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Abstract

A class F of graphs is called tame if every graph in F on n vertices contains at most n
O(1) minimal

separators, quasi-tame if every graph in F on n vertices contains at most 2log
O(1)(n) minimal separators, and

feral if there exists a constant c > 1 so that F contains n-vertex graphs with at least c
n minimal separators

for arbitrarily large n. The classification of graph classes into (quasi-) tame or feral has numerous algorithmic
consequences, and has recently received considerable attention.

In this paper we precisely characterize the structure of graphs which have few minimal separators.
Specifically we show that every graph which excludes certain graphs called k-creatures and k-critters as induced
subgraphs has at most quasi-polynomially many minimal separators. We then demonstrate that this sufficient
condition for having few minimal separators is the “right” one. In particular we show that every hereditary
graph class F definable in CMSO logic that contains k-creatures or k-critters for every k is feral.

1 Introduction

Let G be a graph and u and v be distinct vertices in G. A vertex set S is a u,v-separator if u and v are in distinct
components of G− S. The set S is a u,v-minimal separator if S is a u,v-separator, but no proper subset of S is
a u,v-separator. Finally, S is a minimal separator if S is a u,v-minimal separator for some pair of vertices u and
v. Building on the terminology of Milanič and Pivač [29], we will say that a graph class F is tame if there exists
an integer c so that every graph in F on n vertices has at most O(nc) minimal separators.

Minimal separators are a fundamental combinatorial object that show up naturally both in structural
arguments [6, 28], as well as in algorithmic applications [27]. Many graph problems including Treewidth,
Minimum Fill In, Treelength, Independent Set, Feedback Vertex Set, and others [5, 17, 26] can be
solved in time polynomial in the number n of vertices plus the number of minimal separators in the input graph.
These algorithms run in time polynomial in n precisely for the graphs that have at most nO(1) minimal separators,
motivating the question we address in this paper - which graph classes are tame?

Since this paper is the second in a series we will refrain from a more in-depth discussion on the importance
of minimal separators, or the history of study of tame graph classes. Such a discussion may be found in the first
paper in the series [21] We will simply mention that a substantial body of work has been devoted to identifying
tame graph classes [1, 8, 7, 5, 6, 24, 25, 29, 30, 19].

All of the aforementioned previous work essentially gives different sufficient conditions for a graph to only
have polynomially many separators. This naturally leads to the question is there a “right” sufficient condition
for tameness? That is - a condition that on one hand is easy to state and verify, while on the other hand captures
all interesting tame graph classes. One Theorem to tame them all, so to speak.

Abrishami et al. [1] conjectured that the presence or absence of k-creatures (more or less) completely dictates
whether a graph has many or few minimal separators. To properly state their conjecture we first need to define
k-creatures.

Definition 1.1. (k-creatures) (see Figure 1) A graph G is said to be a k-creature if its vertices can be
partitioned into sets A, X = {x1, x2, . . . , xk}, Y = {y1, y2, . . . , yk}, and B satisfying the following conditions:

(i) G[A] and G[B] are connected.

(ii) A and Y ∪B are anti-complete (i.e. N [A] ∩ (Y ∪B) = ∅) and B and A ∪X are anti-complete.

(iii) A dominates X (every vertex in X has a neighbor in A) and B dominates Y .
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Figure 1: A graph induced by the vertices of a k-creature. The blue edges indicate that xi (yi) may or may not
be a neighbor of xj (yj)

(iv) xiyj is an edge if and only if i = j.

When identifying a k-creature in a graph, we will typically denote it as a tuple of vertex sets (V1, V2, V3, V4) such
that the graph G[V1 ∪ V2 ∪ V3 ∪ V4] is a k-creature with the set V1 corresponding to A, V2 corresponding to X, V3
corresponding to Y , and V4 corresponding to B.

We will say that a graph G is k-creature free if G does not contain a k-creature as an induced subgraph. It is
quite easy to see that for a vertex a ∈ A and b ∈ B there are precisely 2k minimal separators S which are disjoint
from A and B. Such a separator S must pick precisely one vertex from each of {xi, yi}, and it can make each one
of these k choices independently.

Abrishami et al. [1] conjectured that for every integer k there exists a k′ such that if an n-vertex graph G
does not contain any k-creature as an induced subgraph, then G has at most nk

′

minimal separators. It turns out,
as we showed in the first paper in this series [21], that this conjecture is false: for arbitrarily large n there exist
n-vertex graphs that exclude 100-creatures and yet have 2Ω(n) minimal separators. However, before discarding
the conjecture of Abrishami et al. [1], let us discuss why it would have been the “right” sufficient condition for
polynomially many minimal separators if it had been true.

Towards this we need to ask, which graph families F would have been tame, but whose tameness would not
be captured by the conjecture? It would be precisely families F that are tame, but that contain for every k an n-
vertex graph G that contains a k-creature as an induced subgraph. Since k-creatures have 2k minimal separators,
and F is tame it must hold that 2k f nO(1), meaning that k = O(log n). In other words the conjecture fails to
capture tame graph classes that contain k-creatures in graphs whose number of vertices is at least exponential in
k.

This could manifest itself in two different ways. One option, that we call Type 1, is that whenever a graph
G ∈ F contains a k-creature then G also contains some different piece of size exponential in k which is completely
unrelated to the k-creature. The other option, which we call Type 2, is that whenever a graph G ∈ F contains a
k-creature, then this k-creature itself has size exponential in k. Families of either one of these two types would
have to be rather strange, although it is perfectly possible to construct artificial graph families of either type. For
an example, most interesting graph families are hereditary, that is, closed under vertex deletion. A hereditary
family F cannot possibly be Type 1. Indeed whenever F contains a graph G that contains a k-creature we
can simply delete all the vertices not in the k-creature to obtain a k-creature which is in the family. Thus, the
conjecture of Abrishami et al. [1] if true, would only fail to capture tameness of hereditary classes of graphs whose
every k-creature has size exponential in k.

As previously mentioned, the conjecture of Abrishami et al. [1] is false. In [21] the authors gave a
counterexample, and showed that a weaker version of the conjecture of Abrishami et al. is true. To state
this result we need three definitions. First, a family F is quasi-tame if every n-vertex graph in the family has at

most 2log
O(1) n minimal separators. Second, a k-skinny ladder is a graph G consisting of two anti-complete paths

Pl = ℓ1ℓ2 . . . ℓk and Pr = r1r2 . . . rk and a set {s1, s2, . . . , sk} of vertices such that for every i, si is adjacent to ℓi
and ri and to no other vertices. Third, an induced minor of a graph G is a graph that can be obtained from G
by deleting vertices and contracting edges. The main result of [21] is the following weakening of the conjecture of
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Abrishami et al.

Theorem 1.1. ([21]) For every integer k, the family of k-creature free graphs that exclude k-skinny ladders as
induced minors is quasi-tame.

Theorem 1.1 fails to be “the one theorem to tame them all” in two different ways. The first is the quasi-
polynomial upper bound on the number of minimal separators. The second is that Theorem 1.1 fails to capture
the tameness of some perfectly reasonable hereditary graph classes. For an example, the class of all induced
subgraphs of k-skinny ladders (for all k ∈ N) can easily be checked to be tame, yet Theorem 1.1 fails to conclude
anything at all about this family.

The first shortcoming of Theorem 1.1 was very recently rectified by Gajarsky et al. [19] who, building heavily
upon the work of [21], showed a version of Theorem 1.1, but with the conclusion of quasi-tame replaced by tame.
In this paper we rectify the second shortcoming. To properly state our main result we need to introduce another
kind of graph, called t-critters. We first need a small generalization of minimal separators which applies to vertex
sets instead of just vertices. Given A,B ¢ V (G) we define S to be an A, B-separator if A ∩ S = B ∩ S = ∅ and
no component of G − S contains a vertex from both A and B. An A,B-minimal separator is an A, B-separator
such that no proper subset of S is an A, B-separator.

Definition 1.2. (t-critter partition, t-critter) (see Figure 2) A t-critter partition of a graph G is a
partition of the vertex set of G into sets A1, A2, . . . At+1, B1, B2, . . . , Bt+1, X1, X2, . . . , Xt, such that the following
conditions are satisfied.

(i) For all 1 f i, j f t + 1 with i ̸= j, Ai is anti-complete with Aj, Bi is anti-complete with Bj, and Ai is
anti-complete with Bj.

(ii) For all 1 f i f t+ 1 Ai and Bi is connected.

(iii) The vertices of Ai, Ai+1, Bi, and Bi+1 are the only vertices outside of Xi that have a neighbor in Xi.

(iv) There are (at least) two distinct (Ai∪Ai+1), (Bi∪Bi+1)-minimal separators in G[Ai∪Ai+1∪Bi∪Bi+1∪Xi],
Si1 and Si2, such that there is a path from Ai to Ai+1 through both Xi − Si1 and Xi − Si2 and there is a path
from Bi to Bi+1 through both Xi − Si1 and Xi − Si2.

A graph G is a t-critter if G has a t-critter partition. A graph G is t-critter free if G does not contain a t-critter
as an induced subgraph.

The definition of t-critters is arguably technical and unappealing. After staring at the definition for a
few minutes the reader should be able to convince themselves that, just as for k-creatures, for every vertex
a ∈ A =

⋃
iAi and vertex b ∈ B =

⋃
iBi there are at least 2

t minimal a,b-separators in G disjoint from A∪B. In
particular, in order to separate a from b we may for every i f t choose to delete either Si1 or Si2, and for every i
the choice between Si1 or Si2 can be made independently of the other choices (see Lemma 6.5). We are now ready
to state our main theorem.

Theorem 1.2. For every pair of integers t, k the family of k-creature free and t-critter free graphs is quasi-tame.

The upper bound in Theorem 1.2 on the number of minimal separators is nk
′ log17 n where k′ is a constant that

depends only on k and t. The proof of Theorem 1.2 contains some interesting ingredients, from the VC-dimension-
based lemma of [21], to a “greedy branching” procedure inspired by the recent quasi-polynomial time algorithm
for Independent Set on Pk-free graphs [20], to covering-packing dualities [22] and Ramsey- and Erdös-Szekers [16]
type arguments.

Theorem 1.2 is yet another sufficient condition for a graph to have few minimal separators. To boot, the
condition is very technical and the upper bound in the number of minimal separators is an ugly quasi-polynomial
function. What makes this sufficient condition for an upper bound for the number of minimal separators special?
What makes it special is that it is the right sufficient condition, in the way that the conjecture of Abrishami et
al. [1] would have been right if only it had been correct. But don’t take our word for it - we actually prove this
in a precise and technical sense.

Let us apply the same litmus test for Theorem 1.2 as we did for the conjecture of Abrishami et al. [1], and
ask for which tame graph families F are not captured by Theorem 1.2? Again there could be families of Type 1,
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Figure 2: The left hand graph is a general visualization of a 3-critter, the orange blocks representing Si1 and the
blue blocks representing Si2. The right hand graph is specific instance of a 4-critter. The orange vertices represent
the sets Si1 and the blue vertices represent the sets Si2

namely families that do contain graphs G that contain k-critters or k-creatures for every k, but such graphs G
always also contain at least 2Ω(k) additional unrelated vertices. Such families cannot be hereditary, and so, if we
restrict attention to hereditary families the only tame families that are not captured by Theorem 1.2 are Type
2 families, that do contain k-critters or k-creatures for every k, but these k-critters or k-creatures have at least
2Ω(k) vertices.

It is in fact possible to construct such hereditary families. It is even possible to construct tame families
that contain k-critters for every k, and yet are closed under induced minors, disproving Conjecture 4 of the
authors [21] in the process1 However all such families are pretty artificial. The next theorem shows that they
have to be artificial.

Monadic Second Order Logic (MSO) and their extension, Counting Monadic Second Order Logic (CMSO), (see
Section 6 for a definition) can be viewed as formal languages to express families of graphs. In graph algorithms
their main claim to fame probably comes from from Courcelle’s Theorem [9], which states that every MSO-
definable family of graphs can be recognized in linear time on graphs of bounded treewidth. The overwhelming
majority of interesting graph families can be expressed in Counting Monadic Second Order Logic, this includes
all graph classes with a finite number of forbidden minors, induced minors, topological minors, induced subgraphs
or subgraphs, and a number of other classes such as bipartite, or perfect. We show that if we restrict attention
to CMSO-definable hereditary properties then the sufficient condition of Theorem 1.2 is also necessary.

Theorem 1.3. Let F be a CMSO-definable hereditary graph family. If there exists an integer k such that F
neither contains a k-creature nor a k-critter then F is quasi-tame. Otherwise F is feral.

The proof of Courcelle’s theorem [9] establishes that CMSO-definable graph classes have many properties in
common with regular languages. This has been exploited with great success in graph algorithms [15, 23], however,
to the best of our knowledge, it has never been used to prove a purely structural result such as Theorem 1.3

1We do not give such a construction in this paper, as it is long enough as it is.
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The proof of Theorem 1.3 is based on a “pumping lemma” style argument that shows that a k-creature
or k-critter on n vertices can be“pumped” to a k · x-critter on n · x vertices, thereby demonstrating that in
every CMSO-definable hereditary family that contains k-creatures or k-critters for arbitrarily large k, there exist
k-creatures or k-critters in the family with only O(k) vertices.

Paper Organization. In Section 2 we review basic definitions and notations. In Section 3 we give an
overview of our proofs of Theorems 1.2 and 1.3.

The proof of Theorem 1.2 cleanly breaks into two parts, where the output of the first part is then fed into
the second part. The first part of the proof is given in Section 4, while the second part of the proof is given in
Section 5. Finally we prove Theoerm 1.3 in Section 6. It is worth noting that while the proof of Theorem 1.2 is
a bit of a monstrosity, the proof of Theorem 1.3 is relatively short and slick. If the reader is willing to assume
the statement of Theorem 1.2 on face value, the proof of Theorem 1.3 may be read independently of the proof of
Theorem 1.2.

2 Preliminaries

Unless otherwise stated, graphs in this paper are assumed to be simple, undirected graphs. We denote the edge
set of a graph G by E(G) and the vertex set of a graph by V (G). If v ∈ V (G), then we use NG[v] to denote
the closed neighborhood of v in the graph G, i.e. the set of all neighbors v has in G together with v itself. We
use NG(v) to denote the set NG[v]− {v}. If X ¦ V (G), then NG[X] =

⋃
x∈X NG[x] and NG(X) = NG[X]−X.

When the graph G is clear from the context, we will use N [v], N(v), N [X], and N(X). If X ¦ V (G), then we
use G[X] to denote the induced subgraph of G with vertex set X and G−X denotes G[V (G)−X]. Additionally,
for a natural number i, we inductively define N i

G[X] to equal NG[X] if i = 1 and NG[N
i−1
G [X]] for i > 1. Given a

graph G and disjoint sets X,Y ¦ V (G) we define the distance between X and Y to be the lowest integer i such
that N i

G[X] ∩ Y ̸= ∅.
Given a graph G, a non-empty set S ¢ V (G) is called a separator if there are at least two distinct components

L and R of G − S. If u ∈ L and v ∈ R then we call S a u-v-separator or a u, v-separator. S is a u, v-
minimal separator if S is a u, v-separator and no proper subset of S is a u, v-separator, or equivalently, if
NG(L) = NG(R) = S. This equivalence is folkloric and easy to show. If C is a component of G − S such that
NG(C) = S, then we say that C is an S-full component. Similarly, given A,B ¢ V (G) we define S to be an
A, B-separator if A ∩ S = B ∩ S = ∅ and no component of G − S contains a vertex from both A and B. An
A,B-minimal separator is an A, B-separator such that no proper subset of S is an A, B-separator.

Let G be a graph. A vertex list (or simply a list), S, is an ordered tuple of vertex sets of G, that is, S is
a collection of vertex sets which allow multiple instances of its vertex sets and gives an index to each element
it contains. Let S = {S1, S2, . . . Sm} be a vertex list and let S be a vertex set. We define S ∪ S to be the
list {S1, S2, . . . Sm, Sm+1} where Sm+1 = S. Given a vertex list S we define NG[S] to be the vertex list where
each element S ∈ S is replaced with NG[S]. Lastly, for a set A ¦ V (G), we define S − A to be the vertex list
{S1 −A,S2 −A, . . . Sm −A}

Given a graph G with n vertices, a set S ¦ V (G) is called a ¶-balanced separator if no component of G − S
contains over ¶ vertices.

Given a graph G, we say a vertex set C ¦ V (G) is a connected vertex set if G[C] is a connected graph. A
walk in a graph G is a sequence v1, v2, . . . , vℓ of vertices in G such that each pair of consecutive vertices in the
sequence are adjacent. The length of a walk v1, v2, . . . , vℓ is the number ℓ of vertices in the walk. A walk whose
first vertex is v1 and last is vℓ is a walk from v1 to vℓ. The vertex v1 is called the first vertex of the walk, vℓ
the last. All other vertices are internal vertices. A walk v1, v2, . . . , vℓ where all vertices are distinct is a path. A
path P = v1, v2, . . . , vℓ is an induced path if there are no edges between vi and vj whenever |i− j| > 1. For three
disjoint vertex sets A, B, C a walk (or path, or induced path) from A to B through C is a walk (or path, or
induced path) whose first vertex is in A, last vertex is in B, and all internal vertices (if any) are in C.

We define contracting an edge. Let G be a graph. For an edge uv ∈ E(G) we define the contraction of uv to
result in a new graph G′ with vertex set V (G′) = (V (G)−{u, v})∪{w} and there is an edge between two vertices
x, y ∈ V (G′)−{w} in G′ if there is an edge between x and y in G, and there is an edge between x ∈ V (G′)−{w}
and w in G′ if there is an edge x and u in G or an edge between x and v in G. Given a connected vertex set
A ¢ V (G) we define the contraction of A to be the graph that results from contracting all edges between every
pair of vertices of A. It can easily be seen that the contractions may be performed in any order without changing
the final result.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited3102

D
o

w
n
lo

ad
ed

 0
6
/2

0
/2

5
 t

o
 1

6
9
.2

3
1
.1

8
6
.1

6
7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



Given a graph G we define a function CC(G) that returns a set which contains the vertex sets of all connected
components of G.

Given a graph G we say that two vertex sets A,B ¦ V (G) are anti-complete if A and B are disjoint and there
is no edge in G between any vertex of A and any vertex of B. Let X,Y ¦ V (G) be disjoint sets. We define a semi-
induced matching in G of size m between X and Y to be two subsets X ′ ¦ X,Y ′ ¦ Y with X ′ = {x′1, x

′
2, . . . , x

′
m}

and Y ′ = {y′1, y
′
2, . . . , y

′
m} where x′i is neighbors with y

′
j in G if and only if i = j.

Let A and B be sets. The Cartesian product of A and B, denoted as A × B, is the set with consists of all
ordered pairs of the form (a, b) where a ∈ A and b ∈ B.

3 Overview

3.1 Generalized É-Creatures In order to prove Theorem 1.2 we will show that a graph that is k-creature free
but still has a large number of minimal separators must have a t-critter. t-critters are highly structured objects
and thus it is difficult to extract such objects from a graph directly, so in order to find a t-critter in a k-creature
free graph with many minimal separators, we first construct an intermediate structure that we call a generalized
É-creature which we will define shortly. Generalized É-creatures are less structured than t-critters and are thus
easier to find in a graph, but they share some essential features with t-critters. In fact, the last main component of
our proof is that for any natural numbers t, every generalized É-creature, for É large enough, contains a t-critter.

It is not necessary to have a full understanding of the definition of generalized É-creatures until the end
Subsection 4.2. We nevertheless give the definition here as it can help put the prior work of Section 4 into context
which prepares the ground for extracting a generalized É-creature from a k-creature free graph with many minimal
separators.

Bistars, Bistar Partitions, and Generalized É-Creatures. We define an É-bistar, H, to be a graph
with two central vertices, denoted by cA and cB , and É independent vertices, called the peripheral vertices, that
are neighbors with cA and cB (so H is a complete bipartite graph with 2 vertices on one side and É on the other).

Let G be a graph. We define an É-bistar partition of G to be an É′-bistar graph H, with É′ g É, along with
a function φ from V (G) to V (H) such that for every edge uv ∈ V (G) either φ(u) = φ(v) or one of φ(u) and φ(v)
is either cA or cB and the other is a peripheral vertex. We will use Aφ to denote the vertices of G in φ−1(cA)
and Bφ to denote the vertices of G in φ−1(cB).

We now give the definition for generalized É-creatures.

Definition 3.1. (Generalized É-Creature) A generalized É-creature is a tuple W = (G,H,φ, S1, S2) where
G is a graph, (H,φ) is an É-bistar partition for G, and S1, S2 ¦ V (G) with the following properties:

(i) There exists S⋆1 ¦ S1 and S⋆2 ¦ S2 such that for every peripheral vertex, u, of H, φ−1(u)∩S⋆1 and φ−1(u)∩S⋆2
are distinct Aφ, Bφ-minimal separators in G[Aφ ∪Bφ ∪ φ−1(u)].

(ii) Aφ is entirely contained in one component of G− S1 and Bφ is entirely contained in a different component
of G− S1 and similarly Aφ is entirely contained in one component of G− S2 and Bφ is entirely contained
in a different component of G− S2.

(iii) For every peripheral vertex u of H and all pair of components C1 and C2 of G[Aφ∪Bφ] there is a path from
C1 to C2 through φ−1(u)− S1 in G if and only if there is a path from C1 to C2 through φ−1(u)− S2 in G.

(iv) For all peripheral vertices, u, of H, if a component, XA, of G[Aφ] has a neighbor in φ−1(u) then there is
at least one component, XB, of G[Bφ] such that XA has a path through φ−1(u) to XB in G. Similarly, if a
component, XB, of G[Bφ] has a neighbor in φ−1(u) then there is at least one component XA of G[Aφ] such
that XB has a path through φ−1(u) to XA in G.

Note that by property (i) that for every u ∈ H, φ−1(u) must be non-empty. Sets S⋆1 ¦ S1 and S⋆2 ¦ S1

satisfying property (i) of W are called witness separators for W .

For a generalized É-creature W = (G,H,φ, S1, S2) we define the sets A1(W ), A2(W ), B1(W ) and B2(W ) as
the component of G−S1 that contains Aφ, the component of G−S2 that contains Aφ, the component of G−S1

that contains Bφ, and the component of G− S2 that contains Bφ respectively. The vertex sets A⋆1(W ), A⋆2(W ),
B⋆1(W ) and B⋆2(W ) are defined analogously, but with S⋆1 and S⋆2 in place of S1 and S2
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Just like how for each Xi of a t-critter we can independently pick either S1
i or S2

i to build a minimal separator
for the t-critter (giving 2t minimal separators), it can be shown that conditions (i)-(iii) together allow us, for
each peripheral vertex u ∈ H, to independently choose the vertex set S1 ∩ φ−1(u) or S2 ∩ φ−1(u) in order to
build a minimal separator, S, for the graph G of the generalized É-creature W = (G,H,φ, S1, S2), giving 2É such
minimal separators. In such a minimal separator, the vertex sets Aφ will be in one S-full component of G − S
and Bφ will be in a different S-full component. We will prove this later on in the paper.

3.2 Proof of Theorem 1.2 The following two lemmas show how generalized É-creatures help us to prove
Theorem 1.2. Proving the first lemma is the main goal of Section 4 and proving the second lemma is the main
goal of Section 5. We will actually need a generalized É-creature with a some additional structure, in particular
we will need the generalized É-creature to be a connected, good, full generalized É-creature. We will introduce
these definitions later in the paper and the reader does not need to concern themselves with them at the moment.

Lemma 3.1. Let G be a k-creature free graph with n vertices, let É > 1 and ¶ = 3É, let c be an integer
large enough so that 400k3¶2 log4(c) < c/6, let x = 400k3¶2 log4(n), and let G have at least 2c(12n)6k

2x4 log(n)

minimal separators. Then there exists an induced minor G′ of G, an É-bistar partition H and φ of G′, and sets
S1, S2 ¦ V (G′) such that (G′, H, φ, S1, S2) is a connected, good, full generalized É-creature.

Lemma 3.2. Let k g 2 and G be a k-creature free graph, and W = (G,H,φ, S1, S2) be a connected, good, full

generalized É-creature. Then there exists an induced subgraph G′ of G which is a t-critter for t g (log log(É))1/4k

96k4 −4.

This paper natural breaks up into two parts, first part where we prove Lemma 3.1 and the second where
we prove Lemma 3.2. We will provide an outline of how we prove Lemmas 3.1 and 3.2 later on in this section,
right now we give a proof of Theorem 1.2 using Lemmas 3.1 and 3.2. Additionally, since Lemma 3.1 deals with
an induced minor G′ of G we need to show that k-creature free graphs and t-critter free graphs are closed under
taking induced minors. We state the lemmas here and prove them shortly.

Lemma 3.3. Let G be graph and let G′ be an induced minor of G. If G is k-creature free then G′ is k-creature
free.

Lemma 3.4. Let G be a graph and let G′ be an induced minor of G. If G is t-critter free then G′ is t-critter free.

Proof. [proof of Theorem 1.2] Let G be a k-creature free graph with n vertices, let É be large enough to satisfy

the inequality t f (log log(É))1/4k

96k4 − 4 (note that the size of É only depends on t and k), let ¶ = 3É, let c be large

enough to satisfy the inequality 400k3¶2 log4(c) < c/6, and let x = 400k3¶2 log4(n), so x = k′ log4(n) where k′

only depends on k and t. We will show that if G has at least 2c(12n)6k
2x4 log(n) = nO(log(n)17) minimal separators

then G must contain a t-critter. It follows from Lemma 3.1 that there is an induced minor G′ of G, an É-bistar
partition H and φ of G′, and sets S1, S2 ¦ V (G′) such that W = (G′, H, φ, S1, S2) is a connected, good, full
generalized É-creature. By Lemma 3.3 G′ is k-creature free. Then by Lemma 3.2 it follows that G′ contains a

t′-critter for t′ g (log log(É))1/4k

96k4 − 4. By how É was chosen we have t′ g t, so G′ contains a t-critter. Hence, by
(the contra-positive of) Lemma 3.4, G contains a t-critter.

We now give proofs for Lemmas 3.3 and 3.4. They are fairly straightforward and just involve checking a few
cases.

Proof. [proof of Lemma 3.3] Let G be a k-creature free graph. We first show that the deletion of a single vertex
or the contraction of a single edge leaves us with a graph that is also k-creature free. Let v ∈ G. If G− v contains
a k-creature, (A,X, Y,B), then clearly G contains the same k-creature, (A,X, Y,B), hence G − v is k-creature
free. Now let uv be an edge of G, let G′ be the graph that results from contracting uv, and let w denote the
vertex that is creature from this contraction, so V (G′) = (V (G)−{u, v})∪ {w}. Assume for a contradiction that
G′ contains a k-creature, (A,X, Y,B). We will break the proof into cases when w either belongs to A,X, Y,B or
none of these sets. By the symmetry of k-creatures, the cases where w ∈ A and w ∈ B are identical and the cases
where w ∈ X and w ∈ Y are identical, so we will only prove the cases for w ∈ A, w ∈ X and w /∈ A∪X ∪ Y ∪B.

If w /∈ A,X, Y,B, then we can see that (A,X, Y,B) is a k-creature in G, a contradiction. If w ∈ A, then we
can see that ((A − {w}) ∪ {u, v}, X, Y,B) is a k-creature in G, a contradiction. Lastly, if w ∈ X, say w = xi,

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited3104

D
o

w
n
lo

ad
ed

 0
6
/2

0
/2

5
 t

o
 1

6
9
.2

3
1
.1

8
6
.1

6
7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



then, in G, at least one of u, v is neighbors with yi and at least one of u, v has a neighbor in A. If one of these
two vertices, say u, is both neighbors with yi and has a neighbor in A in G, then (A, (X − {w}) ∪ {u}, Y, B) is a
k-creature in G. So we may assume that in G exactly one of u, v is neighbors with yi, say u, and does not have a
neighbor in A, and that the other one, v, has a neighbor in A (but is not neighbors with yi). It then follows that
(A ∪ {v}, (X − {w}) ∪ {u}, Y, B) is a k-creature in G.

A straightforward application of induction then shows that if G′′ is any induced minor of G then since G is
k-creature free, so is G′′.

Proof. [proof of Lemma 3.4] Let G be a graph that is t-critter free. We first show that the deletion of a single
vertex or the contraction of a single edge leaves us with a graph that is also t-critter free. Let v ∈ G. If G − v
contains a t-critter, then clearly G contains the same t-critter, hence G−v is t-critter free. Now, let uv be an edge
in G, let G′ be the graph that results in from contracting uv, and let w denote the vertex that is creature from
this contraction, so V (G′) = (V (G) − {u, v}) ∪ {w}. Assume for a contradiction that G′ contains a t-critter, T ,
and let A1, A2, . . . At+1, B1, B2, . . . Bt+1, X1, X2, . . . , Xt be the partitioning of the vertices of T given in Definition
1.2. We will break the proof into cases when w either belongs to one of the Ai’s, one of the Bi’s, one of the Xi’s,
or none of these sets. By the symmetry of k-critters, the cases when w ∈ Ai for some i and when w ∈ Bi for some
i are identical, so we will only prove the cases where w ∈ Ai for some i, w ∈ Xi for some i, and w /∈ T .

If w /∈ T then T is an induced subgraph of G and hence G contains a t-critter as an induced subgraph,
a contradiction. If w ∈ Xi for some i, then let T ′ be the induced subgraph of G with vertex set
(T − {w}) ∪ {u, v}. It is straightforward to verify that the partitioning A1, A2, . . . , At+1, B1, B2, . . . , Bt+1,
X1, X2, . . . , (Xi − {w}) ∪ {u, v}, . . . Xt+1 of V (T ′) satisfies properties (i)-(iii) of Definition 1.2. Now, since T
is a t-critter, there are subsets Si1 and Si2 of Xi that satisfy property (iv) from Definition 1.2. Then, in T ′, it can
be seen that there exists Z1, Z2 ¦ {u, v} such that (Si1 −{w})∪Z1 and (Si2 −{w})∪Z2 satisfy property (iv) and
for all other sets Xj , j ̸= i it can be seen (using the same Sj1 and Sj2 as in T ) that property (iv) is satisfied in T ′.
This again contradicts the assumption that G is t-critter free. Lastly, if w ∈ Ai for some i, it is straightforward to
verify that the partitioning A1, A2, . . . , (Ai−{w})∪{u, v}, . . . , At+1, B1, B2, . . . , Bt+1, X1, X2, . . . , Xt+1 satisfies
properties (i)-(iv) of Definition 1.2. This contradicts the assumption that G is t-critter free.

A straightforward application of induction then show show that if G′′ is an induced minor of G, then G′′ is
t-critter free.

3.3 An Overview of Lemma 3.1 In order to find a generalized É-creature in a k-creature free graph G
with many minimal separators, we will “grow” sets A,B,C ¦ V (G), where initially A and B only contain a
single vertex and C is the empty set. The goal is that in the end we will be able to find a connected, good, full
generalized É-creature, W = (G′, H, φ, S1, S2), where A and B correspond to the sets Aφ and Bφ and G′ = G−C.
Intuitively, we use the minimal separators of G as a resource in order to “grow” the sets A,B, and C and slowly
obtain all of the properties we will require of them. We try to motivate the key properties of A, B, and C now.

We have, from the definition of an É-bistar partition, that for any two peripheral vertices u, v ∈ H there can
be no edge between the sets φ−1(u) and φ−1(v). Since, as noted as a consequence of property (i) in the definition
of É-creatures, for all u ∈ H, φ−1(u) ̸= ∅, the first property that we will need A, B, and C to satisfy is that
G − (A ∪ B ∪ C) has at least É components (actually for technical reasons we will need that no component of
G− (A ∪B ∪ C) contains many vertices which will imply G− (A ∪B ∪ C) has at least É components).

We now try to motivate the second property that we will require of A, B, and C. As we mentioned before
(when we introduced the definition of a generalized É-creature) that since W is a generalized É-creature we can
construct a minimal separator, S, of G′ by selecting sets of the form S1∩φ

−1(u) or S2∩φ
−1(u) for each peripheral

vertex u in H and unioning them together and S will have the property that Aφ and Bφ will be contained in
different S-full components of G−S. It turns out that in order to be able to find sets S1 and S2 that have this nice
property, we must be very careful to ensure that as we grow A, B, and C that G has many minimal separators
(at least µ

npolylog(n) where µ is the number of minimal separators of G) that are consistent with A, B, and C. We
will formally define this property later, but roughly speaking, a minimal separator S is consistent with A, B, and
C if A is contained in one S-full component of G−S and B is contained in a different S-full component of G−S.
This requirement isn’t surprising, since as we just saw, the minimal separator S that was previously described
has the property that Aφ and Bφ will be contained in different S-full components of G− S.

A third and closely related property of A, B, and C that we will require is that G[A] and G[B] have few
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components (where few means logO(1)(n)). This requirement is partially (but though not entirely) due to property
(iii) of generalized É-creatures. Intuitively, to get property (iii) to work out, we filter the minimal separators we
consider in such a way so that for all remaining separators under consideration, if we take any pair, say S1 and
S2, it holds that for every component X of G− (A∪B ∪C) and every pair of components P,Q of G[A∪B] there
is a path from P to Q through X − S1 if and only if there is a path from P to Q through X − S2. As long as the
number of components of G[A] and G[B] stay small then by the pigeon hole principle this filtering step will not
lose too many minimal separators.

Thus, we have three apposing requirements we want A, B, and C to meet. On the one hand, we want
G− (A ∪B ∪ C) to have no components with many vertices (and therefore G− (A ∪B ∪ C) will have at least É
components). This can be trivially satisfied by just picking A, B, and C to be really large sets. But, our second
and third properties require us to be very careful with how we grow A, B, and C. Picking A, B, and C without
much care would probably result in G not having many minimal separators that are consistent with A, B, and C
and/or G[A] and G[B] having too many components.

It turns out that if we can find sets A, B, and C with these properties, then we would be able to construct
a generalized É-creature. Finding A, B, and C with these three properties is the focus of Subsection 4.1. Recall
though that we do not just need a generalized É-creature, but a connected, good, full generalized É-creature.
Further enriching A, B, and C to allow us to make a connected, good, full generalized É-creature is the goal of
Subsection 4.2.

So, how do we find these sets A, B, and C that have the three previously described properties? It involves a
rather surprising combination and extension of two ideas.

The first idea comes from a quasi-polynomial time branching algorithm for independent set on Pk-free graphs
of Gartland and Lokshtanov [20]. In the algorithm used in [20], when a vertex, v, is branched on the algorithm is
recursively called on the inputs G− v and on G−N [v]. The algorithm works by using n/2-balanced separators
dominated by few vertices (it is a critical property of Pk-free graph that they always have n/2-balanced separators
dominated by few vertices, we prove that k-creature free graphs also have this property in Lemma 4.4) to guide
the selection of a vertex v to branch on. This branching “efficiently” breaks up the graph into small connected
components (similar to what want the set A, B, and C, to do, but where “efficient” now does not refer to run
time, but the fact that G has many minimal separators that are consistent with A, B, and C. It turns out that
these two notions of “efficient” are strongly connected). Because we are working with k-creature free graphs
though instead of Pk-free graphs, our process of selecting which vertex v to branch on becomes more complicated
and requires some new ideas.

The second idea we use allows us to bridge this gap between independent set branching used in [20] and our
goal of “growing” the sets A, B, and C. This idea is a lemma which appears in [21] where the authors prove that
if G is a k-creature free graph with n vertices, then for every v ∈ V (G), if Sv = {N(v) ∩ S| S ∈ S and v /∈ S}
then |Sv| f nk. Intuitively, when a vertex, v, has been selected, instead of branching on the vertex and removing
the set N [v] from G, this lemma allows us to to allocate the vertices of N [v] to the set A, B, and C in such a
way that many minimal separators of G remain consistent with A, B, and C.

3.4 An Overview of Lemma 3.2 In the second part of the paper we extract a k-critter from an É-creature as
long as É is sufficiently large compared to k, and satisfies some additional structural properties (namely is good,
connected, and full). For the purposes of this overview we will not need the precise definition of these notions.

The first thing a reader should notice is that a k-critter is a generalized k-creature. Consider a k-critter
partition (A1, . . . , Ak+1, B1, . . . , Bk+1, X1, . . . , Xk) of a graph G. Set A =

⋃
iAi and B =

⋃
iBi. Letting H be a

k-bistar we define the function φ that maps all vertices in A to cA, all vertices in B to cB and each Xi to the ith

peripheral vertex of H. We then set S1 =
⋃
i S

i
1 and S2 =

⋃
i S

i
2. It can now be verified that (G,H,φ, S1, S2) is

in fact a generalized k-creature.
This fact is never stated or used explicitly in the proof, but it should help the reader understand what is

going on. We have at hand a generalized É-creature for some gigantic value of É. Our goal is to extract from it a
highly structured generalized k-creature. Here gigantic means that É is bigger than any given function of k, but
does not depend on n.

The key difference between a k-critter and a generalized É-creature is that in a k-critter, every Xi has
neighbors in precisely 4 components of G[A ∪ B], namely Ai, Ai+1, Bi and Bi+1. On the other hand, the (pre-
image φ−1(v) of) peripheral vertices v of a generalized É-creature (which correspond to the Xi’s of a k-critter)
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may have neighbors in any number of components of G[A ∪B].
Now the proof for extracting a k-critter from the generalized-É creature goes like a typical “Ramsey Theory”

style proof. We are given a large and unstructured object (here the largeness of the object is the number É
of peripheral vertices) and the goal is to extract from it a smaller, but still large, structured sub-object. We
proceed in several steps. First we extract a generalized É-creature in which the adhesion size is upper bounded
by 2k. The adhesion size is the maximum number of components of G[A ∪ B] that a peripheral vertex φ−1(v)
can have neighbors into. From the generalized É-creature of bounded adhesion size we then extract a “path-like”
generalized É′-creature, for É′ roughly equal to logÉ. After some additional steps we extract a “critter-like”
generalized É′-creature, which basically is an É′-critter.

It would seem that we are done. But no! We are not able to actually execute the arguments in the way
we described above. Instead we are able to get each of the properties listed above on “one side”, say the A
side, of the generalized É′-creature. After the A-side is critter-like we need to turn around and re-do all of the
arguments again for the B-side. However, this time when we are cleaning the B-side we need to make sure that
we don’t break the nice properties that we worked so hard for on the A side. After both sides of the generalized
É′-creature are critter-like, we inspect its properties and observe that it is in fact an É′-critter. In several places
of the argument we may stumble on a k-creature instead of the more structured generalized É-creature that we
are looking for. In that case we halt and declare a win.

In order to execute this Ramsey-Theory style argument we need to define ways in which we can remove a
few pieces of our generalized É-creature while still keeping it a generalized É-creature. For this we need to define
three operations – dissolve, absorb and erase. One can think of these operations as analogues standard graph
operations like vertex deletion, edge deletion and edge contraction for graphs, but for operating on generalized
É-creatures instead.

Because generalized É-creatures are somewhat brittle and have a long and technical definition, every change
to them requires us to go over and verify that the definitions are maintained. This makes many of these proofs
excruciatingly long and wordy.

3.5 An Overview of Theorem 1.3 Let F be a CMSO-definable hereditary graph family. Theorem 1.3
consists of two main statements regarding F namely (i) If there exists an integer k such that F neither contains a
k-creature nor a k-critter then F is quasi-tame, and (ii) otherwise F is feral. Statement (i) follows directly from
Theorem 1.2. The premise of the “otherwise” case of Theorem 1.3 is that the family F contains, for every k, a
k-creature or a k-critter. Because a k-creature contains a (k−1)-creature as an induced subgraph, and a k-critter
contains a (k − 1)-critter as an induced subgraph, it follows that F either contains a k-creature for every k, or a
k-critter for every k (or both). Thus, to prove Theorem 1.3 we are left with proving two implications, namely

(i) if F contains a k-creature for every k then F is feral, and

(ii) if F contains a k-critter for every k then F is feral.

The approach for proving both implications is to use the fact that F is hereditary and CMSO-definable to
show that if F contains a k-creature (k-critter) for every k then F contains for every k a k-creature (k-critter)
with O(k) vertices. Here the constant hidden in the big-oh depends on the CMSO formula describing F . Since
k-creatures and k-critters both contain 2k minimal separators this proves that F is feral.

We now sketch the proof of (i). The authors showed in [21] that for every k there exists a k′ such that every
k′-creature contains one of six highly structured k-creatures as an induced subgraph. Since our premise is that
F contains a k-creature for every k, we may now assume without loss of generality that F contains one of these
six structured k-creatures for every k.

All of the the six structured k-creatures have the property that they can be partitioned into at most 5k paths,
such that only the endpoints of these paths have neighbours on the outside (this is not quite true, but close
enough to the truth for this overview, see Section 6). Therefore, if the structured k-creature G ∈ F has more
than c · 5k vertices, then it contains an induced path on at least c vertices, such that only the endpoints of the
path have neighbors on the outside of the path.

We now use the “regular-like” properties of CMSO-definable families: From the perspective of being a member
of F there exists some universal constant µ, such that for every path P of length more than µ there exists a path
P ′ of length at most µ such that “replacing” P with P ′ in G (which amounts to shortening the relevant path by
|V (P )| − |V (P ′)| vertices) does not affect whether the graph is in F or not.
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In particular if G was in F before the path shortening, then it is also in F after. But shortening a path in G
does not destroy the property of G being a k-creature. Thus, as long as c > µ and the number of vertices in the
k-creature is at least c · 5k we can prove that F contains a structured k-creature strictly smaller than G. Hence
F must contain a k-creature on at most 5ck vertices.

The proof for k-critters is based on the same idea, but now things are more technical because k-critters do
not necessarily contain long paths. Instead we prove that a k-critter contains a cut of size 3 in each Xi, and use
these cuts to drive our “pumping” argument.

4 Finding A Generalized É-Creature

In order to find a generalized É-creature in a k-creature free graph G with many minimal separators, we will
“grow” sets A,B,C ¦ V (G), where initially A and B only contain a single vertex and C is the empty set. The
goal is that in the end we will be able to find a generalized É-creature, W = (G′, H, φ, S1, S2) where A and B
correspond to the sets Aφ and Bφ and G′ = G−C. Intuitively, we use the minimal separators of G as a resource in
order to “grow” the sets A,B, and C and slowly obtain all of the properties we require of them. As we mentioned
before, when we construct a minimal separator, S, by selecting sets of the form S1 ∩ φ

−1(u) or S2 ∩ φ
−1(u) for

u ∈ H, Aφ and Bφ will be contained in different S-full components of G− S. Hence, as we are growing the sets
A, B, and C we should try and keep tract of the minimal separators, S, such that A is contained in one S-full
component of G − S, B is contained in some different S-full component, and the vertices of C are “irrelavant”
in some sense (as we wind up just removing the vertices of C from G to get G′). It turns out the the correct
notion of “irrelavant” is that these vertices are in neither of the S-full components A and B are contained in.
This motivates the following definition.

Definition 4.1. Let G be a graph, let A,B,C ¦ V (G), and let S be a minimal separator of G. We say that S
is consistent with A, B, and C if the vertices of A all belong to one S-full component of G − S, the vertices of
B all belong to a different S-full component of G − S, and no vertex of C belongs to the same component as a
vertex in A ∪B does in G− S .

We make the following two observations about this definition which we will use frequently without explicit
reference.

Observation 4.1. Let G be a graph and let A,B,C ¦ V (G). If there is at least one minimal separator of G that
is consistent with A,B, and C, then A and B are anti-complete and C is disjoint from A ∪B.

Proof. Let G be a graph and let A,B,C ¦ V (G) and assume S is a minimal separator of G that is consist with A,
B, and C. Since A and B are contained in different components of G− S, then A and B must be anti-complete.
Since no vertex of C belongs the the same component that a vertex in A ∪B does in G− S, C must be disjoint
from A ∪B.

Observation 4.2. Let G be a graph, let A,B,C ¦ V (G), and let S be a minimal separator that is consistent
with A, B, and C. If v ∈ S, then S is consistent with A,B, and C ∪ {v}.

Proof. Let G be a graph, let A,B,C ¦ V (G), and let S be a minimal separator that is consistent with A, B, and
C. If v ∈ S, then v will not belong to the same component that a vertex in A ∪ B does in G − S, hence S is
consistent with A,B, and C ∪ {v}.

We now formalize this notion of C being a set of “irrelevant” vertices in the following lemma.

Lemma 4.1. Let G be a graph, let A,B,C ¦ V (G) with A,B ̸= ∅, and let S be a minimal separator that is
consistent with A, B, and C. Then S − C is a minimal separator of G − C that is consistent with A,B, and
∅. Furthermore, if S′ is a minimal separator of G that is consistent with A,B, and C such that S ̸= S′, then
S − C ̸= S′ − C.

Proof. Let G be a graph, let A,B,C ¦ V (G) with A,B ̸= ∅, and let S be a minimal separator of G that is
consistent with A, B, and C. Let AS and BS be the S-full components of G−S that contain A and B respectively,
so C ∩ (AS ∪BS) = ∅. It follows that AS and BS are then (S −C)-full components of (G−C)− (S −C), hence
S − C is a minimal separator of G− C that is consistent with A, B, and ∅.
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Now let S′ be another minimal separator of G that is consistent with A,B, and C such that S′ ̸= S. By the
preceding paragraph, if AS′ and BS′ are the S′-full components of G − S′ that contain A and B, then AS′ and
BS′ are then (S′ − C)-full components of (G − C) − (S′ − C). Now, if S′ − C = S − C, then the (S − C)-full
components are the same as the (S′ −C)-full components, hence AS = AS′ and BS = BS′ , but this then implies
that S = S′.

The previous lemma more or less shows that we can remove the vertices of C from G without having much
of an effect on the minimal separators of G that are consistent with A, B, and C, so the reader may intuitively
think of these vertices as being irrelevant.

Lastly, we prove a lemma which shows that as far as minimal separators of G that are consistent with A, B,
and C are concerned, we can intuitively think of the components of G[A] and G[B] as actually being just single
vertices of the graph.

Lemma 4.2. Let G be a graph, let A,B,C ¦ V (G), let S be a minimal separator of G that is consistent with
A,B, and C, and let G′ be the graph that results from contracting each component of G[A] and G[B] in G. Then
S is a minimal separator of G′.

Proof. Let G be a graph, let A,B,C ¦ V (G) and let S be a minimal separator of G that is consistent with A, B,
and C, it follows that S ∩ (A∪B) = ∅. Let AS and BS be the S-full components of G− S that contain A and B
respectively. Let G′ be the graph that results from contracting each component of G[A] and G[B] in G, and let
A′
S and B′

S be the vertex sets of G′ that correspond to AS and BS . Then A′
S and B′

S are S-full components of
G′ − S, hence S in a minimal separator in G′.

We could have actually strengthened the result of the previous lemma by also showing that if A′ and B′

are the vertices of G′ that correspond to the components of G[A] and G[B] in G, then S is a minimal separator
of G′ that is consistent with A′, B′, and C. We have no need for such a strengthening though so we do not
prove this. In most cases, we will not explicitly preform the contractions that Lemma 4.2 allows us to do as this
would create some additional technical complications in our proofs. But, the reader should note that since the
components of G[A] and G[B] can all be contracted to single vertices without destroying much structure in G
(as far as minimal separators that are consistent with A, B, and C are concerned), these components can often
intuitively be thought of as if they were single vertices.

In order to construct a generalized É-creature from a k-creature free graph G with many minimal separators
we will combine structural properties that k-creature free graphs have and use the minimal separators of G as a
resource, which if given enough of (more than some amount that is quasi-polynomial in the number of vertices)
will allow us to make a generalized É-creature for some large value of É. Our goal of creating a generalized
É-creature can be split into two main smaller goals.

The first goal is to find (or “grow”) vertex sets A, B and C so that no component in G − (A ∪ B ∪ C)
has many vertices (say no more that n/¶ for some large value of ¶) while maintaining that a large fraction of
the minimal separators of G are consistent with A,B, and C as well as that G[A] and G[B] have few (poly-
log(n)) components. This process of growing A, B and C shares many similarities with the quasi-polynomial time
algorithm for independent set on Pk-free graphs by [20], although more complex as Pk-free graphs are in many
ways more structurally simple when compared to k-creature free graphs. Additionally, we borrow tools from [21]
which allow us to translate independent set branching techniques into branching techniques that can be applied
to minimal separators.

The second goal is to leverage the facts that G[A] and G[B] have few components (which from our previous
discussion we can pretend each component is just a single vertex), G− (A∪B ∪C) has many small components,
and G still has many minimal separators that are consistent with A,B, and C in order to “grow” A, B, and C
into sets A′, B′, and C ′ and find a generalized É-creature, W = (G′, H, φ, S1, S2), where G

′ is G− C ′, Aφ = A′,
Bφ = B′, and for each peripheral vertex u ∈ H the set φ−1(u) corresponds to a component of G− (A′ ∪B′ ∪C ′).
Additionally, the generalized É-creature we will build will have a little bit more structure than is required from a
regular generalized É-creature, which will allow us to prove in Section 5.1 that for all peripheral vertices u ∈ H,
φ−1(u) will have neighbors in less than k components of G′[Aφ] and G

′[Bφ].

4.1 Breaking up G
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Lemma 4.3. Let G be a k-creature free graph (assume k g 2) with n g 2 vertices and µ minimal separators and
let ¶ > 1. Then there exists sets A,B,C ¦ V (G) with A,B ̸= ∅ where the following properties hold:

(i) No component of G− (A ∪B ∪ C) contains over n/¶ vertices.

(ii) G has at least µ/(12n(k+1))400k
3¶2 log4(n) minimal separators that are consistent with A,B, and C.

(iii) The number of components of G[A ∪B] is at most 400k3¶2 log4(n).

This section is devoted to proving Lemma 4.3 and Lemma 4.3 is the only lemma from this section that is
used outside of this section.

We find (or “grow”) A, B, and C of Lemma 4.3 using techniques similar to those used by Gartland and
Lokshtanov [20] where they give a quasi-polynomial time branching algorithm for independent set on Pk-free
graphs. A crucial step of the algorithm is proving that Pk-free graphs have balanced separators that are dominated
by few vertices. As we now show, k-creature free graphs also have balanced separators dominated by few vertices.

Let G be a graph with n vertices and let S ¦ V (G) such that S is not an n/2-balanced separator, hence
G− S has a unique component with over n/2 vertices. In the following proof we will refer to this component as
the large component of G− S, all other components of G− S will be referred to as small components.

Lemma 4.4. Let G be a k-creature free graph with n vertices, then there is a set S ¦ V (G) such that S is an
n/2-balanced separator and S can be dominated by 2k vertices.

