Approximate Separators and Computing Tree
Width Quickly. In Proceedings of the 24th Annual ACM Symposium on Theory
of Computing, STOC 1992, S. Rao Kosaraju, Mike Fellows, Avi Wigderson, and
John A. Ellis (Eds.). ACM, 221–228. https://doi.org/10.1145/129712.129734

[41] Neil Robertson and Paul D. Seymour. 1984. Graph Minors. III. Planar Tree-Width.
J. Combinatorial Theory Ser. B 36 (1984), 49–64.

[42] Neil Robertson and Paul D. Seymour. 1995. Graph minors. XIII. The disjoint paths
problem. J. Combinatorial Theory Ser. B 63, 1 (1995), 65–110.

[43] Neil Robertson and Paul D. Seymour. 2004. Graph Minors. XX. Wagner’s conjec-
ture. J. Combinatorial Theory Ser. B 92, 2 (2004), 325–357.

[44] Yu Wu, Per Austrin, Toniann Pitassi, and David Liu. 2014. Inapproximability of
Treewidth and Related Problems. J. Artif. Intell. Res. 49 (2014), 569–600.

Received 2022-11-07; accepted 2023-02-06

541

https://doi.org/10.1137/130947374
https://doi.org/10.1137/130947374
https://doi.org/10.1007/s00224-021-10030-3
https://doi.org/10.1007/3-540-54233-7_162
http://dx.doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1109/FOCS.2010.21
https://doi.org/10.1145/3186898
https://doi.org/10.1137/140964801
https://doi.org/10.1109/FOCS52979.2021.00026
https://doi.org/10.1109/FOCS52979.2021.00026
https://doi.org/10.48550/arXiv.2211.07154
https://doi.org/10.48550/arXiv.2211.07154
https://arxiv.org/abs/2211.07154
https://doi.org/10.1006/jagm.1996.0002
https://doi.org/10.1006/jagm.1996.0002
https://doi.org/10.1007/3-540-54233-7_161
https://doi.org/10.1145/129712.129734

	Abstract
	1 Introduction
	2 Overview
	2.1 Reduction to Subset Treewidth
	2.2 Proof Sketch of Lemma 2.1
	2.3 Overview of Theorems 4 and 5

	3 Preliminaries
	3.1 Graphs
	3.2 Tree Decompositions
	3.3 Torso Tree Decompositions

	4 Pulling Lemma
	5 Computing Treewidth by Subset Treewidth
	5.1 Improving a Tree Decomposition
	5.2 Reducing Treewidth to Subset Treewidth

	References

