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Abstract

A vertex set S in a graph G is a minimal separator if there exist vertices u and v that are in distinct
connected components of G− S, but in the same connected component of G− S′ for every S′ ⊂ S. A class F
of graphs is called tame if there exists a constant c so that every graph in F on n vertices contains at most
O(nc) minimal separators. If there exists a constant c so that every graph in F on n vertices contains at
most O(nc logn) minimal separators the class is strongly-quasi-tame. If there exists a constant c > 1 so that
F contains n-vertex graphs with at least cn minimal separators for arbitrarily large n then F is called feral.
The classification of graph classes into tame or feral has numerous algorithmic consequences, and has recently
received considerable attention.

A key graph-theoretic object in the quest for such a classification is the notion of a k-creature. A k-creature
consists of 4 disjoint vertex sets A,B,X = {x1, . . . , xk}, Y = {y1, . . . yk} such that: (a) A and B are connected,
(b) there are no edges from A to Y ∪B and no edges from B to X ∪A, (c) A dominates X (every vertex in X
has a neighbor in A) and B dominates Y and (d) xiyj is an edge if and only if i = j. It is easy to verify that
a k-creature contains at least 2k minimal separators. On the other hand, in a recent article Abrishami et al.
[1] conjecture that every hereditary class F that excludes k-creatures for some fixed constant k is tame.

In this paper we first give a counterexample to the conjecture of Abrishami et al. Our main result is a
proof of a weaker form of their conjecture. More concretely, we prove that a hereditary class F is strongly
quasi-tame if it excludes k-creatures for some fixed constant k and additionally every minimal separator can be
dominated by another fixed constant k′ number of vertices. The tools developed on the way lead to a number
of additional results of independent interest.

(i) We obtain a complete classification of all hereditary graph classes defined by a finite set of forbidden
induced subgraphs into strongly quasi-tame or feral. This substantially generalizes a recent result of Milanič
and Pivač [18] , who classified all hereditary graph classes defined by a finite set of forbidden induced subgraphs
on at most 4 vertices into tame or feral. (ii) We show that every hereditary class that excludes k-creatures and
additionally excludes all cycles of length at least c, for some constant c, is tame. This generalizes the result of
Chudnovsky et al. [6] who obtained the same statement for c = 5. (iii) We show that every hereditary class
that excludes k-creatures and additionally excludes a complete graph on c vertices for some fixed constant c
is tame.

1 Introduction

Let G be a graph and u and v be distinct vertices in G. A vertex set S is a u,v-separator if u and v are in distinct
components of G − S. The set S is a u,v-minimal separator if S is a u,v-separator, but no proper subset of S
is a u,v-separator. Finally, S is a minimal separator if S is a u,v-minimal separator for some pair of vertices
u and v. Minimal separators have a tremendous role in the design of graph algorithms, both directly, such as
in the structural characterization of chordal graphs [5] but also indirectly in optimization algorithms for graph
separation and routing problems (for example [17, 16, 21]). The theory of potential maximal cliques, developed
by Bouchitté and Todinca [4] implies that a several fundamental graph problems, such as computing the treewidth
and minimum fill in of a graph G can be done in time polynomial in the number of vertices of G and the number
of minimal separators in G. Lokshtanov [15] showed that the same result holds for computing the tree-length of
the graph G, while Fomin et al. [10] proved a general result that showed that a whole class of problems (including
e.g. maximum independent set and minimum feedback vertex set) can be solved in time polynomial in the number
of vertices and minimal separators of the graph. All of these algorithms require a list of all the minimal separators
of G to be provided as input. However, the listing algorithms for minimal separators of Kloks and Kratsch [12]
or Berry et al. [3] can be used to compute such a list in time polynomial in the number of vertices times a factor
linear in the number of minimal separators of G.

∗The full version of the paper can be accessed at https://arxiv.org/abs/2007.08761
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Figure 1: A graph induced by the vertices of a k-creature. The blue edges indicate that xi (yi) may or may not
be a neighbor of xj (yj)

This brings to the forefront the main question asked in this paper — which classes of graphs have polynomially
many minimal separators? We will say that a graph class F is tame if there exists an integer c such that every
graph in F on n vertices has at most O(nc) minimal separators. A number of important graph classes have
been shown to be tame, such as Chordal [5] (and more generally Weakly Chordal [4]), Permutation (and, more
generally d-Trapezoid [14]), Circular Arc [13] and Polygon Circle graphs [23]. Most of these results date back to
the late 1990s and early 2000s. Much more recently [1, 7, 6, 19], research has started to focus on a more systematic
classification of which graph classes are tame and which are not. Indeed the term tame for graph classes with
polynomially many minimal separators was defined by Milanič and Pivač [19], who classified all hereditary (closed
under vertex deletion) classes defined by a set of forbidden induced subgraphs, all of which have at most 4 vertices,
as tame or not tame.

Building on the terminology of Milanič and Pivač [19], we will say that a class of graphs F is quasi-tame

if there exist constants c, c′ such that every n-vertex graph in the family contains at most O(nc logc
′

n) minimal
separators. Further, F is strongly quasi-tame if it is quasi-tame with c′ f 1. On the opposite side of the spectrum,
we will say that F is feral if there exists a constant c such that for every N g 0 there exists an n g N such that
F contains an n-vertex graph with at least cn minimal separators.

Abrishami et al. [1] define a structure, called a k-creature, the presence of which appears to control, to a
large extent, whether a graph has many or few (quasi-polynomially many) separators. A k-creature in a graph
G is a four-tuple (A,B, X = {x1, x2, . . . , xk}, Y = {y1, y2, . . . , yk}) of mutually disjoint vertex subsets of V (G),
satisfying the following conditions (see Figure 1).

1. A and B induce connected subgraphs of G,

2. A and Y ∪B are anti-complete (i.e., no vertex in A is adjacent to a vertex in B ∪Y ) and B is anti-complete
with X ∪A.

3. A dominates X (every vertex in X has a neighbor in A) and B dominates Y , and

4. xiyj is an edge if and only if i = j.