Proof. Let G be a k-creature free graph with n vertices. Assume for a contradiction that G does not contain an
n/2-balanced separator dominated by at most 2k vertices. Consider all vertex sets, S, such that S is dominated
by at most k vertices (hence S is not an n/2-balanced separator and therefore G−S has a large component) and
S is dominated by some small component, A, of G − S. The open neighborhood of a single vertex meets these
conditions, so at least one set satisfies this property. Now, among all such sets, let S′ be a set such that the size
of the large component of G − S′ is smallest. Let C denote the large component of G − S′, let A denote some
small component of G−S′ that dominates S′, and let X be a vertex set of size at most k that dominates S′. Note
by how S′ was chosen (to minimize the size of the large component, C), S′ is not anti-complete with C, since if
it was, C would be a component of G. But then c ∈ C would have the property that the largest component of
G−NG(c) would have fewer vertices than C, which would contradict how S′ was chosen.

Let Y ¦ V (G) be a set of size at most k. Since C is the only component of G−S′ that has over n/2 vertices,
if no component of G[C − NG[Y ]] has over n/2 vertices then no component of G − (S′ ∪ NG[Y ]) has over n/2
vertices. Since X dominates S′ it follows that no component of G− (NG[X] ∪NG[Y ]) has over n/2 vertices, but
since X and Y both have size at most k this implies G has an n/2 balanced separator of size at most 2k, contrary
to assumption. So, for any set Y ¦ V (G), the largest component of G[C − NG[Y ]] has over n/2 vertices and
hence this largest component is unique.

For all sets Z ¦ S′ of size at most k, let CZ denote the component of G[C −NG[Z]] = G[C − (NG[Z] ∩ C)]
that has over n/2 vertices (which must exists by the previous paragraph), let µZ denote the number of neighbors
that CZ has in S′ − Z, and let µ denote the minimum over all µZ . Let Z ′ ¦ S′ be a set of size at most k where
CZ′ has exactly µ neighbors in S′−Z ′. We study two cases now, one where µ = 0 and the other where µ > 0 and
get a contradiction in both cases, which will allow us to conclude that our assumption that G does not contain
an n/2-balanced separator dominated by 2k vertices is impossible.

Case 1: Assume µ = 0. We will show that NG[Z
′] ∩ C is dominated by at most k vertices (namely the

vertices of Z ′), NG[Z
′] ∩ C is dominated by a small component of G − (NG[Z

′] ∩ C), and the large component
of G − (NG[Z

′] ∩ C), is strictly smaller than the large component of G − S′, contradicting how S′ was chosen.
Since |Z ′| f k, clearly any subset of NG[Z

′] ∩ C is dominated by at most k vertices, which establishes the first
condition we must show.

Now, since C is a component of G− S′ and CZ′ is a component of G[C − (NG[Z
′]∩C)], CZ′ is a component

of G− (S′∪ (NG[Z
′]∩C)). Because CZ′ is a component of G− (S′∪ (NG[Z

′]∩C)), NG(CZ′) ¦ S′∪ (NG[Z
′]∩C),

furthermore by assumption µ = 0 so no vertex of CZ′ has a neighbor in S′ − Z ′, it follows that NG(CZ′) ¦
NG[Z

′]∩C. Hence CZ′ is a component of G−(NG[Z
′]∩C), and therefore the large component of G−(NG[Z

′]∩C)
since by definition (two paragraphs above), CZ′ has over n/2 vertices.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited3110

D
o

w
n
lo

ad
ed

 0
6
/2

0
/2

5
 t

o
 1

6
9
.2

3
1
.1

8
6
.1

6
7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



Now, if NG[Z
′] ∩ C = ∅ then since µ = 0 this implies S′ is anti-complete with C, but as noted in the first

paragraph, S′ is not anti-complete with C, so NG[Z
′] ∩C ̸= ∅. Since NG[Z ′] ∩C ̸= ∅, it holds that C ′

Z is a strict
subset of C. Lastly, recall that A is a small component of G− S′ that dominates S′, so since A and S′ are both
disjoint from C (and hence no vertices from A∪ S′ belong to CZ′) and Z ′ ¦ S′, the vertices of A∪ S′ will belong
to a small component of G− (NG[Z

′]∩C) that dominates NG[Z
′]∩C. Hence, NG[Z

′]∩C is dominated by a set
of at most k vertices (namely Z ′), NG[Z

′] ∩ C is dominated by a small component of G− (NG[Z
′] ∩ C), and the

large component of G − (NG[Z
′] ∩ C), specifically CZ′ , is strictly smaller than the large component of G − S′,

specifically C, contradicting how S′ was chosen. We may then conclude that µ = 0 is impossible.

Case 2: Assume µ > 0. Among all sets Z ¦ S′ of size at most k such that number of neighbors CZ has in
S′ − Z is µ, let Ẑ be one of smallest size (fewest vertices). If |Ẑ| < k then µ must be 0 or else we could add an
element of S′ − Ẑ that has a neighbor in CẐ to Ẑ to get a set Ẑ ′ ¦ S′ of size at most k and CẐ′ would have less

than µ neighbors in S′ − Ẑ ′ which contradicts the how we chose µ. So, since by assumption µ ̸= 0, we have that
|Ẑ| = k.

Next, we claim that every vertex zi ∈ Ẑ has a private neighbor wi ∈ NG[Ẑ]∩C which in turn has a neighbor
in the large component of C −NG[Ẑ], CẐ . Assume for a contradiction that this claim is false, so there is a vertex

z ∈ Ẑ such that for every neighbor w ∈ NG[Ẑ]∩C that z has, where w also has a neighbor in CẐ , there is another

vertex in Ẑ − z that is a neighbor of w. We claim that by how z was chosen, CẐ = CẐ−z. It follows immediately
from the definition of these sets that CẐ ¦ CẐ−z.

Next note that since CẐ is a component of C − (NG[Ẑ] ∩C), NC(CẐ) ¦ NG[Ẑ] ∩C. So, if CẐ−z ̸¦ CẐ then
since both sets are connected and CẐ ¢ CẐ−z ¦ C, it must be that there is some v ∈ CẐ−z such that v ∈ NC(CẐ)

¦ NG[Ẑ]∩C. Since no vertex of NG[Ẑ− z]∩C is in CẐ−z, it must be that v ∈ NG(z)∩C and v /∈ NG[Ẑ− z]∩C.
Therefore v ∈ NG[Ẑ] ∩ C, is a neighbor of z, v has a neighbor in CẐ , and v is not a neighbor of any vertex in
Z − z, contrary to how z was chosen. Hence CẐ = CẐ−z.

So, there is no vertex in CẐ−z that is a neighbor of z, hence number of neighbors that CẐ−z has in S
′−(Ẑ−z)

is µ, which contradicts that Ẑ was chosen to be as small as possible since the number of neighbors CẐ−z has in

S′ − (Ẑ − z) is also µ. We may then let W denote the set that contains these wi’s from the claim we just proved.
We now show that (A, Ẑ, W , CẐ) is a k-creature. By how A and CẐ were chosen, we have that G[A] and

G[CẐ ] are connected. Next, A and C are both vertex sets of components of G−S′, so A and CẐ are anti-complete

since CẐ ¦ C, A and W are anti-complete since W ¦ C, and Ẑ and CẐ are anti-complete since CẐ ¦ C−NG[Ẑ].
Next, by the definition of A, A dominates S′ and therefore dominates Ẑ ¦ S′ and by definition of CẐ we can see
that CẐ dominates W . Lastly, by how the vertices of W were selected, there is a semi-induced matching between

Ẑ and W and |Ẑ| = |W | = k. It follows that (A, Ẑ, W , CẐ) is a k-creature, a contradiction to the assumption
that G is k-creature free.

It now follows that the original assumption that G does not contain an n/2-balanced separator dominated by
2k vertices is impossible.

Lemma 4.5. Let G be a k-creature free graph with n vertices and let ¶ > 1, then there is a set S ¦ V (G) such
that S is an n/¶-balanced separator and S can be dominated by 8k¶ vertices.

Proof. Let G be a k-creature free graph with n vertices and let ¶ > 1. We will prove by induction on i that G
has an n/2i-balanced separator dominated by 4k2i vertices. By rounding to the nearest multiple of 2, this proves
that G has an n/¶-balanced separator that is dominated by 8k¶ vertices.

Lemma 4.4 handles the base case where i = 1. Assume that for all i less than j > 1, G has a n/2i-balanced
separator dominated by 4k2i vertices. We show that G has a n/2j-balanced separator dominated by 4k2j vertices.
By the inductive hypothesis, G has an n/2j−1-balanced separator, S, dominated by 4k2j−1 vertices. There are
at most 2j components of G− S that have over n/2j vertices, so for each such component, Cr, apply Lemma 4.4
to get an |Cr|/2-balanced separator Sr for G[Cr] that is dominated by 2k vertices. Setting S′ = S ∪ (

⋃

r
Sr) it

follows that S′ is an n/2j-balanced separator for G. Furthermore, since there are at most 2j Sr’s, each of which
is dominated by 2k vertices, S′ is dominated by 4k2j−1 + 2k2j = 4k2j vertices.

In the branching algorithm used in [20], balanced separators for a Pk-free graph, G, are collected in order
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to guide in the selection of a vertex, v, to branch on, the algorithm is recursively called on the input G − v and
on G − N [v] and it can be shown that with well chosen v, the graph G will be efficiently broken up into small
components. In our methods here, we do not wish to remove vertices from the graph, but either add v or N [v]
to the sets A,B and C to get new A, B, and C sets. We actually will not be branching either, but greedily
choosing the branch that roughly corresponds to the one that contains a new A, B, and C that have the most
minimal separators that are consistent with the new A, B, and C. We will use the term refining on a vertex v
when refer to this “greedy branching” process. At each refining step, some vertices are added to A,B, and C, so
the number of minimal separators that are consistent with A, B, and C drops by some factor, but because this
refining process efficiently breaks up the graph into small components, we will be able to grow A, B, and C into
sets where all components of G − (A ∪ B ∪ C) are small, and additionally there will still be some large fraction
of minimal separators of G that are consistent with A, B, and C.

We now discuss refining in a little more in depth. In general, given v ∈ G, there are 3|NG[v]| way to allocate
the vertices of N [v] into the sets A, B, and C (and therefore 3|N [v]| different refinement options that must be
considered), so we cannot guarantee that any of the refinement options correspond to a new A, B, and C such
that a large fraction of minimal separators are consistent with A, B, and C. But, if G is k-creature free, then the
next three lemmas, the first of which is taken from [21] and the second of which is a slight strengthening of the
first, shows that we only need to consider roughly nk refinement options and this allows us to guarantee that at
least one option corresponds to a new A, B, and C such that a large fraction of minimal separators are consistent
with A, B, and C.

Lemma 4.6. ([21]) Let G be a k-creature-free graph with n vertices and let S be a set of minimal separators of
G. Then for every v ∈ V (G), if Sv = {N(v) ∩ S| S ∈ S and v /∈ S} then |Sv| f nk.

Lemma 4.7. Let G be a k-creature free graph with n vertices, let U ¦ V (G) be a vertex set such that G[U ] has c
components, let S be a set of minimal separators of G, and let SU = {N(U) ∩ S|S ∈ S and U ∩ S = ∅}. Then
|SU | f nkc.

Proof. Let G be a k-creature free graph with n vertices, let U ¦ V (G) be a vertex set such that G[U ] has c
components, let G′ be the graph that results from contracting each component of G[U ] in G, and let U ′ be the
vertices of G′ that correspond to the components of G[U ], so U ′ has c vertices and by Lemma 3.3 G′ is k-creature
free. Observe that if S is a minimal separator of G such that U ∩ S = ∅, then S is also a minimal separator of G′

such that S ∩U ′ = ∅ and furthermore NG(U)∩ S = NG′(U ′)∩ S. So to prove this lemma it is sufficient to prove
that if SU ′

= {N(U ′) ∩ S|S ∈ S and U ∩ S = ∅} then |SU ′ | f nkc.
For ui ∈ U ′ let Sui = {N(ui)∩ S|S ∈ S and ui /∈ S} and let V ∈ SU

′

. Then we can see that for each ui ∈ U ′

we can select a Vi ∈ Sui such that V =
⋃
Vi. Since by Lemma 4.6 Sui has at most nk elements and U ′ has c

elements, it follows that SU
′

has at most nkc elements.

Lemma 4.8. Let G be a k-creature free graph with n vertices, let A,B,C ¦ V (G), let G have µ minimal separators
that are consistent with A, B, and C, and let v ∈ G. Then at least one of the following cases apply:

(i) At least (1− 1/n)µ minimal separators of G are consistent with A, B, and C ∪ {v}.

(ii) There exists A′, B′, C ′ ¦ V (G) such that at least (1/3)(1/nk+1)µ minimal separators of G are consistent
with A′, B′, and C ′ where A ¦ A′, B ¦ B′, and C ¦ C ′, NG[v] ¦ (A′ ∪ B′ ∪ C ′), and the number of
components in G[A′ ∪B′] is at most one more than the number of components in G[A ∪B].

Proof. Let G be a k-creature free graph with n vertices, let A,B,C ¦ V (G), let G have µ minimal separators that
are consistent with A, B, and C, and let S denote this set of minimal separators. Let v ∈ G, if at least (1−1/n)µ
minimal separators of S contain v, then since S is consistent with A,B, and C ∪ {v}, case (i) is satisfied. So,
we may assume that at least µ/n minimal separators of S do not contain v. It then follows that for at least
µ/3n minimal separators S ∈ S, either v belongs to the same component that A does in G− S, v belongs to the
same component B does in G − S, or v does not belong to the same component A does in G − S nor the same
component B does in G− S.

First, assume that for at least µ/3n minimal separators S ∈ S, v belongs to the same component that A does
in G − S, denote this subset of S by SA. By Lemma 4.7 there are at most nk sets of the form NG(v) ∩ S for
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S ∈ SA, hence for some set, X, there are at least µ/3nk+1 minimal separators, S, of SA such that NG(v)∩S = X,
denote this subset of SA as SXA . Since for all S ∈ SXA v belongs to the same component that A does in G− S, it
follows that all vertices of NG[v]−X belong to the same component that A does in G− S, hence S is consistent
with A∪NG[v]−X,B and C. Furthermore, since X ¢ S, it then holds that S is consistent with A∪NG[v]−X,B,
and C ∪ X. It then follows that case (ii) of the lemma statement is satisfied in this case (the additional new
component of G[A′ ∪ B′] arises if NG[v]−X is anti-complete with A, making NG[v]−X the new component of
G[A′ ∪B′]).

The case where for at least µ/3n minimal separators S ∈ S, v belongs to the same component that B does
in G− S is handled in the exact same was as in the previous paragraph. So, we now consider the case where for
at least µ/3n minimal separators S ∈ S, v does not belong to S, nor does v belong the same component A does
in G − S, nor the same component B does in G − S. Denote this subset of S by S ′. Since for S ∈ S ′ v /∈ S,
it follows that no vertex of NG(v) belongs to the same component A does in G − S nor the same component B
does in G− S. Hence, for S ∈ S ′, S is consistent with A, B, and C ∪NG[v]. It then follows that case (ii) of the
lemma statement is satisfied in this case, completing the proof.

We now define a function which formalizes this refinement process (greedily choosing the the best branch).
This function will play a central role in this section.

Definition 4.2. Let G be a k-creature free graph with n vertices, let v ∈ G, and let A,B,C ¦ V (G). We define
a function Refine(G, v,A,B,C). We match the output of Refine(G, v,A,B,C) according to the first case of
Lemma 4.8 that is met by G, v,A, B, and C. Refine(G, v,A,B,C) returns:

(i) (A,B,C ∪ {v}) if case (i) of Lemma 4.8 is the first case satisfied.

(ii) (A′, B′, C ′) if case (ii) of Lemma 4.8 is the first case satisfied, where A′, B′ and C ′ are the sets whose
existence is given by case (ii) of Lemma 4.8.

If the return of Refine(G, v,A,B,C) comes from case (i) then we call Refine(G, v,A,B,C) a failure refinement,
else we call Refine(G, v,A,B,C) a success refinement.

A simple application of Lemma 4.8 then gives us the following lemma.

Lemma 4.9. Let G be a k-creature free graph with n vertices, let A,B,C ¦ V (G), let G have µ minimal separators
that are consistent with A, B, and C, let v ∈ G, and let A′, B′, C ′ = Refine(G, v,A,B,C). Then the following
conditions hold:

(i) If Refine(G, v,A,B,C) is a failure refinement then G has at least (1− 1/n)µ minimal separators that are
consistent with A′, B′, and C ′ and A′ = A, B′ = B, and C ′ = C ∪ {v}.

(ii) If Refine(G, v,A,B,C) is a success refinement then G has at least (1/3)(1/nk+1)µ minimal separators that
are consistent with A′, B′, and C ′, A ¦ A′, B ¦ B′, and C ¦ C ′, NG[v] ¦ (A′ ∪B′ ∪ C ′), and the number
of components of G[A′ ∪B′] is at most one more than the number of components of G[A ∪B].

4.1.1 Collecting Separators with Anti-Complete Cores. This subsection is devoted to proving Lemma
4.10, which is the only lemma from this subsection that is used outside of this subsection. Before we state Lemma
4.10 we give a short definition pertaining to vertex lists. Let G be a graph and let S be a list that contains vertices
from G. We will say that S is an anti-complete vertex list if for every two elements Si, Sj ∈ S, Si is anti-complete
with Sj . Note that this implies that if Si = Sj then Si = Sj = ∅.

Lemma 4.10. Let G be a k-creature free graph with n g 2 vertices and µ minimal separators and let ¶ > 1.
Without loss of generality assume k g 2. Then there exists sets A,B,C ∈ V (G) with A,B ̸= ∅ and an anti-
complete vertex list S of size log(n) + 1 such that the following properties hold:

(i) Let G′ = G− (A ∪B ∪ C). For all Si ∈ S, NG[Si]− (A ∪B ∪ C) is an n/¶-balanced separator of G′.

(ii) G has at least µ/(4(3n(k+1))160k
2¶2 log3(n)+2) minimal separators that are consistent with A,B, and C.
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(iii) G[A ∪B] has at most 160k2¶2 log3(n) + 2 components.

(iv) No vertex v in G′ = G− (A ∪B ∪ C) belongs to all sets of NG′ [S].

The algorithm from [20] (which the techniques of subsubsection 4.1.1 is based on) works by collecting balanced
separators dominated by few vertices while branching on vertices who have a sufficient number of neighbors into
the collected balanced separators. Eventually this leads to having a large collection of balanced separators such
that no vertex of the remaining graph has neighbors in more than log(n) of the collected balanced separators.
Since the graphs the algorithm of [20] is run on are Pk-free, this is enough to guarantee that the graph now has
been efficiently broken up into small components, and the algorithm is then called on each component.

Lemma 4.10 is proved using very similar techniques to the algorithm described in the previous paragraph,
even up to determining what vertex to refine (branch) on. This process of collecting balanced separators and
refining allows us to gather a vertex list, S, of balanced separators as well as vertex sets A,B, and C which satisfy
the properties stated in Lemma 4.10. A key difference is that when working with Pk-free graphs, this would be
enough to ensure that G− (A∪B∪C) has no large component, thus proving Lemma 4.3, but when we are dealing
with graphs that are k-creature free we must do more in order to break up the graph into small components. We
cover this additional process in subsubsection 4.1.2. A second key difference here is that in the independent set
algorithm for Pk-free graphs of [20], the algorithm continues to recurse on connected components after breaking
up the graph. Here in this paper, we stop our process after finding A,B, and C such that G− (A ∪ B ∪ C) has
no large components, we do not do any recursion on the components.

In order to prove Lemma 4.10, we will study a sequence produced from a k-creature free graph G and a number
¶ > 1, which we denote by seq1(G, ¶). seq1(G, ¶) is a sequence of tuples (Ai, Bi, Ci,Si) where Ai, Bi, Ci ¦ V (G)
and Si is a vertex list. Before we can describe how the sequence is created, we need to provide the following
definitions.

Definition 4.3. Let G be a k-creature free graph and let (Ai, Bi, Ci,Si) be the ith element of seq1(G, ¶). For all
natural numbers j, the jth level set with respect to Ai, Bi, Ci and Si, denoted by Lj(Ai, Bi, Ci,Si), is defined as
the set of vertices that belong to at least j sets (counting multiplicity) of NG[Si]− (Ai ∪Bi ∪ Ci).

Definition 4.4. Let G be a k-creature free graph with n vertices and let (Ai, Bi, Ci,Si) be the ith element of
seq1(G, ¶). A vertex v ∈ G′, G′ = G− (Ai ∪ Bi ∪ Ci), is good for refining with respect to (Ai, Bi, Ci,Si) if there
exists a j such that |NG′ [v] ∩ Lj(Ai, Bi, Ci,Si)| g n/2j.

We shall use the notion of “good for refining” when determining what the i + 1th tuple of the sequence will
be. Note that this definition implies that any vertex of G− (Ai ∪Bi ∪Ci) that belongs to Llog(n)(Ai, Bi, Ci,Si) is
good for refining, meaning any vertex that belongs to log(n) sets of NG[Si]− (Ai ∪Bi ∪ Ci) is good for refining.

Let G be a k-creature free graph with n vertices and µ minimal separators and let ¶ > 1. We now define
seq1(G, ¶). Let a, b ∈ G be two vertices such that at least µ/n2 minimal separators of G are a, b-minimal separators
(since there are n(n − 1)/2 pairs of vertices in G and every minimal separator is a u, v-minimal separator for
some pair u, v ∈ G such a pair a, b must exist). For the base case of this sequence we define A1 = {a}, B1 = {b},
C1 = ∅, and S1 = ∅. We will maintain throughout the sequence that Ai ¦ Ai+1, Bi ¦ Bi+1, Ci ¦ Ci+1, and
Si ¦ Si+1. We recursively define this sequence as follows.

Assume we are given (Ai, Bi, Ci,Si), we will refer to the following process of determine the next tuple
(Ai+1, Bi+1, Ci+1,Si+1) as the ith step of seq1(G, ¶). If there is a vertex v ∈ G − (Ai ∪ Bi ∪ Ci) that is good
for refining, then we set Ai+1, Bi+1, Ci+1 = Refine(G, v,Ai, Bi, Ci) and Si+1 = Si (hence, by the definition
of Refine, Ai ¦ Ai+1, Bi ¦ Bi+1, and Ci ¦ Ci+1). If Refine(G, v,Ai, Bi, Ci) is a failure refinement then
we call (Ai+1, Bi+1, Ci+1,Si+1) a failure tuple, else Refine(G, v,Ai, Bi, Ci) is a success refinement and we call
(Ai+1, Bi+1, Ci+1,Si+1) a success tuple.

If there is no vertex that is good for refining, then let G′ = G − (Ai ∪ Bi ∪ Ci). Since G′ is a subgraph of
G, G′ has at most n vertices and by Lemma 3.3 G′ is a k-creature free, so by Lemma 4.5 there exists a (possibly
empty) set of vertices S ¦ V (G′) where |S| f 8k¶ and NG′ [S] is an n/¶-balanced separator for G′. Set Ai+1 = Ai,
Bi+1 = Bi, Ci+1 = Ci, and Si+1 = Si ∪ {S}. In this case we call (Ai+1, Bi+1, Ci+1,Si+1) a separator tuple.

The sequence terminates once we reach a tuple (Aj , Bj , Cj ,Sj) such that |Sj | = 10k¶ log2(n).
The following observation was noted just before defining seq1(G, ¶) and follows directly from the definition of

seq1(G, ¶). We will use it frequently without explicit reference.
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Observation 4.3. Let G be a k-creature free graph, let ¶ > 1, and let (Ai, Bi, Ci,Si) and (Ai+1, Bi+1, Ci+1,Si+1)
be the ith and i+1th elements of the sequence seq1(G, ¶). Then Ai ¦ Ai+1, Bi ¦ Bi+1, Ci ¦ Ci+1, and Si ¦ Si+1.

Lemma 4.11. Let G be a k-creature free graph and let ¶ > 1. Then seq1(G, ¶) is finite.

Proof. Let G be a k-creature free graph. Consider the ith and i + 1th tuples of seq1(G, ¶), (Ai, Bi, Ci,Si)
and (Ai+1, Bi+1, Ci+1,Si+1). If (Ai+1, Bi+1, Ci+1,Si+1) is a success or failure tuple then Si = Si+1, and if
(Ai+1, Bi+1, Ci+1,Si+1) is a separator tuple, then |Si|+1 = |Si+1|. Since the sequence ends once we reach a tuple
with (Aj , Bj , Cj ,Sj) where Sj = 10k¶ log2(n), the sequence will terminate after the 10k¶ log2(n)th separator tuple.
So all we must show is there there is a finite number of success and failure tuples. This follows from three facts. The
first is that regardless if (Ai+1, Bi+1, Ci+1,Si+1) is a success, failure, or separator tuple, Ai ¦ Ai+1, Bi ¦ Bi+1,
Ci ¦ Ci+1. The second is that if (Ai+1, Bi+1, Ci+1,Si+1) is a success or failure tuple, then at the ith step, Refine
is called on a vertex that belongs to G− (Ai ∪Bi ∪Ci) and it follows that (Ai ∪Bi ∪Ci) ¢ (Ai+1 ∪Bi+1 ∪Ci+1)
where the containment is strict. Hence, if there are |V (G)| failure or success tuples that precede (Ai, Bi, Ci,Si),
then Ai ∪Bi ∪Ci = V (G). The third fact is that if Ai ∪Bi ∪Ci = V (G), then there are no vertices that are good
for refining at this step (or any future step) and therefore (Aj+1, Bj+1, Cj+1,Sj+1) is a separator tuple. Hence
there are at most |V (G)| success and failure tuples.

It now follows from 4.11 that we may assume there is a last element of seq1(G, ¶).

Lemma 4.12. Let G be a k-creature free graph with n vertices, let ¶ > 1, and let (A,B,C,S) denote the last tuple
of seq1(G, ¶). Let G′ = G− (A∪B ∪C), then for every S ∈ S, NG[S]− (A∪B ∪C) is an n/¶-balanced separator
for G′.

Proof. Let G be a k-creature free graph with n vertices, let ¶ > 1, and let (A,B,C,S) denote the last tuple of
seq1(G, ¶). Let Sj denote the jth element in the list S. Then there is some tuple (Ai, Bi, Ci,Si) of seq1(G, ¶)
such that if G′ = G− (Ai ∪Bi ∪Ci) then Sj ¦ V (G′) and NG′ [Sj ] = NG[Sj ]− (Ai ∪Bi ∪Ci) is an n/¶-balanced
separator for G′. Since Ai ¦ A, Bi ¦ B, and Ci ¦ C, it follows that NG[Sj ]− (A∪B∪C) is a balanced separator
for G′′ where G′′ = G− (A ∪B ∪ C).

Lemma 4.13. Let G be a k-creature free graph with n vertices, let ¶ > 1, and let (Ai, Bi, Ci,Si) denote the ith

tuple of seq1(G, ¶). Then no vertex of G − (Ai ∪ Bi ∪ Ci) belongs to over log(n) sets (counting multiplicity) of
NG[Si]− (Ai ∪Bi ∪ Ci).

Proof. Let G be a k-creature free graph with n vertices, let ¶ > 1, and let (Ai, Bi, Ci,Si) denote the ith tuple of
seq1(G, ¶). We will prove by induction on i that no vertex of G′ = G− (Ai ∪Bi ∪Ci) belongs to over log(n) sets
of NG[Si] − (Ai ∪ Bi ∪ Ci). If i = 1 then (Ai, Bi, Ci,Si) is the first element of the sequence, and by definition
Si = ∅, so the result holds for the base case. Assume the result holds for all i less than j > 1, we prove it holds
for i = j.

Consider the j − 1th and jth elements of seq1(G, ¶), (Aj−1, Bj−1, Cj−1,Sj−1) and (Aj , Bj , Cj ,Sj). If
(Aj , Bj , Cj ,Sj) is a success or failure tuple then Ai ¦ Ai+1, Bi ¦ Bi+1, Ci ¦ Ci+1, and Sj−1 = Sj .
Then by the induction hypothesis no vertex of G − (Aj−1 ∪ Bj−1 ∪ Cj−1) belongs to over log(n) vertices
of NG[Sj−1] − (Aj−1 ∪ Bj−1 ∪ Cj−1) which implies no vertex of G − (Aj ∪ Bj ∪ Cj) belongs to over log(n)
vertices of NG[Sj ] − (Aj ∪ Bj ∪ Cj). If (Aj , Bj , Cj ,Sj) is a separator tuple then this implies that no vertex of
G−(Aj−1∪Bj−1∪Cj−1) belongs to log(n) or more set (counting multiplicity) of NG[Sj−1]−(Aj−1∪Bj−1∪Cj−1)
since such a vertex would good for refining. Hence, no vertex of G− (Aj ∪Bj ∪Cj) belongs to over log(n) vertices
of NG[Sj ]− (Aj ∪Bj ∪ Cj).

Let d be a natural number and let G be a graph with n vertices. G is said to be d-degenerate if there is
a bijective function f : V (G) → [n] where for each vertex v ∈ G, v has at most d neighbors u ∈ G such that
f(u) < f(v). The function f is called a degeneracy ordering of G. We will need the following easy to prove lemma,
which is folklore, and so we omit the proof.

Lemma 4.14. (folklore) Let G be a d-degenerate graph with n vertices. Then G has an independent set of size
+n/(d+ 1),.
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Let (A,B,C,S) be the last tuple of seq1(G, ¶), let (Ai−1, Bi−1, Ci−1,Si−1) and (Ai, Bi, Ci,Si) be the i− 1th

and ith elements of seq1(G, ¶), and let S ∈ S. We say S was added at step i− 1 if Si−1 ∪ {S} = Si.

Lemma 4.15. Let G be a k-creature free graph (assume k g 2) with n vertices, let ¶ > 1, and let (A,B,C,S) be
the last tuple of seq1(G, ¶). There exists an anti-complete sub-list S ′ ¦ S of size at least log(n) + 1.

Proof. Let G be a k-creature free graph (assume k g 2) with n vertices, let ¶ > 1, and let (A,B,C,S) be the
last tuple of seq1(G, ¶). Let GS be a graph with |S| vertices and let f be a bijective function f : V (GS) → [n].
The vertex v ∈ GS will correspond to the f(v)th element of S. We now define the edges of GS . Let u, v ∈ GS ,
the edge uv is in E(GS) if and only if the f(v)th element and f(u)th element of GS are not anti-complete. The
statement of this lemma is then equivalent to GS having an independent set of size at least log(n) + 1. In order
to establish this, we show GS is 8k¶ log(n)-degenerate with degeneracy ordering f and apply Lemma 4.14.

Let v ∈ GS and assume that Sf(v), the f(v)
th element of S, was added at the i − 1th step of seq1(G, ¶).

Let (Ai−1, Bi−1, Ci−1,Si−1) and (Ai, Bi, Ci,Si) be the (i− 1)th and ith elements of seq1(G, ¶). It follows that if
G′ = G−(Ai−1∪Bi−1∪Ci−1) then Sf(v) ¦ V (G′) and for u ∈ GS with f(u) < f(v) the f(u)th element of S is also

the f(u)th element of Si−1. By Lemma 4.13 each vertex of Sf(v) belongs to at most log(n) sets of NG′ [Si−1], and
since there are at most 8k¶ vertices in Sf(v) this implies v has at most 8k¶ log(n) neighbors u where f(u) < f(v),
proving GS is 8k¶ log(n)-degenerate with degeneracy ordering f .

Now since GS is 8k¶ log(n)-degenerate, and GS has |S| = 10k¶ log(n)2 vertices (by the definition of seq1(G, ¶)),
it follows from Lemma 4.14 that GS has an independent set of size at least log(n) + 1.

We now wish to show that seq1(G, ¶) does not contain many success tuples. Toward this end we track the sizes
of the level sets. Let i be a natural number, we will say that a vertex v ∈ G is added to level set Li at step j−1 if for
the jth tuple, (Aj , Bj , Cj ,Sj), of seq1(G, ¶) v is in Li(Aj , Bj , Cj ,Sj), but v is not in Li(Aj−1, Bj−1, Cj−1,Sj−1).
We say that v ∈ G is added to level set Li if it is added to level set Li at step j − 1 for some j.

Similarly, we will say that a vertex v ∈ G is removed from level set Li at step j if for the jth tuple,
(Aj , Bj , Cj ,Sj), of seq1(G,A,B,C), v is in Li(Aj , Bj , Cj ,Sj), but v is not in Li(Aj+1, Bj+1, Cj+1,Sj+1). We
say that v ∈ G is removed from level set Li if it is removed from level set Li at step j for some j.

Lemma 4.16. Let G be a k-creature free graph with n vertices and let ¶ > 1. In the sequence seq1(G, ¶), for all
natural numbers i, at most 160k2¶2n log2(n)/2i vertices are added to level set Li.

Proof. Let G be a k-creature free graph with n vertices and let ¶ > 1. Consider the j − 1th and jth element
of seq1(G, ¶), (Aj−1, Bj−1, Cj−1,Sj−1) and (Aj , Bj , Cj ,Sj). First, assume that (Aj , Bj , Cj ,Sj) is a separator
tuple. Since (Aj , Bj , Cj ,Sj) is a separator tuple, there was no vertex that was good for refining in step j − 1,
in particular this implies that no vertex of G′ = G − (Aj−1 ∪ Bj−1 ∪ Cj−1) has over n/2i−1 neighbors in
Li−1(Aj−1, Bj−1, Cj−1,Sj−1). If a vertex v is added to level set Li at step j − 1 then since Sj only has
one additional set, call it S, that Sj−1 does not have, it follows that v ∈ Li−1(Aj−1, Bj−1, Cj−1,Sj−1) and
v ∈ NG[S] − (Aj−1 ∪ Bj−1 ∪ Cj−1). Since |S| f 8k¶ and no vertex of S has over n/2i−1 neighbors in
Li−1(Aj−1, Bj−1, Cj−1,Sj−1), it follows that |Li−1(Aj−1, Bj−1, Cj−1,Sj−1)∩ (NG[S]− (Aj−1 ∪Bj−1 ∪Cj−1))| f
8k¶n/2i−1 = 16k¶n/2i. Hence, at most 16k¶n/2i vertices are added to level set Li at step j when (Aj , Bj , Cj ,Sj)
is a separator tuple.

Now, if (Aj , Bj , Cj ,Sj) is a success or failure tuple, then Sj−1 = Sj , so no vertices are added to level set
Li at step j. Since by how seq1(G, ¶) was defined, there are 10k¶ log2(n) separator tuples, therefore at most
160k¶n log2(n)/2i vertices are added to level set Li.

Since a vertex v must be added to level set Li before it can be removed from level set Li, and by Lemma
4.16 at most 160k2¶2n log2(n)/2i vertices are added to level set Li, we get the following corollary, at most
160k2¶2n log2(n)/2i are removed from level set Li
Corollary 4.1. Let G be a k-creature free graph with n vertices and let ¶ > 1. In the sequence seq1(G, ¶), for
all natural numbers i, at most 160k2¶2n log2(n)/2i vertices are removed from level set Li.

Let G be a graph with n vertices, let ¶ > 1, and let (Ai, Bi, Ci,Si) be the ith tuple of seq1(G, ¶). If there are
at least n/2c vertices that are removed from level set Lc at step i− 1, then we say the tuple (Ai, Bi, Ci,Si) drains
level set Lc.
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Lemma 4.17. Let G be a graph with n vertices and let ¶ > 1. If (Ai, Bi, Ci,Si) is a success tuple of seq1(G, ¶).
Then (Ai, Bi, Ci,Si) drains at least one level set Lj.
Proof. Let G be a graph with n vertices, let ¶ > 1, let (Ai−1, Bi−1, Ci−1,Si−1) and (Ai, Bi, Ci,Si) be the
i − 1th and ith tuples of seq1(G, ¶), and assume (Ai, Bi, Ci,Si) is a success tuple. There is then some vertex
v in G′ = G − (Ai−1 ∪ Bi−1 ∪ Ci−1) that Refine was called on to get sets Ai, Bi, and Ci. By the definition
of a vertex being good for refining there must be at least one level set, say Lj(Ai−1, Bi−1, Ci−1,Si−1), such
that |Lj(Ai−1, Bi−1, Ci−1,Si−1) ∩ NG′ [v]| g n/2j . Hence, since (Ai, Bi, Ci,Si) is a success tuple and therefore
NG′ [v] ¢ Ai ∪Bi ∪Ci, there are at least n/2j vertices from level set Lj that are removed at step i− 1. Therefore
(Ai, Bi, Ci,Si) drains level set Lj .
Lemma 4.18. Let G be a k-creature free graph with n vertices and let ¶ > 1. Then seq1(G, ¶) contains at most n
failure tuples and at most 160k2¶2 log3(n) success tuples.

Proof. LetG be a k-creature free graph with n vertices and let ¶ > 1. By Corollary 4.1 at most 160k2¶2n log2(n)/2j

vertices are removed from level set Lj , hence at most 160k2¶2 log2(n) tuples of seq1(G, ¶) drain level set Lj . By
Lemma 4.13, for any tuple (Ai, Bi, Ci,Si) of seq1(G, ¶), no vertex of G − (Ai ∪ Bi ∪ Ci) belongs to over log(n)
sets of NG[Si]− (Ai ∪ Bi ∪ Ci), hence no vertices are ever added to level set Lj for j > log(n), and therefore no
tuple of seq1(G, ¶) will ever drain a level set Lj for j > log(n). Furthermore, By Lemma 4.17 every success tuple
of seq1(G, ¶) drains at least one level set Li. It follows that there are at most 160k2¶2n log3(n) success tuples of
seq1(G, ¶).

Now, consider the ith and i + 1th elements of seq1(G, ¶), (Ai, Bi, Ci,Si) and (Ai+1, Bi+1, Ci+1,Si+1) and
assume that (Ai+1, Bi+1, Ci+1,Si+1) is a failure tuple. Let v be the vertex of G′ = G − (Ai ∪ Bi ∪ Ci)
that Refine was called on to get the tuple (Ai+1, Bi+1, Ci+1,Si+1). It follows that v /∈ (Ai ∪ Bi ∪ Ci), but
v ∈ (Ai+1∪Bi+1∪Ci+1). Additionally, if (Ai+1, Bi+1, Ci+1,Si+1) is the n

th failure tuple, then we must have that
(Ai+1 ∪ Bi+1 ∪ Ci+1) = V (G). in this case, this forces any tuples after (Ai+1, Bi+1, Ci+1,Si+1) in seq1(G, ¶) to
be separator tuples.

Corollary 4.2. Let G be a k-creature free graph with n g 2 vertices and µ minimal separators, let ¶ > 1, and let
(A,B,C,S) be the last tuple of seq1(G, ¶). Then G has at least µ/(4(3n(k+1))160k

2¶2 log3(n)+2) minimal separators
that are consistent with A, B, and C.

Proof. Let G be a k-creature free graph with n g 2 vertices and µ minimal separators, let ¶ > 1, and let
(A,B,C,S) be the last tuple of seq1(G, ¶). Consider the ith and i+1th elements of seq1(G, ¶), (Ai, Bi, Ci,Si) and
(Ai+1, Bi+1, Ci+1,Si+1). Assume that there are µ′ minimal separators of G that are consistent with Ai, Bi, and
Ci. By Lemma 4.9 it follows that if (Ai+1, Bi+1, Ci+1,Si+1) is a failure tuple, then there are at least µ′(1− 1/n)
minimal separators of G that are consistent with Ai+1, Bi+1, and Ci+1 and if (Ai+1, Bi+1, Ci+1,Si+1) is a success
tuple, then there are at least µ′(1/3nk+1) minimal separators of G that are consistent with Ai+1, Bi+1, and Ci+1.
Furthermore, if (Ai+1, Bi+1, Ci+1,Si+1) is a separator tuple, then Ai = Ai+1, Bi = Bi+1 and Ci = Ci+1, and so
there are µ′ minimal separators of G that are consistent with Ai+1, Bi+1 and Ci+1.

Now, the first tuple, (A1, B1, C1,S1), of seq1(G, ¶) was chosen so that at least µ/n2 minimal separators of
G agree with A1, B1, and C1. Furthermore, by Lemma 4.18 there are at most n failure tuples and at most

160k2¶2 log3(n) success tuples in seq1(G, ¶). It then follows that there are at least µ(1−1/n)n

n2(3n(k+1))(160k2δ2 log3(n))
g

µ

4(3n(k+1))160k2δ2 log3(n)+2
(using the fact that (1 − 1/n)n > 1/4 when n g 2) minimal separators of G that are

consistent with A,B, and C.

Corollary 4.3. Let G be a k-creature free graph with n vertices, let ¶ > 1, and let (A,B,C,S) be the last tuple
of seq1(G, ¶). Then G[A ∪B] has at most 160k2¶2 log3(n) + 2 components.

Proof. Let G be a k-creature free graph with n vertices, let ¶ > 1, and let (A1, B1, C1,S1), (Ai, Bi, Ci,Si),
(Ai+1, Bi+1, Ci+1,Si+1), and (A,B,C,S) be the 1st, ith, i + 1th, and last elements of seq1(G, ¶) respectively. If
(Ai+1, Bi+1, Ci+1,Si+1) is a separator tuple then Ai+1 = Ai and Bi+1 = Bi, if it is a failure tuple then Ai+1 = Ai
and Bi+1 = Bi by Lemma 4.9, and if it is a success tuple then G[Ai+1∪Bi+1] has at most one more component then
G[Ai ∪ Bi] by Lemma 4.9. Since, by Lemma 4.18 there are at most 160k2¶2 log3(n) success tuples in seq1(G, ¶)
and since A1 and B1 both have one component, we conclude that G[A ∪ B] has at most 160k2¶2 log3(n) + 2
components.
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We are now ready to prove Lemma 4.10.

Proof. [Proof of Lemma 4.10] Let G be a k-creature free graph (assume k g 2) with n g 2 vertices and µ
minimal separators, let ¶ > 1, and let (A,B,C,S) be the last tuple of seq1(G, ¶). Let the sub-list S ′ ¢ S be the
anti-complete sub-list of size log(n) + 1 promised by Lemma 4.15, we will show that A,B, C, and S ′ satisfy the
conclusions of Lemma 4.10. Property (i) is established by Lemma 4.12, property (ii) is established by Corollary
4.2, property (iii) is established by Corollary 4.3, and property (iv) is established by Lemma 4.13 combined with
the fact that |S ′| = log(n) + 1.

4.1.2 Separating Balanced Separators Recall that our final goal of this section is to prove Lemma 4.3, that
is, to take a k-creature free graph G with n vertices and to find vertex sets A,B, and C such that no component
of G − (A ∪ B ∪ C) contains over n/¶ vertices and a large fraction of minimal separators of G are consistent
with A,B, and C. We achieve this in this subsubsection by taking the output from Lemma 4.10, S, A,B, and
C, and enriching A, B, and C to get A′, B′, and C ′ so that for each Si, Sj ∈ S and for each vertex vi ∈ Si and
vj ∈ Sj , no component of G′ = G − (A′ ∪ B′ ∪ C ′ ∪ V ) contains both a vertex from NG′ [vi] and NG′ [vj ] where
V = NG[vi] ∩ NG[vj ]. We will show later on using Lemma 4.24 that this property is enough to ensure that no
component of G− (A′ ∪B′ ∪ C ′) has over n/¶ vertices and prove Lemma 4.3.

We begin by showing that sets A, B, and C can be enriched so that NG[vi] − (A ∪ B ∪ C ∪ V ) and
NG[vj ]− (A ∪ B ∪ C ∪ V ) are anti-complete (where V = NG[vi] ∩NG[vj ]), then they can be further enriched so
that NG[vi]− (A ∪B ∪ C ∪ V ) and NG[vj ]− (A ∪B ∪ C ∪ V ) are far apart in G− (A ∪B ∪ C ∪ V ), then finally
they can be enriched so that NG[vi]− (A∪B ∪C ∪ V ) and NG[vj ]− (A∪B ∪C ∪ V ) are in different components
of G− (A ∪B ∪ C ∪ V ), which finally gives us the sets A′, B′, and C ′ from the previous paragraph.

Since vi and vj are anti-complete, if we set V = NG[vi]∩NG[vj ], then notice that (vi, NG(vi)−V,NG(vj)−V, vj)
is nearly a k-creature, it only lacks the requirement of a semi-induced matching of size k between NG(vi) −
V,NG(vj)− V . This is an important observation which we use in our “enrichment” process of A, B, and C and
motivates the following definition of a pre-creature, (Y1, X1, X2, Y2), which is just a k-creature but without the
requirement of a semi-induced matching of size k between X1 and X2.

Definition 4.5. Let G be a graph. A four-tuple (Y1, X1, X2, Y2) of vertex sets in G is called a pre-creature if
the following conditions are satisfied:

(i) G[Y1] and G[Y2] are connected.

(ii) Y1 is anti-complete with X2 ∪ Y2 and Y2 is anti-complete with X1 ∪ Y1.

(iii) Y1 dominates and is disjoint from X1 and Y2 dominates and is disjoint from X2.

Similar to the methods of subsubsection 4.1.1, the “enrichment” process of A, B, and C used to get the sets
A′, B′, and C ′ which satisfy Lemma 4.3 works by taking a carefully chosen vertex and using the Refine function
on it. We will use the next lemma to guide us on picking a vertex that will be a good choice to use the Refine
function on.

Lemma 4.19. Let G be a k-creature free graph and let (Y1, X1, X2, Y2) be a pre-creature of G where X1 ̸= ∅. Then
there exists a vertex v ∈ X1 such that v dominates at least (1/k)|NG(X1) ∩X2| vertices of NG(X1) ∩X2.

Proof. Let G be a k-creature free graph and let (Y1, X1, X2, Y2) be a pre-creature of G where X1 ̸= ∅. Let
D1 ¢ X1 be a minimal subset of X1 that dominates NG(X1) ∩ X2. Assume for a contradiction that |D1| g k.
Since D1 is minimal, it follows that for each d1i ∈ D1 there is a d2i ∈ NG(X1)∩X2 such that d1i is the only vertex
of D1 that is neighbors with d2i . Let D2 denote this set of d2i ’s. Then since (Y1, X1, X2, Y2) is a pre-creature,
(Y1, D1, D2, Y2) is a k

′-creature for some k′ g k, a contradiction.
Thus, we may assume that |D1| < k. Hence, at least one vertex v ∈ D1 must have the property that v

dominates at least (1/k)|NG(X1) ∩X2| vertices of NG(X1) ∩X2.
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Let vi and vj be anti-complete vertices. We now prove a lemma that shows we can enrich A, B, and C so
that NG[vi]− (A∪B ∪C ∪V ) and NG[vj ]− (A∪B ∪C ∪V ) are anti-complete (where V = NG[vi]∩NG[vj ]). We
will actually need to prove a slightly more general lemma that is stated in terms of pre-creatures so that it can
be used for induction in a later lemma.

Lemma 4.20. Let G be a k-creature free graph with n vertices, let A,B,C ¦ V (G), let G have µ minimal
separators that are consistent with A,B, and C, and let (Y1, X1, X2, Y2) be a pre-creature of G. Then there exists
sets A′, B′, C ′ ¦ V (G) with the following properties:

(i) G has at least µ/(4(3n(k+1))k log(n)) minimal separators that are consistent with A′, B′, and C ′.

(ii) The number of components of G[A′ ∪B′] is at most the number of components of G[A ∪B] plus k log(n).

(iii) X1 − (A′ ∪B′ ∪ C ′) is anti-complete with X2 − (A′ ∪B′ ∪ C ′) in G.

(iv) A ¦ A′, B ¦ B′, and C ¦ C ′.

In order to prove Lemma 4.20, we will study the following sequence produced from a k-creature free graph
G with n vertices along with sets A,B,C ¦ V (G) and pre-creature P = (Y1, X1, X2, Y2), which we denote by
seq2(G,A,B,C, P ). seq2(G,A,B,C, P ) is a sequence of tuples (Ai, Bi, Ci) with Ai, Bi, Ci ¦ V (G).

We now define the sequence seq2(G,A,B,C, P ). For the base case of this sequence we set A1 = A, B1 = B,
and C1 = C. We recursively define this sequence as follows. Given (Ai, Bi, Ci) let X ′

1 = X1 − (Ai ∪ Bi ∪ Ci),
X ′

2 = X2 − (Ai ∪ Bi ∪ Ci), and G
′ = G − (Ai ∪ Bi ∪ Ci). If NG′(X ′

1) ∩X
′
2 = ∅ then we terminate the sequence

(so (Ai, Bi, Ci) is the last tuple of the sequence), else since (Y1, X1, X2, Y2) is a pre-creature of G, (Y1, X
′
1, X

′
2, Y2)

is a pre-creature of G (and X ′
1 ̸= ∅ since NG′(X ′

1) ∩ X ′
2 ̸= ∅) and so Lemma 4.19 guarantees the existence of

v ∈ X ′
1 such that v dominates at least (1/k)|NG′(X ′

1) ∩X
′
2| vertices of NG′(X ′

1) ∩X
′
2 (Note that NG′(X ′

1) ∩X
′
2

= NG(X
′
1)∩X

′
2). We then set Ai+1, Bi+1, Ci+1 = Refine(G, v,Ai, Bi, Ci). If Refine(G, v,Ai, Bi, Ci) is a failure

refinement then we call (Ai+1, Bi+1, Ci+1) a failure tuple, else Refine(G, v,Ai, Bi, Ci) is a success refinement and
we call (Ai+1, Bi+1, Ci+1) a success tuple.

Lemma 4.21. Let G be a k-creature free graph with n vertices, let A,B,C ¢ V (G), and let P be a pre-creature
of G. seq2(G,A,B,C, P ) has at most n failure tuples and at most klog(n) success tuples.

Proof. Let G be a k-creature free graph with n vertices, let A,B,C ¢ V (G), and let P = (Y1, X1, X2, Y2) be a
pre-creature of G. Let (Ai, Bi, Ci) and (Ai+1, Bi+1, Ci+1) be the ith and i+1th tuples of seq2(G,A,B,C, P ). We
can see from the definition of Refine and seq2 that (Ai ∪Bi ∪Ci) ¢ (Ai+1 ∪Bi+1 ∪Ci+1) where the containment
is strict, hence if i = n then (Ai+1 ∪Bi+1 ∪Ci+1) = V (G). Hence, by the definition of seq2 (Ai+1 ∪Bi+1 ∪Ci+1)
would be the final tuple of seq2(G,A,B,C, P ). Therefore, there are at most n + 1 tuples of seq2(G,A,B,C, P ),
hence there are at most n failure tuples in seq2(G,A,B,C, P ) (recall the first tuple it neither a failure nor success
tuple).

Now, assume (Ai+1, Bi+1, Ci+1) is a success tuple, let Xi
1 = X1 − (Ai ∪Bi ∪ Ci), X

i
2 = X2 − (Ai ∪Bi ∪ Ci),

Gi = G − (Ai ∪ Bi ∪ Ci), X
i+1
1 = X1 − (Ai+1 ∪ Bi+1 ∪ Ci+1), X

i+1
2 = X2 − (Ai+1 ∪ Bi+1 ∪ Ci+1), and

Gi+1 = G− (Ai+1 ∪Bi+1 ∪Ci+1). If v is the vertex of Xi
1 that refine is called on to get the sets Ai+1, Bi+1, and

Ci+1, then by how v was selected, v dominates at least (1− 1/k)|NGi(Xi
1)∩X

i
2| vertices of |NGi(Xi

1)∩X
i
2|. Then

by Lemma 4.9 NG[v] ¦ Ai+1 ∪Bi+1 ∪Ci+1 and it follows that (1− 1/k)|NGi(Xi
1)∩X

i
2| g |NGi+1(Xi+1

1 )∩Xi+1
2 |.

Hence if (Ai+1, Bi+1, Ci+1) is the (k log(n))
th success tuple, then |NGi+1(Xi+1

1 )∩Xi+1
2 | is at most n(1−1/k)k log(n)

f n/elog(n) < 1 (recall for our definition of log(n) that log(n) g ln(n)), which implies |NGi+1(Xi+1
1 )∩Xi+1

2 | = 0.

Corollary 4.4. Let G be a k-creature free graph with n vertices, let A,B,C ¢ V (G), let G have µ minimal
separators that are consistent with A, B, and C, and let P be a pre-creature of G. Let (A′, B′, C ′) be the final
tuple of seq2(G,A,B,C, P ). Then G has at least µ/(4(3n(k+1))k log(n)) minimal separators that are consistent
with A′, B′, and C ′.

Proof. Let G be a k-creature free graph with n vertices, let A,B,C ¦ V (G), let G have µ minimal separators
that are consistent with A, B, and C, and let P be a pre-creature of G. Let (A′, B′, C ′) be the final tuple
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of seq2(G,A,B,C, P ). Consider the ith and i + 1th tuples of seq2(G,A,B,C, P ), (Ai, Bi, Ci) and (Ai+1, Bi+1,
Ci+1), and assume there are µ′ minimal separators of G that are consistent with Ai, Bi, and Ci. If (Ai+1, Bi+1,
Ci+1) is a failure tuple, then by Lemma 4.9 there are at least (1− 1/n)µ′ minimal separators that are consistent
with Ai+1, Bi+1, and Ci+1, and if (Ai+1, Bi+1, Ci+1) is a success tuple, then by Lemma 4.9 there are at least
(1/3nk+1)µ′ minimal separators that are consistent with Ai+1, Bi+1, and Ci+1. Since by Lemma 4.21 there are

at most n failure tuples and k log(n) success tuples, it follows that there are at least µ(1−1/n)n

(3nk+1)k log(n) f µ
4(3nk+1)k log(n)

minimal separators of G that are consistent with A′, B′, and C ′ (using the fact that (1− 1/n)n g 1/4 for n g 2).

Corollary 4.5. Let G be a k-creature free graph with n vertices, let A,B,C ¢ V (G), let P be a pre-creature
of G, and let (A′, B′, C ′) be the final tuple of seq2(G,A,B,C, P ). Then G[A′ ∪ B′] has at most k log(n) more
components then G[A ∪B].

Proof. Let G be a k-creature free graph with n vertices, let A,B,C ¢ V (G), let P be a pre-creature of G, and let
(A′, B′, C ′) be the final tuple of seq2(G,A,B,C, P ). Consider the ith and i + 1th tuples of seq2(G,A,B,C, P ),
(Ai, Bi, Ci) and (Ai+1, Bi+1, Ci+1). If (Ai+1, Bi+1, Ci+1) is a failure tuple, then by Lemma 4.9 Ai = Ai+1 and
Bi = Bi+1. If (Ai+1, Bi+1, Ci+1) is a success sequence, then by Lemma 4.9 G[Ai+1 ∪ Bi+1] has at most one
more component than G[Ai ∪Bi]. Since by Lemma 4.21 there are at most k log(n) success tuples, it follows that
G[A′ ∪B′] has at most k log(n) more components than G[A ∪B].

We are now ready to prove Lemma 4.20.

Proof. [Proof of Lemma 4.20] Let G be a k-creature free graph with n vertices, let A,B,C ¦ V (G), let G have µ
minimal separators that are consistent with A,B, and C, and let P = (Y1, X1, X2, Y2) be a pre-creature of G. Let
(A′, B′, C ′) be the final tuple of seq2(G,A,B,C, P ), we will show the set A′, B′, and C ′ satisfy the conclusions of
Lemma 4.20. Property (i) is established by Corollary 4.4, property (ii) is established by Corollary 4.5, property
(iii) is established by the termination condition of seq2(G,A,B,C, P ), and property (iv) is established by the
facts in the first tuple of seq2(G,A,B,C, P ), (A1, B1, C1), that A1 = A, B1 = B, and C1 = C and that for the
ith and i + 1th tuples of seq2(G,A,B,C, P ), (Ai, Bi, Ci) and (Ai+1, Bi+1, Ci+1), that Ai ¦ Ai+1, Bi ¦ Bi+1,
and Ci ¦ Ci+1.

Let vi and vj be anti-complete vertices. Lemma 4.20 showed how we can enrich A, B, and C so that
NG[vi]−(A∪B∪C∪V ) and NG[vj ]−(A∪B∪C∪V ) are anti-complete (where V = NG[vi]∩NG[vj ]). In the next
lemma we show how to further enrich A, B, and C so that NG[vi]− (A∪B∪C ∪V ) and NG[vj ]− (A∪B∪C ∪V )
are far apart in G− (A ∪ B ∪ C ∪ V ). Because we will need to apply this lemma in an inductive proof later on,
we will need to prove something slightly more general that what was just stated.

Lemma 4.22. Let G be a k-creature free graph, let A,B,C ¦ V (G), let G have µ minimal separators that are
consistent with A,B, and C, let i be a natural number, let Y1 and Y2 be anti-complete connected subsets of V (G),
and let Z ¦ V (G) be disjoint from N(Y1) ∩ N(Y2). Then there exists sets A′, B′, C ′ ¦ V (G) with the following
properties:

(i) G has at least µ/(12n(k+1))ik log(n) minimal separators that are consistent with A′, B′, and C ′.

(ii) The number of components of G[A′ ∪ B′] is at most ik log(n) more than the number of components of
G[A ∪B].

(iii) Every path from Y1 to Y2 in G[Z ∪ Y1 ∪ Y2] of length less than i + 4 contains an internal vertex from
(A′ ∪B′ ∪ C ′).

(iv) A ¦ A′, B ¦ B′, and C ¦ C ′.

Proof. Let G be a k-creature free graph, let A,B,C ¦ V (G), let G have µ minimal separators that are consistent
with A,B, and C, let i be a natural number, let Y1 and Y2 be anti-complete connected subsets of V (G), and let
Z be a subset of V (G) disjoint from V = NG(Y1) ∩ NG(Y2). We now prove by induction on i that there exists
sets A′, B′, C ′ that satisfy properties (i)-(iv) of this lemma. For the base case, when i = 0, since Y1 and Y1 are

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited3120

D
o

w
n
lo

ad
ed

 0
6
/2

0
/2

5
 t

o
 1

6
9
.2

3
1
.1

8
6
.1

6
7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



anti-complete and Z is disjoint from NG(Y1) ∩ NG(Y2), every path from Y1 to Y2 in G[Y1 ∪ Y2 ∪ Z] must be of
length at least 4, so A′ = A, B′ = B and C ′ = C satisfy the conclusion of the lemma. Assume now that 0 < i
and that the conclusion of the lemma holds for all i′ < i. We prove that it also holds for i.

We apply the inductive hypothesis to G, A, B, C, Y1, Y2, Z, and i− 1 to get sets A′, B′, and C ′ that satisfy
properties (i)-(iv) of this lemma (for the natural number i− 1). In particular, by property (iii) every path from
Y1 to Y2 in G[Y1 ∪ Y2 ∪ Z] of length less than (i − 1) + 4 contains an internal vertex from (A′ ∪ B′ ∪ C ′). Now,
let ℓ be the length of a shortest path from Y1 to Y2 in G[Y1 ∪ Y2 ∪ Z] that does not contain an internal vertex
from (A′ ∪ B′ ∪ C ′) and let P denote the set of all such shortest paths. If ℓ g i + 4 then the sets A′, B′, and
C ′ satisfy properties (i)-(iv) of the lemma (now for the natural number i) and we are done. So we may assume
ℓ = (i − 1) + 4. Since i g 1, each path in P contains at least two internal vertices. Let X1 denote the set of
vertices that occur as the first internal vertex (the vertex closest to Y1) in a path of P, let X2 denote the set
of vertices that occur as the second internal vertex in a path of P, and let Xg3 denote the set of vertices that
occur as the third or later internal vertex of some path in P. It is straightforward to verify that since P is a
set of shortest paths it holds that X1, X2, and Xg3 are disjoint and furthermore P = (Y1, X1, X2, Y2 ∪Xg3) is
a pre-creature of G. In particular one can verify that G[Y1] and G[Y2 ∪Xg3] are connected, Y1 is anti-complete
with X2 ∪ (Y2 ∪Xg3) and (Y2 ∪Xg3) is anti-complete with Y1, and Y1 dominates X1 and (Y2 ∪Xg3) dominates
X2, which establishes that P is a pre-creature.

Since P is a pre-creature of G we may apply Lemma 4.20 to G, A′, B′, C ′, and P to get sets A′′, B′′, and
C ′′ that satisfy properties (i)-(iv) of Lemma 4.20. We now verify that the sets A′′, B′′, and C ′′ satisfy conditions
(i)-(iv) of this lemma.

We first verify property (iii) holds. Let Q be a shortest path from from Y1 to Y2 in G[Y1∪Y2∪Z] that has no
internal vertex contained in (A′′ ∪B′′ ∪ C ′′), which implies it has no internal vertex contained in (A′ ∪B′ ∪ C ′).
If this path is of length (i − 1) + 4 then Q is a path of P, but since X1 − (A′′ ∪ B′′ ∪ C ′′) is anti-complete with
X2 − (A′′ ∪B′′ ∪C ′′) this is impossible. So it must be that Q has length at least i+4 which establishes property
(iii).

To verify property (i), note that by the inductive hypothesis G has at least µ′ = µ/(12n(k+1))(i−1)k log(n)

minimal separators that are consistent with A′, B′, and C ′, and by property (i) of Lemma 4.20 G has at least
µ′/4(3n(k+1))k log(n) > µ′/(12n(k+1))k log(n) minimal separators that are consistent with A′′, B′′ and C ′′. It
follows that G has at least µ/(12n(k+1))ik log(n) minimal separators that are consistent with A′′, B′′, and C ′′

which established property (i).
To verify property (ii) note that by the inductive hypothesis G[A′ ∪ B′] has at most (i − 1)k log(n) more

components than G[A∪B] and by property (ii) of Lemma 4.20 G[A′′∪B′′] has at most k log(n) more components
than G[A′∪B′]. It follows that G[A′′∪B′′] has at most ik log(n) more components than G[A∪B] which established
property (ii).

Lastly, to verify property (iv) note that by the inductive hypothesis A ¦ A′, B ¦ B′ and C ¦ C ′ and by
Lemma 4.20 A′ ¦ A′′, B′ ¦ B′′ and C ′ ¦ C ′′. It then follows that A ¦ A′′, B ¦ B′′ and C ¦ C ′′ which
established property (iv).

Let vi and vj be anti-complete vertices. Lemma 4.22 showed how we can enrich A, B, and C so that
NG[vi]− (A ∪B ∪C ∪ V ) and NG[vj ]− (A ∪B ∪C ∪ V ) are far apart in G− (A ∪B ∪C ∪ V ). This next lemma
shows how we can further enrich A, B, and C so that no component of G − (A ∪ B ∪ C ∪ V ) contains both a
vertex from NG[vi] − (A ∪ B ∪ C ∪ V ) and from NG[vj ] − (A ∪ B ∪ C ∪ V ). To make the proof easier, we will
prove something slightly more general that what was just stated.

Lemma 4.23. Let G be a k-creature free graph, let A,B,C ¦ V (G), let G have µ minimal separators that are
consistent with A,B, and C, let Y1 and Y2 be anti-complete connected subsets of V (G), and let Z ¦ V (G) be
disjoint from NG(Y1) ∩NG(Y2). Then there exists sets A′, B′, C ′ ¦ V (G) with the following properties:

(i) G has at least µ/(12n(k+1))2k log(n) log(|Z|) minimal separators that are consistent with A′, B′, and C ′.

(ii) The number of components of G[A′ ∪B′] is at most 2k log(n) log(|Z|) more than the number of components
of G[A ∪B].

(iii) Every path from Y1 to Y2 in G[Y1 ∪ Y2 ∪ Z] has an internal vertex that belongs to (A′ ∪B′ ∪ C ′).
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(iv) A ¦ A′, B ¦ B′, and C ¦ C ′.

Proof. Let G be a k-creature free graph, let A,B,C ¦ V (G), let G have µ minimal separators that are consistent
with A,B, and C, let Y1 and Y2 be anti-complete connected subsets of V (G), and let Z ¦ V (G) be disjoint from
NG(Y1) ∩NG(Y2).

We prove the statement of the lemma by induction on |Z|. If Z = ∅ then A, B and C already satisfy the
conclusion of the lemma. Therefore, assume that Z ̸= ∅ and that the statement of the lemma holds for sets Z ′

such that |Z ′| < |Z|. We apply Lemma 4.22 to G, A, B, C, i = 2, Y1, Y2 and Z to get sets A′, B′ and C ′ that
satisfy properties (i)-(iv) of Lemma 4.22. We set Z ′ = Z− (A′∪B′∪C ′) and G′ = G[Y1∪Y2∪Z ′]. From property
(iii) of Lemma 4.22 it follows that every path from Y1 to Y2 in G′ has length at least six. If there does not exist
a path from Y1 to Y2 in G′ then using properties (i), (ii) and (iv) of Lemma 4.22 it can be verified that sets
A′, B′, and C ′ satisfy the conclusions of this lemma. Therefore we may assume that Y1 and Y2 are in the same
component of G′.

We define X1 = NG′(Y1), X2 = NG′(Y1 ∪ X1), X
′
1 = NG′(Y2), and X ′

2 = NG′(Y2 ∪ X ′
1), since every path

from Y1 to Y2 in G′ has length at least six, X1, X2, X
′
1, and X ′

2 are mutually disjoint. Furthermore, observe
that X2 = NG′(X1) − Y1 and similarly that X ′

2 = NG′(X ′
1) − Y2. By definition of X1, X2, X

′
1, and X

′
2 it holds

that every connected component C of G′ − (Y1 ∪ X1 ∪ X2 ∪ Y2 ∪ X ′
1 ∪ X ′

2) satisfies NG′(C) ¦ X2 ∪ X ′
2 (any

vertex outside of Y1 that has a neighbor in Y1 would belong to X1 and any vertex outside of Y1 ∪X1 that has a
neighbor in X1 would belong to X2, similar statements hold for X ′

1 and X ′
2). Let Z1 contain X1 ∪X2 as well as

the union of the vertex sets of all connected components, C, of G′ − (Y1 ∪X1 ∪X2 ∪ Y2 ∪X ′
1 ∪X ′

2) that satisfy
∅ ¢ NG′(C) ¦ X2. Similarly, let Z2 contain X ′

1 ∪ X ′
2 as well as the union of the vertex sets of all connected

components, C, of G′− (Y1 ∪X1 ∪X2 ∪Y2 ∪X ′
1 ∪X ′

2) that satisfy ∅ ¢ NG′(C) ¦ X ′
2. Observe that no component

of G′ − (Y1 ∪X1 ∪X2 ∪ Y2 ∪X ′
1 ∪X ′

2) is added to both Z1 and to Z2. Since every path from Y1 to Y2 in G′ has
length at least six, it follows that X1 ∪ X2 and X ′

1 ∪ X ′
2 are disjoint. Therefore Z1 ∩ Z2 = ∅. Without loss of

generality |Z1| f |Z2|. Hence, since Z1 ∪ Z2 ¦ Z ′ ¦ Z and it follows that |Z1| f |Z|/2 < |Z|.
We define Y ′

2 to be the connected component of G′−(Y1∪Z1) that contains Y2. We claim that Q = Y1∪Z1∪Y ′
2

is equal to the component, T , of G′ that contains Y1 ∪ Y2 (recall that by the discussion of the second paragraph,
we can assume Y1 and Y2 belong to the same component of G′). First, to see that that every vertex of Q belongs
to T note that Y ′

2 to be the connected component of G′ − (Y1 ∪ Z1) that contains Y2, hence Y
′
2 ¦ C, Z1 is a

connected set and since X1 ¦ Z1, Z1 has neighbors in Y1, hence Z1 ¦ Y1, and clearly Y1 ¦ T . Next, we verify
that no vertex of G′ outside of Q belongs to T . Let v be a vertex of G′ outside of Q had a neighbor in T . As
noted before, Y ′

2 contains X ′
1 and X ′

2 and by definition Z1 contains X1 and X2, so we may assume that v belongs
to a component of G′ − (Y1 ∪X1 ∪X2 ∪Y2 ∪X ′

1 ∪X ′
2), hence, by the definition of Z1, we can see that this implies

that if v has a neighbor in Z1 then v must belong to Z1. Next, if v has a neighbor in Y ′
2 , then, by definition of

Y ′
2 , v would be apart of Y ′

2 , so this is impossible. Lastly, if v had a neighbor with Y1 then v would be in X1 ¦ Z1

and therefore in T , so this is impossible. It now follows that Q = Y1 ∪ Z1 ∪ Y ′
2 is equal to the component, T , of

G′ that contains Y1 ∪ Y2.
Since Y1, Z1, and Y

′
2 are disjoint, it follows that these sets partition the component that Y1 ∪ Y2 belong to

in G′. We have that Y ′
2 is connected, that Y1 and Y ′

2 are anti-complete (because X1 ¦ Z1), and that Y1 and Y ′
2

do not have common neighbors in Z1 (because X1 ¦ Z1 and X2 ¦ Z2). We may therefore apply the induction
hypothesis to G, A′, B′, C ′, Y1, Y

′
2 and Z1. Let A

′′, B′′ and C ′′ be the sets that satisfy properties (i)-(iv) of this
lemma when applied to G, A′, B′, C ′, Y1, Y

′
2 and Z1. We prove that A′′, B′′ and C ′′ satisfy the conclusion of the

lemma (when applied to G, A, B, C, Y1, Y2 and Z).
We first prove property (iii), that every path P from Y1 to Y2 in G[Y1 ∪ Y2 ∪ Z] contains an internal vertex

in (A′′ ∪ B′′ ∪ C ′′). Suppose for contradiction that this is not the case, and let P be a path from Y1 to Y2 in
G[Y1 ∪ Y2 ∪Z] with internal vertices disjoint from (A′′ ∪B′′ ∪C ′′). Without loss of generality we assume the first
vertex of P is in Y1, the last is in Y2, and all internal vertices of P are in Z − (Y1 ∪ Y2). Since P is internally
vertex disjoint from (A′′ ∪ B′′ ∪ C ′′) and by the induction hypothesis A′ ¦ A′′, B′ ¦ B′′, and C ′ ¦ C ′′ we have
that P is internally vertex disjoint from (A′ ∪B′ ∪ C ′), and that therefore P is a path from Y1 to Y2 in G′.

The first vertex of P lies in Y1, while the last vertex of P is in Y2, which is in in Y ′
2 . Define v to be the first

vertex on P in Y ′
2 and let P ′ be the sub-path of P that starts in Y1 and ends in v. We have that P ′ lies in the

component of G′ that contains Y1 and Y2. We argue that all internal vertices of P ′ lie in Z1. Indeed, none of
the internal vertices of P ′ lie in Y1 (since only the first vertex of P is in Y1), and none of the internal vertices of
P ′ lie in Y ′

2 by the choice of v. But, as we claimed just after the definition of Y ′
2 , we have that Y1, Y

′
2 and Z1
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partition the component of G′ that contain Y1 ∪ Y2 (and therefore P ′) and hence all internal vertices of P ′ are in
Z1. But then P

′ contradicts property (iii) of the inductive hypothesis, namely that every path from Y1 to Y ′
2 in

G[Y1 ∪Y ′
2 ∪Z1] has an internal vertex that belongs to (A′′ ∪B′′ ∪C ′′). We conclude that every path P from Y1 to

Y2 in G[Y1 ∪ Y2 ∪ Z] contains an internal vertex in (A′′ ∪B′′ ∪ C ′′), which proves property (iii) in the statement
of the lemma.

We check the remaining properties of the statement of the Lemma. Property (iv) follows from the fact that
A ¦ A′, B ¦ B′, C ¦ C ′ (by Lemma 4.22) and that A′ ¦ A′′, B′ ¦ B′′, C ′ ¦ C ′′ by the inductive hypothesis.

For property (i), Lemma 4.22 yields that the number of separators in G consistent with A′, B′ and C ′ in G
is at least µ/(12n(k+1))2k log(n). The induction hypothesis now yields that there are at least

µ/(12n(k+1))2k log(n)

(12n(k+1))2k log(n) log(|Z1|)
g µ/(12n(k+1))2k log(n)

(12n(k+1))2k log(n) log(|Z|/2)
=

µ

(12n(k+1))2k log(n) log(|Z|)

minimal separators in G consistent with A′′, B′′ and C ′′.
For property (ii) we have thatG[A′∪B′] has at most 2k log nmore components thanG[A∪B]. By the inductive

hypothesis G[A′′ ∪ B′′] has at most 2k log n log |Z1| more components than G[A′ ∪ B′]. However |Z1| f |Z| so
log(|Z1|) f log |Z| − 1 and therefore G[A′′ ∪ B′′] has at most 2k log n log |Z| more components than G[A ∪ B].
This concludes the proof.

If A, B, and C and S are the outputs of Lemma 4.10 then Lemma 4.23 shows us how we can enrich A, B, and
C so that for each Si, Sj ∈ S and for each vertex vi ∈ Si and vj ∈ Sj , no component of G′ = G−(A′∪B′∪C ′∪V )
contains both a vertex from NG′ [vi] and NG′ [vj ] where V = NG[vi]∩NG[vj ] (A, B, and C are enriched by applying
Lemma 4.23 for each pair of vertices vi and vj). After doing this the next lemma shows us why this is sufficient
to guarantee that G− (A ∪B ∪ C) has no large component.

Lemma 4.24. Let G be a graph with n vertices, let ¶ > 1, and let S be a vertex list of n/¶-balanced separators of
G such that no vertex of G belongs to every balanced separator of S. If for every pair Si, Sj ∈ S it holds that no
component of G− (Si∩Sj) contains a vertex from both Si− (Si∩Sj) and Sj− (Si∩Sj), then G has no component
of size greater than n/¶.

Proof. Let G be a graph with n vertices, let ¶ > 1, let S be a list of n/¶-balanced separators of G such that no
vertex of G belongs to every balanced separator of S, and for every pair Si, Sj ∈ S it holds that no component of
G− (Si ∩ Sj) contains a vertex from both Si − (Si ∩ Sj) and Sj − (Si ∩ Sj). Assume, for a contradiction then G
has a component, X, of size greater than n/¶.

Since X is a component of size greater than n/¶, every n/¶-balanced separator must have at least one vertex
in X. Let v be a vertex of X that belongs the largest number of sets of S as possible. By how S was defined,
there is some S ∈ S such that v /∈ S. Let P be a shortest path from v to S and let s be the endpoint of P that
belongs to S.

Since v was chosen to be a vertex of X that belongs the largest number of sets of S as possible, there must
be a set S′ ∈ S such that v ∈ S′ and s /∈ S′. Since we also have that v /∈ S, there must be a subpath P ∗ of
P with endpoints s and v′ where v′ ∈ S′, v′ ̸= s, and no internal vertex of P ∗ belongs to S′ or S (recall P is a
shortest path from v to S). It follows that P ∗ is a path in G− (S ∩S′) and therefore since neither v′ nor s belong
to S ∩ S′, v′ and s are in the same connected component in G− (S ∩ S′), a contradiction to how S was defined.

We are now ready to prove Lemma 4.3. As indicated before, the proof works by taking A, B, and C and S, the
outputs of Lemma 4.10, then for each Si, Sj ∈ S and for each vertex vi ∈ Si and vj ∈ Sj , applying Lemma 4.23 to
vi and vj . The graph G− (A∪B ∪C) along with the vertex list S will then satisfy the conditions of Lemma 4.24.

Proof. [Proof of Lemma 4.3] Let G be a k-creature free graph, k g 2, with n g 2 vertices and µ minimal separators
and let ¶ > 1. Apply Lemma 4.10 to G and ¶ to get sets A, B, and C and an anti-complete list S that satisfy
properties (i)-(vi) of Lemma 4.10.

We wish to “enrich” A, B, and C so that for each unordered pair of vertices x and y where x belongs to
some set of S and y belong to a different set of S, it will hold that no vertex of NG[x] and NG[y] will be in
the same component of G − (A ∪ B ∪ C ∪ (NG[x] ∩ NG[y]). To do this we go through each pair of vertices,
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x, y, and after considering the ith pair we will have vertex sets Ai, Bi and Ci such that for any pair x, y that
have previously been considered it holds that no vertex of NG[x] and NG[y] will be in the same component of
G− (A ∪B ∪ C ∪ (NG[x] ∩NG[y]).

More formally, we set A0 = A, B0 = B and C0 = C. Assume that we have already considered i−1 unordered
vertex pairs x and y where x belongs to some set of S and y belong to a different set of S and we have sets Ai−1,
Bi−1 and Ci−1. Since S is an anti-complete vertex list, x and y are anti-complete, so we set Y1 = x, Y2 = y, and
Z = V (G) − (NG[x] ∩NG[y]) and apply Lemma 4.23 to Ai−1, Bi−1, Ci−1, Y1, Y2, and Z to get the sets Ai, Bi,
and Ci which satisfy properties (i)-(iv) of Lemma 4.23.

Assume that there are ℓ unordered vertex pairs x and y where x belongs to some set of S and y belong to a
different set of S. We show that the sets Aℓ, Bℓ, and Cℓ satisfy properties (i)-(iii) of Lemma 4.3.

We first show property (i) is satisfied. We can see that by properties (iii) and (iv) of Lemma 4.23 that for
any pair of vertices x and y where x belongs to some set of S and y belong to a different set of S, it holds that
no vertex of NG[x] − (Aℓ ∪ Bℓ ∪ Cℓ ∪ V ) and NG[y] − (Aℓ ∪ Bℓ ∪ Cℓ ∪ V ) will be in the same component of
G− (Aℓ ∪Bℓ ∪ Cℓ ∪ V ) where V = NG[x] ∩NG[y]. It then follows that for any two distinct sets Si, Sj ∈ NG(S)
that no vertex of Si − (Aℓ ∪ Bℓ ∪ Cℓ ∪ V ′) and Sj − (Aℓ ∪ Bℓ ∪ Cℓ ∪ V ′) belong to the same component in
G − (Aℓ ∪ Bℓ ∪ Cℓ ∪ V ′) where V ′ = Si ∩ Sj . Since A ¦ Aℓ, B ¦ Bℓ, and C ¦ Cℓ, if G′ = G − (Aℓ ∪ Bℓ ∪ Cℓ)
then it follows from property (i) of Lemma 4.10 that for all S ∈ S NG[S] − (Aℓ ∪ Bℓ ∪ Cℓ) is an n/¶-balanced
separator of G′ and no vertex of G′ belongs to all sets of NG′ [S]. It follows from Lemma 4.24 that no vertex of
G′ has over n/¶ components.

Next we show property (ii) and (iii) are satisfied. By properties (ii) and (iii) of Lemma 4.10 there are at least

µ/(4(3n(k+1))160k
2¶2 log3(n)+2) minimal separators that are consistent with A,B, and C and G[A ∪ B] contains

at most 260k2¶2 log(n)3 + 2 components. Furthermore, by properties (i) and (ii) of Lemma 4.23 if there are µ′

minimal separators that are consistent with Ai−1, Bi−1 and Ci−1 then there are at least µ′/(12n(k+1))2k log2(n)

minimal separators that are consistent with Ai, Bi, and Ci and there are at most 2k log(n)2 more minimal
separators in G[Ai ∪Bi] than in G[Ai−1 ∪Bi−1]. Since each S ∈ S has size at most 8k¶ and S has size log(n)+1,
ℓ must be less than (8k¶ log(n))2. Hence G has at least

µ

4(3n(k+1))160k2¶2 log3(n)+2)(12n(k+1))(2k log2(n))(8k¶ log(n))2

g µ

((12n(k+1))160k2¶2 log3(n)+2)(12n(k+1))(128k3 log4(n)))
g µ

(12n(k+1))400k3¶2 log4(n)

minimal separators that are consistent with Aℓ, Bℓ, Cℓ, and G[Aℓ ∪Bℓ] has at most

260k2¶2 log(n)3 + 2 + (2k log2(n))(8k¶ log(n))2 f 400k3¶2 log(n)4

components.

4.2 Constructing the Generalized É-Creature
In this section we will prove that if G is a k-creature free graph with n vertices and a sufficient number of

minimal separators, then we can find a generalized É-creature in G. We do this by taking the output of Lemma 4.3
from the previous subsection giving us A,B, and C such that G − (A ∪ B ∪ C) has no component with over ≈
n/2É vertices and a large fraction of minimal separators of G are consistent with A, B, and C. This already gives
us something close to a generalized É-creature. Setting H to be an É-bistar and φ to be a function that maps
A and B to cA and cB (the two central vertices of H) respectively and É of the components of G− (A ∪B ∪ C)
to the É peripheral vertices of H gives us something close to a generalized É-creature, we are just missing the
special sets S1 and S2. If there are at least É components, X, of G− (A∪B ∪C) such that at least two minimal
separators, SX and S′

X (SX and S′
X can depend on the specific X chosen), of G are consistent A,B, and C and

SX ∩X ̸= S′
X ∩X (plus an additional property which will be describe later on), then we can in fact show that

we can construct a generalized É-creature.
On the other hand, if we cannot find such a set of É components of G − (A ∪ B ∪ C) then this implies all

minimal separators S of G that are consistent with A, B, and C intersect all but É components G− (A∪B ∪C)
in the exact same “unique” way. We will show that we can allocate the vertices of these “uniquely” intersected
components of G − (A ∪ B ∪ C) to makes sets A′, B′, and C ′ such that any minimal separator of G that was
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consistent with A, B, and C will be consistent with A′, B′ and C ′. Since each component of G− (A∪B ∪C) has
at most n/2É, this implies that over half of the vertices of G belong to A′, B′, or C ′. Lemmas 4.1 and 4.2 then
allow us to making an induced minor, G′, of G with at most half the vertices of G but still maintaining a large
fraction of G’s minimal separators. Since we only sacrificed a small fraction of minimal separators to drop the
number of vertices in the graph by a factor of 2, repeating this process at most log(n) times then must result in
us finding a generalized É-creature for some large value of É (or else we would end up with an empty graph with
a supposedly large number of minimal separators).

Unfortunately, this isn’t quite enough for our purposes. We will require not just any generalized É-creature,
but one with a bit more structure, which will force us to do some more pre-processing before constructing our
generalized É-creature. We call this more structured object a connected good generalized É-creature, which we
now define.

Good Components and Connected, Good, Full Generalized É-Creatures.

Definition 4.6. (Full generalized É-creatures) A generalized É-creature is full if, for every peripheral
vertex, u, of H, φ−1(u) ∩ S1 and φ−1(u) ∩ S2 are distinct Aφ, Bφ-minimal separators in G[Aφ ∪Bφ ∪ φ−1(u)].

Note that a generalized É-creature being full just means that the witness separators S⋆1 and S⋆2 in property
(i) of generalized É-creatures are precisely S1 and S2.

Let G be a graph, let A,B,¦ V (G), and let X be a component of G − (A ∪ B). X is called a non-leaf
component of G − (A ∪ B) with respect to A and B if it has at least two distinct neighbors in G[A ∪ B]. A
component of G[X −N2

G[A∪B]] is said to be a sub-component of X with respect to A and B. A sub-component,
Y , of X with respect to A and B is called a non-leaf sub-component with respect to A and B if Y has neighbors in
at least two distinct components of G[N2

G[A∪B]]. X is said to be good with respect to A and B if X has at most
one non-leaf sub-component with respect to A and B and for every pair of components P and Q of G[A ∪ B] it
holds that N2

G[P ] ∩X is anti-complete with N2
G[Q] ∩X.

Definition 4.7. (Connected, Good) Let W = (G,H,φ, S1, S2) be a generalized É-creature. If for all
peripheral vertices, u, of H it holds that φ−1(u) is a connected vertex set (which implies that the vertex sets
φ−1(u) are the components of G − (Aφ ∪ Bφ)) then we call W a connected generalized É-creature. If W is a
connected generalized É-creature and all components of G− (Aφ ∪Bφ) are good with respect to Aφ and Bφ, then
we call W a connected good generalized É-creature.

We will find it useful to make the definitions just given slightly more flexible by allowing us to incorporate an
additional set C into these definitions. Let G be a graph, let A, B, C, X, Y be vertex sets, and let G′ = G− C.
We will say that X is a non-leaf component of G− (A∪B ∪C) if X is a non-leaf component of G′− (A∪B) with
respect to A and B. We say Y is a sub-component of X with respect to A, B and C if Y is a sub-component of
X with respect to A and B in G′. We say Y is a non-leaf sub-component of X with respect to A, B and C, if Y
is a non-leaf sub-component of X with respect to A and B in G′. We say X is good with respect to A, B, and C
if X is good with respect to A and B in G′.

Our main result this subsection is to prove that any graph with a sufficient number of minimal separators will
contain a connected, good, full generalized É-creature for large É. In particular, we will prove Lemma 3.1, which
is the only lemma from this subsection that will be used outside of this subsection. We repeat the statement of
Lemma 3.1 here for convenience.

Lemma 3.1. Let G be a k-creature free graph with n vertices, let É > 1 and ¶ = 3É, let c be an integer large
enough so that 400k3¶2 log4(c) < c/6, let x = 400k3¶2 log4(n), and let G have at least 2c(12n)6k

2x4 log(n) minimal
separators. Then there exists an induced minor G′ of G such that (G′, H, φ, S1, S2) is a connected, good, full
generalized É-creature.

4.2.1 Making the Components of G− (A ∪B ∪ C) Good
Let G be a graph with n vertices and a large number of minimal separators. Our first step toward proving

Lemma 3.1 is to apply Lemma 4.3 to G with ¶ ≈ É to get the sets A, B, and C. We then enrich A, B, and C
to ensure that all components of G − (A ∪ B ∪ C) are good components. In particular, we prove the following
lemma.
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Lemma 4.25. Let G be a k-creature free graph (assume k g 2) with n g 2 vertices, let ¶ > 1, and let G have µ
minimal separators. Then there exist A,B,C ¦ V (G) such that the following conditions hold:

(i) No component in G− (A ∪B ∪ C) has over n/¶ vertices.

(ii) Let x = 400k3¶2 log4(n). Then G has at least µ/(12n)5k
2x4

minimal separators that are consistent with A,B,
and C.

(iii) G[A ∪B] has at most 400k3¶2 log4(n) components.

(iv) All components, X, of G− (A ∪B ∪ C) are good with respect to A, B, and C.

(v) There are at most k(400k3¶2 log4(n))2 components of G− (A ∪B ∪ C).
Notice that properties (i)-(iii) are similar to what Lemma 4.3 can guarantee us. So, in order to prove Lemma

4.25 we assume that we have a k-creature free graph, G, and that we have been given sets A, B, and C (which will
come from Lemma 4.3) and we want to find sets A′, B′, and C ′ which contain A, B, and C respectively and satisfy
the properties of Lemma 4.25, in particular, some effort is required in order to satisfy properties (iv) and (v). In
order to do this we must study what happens as we grow A and B by successively taking their neighborhoods in
a specially chosen induced subgraph of G. We will need the following lemma to determine this induced subgraph
of G (which will end up being G− C ′, where C ′ is a set produced by the following lemma).

Lemma 4.26. Let G be a graph, let A,B,C ¦ V (G) such that G has µ g 1 minimal separators that are consistent
with A,B, and C, and let r be a natural number. Then there exists A′, B′, C ′ ¦ V (G) where the following
conditions hold:

(i) Let G[A ∪ B] have c components, then G has at least µ/nrkc minimal separators that are consistent with
A′, B′, and C ′.

(ii) C ′ ∩A = ∅ and C ′ ∩B = ∅.
(iii) Let G′ = G− C ′ then A′ = Nr

G′ [A] and B′ = Nr
G′ [B].

Proof. Let G be a graph, let A,B,C ¦ V (G) such that G has µ > 0 minimal separators that are consistent with
A,B, and C, let G[A ∪ B] have c components, and let r be a natural number. We will show by induction on r
that there exists sets A′, B′, and C ′ that satisfy conditions (i)-(iii) of this lemma. Recall for a set X ¦ V (G)
that we define N0

G[X] = X. It follows that taking A′ = A, B′ = B and C ′ = C satisfies conditions (i)-(iii) of
this lemma for the base case when r = 0. Now assume this holds for all r less than some r′ > 0. We will show it
holds for r = r′.

We use the inductive hypothesis to find sets A′, B′, and C ′ such that (i) G has at least µ/n(r−1)kc minimal
separators that are consistent with A′, B′ and C ′ (let S be the set of these minimal separators) (ii) C ′ ∩ A = ∅
and C ′∩B = ∅, and (iii) if G′ = G−C ′ then A′ = Nr−1

G′ [A] and B′ = Nr−1
G′ [B]. Since G[A∪B] has c components,

condition (iii) shows that G[A′ ∪B′] has at most c components. By definition of consistent, for all S ∈ S it holds
that A′ ∩ S = ∅ and B′ ∩ S = ∅, so we may then apply Lemma 4.7 with U = A′ ∪ B′ (and using the fact that
U ∩ S = ∅ for S ∈ S to conclude the set SU = {NG(U)∩ S|S ∈ S} has size |SU | f nkc. Since |SU | f nkc there is
an X ∈ SU such that at least |S|/nkc g µ/nrkc (by the inductive hypothesis) minimal separators S ∈ S have the
property that NG(U)∩S = X. Denote this subset of S as SX , so |SX | g µ/nrkc. We will show that NG′ [A′]−X,
NG′ [B′]−X, and C ∪X satisfy the properties of this lemma.

We first establish property (i). We have that for all S ∈ SX , since S is consistent with A′, B′, and C ′ and
NG(A

′ ∪ B′) ∩ S = X, it follows that S is consistent with NG[A
′] −X, NG[B

′] −X, and C ∪X and therefore,
since NG′ [A′] ¦ NG[A

′] and NG′ [B′] ¦ NG[B
′], S is consistent with NG′ [A′]−X, NG′ [B′]−X, and C ∪X. Since

|SX | g µ/nrkc this established condition (i).
To see that property (ii) holds note that since A′ and B′ are both disjoint from S ∈ S and from C ′ we have

that X∩A′ = X∩B′ = ∅, it holds that (C ′∪X)∩ (NG′ [A′]−X) = (C ′∪X)∩ (NG′ [B′]−X) = ∅. This establishes
condition (ii).

Lastly, we establish condition (iii). Since, by the inductive hypothesis, A′ = Nr−1
G′ [A], B′ = Nr−1

G′ [B], and
X ∩ (A′ ∪B′) = ∅ it follows that if G′′ = G′ −X then NG′ [A′]−X = Nr

G′′ [A] and NG′ [B′]−X = Nr
G′′ [B] which

establishes condition (iii).
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We now define a sequence which we will study in order to prove Lemma 4.25. Let G be a k-creature free
graph, let A,B,C ¦ V (G) where G has µ g 1 minimal separators that are consistent with A,B, and C, let A′,
B′, and C ′ be the sets returned by applying Lemma 4.26 to G, A, B, C, and 2r = 2(kc3+ c) and let G′ = G−C ′.
We define a sequence, seq3(G,A,B,C), to be a sequence of tuples where the ith tuple, 1 f i f r, is defined to
be (Ai, Bi) where Ai = N2i

G′ [A] and Bi = N2i
G′ [B]. The sets A′, B′, and C ′ will be referred to as the core sets of

seq3(G,A,B,C) and the graph G′ will be referred to as the core graph of seq3(G,A,B,C).
We now prove a series of lemmas which will eventually allow us to show that there exists some tuple (Aj , Bj)

of seq3(G,A,B,C) such that Aj , Bj , and C ′ satisfy the properties of Lemma 4.25, assume that the sets A,B,
and C were obtained from Lemma 4.3.

Lemma 4.27. Let G be a k-creature free graph and let A,B,C ¦ V (G) where G has µ g 1 minimal separators that
are consistent with A, B, and C. Then for a tuple (Ai, Bi) of seq3(G,A,B,C) it holds that Ai is anti-complete
with Bi.

Proof. Let G be a k-creature free graph, let A,B,C ¦ V (G) where G has µ g 1 minimal separators that are
consistent with A, B, and C, and let A′, B′, and C ′ be the core sets of seq3(G,A,B,C). If G[A ∪ B] has c

components then by property (i) of Lemma 4.26 G has at least µ/n2(kc
3+c)kc > 0 minimal separators that are

consistent with A′, B′, and C ′, hence G has at least one minimal separator that is consistent with A′, B′, and
C ′. It follows that A′ and B′ must be anti-complete. By property (iii) of Lemma 4.26 we can see that for a tuple
(Ai, Bi) of seq3(G,A,B,C) it holds that Ai ¦ A′ and Bi ¦ B′, hence Ai is anti-complete with Bi.

Lemma 4.28. Let G be a k-creature free graph, let A,B,C ¦ V (G) where G has µ g 1 minimal separators that
are consistent with A, B, and C, and let (Ai, Bi) be a tuple of seq3(G,A,B,C). Then |CC(G[Ai ∪ Bi])| is a
non-increasing sequence in i.

Proof. Let G be a k-creature free graph, let A,B,C ¦ V (G) where G has µ g 1 minimal separators that are
consistent with A, B, and C, let (Ai, Bi) and (Ai+1, Bi+1) be tuples of seq3(G,A,B,C), and let G′ be the core
graph of seq3(G,A,B,C). Then Ai+1 = N2

G′ [Ai] and Bi+1 = N2
G′ [Bi] and it follows that G[Ai+1 ∪ Bi+1] has at

most as many components as G[Ai ∪Bi] which proves the lemma.

Let G be a k-creature free graph, let A,B,C ¦ V (G) where G has µ g 1 minimal separators that are consistent
with A, B, and C. We define the ith critical number, ci, of seq3(G,A,B,C) to be the ith number such that the
number of components of G[Aci ∪ Bci ] is strictly less than the number of components of G[A(ci)+1 ∪ B(ci)+1]
for the tuples (Aci , Bci) and (A(ci)+1 ∪ B(ci)+1) of seq3(G,A,B,C). In other words, the critical numbers denote
indexes of seq3(G,A,B,C) where the number of components strictly decreases. For convenience, we also let 0 be
a critical number of seq3(G,A,B,C) as well as the index, r, of the last tuple of seq3(G,A,B,C) in order to have
the fact that every index of the sequence seq3(G,A,B,C) is either a critical number or lies between two critical
numbers. Let seq3(G,A,B,C) have t critical numbers other than 0 and r. We will call 0 the 0th critical number
and will be denoted by c0 and we will call r the t+1th critical number and will be denoted by ct+1. The following
corollary follows from the fact that if there are c components of G[A ∪ B] then seq3(G,A,B,C) has r = kc3 + c
elements, Lemma 4.28, and the fact that no graph can have a negative number of components.

Corollary 4.6. Let G be a k-creature free graph, let A,B,C ¦ V (G), A,B ̸= ∅, where G has µ g 1 minimal
separators that are consistent with A, B, and C, and let there be c components of G[A ∪ B]. Then there exists
critical numbers ci and ci+1 of seq3(G,A,B,C) such that ci+1 − ci > kc2 + 1.

Proof. Let G be a k-creature free graph, let A,B,C ¦ V (G), A,B ̸= ∅, where G has µ g 1 minimal separators
that are consistent with A, B, and C, and let there be c components of G[A ∪ B]. Since for each tuple (Ai, Bi)
of seq3(G,A,B,C) we have that Ai, Bi ̸= ∅ and Ai and Bi are anti-complete by Lemma 4.27 it follows that
G[Ai ∪ Bi] must have at least two components. Hence there can be at most c critical numbers (including 0 and
r = kc3 + c) of seq3(G,A,B,C). Since seq3(G,A,B,C) has kc

3 + c elements, it follows that there must be some
critical numbers ci and ci+1 such that ci+1 − ci > kc2 + 1.

Lemma 4.29. Let G be a k-creature free graph, let A,B,C ¦ V (G) where G has µ g 1 minimal separators that
are consistent with A, B, and C, let ci and ci+1 be critical numbers of seq3(G,A,B,C), and let G′ be the core
graph of seq3(G,A,B,C). If (Aj , Bj) is a tuple of seq3(G,A,B,C) where ci < j < ci+1 then for all pairs of
components P,Q of G[Aj ∪Bj ] it holds that N2

G′ [P ] is anti-complete with N2
G′ [Q].
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Proof. Let G be a k-creature free graph, let A,B,C ¦ V (G) where G has µ g 1 minimal separators that are
consistent with A, B, and C, let ci and ci+1 be critical numbers of seq3(G,A,B,C), let G

′ be the core graph
of seq3(G,A,B,C), and let (Aj , Bj) and (Aj+1, Bj+1) be tuples of seq3(G,A,B,C) where ci < j < ci+1 (in
particular, this imples that j is not a critical number). Assume for a contradiction that there are components
P,Q of G[Aj ∪ Bj ] such that P ′ = N2

G′ [P ] is not anti-complete with Q′ = N2
G′ [Q]. It follows that G[P ′ ∪ Q′] is

connected and therefore only contains one component. Since Aj+1 = N2
G′ [Aj ] and Bj+1 = N2

G′ [Bj ], this implies
that the number of components of G[Aj+1 ∪Bj+1] is strickly less that the number of components of G[Aj ∪Bj ].
But this contradicts the fact that j is not a critical number.

The following lemma will be needed to prove property (v) of Lemma 4.25.

Lemma 4.30. Let G be a k-creature free graph, let A,B,C ¦ V (G) where G has µ g 1 minimal separators
that are consistent with A, B, and C, let c denote the number of components of G[A ∪ B], let G′ be the core
graph of seq3(G,A,B,C), and let ci and ci+1 be critical numbers of seq3(G,A,B,C). If (Aj , Bj) is a tuple of
seq3(G,A,B,C) where ci < j < ci+1. Then there are less than kc2 non-leaf components of G′ − (Aj ∪ Bj) with
respect to Aj and Bj.

Proof. Let G be a k-creature free graph, let A,B,C ¦ V (G) where G has µ g 1 minimal separators that
are consistent with A, B, and C, let c denote the number of components of G[A ∪ B], let G′ be the core
graph of seq3(G,A,B,C), let ci and ci+1 be critical numbers of seq3(G,A,B,C), and let (Aj , Bj) be a tuple of
seq3(G,A,B,C) where ci < j < ci+1. Assume for a contradiction that there are at least kc2 non-leaf components
of G′− (Aj ∪Bj) with respect to Aj and Bj . Since there are c components of G[A∪B], by Lemma 4.28 there are
at most c components of G[Aj ∪Bj ]. It follows there are (c2 − c)/2 pairs of distinct components of G[Aj ∪Bj ], so
by the pigeon hole principle, there exists components P and Q of G[Aj∪Bj ] such that there are at least k non-leaf
components, X1, X2, . . . , Xk, of G

′ − (Aj ∪ Bj) that have neighbors in both P and Q. Let Yi denote an induced
path from P to Q whose internal vertices are contained in Xi, so the internal vertices of Yt are anti-complete with
the internal vertices of Yt′ for t ̸= t′. By Lemma 4.29 each Yi must have at least six vertices. So, since P and Q
are connected, P is anti-complete with Q, the internal vertices of Yt are anti-complete with the internal vertices
of Yt′ for t ̸= t′, and the Yi’s are induced paths from P to Q of length at least six, we can see that this implies
that G contains a k-creature, which is a contradiction.

Lemma 4.31. Let G be a k-creature free graph, let A,B,C ¦ V (G) where G has µ g 1 minimal separators that
are consistent with A, B, and C, let G′ be the core graph of seq3(G,A,B,C), let ci and ci+1 be critical numbers
of seq3(G,A,B,C), and let (Aj , Bj) and (Aj+1, Bj+1) be tuples of seq3(G,A,B,C) where ci < j < ci+1. Then
every non-leaf component of G′ − (Aj ∪ Bj) with respect to Aj and Bj contains a non-leaf sub-component with
respect to Aj and Bj. Furthermore, if X is a component of G′ − (Aj ∪Bj) then every non-leaf sub-component of
X with respect to Aj and Bj is a non-leaf component of G′ − (Aj+1 ∪Bj+1) with respect to Aj+1 and Bj+1.

Proof. Let G be a k-creature free graph, let A,B,C ¦ V (G) where G has µ g 1 minimal separators that are
consistent with A, B, and C, let G′ be the core graph of seq3(G,A,B,C), let ci and ci+1 be critical numbers of
seq3(G,A,B,C), and let (Aj , Bj) and (Aj+1, Bj+1) be tuples of seq3(G,A,B,C) where ci < j < ci+1. Assume X
is a component of G′ − (Aj ∪Bj) and let Y be a non-leaf sub-component of X with respect to Aj and Bj .

First we show that every non-leaf sub-component of X with respect to Aj and Bj is a non-leaf component
of G′ − (Aj+1 ∪Bj+1) with respect to Aj+1 and Bj+1. By definition, Y is a component of G[X −N2

G′ [Aj ∪Bj ]]
= G[X − (N2

G′ [Aj ] ∪N2
G′ [Bj ])] = G[X − (Aj+1 ∪Bj+1)], and therefore Y is a component of G′ − (Aj+1 ∪Bj+1).

Furthermore, by definition, Y has neighbors in two components of G[N2
G′ [Aj ∪ Bj ]] = G[N2

G′ [Aj ] ∪ N2
G′ [Bj ]] =

G[Aj+1 ∪Bj+1], so Y is a non-leaf component of G′ − (Aj+1 ∪Bj+1) with respect to Aj+1 and Bj+1.
Next, we show that if X is a non-leaf component of G′ − (Aj ∪ Bj) then X must contain a non-leaf sub-

component with respect to Aj and Bj . Let Z denote the set of vertices that belong to a component of G[Aj ∪Bj ]
that has at least one neighbor in X, so G[Z] has at least two components since X is a non-leaf component and
G[X−(N2

G′ [Ai]∪N2
G′ [Bi])] =G[X−N2

G′ [Z]]. SinceG[X∪Z] is connected, G[(X−N2
G′ [Z])∪N2

G′ [Z]] =G[X∪N2
G′ [Z]]

is connected and it follows from Lemma 4.29 that since G[Z] has at least two components, G[N2
G′ [Z]] has at least

two components. It follows there must be at least one component of G[X − N2
G′ [Z]] = G[X − N2

G′ [Aj ∪ Bj ]]
that has at least one neighbor in two components of G[N2

G′ [Z]] (or else G[(X −N2
G′ [Z]) ∪N2

G′ [Z]] would not be
connected) and therefore has at least one neighbor in two components of G[N2

G′ [Aj+1 ∪Bj+1]].
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The next corollary follows immediately from Lemma 4.31

Corollary 4.7. Let G be a k-creature free graph, let A,B,C ¦ V (G) where G has µ g 1 minimal separators that
are consistent with A, B, and C, let G′ be the core graph of seq3(G,A,B,C), let ci and ci+1 be critical numbers
of seq3(G,A,B,C), and let (Aj , Bj) be a tuple of seq3(G,A,B,C) where ci < j < ci+1. Then the number of
non-leaf components of G′ − (Aj ∪ Bj) with respect to Aj and Bj is a non-decreasing sequence in j (when the
possible values of j are restricted to lie between ci and ci+1).