A graph G is k-creature-free if there does not exists a 4-tuple of vertex sets of V (G) that form a k-creature.
It is easy to see that a k-creature contains at least 2k minimal separators (select precisely one of {xi, yi} for every
i f k). Because deleting a vertex cannot increase the number of minimal separators, a graph G that contains a
k-creature contains at least 2k minimal separators. Thus, a graph family F that contains n-vertex graphs with
k-creatures for arbitrarily large n and with k = Ω(n) is feral. For F to not be tame it is sufficient for k to grow
super-logarithmically with n (i.e n ∈ 2o(k)). A sort of converse to this observation was conjectured in [1].

Conjecture 1.1. [1] For every fixed natural number k, the family of graphs that are k-creature-free is tame.

Even if Conjecture 1.1 were to be true, it would still not give a complete characterization of hereditary graph
classes into tame or non-tame. In particular Abrishami et al. [1] give an example of a tame hereditary class F
that contains k-creatures for arbitrarily large k. Their example can also be slightly modified to show that there
exist hereditary families that are neither tame nor feral. This makes it appear that, at least for hereditary classes
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in their full generality, the boundary between tame and non-tame graph classes is so “strange-looking” that a
complete dichotomy may be out of reach, and that we therefore have to settle for sufficient conditions for tameness
/ non-tameness, and possibly complete characterizations for more well-behaved sub-classes of hereditary families.
For an example, Conjecture 1.1, if true, would have yielded a complete dichotomy into tame or feral for all classes
of graphs closed under induced minors (i.e closed under vertex deletion and edge contraction).

Unfortunately it turns out that Conjecture 1.1 is false. In particular we give (in Section 4) an example of
a feral family F that excludes 100-creatures. The family F consists of all k-twisted ladders (see Section 4 for a
definition). Our main result is nevertheless that Conjecture 1.1 is true “in spirit”, in the sense that for large classes
of hereditary families, excluding k-creatures does imply few minimal separators. To state Theorem 1.1 we need
to define k-skinny-ladders. A k-skinny-ladder is a graph G consisting of two anti-complete paths Pl = ℓ1ℓ2 . . . ℓk
and Pr = r1r2 . . . rk and a set {s1, s2, . . . , sk} of vertices such that for every i, si is adjacent to ℓi and ri and to
no other vertices.

Theorem 1.1. For every natural number k, the family of graphs that are k-creature-free and do not contain a
k-skinny-ladder as an induced minor is strongly-quasi-tame.

Theorem 1.1 suggests that other counterexamples to Conjecture 1.1 should resemble the counterexample we
provide in Section 4. Furthermore, we do not have an an example of a non-tame class for which strong quasi-
tameness follows from Theorem 1.1. Therefore we conjecture that the statement of Theorem 1.1 remains true
even if strongly quasi-tame is replaced by tame.

Excluding the k-skinny-ladder is closely tied to domination of minimal separators. A vertex set X dominates
S if every vertex in S is either in X or has a neighbor in X. An important ingredient in the proof of Theorem 1.1
(see Lemma 5.13) is that for every k there exists a k′ such that if G excludes k-creatures and excludes k-skinny-
ladders as an induced minor then every minimal separator S in G is dominated by a set X on at most k′

vertices. In fact, because a k-skinny-ladder is itself 5-creature-free and contains a minimal separator (namely the
set {s1, s2, . . . , sk}) which cannot be dominated by k − 1 vertices, among the hereditary classes F that exclude
k-creatures, the presence or absence of k-skinny-ladders (as induced minors) precisely characterizes whether every
minimal separator of every graph in F can be dominated by a constant size set of vertices.

While the statement of Theorem 1.1 is concise, it is not immediately clear which graph families it applies
to. Which families are k-creature-free? What does it mean in terms of forbidden induced subgraphs to exclude
a k-skinny-ladder as an induced minor? In the second half of the paper we obtain an equivalent characterization
of the premise of Theorem 1.1 in terms of forbidden induced subgraphs. Specifically, we first show that for every
k g 1 there exists a k′ such that if G contains a k′-creature then G contains a k-theta, k-prism, k-pyramid, k-
ladder-theta, k-ladder-prism, or a k-ladder as an induced subgraph (see Figure 2, formal definitions in Section 6).
Additionally, it is easy to see that every graph that contains a 2k-skinny-ladder as an induced minor either contains
a k-ladder or a k-contracted-ladder as an induced subgraph. Here a k-contracted-ladder is a graph obtained from
a k-ladder by contracting all of the horizontal paths into single vertices (see Section 6 for a formal definition).
This leads to the following variant of Theorem 1.1.

Theorem 1.2. For every natural number k, the family of graphs that exclude the k-theta, k-prism, k-pyramid,
k-ladder-theta, k-ladder-prism, k-ladder, and the k-contracted-ladder as induced subgraphs, is strongly-quasi-tame.

Theorems 1.1 and 1.2 are equivalent in the sense that for every k there exists a k′ such that the graph family
that satisfies the premise of Theorem 1.1 with k also satisfies the premise of Theorem 1.2 with k′, and the graph
family that satisfies the premise of Theorem 1.2 with k also satisfies the premise of Theorem 1.1 with k′.

To demonstrate the power of Theorem 1.1 (or equivalently, Theorem 1.2) we show that it gives, as a pretty
direct consequence, a complete classification of all hereditary graph classes defined by a finite set of forbidden
induced subgraphs into strongly quasi-tame or feral. Indeed, it is an easy exercise to show that if a family F
is defined by a finite set of forbidden induced subgraphs and contains k-skinny-ladders for arbitrarily large k
as induced minors, then there exists a constant p such that F either contains all p-subdivisions of 3-regular
graphs (an p-subdivision of G is the graph obtained from G by replacing each edge of G by a path on p + 1
edges) or all line graphs (see [8] for a definition) of p-subdivisions of 3-regular graphs. In this case F is feral.
Therefore, Theorem 1.1 proves Conjecture 1.1 for hereditary graph classes defined by a finite set of forbidden
induced subgraphs, albeit with strongly quasi-tame instead of tame.
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The “strongly quasi-tame” part of the classification of families F defined by a finite set of forbidden
induced subgraphs into strongly quasi-tame or feral follows directly by inspecting the graphs in the statement
of Theorem 1.2. The “feral” part follows by observing that if F contains some of the graphs in the premise of
Theorem 1.2 for arbitrarily large k, then F must also contain such graphs with only O(k) vertices. This part of
the proof crucially depends on F being defined by a finite set of forbidden induced subgraphs.