The following lemma is the main lemma that we need to prove Lemma 4.25. Namely, that we can find an
(Aj , Bj) of seq3(G,A,B,C) has the property that all components of G′ − (Aj ∪ Bj) are good, where G′ is the
core graph of seq3(G,A,B,C).

Lemma 4.32. Let G be a k-creature free graph, let A,B,C ¦ V (G), A,B ̸= ∅, where G has µ g 1 minimal
separators that are consistent with A, B, and C, and let G′ be the core graph of seq3(G,A,B,C). Then there exists
an integer j such that the tuple (Aj , Bj) of seq3(G,A,B,C) has the property that all components of G′− (Aj ∪Bj)
are good with respect to Aj and Bj.

Proof. Let G be a k-creature free graph, let A,B,C ¦ V (G), A,B ̸= ∅, where G has µ g 1 minimal separators
that are consistent with A, B, and C, let c denote the number of components of G[A ∪ B], and let G′ be the
core graph of seq3(G,A,B,C). By Corollary 4.6 there exists two critical numbers ci and ci+1 of seq3(G,A,B,C)
such that ci+1 − ci > kc2 + 1. By Lemma 4.30 for any (Aj , Bj) in seq3(G,A,B,C) with ci < j < ci+1 there
are less than kc2 non-leaf components of G′ − (Aj ∪ Bj) with respect to Aj and Bj , and by Corollary 4.7 the
number of non-leaf components of G′ − (Aj ∪ Bj) with respect to Aj and Bj is a non-decreasing sequence in j
when ci < j < ci+1. It follows that there must exists some j′, ci < j′ < ci+1 such that the number of non-leaf
components of G′ − (Aj′ ∪Bj′) is the same as the number of non-leaf components of G′ − (Aj′+1 ∪Bj′+1).

We now show that all components, X, of G′− (Aj′ ∪Bj′) are good with respect to Aj′ , and Bj′ . Let P and Q
be two components of G[Aj′ ∪Bj′ ]. By Lemma 4.29 it holds that N2

G′ [P ] ∩X is anti-complete with N2
G′ [Q] ∩X.

Next, it follows from Lemma 4.31 that if X has two non-leaf sub-components with respect to Aj′ and Bj′ , then
the number of non-leaf components of G′− (Aj′ ∪Bj′) with respect to Aj′ and Bj′ is strictly less than the number
of non-leaf components of G′ − (Aj′+1 ∪ Bj′+1) with respect to Aj′+1 and Bj′+1, which is a contradiction. It
follows that X is a good component.

Let G be a k-creature free graph with many minimal separators, and let A, B, and C be the sets obtained
from Lemma 4.3 applied to G. We will show that the tuple (Aj , Bj) obtained from Lemma 4.32 almost satisfies
the properties of Lemma 4.25. The problem is that G′ − (Aj ∪ Bj) could have a large number of components,
so property (v) of Lemma 4.25 might not be satisfied. But Lemma 4.30 shows that not many components of
G′ − (Aj ∪ Bj) have neighbors in both Aj and Bj . The next lemma show how we get rid of the components of
G′ − (Aj ∪Bj) that do not have neighbors in both Aj and Bj .

Lemma 4.33. Let G be a graph, let A,B,C ¦ V (G), A,B ̸= ∅, and let S be a minimal separator of G that is
consistent with A,B, and C. Let A∗, B∗, and C∗ be the sets of vertices that belong to a component of G−(A∪B∪C)
that has neighbors in A and not B, that has neighbors in B and not A, and that does not have neighbor B ∪ A
respectively. Then S is consistent with A ∪A∗, B ∪B∗, and C ∪ C∗.

Proof. Let G be a graph, let A,B,C ¦ V (G), A,B ̸= ∅, and let S be a minimal separator of G that is consistent
with A,B, and C. Let A∗, B∗, and C∗ be the sets of vertices that belong to a component of G − (A ∪ B ∪ C)
that has neighbors in A and not B, that has neighbors in B and not A, and that does not have neighbor B ∪ A
respectively.

First, we show that S ∩A∗ = ∅. Assume for a contradiction that there is an s ∈ S ∩A∗. Since S is consistent
with A, B, and C, B belongs to an S-full component, call it B′, of G − S which does not contain any vertex
from A nor C. So, there must be some path, P from B to s such that the internal vertices of P are contained
in B′ and therefore disjoint from A and C. But, since s lies in a component, Q, of G − (A ∪ B ∪ C) such that
NG(Q) ¦ A ∪ C, any path from B to Q must contain a vertex from A ∪ C, hence such a path P cannot exists.

A symmetric argument shows that S ∩ B∗ = ∅. Now since S does not contain any vertex from A∗ ∪ B∗, we
can see that A∗ and A belong to the same component of G− S and B∗ and B belong to the same component of
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G − S. Hence S is consistent with A ∪ A∗, B ∪ B∗ and C. All that needs to be shown to complete the proof is
that no vertex of C∗ belongs to the same component that A nor B belongs to G− S.

So, assume for a contradiction that there is a c ∈ C∗ − S that belongs to the same component that either A
or B does in G−S, without loss of generality assume that s belongs to the same component A does in G−S. So,
there must be some path, P from A to c such that the internal vertices of P are contained in the component A
belongs to in G−S and therefore is disjoint from B and C. But, since c lies in a component, Q, of G−(A∪B∪C)
such that NG(Q) ¦ C, any path from A to Q must contain a vertex from C, hence such a path P cannot exists.

We are now ready to prove Lemma 4.25

Proof. [Proof of Lemma 4.25] Let G be a k-creature free graph, k g 2, with n g 2 vertices, let ¶ > 1, and let
G have µ minimal separators. Apply Lemma 4.3 to G and ¶ to get sets A,B, and C that satisfy properties
(i)-(iii) of Lemma 4.3. Let G′ be the core graph of seq3(G,A,B,C) and let A′, B′, and C ′ be the core sets of
seq3(G,A,B,C). By Lemma 4.32 there exists a tuple (Aj , Bj) of seq3(G,A,B,C) such that all components of
G′ − (Aj ∪ Bj) are good with respect to Aj and Bj , hence all components of G − (Aj ∪ Bj ∪ C ′) are good with
respect to Aj , Bj , and C

′. Let A∗ be the set of all vertices that belong to a component, X, of G− (Aj ∪Bj ∪C ′)
such that X has neighbors in A and no neighbors in B, let B∗ be the set of all vertices that belong to a component,
X, of G − (Aj ∪ Bj ∪ C ′) such that X has neighbors in B and no neighbors in A, and let C∗ be the set of all
vertices that belong to a component, X, of G− (Aj ∪Bj ∪C ′) such that X has no neighbors A∪B. We will show
that the sets A′′ = Aj ∪A∗, B′′ = Bj ∪B∗, and C ′′ = C ′ ∪ C∗ satisfy properties (i)-(v) of this lemma.

We first establish property (i) of this lemma. By property (i) of Lemma 4.3 no component of G− (A∪B∪C)
has over n/¶ vertices. By property (iii) of Lemma 4.26 and the definition of seq3(G,A,B,C) it follows that
A ¦ Aj , B ¦ Bj , and C ¦ C ′, hence no component of G− (A′′ ∪B′′ ∪C ′′) has over n/¶ vertices. This establishes
property (i) of this lemma.

Next, we establish properties (ii). Let x = 400k3¶2 log4(n). Then by property (ii) of Lemma 4.3, G has at
most µ/(12n(k+1))x minimal separators that are consistent with A, B, and C, and property (iii) of Lemma 4.3
G[A ∪B] has at most x components. So by property (i) of Lemma 4.26 and by how A′, B′ and C ′ were defined,
G has at least

µ

(12n(k+1))xn2(kx3+x)kx)
g µ

(12n)(k+1)x+2(kx3+x)kx
g µ

(12n)5k2x4

minimal separators that are consistent with A′, B′, and C ′. Since Aj ¦ A′ and Bj ¦ B′, G has at least

µ/(12n)5k
2x4

minimal separators that are consistent with Aj , Bj , and C
′. Lastly, by Lemma 4.33 G has at least

µ/(12n)5k
2x4

minimal separators that are consistent with A′′ = Aj ∪A∗, B′′ = Bj ∪B∗, and C ′′ = C ′∪C∗. Hence
property (ii) of this lemma is satisfied.

Now, we establish property (iii). By property (iii) of Lemma 4.3, G[A ∪ B] has at most 400k3¶2 log4(n)
components. By how Aj and Bj are defined, we have that Aj = N2j

G′ [A] and Bj = N2j
G′ [B], so it follows that

G[Aj ∪Bj ] has less than or equal to 400k3¶2 log4(n) components. It can then be seen by the definition of A∗ and
B∗ that G[A′′ ∪B′′] has less than or equal to 400k3¶2 log4(n) components. This established property (iii).

Next, we prove property (iv). It follows from the definitions of A∗, B∗, and C∗ that CC(G− (A′′ ∪B′′ ∪C ′′))
is a subset of CC(G− (Aj ∪Bj ∪ C ′)), and NG(A

∗) ¦ Aj ∪ C ′ and NG(B
∗) ¦ Bj ∪ C ′. Let G′′ = G− C ′′. Since

C ′′ ¦ C ′ we have that NG′′(A∗) ¦ Aj and NG′′(B∗) ¦ Bj . Then for a component, X, of G − (A′′ ∪ B′′ ∪ C ′′),
we have that N2

G′′ [A′′ ∪ B′′] ∩ X = N2
G′′ [Aj ∪ Bj ] ∩ X, and since X is a component of G′′ − (Aj ∪ Bj) and of

G′−(Aj ∪Bj) it follows that N2
G′′ [Aj ∪Bj ]∩X = N2

G′ [Aj ∪Bj ]∩X. Hence N2
G′′ [A′′∪B′′]∩X = N2

G′ [Aj ∪Bj ]∩X.
So, in G, any non-leaf sub-component of X with respect to A′′, B′′, and C ′′ must be a non-leaf sub-component

of X with respect to Aj , Bj , and C ′ and for any components P,Q of G[A′′ ∪ B′′] it holds that N2
G′′ [P ] ∩ X is

anti-complete with N2
G′′ [Q] ∩X (or else we could find components P ′, Q′ of G[Aj ∪Bj ] such that N2

G′ [P ′] ∩X is
not anti-complete with N2

G′ [Q′] ∩ X, contradicting the fact that X is good with respect to Aj , Bj , and C
′). It

follows that all components of G− (A′′ ∪B′′ ∪ C ′′) are good with respect to A′′, B′′, and C ′′.
Lastly, we verify property (v). Note that by the definition of A∗, B∗ and C∗, the components of

G− (A′′ ∪B′′ ∪C ′′) are precisely the components of G− (Aj ∪Bj ∪C ′) that have neighbors in both Aj and Bj ,
and therefore in A′′ and B′′. This implies that every component of G− (A′′ ∪B′′ ∪ C ′′) is a non-leaf component
of G′− (Aj ∪Bj) in G′ with respect to Aj and Bj , of which there are at most k|CC(G[Aj ∪Bj ])|2 such component
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by Lemma 4.30. As noted when proving property (iii) of this lemma, G[Aj ∪ Bj ] has at most 400k3¶2 log4(n)
components, hence there are at most k(400k3¶2 log4(n))2 components of G − (A′′ ∪ B′′ ∪ C ′′), which establishes
property (v).

4.2.2 Finding the Sets S1 and S2 for a Generalized É-Creature Let G be a k-creature free graph with
many minimal separators and let A, B, and C be the output of applying Lemma 4.25 to G. We outlined at the
start of 4.2 how we can use A, B, and C to construct a connected, good, full generalized É-creature. The pieces
right now that we are missing are the special sets S1 and S2. We claimed that if there are at least É components,
X, of G − (A ∪ B ∪ C) such that at least two minimal separators, SX and S′

X (SX and S′
X can depend on the

specific X chosen), of G are consistent A,B, and C and SX ∩X ̸= S′
X ∩X (plus an additional property), then

we can in fact show that we can construct a good connected generalized É-creature. The following definition is
the additional property that we need the minimal separators to satisfy, it essentially forces all pairs of minimal
separators that we consider to satisfy property (iii) of Definition 3.1.

Signatures Let G be a graph, let A,B,C ¦ V (G), and let M ¦ (CC(G[A]) × CC(G[A]) ∪ CC(G[B]) ×
CC(G[B])). We call M a mark for A and B. Let S be a minimal separator of G that is consistent with A,B,
and C and let X be a component of G− (A ∪ B ∪ C). If M is the mark with the property that the pair (U, V )
of (CC(G[A])× CC(G[A]) ∪ CC(G[B])× CC(G[B])) is in M if and only if U ̸= V and there is a path from U to V
through X − S, then we call M the mark of S with respect to X,A, and B.

Definition 4.8. Let G be a graph, and let A,B,C ¦ V (G). Define a function T from the set of components of
G− (A∪B ∪C) to the set of marks for A and B, so for each component X of G− (A∪B ∪C), T (X) is a mark
for A and B. We call T a signature for G,A, B, and C. We say that a minimal separator S of G agrees with
A,B,C, and T if S is consistent with A, B, and C, and for all components X of G− (A ∪ B ∪ C) it holds that
T (X) is equal to the mark of S with respect to X,A, and B.

Let G be a graph, let A,B,C ¦ V (G), let T be a signature of G, A, B, and C, and let S1 and S2 be two
minimal separators of G that agree with A, B, C, and T . Notice that for any component X of G− (A ∪B ∪C),
for all pair of components C1 and C2 of G[A∪B] there is a path from C1 to C2 through X − S1 in G if and only
if there is a path from C1 to C2 through X − S2 in G which is what property (iii) of Definition 3.1 requires of
generalized É-creatures.

The next few lemmas show that if G has many minimal separators that are consistent with A, B, and C, then
there exists a signature T for G, A, B, and C so that G has many minimal separators that agree with A, B, C,
and T . We begin with the following observation about signature functions which we will use without explicitly
reference. The proof follows easily from the definition of signatures.

Observation 4.4. Let G be a graph, let A,B,C ¦ V (G), and let S be a minimal separator of G that is consistent
with A,B, and C. Then there exists exactly one signature, T , for G,A,B, and C such that S agrees with A,B,C,
and T .

Lemma 4.34. Let G be a graph, let A,B,C ¦ V (G) where A is anti-complete with B and let there be x components

of G[A ∪ B] and y components of G − (A ∪ B ∪ C). Then there are 2x
2y functions that are signatures for G,A,

B, and C.

Proof. Let G be a graph, let A,B,C ¦ V (G) where A is anti-complete with B and let there be x components of
G[A∪B] and y components of G− (A∪B ∪C). Let T be a signature for G,A, B, and C. The domain of T is the
set of components of G− (A ∪B ∪ C), which by assumption has y elements, and the range of T is the power set

of (CC(G[A])× CC(G[A])∪ CC(G[B])× CC(G[B])), which by assumption has at most 2x
2

elements. So for each of

the y elements of the domain there is a choice of 2x
2

elements to map it to, hence there are at most 2x
2y possible

signatures for G,A, B, and C.

Lemma 4.35. Let G be a k-creature free graph (assume k g 2) with n g 2 vertices, let ¶ > 1, and let G have µ
minimal separators. Then there exist A,B,C ¦ V (G) and signature T for G,A,B, and C such that the following
conditions hold:

(i) No component of G− (A ∪B ∪ C) has over n/¶ vertices.
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(ii) Let x = 400k3¶2 log4(n). Then G has at least µ/(12n)6k
2x4

minimal separators that agree with A,B, C, and
T .

(iii) G[A ∪B] has at most 400k3¶2 log4(n) components.

(iv) All components of G− (A ∪B ∪ C) are good with respect to A, B, and C.

Proof. Let G be a k-creature free graph (assume k g 2) with n g 2 vertices, let ¶ > 1, and let G have µ minimal
separators. We apply Lemma 4.25 using G and ¶ to gets sets A, B, and C that satisfy properties (i)-(v) of Lemma
4.25. We can see that this implies the sets A, B, and C satisfy properties (i), (iii), and (iv) of this lemma, so we
are left with finding a suitable signature T to satisfy property (iii).

Let x = 400k3¶2 log4(n), then by property (i) of Lemma 4.25, there are at least µ/(12n)5k
2x4

minimal
separators that are consistent with A, B, and C. Furthermore, by properties (iii) and (iv) of Lemma 4.25 there

are x components of G[A ∪B] and kx2 components of G− (A ∪B ∪ C), hence, by Lemma 4.34 there are 2x
2kx2

= 2x
4k possible signature functions for G, A, B, and C. It follows that there is some signature function T such

that there are at least
µ

(12n)5k2x4

1

2x4k
g µ

(12n)6k2x4

minimal separators of G that agrees with A, B, C, and T .

If G is a k-creature free graph with many minimal separators, then by Lemma 4.35 there are sets
A,B,C ¦ V (G) and signature T for G, A, B, and C such that G has many minimal separtors that agree
with A, B, C, and T . Let S1 and S2 be two minimal separators of G that agree with A, B, C, and T . As stated
previously, for any component, X, of G − (A ∪ B ∪ C), for all pair of components C1 and C2 of G[A ∪ B] there
is a path from C1 to C2 through X − S1 in G if and only if there is a path from C1 to C2 through X − S2 in G
which is what property (iii) of Definition 3.1 requires of generalized É-creatures. The problem we have is that
there may be components X of G− (A ∪B ∪C) such that S1 ∩X = S2 ∩X, and so S1 and S2 will fail property
(i) of Definition 3.1. The following lemma and corollary will help us fix this problem.

Lemma 4.36. Let G be a graph, let A,B ¦ V (G), let T be a signature for G,A,B, and C = ∅, let X be a
component of G − (A ∪ B), and let S1, S2 be two minimal separators of G that agree with A, B, C, and T . Let
S1 ∩X = S′

1 and S2 ∩X = S′
2. Then (S1 − S′

1) ∪ S′
2 is a minimal separator that agrees with A,B,C, and T .

Proof. Let G be a graph, let A,B ¦ V (G), let T be a signature for G,A,B, and C = ∅, let X be a component of
G − (A ∪ B), and let S1, S2 be two minimal separators of G that agree with A, B, C, and T . Let S1 ∩X = S′

1

and S2 ∩X = S′
2. Let S = (S1 − S′

1) ∪ S′
2.

We first show that there is some component of G − S that contains A. An identical argument shows that
there is some component of G − S that contains B. Let A1 and A2 be two components of G[A], and let P be a
path from A1 to A2 in G − S1. We show how to get a path P ′ from A1 to A2 in G − S by replacing portions
of P . Let P ∗ be a maximal subpath such that no internal vertex of P ∗ is contained in A, let A′

1 and A′
2 be the

components of G[A] that the endpoints of P ∗ belong to. Since S1 is an A, B-separator, we have that all internal
vertices of P ∗ are contained in G− (A∪B). It follows that the internal vertices of P ∗ belong to some component
X ′ of G − (A ∪ B). If X ′ = X by assumption T (X) is the mark of both S1 and S2 for X, A, and B, so P ∗ can
be replaced with some other path from A′

1 to A′
2 with internal vertices contained in X ′ − S2. If X

′ ̸= X, then it
follows that P ∗ is also a path in G − S so it does not need to be replaced. We can see that we can replace the
portions of P that do not belong to A in this manner to get a path P ′ from A1 to A2 in G− S.

We now show that S separates A from B. Assume for a contradiction that there is a path from A to B in
G− S, let P be a shortest such path so we may assume that the end points of P are in A and B and all internal
vertices are in G− (S∪A∪B). It follows that all the internal vertices of P must be contained in some component
X ′ of G− (A∪B), but if X ′ = X then such a path must contain a vertex from S2, else S2 would not be consistent
with A, B, and C, and if X ′ ̸= X then such a path must contain a vertex from S1, else S1 would not be consistent
with A, B, and C. From the definition of S it follows that no such path can exist, hence A and B are contained
in different components of G− S.

Now we show that A and B belong to two S-full components of G − S. We show that the component A is
contained in in G− S dominates S, an identical argument proves the component B is contained in dominates S.
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Let s ∈ S and let X ′ be the component that s belongs to in G− (A ∪ B). If X ′ = X, then since A is an S2-full
component of G−S2 there is path P from A to s in G−S2 whose internal vertices belong to X ′−S2. If X

′ ̸= X,
then since A is an S1-full component of G−S1 there must be a path from A to s in G−S1 whose internal vertices
belong to X ′ − S1. It follows that the component A belongs to in G− S dominates S.

Together, this proves that S is a minimal separator of G that is consistent with A, B, and C = ∅. To show
that S agrees with A, B, C, and T , we must show that for all components, X ′, of G− (A∪B) the mark of S with
respect to X, A, and B is T (X ′). This follows from the fact that if X ′ = X, then the mark of S with respect to
X ′, A, and B is the same as the mark of S2 with respect to X ′, A, and B, which is T (X ′), and if X ′ ̸= X, then
the mark of S with respect to X ′, A, and B is the same as the mark of S1 with respect to X ′, A, and B, which
is again T (X ′).

Corollary 4.8. Let G be a graph, let A,B ¦ V (G), and let T be a signature for G,A,B, and C = ∅. If for all
components, X, of G− (A ∪B) there are minimal separators SX and S′

X (SX and S′
X can depend on the choice

of X) of G that agree with A, B, C, and T , where SX ∩X ̸= S2 ∩X, then there exist minimal separators S1 and
S2 of G that agree with A, B, C, and T , such that for all components, X, of G− (A ∪B) S1 ∩X ̸= S2 ∩X.

Proof. Let G be a graph, let A,B ¦ V (G), and let T be a signature for G,A,B, and C = ∅. Assume for all
components, X, of G− (A ∪B) there are minimal separators SX and S′

X (SX and S′
X can depend on the choice

of X) of G that agree with A, B, C, and T , where SX ∩X ̸= S2 ∩X.
Let S1 and S2 be two minimal separators of G that agree with A, B, C, and T that maximize the number of

components, X, of G − (A ∪ B) such that S1 ∩X ̸= S2 ∩X. Assume for a contradiction that there is an X, of
G− (A ∪B) such that S1 ∩X = S2 ∩X. By Assumption, there is an S3 that agrees with A, B, C, and T and if
S′
3 = S3 ∩X and S′

2 = S2 ∩X then S′
3 ̸= S′

2. By Lemma 4.36 S′′
2 = (S2 − S′

2) ∪ S′
3 is a minimal separator that

agrees with A, B, C, and T . But then the number of components, X, of G− (A∪B) such that S1 ∩X ̸= S′′
2 ∩X

is greater than the number of components, X, of G− (A∪B) such that S1 ∩X ̸= S2 ∩X, a contradiction.

Lemma 4.37. Let G be a graph, let A,B,C ¦ V (G), A,B ̸= ∅, let Y be a set of components of G− (A∪B ∪C),
let Ŷ =

⋃

Y ∈Y

Y , let T be a signature for G, A, B, and C, and let S and S′ be a minimal separators of G that

agrees with A, B, C, and T such that S ∩ Ŷ = S′ ∩ Ŷ . Furthermore, let A∗ be the set of all vertices that belong
to a component of G[Ŷ − S] = G[Ŷ − S′] that has a neighbor in A, let B∗ be the set of all vertices that belong to
a component of G[Ŷ − S] = G[Ŷ − S′] that has a neighbor in B, and let C∗ = Ŷ − (A∗ ∪ B∗). Then there is a
signature T ′ for G, A′ = A ∪ A∗, B′ = B ∪B∗, and C ′ = C ∪ C∗ such that S and S′ agree with A′, B′, C ′, and
T ′.

Proof. Let G be a graph, let A,B,C ¦ V (G), A,B ̸= ∅, let Y be a set of components of G − (A ∪ B ∪ C), let
Ŷ =

⋃

Y ∈Y

Y , let T be a signature for G, A, B, and C, and let S and S′ be a minimal separators of G that agrees

with A, B, C, and T such that S ∩ Ŷ = S′ ∩ Ŷ . Furthermore, let A∗ be the set of all vertices that belong to a
component of G[Ŷ − S] = G[Ŷ − S′] that has a neighbor in A, let B∗ be the set of all vertices that belong to a
component of G[Ŷ − S] = G[Ŷ − S′] that has a neighbor in B, and let C∗ = Ŷ − (A∗ ∪B∗).

Now, let CY = S∩Ŷ = S′∩Ŷ , so S and S′ are consistent with A, B, and C∪CY and observe that CC(G[Ŷ −S])
= CC(G[Ŷ −S′]) is a subset of CC(G− (A∪B ∪ (C ∪CY ))). So, if we let A∗∗, B∗∗, and C∗∗ be the sets of vertices
that belong to a component of G − (A ∪ B ∪ (C ∪ CY )) that has neighbors in A and not B, that has neighbors
in B and not A, and that does not have neighbor B ∪ A respectively, then it holds that A∗ ¦ A∗∗, B∗ ¦ B∗∗,
and C∗ ¦ C∗∗ ∪ CY . Furthermore, by Lemma 4.33, S and S′ are both consistent with A ∪ A∗∗, B ∪ B∗∗, and
C ∪ CY ∪ C∗∗, hence S and S′ are consistent with A′ = A ∪A∗, B′ = B ∪B∗, and C ′ = C ∪ C∗.

Lastly, we show for each component, X, of G− (A′ ∪B′ ∪C ′) that S and S′ have the same mark with respect
to X, A′, and B′. It will then follow that there is a signature T ′ for G, A′, B′, and C ′ such that S and S′ agree
with A′, B′, C ′, and T ′.

Observe that since A∗ ∪ B∗ ∪ C∗ = Ŷ we have that CC(G − (A′ ∪ B′ ∪ C ′)) = CC(G − (A ∪ B ∪ C)) − Y.
This implies that A∗, B∗, and C∗ must be anti-complete with the component, X, of G − (A′ ∪ B′ ∪ C ′). Hence
NG[A

′]∩X = NG[A]∩X and NG[B
′]∩X = NG[B]∩X and that X must also be a component of G− (A∪B∪C).

It follows that if there are components P,Q of G[A′ ∪B′] such that there is a path from P to Q through X − S,
then there are components P ′, Q′ of G[A ∪ B] such that P ′ ¢ P and Q′ ¢ Q and there is a path from P ′ to Q′
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through X − S. Since S and S′ have the same mark with respect to X, A, and B, namely T (X), it follows that
there is a path from P ′ to Q′ through X − S′. Therefore, there is a path from P to Q through X − S′. Hence S
and S′ have the same mark with respect to X, A′, and B′.

Lemma 4.38. Let G be a graph with n vertices, let ¶ > 1, let A,B,C ¦ V (G), A,B ̸= ∅, such that no component
of G− (A∪B ∪C) has over n/3¶ vertices and G[A∪B] has at most n/6 components, and let G have µ minimal
separators that are consistent with A,B, and C. Furthermore, let X be the set that contains all components, X,
of G − (A ∪ B ∪ C) such that there exists at least two minimal separators SX and S′

X that are consistent with
A, B, and C and S ∩X ̸= S′ ∩X (SX and S′

X may depend on the component X). If |X | < ¶ then there is an
induced minor G′ of G with at least µ minimal separators and G′ has at most n/2 vertices.

Proof. Let G be a graph with n vertices, let ¶ > 1, let A,B,C ¦ V (G), A,B ̸= ∅, such that no component of
G − (A ∪ B ∪ C) has over n/3¶ vertices and G[A ∪ B] has at most n/6 components, and let G have µ minimal
separators that are consistent with A,B, and C. Furthermore, let X be the set that contains all components, X,
of G− (A∪B ∪C) such that there exists at least two minimal separators SX and S′

X that are consistent with A,
B, and C and SX ∩X ̸= S′

X ∩X, and assume that |X | < ¶.

Let X̂ =
⋃

X∈X

X. We first show that we can find sets A ¦ A′, B ¦ B′, and C ¦ C ′ such that

X̂ = V (G)− (A′ ∪B′ ∪ C ′) and all minimal separators of G that are consistent with A, B, and C are consistent
with A′, B′, and C ′. Let Y = CC(G − (A ∪ B ∪ C)) − X and let Ŷ =

⋃

Y ∈Y

Y . It follows by assumption that for

any two minimal separators S and S′ that are consistent with A, B, and C we have that S ∩ Ŷ = S′ ∩ Ŷ . Let A∗

denote the set of all vertices that belong to a component of G[Ŷ − S] = G[Ŷ − S′] that has at least one neighbor
in A, let B∗ denote the set of all vertices that belong to a component of G[Ŷ − S] = G[Ŷ − S′] that has at least
one neighbor in B, and let C∗ = Ŷ − (A∗∪B∗). Then by Lemma 4.37 and the fact that G[Ŷ −S] = G[Ŷ −S′], the
µ minimal separators of G that are consistent with A, B, and C are consistent with A′ = A ∪ A∗, B′ = B ∪ B∗,
and C ′ = C ∪ C∗. Additionally, Ŷ = (A∗ ∪B∗ ∪ C∗), so we have that X̂ = G− (A′ ∪B′ ∪ C ′), as desired.

Now, by Lemma 4.1 G− C ′ has µ minimal separators that are consistent with A′, B′, and ∅ and by Lemma
4.2, if G′ is the graph that results from contracting each component of G[A] and G[B] in G, then G′ has at least
µ minimal separators.

Since X̂ = G − (A′ ∪ B′ ∪ C ′), |X̂| f n/3, and G[A] and G[B] together have at most n/6 components, it
follows that G′ has at most n/3 + n/6 = n/2 vertices. This completes the lemma.

The following lemma is a slight strengthening of Lemma 4.1 that we will require.

Lemma 4.39. Let G be a graph, let A,B,C ¦ V (G) with A,B ̸= ∅, let T be a signature for G, A, B, and C, and
let S be a minimal separator that agrees with T , A, B, and C. Then S −C is a minimal separator of G−C that
agrees with A,B, ∅, and T .

Proof. Let G be a graph, let A,B,C ¦ V (G) with A,B ̸= ∅, let T be a signature for G, A, B, and C, and let S
be a minimal separator that agrees with T , A, B, and C.

By Lemma 4.1 we have that S −C is a minimal separator of G−C that is consistent with A, B, and ∅. Let
G′ = G−C. Since G− (A∪B ∪C) = G′ − (A∪B) we have that for a component, X, of G′ − (A∪B), the mark
of S with respect to X, A, and B in G is T (X). Since X ∩ C = ∅ the mark of S − C with respect to X, A, and
B is also T (X).

The following lemma comes from [18], where the authors prove a tighter bound, for our purposes the following
bound is easier to use and sufficient.

Lemma 4.40. ([18]) Every graph G on n vertices has at most 2n minimal separators.

Lemma 4.41. Let G be a k-creature free graph with n vertices, let É g 1, let ¶ = 3É, let c be a natural number
large enough to satisfy the inequality 400k3¶2 log4(c) < c/6, let x = 400k3¶2 log4(n), and let G have at least

2c(12n)6k
2x4 log(n) minimal separators. Then there exists an induced minor G′ of G, A,B ¦ V (G′), and a

signature T for G′, A, B, and C = ∅, such that the following properties hold:
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(i) There are at least É components of G′ − (A ∪B).

(ii) For all components, X, of G′ − (A ∪ B) there are two minimal separators SX and S′
X , SX ∩X ̸= S′

X ∩X
(SX and S′

X may depend on the choice of X), that agree with A, B, C = ∅, and T .

(iii) All components of G′ − (A ∪B) are good with respect to A and B.

Proof. Let É > 1, let ¶ = 3É, and let c be an natural number large enough to the satisfies the inequality
400k3¶2 log4(c) < c/6. Note that for all c′ > c that 400k3¶2 log4(c′) < c′/6 also holds. We first show, by a proof

by contradiction, that for any k-creature free graph G with n vertices and at least 2c(12n)6k
2x4 log(n) minimal

separators, where x = 400k3¶2 log4(n), that there exists an induced minor G′ of G, sets A,B,C ¦ V (G′), and
signature T for G′, A,B, and C such that (1) there are at least É components, X, of G′ − (A ∪B ∪C) such that
there are minimal separators SX and S′

X that agree with A, B, C, and T (the minimal separators may depend
on X) where SX ∩X ̸= S′

X ∩X, and (2) all components of G′ − (A∪B ∪C) are good with respect to A, B, and
C.

So, assume for a contradiction, that G is a k-creature free graph with n vertices and at least 2c(12n)6k
2x4 log(n)

minimal separators where G is chosen with as few vertices as possible so that no induced minor G′ of G and sets
A,B,C ¦ V (G′), and signature T for G′, A,B, and C satisfy (1) and (2). Since G has at least 2c minimal
separators, by Lemma 4.40 we have that n g c, hence n is large enough to satisfy the inequality 400k3¶2 log4(n)
< n/6.

We now apply Lemma 4.35 to G and ¶ = 3É to gets sets A,B,C ¦ V (G) and signature T for G, A, B, and
C that satisfy properties (i)− (iv) of Lemma 4.35. Let X be the set of components, X, of G− (A ∪B ∪C) such
that there exists at least two minimal separators S and S′ that agree with A,B,C, and T and S ∩X ̸= S′ ∩X.
Since (2) holds by property (iv) of Lemma 4.35 it must be that property (1) fails, hence |X | < É. So, since
400k3¶2 log4(n) < n/6, by property (iii) of Lemma 4.35 G[A ∪ B] has less than n/6 vertices so we may apply
Lemma 4.38 to find an induced minor G′ of G which has n′ f n/2 vertices at and least

2c(12n)6k
2x4 log(n)

(12n)6k2x4 = 2c(12n)6k
2x4(log(n)−1) g 2c(12n′)6k

2x4 log(n′)

minimal separators (because any minimal separator that agrees with T , A, B, and C is consistent with A, B, and
C). Since G was chosen as small as possible so that no induced minor of G satisfies (1) and (2), |V (G′)| < |V (G)|,
and G′ has at least 2c(12n′x)2k

2x4 log(n′) minimal separators, it follows that there must be an induced minor of
G′ that satisfies (1) and (2). But then this implies that there is an induced minor of G that satisfied (1) and (2),
a contradiction.

We may then assume that G has an induced minor G′ and sets A,B,C ¦ V (G′), and signature T for G′, A,B,
and C such that (1) and (2) hold. Again, let X be the set of components, X, of G′ − (A ∪ B ∪ C) such that
there exists at least two minimal separators S and S′ of G′ that agree with A,B,C, and T and S ∩X ̸= S′ ∩X.
By assumption |X | g É. Let Ŷ denote the set of vertices that belong to a component, Y , of G′ − (A ∪ B ∪ C)
such that Y /∈ X , hence for all minimal separators SY and S′

Y that agree with A, B, C, and T it holds that

SY ∩ Y = S′
Y ∩ Y . It follows that we may apply Lemma 4.37 to show that there exists a partition of Ŷ into sets

A∗, B∗, and C∗ and a signature T ′ for G′, A′ = A ∪ A∗, B′ = B ∪ B∗, and C ′ = C ∪ C∗ such that if S agrees
with A, B, C, and T , then S agrees with A′, B′, C ′, and T ′. Let G′′ = G′ − C ′. We now show that G′′, A′, B′,
and T ′ satisfies properties (i) - (iii) of this lemma.

First, we make two needed observations which follow from how we defined Ŷ and the fact that A∗, B∗, and
C∗ are a partition of Ŷ . The first is that X = CC(G′ − (A′ ∪B′ ∪C ′)) = CC(G′′ − (A′ ∪B′)). The second is that
for all components, X, of G′′ − (A′ ∪ B′) it holds that N2

G′′ [A′ ∪ B′] ∩X = N2
G′′ [A ∪ B] ∩X = N2

G′ [A ∪ B] ∩X
(the first equality holds because NG′(A∗) and NG′(B∗) are contained in A ∪ B ∪ C, and C ′ ¦ C hence NG′(A∗)
and NG′(B∗) are contained in A∪B. The second equality holds because X is a component of both G′′ − (A∪B)
and of G′ − (A ∪B)) .

We now verify properties (i)-(iii). Property (i) holds since by assumption, |X | g É.
Next, we establish property (ii). Let X be a component of G′′ − (A′ ∪ B′), so X ∈ X . It follows that in G′

there are two minimal separators, SX and S′
X where SX ∩X ̸= S′

X ∩X and SX and S′
X agree with A, B, C, and

T and therefore SX and S′
X agree with A′, B′, C ′, an T ′. By Lemma 4.39 SX − C ′ and S′

X − C ′ are minimal
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separators of G′′ that agree with A′, B′, ∅, and T ′. Since X ¦ V (G′′) we have that C ′ ∩ X = ∅ and it follows
that (SX − C ′) ∩X ̸= (S′

X − C ′) ∩X. This established property (ii).
Lastly, we show property (iii) holds. Let X be a component of G′′ − (A′ ∪ B′), so X is a component of

G′ − (A ∪ B ∪ C) and therefore X is good with respect to A, B, and C in G′. Since N2
G′′ [A′ ∪ B′] ∩ X =

NG′ [A ∪B] ∩X it follows that X is good with respect to A′ and B′ in G′′.

Lemma 4.42. Let G be a graph with n vertices and let A,B,C ¦ V (G). If S ¢ V (G) is a minimal separator that
is consistent with A, B, and C then for each component, X, of G−(A∪B∪C), S∩X is a minimal A,B-separator
of G[A ∪B ∪X].

Proof. Let G be a graph with n vertices and let A,B,C ¦ V (G), let S be a minimal separator of G that is
consistent with A, B, and C, and let X be a component of G− (A∪B ∪C). If S ∩X is not an A,B-separator of
G[A ∪B ∪X], then there is a path, P from A to B through X − S, hence there is a path from A to B in G− S,
so which contradicts the assumption that S is consistent with A, B, and C, hence S ∩X is an A,B-separator of
G[A ∪B ∪X].

Now let s ∈ S ∩ X and assume for a contradiction that (S ∩ X) − s is an A,B-separator of G[A ∪ B ∪ X].
Let A′ and B′ be the S-full components of G− S that contain A and B respectively. Let PA and PB be shortest
paths from A to s and B to s such that all internal vertices are contained in A′ and B′ respectively. It follows
that all internal vertices of PA and PB belong to G− (A ∪B ∪ C ∪ S). Therefore all internal vertices of PA and
PB belong to X − S. It follows that (S ∩X) − s is not an A,B-separator of G[A ∪ B ∪X]. Hence S ∩X is an
A,B-minimal separator of G[A ∪B ∪X].

We are now ready to prove Lemma 3.1.

Proof. [Proof of Lemma 3.1] Let G be a k-creature free graph with n vertices, let É > 1 and ¶ = 3É, let
c be an integer large enough so that 400k3¶2 log4(c) < c/6, let x = 400k3¶2 log4(n), and let G have at least

2c(12n)6k
2x4 log(n) minimal separators. We may then apply Lemma 4.41 to G and É to get an induced minor G′

of G sets A,B ¦ V (G′) an signature T for G′, A, B, and C = ∅ that satisfy properties (i)-(iv) of Lemma 4.41.
Let É′ denote the number of components of G′ − (A ∪ B), so É′ g É by property (i) of Lemma 4.41. Let H be
an É′-bistar with central vertices cA and cB and exactly É′ peripheral vertices, and for each component X of
G′ − (A ∪ B), let vx denote a unique peripheral vertex of H. Let φ be the function that maps the vertices of A
to cA, the vertices of B to cB and the vertices of X ∈ CC(G′ − (A ∪ B)) to vx. Lastly, for each component X of
G′ − (A ∪B), by property (ii) of Lemma 4.41 there are two minimal separators SX , S

′
X , SX ∩X ̸= S′

X ∩X that
agree with A, B, C = ∅ and T . Hence, by Lemma 4.36 there exists minimal separators S1 and S2 that agree with
A, B, C = ∅, and T and for each component, X, of G′ − (A ∪ B), it holds that S1 ∩X ̸= S2 ∩X. We will show
that W = (G′, H, φ, S1, S2) is a connected, good, full generalized É-creature.

To see that property (i) of Definition 3.1 holds let S∗
1 = S1 and S∗

2 = S2 and let u be a peripheral vertex of
H. By how S1 and S2 were defined φ−1(u) ∩ S1 ̸= φ−1(u) ∩ S2 and by Lemma 4.42 they are Aφ, Bφ-minimal
separators in G[Aφ ∪Bφ ∪ φ−1(u)]. Note that this implies that W is a full generalized É-creature.

Property (ii) of Definition 3.1 follows from the fact that S1 and S2 are minimal separators that agree with
Aφ, Bφ, and C = ∅.

That property (iii) of Definition 3.1 holds follows directly from the fact that S1 and S2 are both agree with
A, B, C = ∅, and T , in particular, for every component X of G′ − (A ∪B) = G′ − (Aφ ∪B − φ), the mark of S1

and S2 with respect to X, Aφ and Bφ is T (X).
Next, we show that property (iv) of Definition 3.1 is satisfied. If there was a peripheral vertex, u, such that

φ−1(u) did not have neighbors in both Aφ = A and Bφ = B, then we can see that no minimal separator that
is consistent with A, B, and C = ∅ would contain a vertex from φ−1(u). But S1 and S2 are minimal separators
that are consistent with A, B, and C = ∅ and for every peripheral vertex, u, of H, we have by property (i) that
φ−1(u)∩S1 ̸= φ−1(u)∩S2, therefore φ

−1(u)∩S1 and φ−1(u)∩S2 are not both empty sets. It follows that φ−1(u)
must have neighbors in both Aφ and Bφ.

Lastly, that for every peripheral vertex u ∈ H, φ−1(u) is a connected vertex set follows directly from how we
defined φ, hence W is connected. The fact that each component of G′− (Aφ∪Bφ) = G′− (A∪B) is good follows
from property (iii) of Lemma 4.41, hence W is good. That W is full was observed when proving property (i).

It now follows that W is a connected, good, full generalized É-creature.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited3136

D
o

w
n
lo

ad
ed

 0
6
/2

0
/2

5
 t

o
 1

6
9
.2

3
1
.1

8
6
.1

6
7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



5 Extracting Critters from Generalized Creatures

5.1 Generalized É-Creatures and Their Properties We have already seen the definition of generalized
É-creatures, and three properties that they might or might not have; being full, connected and good. In this
subsection we introduce two more properties of generalized É-creatures, being disjoint and adhesion size ³ for
some integer ³ > 0. We will also prove some basic properties of generalized É-creatures that will be used in order
to extract a sufficiently large critter from them.

Definition 5.1. (Adhesion Size) Let W = (G,H,φ, S1, S2) be a generalized É-creature. For each peripheral
vertex u of H the adhesion size of u is the number of distinct connected components of G[Aφ ∪Bφ] containing at
least one neighbor of φ−1(u). The adhesion size of the generalized É-creature (G,H,φ, S1, S2) is the maximum
adhesion size of its peripheral vertices.

Definition 5.2. (Disjoint Generalized É-Creatures) Let W = (G,H,φ, S1, S2) be a generalized É-creature. If
S1 ∩ S2 = ∅ then W is called a disjoint generalized É-creature.

The definition of generalized É-creatures would lead a reader to have some expectation of what a “typical”
generalized É-creature would look like, and also imagine some strange corner cases that could occur. Over the
next few lemmas we rule out some corner cases; e.g. we show (lemmas that imply) that in a generalzied É-creature
Aφ and Bφ are non-empty and that every peripheral vertex u of H satisfies that there exists a path from Aφ to
Bφ through φ−1(u).

Observation 5.1. Let W = (G,H,φ, S1, S2) be a generalized É-creature. Then, S1 and S2 are disjoint from Aφ
and Bφ.

Proof. The statement follows directly from property (ii) of generalized É-creatures.

Lemma 5.1. Let W = (G,H,φ, S1, S2) be a generalized É-creature. Then, for every peripheral vertex u ∈ H,
φ−1(u) has a neighbor in Aφ and a neighbor in Bφ.

Proof. By property (i) exists S⋆1 ¦ S1 and S⋆2 ¦ S2 such that φ−1(u) ∩ S⋆1 and φ−1(u) ∩ S⋆2 are distinct Aφ, Bφ-
minimal separators in G[Aφ ∪ Bφ ∪ φ−1(u)]. Thus both φ−1(u) ∩ S⋆1 and φ−1(u) ∩ S⋆2 are non-empty. Since
φ−1(u)∩ S⋆1 ̸= ∅, minimality of φ−1(u)∩ S⋆1 implies that there is a path from Aφ to Bφ in G[Aφ ∪Bφ ∪ φ−1(u)].
Let P be a shortest such path, then the first vertex of P is in Aφ, the last is in Bφ, and all internal vertices of P
are in φ−1(u). Since S⋆1 is disjoint from Aφ ∪Bφ it follows that P has at least one internal vertex. Thus the first
and last vertices of P are neighbors of φ−1(u) in Aφ and Bφ respectively.

Observation 5.2. For every generalized É-creature W = (G,H,φ, S1, S2), peripheral vertex u of H, and
component C of G[φ−1(u)]− (S1 ∪ S2), either N(C) ∩Aφ is empty or N(C) ∩Bφ is empty.

Proof. Suppose that N(C) ∩ Aφ ̸= ∅ and N(C) ∩Bφ ̸= ∅ for some component C of G[φ−1(u)]− (S1 ∪ S2). This
contradicts property (i) of generalized É-creatures.

Lemma 5.2. Let G be a graph and (H,φ) be an É-bistar partition of G. Let X be a vertex set in G disjoint from
Aφ∪Bφ. Then X is a Aφ-Bφ-separator in G if and only if X∩φ−1(u) is a Aφ-Bφ-separator in G[Aφ∪Bφ∪φ−1(u)]
for every peripheral vertex u of H.

Proof. We prove instead the equivalence of the negations: that there is a path from Aφ to Bφ in G −X if and
only if there exists a peripheral vertex u of H and a path from Aφ to Bφ in G[Aφ ∪Bφ ∪ φ−1(u)]−X.

The backward direction is trivial. For the forward direction, let P be a shortest path from Aφ to Bφ in
G−X. Then none of the internal vertices of P lie in Aφ ∪Bφ. Since NG(φ−1(u)) ¦ Aφ ∪Bφ for every peripheral
vertex u, it follows that there exists a peripheral vertex u such that V (P ) ¦ Aφ ∪ Bφ ∪ φ−1(u). This concludes
the proof.

Definition 5.3. (Flipping) Let W = (G,H,φ, S1, S2) be a generalized É-creature, and v be a peripheral vertex
of H. Flipping W at v results in the tuple W ′ = (G,H,φ, S′

1, S
′
2) where

S′
1 = (S1 − φ−1(v)) ∪ (S2 ∩ φ−1(v)) and S′

2 = (S2 − φ−1(v)) ∪ (S1 ∩ φ−1(v)).
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Let S⋆1 and S⋆2 be witness separators for W . Flipping S⋆1 and S⋆2 at v results in

S′⋆
1 = (S⋆1 − φ−1(v)) ∪ (S⋆2 ∩ φ−1(v)) and S′⋆

2 = (S⋆2 − φ−1(v)) ∪ (S⋆1 ∩ φ−1(v)).

Lemma 5.3. Let W = (G,H,φ, S1, S2) be a generalized É-creature, v be a peripheral vertex of H, and W ′ =
(G,H,φ, S′

1, S
′
2) be the result of flipping W at v. Then: Furthermore,

• W ′ is a generalized É-creature.

• If S⋆1 and S⋆2 are witness separators for W and S′⋆
1 and S′⋆

2 are the result of flipping S⋆1 and S⋆2 at v, then
S′⋆
1 and S′⋆

2 are witness separators for W ′.

• If W is a disjoint generalized É-creature then W ′ is a disjoint generalized É-creature.

Proof. Let S⋆1 ¦ S1 and S⋆2 ¦ S2 be witness separators for W and S′⋆
1 and S′⋆

2 be the result of flipping S⋆1 and S⋆2
at v.

We observe that for every peripheral vertex u of H we have that

{φ−1(u) ∩ S1, φ
−1(u) ∩ S2} = {φ−1(u) ∩ S′

1, φ
−1(u) ∩ S′

2}

and that
{φ−1(u) ∩ S⋆1 , φ−1(u) ∩ S⋆2} = {φ−1(u) ∩ S′⋆

1 , φ
−1(u) ∩ S′⋆

2 }.
From this it immediately follows that S′⋆

1 and S′⋆
2 satisfy property (i) for W ′, and that W ′ additionally satisfies

properties (iii), and (iv). For property (ii), Lemma 5.2 implies that S′
1 and S′

2 are both Aφ,Bφ-separators.
We argue that all of Aφ is in the same connected component of G − S′

1. By assumption all of Aφ is in the
same connected component of G − S1. Consider an arbitrary pair a, a′ of vertices in A. Since all of Aφ is in
the same connected component of G − S1 there exists a sequence a1, a2, . . . at of vertices in A such that a1 = a,
at = a′, and for every pair ai, ai+1 of consecutive vertices in the sequence it holds that aiai+1 is an edge or there
exists a peripheral vertex u of H such that there is a path from ai to ai+1 through φ−1(u) − S1. In the second
case, by property (iii) it holds that aiai+1 there is a path from ai to ai+1 through φ−1(u) − S2. Thus, since
φ−1(u) ∩ S′

1 ∈ {φ−1(u) ∩ S1, φ
−1(u) ∩ S2} we have that there is a path from ai to ai+1 through φ−1(u) − S′

1.
It follows that a and a′ are in the same component of G − S′

1. But then all of Aφ is in the same component of
G− S′

1. Identical proofs show that Aφ is in the same component of G− S′
2, and that Bφ is in one component of

G− S′
1 and of G− S′

2. Hence W ′ satisfies property (ii) and is a generalized É-creature.
Finally we show that if W is a disjoint generalized É-creature then W ′ is a disjoint generalized É-creature.

Suppose that W is a disjoint generalized É-creature. We then have that

S′
1 ∩ S′

2 =
(

(S1 − φ−1(v)) ∪ (S2 ∩ φ−1(v))
)

∩
(

(S2 − φ−1(v)) ∪ (S1 ∩ φ−1(v))
)

But (S1 − φ−1(v)) is disjoint with (S2 − φ−1(v) and (S2 ∩ φ−1(v)) is disjoint with (S1 ∩ φ−1(v)) because S1 is
disjoint with S2, and (S1−φ−1(v)) is disjoint with (S1 ∩φ−1(v)) and (S2 ∩φ−1(v)) is disjoint with (S2−φ−1(v))
because φ−1(v) is disjoint from its complement. So S′

1 and S′
2 are disjoint and hence W ′ is a disjoint generalized

É-creature.

5.2 Properties of Good Connected Generalized É-Creatures Let (G,H,φ, S1, S2) be a good connected
generalized É-creature and let X be a component of G − (Aφ ∪ Bφ). Since X is good with respect to A and
B we have that X has at most one non-leaf sub-component. We now show that X has precisely one non-leaf
sub-component.

Lemma 5.4. Let W = (G,H,φ, S1, S2) be a good connected generalized É-creature and let X be a component of
G− (Aφ ∪Bφ). Then X has precisely one non-leaf sub-component Y .

Proof. By definition of good, X has at most one non-leaf sub-component. By Lemma 5.1 X has a neighbor in Aφ
and a neighbor in Bφ. Let XA = N2

G[Aφ]∩X and XB = N2
G[Bφ]∩X. We have that XA and XB are non-empty,

and since W is good it follows that XA and XB are anti-complete. Since W is connected there exists a path P
from XA to XB through X − (XA ∪XB). Let P

′ be the sub-path of P obtained by removing the endpoints of P .
Then P ′ is a connected set in X−N2

G[Aφ∪Bφ] with neighbors in two distinct components of G[X∩N2
G[Aφ∪Bφ]].

Thus P ′ is contained in a non-leaf sub-component of X.
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In light of Lemma 5.4 we can give the unique non-leaf sub-component of X a name.

Definition 5.4. Let (G,H,φ, S1, S2) be a good connected generalized É-creature and let X be a component of
G− (Aφ ∪Bφ). Then the kernel of X is the unique non-leaf sub-component of X.

Lemma 5.5. Let (G,H,φ, S1, S2) be a good generalized É-creature, and X be a component of G − (Aφ ∪ Bφ).
Then, for each connected component C of G[X ∩N2

G[Aφ ∪Bφ]] there is precisely one component Y in G[Aφ ∪Bφ]
such that NG[X] ∩ Y ̸= ∅.

Proof. We first argue that there exist at least one component Y in G[Aφ ∪ Bφ] such that NG[X] ∩ Y ̸= ∅. Let
x ∈ X. Since x /∈ (Aφ ∪ Bφ) we have that x ∈ NG(Aφ ∪ Bφ) or x ∈ N2

G(Aφ ∪ Bφ). If x ∈ N2
G(Aφ ∪ Bφ) then x

has a neighbor y in NG(Aφ ∪Bφ), and y ∈ X. We may then choose y as x instead, and therefore, without loss of
generality x ∈ NG(Aφ ∪ Bφ). x has a neighbor in Aφ ∪ Bφ establishing the existence of at least one component
Y in G[Aφ ∪Bφ] such that NG[X] ∩ Y ̸= ∅.

We now prove that Y is unique. Suppose for contradiction that there exists a component Y ′ ̸= Y of G[Aφ∪Bφ]
such that NG[X] ∩ Y ′ ̸= ∅. Let P be a path from NG(Y ) ∩ X to NG(Y

′) ∩ X. Let q be the first vertex on P
such that q ∈ N2

G[Y
′′] for some component Y ′′ ̸= Y of G[Aφ ∪ Bφ]. If q is the first vertex of P then q ∈ NG(Y )

contradicting that N2
G[Y ] ∩N2

G[Y
′′] ∩X is empty (because the generalized É-creature is good). Otherwise, let p

be the predecessor of q on P . We have that p ∈ N2
G[Y ] because p ∈ N2

G[Aφ ∪Bφ] and q is the first on P such that
q ∈ N2

G[Y
′′] for some component Y ′′ ̸= Y of G[Aφ ∪Bφ]. But then p and q contradict that there is no edge from

N2
G[Y ] ∩X to N2

G[Y
′′] ∩X (which should have been true, because the generalized É-creature is good).

Lemma 5.6. Let (G,H,φ, S1, S2) be a good generalized É-creature and X be a component of G− (Aφ ∪Bφ). For
every pair C1, C2 of distinct components of G[Aφ ∪ Bφ] and path P from C1 to C2 through X, P contains an
internal vertex in the kernel of X.

Proof. Let s and t be the first and last vertex of P , respectively. Since NG
2 [C1] and NG

2 [C2] are disjoint and
anti-complete, P has at least 7 vertices. Let s′ and t′ be the successor of s on P and the predecessor of t on P ,
respectively. Let x be the last vertex of P in NG

2 [C1]∩X. The vertex x is well defined because s′ is in NG
2 [C1]∩X.

Let y be the first vertex in N2
G[Aφ ∪ Bφ − C1] ∩X on the sub-path of P from x to t. Since t′ ∈ N2

G[C2] ∩X, y
is well defined. Since NG

2 [C1] ∩X and NG
2 [Aφ ∪Bφ −C1] ∩X are anti-complete we have y ̸= x and xy is not an

edge of G. Let P ′ be the subpath of P from x to y. Since xy is not an edge, P ′ contains at least one internal
vertex. Furthemore P ′ is a path from N2

G[C1]∩X to N2
G[Aφ ∪Bφ−C1]∩X through X −N2

G[Aφ ∪Bφ]. Thus all
the internal vertices of P ′ are contained in a non-leaf sub-component of X, namely the kernel of X, as claimed.

Lemma 5.7. Let G be a k-creature free graph, (G,H,φ, S1, S2) be a good generalized É-creature, and X be a
component of G−(Aφ∪Bφ). Let C be the kernel of X. Then each connected component Y of G[X∩N2

G[Aφ∪Bφ]]
has at least one neighbor in C.

Proof. Since G[X] is connected there exists a path in G[X] that starts in Y and ends in C. Let P be a shortest
such path. In particular, only the first vertex of P is in Y and only the last is in C. If P has no internal vertices
then the first and last vertex of P are adjacent, proving the statement of the lemma. We now show that P has
no internal vertices.

Suppose for contradiction that P has an internal vertex, let a be the endpoint of P which is in Y , and
let q be the internal vertex in P which is adjacent to a. Since q ∈ X − Y and Y is a connected component of
G[X∩N2

G[Aφ∪Bφ]] it follows that q /∈ N2
G[Aφ∪Bφ]. Then q is in a connected component Z of G[X−N2

G[Aφ∪Bφ]].
Since q /∈ C we have that Z ̸= C and so Z is not the kernel of X. But then NG(Z) ¦ Y and the first vertex on
P outside of Z is in Y , contradicting that only the first vertex of P is in Y . We conclude that P has no internal
vertices, and this shows the statement of the lemma.

5.3 Dissolving a Peripheral Vertex

Definition 5.5. Let W = (G,H,φ, S1, S2) be a generalized É-creature, and let u be a peripheral vertex of H.
Dissolving u in H produces a tuple W ′ = (G′, H ′, φ′, S′

1, S
′
2) where:

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited3139

D
o

w
n
lo

ad
ed

 0
6
/2

0
/2

5
 t

o
 1

6
9
.2

3
1
.1

8
6
.1

6
7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



• G′ = G− (φ−1(u)− (A1(W ) ∪B1(W ))),

• H ′ = H − u.

• For all v ∈ (V (G′),

φ′(v) =











cA if v ∈ φ−1(u) ∩A1(W )

cB if v ∈ φ−1(u) ∩B1(W )

φ′(v) otherwise

• S′
1 = S1 − φ−1(u) and S′

2 = S2 − φ−1(u).

Lemma 5.8. Let W = (G,H,φ, S1, S2) be a generalized É-creature and let u be a peripheral vertex of H. Let
W ′ = (G′, H ′, φ′, S′

1, S
′
2) be the result of dissolving u in W . Then H ′ is a (w − 1)-bistar partition of G′.

Furthermore, for every peripheral vertex v of H ′ it holds that

• NG′ [φ′−1(v)] = NG[φ
−1(v)],

• NG′ [φ′−1(v)] ∩Aφ′ = NG[φ
−1(v)] ∩Aφ,

• and NG′ [φ′−1(v)] ∩Bφ′ = NG[φ
−1(v)] ∩Bφ.

Proof. We first show that H ′ is a (w − 1)-bistar partition of G′. Let xy ∈ E(G′). If neither φ(x) nor φ(y) is
equal to u then φ′(x) = φ(x) and φ′(y) = φ(y) so φ′(x) = φ′(y) or φ′(x)φ′(y) ∈ E(H ′). If both φ(x) and φ(y)
are equal to u then {x, y} ¦ (A1(W ) ∪ B1(w)) ∩ φ−1(u). But A1(W ) and B1(w) are disjoint and anticomplete
so {x, y} ¦ A1(W ) ∩ φ−1(u) or {x, y} ¦ B1(W ) ∩ φ−1(u). In the first case φ′(x) = φ′(y) = cA, in the second
φ′(x) = φ′(y) = cB . If φ(x) = u and φ(y) ̸= u then φ(y) ∈ {cA, cB}. If φ(y) = cA then y ∈ Aφ and hence, since
xy ∈ E(G), x ∈ A1(W ). But then φ′(x) = φ′(y) = cA. If φ(y) = cB then y ∈ Bφ and hence, since xy ∈ E(G),
x ∈ B1(W ). But then φ′(x) = φ′(y) = cB . Finally, V (H ′) = V (H) − {u}. Thus we conclude that H ′ is a
(w − 1)-bistar partition of G′.

For the second part of the statement, We have that φ′−1(v) = φ−1(v) and that φ−1(u) = φ−1(v) are disjoint
and anticomplete. Furthermore, since (H ′φ′) is an (É − 1)-bistar partition of G′ we have that NG′(φ′−1(v)) ¦
Aφ′ ∪ Bφ′ . Since Aφ′ ¦ Aφ ∪ φ−1(u) and Bφ′ ¦ Bφ ∪ φ−1(u) it follows that N ′

G(φ
′−1(v)) ¦ Aφ ∪ Bφ. But then

NG′ [φ′−1(v)] = NG[φ
−1(v)], NG′ [φ′−1(v)]∩Aφ′ = NG[φ

−1(v)]∩Aφ, and NG′ [φ′−1(v)]∩Bφ′ = NG[φ
−1(v)]∩Bφ.

This completes the proof.

Lemma 5.9. Let W = (G,H,φ, S1, S2) be a generalized É-creature and let u be a peripheral vertex of H. Let
W ′ = (G′, H ′, φ′, S′

1, S
′
2) be the result of dissolving u in W . Then

• W ′ is a generalized (É − 1)-creature. Furthermore,

• if W is a full generalized É-creature then W ′ is a full generalized (É − 1)-creature,

• if W is a good generalized É-creature then W ′ is a good generalized (É − 1)-creature,

• if W is a disjoint generalized É-creature then W ′ is a disjoint generalized (É − 1)-creature,

• if W is a good connected generalized É-creature then W ′ is a good connected generalized (É − 1)-creature,

• if W has adhesion size ³ then W ′ has adhesion size ³. For every peripheral vertex v of H ′ its adhesion size
in W ′ is at most its adhesion size in W .

Proof. By Lemma 5.8 we have that H ′ is a (w − 1)-bistar partition of G′. We now check the properties of
generalized (É − 1) creatures for W ′.

• For property (i) let S⋆1 , S
⋆
2 be witness separators for W , and set S′⋆

1 = S⋆1 −φ−1(u) and S′⋆
2 = S⋆2 −φ−1(u).

We claim that S′⋆
1 and S′⋆

2 are witness separators for W ′. Let v′ be a peripheral vertex of H ′. Let
Z = NG[φ

−1(v)]. By Lemma 5.8 we have Z = NG′ [φ′−1(v)]. Since S⋆1 and S⋆2 are witness separators for W
it follows that S⋆1 ∩φ−1(v) and S⋆2 ∩φ−1(v) are distinct minimal Aφ, Bφ-separators in G[Aφ∪Bφ∪φ−1(v)].
Then S⋆1∩φ−1(v) and S⋆2∩φ−1(v) are distinct minimal Aφ∩Z,Bφ∩Z-separators in G[(Aφ∪Bφ∪φ−1(v))∩Z].
Since Z = NG′ [φ′−1(v)] and S′⋆

1 ∩Z = S⋆1∩Z and S′⋆
2 ∩Z = S⋆2∩Z it follows that S′⋆

1 ∩φ′−1(v) and S′⋆
2 ∩φ′−1(v)

are distinct minimal Aφ′ ∩Z,Bφ′ ∩Z-separators in G′[(Aφ′ ∪Bφ′ ∪φ′−1(v))∩Z]. Since every path from Aφ′

to Bφ′ through φ′−1(v) is a path from Aφ′ ∩Z to Bφ′ ∩Z through φ′−1(v)∩Z it follows that S′⋆
1 ∩φ′−1(v)

and S′⋆
2 ∩ φ′−1(v) are distinct minimal Aφ′ ,Bφ′ -separators in G′[Aφ′ ∪Bφ′ ∪ φ′−1(v) ∩ Z].
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• For property (ii) we observe that

A1(W
′) ∩ φ−1(u) = Aφ′ ∩ φ−1(u) = A1(W ) ∩ φ−1(u),

B1(W
′) ∩ φ−1(u) = Bφ′ ∩ φ−1(u) = B1(W ) ∩ φ−1(u),

Aφ′ − φ−1(u) = Aφ − φ−1(u), Bφ′ − φ−1(u) = Bφ − φ−1(u), and G′ − φ−1(u) = G − φ−1(u). Thus
A1(W

′) = A1(W ) and B1(W
′) = B1(W ). Since Aφ′ ¦ A1(W ) and Bφ′ ¦ B1(W ) we conclude that W ′

satisfies property (ii).

• For property (iii) let C1 and C2 be components of G[A′
φ ∪ B′

φ] and let v be a peripheral vertex of H ′. Let
Z = N ′

G[φ
′−1(v)], by Lemma 5.8 we have Z = NG[φ−1(v)]. Suppose there is a path P in G′ from C1 to

C2 through φ′−1(v)−S′
1. Then P is a path in G′ from C1 ∩Z to C2 ∩Z through (φ′−1(v)−S′

1)∩Z. Hence
P is a path in G from C1 ∩ Z to C2 ∩ Z through (φ−1(v)− S′

1) ∩ Z. But φ−1(v) ∩ S′
1 = φ−1(v) = ∩S1, so

P is a path in G from C1 to C2 through (φ−1(v)− S1).

By Property (iii) applied to W there exists a path P ′ from C1 to C2 through (φ−1(v) − S2). Then P ′ is
a path in G from C1 ∩ Z to C2 ∩ Z through (φ−1(v) − S2) ∩ Z. Hence P ′ is a path in G′ from C1 ∩ Z to
C2 ∩Z through (φ′−1(v)−S2)∩Z. But φ′−1(v)∩S2 = φ′−1(v) = ∩S′

2, so P
′ is a path in G′ from C1 to C2

through (φ′−1(v)− S′
2).

The proof that if there is a path P in G′ from C1 to C2 through φ′−1(v) − S′
2 then there exists a path P ′

in G′ from C1 to C2 through φ′−1(v)− S′
1 is symmetric.

• For property (iv) consider a peripheral vertex v of H ′ and a component CA of G[Aφ′ ] that has a neighbor in
φ′−1(v) in G′. Let x be a vertex in CA that has a neighbor in φ′−1(v) in G′. Since φ′−1(v) and φ−1(u) are
disjoint and anticomplete, and x ∈ Aφ ∪φ−1(u) it follows that x ∈ Aφ. Let C

′
A be the component of G[Aφ]

that contains x. Since φ−1(v) = φ′−1(v) the component C ′
A has a neighbor in φ−1(v) in G. By Property

(iv) applied to W there is a path P from C ′
A to Bφ through φ−1(v).

Since C ′
A ¦ Aφ ¦ Aφ′ , Bφ ¦ Bφ′ , and φ−1(v) = φ′−1(v), it follows that P is a path in G′ from C ′

A to Bφ′

through φ′−1(v). But C ′
A ¦ Aφ ¦ Aφ′ implies that C ′

A ¦ CA so P is a path in G′ from CA to Bφ′ through
φ′−1(v).

The proof that if a component CB of G[Bφ′ ] has a neighbor in φ′−1(v) in G′, then there exists a path in G′

from CB to Aφ′ through φ′−1(v) is symmetric.

Next we verify that whenever W is full, or good, or disjoint, or connected, or has adhesion size ³ then W ′

has the same property.

• First, suppose that W is full and let S⋆1 = S1, S
⋆
2 = S2 be witness separators for W . In the proof that W ′

had property (i) we showed that S′⋆
1 = S⋆1 − φ−1(u) and S′⋆

2 = S⋆2 − φ−1(u) are witness separators for W ′.
Then S′⋆

1 = S1 − φ−1(u) = S′
1 and S′⋆

2 = S2 − φ−1(u) = S′
2, so W

′ is full as well.

• Suppose now that W is disjoint. Then S1 ∩ S2 = ∅. Since S′
1 ¦ S1 and S′

2 ¦ S2, W
′ is also disjoint.

• If W is connected then, for every peripheral vertex v of H ′, G′[φ′−1(v)] = G[φ−1(v)] so W ′ is connected as
well.

• For bounding the adhesion size of W ′ let v be a peripheral vertex of H ′. By Lemma 5.8 we have that
NG′(φ′−1(v)) = NG(φ

−1(v)) ¦ Aφ ∪ Bφ. Since Aφ ∪ Bφ ¦ Aφ′ ∪ Bφ′ , every connected component of
Aφ ∪Bφ is contained in some connected component of Aφ′ ∪Bφ′ . Hence the adhesion size of v in W ′ is at
most v’s adhesion size in W . Therefore, if W has adhesion size ³ then the adhesion size of W ′ is at most
³.s

• IfW is a good connected generalized É-creature we have already shown thatW ′ is connected. We now show
thatW ′ is also good. Let v be a peripheral vertex of H ′ and X = φ′−1(v). Since X = φ′−1(v) = φ−1(v) and
W is connected it follows that X is a component of G− (Aφ∪Bφ). Since W ′ is connected X is a component
of G′ − (Aφ′ ∪ Bφ′). By Lemma 5.8 we have that NG′ [X] = NG[X], NG′X] ∩ Aφ′ = NG[X] ∩ Aφ, and
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NG′ [X] ∩Bφ′ = NG[X] ∩Bφ. Thus N2
G′ [Aφ′ ∪Bφ′ ] ∩X = N2

G[Aφ ∪Bφ] ∩X. Hence every sub-component
Y of X in G′ with respect to Aφ′ and Bφ′ is also a sub-component of X in G with respect to Aφ and Bφ.
Since W is good it follows that X has at most one non-leaf sub-component in G with respect to Aφ and
Bφ. Thus X has at most one non-leaf sub-component in G′ with respect to Aφ′ and Bφ′

Suppose now for contradiction that there are two components C1 and C2 of G′[Aφ′ ∪ Bφ′ ] such that
N2
G′ [C1] ∩X is not anticomplete with N2

G′ [C2] ∩X. Then there is a path P on at most 6 vertices from C1

to C2 through X. Let x be the first vertex of P and y be the last vertex of P . By Lemma 5.8 both x and y
are in Aφ ∪Bφ. But then P is a path on at most 6 vertices from x to y through X in G. Since x and y are
in different components of G′[Aφ′ ∪ Bφ′ ], they are also in different components C ′

1 and C ′
2 of G[Aφ ∪ Bφ].

But then P is a path on at most 6 vertices from C ′
1 to C ′

2 through X in G, contradicting that N2
G[C

′
1] ∩X

is anticomplete with N2
G[C

′
2] ∩X.

5.4 Absorbing a Component

Definition 5.6. Let W = (G,H,φ, S1, S2) be a generalized É-creature with É g 2. We say a component C of
G[Aφ ∪Bφ] is absorbable if there exists a peripheral vertex, u, of H where NG(C) ¦ φ−1(u).

Let C be an absorbable component of G[Aφ ∪ Bφ] and let u ∈ H be the vertex such that NG(C) ¦ φ−1(u).
Absorbing C in W produces a tuple W ′ = (G,H,φ′, S1, S2) where φ

′(x) = φ(x) for all x ∈ G− C and φ′(x) = v
for all x ∈ C.

Lemma 5.10. Let É g 2 andW = (G,H,φ, S1, S2) be a generalized É-creature, and C be an absorbable component
of G[Aφ ∪Bφ]. Let W ′ = (G,H,φ′, S1, S2) be the result of absorbing U in W . Then

• W ′ is a generalized É-creature. Furthermore,

• if W is a full generalized É-creature then W ′ is a full generalized É-creature,

• if W is a good generalized É-creature then W ′ is a good generalized É-creature,

• if W is a disjoint generalized É-creature then W ′ is a disjoint generalized É-creature,

• if W is a connected generalized É-creature then W ′ is a connected generalized É-creature,

• if W has adhesion size ³ then W ′ has adhesion size ³. For every peripheral vertex v of H its adhesion size
in W ′ is at most its adhesion size in W .

Proof. We prove the statement of the lemma for C being a component of G[Aφ]. We show that (H,φ′) is an
É-bistar partition of G. Let xy ∈ E(G). If x and y are both in C then φ′(x) = φ′(y) = v. If neither x nor y are
in C then φ′(x) = φ(x), φ′(y) = φ(y) and therefore either φ′(x)φ′(y) is an edge of H or φ′(x) = φ′(y). If x ∈ C
and y /∈ C then φ′(y) = φ(y) = v and φ′(x) = v. Hence (H,φ′) is an É-bistar partition of G.

Let u be the peripheral vertex ofH such thatNG(C) ¦ φ−1(u). Before proving thatW ′ satisfies the properties
of generalized É-creatures we show that Aφ′ is non-empty. Since É g 2 there exists a peripheral vertex v ̸= u of
H. By Lemma 5.1 v has a neighbor in Aφ. Since v ̸= u this neighbor is not in C, and hence Aφ′ is non-empty.

Let S⋆1 ¦ S1 and S⋆2 ¦ S2 be witness separators for W . We now proceed to verify that W ′ satisfies the
properties of generalized É-creatures.

• For property (i) let v be a peripheral vertex of H. Suppose first v ̸= u. Then G[Aφ′ ∪ Bφ′ ∪ φ′−1(v)] =
G[Aφ∪Bφ∪φ−1(v)]−C. Further, C is a connected component of G[Aφ∪Bφ∪φ−1(v)] sinceNG(C) ¦ φ−1(u).
So S⋆1 and S⋆2 are minimal Aφ′ ,Bφ′ -separators in G[Aφ′ ∪Bφ′ ∪ φ′−1(v)].

We now consider the case that v = u. We have that S⋆1 and S⋆2 separate Aφ from Bφ. Additionally Aφ′ ¦ Aφ
and Bφ′ ¦ Bφ. So S⋆1 and S⋆2 are Aφ′ ,Bφ′ separators in G and hence S⋆1 ∩ φ′−1(v) and S⋆2 ∩ φ′−1(v) are
Aφ′ ,Bφ′ -separators in G[Aφ′ ∪Bφ′ ∪ φ′−1(v)].

We prove that S⋆1∩φ−1(v) is aminimalAφ′ ,Bφ′ -separator inG[Aφ′∪Bφ′∪φ′−1(v)]. Suppose for contradiction

that a proper subset Ŝ1 of S⋆1 ∩ φ−1(v) is also an Aφ′ ,Bφ′ -separator in G[Aφ′ ∪Bφ′ ∪ φ′−1(v)]. Then there

exists a partition of Aφ′ ∪ Bφ′ ∪ φ′−1(v) into L, R, and Ŝ1 such that Aφ′ ¦ L, Bφ′ ¦ R, and there are
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no edges from L to R. Since G[C] is connected we have that C ¦ L or C ¦ R. If C ¦ L then Ŝ1 is
separates Aφ′ ∪ C = Aφ from Bφ′ = Bφ, contradicting that S⋆1 ∩ φ−1(v) is a minimal Aφ,Bφ-separator in
G[Aφ ∪Bφ ∪ φ−1(v)].

Thus C ¦ R. However, since Aφ′ is non-empty and Aφ is contained in a connected component of G − S1

(by property (ii) applied to W ), there is a path P ′ from Aφ −C = Aφ′ to C in G[A1(W )]. Since A1(W ) is
disjoint from Bφ and NG(C) ¦ φ−1(u) = φ−1(v) the path P ′ is a path from Aφ′ to C through φ−1(v)−S1.

Since V (P ′) is disjoint from S1 and Ŝ1 ¦ S1 it follows that all of P ′ must lie in R. But then the endpoint
of P ′ in Aφ′ must be in R, contradicting that Aφ′ ¦ L. Hence S⋆1 ∩ φ−1(v) is a minimal Aφ′ ,Bφ′ -separator
in G[Aφ′ ∪Bφ′ ∪ φ′−1(v)].

The proof that S⋆2 ∩ φ−1(v) is a minimal Aφ′ ,Bφ′ -separator in G[Aφ′ ∪Bφ′ ∪ φ′−1(v)] is symmetric.

• For property (ii) it is sufficient to observe that

Aφ′ = Aφ − C ¦ A1(W ) and Aφ′ = Aφ − C ¦ A2(W ),

Bφ′ = Bφ ¦ B1(W ) and Bφ′ = Bφ ¦ B2(W ).

Further A1(W ) and B1(W ) are components of G−S1, while A2(W ) and B2(W ) are components of G−S2.

• For property (iii) let v be a peripheral vertex of H, and C1 and C2 be components of G[Aφ′(v) ∪Bφ′ ] such
that there is a path P from C1 to C2 through φ′−1(v) − S1. Note that C1 and C2 are also components of
G[Aφ(v) ∪Bφ] and that C1 ̸= C and C2 ̸= C because they are components of G[Aφ′ ∪Bφ′ ].

If V (P ) does not intersect C then P is a path in G from C1 to C2 through φ−1(v)− S1. By Property (iii)
applied to W there exists a path P ′ in G from C1 to C2 through φ−1(v)− S2 ¦ φ′−1(v)− S2.

If V (P ) intersects C then C ¦ φ′−1(v) so v = u. We have that P contains a path P1 from C1 to C through
φ′−1(v) − (S1 ∪ C) and a path P2 from C to C2 through φ′−1(v) − (S1 ∪ C). But φ′−1(v) − C = φ−1(v)
so P1 is a path from C1 to C through φ−1(v) − S1 and P2 is a path from C to C2 through φ−1(v) − S1.
By Property (iii) applied to W there exist paths P ′

1 from C1 to C through φ−1(v)− S2 and P ′
2 from C to

C2 through φ−1(v)− S2. But then C1 and C are in the same component of G[C1 ∪ C ∪ C2 ∪ φ−1(v)]− S2

and C and C2 are in the same component of G[C1 ∪ C ∪ C2 ∪ φ−1(v)]− S2, so C1 and C2 are in the same
component of G[C1 ∪C ∪C2 ∪ φ−1(v)]− S2. We have that C ∪ φ−1(v) = φ′−1(v) so there exists a path P ′

from C1 to C2 through φ′−1(v)− S2.

The proof that if there exists a path from C1 to C2 through φ′−1(v)− S2 then there exists a path from C1

to C2 through φ′−1(v)− S1 is symmetric.

• For property (iv) let CB be a component of G[Aφ′ ∪ Bφ′ ] and v be a peripheral vertex of H such that CB
has a neighbor in φ′−1(v).

We first prove that if CB is a component of G[Aφ′ ] then there exists a path from CB to Bφ′ through
φ′−1(v). We have that CB is also a component of G[Aφ] and, and that C and CB are anti-complete. Since
φ−1(v) = φ′−1(v) − C it follows that CB has a neighbor in φ−1(v). By property (iv) applied to W there
is a path P from CB to Bφ through φ−1(v). Since Bφ′ = Bφ this path P is also a path from CB to Bφ
through φ′−1(v).

We prove that if CB is a component of G[Bφ′ ] then there exists a path from CB to Aφ′ through
φ′−1(v). We have that CB is also a component of G[Bφ], and that C and CB are anti-complete. Since
φ−1(v) = φ′−1(v)− C it follows that CB has a neighbor in φ−1(v). By property (iv) applied to W there is
a path P from CB to Aφ through φ−1(v). Let x be the endpoint of P in Aφ. If x /∈ C then x ∈ Aφ′ and
thus P is a path from CB to Aφ′ through φ′−1(v).

If x ∈ C then v = u (since C has a neighbor in φ−1(v)) and C ¦ φ′−1(v). Since Aφ′ is non-empty and Aφ
is contained in a connected component of G−S1 (by property (ii) applied to W ), there is a path P ′ from C
to Aφ − C = Aφ′ in G[A1(W )]. Since A1(W ) is disjoint from Bφ and NG(C) ¦ φ−1(u) = φ−1(v) the path
P ′ is a path from C to Aφ′ through φ−1(v).

Consider now the walk P ′′ that starts in CB , follows P to C, goes through C to the startpoint of P ′ and
then follows P ′ to Aφ′ . Since all internal vertices of P are in φ−1(v) ¦ φ′−1(v), C is a subset of φ′−1(v),
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and all internal vertices of P ′ are in φ−1(v) ¦ φ′−1(v) we have that P ′′ is a walk from CB to Aφ′ through
φ′−1(v). Then V (P ′′) contains a path from CB to Aφ′ through φ′−1(v).

Next we verify that whenever W is full, or good, or disjoint, or connected, or has adhesion size ³ then W ′

has the same property.

• If W is a full generalized É-creature, then S⋆1 = S1 and S⋆2 = S2, so W
′ is also a full generalized É-creature.

• If W is a disjoint generalized É-creature, then S1 ∩ S2 = ∅ and therefore W ′ is also disjoint generalized
É-creature.

• If W is a connected generalized É-creature, then for every peripheral vertex v ̸= u, G[φ′−1(v)] = G[φ−1(v)]
is connected. Furthermore, G[φ′−1(u)] = G[φ−1(u) ∪ C], G[φ−1(u)] is connected because W is connected,
G[C] is connected because it is a connected component. Finally C has a neighbor in G[φ−1(u)] because
NG(C) ¦ φ−1(u), Aφ−C is non-empty, and A1(W ) is a connected subgraph of G that contains Aφ. Hence
G[φ′−1(u)] is connected and therefore then W ′ is a connected generalized É-creature.

• Suppose thatW is a good connected generalized É-creature. Let v be a peripheral vertex ofH. We show that
φ′−1(v) good with respect to Aφ′ and Bφ′ . If v ̸= u then G[Aφ′ ∪Bφ′ ∪φ′−1(v)] = G[Aφ∪Bφ∪φ−1(v)]−C.
Further, C is a connected component of G[Aφ ∪ Bφ ∪ φ−1(v)] since NG(C) ¦ φ−1(u). Thus, since φ−1(v)
is good with respect to Aφ and Bφ, φ

′−1(v) = φ−1(v) is also good with respect to Aφ′ and Bφ′ .

We now consider the case when v = u. We have that φ′−1(u) = φ−1(u) ∪ C. We have already shown
that G[φ′−1(u)] is connected. First, suppose for contradiction that there exist two components C1 and
C2 of G[Aφ′ ∪ Bφ′ ] such that N2

G[C1] ∩ φ′−1(u) is not anti-complete with N2
G[C2] ∩ φ′−1(u). Then there

exists a path P on at most six vertices from C1 to C2 through φ′−1(u). If P does not contain any internal
vertices in C then all internal vertices in P are in φ−1(u). This contradicts that N2

G[C1] ∩ φ−1(u) is anti-
complete with N2

G[C2] ∩ φ−1(u). So P contains an internal vertex in C. But then P contains a sub-path
on at most 5 vertices from C1 to C through φ−1(u), contradicting that N2

G[C1] ∩ φ−1(u) is anti-complete
with N2

G[C] ∩ φ−1(u). Hence every pair C1 and C2 of distinct components of G[Aφ′ ∪ Bφ′ ] satisfy that
N2
G[C1] ∩ φ′−1(u) is anti-complete with N2

G[C2] ∩ φ′−1(u).

Suppose now for contradiction that φ′−1(u) contains two distinct non-leaf sub-components Z1 and Z2 with
respect to Aφ′ and Bφ′ . Since Aφ′ ∪ Bφ′ ¦ Aφ ∪ Bφ it follows that N2

G[Aφ′ ∪ Bφ′ ] ¦ N2
G[Aφ ∪ Bφ]. Thus

φ−1(u) − N2
G[Aφ ∪ Bφ] ¦ φ′−1(u) − N2

G[Aφ′ ∪ Bφ′ ]. Hence every sub-component of φ−1(u) with respect
to Aφ and Bφ is contained in a sub-component of φ′−1(u) with respect to Aφ′ and Bφ′ . Since W is good,
Lemma 5.4 yields that φ−1(u) has a kernel, namely a unique non-leaf sub-component Z with respect to Aφ
and Bφ. Since Z is fully contained in a sub-component of φ′−1(u) with respect to Aφ′ and Bφ′ , at least one
of Z1 and Z2 is disjoint from Z. Without loss of generality, Z1 ∩ Z = ∅.
Since Z1 is a non-leaf sub-component of φ′−1(u) with respect to Aφ′ and Bφ′ , there exist two components
C1 and C2 of G[Aφ′ ∪ Bφ′ ] such that there is a path P from C1 to C2 through (N2

G[C1] ∩ φ′−1(u)) ∪ Z1 ∪
(N2

G[C2] ∩ φ′−1(u)). Notably, P is disjoint from the kernel Z of φ−1(u) with respect to Aφ and Bφ. If P
does not contain any vertices of C then P is a path from C1 to C2 through φ−1(u), contradicting Lemma 5.6
which states that every path from C1 to C2 through φ−1(u) must intersect the kernel Z of φ−1(u). If P
does contain a vertex of C then P contains a sub-path P ′ from C1 to C through φ−1(u), again contradicting
Lemma 5.6 which states that every path from C1 to C through φ−1(u) must intersect the kernel Z of φ−1(u).
Thus W ′ is a good connected generalized É-creature

• We now bound the adhesion size of (every peripheral vertex of) W ′. For every peripheral vertex v of H
with v ̸= u we have N(φ′−1(v)) = N(φ−1(v)). For u we have N(φ′−1(u)) = N(φ−1(v)) − C. Since every
connected component of G[Aφ′ ∪ Bφ′ ] is a component of G[Aφ ∪ Bφ] it follows that the adhesion size of
every peripheral vertex v of H in W ′ is at most its adhesion size in W . Hence, if W has adhesion size ³
then W ′ has adhesion size ³.

The proof for the case when C is a component of G[Bφ] is symmetric.
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5.5 Extracting a Generalized É-Creature with Bounded Adhesion Size. Let G be a k-creature free
graph, and W = (G,H,φ, S1, S2) be a connected good full generalized É-creature. Our goal this subsection is
to show that we can extract from W a connected good full (É/2)-creature with adhesion size 2k. This result is
encapsulated in Lemma 5.12, which is the only lemma that will be used outside of this section.

Lemma 5.11. Let W = (G,H,φ, S1, S2) be a good generalized É-creature, let X be a component of G−(Aφ∪Bφ),
and let C be a component of G−X. Then there do not exist k distinct components D1, D2, . . ., Dk of G[Aφ∪Bφ]
such that D1 ∪D2 ∪ . . . ∪Dk ¦ C and N(X) ∩Di ̸= ∅ for every i.

Proof. Suppose for contradiction that D1, D2, . . ., Dk exist. Let Â be the kernel of X.
For every i f k let Yi be a connected component of G[X ∩ N2

G[Aφ ∪ Bφ]] that has a neighbor in Di. By

Lemma 5.5 the components Y1, . . . , Yk are distinct. By Lemma 5.7 each Yi has a neighbor ai in Â. The vertices
a1, . . . , ak need not be distinct.

For every i, ai has a neighbor xi in Yi. We have that xi is either in the first or second neighborhood of
Aφ∪Bφ. However, xi can’t be in the first neighborhood of Aφ∪Bφ since then ai would be in the second, and it is

not (since ai ∈ Â). Thus xi is in the second neighborhood of Aφ∪Bφ. Then xi has a neighbor yi in NG(Aφ∪Bφ),
and therefore yi ∈ Yi. Since yi ∈ NG(Aφ ∪ Bφ) it follows that yi has a neighbor di ∈ Aφ ∪ Bφ. By Lemma 5.5,
di ∈ Di.

We show that (Â, {x1, . . . , xk}, {y1, . . . , yk}, C) is a k-creature. The sets G[Â] and G[C] are connected (by
definition of Â and C) and anti-complete. Further Â and {y1, . . . , yk} are anti-complete because {y1, . . . , yk} ¦
NG[Aφ ∪Bφ] while Â∩NG[Aφ ∪Bφ] = ∅. Similarly C and {x1, . . . , xk} are anti-complete because {x1, . . . , xk} ¦
N2
G(Aφ∪Bφ) while C ¦ (Aφ∪Bφ). Every x1 has a neighbor ai in Â, and every yi has a neighbor di ∈ C. Finally

xiyi is an edge and xiyj is not an edge for i ̸= j because xi ∈ Yi while yj ∈ Yj there are no edges from Yi to

Yj since they are distinct components of N2
G[Aφ ∪ Bφ]]. Thus (Â, {x1, . . . , xk}, {y1, . . . , yk}, C) is a k-creature,

contradicting that G is k-creature free. The statement of the lemma follows.

Lemma 5.12. Let W = (G,H,φ, S1, S2) be a connected, good, and full generalized É-creature. Then there exists
an induced subgraph G′ of G and connected, good and full generalized (É/2)-creature W ′ = (G′, H ′, φ′, S′

1, S
′
2)

with max adhesion size 2k.

Proof. Without loss of generality, W has no absorbable components. If W has absorbable components, let Ŵ
be the result of absorbing all absorbable components in W . By Lemma 5.10, Ŵ is a connected, good and full
generalized É-creature, and Ŵ has no absorbable components. Then G, Ŵ also satisfy the premise of the lemma.
We may therefore assume that W has no absorbable components.

Claim 5.1. For every peripheral vertex u of H and every component C of G− φ−1(u), there exists a peripheral
vertex v in H such that φ−1(v) ¦ C.

Proof. Suppose for contradiction that there exists a peripheral vertex u of H and a component C of G− φ−1(u)
such that there does not exist a peripheral vertex v satisfying φ−1(v) ¦ C.

For every peripheral vertex v of H we have that φ−1(v)∩φ−1(u) = ∅ and that G[φ−1(v)] is connected (since
W is connected). Thus φ−1(v) ¦ C or φ−1(v) ∩ C = ∅. By our assumption φ−1(v) ∩ C = ∅ for every peripheral
vertex v other than u. But then C is a component of G[A ∪ B] and NG(C) ¦ φ−1(u), so C is absorbable,
contradicting the assumption that W has no absorbable components.

Let S be the set of peripheral vertices u of H such that G− φ−1(u) has at most two connected components.

Claim 5.2. |S| g É/2.

Proof. Let Ĝ be the (bipartite) graph that has, on one side, a vertex xu for every peripheral vertex u of H, and
on the other side a vertex vC for every connected component C of G[A ∪ B]. There is an edge from xu to xC in
Ĝ if and only if there is an edge from φ−1(u) to C in G. Let P̂ = {xu : u ∈ V (G) \ {cA, cB}}. That is, P̂ is the
set of vertices of Ĝ corresponding to peripheral vertices of H.

Note that Ĝ is obtained from G by contracting every edge uv ∈ E(G) such that φ−1(u) = φ−1(v). Thus Ĝ
is connected. Let T̂ be an inclusion minimal connected subgraph of G such that P̂ ¦ V (T̂ ). We have that T̂ is a
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tree (since removing an edge of a cycle preserves connectivity) and that every leaf of T̂ is in P̂ (since removing a
leaf from a tree preserves connectivity).

We claim that for every peripheral vertex u if H which is not in S, the degree of xu in T̂ is at least 3. Suppose
not, and let C1, C2, C3 be distinct components of G−φ−1(u) (the components C1, C2, C3 are well defined because
u /∈ S). Let v1, v2, and v3 be peripheral vertices of H such that φ−1(v1) ¦ C1, φ

−1(v2) ¦ C2, and φ
−1(v3) ¦ C3.

The vertices v1, v2, v3 exist by Claim 5.1.
Since the degree of xu in T̂ is at most two, T̂ −xu has at most two connected components. By the pigeon hole

principle two of the vertices {xv1 , xv2 , xv3} appear in the same component of T̂ − xu. Without loss of generality,
this is xv1 and xv2 . But then there is a path from xv1 to xv2 in Ĝ avoiding xu, and therefore a path from
φ−1(v1) to φ

−1(v2) in G avoiding φ−1(u). But this contradicts that φ−1(v1) and φ
−1(v2) are subsets of different

components of G− φ−1(u). We conclude that for every peripheral vertex u if H which is not in S the degree of
xu in T̂ is at least 3.

Let P̂3 be the set of vertices in P̂ that have degree at least 3 in T̂ . A well known fact about trees is that
every tree has more leaves than vertices of degree at least 3 (See e.g. [14], Chapter 1, Exercise 17). Therefore, T̂
has at least |P̂3| leaves. For every leaf xℓ of T̂ , we have that ℓ is a peripheral vertex of H and that ℓ ∈ S because
the degree of xℓ in T̂ is 1. It follows that |S| g |P̂3|, while |P̂3| is at least the number of peripheral vertices of H
which are not in S. It follows that |S| g É/2.

We can now finish the proof of the Lemma. By Lemma 5.11, the adhesion size (in W ) of every u ∈ S is at
most 2k. Let W ′ be the generalized |S|-creature obtained from W by dissolving every peripheral vertex not in S.
By Lemma 5.9 W ′ is in fact a connected, good and full generalized |S|-creature, by Claim 5.2 we have |S| g É/2,
and finally (again by Lemma 5.9) the adhesion size (in W ′) of every u ∈ S is at most 2k. The statement of the
lemma follows.

5.6 Extracting a Disjoint Generalized É-Creature.

Lemma 5.13. Let W = (G,H,φ, S1, S2) be a full generalized É-creature, u be a peripheral vertex of H, and C be
a component of G[φ−1(u)] − (S1 ∪ S2) such that N(C) ∩ (Aφ ∪ Bφ) ̸= ∅ and N(C) ∩ φ−1(u) ¦ S1 ∩ S2. Define
φ′(v) = φ(v) for every v ∈ V (G) − C. If N(C) ∩ Aφ ̸= ∅ let φ′(v) = cA for every v ∈ C. If N(C) ∩ Bφ ̸= ∅
set φ′(v) = cB for every v ∈ C. Then W ′ = (G,H,φ′, S1, S2) is a full generalized É-creature. Further the max
adhesion size of W ′ is at most the max adhesion size of W .

Before proving Lemma 5.13, observe that by Observation 5.2 precisely one of the cases N(C) ∩ Aφ ̸= ∅ and
N(C) ∩Bφ ̸= ∅ in the statement of Lemma 5.13 will apply.

Proof. [Proof of Lemma 5.13] We prove the statement of the lemma for the case that N(C) ∩ Aφ ̸= ∅. Then, by
Observation 5.2 we have N(C) ∩ Aφ = ∅. First we show that (H,φ′) is an É-bistar partition of G. Let xy be
an edge of G. If neither x nor y are in C then φ′(x) = φ(y) and φ′(x) = φ(y), and therefore φ′(x) = φ′(y) or
φ′(x)φ′(y) is an edge of H. If both x and y are in C then φ′(x) = φ′(y) = cA. Thus, suppose that x ∈ C and
y /∈ C. We have that N(C) ¦ φ−1(u) ∪ Aφ and therefore, y ∈ Aφ or y ∈ φ−1(u). In the former case we have
φ′(x) = φ′(y) = cA, while in the latter case we have φ′(x) = cA while φ′(y) = u, and cAu is an edge of H. Next
we check that W ′ satisfies the properties of full generalized É-creatures.

• Property (i) clearly holds for all peripheral vertices of H other than u (with S⋆1 = S1 and S⋆2 = S2). For
u observe that G[Aφ′ ∪ Bφ′ ∪ φ′−1(u)] = [Aφ ∪ Bφ ∪ φ−1(u)] and that φ′−1(u) ∩ S1 = φ−1(u) ∩ S1 and
φ′−1(u) ∩ S2 = φ−1(u) ∩ S2. Thus φ′−1(u) ∩ S1 and φ′−1(u) ∩ S2 are distinct minimal Aφ′ ,Bφ′ separators
in G[Aφ′ ∪Bφ′ ∪ φ′−1(u)].

• For property (ii) observe that G, S1, S2 are the same for W and W ′. Further, Bφ′ = Bφ and Aφ′ = Aφ∪C.
Thus Bφ′ is entirely contained in a component of G − S1, and Aφ is entirely contained in a different
component of G − S1. Since C is disjoint from S1 and has a neighbor in Aφ, all of Aφ′ is contained in
the same component of G − S1 as Aφ. An identical argument shows that Bφ′ is entirely contained in a
component of G− S2, and that Aφ′ is entirely contained in a different component of G− S2.

• For property (iii), let C1 and C2 be components of G[Aφ′ ∪Bφ′ ], and v be a peripheral vertex of H such that
there is a path P from C1 to C2 through φ′−1(v) − S1. Observe now that C does not have any neighbors
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in φ′−1(v)− S1. Indeed, if v ̸= u then φ′−1(v) = φ−1(v) is anticomplete with φ−1(u), and C ¦ φ−1(u). If
v = u then N(C)∩φ′−1(u) ¦ S1 ∩S2 by assumption. Thus C does not have any neighbors in φ′−1(v)−S1.
Thus the path P starts and ends in G[Aφ∪Bφ]. Let C ′

1 and C ′
2 be the components of G[Aφ∪Bφ] containing

the first and last vertex of P , respectively. Note that C ′
1 ¦ C1 and that C ′

2 ¦ C2.

Since φ′−1(v) ¦ φ−1(v) we have that P is a path from C ′
1 to C ′

2 through φ−1(v) − S1. Therefore (by
property (iii) applied to W ) there is a path P ′ from C ′

1 to C ′
2 through φ−1(v)−S2. Since C is a component

of G[φ−1(u)] − S2. we have that the internal vertices of P ′ are either entirely inside C or disjoint from C.
However all internal vertices of P ′ cannot be inside C, because then the endpoints of P ′ are in the same
component of G[Aφ′ ] contradicting that C1 and C2 are distinct components of G[Aφ′ ]. Hence P ′ is a path
from C ′

1 to C ′
2 through φ′−1(v)− S2.

The proof for the reverse direction of the equivalence, namely that if there is a path P from C1 to C2

through φ′−1(v)− S2, then there also is a path from C1 to C2 through φ′−1(v)− S1, is identical.

• For property (iv), let XA be a component of G[Aφ′ ] and v be a peripheral vertex of H such that XA has
a neighbor in φ′−1(v). Let xy be an edge of G with x ∈ XA and y ∈ φ′−1(v). There are two cases, either
x ∈ C or x ∈ Aφ. If x ∈ C then v = u and y ∈ S1. By property (i) applied to W and S⋆1 = S1, there is a
path P from y to Bφ through φ−1(u)∩B1(u). But C ¦ A1(u) and φ

′−1(u) = φ−1(u)−C, and therefore P
is a path from y to Bφ = Bφ′ through φ′−1(u).

If x ∈ Aφ, let X
′
A be the component of G[Aφ] that contains x. We have that X ′

A ¦ XA. Furthermore,
y ∈ φ−1(v) because φ′−1(v) ¦ φ−1(v). Thus X ′

A has a neighbor in φ−1(v), and hence, by property (iv)
applied to W , there is a path P from X ′

A to Bφ through φ−1(v).

If P has no internal vertices in C then P is a path from X ′
A to Bφ′ = Bφ through φ′−1(v). If P has internal

vertices in C, then v = u. Since x ∈ XA, y ∈ C and xy is an edge, we have that C ¦ XA. Let x
′ be the last

vertex of XA on P . The sub-path of P from x′ to Bφ′ = Bφ is a path from XA to Bφ′ through φ′−1(v).

Consider now a component XB of G[Bφ′ ] and let v be a peripheral vertex of H such that XB has a neighbor
in φ′−1(v). XB is also a component of G[Bφ] and φ

′−1(v) ¦ φ−1(v), so by property (iv) applied to W there
exists a path P from XB to Aφ through φ−1(v). Let x′ be the first vertex on P from Aφ′ . The sub-path of
P that ends in x′ is a path from XB to Aφ′ through φ′−1(v).

Finally we upper bound the max adhesion size ofW . Note that every component of G[A′
φ∪B′

φ] is a component
of G[Aφ ∪Bφ], with the exception of the unique component X of G[A′

φ ∪B′
φ] which contains C. The component

X is equal to C plus the union of all components of G[Aφ ∪ Bφ] which contain a neighbor of C. By assumption
there exists at least one component of G[Aφ ∪Bφ] which contain a neighbor of C.

Since C does not have any neighbors in φ−1(v) for any peripheral vertex v ̸= u, the adhesion size of every
peripheral vertex v ̸= u in W ′ is at most its adhesion size in W . For u, every component of G[A′

φ ∪ B′
φ] that

contains a neighbor of φ′−1(u) contains a component of G[Aφ∪Bφ] that contains a neighbor of φ−1(u). Thus the
adhesion size of u inW ′ is at most its adhesion size inW . This completes the proof for the case that N(C)∩A ̸= ∅.
The proof for the case where N(C) ∩B ̸= ∅ is symmetric.

Lemma 5.14. (Extract Disjoint É-Creature) Let W = (G,H,φ, S1, S2) be a full generalized É-creature of
max adhesion size ³. Then there exists a full disjoint generalized É-creature, W ′ = (G′, H, φ′, S′

1, S
′
2), of max

adhesion size ³ such that G′ is an induced subgraph of G.

Proof. Without loss of generality W satisfies the following additional property: there does not exist a peripheral
vertex u, and component C of G[φ−1(u)]−(S1∪S2) such that N(C)∩(Aφ∪Bφ) ̸= ∅ and N(C)∩φ−1(u) ¦ S1∩S2.
Indeed, if such a u and C exists then Lemma 5.13 yields a full generalized É-creature with the same graph G,
adhesion size at most ³, and strictly larger |Aφ∪Bφ|. Since |Aφ∪Bφ| f |V (G)| there must exist a full generalized
É-creature W ⋆ = (G,H,φ⋆, S1, S2) on the same graph G that additionally satisfies the additional property. Since
W ⋆ satisfies the premise of the lemma we may assume that W =W ⋆.