Theorem 1.3. Let F be a graph family defined by a finite number of forbidden induced subgraphs. If there exists
a natural number k such that F forbids all k-theta, k-prism, k-pyramid, k-ladder-theta, k-ladder-prism, k-claw,
and k-paw graphs, then F is strongly-quasi-tame. Otherwise F is feral.

Note that some of the graphs of Figure 2 share a name with graphs that appear in the work of Abrishami et
al. [1], but the definitions given here are slightly different. In particular, in some of the places where they require
single edges we allow arbitrarily long paths. Abrishami et al. [1] prove that the family of (what they define to be)
theta-free, pyramid-free, prism-free, and turtle-free graphs is tame. We remark that our results are incomparable
to theirs, in the sense that there are classes of graphs whose tameness follows from their work, but not ours, and
vice versa.

Theorem 1.3 substantially generalizes the main result of Milanič and Pivač [19], who obtained a complete
classification into tame or feral of hereditary graph classes characterized by forbidden induced subgraphs on at
most 4 vertices. The generalization comes at a price - as our upper bounds on the number of minimal separators
are quasi-polynomial instead of polynomial.

Next we explore for which classes we are able to improve our quasi-polynomial upper bounds to polynomial
ones. Here, again, domination plays a crucial role. We show that for every pair k, k′ of integers, every class of
graphs that excludes k-creatures and additionally has the property that every minimal separator S is dominated
by a vertex set X of size at most k′ and disjoint from S is tame. We then proceed to show that graphs that
exclude k-creatures and all cycles of length at least r for any choice of natural numbers k and r have this property,
leading to Theorem 1.4.

Theorem 1.4. For every pair of natural numbers k and r, the family of graphs that are Cgr-free, k-theta-free,
k-prism-free, and k-pyramid-free is tame.

Here a graph G is Cgr-free if it contains no induced cycles of length at least r. Theorem 1.4 is optimal in
the sense that k-theta, k-prism, and k-pyramid graphs have at least 2k−2 minimal separators and therefore can
have exponentially many minimal separators. Further, it substantially strengthens the results of Chudnovsky et
al. [6], who prove the same statement but only for r = 5.

Finally we show that graph classes that exclude k-creatures, k-skinny-ladders, as well as k-cliques satisfy the
property that every minimal separator S can be dominated by a constant size set X disjoint from S. This implies
that this family of graphs is tame as well.

Theorem 1.5. For any fixed natural number k, the family of graphs that are k-creature-free, contain no k-skinny-
ladder as an induced minor, and contain no minimal separator that has a clique of size k is tame.

Theorem 1.3 provided a classification of all hereditary graph classes defined by a finite set of forbidden induced
subgraphs into strongly quasi-tame or feral. In the same way that Theorem 1.3 is a fairly direct consequence of
Theorem 1.2, we can obtain from Theorem 1.5 a complete dichotomy of all hereditary graph classes defined by a
finite set of forbidden induced subgraphs, and additionally exclude at least one clique, into tame or feral.

Theorem 1.6. Let F be a graph family defined by a finite number of forbidden induced subgraphs. If there exists
a natural number k such that F forbids all k-clique, k-theta, k-ladder-theta, k-claw, and k-paw graphs then F is
tame. Otherwise, F contains all cliques or F is feral.

Subsequent Work. There have been two significant developments since the first version of this manuscript.
The first is a manuscript by Gajarský et al. [11] which answers Conjectures 9.1 and 9.2 in the affirmative, that
is, they prove that “strongly-quasi-tame” can be replaced by “tame” in the statements of Theorems 1.1, 1.2, and
1.3, respectively.
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Figure 2: Dashed lines represent the option of having an arbitrary length path or just an edge (except for k-claw
and k-paw graphs which the dotted line is always a path of length k.) The blue lines used in the k-ladder-theta,
k-ladder-prism, and k-ladder graphs represents the option of either having or not having that edge, but for each
vertex incident to more than one of the blue edges, at least one of those blue edges must belong to the graph.
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The proof of Gajarský et al. builds heavily on top of the results in this paper. In particular, their proof
of Conjecture 9.1 (i.e the strenthening of our Theorem 1.1 from quasi-tame to tame) requires all the tools that
we develop in the proof of Theorem 1.1, except that the last crucial piece of our proof, namely Lemma 5.14,
is replaced by a remarkably elegant argument that yields a polynomial upper bound on the number of minimal
separators, rather than a quasi-polynomial one. Given Theorem 1.1, the proof of Theorem 1.2, which is given in
Section 6, amounts to characterizing the inclusion minimal hereditary families F that contain a k-creature for
every integer k. Thus, given that Conjecture 9.1 is true, the truth of Conjecture 9.2 follows directly from our
proof of Theorem 1.2 as given in Section 6.

Our Theorems 1.4, 1.5 and 1.6 all give polynomial upper bounds for a subset of the graph classes covered
by Theorems 1.1 and 1.2. Thus the proof of Gajarský et al. [11] that Conjectures 9.1 and 9.2 are true completely
subsumes Theorems 1.4, 1.5 and 1.6. We nevertheless keep their statements and proofs in this paper, both
because their proofs pre-dates the proof of Gajarský et al., and because they retain some (if arguably small) value.
Specifically the proofs of Theorems 1.4, 1.5 and 1.6 all work a manner similar to the proof of Conjecture 9.1
by Gajarský et al., namely by replacing Lemma 5.14 by a polynomial upper bound. Our “replacements of
Lemma 5.14” are slightly simpler than the one by Gajarský et al. Of course our proofs of Theorems 1.4, 1.5 and
1.6 only replace the quasi-polynomial bound of Lemma 5.14 by a polynomial upper bound for different special
cases, while Gajarský et al., (essentially) do it for Lemma 5.14 in its full generality.