We set G′ = G − (S1 ∩ S2), φ
′(v) = φ(v) for every v ∈ V (G′), S′

1 = S1 − S2 and S′
2 = S2 − S1. We claim

that W ′ = (G′, H, φ′, S′
1, S

′
2) satisfies the conclusion of the lemma. We first prove that it is a full sugeneralized

É-creature. Indeed, G′ is an induced subgraph of G, and (H,φ′) is an É-bistar partition of G. Note that Aφ′ = Aφ
and Bφ′ = Bφ.
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• For property (i) we have that for every peripheral vertex, u, of H, G′[Aφ′ ∪Bφ′ ∪φ′−1(u)]− (φ′−1(u)∩ S′
1)

is equal to G[Aφ∪Bφ∪φ−1(u)]− (φ−1(u)∩S1), and so S′
1 is a minimal separator in G′[Aφ′ ∪Bφ′ ∪φ′−1(u)].

Similarly, φ′−1(u)∩S′
2 a minimal separator in G′[Aφ′ ∪Bφ′ ∪φ′−1(u)]. Finally, φ′−1(u)∩S′

1 and φ′−1(u)∩S′
2

are distinct because φ−1(u) ∩ S1 and φ′−1(u) ∩ S2 are distinct.

• Property (ii) is satisfied by W ′ because G′ − S′
1 = G− S1, and G

′ − S′
2 = G− S2.

• Property (iii) is satisfied by W ′ because every pair of components C1 and C2 of G′[Aφ′ ∪ Bφ′ ] are
components of G[Aφ ∪Bφ], and for every peripheral vertex u of H we have φ′−1(u)−S′

1 = φ−1(u)−S1 and
φ′−1(u)− S′

2 = φ−1(u)− S2.

• For property (iv), let u be a peripheral vertex and XA be a component of G′[Aφ′ ] that has a neighbor in
φ′−1(u).

Let xy be an edge of G′ with x ∈ XA and y ∈ φ′−1(u). We claim that there exists a path in G′ from XA to
S1 ∪ S2 through φ′−1(u). If y ∈ S1 ∪ S2 then xy is the desired path, so suppose y ∈ φ′−1(u)− S1 ∪ S2. Let
C be the connected component of φ−1(u)− (S1 ∪ S2) that contains u. The property of W discussed at the
start of the proof ensures that C has at least one neighbor z in φ′−1(u) ∩ (S1 ∪ S2)− (S1 ∩ S2). Let P now
be a path from x to z through C. P does not contain any vertices of S1 ∩ S2 and hence it is a path in G′

from XA to S1 ∪ S2 through φ′−1(u).

Let z be the endpoint of the path P in S1 ∪ S2. If z is in S1 then, by minimality of S1 ∩ φ−1(u) (here we
use that W is full), there exists a path P ′ in G from z to Bφ through φ−1(u)−S1. But P

′ does not contain
any vertices of S1 ∩S2 and hence P ′ is a path from z to Bφ′ through φ′−1(u). An identical argument shows
that if z is in S2 then there exists a path P ′ from z to Bφ′ through φ′−1(u). But then P , followed by P ′ is
a path in G′ from XA to Bφ′ through φ′−1(u).

The proof of the analogous statement for peripheral vertex u and component XB of G′[Bφ′ ] that has a
neighbor in φ′−1(u) is identical.

Having shown that W ′ = (G′, H, φ′, S′
1, S

′
2) is a full generalized É-creature, note that S′

1 and S′
2 are disjoint.

Further the adhesion size of every peripheral vertex v of H inW ′ is at most its adhesion size inW , since Aφ′ = Aφ,
Bφ′ = Vφ, and φ

′−1(v) ¦ φ−1(v). This concludes the proof of the lemma.

5.7 Connectivity Graphs and Long Induced Paths in them

Definition 5.7. (Realize) Let W be a generalized É-creature W = (G,H,φ, S1, S2). A peripheral vertex u of
H realizes an (unordered) pair of distinct components {C1, C2} of G[Aφ ∪Bφ] if there is a path in G from C1 to
C2 through φ−1(u)− S1.

Note that by property (i) of generalized É-creatures, if u realizes {C1, C2}, then C1 and C2 are either both
components of G[Aφ] or both components of G[Bφ].

Definition 5.8. (Connectivity Graph) The A-connectivity graph of a generalized É-creature W =
(G,H,φ, S1, S2) is a graph CA. The vertices of CA are the connected components of G[Aφ]. Two components
C1 and C2 of G[Aφ] are connected by an edge in CA if there exists a peripheral vertex u of H that realizes
{C1, C2}.

The B-connectivity graph CB of W is defined similarly, with vertices of CB being components of G[Bφ], and
two components C1 and C2 are connected by an edge in CB if there exists a peripheral vertex u of H that realizes
{C1, C2}.

The A-connectivity graphs tracks which pairs {C1, C2} of components of G[Aφ] are realized by some peripheral
vertex of H. We will (towards the end of the proof) also be interested in precisely which peripheral vertices realize
a given pair. We encapsulate this in the notion of labeled connectivity graphs.

Definition 5.9. (Labeled Connectivity Graph) The labeled A-connectivity graph of a generalized É-
creatureW = (G,H,φ, S1, S2) is a pair (CA, ¼) where CA is the A-connectivity graph ofW , and ¼ : E(CA) → 2V (H)

takes as input an edge {C1, C2} and outputs the subset of peripheral vertices u of H that realize {C1, C2}.
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The labeled B-connectivity graph W is a pair (CB , ¼) where CB is the B-connectivity graph of W , and
¼ : E(CB) → 2V (H) takes as input an edge {C1, C2} and outputs the subset of peripheral vertices u of H that
realize {C1, C2}.

We will occasionally be interested in the subgraph of the A-connectivity graph CA of a generalized É-creature
W induced by a vertex set Z. Just as for normal graphs, we will denote the induced subgraph by CA[Z]. We can
treat such an induced subgraph as a labeled induced subgraph by dropping from the domain of the labeling ¼ all
edges that do not appear in the considered induced subgraph. We will denote this labeled induced subgraph by
(CA, ¼)[Z].

Lemma 5.15. Let W = (G,H,φ, S1, S2) be a disjoint generalized É-creature. Then the A-connectivity graph CA
and the B-connectivity graph CB of W are connected.

Proof. This follows immediately from Property (ii) of generalized É-creatures.

Lemma 5.16. Let G be k-creature free, W = (G,H,φ, S1, S2) be a disjoint generalized É-creature and C be a
component of G[Aφ ∪Bφ]. Let Z be the set of peripheral vertices u of H such that φ−1(u) contains a neighbor of
C in G. Then |Z| < k.

Proof. Suppose for contradiction that |Z| g k, and let z1, . . . , zk be k distinct vertices in Z. Let S⋆1 ¦ S1 and
S⋆2 ¦ S2 be witness separators for W . For each i f k proceed as follows. Since C has a neighbor in φ−1(zi), by
property (iv) of generalized É-creatures, there is a path from C to Bφ through φ−1(zi). By property (i) this path
contains at least one vertex of S⋆1 (and at least one vertex of S⋆2 ). Thus, there exists a path from C to S⋆1 ∪ S⋆2 in
G[C ∪ φ−1(zi)]. Let P

1
i be a shortest such path.

Let xi be the last vertex of P 1
i , without loss of generality xi is in S⋆1 . If it is in S⋆2 we instead consider the

generalized É-creature resulting from flipping W (and S⋆1 and S⋆2 ) at zi (see Lemma 5.3). Since this changes
S1 ∩ φ−1(zi) to S2 ∩ φ−1(zi), and S

⋆
1 ∩ φ−1(zi) to S⋆2 ∩ φ−1(zi), and vice versa (and changes nothing else), we

may now assume that xi is in S
⋆
1 .

By property (i) of generalized É-creatures we have that φ−1(zi) ∩ S⋆1 is an Aφ, Bφ-minimal separator in
G[Aφ ∪ Bφ ∪ φ−1(zi)]. Thus there exists an induced path P 2

i from xi to Bφ in G[Bφ ∪ φ−1(zi)] that does not
contain any vertices of S⋆1 . We select P 2

i such that only the last vertex of P 2
i is in Bφ.

Notice now that P i1 followed by P i2 is a path from Aφ to Bφ in G[Aφ ∪ Bφ ∪ φ−1(zi)]. Let yi be the vertex
immediately after xi on the path P i2. The vertex yi can not be the last vertex of P i2, since then P i1P

i
2 is a path

from Aφ to Bφ in G[Aφ ∪Bφ ∪ φ−1(zi)] disjoint from S⋆2 .
We define

A = C ∪
⋃

ifk

P i1 − {xi}

B = B⋆2(W ) ∪
⋃

ifk

P i2 − {xi, yi}

and claim that (A,B, {x1, . . . , xk}, {y1, . . . , yk}) forms a k-creature. We check the properties of k-creatures one
by one:

• A is disjoint from {x1, . . . , xk}∪{y1, . . . , yk}∪B because A ¦ A⋆1(W ) while {x1, . . . , xk}∪{y1, . . . , yk}∪B ¦
S⋆1 ∪B⋆1(W ).

• {x1, . . . , xk} is disjoint from {y1, . . . , yk} because yi is the successor of xi on P i2. For j ̸= i we have that
xi ∈ φ−1(zi) while yj ∈ φ−1(zj), which are disjoint and anticomplete. This shows not only that {x1, . . . , xk}
is disjoint from {y1, . . . , yk}, but also that xiyj is an edge if and only if i = j.

• {y1, . . . , yk} is disjoint from B because {y1, . . . , yk} ¦ A⋆2(W ) ∪ S2, while B = B⋆2(W ) ∪⋃
ifk P

i
2 − {xi, yi}.

• G[A] is connected because C is connected and each P i1 is a path that starts from C.

• G[B] is connected because B⋆2(W ) is connected and each P i2 − {xi, yi} is a path that ends in Bφ ¦ B⋆2(W ).
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• A and B ∪ {y1, . . . , yk} are anticomplete: indeed A ¦ A⋆1(W ) while B ∪ {y1, . . . , yk} ¦ B⋆1(W ), and A⋆1(W )
and B⋆1(W ) are anticomplete.

• B and A ∪ {x1, . . . , xk} are anticomplete: since we have already shown that A and B are anticomplete it
suffices to show that B and {x1, . . . , xk} are anticomplete. Suppose for contradiction that xjb is an edge with
b ∈ B. We have that {x1, . . . , xk} ¦ A⋆2(W ), so {x1, . . . , xk} is anticomplete with B⋆2(W ). We conclude that
b ∈ (P i2 −{xi, yi}). Since b /∈ B⋆2(W ) we have that b cannot be the last vertex of P i2 −{xi, yi}, and therefore
b ∈ φ−1(zi). But xj ∈ φ−1(zj) and φ

−1(zi) and φ
−1(zj) are anticomplete unless i = j, contradicting that

xib is an edge. So i = j and b is a vertex on P i2 − {xi, yi}. However yi is the only vertex on P i2 adjacent to
xi, and b ̸= yi yielding a contradiction. Thus B and {x1, . . . , xk} are anticomplete.

• Each xi has a neighbor in A, namely its predecessor in P i1, and each yi has a neighbor in B, namely its
successor in P i1.

We conclude that (A,B, {x1, . . . , xk}, {y1, . . . , yk}) forms a k-creature in G, contradicting that G is k-creature
free.

Lemma 5.17. Let G be a k-creature free graph and W = (G,H,φ, S1, S2) be a disjoint generalized É-creature with
adhesion size at most ³. Then the the A-connectivity graph CA of W (and the B-connectivity graph CB of W )
contains an induced path of length at least logk³(É/k)− 1.

Proof. We prove the statement for the A-connectivity graph CA of W . First, by Lemma 5.15 CA is connected.
Next we show that CA has at least É/kÉ vertices. By Lemma 5.1 each peripheral vertex v of H satisfies that
φ−1(v) has a neighbor in Aφ. On the other hand, for every component C of G[Aφ], Lemma 5.16 yields that there
are at most k − 1 peripheral vertices v such that φ−1(v) has a neighbor in C. Thus, G[Aφ] has at least É/k
components, and so the A-connectivity graph CA of W has at least É/k vertices.

Next, we show that the maximum degree of CA is at most k³. Indeed, consider a component C of G[Aφ], and
another component C ′ of G[Aφ] such that C and C ′ are adjacent in CA. Then there exists a peripheral vertex v
of H such that φ−1(v) has a neighbor both in C and in C ′. By Lemma 5.16 there are at most k − 1 vertices u
such that φ−1(u) has a neighbor in C. For each such peripheral vertex u, there are at most ³ components C ′′ of
G[Aφ] that have a neighbor in φ−1(u). Thus there are at most k³ components C ′ adjacent to C in CA.

We have that CA is a connected graph with at least É/k vertices and maximum degree at most k³. Pick any
vertex C of CA. For every d g 1, the number of vertices at distance exactly d from C in CA is at most (k³)d, and
therefore the number of vertices at distance at most d is at most (k³)d+1. Let C ′ be the vertex of CA furthest
away from C in CA, and let d be the distance from C to C ′ in CA. We have that É/k f (k³)d+1, and therefore
logk³(É/k) f d + 1. Thus a shortest path from C to C ′ in CA satisfies the conclusion of the lemma. The proof
for the B-connectivity graph CB of W is identical.

5.8 Erasing Components We will work towards extracting from W a generalized É′-creature whose A-
connectivity graph is a path. Towards this we will identify a long induced path P in the A-connectivity graph
of G, and delete all components of G[Aφ] that are not on the path P . However, when we delete components of
G[Aφ] we need to appropriately modify the generalized É-creature in the peripheral vertices in order to ensure
that the result of path-filtering is still a generalized É-creature.

Let W = (G,H,φ, S1, S2) be a generalized É-creature. A component C of G[Aφ] is erasable if CA − {C} is
connected. Similarly, a component C of G[Bφ] is erasable if CB −{C} is connected. For an induced path P in the
A-connectivity graph CA of W , or the B-connectivity graph CB of W , a component C of G[Aφ∪Bφ] is P -erasable
if C is erasable and C /∈ V (P ).

Lemma 5.18. Let W = (G,H,φ, S1, S2) be a generalized É-creature. If P is an induced path in the A-connectivity
graph CA of W and there exists a component C of G[Aφ] not in V (P ) then there exists a P -erasable component
C ′ of G[Aφ]. If P is an induced path in the B-connectivity graph CB of W and there exists a component C of
G[Bφ] not in V (P ) then there exists a P -erasable component C ′ of G[Bφ].

Proof. We prove the statement for P being a path in CA. By Lemma 5.15 CA is connected. Therefore it has a
spanning tree T that contains all the edges of P . Since there exists a component C of G[Aφ] not in V (P ), T has
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a leaf C ′ not in V (P ). Since T − {C ′} is connected, CA − {C ′} is connected as well. Hence C ′ is erasable. The
proof for statement for P being a path in CB is identical.

We are aiming at an operation that will delete all of the vertices of a P -erasable component C from the graph
G of a generalized É-creature. Simply deleting all vertices of C from G does not immediately work, because some
peripheral vertices of H might violate property (iv) of generalized É-creatures after such a deletion. The next
definitions aim to highlight the peripheral vertices for which such a problem could occur.

Definition 5.10. (Chunk) Let W = (G,H,φ, S1, S2) be a generalized É-creature and v be a peripheral vertex
of H. A chunk of v is a connected component of G[φ−1(v)]. A chunk of W is a chunk of v for some peripheral
vertex v of H.

Let W = (G,H,φ, S1, S2) be a generalized É-creature, and C be a component of G[Aφ ∪ Bφ]. A peripheral
vertex u ofH is C-dependent if C ¦ Aφ and C containsN(φ−1(u))∩Aφ or C ¦ Bφ and C containsN(φ−1(u))∩Bφ.
The set D(C) denotes the set of all C-dependent peripheral vertices in H. Similarly, a chunk Z of W is C-
dependent if C ¦ Aφ and C contains N(φ−1(u)) ∩ Aφ or C ¦ Bφ and C contains N(φ−1(u)) ∩ Bφ. The set
DS(C) denotes the set of all C-dependent chunks of W . Note that despite the similar names D(C) and DS(C)
are objects of different types. More concretely D(C) is a set of vertices of H while DS(C) is a set of vertex sets.
We are now ready to define the operation of erasing a component.

Definition 5.11. (Erasing Component) Let W = (G,H,φ, S1, S2) be a disjoint generalized É-creature, and
let C be an erasable component of G[Aφ ∪Bφ]. We define X to be the union of all C-dependent chunks of W , If
C is a component of G[Aφ] we define Y to be the union of all C-dependent chunks of W that have at least one
neighbor in Bφ. If C is a component of G[Bφ] we define Y to be the the union of all C-dependent chunks of W
that have at least one neighbor in Bφ. We set

• G′ = (G− C)− (X − Y ), and

• H ′ = H −D(C).

• For every v ∈ Y we set φ′(v) = cB if C ¦ Aφ and φ′(v) = cA if C ¦ Bφ. For every v ∈ V (G′)− Y we set
φ′(v) = φ(v).

• We set S′
1 = S1 −X and S′

2 = S2 −X.

Lemma 5.19. Let W = (G,H,φ, S1, S2) be a disjoint generalized É-creature, and let C be an erasable component
of G[Aφ] or of G[Bφ]. Let W ′ = (G′, H ′, φ′, S′

1, S
′
2) be obtained from W by erasing C. Then W ′ is a disjoint

generalized É′-creature, where É′ = É − |D(C)|. Further for every peripheral vertex u of H ′ its adhesion size in
W ′ is at most its adhesion size in W .

Proof. We prove the statement of the lemma for the case when C is a component of G[Aφ]. First we show that
(H ′, φ′) is a É′-bistar partition of G′. Note that every peripheral vertex of H, except the vertices in D(C), is a
peripheral vertex of H ′. Thus H ′ has É′ peripheral vertices. Consider an arbitrary edge uv ∈ E(G′). If φ(u) /∈ Y
and φ(v) /∈ Y then φ′(u) = φ(u), φ′(v) = φ(v), so φ′(u) = φ′(v) or φ′(u)φ′(v) ∈ E(H ′). If φ(u) ∈ Y and
φ(v) ∈ Y then φ′(u) = φ′(v) = cB . Suppose now that φ(u) ∈ Y and φ(v) /∈ Y . But then u is in a C-dependent
chunk of W , and therefore v ∈ Bφ. But then φ

′(u) = φ′(v) = cB . Thus (H
′, φ′) is an É′-bistar partition of G′.

Next observe that S′
1 and S′

2 are disjoint because S′
1 ¦ S1, S

′
2 ¦ S2, and S1 and S2 are disjoint. Both S′

1 and
S′
2 are disjoint from Aφ′ ∪Bφ′ because Aφ′ ∪Bφ′ ¦ Aφ ∪Bφ ∪X while S′

1 = S1 −X and S′
2 = S2 −X. We now

verify that W ′ = (G′, H ′, φ′, S′
1, S

′
2) satisfies the properties of generalized É′-creatures.

• For property (i) we first show that S′
1 and S′

2 separate Aφ′ from Bφ′ in G′. Suppose for contradiction that
there exists a path P from Aφ′ to Bφ′ in G′ − S′

1. Since (H ′, φ′) is an É′-bistar partition of G′ the path
P has at least three vertices. Further we may select P such that none of the internal vertices of P are
in Aφ′ ∪ Bφ′ . Thus, since (H ′, φ′) is an É′-bistar partition of G′ there exists a peripheral vertex u of H ′

such that P is a path in G′ from Aφ′ to Bφ′ through φ′−1(u). But φ′−1(u) ¦ φ−1(u) and G′ is an induced
subgraph of G, so

NG′(φ′−1(u)) ¦ NG(φ
−1(u)) ¦ Aφ ∪Bφ

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited3151

D
o

w
n
lo

ad
ed

 0
6
/2

0
/2

5
 t

o
 1

6
9
.2

3
1
.1

8
6
.1

6
7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



It follows that P is a path in G from Aφ to Bφ through φ−1(u). Let Q be the chunk of u that contains
P . Since P is a path in G′ its last endpoint is in Aφ − C, and therefore Q is not C-dependent. But then
Q∩S1 = Q∩S′

1 and thus P is a path in G from Aφ to Bφ through φ−1(u)−S1, contradicting property (i)
applied to W . The proof that S′

2 is a Aφ′ , Bφ′ -separator in G′ is symmetric.

Next we show that for every peripheral vertex u ∈ H ′ there exists a path from Aφ′ to Bφ′ through φ′−1(u).
Since u is a peripheral vertex of H ′ it is not C-dependent in A, and therefore there exists a component C ′

of G[Aφ] other than C with a neighbor in Aφ. By property (iv) applied to W there is a path P from C ′

to Bφ through φ−1(u). The internal vertices of P are contained in a chunk Q of u, and this chunk is not
C-dependent because Q has a neighbor in C ′. But then Q ¦ φ′−1(u) so P is a path in G′ from Aφ′ to Bφ′

through φ′−1(u). This implies that every minimal Aφ′ ,Bφ′ separator in G[Aφ′ ∪Bφ′ ∪φ−1(u)] is non-empty.

Since S′
1 is an Aφ′ , Bφ′ -separator in G it follows that for every peripheral vertex u of H ′, S′

1 ∩ φ−1(u) is an
Aφ′ , Bφ′ -separator in G[Aφ′ ∪ Bφ′ ∪ φ−1(u)]. Thus S′

1 ∩ φ−1(u) contains a minimal Aφ′ , Bφ′ -separator
S′⋆
1,u in G[Aφ′ ∪ Bφ′ ∪ φ−1(u)]. Similarly, S′

2 ∩ φ−1(u) contains a minimal Aφ′ , Bφ′ -separator S′⋆
2,u in

G[Aφ′ ∪Bφ′ ∪ φ−1(u)]. Since S′
1 and S′

2 are disjoint while S′⋆
1,u ¦ S′

1 and S′⋆
2,u ¦ S′

2 are nonempty, S′⋆
1,u and

S′⋆
2,u are distinct. Let S′⋆

1 =
⋃

u S
′⋆
1,u and S′⋆

2 =
⋃

u S
′⋆
2,u, where the union is taken over all peripheral vertices

u of H ′. Then S′⋆
1 and S′⋆

2 are witness separators for W ′.

• For property (ii) we first prove that Aφ′ is contained in a connected component of G′ − S′
1.

Observe that the A-connectivity graph CA ofW satisfies that CA−{C} is connected, and that Aφ′ = Aφ−C.
Thus, for every pair of components C1, C2 of G′[Aφ′ ] there is a sequence R1, R2, . . . , Rt of components of
G′[Aφ′ ], such that C1 = R1, C2 = Rt, and for every i < t there exists a peripheral vertex u of H a path P
in G from Ri to Ri+1 through φ−1(u) − S1. The internal vertices of the path P are contained in a chunk
Q ¦ φ−1(u) of W . Since Q has a neighbor in Ri it is not C-dependent, and therefore Q ¦ φ′−1(u). But
then P is a path from Ri to Ri+1 through φ′−1(u) − S1. Further S′

1 ¦ S1 and therefore P is a path from
Ri to Ri+1 through φ′−1(u) − S′

1. So Ri and Ri+1 are contained in the same component of G′ − S′
1, and

therefore so are C1 and C2. But C1 and C2 were arbitrarily chosen components in G′[Aφ′ ], hence Aφ′ is
contained in a connected component of G′ −S′

1. The proof that Aφ′ is contained in a connected component
of G′ − S′

2 is identical.

We now prove that Bφ′ is contained in a connected component of G′ − S′
1. First note that Bφ ¦ Bφ′ and

therefore every connected component of G′[Bφ′ ] contains a connected component of G[Bφ]. Further, by
Lemma 5.15 for every pair of components C1, C2 of G[Bφ] there is a sequence R1, R2, . . . , Rt of components
of G[Bφ], such that R1 = C1, Rt = C2, and for every i < t there exists a peripheral vertex u of H and a
path P in G from Ri to Ri+1 through φ−1(u)− S1. The internal vertices of the path P are contained in a
chunk Q ¦ φ−1(u) of W . Since Q has a neighbor in Ri, Q is not C-dependent, and therefore Q ¦ φ′−1(u).
But then P is a path from Ri to Ri+1 through φ′−1(u) − S1. Further S′

1 ¦ S1 and therefore P is a path
from Ri to Ri+1 through φ′−1(u) − S′

1. So Ri and Ri+1 are contained in the same component of G′ − S′
1,

and therefore so are C1 and C2. But C1 and C2 were arbitrarily chosen components in G[Bφ′ ], hence Bφ is
contained in a connected component of G′ − S′

1. But every component of G[Bφ] contains a component of
G[Bφ′ ], so all of Bφ′ is contained in one connected component of G′ − S′

1. The proof that Bφ′ is contained
in one connected component of G′ − S′

2 is identical.

• For property (iii) let u be a peripheral vertex of H ′ and let C1 and C2 be components of G′[Aφ′ ∪ Bφ′ ].
Suppose there is a path P from C1 to C2 through φ′−1(u) − S′

1 in G′ Since φ′−1(u) ¦ φ−1(u) and
NG′(φ′−1(u)) ¦ NG(φ

−1(u)) ¦ Aφ ∪ Bφ the first and last vertices of P are in Aφ ∪ Bφ. Let C ′
1 be the

connected component of G[Aφ∪Bφ] that contains the first vertex of P and C ′
2 be the connected component

of G[Aφ ∪ Bφ] that contains the last vertex of P . Note that every component of G[Aφ ∪ Bφ], with the
exception of C, is contained in a component of G[Aφ′ ∪Bφ′ ], and that therefore C ′

1 ¦ C1 and C ′
2 ¦ C2. By

property (iii) applied to W there is a path P ′ in G from C ′
1 to C ′

2 through φ−1(u)− S2 in G. The internal
vertices of the path P ′ are contained in a chunk Q ¦ φ−1(u) of W . Since Q has a neighbor in C ′

1, Q is not
C-dependent, and therefore Q ¦ φ′−1(u). Thus P ′ is a path in G′ from C ′

1 to C ′
2 through φ′−1(u) − S2.

Since S′
2 ¦ S2 it follows that P ′ is a path in G′ from C ′

1 through C ′
2 in φ′−1(u) − S′

2. Since C ′
1 ¦ C1 and

C ′
2 ¦ C2, P

′ is a path in G′ from C1 to C2 through φ′−1(u)− S′
2. An identical proof shows that if there is
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a path in G′ from C1 and C2 through φ′−1(u)−S′
2, then there is also a path in G′ from C1 and C2 through

φ′−1(u)− S′
1.

• For property (iv) let u be a peripheral vertex of H ′ and CA be a component of G′[Aφ′ ] with a neighbor in
φ′−1(u). Then, by property (iv) applied to W there is a path P in G from CA to Bφ through φ−1(u). The
internal vertices of the path P are contained in a chunk Q ¦ φ−1(u) of W . Since Q has a neighbor in CA,
Q is not C-dependent, and therefore Q ¦ φ′−1(u). Since Bφ ¦ Bφ′ it follows that P is a path in G′ from
CA to Bφ′ through φ′−1(u).

Consider now a peripheral vertex u of H ′ and a component CB of G′[Bφ′ ] with a neighbor y in φ′−1(u).
Let Q be the connected component of G′[φ′−1(u)] that contains y. Then Q is a chunk of u in W , and
furthermore, because Q ¦ φ′−1(u), Q is not C-dependent. Therefore Q has a neighbor in Aφ − C = Aφ′ ,
and so there is a path in G′ from CB to Aφ′ through φ′−1(u).

The proof for the case where C is a component of G[Bφ] is symmetric.
For the upper bound on the adhesion size of every peripheral vertex u it is sufficient to observe that every

connected component of G′[Aφ′ ∪ Bφ′ ] that contains a neighbor of φ′−1(u) contains a connected component of
G[Aφ′ ∪Bφ′ ] that contains a neighbor of φ−1(u).

Next we track what erasing a component of G[Aφ ∪Bφ] does to the labeled connectivity graph. We will only
track the effect on the connectivity graph for the side of the component C that we erase.

Lemma 5.20. Let W = (G,H,φ, S1, S2) be a disjoint generalized É-creature, and let C be an erasable component
of G[Aφ]. Let W ′ = (G′, H ′, φ′, S′

1, S
′
2) be the generalized É′-creature resulting from erasing C. Let (CA, ¼)

be the labeled A-connectivity graph of W , and let (C′
A, ¼

′) be the labeled A-connectivity graph of W ′. Then
(C′
A, ¼

′) = (CA, ¼)− {C}.

Proof. The components of G′[Aφ′ ] are precisely the components of G[Aφ], except for C. Thus the vertex sets of
(C′
A, ¼

′) and (CA, ¼) are equal.
We first prove that for every pair of components C1, C2 of G′[Aφ′ ], if u is a peripheral vertex of H that

realizes {C1, C2} (in W ) then u is also a peripheral vertex of H ′ that realizes {C1, C2} in W ′. Towards this aim,
suppose that there exists a path P in G from C1 to C2 through φ−1(u) − S1. Then the internal vertices of P
are contained in a chunk Q of u. The chunk Q has a neighbor in C1 and therefore it is not C-dependent. Thus
u /∈ D(C), so u is a peripheral vertex in H ′ and P is a path from C1 to C2 through φ′−1(u). Since S′

1 ¦ S1 we
conclude that P is a path from C1 to C2 through φ′−1(u)− S′

1, and u realizes {C1, C2} in W ′.
Next we show that for every pair of components C1, C2 of G′[Aφ′ ], if u is a peripheral vertex of H that

realizes {C1, C2} in W ′ then u also realizes {C1, C2} in W . Towards this goal suppose that there exists a path P
in G′ from C1 to C2 through φ′−1(u′). Then all internal vertices of P lie in a chunk Q of u′. Then Q is also a
chunk of W , and since Q has a neighbor in C1 it is not C-dependent. Thus S1 ∩Q = S′

1 ∩Q and so P is a path
in G from C1 to C2 through φ−1(u′). Hence u realizes {C1, C2} in W . This concludes the proof.

Finally we track how erasing a component in G[Aφ] affects which peripheral vertices have neighbors in which
components of G[Aφ].

Lemma 5.21. Let W = (G,H,φ, S1, S2) be a disjoint generalized É-creature, and let C be an erasable component
of G[Aφ]. Let W ′ = (G′, H ′, φ′, S′

1, S
′
2) be the generalized É′-creature resulting from erasing C. Then, for every

peripheral vertex u in H and every component C ′ in G[Aφ] with C
′ ̸= C it holds C ′ has a neighbor in φ−1(u) in

G if and only if u is a peripheral vertex of H ′ and C ′ has a neighbor in φ′−1(u) in G′.

Proof. For the forward direction, suppose φ′−1(u) has a neighbor in C ′ in G′. Then u is not C-dependent and
therefore u is a peripheral vertex of H ′. Furthermore, φ−1(u) contains a chunk Q that has a neighbor in C ′. Q
is not C-dependent, and therefore Q ¦ φ′−1(u). Thus φ′−1(u) has a neighbor of C ′ in G′.

For the reverse direction suppose that u is a peripheral vertex of H ′ and C ′ has a neighbor in φ′−1(u) in G′.
Since φ′−1(u) ¦ φ−1(u) it follows that C ′ has a neighbor in φ−1(u) in G.
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5.9 Path Filtering: Extracting an A-Path-Like É-creature.

Definition 5.12. We will say that a generalized É-creature W is A-path-like if the A-connectivity graph of W is
a path.

Definition 5.13. A disjoint É′-creature W ′ = (G′, H ′, φ′, S′
1, S

′
2) is an A-descendant of a disjoint generalized

É-creature W = (G,H,φ, S1, S2) if W
′ can be obtained from W by any sequence of dissolving peripheral vertices,

erasing erasable components of G[φA], absorbing absorbable components of G[φA].

At a later stage in the proof we will show that if W has some nice properties (to be defined later) and
W ′ is a descendant of W , then W ′ also has these properties. Note that the erasing component operation only
applies to disjoint generalized É-creatures, so the notion of descendant is only well defined for disjoint generalized
É-creatures. For now we will make the following simple observation.

Lemma 5.22. If a disjoint É′-creature W ′ = (G′, H ′, φ′, S′
1, S

′
2) is an A-descendant of a disjoint É′-creature

W = (G,H,φ, S1, S2) then G′ is an induced subgraph of G. Furthermore, if W has adhesion size ³ then W ′ has
adhesion size ³

Proof. Dissolving peripheral vertices and erasing erasable components of a disjoint generalized É-creature
W = (G,H,φ, S1, S2) produces a generalized É̂-creature Ŵ = (Ĝ, Ĥ, φ̂, Ŝ1, Ŝ2) where Ĝ is an induced subgraph
of G. Absorbing an absorbable component of G[φA] produces a generalized É̂-creature Ŵ = (Ĝ, Ĥ, φ̂, Ŝ1, Ŝ2)
where Ĝ is equal to G. The fact that G′ is an induced subgraph of G now follows by induction on the number of
operations used to obtain W ′ from W .

For the bound on the adhesion size, by Lemma 5.9 dissolving a peripheral vertex does not increase adhesion
size, by Lemma 5.10 absorbing a component does not increase adhesion size, and by Lemma 5.19 erasing an
erasable component does not increase adhesion size. The bound on the adhesion size of W ′ now follows by
induction on the number of operations used to obtain W ′ from W .

Lemma 5.23. (Path Filtering) Let W = (G,H,φ, S1, S2) be a disjoint generalized É-creature with adhesion
size ³, let (CA, ¼) be the labeled A-connectivity graph of W . Let (P, ¼) be an induced path in (CA, ¼) Then there
exists a disjoint generalized É′-creature W ′ = (G′, H ′, φ′, S′

1, S
′
2) such that

• W ′ is A-path-like.

• W ′ is an A-descendant of W .

• Aφ′ =
⋃

C∈V (P ) C

• Every peripheral vertex u of H ′ is a peripheral vertex of H.

• The labeled A-connectivity graph of W ′ is equal to (P, ¼).

• For every peripheral vertex u of H and component C ′ ∈ V (P ) it holds that C ′ has a neighbor in φ−1(u) in
G if and only if u is a peripheral vertex of H ′ and C ′ has a neighbor in φ′−1(u) in G′.

Proof. We prove the lemma by induction on the number of components in G[Aφ]. For the base case, if P = CA,
then W satisfies the conclusion of the lemma. So suppose that |V (CA)| > |V (P )|. Then, by Lemma 5.18, G[Aφ]
has a P -erasable component C. By Lemma 5.19, erasing C from W yields a disjoint generalized É̂-creature
Ŵ = (Ĝ, Ĥ, φ̂, Ŝ1, Ŝ2) of adhesion size at most ³. By Lemma 5.20 the labeled A-connectivity graph ĈA of Ŵ
is equal to (ĈA, ¼) − {C}. Therefore (P, ¼) is an induced subgraph of (ĈA, ¼). Since the number of components
of Ĝ[Aφ̂] is less than the number of components in G[Aφ], the induction hypothesis implies that there exists a
disjoint generalized É′-creature W ′ = (G′, H ′, φ′, S′

1, S
′
2) such that

• W ′ is A-path-like,

• W ′ is an A-descendant of Ŵ (and therefore also of W ),

• Aφ′ =
⋃

C∈V (P ) C,

• every peripheral vertex u of H ′ is a peripheral vertex of Ĥ (and thererfore also of H),

• the labeled A-connectivity graph of W ′ is equal to (P, ¼), and

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited3154

D
o

w
n
lo

ad
ed

 0
6
/2

0
/2

5
 t

o
 1

6
9
.2

3
1
.1

8
6
.1

6
7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



• for every peripheral vertex u of Ĥ and component C ′ ∈ V (P ) it holds that C ′ has a neighbor in φ̂−1(u) in
Ĝ if and only if u is a peripheral vertex of H ′ and C ′ has a neighbor in φ′−1(u) in G′.

For the last point, by By Lemma 5.21 we have that for every peripheral vertex u of H and component
C ′ ∈ V (P ) it holds that C ′ has a neighbor in φ−1(u) in G if and only if u is a peripheral vertex of Ĥ and C ′ has
a neighbor in φ̂−1(u) in Ĝ. We conclude that For every peripheral vertex u of H and component C ′ ∈ V (P ) it
holds that C ′ has a neighbor in φ−1(u) in G if and only if u is a peripheral vertex of H ′ and C ′ has a neighbor
in φ′−1(u) in G′. Thus W ′ satisfies the conclusion of the lemma.

Lemma 5.24. Let G be a k-creature free graph and W = (G,H,φ, S1, S2) be a disjoint generalized É-creature with
adhesion size ³. Then there exists an A-path-like disjoint generalized É′-creature W ′ = (G′, H ′, φ′, S′

1, S
′
2) with

adhesion size ³, such that W ′ is an A-descendant of G. Further, É′ g logkα(É)−3
³ .

Proof. By Lemma 5.17, the A-connectivity graph of W contains a path P on at least logk³(É/k)−1 vertices, and
thus at least logk³(É/k) − 2 edges. By Lemma 5.23 there exists an A-path-like disjoint generalized É′-creature
W ′ = (G′, H ′, φ′, S′

1, S
′
2) with adhesion size ³, such that W ′ is an A-descendant of G. For every edge CiCj of

P there is a peripheral vertex u of H ′ that realizes the edge. Then φ′−1(u) has neighbors in Ci and Cj (in
G′). Hence, for every integer x, if u realizes x edges of P then u has neighbors in at least x + 1 vertices of P
(recall that vertices of P are components of G′[Aφ′ ]). But W ′ has adhesion size ³ and therefore each peripheral
vertex of H ′ realizes at most ³ − 1 edges of P . But then the number of peripheral vertices of H ′ is at least
logkα(É/k)−2

³−1 g logkα(É)−3
³ .

5.10 Effect of Dissolve on the Connectivity Graph We will use Lemma 5.24 to extract an A-path-like
generalized É-creatureW . This gets us quite far towards makingW a critter, but there are still many irregularities
to clean up. For this we will use the “dissolve” operation, but now we need to be careful not to destroy the progress
that we have already made. Since this progress is in the connectivity graph (in particular the connectivity graph
is a path), we need to track how dissolving a peripheral vertex affects the connectivity graph.

At this point we will need to make a small detour and analyze how dissolving a peripheral vertex affects the
(labeled) connectivity graph.

Lemma 5.25. Let W = (G,H,φ, S1, S2) be a generalized É-creature with labeled A-connectivity graph (CA, ¼A)
and labeled B-connectivity graph (CB , ¼B), and let u be a peripheral vertex of H. Let W ′ = (G′, H ′, φ′, S′

1, S
′
2) be

the generalized (É − 1)-creature resulting from dissolving u in W . Then,

(i) for every connected component C of G[Aφ] there is a connected component C ′ of G[Aφ′ ] such that C ¦ C ′.

(ii) Every connected component C ′ of G[Aφ′ ] contains a connected component C of G[Aφ].

(iii) For every pair of connected components C1, C2 of G[Aφ] there exists a connected component C ′ of G[Aφ′ ]
such that C1 ∪ C2 ¦ C ′ if and only if there exists a path P from C1 to C2 in (CA, ¼A) such that every edge
{Z,Z ′} of P satisfies u ∈ ¼A({Z,Z ′}).

(iv) For every pair of distinct connected components C ′
1 and C ′

2 of G[A′
φ] and peripheral vertex v of H ′, v realizes

{C ′
1, C

′
2} in W ′ if and only if there exist components C1 and C2 of G[Aφ] such that C1 ¦ C ′

1, C2 ¦ C ′
2 and

v realizes {C1, C2} in W .

(v) For every connected component C ′ of G[Aφ′ ] and peripheral vertex v of H ′, φ′−1(v) has a neighbor in C ′ in
G′ if and only if C ′ contains a component C of G[Aφ] such that φ−1(v) has a neighbor in C.

Furthermore, all of the above statements hold with A replaced by B (and Aφ by Bφ and Aφ′ by Bφ).

Proof. Since Aφ ¦ A′
φ it follows immediately that for every connected component C of G[Aφ] there is a connected

component C ′ of G[A′
φ] such that C ¦ C ′.

Consider now a connected component C ′ of G[Aφ′ ]. If C ′ does not contain a vertex from A′
φ−Aφ then C ′ ¦ Aφ

and therefore C ′ is a component of G[Aφ]. If C
′ contains a vertex a of A′

φ−Aφ, then a ∈ A1(W )∩φ−1(u). Since
G[A1(W )] is connected, contains Aφ, and is disjoint from Bφ, the connected component of G[A1(W ) ∩ φ−1(u)]
that contains a has a neighbor a′ in Aφ. But then C

′ contains a′ and therefore also the connected component C
of G[Aφ] that contains a

′
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Let C1 and C2 be connected components of G[Aφ]. Suppose there exists a connected component C ′ of G[A′
φ]

such that C1 ∪C2 ¦ C ′. Let Q be a path from C1 to C2 through C ′ − (C1 ∪C2). Let q1, q2, . . . , qℓ be the vertices
of Q that are also vertices of Aφ, in the order that they appear on Q. For every vertex qi ∈ {q1, . . . , qℓ} define
Zi to be the connected component of G[Aφ] that contains q. Then, for every i < ℓ it holds that either Zi = Zi+1

or the subpath of Q from qi to qi+1 is a path from Zi to Zi+1 through Aφ′ − Aφ. But Aφ′ − Aφ ¦ φ−1(u)− S1.
Thus, if Zi ̸= Zi+1 then {Zi, Zi+1} is an edge of CA and u realizes {Zi, Zi+1}, so u ∈ ¼A({Zi, Zi+1}). Hence there
exists a walk from Z1 = C1 to Zℓ = C2 in CA such that every edge {Zi, Zi+1} of the walk satisfies u ∈ {Zi, Zi+1}.
But then there also exists such a path from C1 to C2.

For the reverse direction let C1 and C2 be connected components of G[Aφ] such that there exists a path P in
CA from C1 to C2 such that every edge {Z,Z ′} of P satisfies u ∈ ¼A({Z,Z ′}) For each edge {Z,Z ′} of P there
exists a path Q from Z to Z ′ through φ−1(u) − S1. The component of G[φ−1(u) − S1] that contains Q is in
A1(W ) and therefore Q ¦ Aφ′ . Hence Z and Z ′ are contained in the same component of G[Aφ′ ]. But then all
vertices of P (including C1 and C2) are contained in the same component of G[Aφ′ ].

Next, let C ′
1 and C ′

2 be a pair of distinct components of G[A′
φ], and v be a peripheral vertex of H ′. We prove

the fourth statement.
For the forward direction, suppose v realizes {C ′

1, C
′
2} in W ′. Let P be a path in G′ from C ′

1 to C ′
2 through

φ′−1(v)−S′
1. Let s be the first vertex of P and t be the last vertex of P . Since φ′−1(v) = φ−1(v), A′

φ ¦ Aφ∪φ−1(u)
and φ−1(v) and φ−1(u) are anti-complete, it follows that NG′(φ′−1(v))∩Aφ′ ¦ NG(φ

−1(v))∩Aφ. Hence s and t
are both elements of Aφ. Let C1 and C2 be the components of G[Aφ] that contain s and t respectively. We have
that C1 ¦ C ′

1 and C2 ¦ C ′
2. Then P is a path in G from C1 to C2 through φ′−1(v) − S′

1 = φ−1(v) − S1, so v
realizes {C1, C2} in W .

For the reverse direction, suppose there exist components C1 and C2 of G[Aφ] such that C1 ¦ C ′
1, C2 ¦ C ′

2

and v realizes {C1, C2} in W . Let P be a path in G from C1 to C2 through φ−1(v)− S1. Then P is a path in G′

from C1 to C2 through φ−1(v) − S1 = φ′−1(v) − S′
1. Since C1 ¦ C ′

1, C2 ¦ C ′
2 it follows that v realizes {C ′

1, C
′
2}

in W ′.

Now we show the fifth property. Let C ′ be a connected component of G[Aφ′ ] and v be peripheral vertex v of
H ′. For the forward direction suppose that φ′−1(v) contains a neighbor x in C ′. We have that C ′ ¦ Aφ ∪φ−1(u).
On the other hand φ′−1(v) = φ−1(v) and φ−1(u) are anticomplete, so x ∈ Aφ. Let C be the component of G[Aφ]
that contains x. By property (i) C ¦ C ′ and C.

For the reverse direction suppose that C ′ contains a component C of G[Aφ] such that φ−1(v) has a neighbor
in C. Then φ′−1(v) = φ−1(v) has a neighbor in C ¦ C ′ in G′.

The proofs of the corresponding statements for Bφ and B′
φ are symmetric.

Next we need a lemma that tracks the effect on the connectivity graph if we dissolve many peripheral vertices
instead of just one. To avoid a (slightly) technical induction we do not fully generalize Lemma 5.25 to dissolving
sets of peripheral vertices, and instead prove a slightly weaker set of statements that are still sufficient for our
needs.

Lemma 5.26. LetW = (G,H,φ, S1, S2) be a generalized É-creature with labeled A-connectivity graph (CA, ¼A) and
labeled B-connectivity graph (CB , ¼B), and let U be a set of peripheral vertices of H. Let W ′ = (G′, H ′, φ′, S′

1, S
′
2)

be the generalized (É − |U |)-creature resulting from dissolving all peripheral vertices u ∈ U in W . Then,

(i) for every connected component C of G[Aφ] there is a connected component C ′ of G[Aφ′ ] such that C ¦ C ′.

(ii) Every connected component C ′ of G[Aφ′ ] contains a connected component C of G[Aφ].

(iii) For every pair of connected components C1, C2 of G[Aφ] if there exists a path P from C1 to C2 in (CA, ¼A)
such that for every edge {Z,Z ′} of P there exists a u ∈ U such that u ∈ ¼A({Z,Z ′}), then there exists a
connected component C ′ of G[Aφ′ ] such that C1 ∪ C2 ¦ C ′.

Furthermore, all of the above statements hold with A replaced by B (and Aφ by Bφ and Aφ′ by Bφ).

Proof. We prove the statements (i) and (ii) of the lemma by induction on |U |. If |U | = 1 the statements follows
by Lemma 5.25. So suppose that the |U | g 2 and that the statement of the lemma holds for all smaller values of
|U |.
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LetW = (G,H,φ, S1, S2) be a generalized É-creature with labeled A-connectivity graph (CA, ¼A) and labeled
B-connectivity graph (CB , ¼B), and let U be a set of peripheral vertices of H. Let v be a vertex in U and
U ′ = U−{v}. Let Ŵ = (Ĝ, Ĥ, φ̂, Ŝ1, Ŝ2) be the generalized (É−1)-creature resulting from dissolving u inW . Let
W ′ = (G′, H ′, φ′, S′

1, S
′
2) be generalized (É − |U |)-creature resulting from dissolving all peripheral vertices u ∈ U

in W . Observe that W ′ is also the (É − |U |)-creature resulting from dissolving all peripheral vertices u ∈ U ′ in
Ŵ .

Statement (i): Let C be a connected component C of G[Aφ]. By Lemma 5.25 there exists connected component

Ĉ of Ĝ[Aφ̂] such that C ¦ Ĉ. By the induction hypothesis there exists a connected component C ′ of G[Aφ′ ] such

that Ĉ ¦ C ′. But then C ¦ C ′.

Statement (ii): Let C ′ be a connected component of G[Aφ′ ]. By the induction hypothesis C ′ contains a

connected component Ĉ of Ĝ[Aφ̂]. By Lemma 5.25 Ĉ contains a connected component C of G[Aφ]. But then
C ¦ C ′.

Statement (iii): Let C1 and C2 be connected components of G[Aφ] such that there exists a path P in CA from
C1 to C2 such that every edge {Z,Z ′} of P satisfies u ∈ ¼A({Z,Z ′}) For each edge {Z,Z ′} of P there exists a
u ∈ U and a path Q from Z to Z ′ through φ−1(u)− S1. The component of G[φ−1(u)− S1] that contains Q is in
A1(W ) and therefore (since u ∈ U) we have that Q ¦ Aφ′ . Hence Z and Z ′ are contained in the same component
of G[Aφ′ ]. But then all vertices of P (including C1 and C2) are contained in the same component of G[Aφ′ ].

The proofs of the corresponding statements for Bφ and B′
φ are symmetric.

The next lemma shows that if we have already made an A-path-like or B-path-like creature then dissolving
peripheral vertices will not break this property.

Lemma 5.27. Let W = (G,H,φ, S1, S2) be a disjoint generalized É-creature, U be a set of peripheral vertices of
H, and W ′ = (G,H,φ, S1, S2) be the disjoint generalized (É− 1)-creature resulting from dissolving u in W . If W
is A-path-like then W ′ is A-path-like. If W is B-path-like then W ′ is B-path-like.

Proof. We show that if W is A-path-like then W ′ is A-path-like. We only show the statement for U = {u}. The
full statement for arbitrary sets U then follows immediately by induction on |U |.

Let CA and C′
A be the A-connectivity graphs of W and W ′ respectively. We define a function f that assigns

to every component C ′ of G[A′
φ] the set of components C of G[Aφ] such that C ¦ C ′. By statement (i) of

Lemma 5.25 f(C ′) is non-empty. The definition of f immediately implies that for two distinct components C ′
1

and C ′
2 of G[A′

φ] the output of f(C ′
1) and of f(C ′

2) are disjoint. By statement (iii) of Lemma 5.25, f(C ′) induces
a connected subgraph of CA. By statement (iv) of Lemma 5.25, if {C ′

1, C
′
2} is an edge of C′

A then there exists an
edge from some vertex C1 ∈ f(C ′

1) to a vertex C2 ∈ f(C ′
2) in C′

A. Hence f is a minor model of C′
A in CA. Since W

is path-like, CA is a path. Since C′
A is a minor of CA, every connected component of C′

A is a path as well. Since
C′
A is connected (by Lemma 5.15), C′

A is a path, and we conclude that W ′ is A-path-like.
The proof that if W is B-path-like then W ′ is B-path-like is symmetric.

5.11 From Path-Like to Irreducible
Let W = (G,H,φ, S1, S2) be an A-path-like, disjoint generalized É-creature, and (CA, ¼) be the labeled A-

connectivity graph of W . Recall that vertices in the connectivity graph CA are components of G[Aφ]. We may
therefore talk about vertices of CA being adjacent to vertices in G, or having neighbors in vertex sets in G. A
path P in CA reduces a peripheral vertex u of H if P has at least two vertices, φ−1(u) has a neighbor in the first
vertex of P and a neighbor in the last vertex of P , and for every edge {C1, C2} of P there is a peripheral vertex
y ̸= x that realizes {C1, C2}. An A-reduction pair of W is a pair (u, P ) where u is a peripheral vertex of H and
P is a path in CA that reduces u. When W is clear from context we will simply say that (u, P ) is a A-reduction
pair.

We say that a path-like, disjoint generalized É-creature is A-irreducible if there does not exist a reduction
pair (u, P ) of W An A-reduction packing is a set P of reduction pairs such that for every pair (u1, P1), (u2, P2) of
distinct A-reduction pairs in P, V (P1)∩V (P2) = ∅. In other words an A-reduction packing is a set of A-reduction
pairs whose paths are pairwise vertex-disjoint. An A-reduction hitting set for W is a set X ¦ V (CA) such that
for every A-reduction pair (u, P ) of W we have X ∩ V (P ) ̸= ∅.
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Lemma 5.28. Let W = (G,H,φ, S1, S2) be a path-like, disjoint generalized É-creature, and (CA, ¼) be the labeled
A-connectivity graph of W . For every integer p g 1 there either exists an A-reduction packing P of size p or an
A-reduction hitting set X of size p− 1.

Proof. The lemma follows directly from the well-known fact (see e.g. [22]) that for every set S of intervals on the
real line and integer p, there either exists a subset S ′ ¦ S of p pairwise disjoint intervals, or there exists a set
X ¦ R such that |X| < p and every interval in S contains an element of X.

Indeed we associate every vertex of CA with an integer, namely the position of this vertex in the path CA.
Every A-reduction pair (u, P ) is associated with the interval from the first to the last vertex of P . A set of disjoint
intervals now corresponds to an A-reduction packing of the same cardinality. Similarly, since every interval starts
and ends at an integer position, every set of reals that intersect all intervals can be assumed without loss of
generality to be a set of integers, and therefore corresponds to an A-reduction hitting set of the same size.

An A-reduction pair (u1, P1) conflicts with another A-reduction pair (u2, P2) if φ
−1(u1) has a neighbor in a

vertex of P2 or φ−1(u2) has a neighbor in a vertex of P1. Note that the conflict relation is symmetric - if (u1, P1)
conflicts with (u2, P2) then (u2, P2) conflicts with (u1, P1).

Lemma 5.29. Let W = (G,H,φ, S1, S2) be a path-like, disjoint generalized É-creature with adhesion size ³, and
P be an A-reduction packing of W . Then there exists an A-reduction pair (u, P ) in P that conflicts with at most
2³− 1 A-reduction pairs in P.

Proof. Given the A-reduction packing P, define for every peripheral vertex u of H the set

Q(u) = {(u′, P ′) ∈ P : φ−1(u) has a neighbor in a vertex of P ′}

Note that in an A-reduction packing P the paths in the A-reduction pairs are all vertex disjoint. Therefore, since
u has adhesion size at most ³ it follows that |Q(u)| f ³ for every peripheral vertex u of H. For every path P in
the A-connectivity graph CA of W , define

Q(P ) = {(u′, P ′) ∈ P : φ−1(u′) has a neighbor in a vertex of P}

We have that

∑

(u,P )∈P

|Q(P )| =
∑

(u,P )∈P

∑

(u′,P ′)∈P

{

1 if φ−1(u′) has a neighbor in a vertex of P

0 otherwise

=
∑

(u′,P ′)∈P

|Q(u′)|

f |P|³

Thus there exists a (u, P ) ∈ P such that |Q(P )| f ³. Every A-reduction pair (u′, P ′) that conflicts with (u, P ) is
in Q(u)∪Q(P ). Indeed, if φ−1(u) has a neighbor in a vertex of P ′ then (u′, P ′) ∈ Q(u). If φ−1(u′) has a neighbor
in a vertex of P then (u′, P ′) ∈ Q(P ). But |Q(u) ∪ Q(P )| f 2³, and (u, P ) ∈ Q(u), so (u, P ) conflicts with at
most 2³− 1 A-reduction pairs in P, as claimed.

An A-reduction packing P is conflict free if no A-reduction pair in P conflicts with another A-reduction pair
in P.

Lemma 5.30. Let W = (G,H,φ, S1, S2) be a path-like, disjoint generalized É-creature of adhesion size ³ and P be
an A-reduction packing of W . Then there exists a conflict free A-reduction packing P ′ ¦ P such that |P ′| g P/2³.

Proof. We prove the lemma by induction on |P|. For |P| = 0 the statement trivially holds, so suppose that
|P| > 0. By Lemma 5.29 there exists an A-reduction pair (u, P ) ∈ P that conflicts with at most 2³ − 1 A-
reduction pairs in P. Let P⋆ be the subset of all A-reduction pairs in P − {(u, P )} that do not conflict with
(u, P ). We have that |P| − 2³ f |P⋆| < |P|. By the induction hypothesis P⋆ contains a conflict free A-reduction
packing P ′ of size at least |P⋆|/2³ g (|P|/2³)− 1. Since (u, P ) does not conflict with any A-reduction pair in P ′

it follows that P ′∪{(u, P )} is a conflict packing of size at least P/2³, and that P ′∪{(u, P )} ¦ P . This concludes
the proof.
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Lemma 5.31. Let W = (G,H,φ, S1, S2) be a path-like, disjoint generalized É-creature of adhesion size ³ and
P be a conflict free A-reduction packing of W . Then there exists a path-like disjoint, generalized É′-creature
W ′ = (G′, H ′, φ′, S′

1, S
′
2) with adhesion size ³− 1 and É′ = |P|. Furthermore, W ′ is an A-descendant of W .

Proof. Define R to be the set of all peripheral vertices u ofH such that there exists an A-reduction pair (u, P ) ∈ P.
Since P is conflict free we have that for every u ∈ R there is precisely one A-reduction pair (u, P ) in P. Indeed,
if there were two such pairs (u, P1) and (u, P2) then (u, P1) would conflict with (u, P2) because φ−1(u) has a
neighbor in the first vertex of P2. Hence |R| = P We set U to be the set of all peripheral vertices of H that are
not in R, and obtain W ′ = (G′, H ′, φ′, S′

1, S
′
2) by dissolving all peripheral vertices in u. By Lemma 5.9 W ′ is a

disjoint generalized |R|-creature. By definition of A-descendants, W ′ is an A-descendant of W . By Lemma 5.27
W ′ is A-path-like.

It remains to show that the adhesion size of W ′ is at most ³ − 1. Let v be a peripheral vertex of H ′ with
maximum adhesion size inW ′, and let (CA, ¼) be the labeled A-connectivity graph ofW . Let C1, C2, . . . , Cℓ be the
connected components of G[Aφ ∪Bφ] that contain NG[φ−1(v)]. Since W has adhesion size ³ we have that ℓ f ³.
By Lemma 5.26 there exist components C ′

1, C
′
2 . . . , C

′
ℓ of G

′[Aφ′ ∪Bφ′ ] such that Ci ¦ C ′
i for every i. Furthermore

NG[φ
−1(v)] ¦ Aφ∪Bφ, G′ is an induced subgraph of G, and φ′−1(v) = φ−1(v). Thus NG′ [φ′−1(v)] ¦ NG[φ

−1(v)].
Hence C ′

1, C
′
2 . . . , C

′
ℓ contain NG′ [φ′−1(v)].

Since v ∈ R there is a A-reduction pair (v, P ) ∈ P. The endpoints of P are components of G[Aφ] that contain
neighbors of φ−1(v) in G. Without loss of generality, C1 and C2 are the two endpoints of P . Since (v, P ) is a
A-reduction pair we have that for every edge {Z,Z ′} of P there exists a peripheral vertex u ̸= v of H such that
u ∈ ¼({Z,Z ′}).

We claim that u ∈ U . Suppose not, then there exists an A-reduction pair (u, P ′) ∈ P . But φ−1(u) has a
neighbor in Z (since u realizes {Z,Z ′}) and therefore (u, P ′) conflicts with (v, P ), contradicting that P is conflict
free. We conclude that u ∈ U .

But then, for every edge {Z,Z ′} of P there exists a peripheral vertex u ∈ U such that u ∈ ¼({Z,Z ′}). By
statement (iii) of Lemma 5.26 C1 and C2 are contained in the same component of G[Aφ′ ]. But then C ′

1 = C ′
2 and

therefore there are at most ℓ − 1 = ³ − 1 components of G[Aφ′ ∪ Bφ′ ] that contain neighbors of φ′−1(v) in G′.
Hence the adhesion size of v in W ′ is at most ³− 1. Since v was the vertex in H ′ with maximum adhesion size,
the adhesion size of W ′ is at most ³− 1 as claimed.

Lemma 5.32. Let W = (G,H,φ, S1, S2) be a path-like, disjoint generalized É-creature of adhesion size ³,
X ¦ V (P ), X be an A-reduction hitting set for W and P be a path in the A-connectivity graph CA of W
such that V (P ) is disjoint from X. Then there exists an A-irreducible path-like disjoint generalized É′ creature
W ′ which is A-descendant of W , with adhesion size ³ and É′ g |V (P )|/³.

Proof. Let W ′ = (G′, H ′, φ′, S′
1, S

′
2) be disjoint the É′-creature obtained from W and P by the Path Filtering

Lemma (Lemma 5.23). We claim that W ′ satisfies the conclusion of the lemma. From Lemma 5.23 we have that:

• W ′ is A-path-like.

• W ′ is an A-descendant of W .

• Aφ′ =
⋃

C∈V (P ) C

• Every peripheral vertex u of H ′ is a peripheral vertex of H.

• The labeled A-connectivity graph of W ′ is equal to (P, ¼), where (CA, ¼) is the labeled A-connectivity graph
of W .

• For every peripheral vertex u of H and component C ′ ∈ V (P ) it holds that C ′ has a neighbor in φ−1(u) in
G if and only if u is a peripheral vertex of H ′ and C ′ has a neighbor in φ′−1(u) in G′.

By Lemma 5.22, the adhesion size of W ′ is at most ³.
All that remains to show is thatW ′ is A-irreducible, and that É′ g |V (P )|/³. To see thatW ′ is A-irreducible,

suppose for contradiction that u, P ′ is an A-reduction pair in W ′. Then u is also a peripheral vertex of H, P ′ is
also an induced path in G, φ−1(u) has a neighbor in the first and last vertex of P ′ in G, and every edge {C1, C2}
of p satisfies that ¼({C1, C2}) − {u} is non-empty. But then (u, P ′) is an A-reduction pair in W . Since P ′ is a
sub-path of P and V (P ) is disjoint from X it follows that V (P ′) is disjoint from X. This contradicts that X is
an A-reduction hitting set for W .

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited3159

D
o

w
n
lo

ad
ed

 0
6
/2

0
/2

5
 t

o
 1

6
9
.2

3
1
.1

8
6
.1

6
7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



We now show that É′ g |V (P )|/³. Indeed, for every edge {C1, C2} of P some peripheral vertex u of H ′

realizes {C1, C2} in W ′. Then φ−1u has a neighbor both in C1 and in C2.
Since every vertex of P is incident to an edge of P it holds that for every vertex C of P there exists a

peripheral vertex u of H ′ such that φ−1u has a neighbor in C. Thus, since W ′ has adhesion size ³, the number of
peripheral vertices of H ′ is at least |V (P )|/³. Hence W ′ is a generalized É′-creature with É′ g |V (P )|/³.
Lemma 5.33. Let G be k-creature free, and W = (G,H,φ, S1, S2) be a path-like, disjoint generalized É-
creature of adhesion size ³. Then there exists a path-like disjoint, A-irreducible generalized É′ creature W ′ =

(G′, H ′, φ′, S′
1, S

′
2) with adhesion size ³, such that É′ g É1/α

4k³2 . Furthermore W ′ is an A-descendant of W .

Proof. We prove the statement of the lemma by induction on ³. If ³ f 1 then no A-reduction pair (u, P ) can
exist. In particular in every A-reduction pair (u, P ), φ−1(u) has a neighbor in the first and last vertex of P , and
these two vertices are distinct. Thus u has adhesion size at least 2. Thus, if ³ f 1 then W already satisfies the
conclusion of the lemma.

Suppose now that ³ g 2 and that the statement of the lemma holds for all lower values of ³. Let
W = (G,H,φ, S1, S2) be a path-like, disjoint generalized É-creature of adhesion size ³. If W is A-irreducible
it already satisfies the conclusion of the lemma. We consider the case where W is not A-irreducible, and set
p = É1− 1

α · 2³. By Lemma 5.28 there either exists an A-reduction packing P of size p or an A-reduction hitting
set X of size p− 1.

We fist consider the case that there exists an A-reduction packing P of size p. Then, by Lemma 5.30 there
exists a conflict-free A-reduction packing P ′ ¦ P of size at least |P|/2³. Then, by Lemma 5.31 there exists a path-

like disjoint generalized É̂-creature Ŵ , A-descendant ofW , with adhesion size ³−1 and É̂ = |P ′| g p/2³ g É1− 1

α .
By the induction hypothesis applied to Ŵ there exists an A-irreducible path-like disjoint, generalized É′ creature
W ′ = (G′, H ′, φ′, S′

1, S
′
2), A-descendant of Ŵ (and therefore of W ) with adhesion size ³− 1 and

É′ g É̂
1

α−1

4k(³− 1)2
g (É1− 1

α )
1

α−1

4k³2
=

É
1

α

4k³2

We now consider the case that there exists an A-reduction hitting set X of size p. On one hand, by Lemma 5.1,
for every peripheral vertex u of H, φ−1(u) has a neighbor in Aφ. On the other hand, By Lemma 5.16, for every
a component C of G[Aφ] there are fewer than k peripheral vertices u of H such that φ−1(u) has a neighbor in
C. Therefore there are at least É/k vertices in CA. Since CA is a path, it contains a sub-path P on at least
(É/k)−|X|

|X|+1 > É
k(p+1) − 1 vertices disjoint from X. Since the number of vertices is an integer, P has at least É

k(p+1)

vertices. Thus, by Lemma 5.32 there exists an A-irreducible, path-like disjoint generalized É′ creature W ′ which

is A-descendant of W , with adhesion size ³ and É′ g
(

É
k(p+1) − 1

)

/³ > É
k(p+1)³ − 1. Since É′ is an integer it

follows that

É′ g É

k(p+ 1)³
g É

2kp³
g É

1

α

4k³2
.

This concludes the proof.

Lemma 5.34. Let W = (G,H,φ, S1, S2) be a disjoint generalized É-creature with adhesion size ³. Then there
exists a path-like disjoint, A-irreducible generalized É′ creature W ′ = (G′, H ′, φ′, S′

1, S
′
2) with adhesion size ³,

such that É′ g (logkα(É)−3)1/α

8k³2 . Furthermore W ′ is an A-descendant of W .

Proof. Let G be a k-creature free graph and W = (G,H,φ, S1, S2) be a disjoint generalized É-creature with
adhesion size ³. Then, by Lemma 5.24 there exists an A-path-like disjoint generalized É′′-creature W ′′ =

(G′′, H ′′, φ′′, S′′
1 , S

′′
2 ) with adhesion size ³, such that W ′′ is an A-descendant of G. Further, É′′ g logkα(É/k)−2

³−1 .
By Lemma 5.22, G′′ is an induced subgraph of G and therefore also k-creature free.

By Lemma 5.33 applied to W ′′ there exists a path-like disjoint, A-irreducible generalized É′ creature
W ′ = (G′, H ′, φ′, S′

1, S
′
2) with adhesion size ³, such that

É′ g É′′1/³

4k³2
g ( logkα(É)−3

³ )1/³

4k³2
g (logk³(É)− 3)1/³

8k³2
.

Thus W ′ satisfies the conclusion of the lemma.
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5.12 From A-Path-like and A-Irreducible to A-Critter-like

Definition 5.14. (A-critter-like and B-critter-like) Let W = (G,H,φ, S1, S2) be a generalized disjoint
É-creature, and let (CA, ¼A) and (CB , ¼B) be the labeled A-connectivity graph and the labeled B-connectivity graph
of W , respectively. W is A-critter-like if:

• CA is a path,

• Every edge {C1, C2} of CA satisfies |¼A({C1, C2})| = 1.

• For every peripheral vertex u of H and pair {C1, C2} of components of G[φA], if φ
−1(u) has a neighbor in

C1 and a neighbor in C2 then u realizes {C1, C2} in W .

Similarly, W is B-critter-like if:

• CB is a path,

• Every edge {C1, C2} of CB satisfies |¼B({C1, C2})| = 1.

• For every peripheral vertex u of H and pair {C1, C2} of components of G[φB ], if φ
−1(u) has a neighbor in

C1 and a neighbor in C2 then u realizes {C1, C2} in W .

In this section we show how to extract an A-critter-like disjoint generalized É′-creature from an A-path-like
disjoint generalized É′-creature.

We will need to get rid of peripheral vertices of H that do not realize any edges of CA. More formally, let
W = (G,H,φ, S1, S2) be an A-path-like generalized É-creature, and let CA be the A-connectivity graph of W .
We say that a peripheral vertex u of H is A-useless if u does not realize any pair {C1, C2} of distinct components
of G[Aφ], and φ

−1(u) has no neighbors in the endpoints of CA. We would like to dissolve such peripheral vertices,
thus we need to track what dissolving them does to the connectivity graph.

Lemma 5.35. Let W = (G,H,φ, S1, S2) be an A-path-like, A-irreducible disjoint generalized É-creature of
adhesion size ³, and let (CA, ¼) be the labeled A-connectivity graph of W . Let u be an A-useless peripheral vertex
of H. Let W ′ = (G′, H ′, φ′, S′

1, S
′
2) be the generalized É-creature resulting from dissolving u in W . Let (C′

A, ¼
′)

be the labeled A-connectivity graph of W ′. Then W ′ is an A-path-like, A-irreducible, and disjoint generalized
(É − 1)-creature of adhesion size ³. Furthermore, for every peripheral vertex v of H, if v is not A-useless in W
then v is not A-useless in W ′.

Proof. By Lemma 5.9 we have thatW ′ is a disjoint generalized (É−1)-creature of adhesion size ³. By Lemma 5.25
statement (i) every connected component of G[Aφ] is contained in a component of G[Aφ′ ]. By Lemma 5.25
statements (ii) and (iii), every connected component C ′ of G[Aφ′ ] contains precisely one component of G[Aφ].
By Lemma 5.25 statement (iv) a peripheral vertex v of H ′ realizes a pair {C ′

1, C
′
2} of components of G[Aφ′ ] in

W ′ if and only if v realizes {C1, C2} in W , where C1 and C2 are the unique components of G[Aφ] contained in
C ′

1 and C ′
2 respectively.

Hence the bijection È that maps a component of G[Aφ] to the unique component of G[Aφ′ ] that contains it is
an isomorphism from (CA, ¼) to (C′

A, ¼
′), in the sense that {C,C ′} ∈ E(CA) if and only if {È(C), È(C ′)} ∈ E(CA)

and ¼({C,C ′}) = ¼′({È(C), È(C ′)}).
Hence W ′ is A-path-like, and every peripheral vertex v which realizes an edge of CA also realizes the same

edge of C′
A. Similarly, every peripheral vertex v with a neighbor in an endpoint Q of CA has a neighbor in È(Q).

Hence, if v is not A-useless in W it is not A-useless in W ′ either. Furthermore, if W ′ has an A-reduction pair
(v, P ) then (v, È−1(P )) is an A-reduction pair in W . Thus W ′ is A-irreducible.

For this we will absorb absorbable components of G[Aφ]. We therefore need to track how absorbing a
component of G[Aφ] affects the labeled A-connectivity graph.

Lemma 5.36. Let É g 2 andW = (G,H,φ, S1, S2) be an A-path-like, A-irreducible disjoint generalized É-creature
of adhesion size ³ such that H has no A-useless peripheral vertices. Let C be an absorbable component of G[φA],
and u be the peripheral vertex of H such that N(C) ¦ φ−1(u). Let W ′ = (G′, H ′, φ′, S′

1, S
′
2) be the generalized

É-creature resulting from absorbing C in W . Then W ′ is an A-path-like, A-irreducible, and disjoint generalized
É-creature of adhesion size ³, and H ′ has no A-useless peripheral vertices.
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Proof. By Lemma 5.10 W ′ is a disjoint generalized É-creature of adhesion size ³. By definition of absorb,
Aφ′ = Aφ−C so the set of connected components of G[Aφ′ ] is precisely the set of connected components of G[Aφ]
minus {C}.

We observe that G[Aφ] has at least 2 components. Otherwise C is the only component of G[Aφ]. Then
Lemma 5.1 yields that for every peripheral vertex v of H, φ−1(v) has a neighbor in C, contradicting that C is
absorbable.

Let (CA, ¼) be the labeled A-connectivity graph of W and (C′
A, ¼

′) be the labeled A-connectivity graph of W ′.
By assumption CA is a path. We have that S′

1 = S1 and for every peripheral vertex v ̸= u of H ′ we have that
φ′−1(v) = φ−1(v). Hence for every pair of components C1, C2 of G[Aφ′ ] and peripheral vertex v ̸= u we have
that v realizes {C1, C2} in W ′ if and only if v realizes {C1, C2} in W .

There are two cases, C is an endpoint of CA or not. Suppose C is an endpoint of CA. We claim that for every
pair {C1, C2} of components of G[Aφ′ ], u realizes {C1, C2} in W ′ if and only if u realizes {C1, C2} in W . For
the reverse direction, let P be a path from C1 to C2 through φ−1(u) − S1. Then P is also a path from C1 to
C2 through φ′−1(u) − S′

1, because φ
′−1(u) = φ−1(u) ∪ C, S′

1 = S′
1 and S1 is disjoint from C. Hence u realizes

{C1, C2} in W ′.
For the forward direction, suppose that u realizes an {C1, C2} in W ′ Then there exists a path P from C1 to

C2 though φ′−1(u)−S′
1 = (φ−1(u)∪C)−S1. Since C only has one neighbor in CA, without loss of generality C1 is

not a neighbor of C in CA. If P contains a vertex of C, let P ′ be a shortest sub-path of P with one endpoint in C1

and the other in C. Then P ′ is a path from C to C1 through φ−1(u)− S1, contradicting that C1 is non-neighbor
of C in CA. Therefore P is disjoint from C. Then P is a path from C1 to C2 though φ−1(u) − S1, so u realizes
{C1, C2} in W .

Thus, when C is an endpoint of CA we get that (C′
A, ¼

′) = (CA−{C}, ¼). Hence W ′ is path-like. Furthermore
every A-reduction pair (v, P ) in W ′ is an A-reduction pair also in W . Hence W ′ is irreducible. It remains to show
that no vertices of H ′ are A-useless. Consider now a peripheral vertex v ̸= u of H. Since v is not A-useless in W ,
v realizes an edge of CA or φ−1(v) has a neighbor in an endpoint of CA. Since v ̸= u and N(C) ¦ φ−1(u) we have
that v has no neighbors in C. Thus if v realizes an edge {C1, C2} of CA in W then v realizes {C1, C2} in W ′. If
φ−1(v) has a neighbor in an endpoint C ′ of CA then C ′ ̸= C and v has a neighbor in C ′ in W ′ as well. Hence v
is not A-useless in W ′ Finally, let C1 be the unique neighbor of C in CA. Since u realizes the edge {C,C1} in CA,
φ−1(u) has a neighbor in C1, and C1 is an endpoint of C′

A. Therefore u is not A-useless in W ′. We conclude that
in the case when u is an endpoint of CA the statement of the lemma holds.

Suppose now that C is not an endpoint of CA and let X and Y be the predecessor and successor of C on the
path CA, respectively. We claim that u realizes a pair {C1, C2} of components of G[Aφ′ ] if and only if u realizes
{C1, C2} in W or {C1, C2} = {X,Y }. For the reverse direction, suppose u realizes {C1, C2} in W . Let P be a
path from C1 to C2 through φ−1(u) − S1. Then P is also a path from C1 to C2 through φ′−1(u) − S′

1, because
φ′−1(u) = φ−1(u) ∪ C, S′

1 = S′
1 and S1 is disjoint from C. Hence u realizes {C1, C2} in W ′.

Suppose now that C1 = X and C2 = Y . Then there is a path P1 from C1 to C through φ−1(u)− S1, and a
path P2 from C to C2 through φ−1(u)− S1. Since S1 = S′

1 and φ−1(u)∪C = φ′−1(u) there is a walk from C1 to
C2 through φ′−1(u), namely P1, followed by a walk from the end of P1 to the start of P2 in G[C] and then by P2

from C to C2. Hence u realizes {C1, C2} = {X,Y } in W ′.
For the forward direction, suppose that u realizes an {C1, C2} in W ′ Then there exists a path P from C1 to

C2 though φ′−1(u) − S′
1 = (φ−1(u) ∪ C) − S1. If P is disjoint from C then P is a path from C1 to C2 though

φ−1(u) − S1, so u realizes {C1, C2} in W . If V (P ) intersects with C then P contains a sub-path P1 from C1 to
C through φ′−1(u)− C = φ−1(u) and a path P2 from C2 to C through φ′−1(u)− C = φ−1(u). But then C1 and
C2 are both adjacent to C in CA and therefore {C1, C2} = {X,Y }. Thus, when C is not an endpoint of CA we
get that (C′

A, ¼
′) and (CA − {C}, ¼) are equal, except that {X,Y } is a non-edge of CA − {C} and an edge of C′

A

with label ¼′({X,Y }) = {u}. Hence W ′ is path-like.
We show that W ′ is A-irreducible. For every A-reduction pair (v, P ) in W ′, if {X,Y } is not an edge of P

then (v, P ) is also an A-reduction pair in W . If {X,Y } is an edge of P then (v, P ′) is an A-reduction pair in
W , where P ′ is the path obtained from P by removing the edge {X,Y }, adding the vertex C and the edges
{X,C} and {C, Y }. In particular ¼({X,C}) = ¼{C, Y } = ¼′{X,Y } = {u} Thus, since W is A-irreducible, W ′ is
A-irreducible as well.

It remains to show that no vertices of H ′ are A-useless. Consider now a peripheral vertex v ̸= u of H. Since
v is not A-useless in W , v realizes an edge of CA or φ−1(v) has a neighbor in an endpoint of CA. Since v ̸= u and
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N(C) ¦ φ−1(u) we have that v has no neighbors in C. Thus if v realizes an edge {C1, C2} of CA in W then v
realizes {C1, C2} in W ′. If φ−1(v) has a neighbor in an endpoint C ′ of CA then C ′ ̸= C and v has a neighbor in
C ′ in W ′ as well. Hence v is not A-useless in W ′ Finally observe that u realizes {X,Y } in W ′ and therefore is
not A-useless in W ′. This concludes the proof.

Lemma 5.37. If W is an A-path-like, A-irreducible, and disjoint generalized É-creature that does not have A-
useless peripheral vertices or absorbable components in G[Aφ], then W is A-critter-like.

Proof. We prove thatW satisfies each of the three properties of A-critter-like generalized É-creatures. Let (CA, ¼)
be the A-connectivity graph of W . First, CA is a path because W is A-path-like. For the second property, let
{C1, C2} be an edge of the A-connectivity graph CA. Since every edge of CA is realized by at least one peripheral
vertex u of H we have that |¼A({C1, C2})| g 1. We now show that |¼A({C1, C2})| f 1. Suppose for contradiction
that there exists a peripheral vertex v ̸= u such that v ∈ ¼A({C1, C2}). Since u realizes {C1, C2} we have that
φ−1(u) has neighbors both in C1 and in C2. But then (u,C1C2) is an A-reduction pair, contradicting that W is
A-irreducible.

For the third property, suppose for contradiction that there exists a peripheral vertex u such that φ−1(u)
has neighbors in two distinct components C1, C2 of G[Aφ] and u does not realize {C1, C2}. Let P be the path
from C1 to C2 in CA. We consider two cases, either at least one edge of P is labeled with {v} for some peripheral
vertex v ̸= u, or all edges of P are labeled with {u}.

Suppose first that at least one edge {Z,Z ′} of P is labeled with {v} for some peripheral vertex v ̸= u. Let P ′

a the shortest sub-path of P that contains the edge {Z,Z ′} such that the first component C ′
1 of P ′ and the last

component C ′
2 have a neighbor in φ−1(u). Since P itself satisfies the two properties, P ′ is well defined. Since P ′

shortest, no internal vertex of P ′ can have a neighbor in φ−1(u). But then u does not realize any edge of P ′ and
therefore (u, P ′) is an A-reduction pair, contradicting that W is A-irreducible.

Suppose now that all edges of P are labeled with {u}. Since u does not realize {C1, C2} the path P has at
least one internal vertex C. Since C is not absorbable there exists a peripheral vertex v ̸= u such that C has a
neighbor in φ−1(v). Since v is not A-useless, v realizes at least one edge of CA or φ−1(v) has a neighbor in an
endpoint of CA. If v realizes at an edge of CA then this edge can not be incident to C, because all edges incident
to C are labeled {u}. Hence φ−1(v) has a neighbor in at least one vertex of CA other than C. If φ−1(v) has a
neighbor in an endpoint of CA then this endpoint is not equal to C, because C is an internal vertex of P . In either
case φ−1(v) has a neighbor in at least one vertex of CA other than C.

Let P ′ be a shortest path in CA from C to another vertex of CA that contains a neighbor of φ−1(v). None
of the edges of P ′ are labeled {v} because only the endpoints of P ′ contain neighbors of φ−1(v), and one of
the endpoints, namely C, is not incident to any edges labeled {v}. But then (v, P ′) is an A-reduction pair,
contradicting that W is A-irreducible. We conclude that W is A-critter-like.

Lemma 5.38. Let G be k-creature free, and W = (G,H,φ, S1, S2) be an A-path-like, A-irreducible disjoint
generalized É creature of adhesion size ³. Then there exists an A-critter-like disjoint generalized É′-creature
W ′ = (G′, H ′, φ′, S′

1, S
′
2) with adhesion size ³, such that É′ g É

k³ − 1. Furthermore W ′ is an A-descendant of W .

Proof. Let G be k-creature free, and W = (G,H,φ, S1, S2) be an A-path-like, A-irreducible disjoint generalized
É creature of adhesion size ³.

We claim that G[Aφ] has at least É/k components. Indeed, by Lemma 5.1 for every peripheral vertex v of
H, φ−1(v) has a neighbor in Aφ, and by Lemma 5.16 for each component C of G[Aφ] there are at most k − 1
peripheral vertices v such that φ−1(v) has a neighbor in C. Thus G[Aφ] has at least É/k components.

Let Z be the set of all peripheral vertices of H that are not A-useless. We claim that |Z| g É/k³−1. Indeed,
CA has at least É/k − 1 edges, and each of these edges is realized by a peripheral vertex v ∈ Z. Since each
peripheral vertex v can realize no more than ³ edges of CA it follows that |Z| g É

k³ − 1.
Let W ′ = (G′, H ′, φ′, S′

1, S
′
2) be the result of repeatedly dissolving A-useless peripheral vertices of H, as long

as any are present. By Lemma 5.35 no vertices of Z get dissolved by this process. Furthermore, by Lemma 5.35W ′

is an A-path-like, A-irreducible, and disjoint generalized É′-creature of adhesion size ³, where É′ = |Z| g É
k³ − 1.

Let W ′′ = (G′′, H ′′, φ′′, S′′
1 , S

′′
2 ) be the result of repeatedly absorbing absorbable components of G′[Aφ′ ], as

long as any are present. By Lemma 5.36 W ′′ is an A-path-like, A-irreducible, and disjoint generalized É′-creature
of adhesion size ³, and H ′′ has no A-useless peripheral vertices. Furthermore, G′′[Aφ′′ ] has no absorbable
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components. Since W ′′ was obtained by dissolving peripheral vertices and absorbing absorbable components of
G[Aφ], W

′′ is an A-descendant of W . By Lemma 5.37 W ′′ satisfies the conclusion of the lemma.

Lemma 5.39. Let G be k-creature free, and W = (G,H,φ, S1, S2) be a disjoint generalized É creature of adhesion
size ³. Then there exists an A-critter-like disjoint generalized É′-creature W ′ = (G′, H ′, φ′, S′

1, S
′
2) with adhesion

size ³, such that É′ g (logkα(É)−3)1/α

8k2³3 − 1. Furthermore W ′ is an A-descendant of W .

Proof. By Lemma 5.34 applied to W there exists an A-path-like, A-irreducible disjoint generalized É′ creature

W ′′ = (G′′, H ′′, φ′′, S′′
1 , S

′′
2 ) with adhesion size ³, such that É′′ g (logkα(É)−3)1/α

8k³2 . Furthermore W ′′ is an A-
descendant of W . By Lemma 5.38 applied to W ′′ there exists an A-critter-like disjoint generalized É′-creature

W ′ = (G′, H ′, φ′, S′
1, S

′
2) with adhesion size ³, such that É′ g É′′

k³ − 1 g (logkα(É)−3)1/α

8k2³3 − 1. Furthermore W ′ is an
A-descendant of W ′′, and hence of W . This completes the proof.

5.13 A-Descendents stay B-Critter-Like

Lemma 5.40. Let W = (G,H,φ, S1, S2) be a B-critter-like disjoint generalized É-creature and u be a peripheral
vertex in H. Then either there exists a unique component C of G[Bφ] such that φ−1(u) has a neighbor in C,
or there exist precisely two components C1, C2 of G[Bφ] such that u realizes {C1, C2}. In this case no other
peripheral vertices of H realize {C1, C2}. Furthermore all of the statements above hold with B replaced by A.

Proof. Let (CB , ¼) be the B-connectivity graph of W . By Lemma 5.1 there exists at least one component C1 such
that φ−1(u) has a neighbor in C1. If there exist two components C1, C2 such that φ−1(u) has a neighbor in C1

and a neighbor in C2, then by the third property of critter-like generalized É-creatures u realizes {C1, C2}. Then
{C1, C2} is an edge of CB Further, if another peripheral vertex v also realizes {C1, C2} then {u, v} ¦ ¼({C1, C2}),
contradicting the second property of critter-like generalized É-creatures. If there are exist three components C1,
C2, C3 such that φ−1(u) has a neighbor in each of them then, by the second property, {C1, C2}, {C2, C3} and
{C1, C3} are all edges of CB . But this contradicts the first property, namely that CB is a path.

Lemma 5.41. Let W = (G,H,φ, S1, S2) be a B-critter-like disjoint generalized É-creature of adhesion size ³,
and u be a peripheral vertex of H. Let W ′ = (G′, H ′, φ′, S′

1, S
′
2) be the result of dissolving u in W . Then W ′ is

a B-critter-like disjoint generalized (É − 1)-creature of adhesion size ³. Furthermore, if W is A-critter-like then
W ′ is A-critter-like.

Proof. By Lemma 5.9 W ′ is a disjoint generalized (É − 1)-creature of adhesion size ³. It remains to show that
it is B-critter-like. Let (CB , ¼) and (C′

B , ¼
′) be the labeled B-connectivity graphs of W and W ′ respectively. Let

C1, C2, . . . , Ct be the components of G[Bφ] in the order they are visited by the path CB . By Lemma 5.25, statement
(i) there exists a sequence of (not necessarily distinct) components C ′

1, C
′
2, . . . , C

′
t of G

′[Bφ′ ] such that Ci ¦ C ′
i

for every i. Lemma 5.25, statement (ii) every component of G′[Bφ′ ] appears in the sequence C ′
1, C

′
2, . . . , C

′
t at

least once. By Lemma 5.40 there are two cases. Either there exists precisely one component Cr such that φ−1(u)
has a neighbor in Cr, or there exists precisely one component Cr such that φ−1(u) has a neighbor in Cr and in
Cr+1

We first consider the case that there exists precisely one component Cr such that φ−1(u) has a neighbor in Cr.
Because u does not realize any edge of CB , Lemma 5.25, statement (iii) yields that C ′

i ̸= C ′
j for every pair of distinct

integers i, j. Lemma 5.25, statement (iv) then yields that the edge set of C′
B is equal to {{C ′

i, C
′
i+1} : i < t}

and every {C ′
i, C

′
i+1} satisfies that ¼′({C ′

i, C
′
i+1}) = ¼({C ′

i, C
′
i+1}). Thus CB is path-like and |¼′({C ′

i, C
′
i+1)| f 1

for every i By Lemma 5.25, statement (v) every peripheral vertex v of H ′ and every component C ′
i satisfies that

φ′−1(v) has a neighbor in C ′
i if and only if φ−1(v) has a neighbor in Ci. Therefore, if φ′−1(v) has a neighbor in

C ′
i and in C ′

j then {C ′
i, C

′
j} in an edge of C′

B and ¼′({C ′
i, C

′
j}) = {v}.

Next we consider the case that there exists precisely one r such that φ−1(u) has a neighbor in Cr and in
Cr+1 Because u realizes the edge {Cr, Cr+1} in CB and no other edges, Lemma 5.25, statement (iii) yields that
C ′
r = C ′

r+1 and C ′
i ̸= C ′

j for every pair of distinct integers i, j such that {i, j} ≠ {r, r + 1}.
Lemma 5.25, statement (iv) then yields that the edge set of C′

B is equal to {{C ′
i, C

′
i+1} : i < t and i ̸= r}.

Note here that the edge {C ′
r+1, C

′
r+2}, if r + 2 f t, is equal to {C ′

r, C
′
r+2}, because Cr = C ′

r+1. Thus C′
B is

path-like. Furthermore Lemma 5.25, statement (iv) implies that ¼′({C ′
i, C

′
i+1}) = ¼({C ′

i, C
′
i+1}) for every i ̸= r
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(for i = r we have C ′
i = C ′

i+1 and there is no self loop in C′
B). Thus |¼′({C ′

i, C
′
j})| f 1 for every edge {C ′

i, C
′
j} of

C′
B .

By Lemma 5.25, statement (v) every peripheral vertex v of H ′ and every component C ′
i with i /∈ {r, r + 1}

satisfies that φ′−1(v) has a neighbor in C ′
i if and only if φ−1(v) has a neighbor in Ci. Furthermore Lemma 5.25,

statement (v) yields that for every peripheral vertex v of H ′, φ′−1(v) has a neighbor in C ′
r if and only if φ−1(v)

has a neighbor in Cr or in Cr+1.
For the final property of B-critter-like generalized (É − 1)-creatures, suppose that φ′−1(v) has a neighbor in

two distinct components C ′
i and in C ′

j of G′[Bφ′ ]. Without loss of generality j /∈ {r, r + 1}. Then φ−1(v) has a

neighbor in Cj . If C
′
i ̸= C ′

r then φ
−1(v) has a neighbor in Ci in G. Then, sinceW is B-critter-like it follows that v

realizes {Ci, Cj} in W . But by Lemma 5.25, statement (iv) v realizes {C ′
i, C

′
j} in W ′. Suppose now that C ′

i ̸= C ′
r.

Then exists q ∈ {r, r + 1} such that φ−1(v) has a neighbor in Cq in G. Since q ̸= j and W is B-critter-like it
follows that v realizes {Cq, Cj} in W . But then Lemma 5.25, statement (iv) implies that v realizes {C ′

r, C
′
j} in

W ′, completing the proof.
The proof that if W is A-critter-like then W ′ is A-critter-like is symmetric.

Lemma 5.42. Let W = (G,H,φ, S1, S2) be a B-critter-like disjoint generalized É-creature of adhesion size ³, and
C be an absorbable component of G[Aφ]. Let W ′ = (G′, H ′, φ′, S′

1, S
′
2) be the result of absorbing C in W . Then

W ′ is a B-critter-like disjoint generalized É-creature of adhesion size ³.

Proof. By Lemma 5.10 W ′ is a disjoint generalized (É − 1)-creature of adhesion size ³. It remains to show that
it is B-critter-like. Let (CB , ¼) and (C′

B , ¼
′) be the labeled B-connectivity graphs of W and W ′ respectively. Let

C1, C2, . . . , Ct be the components of G[Bφ] in the order they are visited by the path CB . By Lemma 5.40 for every
i < t there exists a unique peripheral vertex vi that realizes {Ci, Ci+1} in W . Again by Lemma 5.40 φ−1(vi)
has no neighbors in any components of G[Bφ] other than Ci, Ci+1, and therefore the vertices v1, . . . , vt−1 are all
distinct. Let Q = {v1, . . . , vt−1}. By Lemma 5.40 every peripheral vertex u of H not in Q satisfies that φ−1(u)
has neighbors in precisely one component of G[Bφ].

By definition of absorbing, Bφ′ = Bφ so C1, C2, . . . , Ct are also the components of G[Bφ]. Since C ∈ Aφ, and
Aφ and Bφ are anti-complete, it follows that for every peripheral vertex v of H and component Ci, φ

′−1(v) has
a neighbor in Ci if and only if φ−1(v) has a neighbor in Ci.

Consider an edge {Ci, Cj} of C′
B , and let v be the peripheral vertex that realizes this edge. Then φ′−1(v) has

neighbors in Ci and Cj , and therefore φ−1(v) has neighbors in Ci and Cj . Since W is B-critter-like it follows
that v realizes {Ci, Cj} in CB .

Hence C′
B is a sub-graph of CB . However CB is a path and C′

B is connected by Lemma 5.15, and therefore
C′
B = CB . Further, for every edge {Ci, Ci+1} of CB the peripheral vertex vi is the only peripheral vertex of H ′ = H

such that φ′−1(v) has neighbors in {Ci, Ci+1}. Since every edge of CB is realized by at least one peripheral vertex,
{Ci, Ci+1} is realized by vi and no other peripheral vertices in W ′.

But then W ′ is path-like, |¼′({Ci, Ci+1})| f 1 for every i and every peripheral vertex v such that φ′−1(v) has
neighbors in two distinct components {Ci, Cj} realizes the pair {Ci, Cj} in W ′. Hence W ′ is B-critter-like.

Lemma 5.43. Let W = (G,H,φ, S1, S2) be a B-critter-like disjoint generalized É-creature of adhesion size ³, and
C be an erasable component of G[Aφ]. Let W ′ = (G′, H ′, φ′, S′

1, S
′
2) be the result of erasing C in W . Then W ′ is

a B-critter-like disjoint generalized É′-creature of adhesion size ³.

Proof. By Lemma 5.19 W ′ is a disjoint generalized É′-creature of adhesion size ³. It remains to show that it
is B-critter-like. Let (CB , ¼) and (C′

B , ¼
′) be the labeled B-connectivity graphs of W and W ′ respectively. Let

C1, C2, . . . , Ct be the components of G[Bφ] in the order they are visited by the path CB . By Lemma 5.40 for every
i < t there exists a unique peripheral vertex vi that realizes {Ci, Ci+1} in W . Again by Lemma 5.40 φ−1(vi)
has no neighbors in any components of G[Bφ] other than Ci, Ci+1, and therefore the vertices v1, . . . , vt−1 are all
distinct. Let Q = {v1, . . . , vt−1}. By Lemma 5.40 every peripheral vertex u of H not in Q satisfies that φ−1(u)
has neighbors in precisely one component of G[Bφ]. We conclude that G − Aφ satisfies the following property:
every path from Ci to Cj (with i f j) in G−Aφ intersects all components Ci, Ci+1, . . . , Cj .

We will make use of the following properties of the erase operation, all of which are easily observed directly
from the definition of erase.

(i) Bφ ¦ Bφ′ ¦ V (G)−Aφ,
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(ii) Every connected component of G′[Bφ′ −Bφ] has a neighbor in Bφ

(iii) Every peripheral vertex v of H ′ satisfies φ′−1(v) ¦ φ−1(v)

By (i) every connected component of G[Bφ] is contained in a connected component of G′[Bφ′ ]. By (ii) every
connected component of G′[Bφ′ ] contains at least one connected component of G[Bφ′ ].

We claim that if a peripheral vertex v of H ′ satisfies that φ′−1(v) has a neighbor in a component C ′ of G′[Bφ′ ],
then C ′ contains a component Ci of G[Bφ] such that φ−1(v) has a neighbor in Ci. Indeed, suppose that φ′−1(v)
has a neighbor x in a component C ′ of G′[Bφ′ ]. Then, by (iii) x ∈ Bφ or x ∈ φ−1(v). If x ∈ Bφ then C ′ contains
the component Ci of G[Bφ] that contains x, and φ−1(v) has a neighbor in Ci, namely x. If x ∈ φ−1(v), let Z
be the component of C ′ − Bφ that contains x. Since x ∈ φ−1(v) and Z is disjoint from Aφ ∪ Bφ it follows that
Z ¦ φ−1(v). By (ii), Z has a neighbor y in Bφ. Then C ′ contains the component Ci of G[Bφ] that contains y,
and φ−1(v) has a neighbor in Ci, namely y.

Let C ′ be a component of G′[Bφ′ ]. If C ′ contains Ci and Cj it also contains a path from Ci to Cj in G−Aφ.
But this path intersects all components Ci, Ci+1, . . . , Cj , and therefore

Ci ∪ Ci+1 ∪ . . . ∪ Cj ¦ C ′.

Thus there exists an ordering of the components of G′[Bφ′ ] into C ′
1, C

′
2, . . . C

′
t′ and sequence 0 = j0 < j1 < j2 <

. . . jt′ = t of integers such that for every i ∈ {1, . . . , t} it holds that

Cji−1+1 ∪ Cji−1+2, . . . ∪ Cji ¦ C ′
i

Consider now a peripheral vertex v of H ′ and suppose that φ′−1(v) has neighbors both in C ′
i and C

′
j . Without

loss of generality i < j. Then C ′
i contains a component Ci′ of G[Bφ] and C

′
j contains a component Cj′ of G[Bφ]

such that φ−1(v) has a neighbor in Ci′ and in Cj′ . But then i′ = ji′ , j
′ = ji′ + 1 and v = vji′ . Hence j = i+ 1.

Thus, every edge of the B-connectivity graph C′
B of W ′ goes from a component C ′

i to a component C ′
i+1, and if

the edge {C ′
i, C

′
i+1} is present then ¼′({C ′

i, C
′
i+1}) = vji′ . By Lemma 5.15 C′

B is connected and therefore every
pair {C ′

i, C
′
i+1} is an edge of C′

B .
Hence we have proved that if, for a peripheral vertex v of H ′, φ′−1(v) has neighbors both in C ′

i and C ′
j ,

then j = i + 1 and {C ′
i, C

′
i+1} is an edge of C′

B (so v realizes {C ′
i, C

′
j} and W ′ is B-path-like), and v = vji′ (so

|¼′({C ′
i, C

′
i+1})| = 1). This concludes the proof.

Lemma 5.44. Let W = (G,H,φ, S1, S2) be a B-critter-like disjoint generalized É-creature of adhesion size ³, and
W ′ = (G′, H ′, φ′, S′

1, S
′
2) be an A-descendant of W . Then W ′ is a B-critter-like disjoint generalized É′-creature

of adhesion size ³.

Proof. Since W ′ = (G′, H ′, φ′, S′
1, S

′
2) is an A-descendant of W , W ′ is obtained from G by a sequence of

dissolving peripheral vertices, absorbing absorbable components of G[Aφ], and erasing components of G[Aφ].
By Lemma 5.41, Lemma 5.42, and Lemma 5.43, dissolving peripheral vertices, absorbing absorbable components
of G[Aφ], and erasing components of G[Aφ] in a a B-critter-like disjoint generalized É-creature of adhesion size
³ results in a B-critter-like disjoint generalized É′-creature of adhesion size ³. The statement of the lemma now
follows by induction on the number of operations in the sequence used to obtain W ′ from W .

5.14 Making the Generalized Creature Critter-Like on Both Sides

Lemma 5.45. Let G be a k-creature free graph and W = (G,H,φ, S1, S2) be an A-critter-like disjoint generalized
É-creature with adhesion size ³. Then there exists a B-critter-like disjoint generalized É-creature W ′ =
(G,H,φ′, S1, S2) with adhesion size ³.

Proof. We set

φ′(v) =











cB if φ(v) = cA

cA if φ(v) = cB

φ(v) otherwise.

Then Aφ′ = Bφ and Bφ′ = Aφ. Since A and B are interchangeable in the definitions of (disjoint) generalized
É-creatures, the A- and B-connectivity graphs (CA, ¼A) and (CB , ¼B), A/B-critter-like and adhesion size, W ′ is
a B-critter-like disjoint generalized É-creature with adhesion size ³.
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We are now ready to extract a generalized É-creature that is both A-critter-like and B-critter-like.

Lemma 5.46. Let k g 2 and G be k-creature free, and W = (G,H,φ, S1, S2) be a disjoint generalized É creature
of adhesion size ³. Then there exists an induced subgraph G′ of G and an A-critter-like and B-critter-like disjoint

generalized É′-creature W ′ = (G′, H ′, φ′, S′
1, S

′
2), where É

′ g (logkα logkα(É))
1/α

16k2³3 − 12.

Proof. By Lemma 5.39 there exists an A-critter-like disjoint generalized É′-creature W ′ = (G′, H ′, φ′, S′
1, S

′
2)

with adhesion size ³, such that É′ g (logkα(É)−3)1/α

8k2³3 − 1. Furthermore W ′ is an A-descendant of W , so G′

is an induced subgraph of G. By Lemma 5.45 there exists a B-critter-like disjoint generalized É′-creature
W ′ = (G′, H ′, φ⋆, S′

1, S
′
2) with adhesion size ³. By Lemma 5.39 applied to W ′ there exists an A-critter-like

disjoint generalized É′′-creature W ′′ = (G′′, H ′′, φ′′, S′′
1 , S

′′
2 ) with adhesion size ³, such that

É′′ g (logk³(É
′)− 3)1/³

8k2³3
− 1

g
(logk³

�

(logkα(É)−3)1/α

8k2³3 − 1
)

− 3)1/³

8k2³3

g (logk³ logk³(É))
1/³

16k2³3
− 12

Furthermore W ′′ is an A-descendant of W ′, so G′′ is an induced subgraph of G′, and therefore of G. Since
W ′′ is an A-descendant of W ′ and W ′ is B-critter-like, by Lemma 5.44 W ′′ is B-critter-like. This concludes the
proof.

5.15 Coordinating The Orderings We are almost done, but not quite. In particular the A and B side of
W are now both critter-like, but the peripheral vertices may come in different order on the two sides. We fix
this by finding a large common sub-sequence using the famous Erdös-Szekers theorem [16], and dissolve all of the
peripheral vertices that are not in the sequence. By Lemma 5.41 this maintains the critter-like property both on
the A and the B side. However we do still need to prove that when we dissolve the peripheral vertices that are
out of order, we don’t re-order the ones that are in order.

W = (G,H,φ, S1, S2) be an A-critter-like a disjoint generalized É creature of adhesion size ³.
An ordering v1, v2, . . . , vÉ of the peripheral vertices of H is an A-critter ordering if the following condition is

satisfied: if φ−1(vi) and φ
−1(vj) both have a neighbor in a component C of G[Aφ], then all vr ∈ {vi, vi+1 . . . vj}

also satisfy that φ−1(vr) has a neighbor in C. A B-critter ordering is defined similarly, using components C of
G[Bφ].

Lemma 5.47. Let W = (G,H,φ, S1, S2) be a generalized É creature. If W is A-critter-like then W has an
A-critter ordering. If W is B-critter-like then W has a B-critter ordering.

Proof. Suppose W is A-critter-like. Let (CA, ¼) be the labeled A-connectivity graph of W . Let C1, C2, . . . Ct be
the order in which the components of G[Aφ] appear on the path CA.

By Lemma 5.40 every peripheral vertex v of H satisfies that either there is a unique Ci such that φ−1(u) has
a neighbor in Ci and in no other components, or there is a unique Ci such that φ−1(u) has a neighbor in Ci and
Ci+1 and in no other components. In the second case no other peripheral vertex v also satisfies that φ−1(v) has
a neighbor both in Ci and Ci+1.