The second development concerns Conjecture 9.3, which conjectures that every induced-minor-closed class F
is either tame or feral. It turns out that Conjecture 9.3 is false by a counterexample that combines the features
of the counterexample to Conjecture 1.1 given in section 4 of this paper with the construction that shows that
there exist hereditary families that are neither feral nor tame.

However, a much more general statement (that avoids the special cases which make Conjecture 9.3 flase)
is true. In a yet unpublished follow up article [2] the authors show that every hereditary graph class which is
definable in Monodic Second Order Logic (CMSO2 Logic) is either quasi-tame or feral.

In terms of generality the result of [2] completely subsumes Theorems 1.1 and Theorem 1.2, at a cost of the

quasi-polynomial bound on the number of minimal separators being much worse (about nO(log17 n), as opposed to
nO(logn)). The proof of [2] requires some, but far from all, tools in the present paper (namely Lemma 5.5 and the
entire characterization of the inclusion minimal hereditary families F that contain a k-creature for every integer
k, given in Section 6).

More importantly, the proof of [2] is very complex (spanning close to 100 pages), and appears to be very
difficult to strengthen to a polynomial upper bound, leaving the polynomial bound of Gajarský et al. [11] as
highly relevant. Therefore all of the main contributions of the present manuscript (the proofs of Theorems 1.1
and 1.2, with exception of Lemma 5.14) are crucial to either the proof Gajarský et al. [11] of Conjectures 9.1
and 9.2, or the proof of the dichotomy for CMSO-definable hereditary classes [2], or both.

Outline of the paper. In Section 2 we give a high level overview of our proofs. In Section 3 we set up the
standard definitions and notations used in the paper. In Section 4 we give the counterexample to Conjecture 1.1.
In Section 5 we prove our main result, Theorem 1.1. In Section 6 we characterize the premise in the statement
of Theorem 1.1 (being k-creature-free and k-skinny-ladder induced minor-free) in terms of forbidden induced
subgraphs, and use this characterization to prove Theorems 1.2 and 1.3. In Sections 7 and 8 we prove the
polynomial bounds on the number of minimal separators in graphs that are both k-creature-free and long cycle-
free, and in graphs that are k-creature-free, k-skinny-ladder induced minor-free, and k-clique-free. We conclude
with some open problems in Section 9.

2 Overview

In this section we provide high level overview of our proofs. We will give quite detailed proof sketches of some of
the pivotal steps, while skipping technical details of the more cumbersome parts. We start with the main ideas
behind the proof of Theorem 1.1.

2.1 Overview of the Proof of Theorem 1.1. Recall that Theorem 1.1 states that for every natural number
k, the family of graphs that are k-creature-free and do not contain a k-skinny-ladder as an induced minor is
strongly-quasi-tame. There are three key lemmas that lie at the heart of the proof of Theorem 1.1. The first
of these states that for a k-creature-free graph G, there are at most nk distinct ways for the neighborhood of a
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Figure 3: The k-creature formed in Claim 2.1 and Lemma 5.5. Note there may or may not be edges between the
vi’s and the Pi’s may overlap or have edges between them as well.

vertex v to intersect the minimal separators S of G, where n = |V (G)|.

Claim 2.1. Let G be a k-creature-free graph with n = |V (G)|, v ∈ G, and let Sv = {N(v) ∩ S : v /∈ S and S is a
minimal separator of G}. Then |Sv| f nk.

Claim 2.1 is stated as Lemma 5.5 in the formal proof. Note that Claim 2.1 on its own does not imply that
the number of minimal separators of G is bounded, only that the number of ways the neighborhood of a vertex
can intersect the minimal separators of G is polynomial. In fact the counterexample given in Section 4 shows that
the number of minimal separators of a k-creature-free graph of maximum degree at most 3 can be exponential.

The proof of Claim 2.1 is based on VC-dimension (see Definition 5.1) and follows from the Sauer-Shelah
Lemma (see Lemma 5.3). In particular, if |Sv| is large then there exists a vertex u not adjacent to v such that
there are at least nk−1 distinct intersections N(v)∩S′, where S′ is a u, v-minimal separator. By the Sauer-Shelah
Lemma there is a subset of N(v) of size k that is shattered by the sets of the form N(v) ∩ S′.

From the definition of shattering it follows that there are vertices X = {v1, . . . , vk} in N(v) such that each vi
belongs to a private u, v-minimal separator Si, i.e., X ∩ Si = {vi}. Now, let Ci be the component that u belongs
to in G− Si, let v

′
i be a neighbor of vi in Ci with minimum distance to u, and let Pi be a shortest path from v′i

to u in Ci. Notice that no vertex of Pi can be neighbors with vj for i ̸= j or else there would be a u, v path in
G− Si, and vi cannot be neighbors with u, or else there would be a u, v path in G− Sj for j ̸= i. It then follows
that v together with the set X and the Pi’s make a k-creature (See Figure 3). So, for any fixed u, v, there are at
most nk−1 unique sets of the form N(v)∩ S where S is a u, v-minimal separator. Finally, it is easy to check that
for every u-w minimal separator S there exists some v-w minimal separator or v-u minimal separator S′ such
that N(v) ∩ S = N(v) ∩ S′, proving the claim.

The second ingredient in the proof of Theorem 1.1 states that the minimal separators of graphs that are
k-creature-free and have no k-skinny-ladder as an induced minor can be dominated by few vertices.

Claim 2.2. Let F be a graph family that forbids k-creatures and has no k-skinny-ladder as an induced minor,
then there exists a constant c such that for all graphs G ∈ F , every minimal separator of G can be dominated by
c vertices.

The proof of Claim 2.2 (re-stated as Lemma 5.13 in the formal proof) is substantially more involved than
the proof of Claim 2.1. Indeed the full proof of Lemma 5.13 takes up the bulk of Section 5. The overall strategy
of the proof of Claim 2.2 is to start with the assumption that G is a graph and S is a minimal separator in G
that cannot be dominated by c vertices and use this assumption to show the existence of either a k-creature or a
k-skinny-ladder in G for sufficiently large k. Here sufficiently large means that k tends to infinity when c tends
to infinity.

The proof is carried out in a sequence of steps, where each step “zooms in” on a more structured induced
subgraph of G which still has a minimal separator (which is a subset of the original separator S) that cannot be
dominated by c′ vertices for some sufficiently large c′. As an example step let Cu and Cv be two full components
of G − S (a full component of G − S is a component C such that N(C) = S). Without loss of generality
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V (G) = Cu ∪ S ∪Cv, because if G− S also contains some other component C then S is still a minimal separator
in (G− C)− S and S still cannot be dominated by c vertices in G− C.

The first step of the proof of Claim 2.2 is to reduce to the case where G − S has precisely two components
PL and PR and both PL and PR induce paths. While this sounds like a pretty strong claim this is actually
one the less technical steps in the proof of Claim 2.2. The idea is to look for a k-creature (A,X, Y,B) where
A ∪ X ¦ Cu, Y ¦ S and B = Cv. If we fail to find a k-creature of this form then one can find k − 1 induced
paths P1 . . . Pk−1 in Cu that together dominate S (see Lemma 5.6). A symmetric argument shows the existence
of induced paths Q1 . . . Qk−1 in Cv that together dominate S. Since S is completely covered by at most k2 sets
on the form N(Pi) ∩N(Qj), it follows that there must exist some pair i, j such that S ∩N(Pi) ∩N(Qj) cannot
be dominated by c/k2 vertices. We now consider G[Pi ∪ (S ∩ N(Pi) ∩ N(Qj)) ∪ Qj ], in this graph the minimal
separator (S ∩N(Pi) ∩N(Qj)) cannot be dominated by c/k2 vertices and the two full components are PL = Pi

and PR = Qj .
The next sequence of steps (Lemmas 5.7, 5.8, and ultimately 5.9) show that it is possible to zoom in on a

sub-path P ′
L of PL, a sub-path P ′

R of PR and a subset I ¦ S of size at least c′ (where c′ is lower bounded by an
unbounded function of c) such that both P ′

L and P ′
R dominate I, I is an independent set (no pair of vertices in

I are adjacent) and furthermore no vertex in P ′
L or P ′

R have more than one neighbor in I. Note that I is now
a minimal separator in G[P ′

L ∪ I ∪ P ′
R]. The additional properties of I witness that I cannot be dominated by

less than |I| g c′ vertices, because no vertex of G[P ′
L ∪ I ∪ P ′

R] can dominate more than one vertex in I. Thus,
Lemmas 5.7, 5.8, and 5.9 allow us to reduce the proof of Claim 2.2 from the general case where S cannot be
dominated by few vertices, but we do not know why, to the special case where S cannot be dominated by few
vertices because no vertex in G dominates more than one vertex of S. The proofs of Lemmas 5.7, 5.8, and 5.9
are fairly technical, and we skip them in this overview.

Assuming Lemma 5.9 we are in the following setting. Our graph G consists of an independent set S of size at
least c, which is much larger than k and two paths PL and PR that both dominate S. Further, no two vertices in
S have any common neighbor. Our goal is to find a k-skinny-ladder as an induced minor in G. Observe that the
graph G already kind of looks like a skinny-ladder. The main problem is that each of the vertices of S can have
many neighbors in PL and in PR and that these neighbors can “interleave” a lot (see e.g. Figure 8). The next
series of lemmas — namely Lemmas 5.10, 5.11, and 5.12, culminating with 5.13 — show that if the neighbors of
the vertices in S interleave “too much”, then we can find a k-creature in G, while if they do not then G contains
a k-skinny-ladder.

Claim 2.1 together with Claim 2.2 are almost enough to prove Theorem 1.1. Suppose that instead of Claim 2.2
we had the stronger statement that for every minimal separator S in every k-creature-free, k-skinny-ladder induced
minor-free graph there is a dominating set D of size c such that D is disjoint from S. 1 In this hypothetical
scenario we can give a simple proof of a statement stronger than Theorem 1.1 — a polynomial upper bound
on the number of minimal separators of k-creature-free, k-skinny-ladder induced minor-free graphs. Suppose for
contradiction that the number of minimal separators is super-polynomial. By the dream-claim there is some
constant size set D such that there are super-polynomially many minimal separators S that are disjoint from D
and dominated by D. By Claim 2.1 each vertex v ∈ D has only polynomially many options for the intersection
N(v)∩S. But then there must be two distinct minimal separators S1 and S2 that are disjoint from D, dominated
by D, and that satisfy S1 ∩N(v) = S2 ∩N(v) for every vertex v in D. But D dominates S1 and S2, and therefore
we have

S1 =
⋃

v∈D

N(v) ∩ S1 =
⋃

v∈D

N(v) ∩ S2 = S2

contradicting that S1 and S2 are different minimal separators.
The final ingredient of the proof of Theorem 1.1 is a strengthening of this argument that also works for the

case when the dominating set D is not necessarily disjoint from S. This strengthening comes at the cost that we
are only able to prove a quasi-polynomial upper bound on the number of minimal separators.

Claim 2.3. There exists a function f : N×N → N such that the following holds. Let G be a graph with n vertices
and let k and k′ be integers such that for all induced subgraphs G′ of G and for all v ∈ G′, if Sv

G′ = {N(v)∩S : v /∈ S

1This claim is actually false: for any k ≥ 1 start with a k-skinny-ladder for and turn {s1, . . . , sk} into a clique. It is easy to check

that this graph does not contain a 5-creature or a 5-skinny-ladder (as an induced minor), while no set of size less than k disjoint from
S can dominate S.
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and S is a minimal separator of G′}, then |Sv
G′ | f nk and every minimal separator of every induced subgraph of

G can be dominated by k′ vertices. Then G has at most nf(k,k′) log(n) minimal separators where n = |V (G)|.

Claim 2.3 is stated as Lemma 5.14 in the formal proof (we note that for technical reasons the statement of
Lemma 5.14 slightly differs from that of Claim 2.3). Note that by Claims 2.1 and 2.2, graphs that are k-creature-
free and forbid k-skinny-ladders as an induced minor satisfy the premise of Claim 2.3.