Consider the following ordering: first take all peripheral vertices u such that C1 is the only component such
that φ−1(u) has a neighbor in it, then take the unique peripheral vertex u such that φ−1(u) has a neighbor in C1

and C2, then take all peripheral vertices u such that C2 is the only component such that φ−1(u) has a neighbor in
it, and so on. It is easily verified that this ordering is an A-critter ordering. The proof that if W is B-critter-like
then W has a B-critter ordering is symmetric.

Let X be a set and Ã = x1, x2, . . . xt be an ordering of X. Let Y be a subset of X. Then the sub-ordering of
Ã induced by Y is denoted by Ã[Y ] and is the ordering of Y in which all elements of Y come in the same order
as in Ã.
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Lemma 5.48. Let W = (G,H,φ, S1, S2) be an A-critter-like disjoint generalized É creature and u be a peripheral
vertex in H. Let Ã be an A-critter ordering of W . Let W ′ = (G,H,φ, S1, S2) be the A-critter-like disjoint
generalized É creature resulting from dissolving u. Then Ã[V (H ′) − {cA, cB}] is an A-critter ordering of W ′.
Similarly, if W is B-critter-like and Ã is a B-critter ordering of W then Ã[V (H ′) − {cA, cB}] is a B-critter
ordering of W ′.

Proof. By Lemma 5.41W ′ is an A-critter-like generalized (É−1)-creature. Let (CA, ¼) and (C′
A, ¼

′) be the labeled
A-connectivity graphs ofW andW ′ respectively. Let C1, C2, . . . , Ct be the components of G[Aφ] in the order they
are visited by the path CA. By Lemma 5.25, statement (i) there exists a sequence of (not necessarily distinct)
components C ′

1, C
′
2, . . . , C

′
t of G

′[Aφ′ ] such that Ci ¦ C ′
i for every i. Lemma 5.25, statement (ii) every component

of G′[Aφ′ ] appears in the sequence C ′
1, C

′
2, . . . , C

′
t at least once. By Lemma 5.40 there are two cases. Either there

exists precisely one component Cr such that φ−1(u) has a neighbor in Cr, or there exists precisely one component
Cr such that φ−1(u) has a neighbor in Cr and in Cr+1

We first consider the case that there exists precisely one component Cr such that φ−1(u) has a neighbor in
Cr. Because u does not realize any edge of CB , Lemma 5.25, statement (iii) yields that C ′

i ̸= C ′
j for every pair

of distinct integers i, j. By Lemma 5.25, statement (v) every peripheral vertex v of H ′ and every component C ′
i

satisfies that φ′−1(v) has a neighbor in C ′
i if and only if φ−1(v) has a neighbor in Ci. Therefore Ã[V (H) − {u}]

is an A-critter ordering of W .
Next we consider the case that there exists precisely one r such that φ−1(u) has a neighbor in Cr and in

Cr+1 Because u realizes the edge {Cr, Cr+1} in CB and no other edges, Lemma 5.25, statement (iii) yields that
C ′
r = C ′

r+1 and C ′
i ̸= C ′

j for every pair of distinct integers i, j such that {i, j} ≠ {r, r + 1}.
By Lemma 5.25, statement (v) every peripheral vertex v of H ′ and every component C ′

i with i /∈ {r, r + 1}
satisfies that φ′−1(v) has a neighbor in C ′

i if and only if φ−1(v) has a neighbor in Ci. Furthermore Lemma 5.25,
statement (v) yields that for every peripheral vertex v of H ′, φ′−1(v) has a neighbor in C ′

r if and only if φ−1(v)
has a neighbor in Cr or in Cr+1. Therefore Ã[V (H)− {u}] is an A-critter ordering of W .

The proof that ifW is B-critter-like and Ã is a B-critter ordering ofW then Ã[V (H ′)−{cA, cB}] is a B-critter
ordering of W ′ is symmetric.

For an ordering Ã = x1, x2, . . . , xt of a set X the reverse ordering of Ã is the ordering denoted by ÃR and
defined as ÃR = xt, xt−1, . . . , x1.

Observation 5.3. Let W = (G,H,φ, S1, S2) be a generalized É creature and Ã be an A-critter ordering of W .
Then ÃR is an A-critter ordering of W .

Proof. Let Ã = v1, . . . vÉ and ÃR = vt, . . . v1. If φ−1(vi) and φ−1(b) both have a neighbor in a component C
of G[Aφ], then all vr ∈ {vi, vi+1 . . . v} also satisfy that φ−1(vr) has a neighbor in C. These are precisely the
peripheral vertices between vi and vj both in the ordering Ã and in the ordering ÃR.

Given two orderings ÃA = xA1 , x
A
2 , . . . , x

A
t and ÃB = xB1 , x

B
2 , . . . , x

B
t of a set X we say that ÃA and ÃB agree

on a subset Y of X if, for every pair of elements y, y′ ∈ Y , if y = yAi = yBi′ and y′ = yAj = yBj′ then i < j if and
only if i′ < j′. The following theorem is a re-formulation of the well-known Erdös-Szekers Theorem [16] in terms
of orderings.

Theorem 5.1. (Erdös-Szekers Theorem [16]) For any two orderings ÃA, ÃB of a set U there exists a subset
X of U such that |X|2 g |U | and either ÃA and ÃB agree on X or the reverse ÃRA of ÃA agrees with ÃB on X.

Lemma 5.49. Let W = (G,H,φ, S1, S2) be an A-critter-like and B-critter-like disjoint generalized É-creature.
Then there exist an A-critter-like and B-critter-like disjoint generalized É′-creature W ′ = (G′, H ′, φ′, S′

1, S
′
2) and

ordering Ã of V (H ′) such that G′ is an induced subgraph of G, É′ g √
É and Ã is both an A-critter ordering and

a B-critter ordering of W ′.

Proof. By Lemma 5.47 there exists an A-critter ordering ÃA = vA1 , v
A
2 , . . . v

A
É and a B-critter ordering ÃB =

vB1 , v
B
2 , . . . v

B
É of W . Let ÃRA be the reverse of ÃA. By Observation 5.3 ÃRA is also an A-critter order of W . By

Theorem 5.1 there exists a subset X of the peripheral vertices such that |X| g É and either ÃA or ÃRA agree
with ÃB on X. Without loss of generality ÃA agrees with ÃB on X (otherwise we can simply exchange ÃA with
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ÃRA). Let É′ = |X|, we have that É′ g √
É. Let W ′ be the generalized É′-creature resulting from dissolving all

peripheral vertices of H not in X. By Lemma 5.41, W ′ is a disjoint A-critter-like and B-critter-like generalized
É-creature. By Lemma 5.48, ÃA[X] is an A-critter-order of W ′ and ÃB [X] is a B-critter-order of W ′. But ÃA and
ÃB agree on X, so ÃA[X] = ÃB [X].

Lemma 5.50. Let k g 2 and G be k-creature free, and W = (G,H,φ, S1, S2) be a disjoint generalized É creature
of adhesion size ³. Then there exists an induced subgraph G′ of G and an A-critter-like and B-critter-like disjoint

generalized É′-creature W ′ = (G′, H ′, φ′, S′
1, S

′
2), where É

′ g (logkα logkα(É))
1/2α

4k³2 − 12.
Furthermore there exists an ordering Ã of the peripheral vertices such that Ã is both an A-critter ordering and

a B-critter ordering of W .

Proof. By Lemma 5.46 there exists an induced subgraph G′ of G and an A-critter-like and B-critter-like disjoint

generalized É′-creature W ′ = (G′, H ′, φ′, S′
1, S

′
2), where É

′ g (logkα logkα(É))
1/α

16k2³3 − 12. By Lemma 5.49 applied to
W ′ there exist an A-critter-like and B-critter-like disjoint generalized É′′-creatureW ′′ = (G′′, H ′′, φ′′, S′′

1 , S
′′
2 ) and

ordering Ã of V (H ′′) such that G′′ is an induced subgraph of G′ (and therefore of G),

É′′ g
√
É′ g (logk³ logk³(É))

1/2³

4k³2
− 12,

and Ã is both an A-critter ordering and a B-critter ordering of W ′′. Hence W ′′ satisfies the conclusion of the
lemma.

5.16 Extracting a Critter The conclusion of Lemma 5.49 is almost sufficient for us to directly extract an
É-critter from it. There is still one complication, namely peripheral vertices that on at least one side do not
realize any edge of the connectivity graph.

Lemma 5.51. Let G be a k-creature free graph, and let W = (G,H,φ, S1, S2) be a disjoint generalized É-creature
Let ZA be the set of all peripheral vertices of H such that there exists a component CA of G[Aφ] such that
N(φ−1(v)) ∩ Aφ ¦ CA, and ZB be the set of all peripheral vertices of H such that there exists a component CB
of G[Bφ] such that N(φ−1(v)) ∩Bφ ¦ CB. Then |ZA| < k and |ZB | < k.

Proof. We prove that |ZA| < k. Suppose for contradiction that |ZA| g k. Let W ′ = (G′, H ′, φ′, S′
1, S

′
2) be the

result of dissolving all peripheral vertices not in ZA. Then, by Lemma 5.9W ′ is a disjoint generalized É′-creature,
where É′ = |ZA| g k, and G′ is an induced subgraph of G. By Lemma 5.15 the connectivity graph CA of W
is connected. Further no vertex of ZA realizes an edge of CA. Therefore, by Lemma 5.26, statement (iii), there
exists a component C of G[A′

φ] such that Aφ ¦ C. But then, by Lemma 5.26, statement (ii), G[A′
φ] = C. This

yields a contradiction. On the one hand, Lemma 5.1 shows that each vertex v ∈ ZA satisfies that φ′−1(v) has
a neighbor in Aφ′ . On the other hand, G′ is k-creature free and W ′ is a disjoint generalized É-creature, and so
by Lemma 5.16, there can not be k peripheral vertices v such that φ′−1(v) has a neighbor in C ′ = Aφ′ . This
contradicts the assumption that |ZA| g k. The proof of the upper bound for |ZB | is symmetric.

With Lemma 5.51 in hand we are ready to extract a critter!

Lemma 5.52. Let G be a k-creature free graph and W = (G,H,φ, S1, S2) be an A-critter-like and B-critter-like
disjoint generalized É-creature, such that there exists an ordering Ã of the peripheral vertices such that Ã is both
an A-critter ordering and a B-critter ordering of W . Then there exists an induced subgraph G′ in G, such that
G′ is an É′-critter, where É′ g É−2k

2k+1 .

Proof. Let (CA, ¼A) and (CB , ¼B) be the labeled A-connectivity graph and labeled B-connectivity graph of W
respectively. Let A1, A2, . . . Ap be the components of G[Aφ] in the order that the appear in on the path CA, and
B1, B2, . . . Bq be the components of G[Bφ] in the order that the appear in on the path CB . Let v1, . . . , vÉ be
an ordering of the peripheral vertices such that Ã is both an A-critter ordering and a B-critter ordering of W .
Let XA be the subset of peripheral vertices such that every vi ∈ XA realizes a pair {Aj , Aj+1}. Select integers
i1 < i2 < . . . < ip−1 such that XA = {vi1 , vi2 , . . . vip−1

}.
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We claim that either, for every j ∈ {1, . . . , p − 1} we have that vij realizes {Aj , Aj+1}, or for every
j ∈ {1, . . . , p − 1} we have that vij realizes {Ap−j , Ap+1−1} Suppose via realizes {Aj , Aj+1} and vib realizes
{Aj+1, Aj+2}. If |a − b| > 1 then there exists a vic in XA between via and vib in the ordering Ã. Since Ã is an
A-critter ordering φ−1(vic) has a neighbor in Aj+1. But then φ

−1(via), φ
−1(vib) and φ

−1(vic) all have a neighbor
in Aj+1. But {φ−1(via), φ

−1(vib), φ
−1(vic)} ¦ XA} so each of them realize an edge of CA. But then each of these

edges is incident to Aj+1, contradicting that W is A-critter-like. We conclude that if via realizes {Aj , Aj+1} and
vib realizes {Aj+1, Aj+2} then |a− b| f 1. In other words, the vertices of XA that realize consecutive edges of CA
come consecutively in the ordering vi1 , vi2 , . . . vip−1

. Hence for every j ∈ {1, . . . , p − 1} we have that vij realizes
{Aj , Aj+1}, or for every j ∈ {1, . . . , p− 1} we have that vij realizes {Ap−j , Ap+1−1}, as claimed.

Without loss of generality the first of these two cases holds. In the second case we may re-name for every i the
component Ai to Ap+1−i and vice versa (this corresponds to traversing the path CA from right to left, rather than
from left to right). After re-naming for every j ∈ {1, . . . , p − 1} we have that vij realizes {Aj , Aj+1}. Note that
this does not affect that Ã is an A-critter ordering, because the definition of A-critter orderings is independent of
orderings of the components of A. Let XB be the subset of peripheral vertices such that every vi ∈ XB realizes a
pair {Bj , Bj+1}. Select integers i′1 < i′2 < . . . < i′q−1 such that XB = {vi′

1
, vi′

2
, . . . vip−1′

}. An identical argument
to the one for XA shows that without loss of generality for every j ∈ {1, . . . , q − 1} we have that vi′j realizes

{Bj , Bj+1},
Let ZA be the set of all peripheral vertices of H such that there exists a component CA of G[Aφ] such that

N(φ−1(v)) ∩Aφ ¦ CA, and ZB be the set of all peripheral vertices of H such that there exists a component CB
of G[Bφ] such that N(φ−1(v)) ∩Bφ ¦ CB . Then, by Lemma 5.51 we have |ZA| < k and |ZB | < k.

Note that all peripheral vertices that are not in ZA∪ZB realize an edge in CA and an edge in CB and therefore
are in XA ∩ XB . Since |ZA ∪ ZB | < 2k it follows that there exists a consecutive sub-sequence vℓ, vℓ+1, . . . , vÄ
of at least É−2k

2k+1 vertices of XA ∩ XB . Further, for every j f p − 1 we have that vij realizes {Aj , Aj+1}, and
for every j f q − 1 we have that vi′j realizes {Bj , Bj+1}. Thus there exist integers a and b such that for every

1 f c f Ä + 1 − ℓ it holds that vℓ+c−1 realizes {Aa+c−1, Aa+c} and {Bb+c−1, Bb+c}. Said more plainly the
peripheral vertices vℓ, vℓ+1, . . . , vÄ realize the subpath Aa, . . . Aa+Ä+1−ℓ of CA and the subpath Bb, . . . Bb+Ä+1−ℓ

of CB .
We now construct a critter. We set t̂ = Ä + 1 − ℓ and for every 1 f i f t̂ + 1 we set Âi = Aa+i−1 and

B̂i = Bb+i−1. For every 1 f i f t̂ we set X̂i = φ−1(vℓ+i−1). We now verify that Â1, . . . Ât̂+1, B̂1, . . . B̂t̂+1,

X̂1, . . . X̂t̂ satisfy the properties of a t̂-critter. For property (i), Âi is anticomplete with Âj for j ̸= i because

Âi and Âj are distinct components of G[Aφ]. Similarly B̂i is anticomplete with B̂j for i ̸= j. Finally, Âi is

anticomplete with B̂j (even for the case i = j) because Aφ is anticomplete with Bφ. For property (ii) every set

Âi and B̂i is connected in G because they are components of G[Aφ] and G[Bφ] respectively.

For property (iii) we observe that for every 1 f i f t, X̂i = φ−1(vℓ+i−1), and (vℓ+i−1 realizes the edges

{Aa+i−1, Aa+i} = {Âi, Âi+1} and

{Bb+i−1, Bb+i} = {B̂i, B̂i+1}

in CA and CB , respectively. SinceW is A-critter-like and B-critter-like it follows thatN(X̂i) ¦ Âi∪Âi+1∪B̂i∪B̂i+1.
For property (iv), let S⋆1 , S

⋆
2 be witness separators for W . By property (i) of generalized É-creatures

we have that S⋆1 ∩ X̂i and S⋆1 ∩ X̂i are distinct minimal Aφ, Bφ-separators in G[Aφ ∪ Bφ ∪ X̂i]. Since

NG(X̂i) ¦ Âi∪ Âi+1∪ B̂i∪ B̂i+1 it follows that S⋆1 ∩ X̂i and S
⋆
1 ∩ X̂i are distinct minimal (Âi∪ Âi+1), (B̂i∪ B̂i+1)-

separators in G[X̂i ∪ Âi ∪ Âi+1 ∪ B̂i ∪ B̂i+1].
For the last part of property (iv) note that that X̂i = φ−1(vℓ+i−1) and that vℓ+i−1 realizes the pairs {Âi, Âi+1}

and {B̂i, B̂i+1}. Thus (from the definition of A-connectivity graphs and B-connectivity graphs) there is a path
from Âi to Âi+1 through X̂i−S1 and from B̂i to B̂i+1 through X̂i−S1. By property (iii) of generalized É-creatures
there is also a path from Âi to Âi+1 through X̂i − S2 and from B̂i to B̂i+1 through X̂i − S2. Since S

⋆
1 ¦ S1, and

S⋆2 ¦ S2 it follows that there exist paths from Âi to Âi+1 both through X̂i − S⋆1 and through X̂i − S⋆2 and from
B̂i to B̂i+1 both through X̂i − S⋆1 and through X̂i − S⋆2 .

We conclude that Â1, . . . Ât̂+1, B̂1, . . . B̂t̂+1, X̂1, . . . X̂t̂ is a t̂-critter and t̂ g É−2k
2k+1

We are now ready to prove Lemma 3.2
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Lemma 3.2Let k g 2 and G be a k-creature free graph, and W = (G,H,φ, S1, S2) be a connected, good, full

generalized É-creature. Then there exists an induced subgraph G′ of G which is a t-critter for t g (log log(É))1/4k

96k4 −4.

Proof. Since W is a connected, good full generalized É-creature, by Lemma 5.12 there exists an induced subgraph
G′ of G and a good, full, connected generalized É′-creature W ′ with adhesion size ³ f 2k and É′ g É/2.

Since W ′ is a full generalized É′-creature with adhesion size 2k, by Lemma 5.14 applied to W ′ there exists a
full disjoint generalized É′′-creature, W ′′ = (G′′, H ′′, φ′′, S′′

1 , S
′′
2 ), of adhesion size 2k such that G′′ is an induced

subgraph of G′ (and therefore of G), and É′′ = É′ g É/2k.
Since G′′ is k-creature free andW ′′ is a disjoint generalized É′′-creature with adhesion size 2k, by Lemma 5.50

applied to W ′′ there exists an induced subgraph G′′′ of G′′ and an A-critter-like and B-critter-like disjoint

generalized É′′′-creature W ′′′ = (G′′′, H ′′′, φ′′′, S′′′
1 , S

′′′
2 ), where É′′′ g (log

2k2 log
2k2 (É/2k))

1/4k

16k3 − 12. Furthermore
there exists an ordering Ã of the peripheral vertices such that Ã is both an A-critter ordering and a B-critter
ordering of W ′′′.

Therefore, by Lemma 5.52 there exists an induced subgraph G⋆ of G′′′ (and therefore of G) that is a t-critter
for

t g É′′′ − 2k

2k + 1
g (log log(É))1/4k

96k4
− 4

This concludes the proof.

6 Families with Creatures or Critters are Feral

6.1 Boundaried Graphs, Monadic Second Order Logic, and Finite State Towards the proof of
Theorem 1.3 we first review the definitions of CMSO logic, boundaried graphs, gluing and finite state.

Definition 6.1. [Graph Family] A graph family is a set F of graphs.

Definition 6.2. [Boundaried graph] A boundaried graph is a graph G with a set ¶(G) ¦ V (G) of distinguished
vertices called boundary vertices, and an injective labeling ¼G : ¶(G) → N. The set ¶(G) is the boundary of G,
and the label set of G is Λ(G) = {¼G(v) | v ∈ ¶(G)}.

For ease of presentation, we sometimes abuse notation and treat equally-labeled vertices of different
boundaried graphs, as well as the vertex that is the result of the identification of two such vertices, as the
same vertex. Given a finite set I ¦ N, GI denotes the class of all boundaried graphs whose label set is I, and
G¦I =

⋃

I′¦I GI′ . A boundaried graph in G¦[t] is called a t-boundaried graph. Finally, G denotes the class of all
boundaried graphs. The main operation employed to unite two boundaried graphs is the one that glues their
boundary vertices together. Formally,

Definition 6.3. [Gluing by ·] Let G1 and G2 be two boundaried graphs. Then, G1·G2 is the (not-boundaried)
graph obtained from the disjoint union of G1 and G2 by identifying equally-labeled vertices in ¶(G1) and ¶(G2).

Counting Monadic Second Order Logic The syntax of Monadic Second Order Logic (MSO) of graphs
includes the logical connectives (, ', ¬, ô, ⇒, variables for vertices, edges, sets of vertices and sets of edges, the
quantifiers ∀ and ∃, which can be applied to these variables, and five binary relations:

1. u ∈ U , where u is a vertex variable and U is a vertex set variable;

2. d ∈ D, where d is an edge variable and D is an edge set variable;

3. inc(d, u), where d is an edge variable, u is a vertex variable, and the interpretation is that the edge d is
incident to u;

4. adj(u, v), where u and v are vertex variables, and the interpretation is that u and v are adjacent;

5. equality of variables representing vertices, edges, vertex sets and edge sets.

Counting Monadic Second Order Logic (CMSO) extends MSO by including atomic sentences testing whether
the cardinality of a set is equal to q modulo r, where q and r are integers such that 0 f q < r and r g 2. That
is, CMSO is MSO with the following atomic sentence: cardq,r(S) = true if and only if |S| ≡ q (mod r), where
S is a set. We refer to [2, 10, 12] for a detailed introduction to CMSO.
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Definition 6.4. [Family FÈ] Given a CMSO-formula È, the family FÈ is defined as the set of all graphs G
such that G |= È.

For an example the formula

È = ∃X1 ¦ V (G) ∃X2 ¦ V (G)
[

(

∀u ∈ V (G) u ∈ X1 ( u ∈ X2

)

' ∀u ∈ V (G) ∀v ∈ V (G)
(

¬adj(u, v) ( (u ∈ X1 ' v ∈ X2) ( (u ∈ X2 ' v ∈ X1)
)

]

yields the family FÈ of all bipartite graphs.

Definition 6.5. [CMSO-definable family] A family F is CMSO-definable if there exists a CMSO-formula È
such that F = FÈ. In this case, we say that È defines Ã.

Finite State The goal of this subsection is to recall a variant of the classical Courcelle’s Theorem [10, 11, 12]
(see also [13]), which is a central component in the proof of our main result. This statement essentially says that
the canonical equivalence relation over boundaried graphs defined below has finite index.

Definition 6.6. [Canonical equivalence] Given a graph family F , the canonical equivalence relation ≡F on
boundaried graphs is defined as follows. For two boundaried graphs G³ and G´, we say that G³ ≡F G´ if (i)
Λ(G³) = Λ(G´) and (ii) for all boundaried graphs Gµ we have

G³ ·Gµ ∈ F ô G´ ·Gµ ∈ F

It is easy to verify that ≡F is indeed an equivalence relation. Given a family F of graphs and I ¦ N, we let
E≡σ [G¦I ] denote the set of equivalence classes of ≡F when restricted to G¦I .

Definition 6.7. [Finite state] A graph property Ã has finite state if, for every I ¦ N, E≡F
[G¦I ] is finite.

Given a CMSO sentence È, the canonical equivalence relation associated with È is ≡Fψ , and for the sake of
simplicity, we denote this relation by ≡È. We are now ready to state the variant of Courcelle’s Theorem which
was proven by Bodlaender et al. [3] (see also [10, 11, 12]) and which we use in this paper.

Theorem 6.1. ([3]) Every CMSO-definable graph property has finite state.

Remark 1. Theorem 6.1 is stated for graphs here, while it is stated and proved for more general structures
by Bodlaender et al.[3]. Because we do not need the full power of the theorem of [3], and stating the theorem in
its full generality requires an extra page of definitions we only state it here for the special case of graphs.

Remark 2. We would like to remark that neither the notion of “finite state” nor the statement of Theorem 6.1
should in any way be attributed to Bodlaender et al. [3].

The notion of finite state and a theorem very similar to the statement of Theorem 6.1 was stated and proved
explicitly by Downey and Fellows [15]. For technical reasons the precise statement of the theorem(s) of Downey
and Fellows [15] does not adequately suit our needs (or the needs of Bodlaender et al. [3]), nor is it obvious how to
derive Theorem 6.1 as a corollary from the results of Downey and Fellows [15]. However the proof of Theorem 6.1
very closely follows proofs of analogous statements by Downey and Fellows [15].

The fact that every MSO-definable or CMSO-property on graphs has finite state is implicitly used, if (to the
best of our knowledge) never explicitly stated, in every proof of (variants of) Courcelle’s Theorem [4, 10, 11, 12].

6.2 Pumping Proof Let G be a t-critter with t-critter partition (A1, . . . , At+1, B1, . . . , Bt+1, X1, . . . Xt). The
pair (G,W ) is called a witness-minimal t-critter if there does not exist a proper induced subgraph G′ of G such
that

W ′ = {Ai ∩ V (G′) : i f t+ 1}, {Bi ∩ V (G′) : i f t+ 1}, {Xi ∩ V (G′) : i f t}
is a t-critter partition of G′. A pair (Si1, S

i
2) of vertex subsets of Xi satisfy Xi if S

i
1, S

i
2 satisfy property (iv) of

t-critters for Xi.
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Lemma 6.1. Let G be a t-critter and W = (A1, . . . , At+1, B1, . . . , Bt+1, X1, . . . Xt) be a t-critter partition of G
such that (G,W ) is a witness minimal t-critter. Then, for every i f t and pair (Si1, S

i
2) that satisfy Xi we have

Si1 ∩ Si2 = ∅.

Proof. Suppose for contradiction that Si1 ∩ Si2 contains a vertex v. We claim that

W ′ = (A1, . . . , At+1, B1, . . . , Bt+1, X1, . . . , Xi − {v}, Xi+1, . . . , Xt)

is a t-critter partition of G − v. Since W satisfies properties (i), (ii), (iii) for G, we have that W ′ satisfies
properties (i), (ii), (iii) for G − v. Thus it is sufficient to argue that (Si1 − {v}, Si2 − {v}) satisfy Xi − {v} in
G − v. Since Si1 is a minimal (Ai ∪ Ai+1),(Bi ∪ Bi+1)-separator in G[Ai ∪ Ai+1 ∪ Bi ∪ Bi+1 ∪ Xi] it follows
that Si1 − {v} is a minimal (Ai ∪ Ai+1),(Bi ∪ Bi+1)-separator in (G − v)[Ai ∪ Ai+1 ∪ Bi ∪ Bi+1 ∪ Xi − {v}].
Further, since (G − v)[Ai ∪ Ai+1 ∪ Bi ∪ Bi+1 ∪ Xi − {v}] − (Si1 − {v}) = G[Ai ∪ Ai+1 ∪ Bi ∪ Bi+1 ∪ Xi] − Si1
it follows that there is a path from Ai to Ai+1 through (Xi − {v}) − (Si1 − {v}) and from Bi to Bi+1 through
(Xi−{v})−(Si1−{v}). A symmetric argument shows that Si2−{v} is a minimal (Ai∪Ai+1),(Bi∪Bi+1)-separator
in (G−v)[Ai∪Ai+1∪Bi∪Bi+1∪Xi−{v}] and that there is a path from Ai to Ai+1 through (Xi−{v})−(Si2−{v})
and from Bi to Bi+1 through (Xi−{v})−(S2

1−{v}). But then G−v is a t-critter, contradicting witness-minimality
of (G,W ).

An immediate corollary to Lemma 6.1 is that A and B can not have any common neighbors.

Lemma 6.2. Let G be a t-critter and W = (A1, . . . , At+1, B1, . . . , Bt+1, X1, . . . Xt) be a t-critter partition of G
such that (G,W ) is a witness-minimal t-critter. Then, N(A1 ∪A2 . . . , At+1) ∩N(B1 ∪B2 . . . , Bt+1) = ∅.

Proof. Suppose for contradiction that there exists a vertex v in the common neighborhood of A1 ∪ A2 . . . , At+1

and of B1 ∪B2 . . . , Bt+1. Then x ∈ Xi for some i, so x ∈ N(Ai ∪Ai+1)∩N(Bi ∪Bi+1)∩Xi. Let (S
i
1, S

i
2) satisfy

Xi. Since both Si1, S
i
2 separate Ai ∪Ai+1 from Bi ∪Bi+1 it follows that x ∈ Si1 and x ∈ Si2. This contradicts the

conclusion of Lemma 6.1 that Si1 and Si2 are disjoint.

Lemma 6.3. Let G be a t-critter and W = (A1, . . . , At+1, B1, . . . , Bt+1, X1, . . . Xt) be a t-critter partition of G,
such that (G,W ) is a witness-minimal t-critter. Then, for every i f t we have |N(Ai)∩Xi| f 3, |N(Bi)∩Xi| f 3,
|N(Ai+1) ∩Xi| f 3, |N(Bi+1) ∩Xi| f 3.

Proof. Let (Si1, S
i
2) be a pair that satisfies Xi. Since S

i
1, S

i
2 are disjoint minimal (Ai∪Ai+1), (Bi∪Bi+1)-separators

in G[Ai ∪ Ai+1 ∪ Bi ∪ Bi+1 ∪ Xi] there exists a path PAB from A to B through Xi. We select PAB to be the
shortest such path, in particular PAB contains precisely one vertex in N(Ai ∪ Ai+1) and precisely one vertex in
N(Bi ∪Bi+1).

Since (Si1, S
i
2) satisfy Xi there exists a path PA1 from Ai to Ai+1 through Xi − Si1, a path PA2 from Ai to

Ai+1 through Xi − Si2, a path PB1 from Bi to Bi+1 through Xi − Si1, and a path PB2 from Bi to Bi+1 through
Xi−Si2. We select PA1, PA2, PB1 and PB2 to be the shortest such paths, specifically each of PA1 and PA2 contain
precisely one vertex in N(Ai) and precisely one in N(Ai+1). and each of PB1 and PB2 contain precisely one vertex
in N(Bi) and precisely one in N(Bi+1). Note that PA1 and PA2 are disjoint from N(Bi ∪ Bi+1), and Note that
PB1 and PB2 are disjoint from N(Ai ∪Ai+1) because each of these paths is disjoint from at least one (Ai ∪Ai+1),
(Bi ∪Bi+1)-separator.

We prove that |N(Ai)∩Xi| f 3. Let x be the unique vertex in N(Ai ∪Ai+1) on PAB , y be the unique vertex
in N(Ai) on PA1, and z be the unique vertex in N(Ai) on PA2. Suppose for contradiction that |N(Ai)∩Xi| > 3,
and select a vertex v ∈ (N(Ai) ∩Xi)− {x, y, z}. We claim that

W ′ = (A1, . . . , At+1, B1, . . . , Bt+1, X1, . . . , Xi − {v}, Xi+1, . . . , Xt)

is a t-critter partition of G− v.
Since G is a minimal t-critter, by Lemma 6.1 Si1 and Si2 are disjoint. Since they are distinct (by property

(iv) of t-critters) they are also non-empty. If v ∈ Si1 then let Ŝi1 = Si1 − {v}. We have that Ŝi1 is a minimal
(Ai ∪ Ai+1),(Bi ∪ Bi+1)-separator in (G − v)[Ai ∪ Ai+1 ∪ Bi ∪ Bi+1 ∪ Xi − {v}]. If v /∈ Si1 then Si1 − {v} is
a (not necessarily minimal) (Ai ∪ Ai+1),(Bi ∪ Bi+1)-separator in (G − v)[Ai ∪ Ai+1 ∪ Bi ∪ Bi+1 ∪ Xi − {v}].
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Thus Si1 contains a minimal (Ai ∪Ai+1),(Bi ∪Bi+1)-separator Ŝ
i
1 in (G− v)[Ai ∪Ai+1 ∪Bi ∪Bi+1 ∪Xi − {v}].

Since Ŝi1 contains a vertex of PAB we have that Ŝi1 is non-empty. In either case Si1 contains a non-empty minimal
(Ai∪Ai+1),(Bi∪Bi+1)-separator Ŝ

i
1 in (G−v)[Ai∪Ai+1∪Bi∪Bi+1∪Xi−{v}]. An identical argument shows that

Si2 contains a non-empty minimal (Ai∪Ai+1),(Bi∪Bi+1)-separator Ŝ
i
2 in (G−v)[Ai∪Ai+1∪Bi∪Bi+1∪Xi−{v}].

Since Si1 and Si2 are disjoint, so are Ŝi1 and Ŝi2.
Finally, PA1 is a path in G− v from Ai to Ai+1 through (Xi − {v})− Ŝi1, PA2 is a path in G− v from Ai to

Ai+1 through (Xi − {v}) − Ŝi2, PB1 is a path in G − v from Bi to Bi+1 through (Xi − {v}) − Ŝi1, and PB2 is a
path in G− v from Bi to Bi+1 through (Xi −{v})− Ŝi2. Hence W ′ is a t-critter partition of G− v contradiciting
minimality of (G,W ). The proofs that |N(Bi) ∩ Xi| f 3, |N(Ai+1) ∩ Xi| f 3, and |N(Bi+1) ∩ Xi| f 3 are
symmetric.

Let s be a positive integer. A t-critter partition W = (A1, . . . , At+1, B1, . . . , Bt+1, X1, . . . Xt) of a graph G is
said to be s-size-bounded if |Ai| f s and |Bi| f s for i f t+ 1 and |Xi| f s for i f t. In other words a A t-critter
partition W is s-size bounded if all parts of the partition have size at most s. An s-size bounded t-critter is a
graph G that has an s-size bounded t-critter partition W .

Lemma 6.4. For every CMSO-definable hereditary graph family F there exists an integer T , such that for every
integer s, if there exists an s-size-bounded t-critter G ∈ F and t > T then there exists an s-size-bounded t-critter
G′ ∈ F and t′ > t.

Proof. Let F be a CMSO-definable graph family, andG be a minimal t-critter such thatG ∈ F . Set I = {1, . . . , 6}.
Since F is a CMSO-definable graph property, by Theorem 6.1 we have that the number of equivalence classes in
E≡F

[G¦I ] is finite. Let µ be the number of equivalence classes in E≡F
[G¦I ]. We prove that T = 26µ satisfies the

conclusion of the lemma.
Let G be a graph andW = (A1, . . . , At+1, B1, . . . , Bt+1, X1, . . . Xt) be an s-size bounded t-critter partition for

G. Because Ã is hereditary we may assume without loss of generality that (G,W ) is a witness-minimal t-critter.
For every 1 f i f t we define

Di = N(Ai ∪Bi) ∩Xi,

Zi = Di ∪
⋃

jfi

(Aj ∪Bj) ∪
⋃

j<i

Xj , and

Qi = (V (G)− Zi) ∪Di.

By Lemma 6.3 |Di| f 6 for every i, while Lemma 6.2 yields that Di∩N(Ai) and Di∩N(Bi) are disjoint. For each
i we define an injective labeling ¼i : Di → {1, . . . , 6}, such that every v ∈ Di ∩ N(Ai) satisfies ¼i(v) ∈ {1, 2, 3},
while every v ∈ Di ∩N(Bi) satisfies ¼i(v) ∈ {4, 5, 6}.

For every i f t we define the boundaried graph Gprei = G[Zi] with boundary Di and labeling ¼i and
Gposti = G[Qi] with boundary Di and labeling ¼i. Note that for every i we have G = Gprei ·Gposti . If t > T = 26µ
then there exist i < j f t such that Λ(Gprei ) = Λ(Gprej ) and Gprei ≡F Gprej . Let G′ = Gprej · Gposti . We claim

that G′ satisfies the conclusion of the Lemma. First, note that G ∈ F by assumption, so G = (Gprei ·Gposti ) ∈ F .
Since Gprej ≡F Gprei it follows that (Gprej ·Gposti ) ∈ F . However, G′ = Gprej ·Gposti and so G′ ∈ F .

We set t̂ = (t + j − i) and show that that G′ is a t̂-critter by giving a t̂-critter partition Ŵ = Â1, . . . Â ˆt+1,

B̂1, . . . B̂ ˆt+1, X̂1, . . . X̂t̂, of G
′ For p f j we set Âp = Ap, B̂p = Bp, and X̂p = Xp, or rather the copies of Ap,

Bp and Xp respectively, in Gprej . For p from j + 1 and up to t̂ + 1 we set Âp = Ap+i−j and B̂p = Bp+i−j , more

specifically the copies of Ap+i−j and Bp+i−j in Gposti . For p from j + 1 and up to p we set X̂p to be the copy of
Xp+i−j in G

post
i . It follows directly from their definitions that

{Âp, B̂p : 1 f p f ˆt+ 1} ∪ {X̂p : 1 f p f t̂}

is a partition of V (G) and that it satisfies properties (i), (ii) and (iii) of t̂-critter partitions. We now check
property (iv).

For property (iv) we note that for every p < j we have that G′[Âp ∪ Âp+1 ∪ B̂p ∪ B̂p+1 ∪ X̂p] =
G[Ap ∪ Ap+1 ∪ Bp ∪ Bp+1 ∪ Xi], and that therefore (iv) is satisfied for all p < j. Similarly, for p > j we
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have that G′[Âp ∪ Âp+1 ∪ B̂p ∪ B̂p+1 ∪ X̂i] = G[Ap+i−j ∪ Ap+i−j+1 ∪ Bp+i−j ∪ Bp+i−j+1 ∪ Xp+i−j ], and that
therefore (iv) is satisfied for all p > j.

We are left with verifying property (iv) for p = j. We have that G′[Âj ∪ B̂j ] = G[Aj ∪ Bj ] and that

G′[Âj+1 ∪ B̂j+1 ∪ X̂j ] = G[Ai+1 ∪ Bi+1 ∪Xi]. Additionally, for every edge uv ∈ E(Gprej ) such that u ∈ Aj ∪ Bj
and v ∈ Dj the copy u′ of u in Âj ∪ B̂j and vertex v′ of X̂j corresponding to v are adjacent in G′.

Let Ŝj1 and Ŝj2 be the copies in X̂j of S
i
1 and Si2 respectively. We claim that Ŝj1 is a (Âj ∪ Âj+1), (B̂j ∪ B̂j+1)-

separator in G′[Âj ∪ Âj+1 ∪ B̂j ∪ B̂j+1 ∪ X̂j ]. Indeed, suppose there was a path P̂ in G′[X̂j ]− Ŝj1 that starts in a

neighbor of Âj ∪ Âj+1 and ends in a neighbor of B̂j ∪ B̂j+1. Then the copy P of P̂ in Xi would be a path that

starts in a neighbor of Âi ∪ Âi+1 and ends in a neighbor of B̂i ∪ B̂i+1, contradicting that Si1 separates Âi ∪ Âi+1

from B̂i∪B̂i+1 in G[Ai∪Ai+1∪Bj ∪Bi+1∪Xi]. For an identical reason Ŝj2 is a (Âj ∪Âj+1), (B̂j ∪B̂j+1)-separator

in G′[Âj ∪ Âj+1 ∪ B̂j ∪ B̂j+1 ∪ X̂j ].

Since Si1 and Si2 are disjoint, so are Ŝi1 and Ŝi2. Since Xi contains a path from a neighbor of Ai ∪ Ai+1 to
a neighbor of Bi ∪ Bi+1 in G, it follows that X̂j contains a path from a neighbor of Âj ∪ Âj+1 to a neighbor of

B̂k ∪ B̂j+1 in G. Therefore each of Ŝi1 and Ŝi2 contains a non-empty minimal (Âj ∪ Âj+1), (B̂j ∪ B̂j+1)-separator

in G′[Âj ∪ Âj+1 ∪ B̂j ∪ B̂j+1 ∪ X̂j ]. Since Ŝ
i
1 and Ŝi2 are disjoint these minimal separators are distinct.

Finally, Xi − Si1 contains a path P from a neighbor of Ai to a neighbor of Ai+1. The copy of P in X̂ is a
path from a neighbor of Âj to a neighbor of Âj+1 in X̂j − Ŝj1. Identical arguments yield the existence of a paths

from a neighbor of Âj to a neighbor of Âj+1 in X̂j − Ŝj2, from a neighbor of B̂j to a neighbor of B̂j+1 in X̂j − Ŝj1,

and from a neighbor of B̂j to a neighbor of B̂j+1 in X̂j − Ŝj2. We conclude that Ŵ is a t+ j − i-critter partition

of G′. Since every part of Ŵ is a copy of a part of W and W is s-size-bounded, so is Ŵ .

Lemma 6.5. Let G be a t-critter, then G has at least 2t minimal separators.

Proof. Let G be a t-critter and let A1, A2, . . . At+1, B1, B2, . . . Bt+1, X1, X2, . . . , Xt be the partitioning of its
vertices given in Definition 1.2. Let S initially be an empty set, and for each i, 1 f i f t, choose either Si1 or Si2
and add this set to S. Since each choice of adding Si1 or Si2 is made independently, there are 2t choices for S. Let
a1 ∈ A1 and b1 ∈ B1, we claim that S is a a1,b1-minimal separator.

It follows from properties (ii) and (iv) of Definition 1.2 that the vertices of theAi’s all belong to one component,
say A, of G− S and that the vertices of the Bi’s all belong to one component, say B, of G − S. It follows from
properties (i), (iii), and (iv) that A ̸= B. Hence S is an a1, b1-separator. To see that it is minimal, take some
vertex v ∈ S, say v belongs to Si where Si is either Si1 or Si2 for 1 f i f t. Then since Si is a minimal (Ai∪Ai+1),
(Bi, Bi+1)-separator in G[Ai ∪ Ai+1 ∪ Bi ∪ Bi+1 ∪Xi], there will be a path from either Ai or Ai+1 to either Bi
or Bi+1 in G[Ai ∪ Ai+1 ∪ Bi ∪ Bi+1 ∪Xi] − (Si − v). Since all vertices of the Ai’s belong to one component of
G− S and all vertices of the Bi’s belong to a different component of G− S, there will be a path from a1 to b1 in
G− (S − v). It follows that S is a minimal separator.

Lemma 6.6. For every hereditary CMSO-definable family F , if for every t there exists a t-critter G ∈ F then Ã
is feral.

Proof. Let F be a hereditary CMSO-definable family. By Lemma 6.4 there exists an integer T , such that for every
integer s, if there exists an s-size-bounded t-critter G ∈ F with t > T then there exists an s-size-bounded t-critter
G′ ∈ F with and t′ > t. Select t = T + 1, then by assumption there exists a t-critter G ∈ F . Let s = |V (G)|,
then G is an s-bounded t-critter with t > T . By Lemma 6.4 there exists an s-bounded t′-critter G′ ∈ F , and
t′ g t+ 1. Induction then yields that for every q there exists an s-bounded n-critter G′ ∈ F , and n g q. Such an
n-critter G′ has at least n and at most 5sn vertices, and at least 2n minimal separators (by Lemma 6.5). Thus
for every n there exists a graph G′ ∈ F , at least n vertices, and at least (21/5s)n minimal separators. Therefore
F is feral.

Lemma 6.6 handle graph properties that contain arbitrarily large critters. We now need to handle properties
that contain arbitrarily large creatures.

The authors [21] showed that if G contains a k-creature for sufficiently large k, then G must contain a
k′-creature which falls into one out of 6 very structured graph families. Specifically, The authors proved the
following.
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Lemma 6.7. ([21]) Let k be a natural number. Then there exists a natural number k′ large enough so that if
G is a graph that contains a k′-creature (A, B, {x1, x2, . . . , xk′}, {y1, y2, . . . , yk′}), then G contains an induced
k-theta, k-prism, k-pyramid, k-ladder-theta, k-ladder-prism, or a k-ladder.

We do not re-define the graphs listed in Lemma 6.7 in this paper, because everything we need to know about
them is encapsulated in a simple observation which can easily be derived by inspection.

To phrase this observation we need a few definitions. A boundaried path is a 2-boundaried graph G such that
G is a path and the endpoints of the path are the boundary vertices. An apex path is a graph G such that there
exists a vertex v such that G− v is a path and v is adjacent to both endpoints of the path G− v. The vertex v is
then called an apex. The apex may or may not have edges to the internal verties of the path. A boundaried apex
path is a 3-boundaried graph G such that G is an apex path, and the boundary of G is the apex v as well as the
two endpoints of the path G − v. A shortening of a boundaried path is a boundaried path on fewer vertices. A
shortening of a boundaried apex path is a boundaried apex path on fewer vertices.

An inspection k-thetas, k-prisms, k-pyramids, k-ladder-thetas, k-ladder-prisms, and k-ladders shows that if G
is one of these graphs and G has n >> k vertices, then G either contains a long induced path P or a long induced
apex path P̂ , such that the internal vertices of P (or P̂ ) do not have any neighbors outside of P (or P̂ ). Further,
shortening this path does not destroy the property of G being a k-theta, k-prism, k-pyramid, k-ladder-theta,
k-ladder-prism, and k-ladder. We now formalize this observation in the language of boundaried graphs.

Lemma 6.8. Let G be a k-theta, k-prism, k-pyramid, k-ladder-theta, k-ladder-prism or k-ladder on n vertices.
Then G = P · R where P is either a boundaried path or a boundaried apex path on at least n

5k vertices.
Furthermore, for every shortening P ′ of P , P ′·R is a k-theta, k-prism, k-pyramid, k-ladder-theta, k-ladder-prism
or k-ladder.

Proof. [Proof sketch.] The statement of the lemma immediately follows from the observation that for each of
the listed graphs, the vertex set can be partitioned into at most 5k induced paths and apex paths, such that for
each path/apex path in the partition only the endpoints and apex have neighbours outside the path/apex path.
Details omitted.

Lemma 6.9. Let F be a CMSO-definable graph family. Then there exists a constant c such that for every k, if
there exists a k-theta, k-prism, k-pyramid, k-ladder-theta, k-ladder-prism or k-ladder G such that Ã(G) = true

then there exists a k-theta, k-prism, k-pyramid, k-ladder-theta, k-ladder-prism or k-ladder G′ ∈ F such that
|V (G′)| f ck

Proof. Set I = {1, 2, 3} and consider the equivalence classes E≡F
[G¦I ] of ≡Ã restricted to I-boundaried graphs.

Let µ1 be the maximum, taken over all equivalence classes in E≡F
[G¦I ] that contain at least one boundaried

path, of the minimum number of vertices of a boundaried path in that equivalence class. Similarly, let µ2 be the
maximumm taken over all equivalence classes in E≡F

[G¦I ] that contain at least one boundaried apex path, of the
minimum number of vertices of a boundaried apex path in that equivalence class.

We set µ = max(µ1, µ2). From the choice of µ it follows that for every boundaried path P , if V (P ) > µ
then there exists a boundaried path P ′ such that P ′ ≡F P and |V (P ′)| f µ < |V (P )|. Similarly, for every
boundaried apex path P , if V (P ) > µ then there exists a boundaried apex path P ′ such that P ′ ≡F P and
|V (P ′)| f µ < |V (P )|.

We set c = 5µ and claim that c satisfies the conclusion of the lemma. Let k be an integer and suppose
that there exists a graph G ∈ F such that G is a k-theta, k-prism, k-pyramid, k-ladder-theta, k-ladder-prism or
k-ladder. Of all such graphs pick G with the minimum number of vertices. We claim n = |V (G)| f ck = 5µk.

Suppose not, then by Lemma 6.8 we have that G = P · R, where P is either a boundaried path or a
boundaried apex path on at least n

5k >
5µk
5k g µ vertices.

By the choice of µ there exists a shortening P ′ of P such that P ′ ≡F P and |V (P ′)| f µ < |V (P )|. Since P
and P ′ are both boundaried paths or both boundaried apex paths it follows that the sizes of their boundaries are
equal, namely |¶(P )| = |¶(P ′)|. We set G′ = P ′ ·R. We have that

|V (G′)| = |V (P ′)|+ |V (R)| − |¶(P ′)| < |V (P )|+ |V (R)| − |¶(P )| = |V (G)|.

By Lemma 6.8, since P ′ is a shortening of P we have that G′ is a k-theta, k-prism, k-pyramid, k-ladder-theta,
k-ladder-prism or k-ladder. Further, since P ′ ≡F P and Ã(P · R) ∈ F it follows that G′ = (P ′ · R) ∈ F . But
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that contradicts the choice of G as the k-theta, k-prism, k-pyramid, k-ladder-theta, k-ladder-prism or k-ladder
with fewest vertices such that G ∈ F .

Lemma 6.10. Let G be a k-creature. Then G has at least 2k minimal separators.

Proof. Let G be a k-creature, and let A, X = {x1, x2, . . . , xk}, Y = {y1, y2, . . . , yk}, and B be the partition of
V (G) given in Definition 1.1. Let a ∈ A and b ∈ B. We can make a minimal a, b-separator by selecting exactly
one vertex from each pair xi and yi, 1 f i f k. There are 2k choices for such a minimal separator, which proves
the lemma.

Lemma 6.11. For every hereditary CMSO-definable graph family F , if for every t there exists a t-creature G such
that G ∈ F then F is feral.

Proof. Let F be a hereditary CMSO-definable graph family such that for every t there exists a t-creature G such
that G ∈ F .

We first claim that for every integer k there exists a k-theta, k-prism, k-pyramid, k-ladder-theta, k-ladder-
prism or k-ladder G such that G ∈ F . Towards a proof of this claim let k be given. By Lemma 6.7 there exists a k′

such that every k′-creature G contains a k-theta, k-prism, k-pyramid, k-ladder-theta, k-ladder-prism or k-ladder
as an induced subgraph. By our assumption on Ã there exists a k′-creature G such that G ∈ F . Let G′ be an
induced k-theta, k-prism, k-pyramid, k-ladder-theta, k-ladder-prism or k-ladder in G. Since G′ is an induced
subgraph of G and F is hereditary it follows that G′ ∈ F . This proves the claim.

The claim, together with Lemma 6.9 yields that there exists a constant c such that for every k there exists
a k-theta, k-prism, k-pyramid, k-ladder-theta, k-ladder-prism or k-ladder G such that G ∈ F and |V (G)| f ck.
However each of k-theta, k-prism, k-pyramid, k-ladder-theta, k-ladder-prism or k-ladder is a k-creature and
therefore has at least 2k minimal separators by Lemma 6.10. Hence, for every n there exists a graph G on at
least n and at most cn vertices such that G ∈ F and G has at least 2n/c minimal separators. Hence F is feral, as
claimed.

Theorem 1.2, together with Lemmas 6.6 and 6.11 together imply Theorem 1.3

Proof. [Proof of Theorem 1.3] Let F be a CMSO-definable hereditary graph family. If there exists an integer k
such that F neither contains a k-creature nor a k-critter then, by Theorem 1.2 F is quasi-tame. If no such integer
k exists it follows that F either contains a t-critter for every t, or a t-creature for every t. In the first case F is
feral by Lemma 6.6, in the second case F is feral by Lemma 6.11.
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