The basic idea of the proof is to use a recursive branching algorithm that outputs all of the minimal separators
of the graph, and upper bound the total number of sets output by this algorithm. The algorithm takes a tuple
(G,X) where G is a graph that satisfies the conditions of Claim 2.3, and X ¦ V (G) and returns all minimal
separators of G contained in X (and possibly other sets as well). Initially the algorithm is called with X = V (G).
We will measure the running time of the algorithm in terms of n and an upper bound x on the size of X. Initially
we have x = n.

Fix some minimal separator S of G that is contained in X. We set Q to be the set of vertices of G that have
at least 1

2k′ |X| neighbors in X. The reason for choosing this particular fraction will become apparent shortly. By
assumption, for each q ∈ Q if q /∈ S then there are at most nk options as to what N [q]∩S is. For each option Y ∈
Sq
G we call the algorithm on (G−Y,X−N [Y ]), and for each set S′ that is returned by the call (G−Y,X−N [q]),

we add S′ ∪ Y to our collection of sets that we will return. If Y ′ ∈ Sv
G is equal to N [q] ∩ S, then S − Y ′ is a

minimal separator of G− Y ′ contained in X −N [q] and so (S − Y ′) ∪ Y ′ = S will be included in the list of sets
that we return. In each of our branches we are calling the algorithm on X ′ = X −N [q], and since q has at least
1

2k′ |X| neighbors in X, X ′ is a constant fraction smaller than X. Thus the running time of (and the number of

sets output by) the algorithm is governed by the recurrence T (n, x) f nk+O(1)T (n, x(1 − 1
2k′ )), which solves to

nO(log x) f nO(logn) for fixed k and k′.
But what if Q ¦ S? To handle this case we use that fact that S − Q must then be a minimal separator of

G−Q and by assumption there are at most k′ vertices of G−Q that dominate S −Q. We can now see why the
fraction 1

2k′ was used to define Q; the neighborhood of these k′ vertices contain at most 1/2 the vertices of X.
Thus, for every set R of k′ vertices of G, we call the algorithm on (G−Q, (X −Q)∩N(R)). For each set S′ that
is returned from the call (G − Q, (X − Q) ∩ N(R)), we add S′ ∪ Q to the list of sets output by the algorithm.
Since there is some set R′ of k′ vertices in G − Q such that R′ dominates S − Q, S will get added to the list.
Each of the recursive calls invoke the algorithm on X ′ = X ∩ N [R], and |X ′| f .5|X|. In this case the running
time of (and the number of sets output by) the algorithm is governed by the recurrence T (n, x) f nk′+kT (n, x

2 ),

which also solves to nO(log x) f nO(logn) for fixed k and k′. This completes the sketch of the proof of Claim 2.3
and therefore also of Theorem 1.1.

2.2 Overview of the Proof of Theorems 1.2 and 1.3. The conclusion of Theorem 1.1 is simple - G only
has a quasi-polynomial number of minimal separators. On the other hand the premise is somewhat opaque. It
is not immediately obvious which graphs contain k-creatures for arbitrarily large k, and which graphs contain a
k-skinny-ladder as an induced minor. In the second part of the paper we re-formulate the premise of Theorem 1.1
in terms of forbidden induced subgraphs. More concretely, the bulk of the work in Section 6 goes into proving
the following statement.

Claim 2.4. For every natural number k, there is a number k′ such that if a graph G contains a k′-creature, then
G contains a k-theta, k-pyramid, k-prism, k-ladder, k-ladder-theta, or k-ladder-prism as an induced subgraph.

See Figure 2 for a depiction of the graphs in Claim 2.4, and see Section 6 for definitions. This statement appears
as Lemma 6.9 in the formal proof. Claim 2.4 is best possible in the sense that each one of the k-theta, k-pyramid,
k-prism, k-ladder, k-ladder-theta, or k-ladder-prism contains a k-creature, and that dropping any one of them
from the list would make the conclusion of Claim 2.4 false. The contrapositive of the statement of Claim 2.4
implies that if a hereditary graph family F excludes the k-theta, k-pyramid, k-prism, k-ladder, k-ladder-theta,
and k-ladder-prism as induced subgraphs, then there exists a k′ depending only on k such that F is k′-creature-
free. Therefore, Claim 2.4 together with Theorem 1.1 and the observation that a 2k-skinny-ladder induced minor
either yields a k-creature or a k-contracted ladder as an induced subgraph implies Theorem 1.2.

So, how do we prove Claim 2.4? At a very high level it is just a sequence of structural lemmas, each on the
form “if G contains a k-creature that additionally has some property X, then G also contains a k′-creature for
some k′ which is much smaller than k, but still tends to infinity with k, and the k′-creature has some stronger
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structural property Y ”. The next lemma now has as premise “if G contains a k creature that additionally has
property Y ”, continuing the chain. Since we are looking for highly symmetric induced subgraphs in fairly general
graphs it should come as no surprise that this sequence of arguments makes frequent use of Ramsey’s Theorem.

Slightly more concretely, the proof of Claim 2.4 considers the two “sides” of the k-creature separately.
Specifically, suppose that G contains a k′-creature (A, B, {x1, x2, . . . , xk′}, {y1, y2, . . . , yk′}), then we focus in on
just one half of the k′-creature, say the side the consists of A and {x1, x2, . . . , xk′}. Here we can find what amounts
to a k-half-theta, k-half-prism, or k-half-ladder (imagine cutting a k-theta, k-prism, or k-ladder in half vertically,
see Figure 9). Then on the other side that consists of B and {y1, y2, . . . , yk′} we find a k-half-theta, k-half-prism,
or k-half-ladder in the same way and we can merge them together to make either a k-theta, k-pyramid, k-prism,
k-ladder, k-ladder-theta, or a k-ladder-prism.

Let us now see how to derive Theorem 1.3 from Theorem 1.2. We can see that for every natural number k
there is a k′ large enough such that if a graph contains a k′-ladder as an induced subgraph or a k′-skinny-ladder
as an induced minor, then it contains a k-paw or k-claw as an induced subgraph. Hence, putting this together
with Theorem 1.2 leads us to one half of Theorem 1.3, that if there is a natural number k such that a family of
graphs F forbids k-theta, k-pyramid, k-prism, k-ladder-theta, k-ladder-prism, k-claw, and k-paw graphs, then F
is strongly-quasi-tame.

Next, let’s see how we prove the second part of the statement of Theorem 1.3. This states that if F is
a family of graphs defined by a finite number of forbidden induced subgraphs, then if F contains k-theta, k-
pyramid, k-prism, k-ladder-theta, k-ladder-prism, k-claw, or k-paw graphs for arbitrarily large k, then F is feral.
If F contains k-theta, k-pyramid, k-prism, k-ladder-theta, or k-ladder-prism graphs for arbitrarily large k, then
we take some k-theta, k-pyramid, k-prism, k-ladder-theta, or k-ladder-prism graph that is contained in F and
show that if we contract the correct edges, then we can end up with a k-theta, k-pyramid, k-prism, k-ladder-theta,
or k-ladder-prism graph that is still contained in F but now has O(k) vertices. It follows that in this case F is
feral.

It is critical here that our graph family is defined by a finite set of forbidden induced subgraphs. In general
one cannot just contract an edge of a graph G that belongs to a family F and expect G to still belong to F after
contraction. However, for a family that is defined by a finite set of forbidden induced subgraphs we can contract
edges that are in the middle of sufficiently long paths consisting of vertices of degree 2. In our proofs we only
contract such edges. Now, if F contains k-paw or k-claw graphs for arbitrarily large k, then we show that for
large enough k we can essentially glue the claws or paws together on top of each other an create a graph with
O(k) vertices, exponentially many minimal separators, and avoid any of the forbidden subgraphs of F (see Figure
10 of Section 6 for a picture of this. Again it is crucial here that that our graph family is defined by a finite set
of forbidden induced subgraphs). This concludes our sketch of the proof of Theorem 1.3.

2.3 Overview of the Proofs of Theorems 1.4, 1.5, and 1.6 Recall that Theorems 1.4 and 1.5 give
polynomial upper bounds on the number of minimal separators for graphs that exclude k-creatures, k-skinny-
ladders as induced minors, and additionally long cycles (in the case of Theorem 1.4) or large cliques (in the case
of Theorem 1.5).

Given the tools developed on the way to proving Theorems 1.1 and 1.3, Theorems 1.4 and 1.5 follow almost
for free. Recall the “dream strengthening” of Claim 2.2 from the proof sketch of Theorem 1.1; every minimal
separator S in a graph that excludes a k-creature and a k-skinny-ladder as an induced minor is dominated by a
set D of constant size k′, disjoint from S. This dream strengthening is false in general, but it turns out to be
true (and fairly easy to prove) in graphs that additionally exclude either all long cycles or all sufficiently large
cliques. Now Theorems 1.4 and 1.5 follow directly from the argument in the failed proof attempt in Section 2.1
for Theorem 1.1 based on the dream claim. Theorem 1.6 is “extracted” from Theorem 1.5 in exactly the same
way Theorem 1.3 is derived from Theorem 1.1.

3 Preliminaries

All graphs in this paper are assumed to be simple, undirected graphs unless otherwise stated. We denote the
edge set of a graph G by E(G) and the vertex set of a graph by V (G). If v ∈ V (G), then we use NG[v] to denote
the closed neighborhood of v in the graph G, i.e., the set of all neighbors v has in G together with v itself. We
use NG(v) to denote the set NG[v]− {v}. If X ¦ V (G), then NG[X] =

⋃
x∈X NG[x] and NG(X) = NG[X]−X.

When the graph G is clear from the context, we will use N [v], N(v), N [X], and N(X). If X ¢ V (G), then we
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use G[X] to denote the induced subgraph of G with vertex set X and G−X denotes G[V (G)−X].
Given a graph G, a non-empty set S ¢ G is called a separator if there are at least two distinct connected

components L and R of G − S. If u ∈ L and v ∈ R then we call S a u-v-separator or a u, v-separator. S is a
u, v-minimal separator if S is a u, v-separator and no proper subset of S is a u, v-separator, or equivalently, if
NG(L) = NG(R) = S. This equivalence is folkloric and easy to show. We say a component X of G − S is an
S-full component if NG(X) = S.

A family of graphs F is called tame if there exists a constant c such that for all G ∈ F , G has at most |V (G)|c

minimal separators. A family of graphs F is called strongly-quasi-tame if there exists a constant c such that for
all G ∈ F , G has at most |V (G)|c log(|V (G)|) minimal separators. A family of graphs F is called feral if there
exists a constant c > 1 such that for all natural numbers N there exists a G ∈ F , such that |V (G)| = n > N and
G has at least cn minimal separators.

Given a path P = v1, v2, . . . , vk we call v1 and vk the endpoints of P , and all other vertices of P are internal
vertices of P . The length of a path is the number of vertices in the path. Given a graph G and a graph H,
G is said to be H-free or G forbids H if G does not contains H as an induced subgraph. We will sometimes
talk about the induced minors of a graph so being H-free should not be confused with G not containing H as an
induced minor. If G does not contain H as an induced minor then that is precisely what we will say, that G does
not contain H as an induced minor. If G is a family of graphs such that every G ∈ G is H-free, then G is said to
be H-free or that G forbids H. Similarly, given a graph G and a family of graph H, G is said to be H-free or G
forbids H if G is H-free for all H ∈ H. If G is a family of graphs such that every G ∈ G is H-free, then G is said
to be H-free or that G forbids H.

Let F be a family of graphs. We say that F is a family of graphs defined by a finite number of forbidden
induced subgraphs if there exists a finite set of graphs H such that G ∈ F if and only if G if G is H-free. We say
that H is a set of forbidden subgraphs that define F .

Given a graph G let H and K be two subsets of V (G). We say that H is anti-complete with K or that H
and K are anti-complete if H and K are disjoint and every vertex in H is non-adjacent to every vertex in K in
G. We extend this definition in an obvious way to allow H (and possibly K) to be a subgraph of G by saying
H is anti-complete with K if V (H) is anti-complete with K (V (K) if K is also a subgraph). A set X ¦ V (G) is
said to dominate a set Y ¦ V (G) if for every y ∈ Y either y ∈ X or there is an x ∈ X such that yx ∈ E(G).

Given a graph G and an edge uv ∈ E(G) we denote by Guv the graph that results from contracting the edge
uv in G, so V (Guv) = (V (G) − {u, v}) ∪ {w} (where w is the new vertex created from the contraction) and for
x, y ∈ V (G) − {u, v}, xy ∈ E(Guv) if and only if xy ∈ E(G) and for x ∈ V (G) − {u, v}, xw ∈ E(Guv) if and
only if x is neighbors with u and/or v in G. Note that as all graphs that we deal with are simple graphs, our
definition of contraction does not allow for multiple edges. Given an induced path P of G, we denote by GP the
graph that results from contracting each edge of P one at a time. Note that the resulting graph is independent
of the order the edges are contracted in. Given two anti-complete graphs A and B with a ∈ A and b ∈ B, we
define an operation gluing a to b which is the graph that results in adding the edge, ab between a and b and then
contracting the edge ab.

4 A k-Creature-Free Feral Graph Family

In this section we will show that the graph of Figure 4, which we will refer to as the k-twisted-ladder, is a
counterexample to Conjecture 1.1. We begin the next paragraph by giving a few definitions, then in the following
paragraph we will observe that the k-twisted-ladder has 2k minimal separators, and finally Lemma 4.1 completes
the counterexample by showing that the k-twisted-ladder does not contain a large k-creature.

We define a partition of the vertices as follows, let S denote the set of labeled vertices of the k-twisted ladder
that have 1 as their superscript. If we remove S from the k-twisted-ladder we get two induced paths, one on the
left side which we will refer to as L and one on the right side which we will refer to as R. We also define the ith

block of the k-twisted-ladder to be the set of vertices that contains the vertices of the subpath of L that has cLi+1

and cLi as its endpoints, the vertices of the subpath of R that has cRi+1 and cRi as its endpoints, and the vertices
a1i and b1i . So, the ith block and the (i+ 1)th block overlap at the vertices cRi+1 and cLi+1.

To see that the k-twisted-ladder has at least 2k minimal separators we make the following set, X. For each i
with 1 f i f k we choose j ∈ {1, 2} and add aji and bji to X. X is then an x, y-minimal separator, and there are
2k different choices we had when making X, so the k-twisted-ladder has at least 2k minimal separators.
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Figure 4: The k-twisted-ladder.

To complete the counterexample, we show in the following
lemma that this structure does not have a large k-creature. To
make the result as easy as possible to verify, we show no k-twisted-
ladder has a 100-creature, although a significantly smaller upper
bound exists.

Lemma 4.1. k-twisted-ladders are 100-creature-free for all k.

Proof. Let H be a k-twisted-ladder. Assume for a contradic-
tion that H contains a 100-creature (A,B, {x1, x2, . . . , x100},
{y1, y2, . . . , y100}).

Let XA and XB denote the highest numbered block that A
and B have a vertex in respectively, and let YA and YB denote the
lowest numbered block that A and B have a vertex in respectively.
Let i = max(YA, YB)+1 and let j = min(XA, XB)−1. Let r be an
integer such that i f r f j (if no such r exists, then the only blocks
that can contain vertices from both A and B must be two adjacent
blocks. Since each block only has 10 vertices, A has size at most
20 and since the max degree of the twisted-ladder is 3, A cannot
dominate all 100 vertices of {x1, x2, . . . , x100}, a contradiction to
the definition of k-creature). Then since A and B are connected
and both contain vertices in blocks above and below block r we can
see by inspection that A must contain one vertex from {cLr , c

R
r }

and one from {cLr+1, c
R
r+1} and B must contain one vertex from

{cLr , c
R
r } and one from {cLr+1, c

R
r+1}. Furthermore, since A is anti-

complete with B, we can again see from inspection that if cLr ∈ A
then we must have cLr+1 ∈ A, cRr ∈ B, and cRr+1 ∈ B (the removal
of the closed neighborhoods of cLr and cRr+1 would separate blocks
numbered greater than r from blocks numbered less than r, so
both cLr and cRr+1 cannot belong to A since B is connected and
has vertices in blocks above and below r). Similarly if cRr ∈ A
then we must have cRr+1 ∈ A, cLr ∈ B, and cLr+1 ∈ B.

Therefore, without loss of generality we may assume that for
all r with i f r f j that cLr ∈ A and cRr ∈ B. It then follows from
this assumption and the fact that A is anti-complete with B that
there are only two possibilities for the restriction of A and B to
the rth block. Either we have that both the restriction of A to the
rth block is the subpath of L with endpoints cLr and cLr+1 and the
restriction of B is the subpath of R with endpoints cRr and cRr+1

or the restriction of A is the induced path made up of cLr+1 along
with b1r and b1r’s two neighbors in L and the restriction of B is the induced path made up of cRr along with a1r
and a1r’s two neighbors in R. Note that in either case, we may conclude by inspection of the twisted-ladder that
every vertex in block r is either in A, B or N(A) ∩N(B).

We now show that it is impossible for the vertices of {x1, x2, . . . , x100} to be within distance two of both
A and B, which would contradict the definition of a k-creature. By the definition of a k-creature, no vertex of
{x1, x2, . . . , x100} can belong to N(A)∩N(B). Hence, by the last sentence of the previous paragraph, no vertex of
{x1, x2, . . . , x100} belongs to blocks i through j. Since no vertex of {x1, x2, . . . , x100} belongs to blocks i through
j, i− 1 = max(YA, YB) and j + 1 = min(XA, XB), and the vertices of {x1, x2, . . . , x100} must be within distance
two of both A and B it follows that all vertices of {x1, x2, . . . , x100} must be with distance two of blocks i − 1
and j + 1. But we can see by inspection of the twisted-ladder that there do not exists that many vertices within
distance two of these two blocks. We can conclude that (A,B, {x1, x2, . . . , x100}, {y1, y2, . . . , y100}) cannot be a
100-creature.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited3074

D
o

w
n
lo

ad
ed

 0
6
/2

0
/2

5
 t

o
 1

6
9
.2

3
1
.1

8
6
.1

6
7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



5 k-Creature and k-Skinny-Ladder Induced Minor Free Graphs

In this section we will provide all the lemmas needed for a proof of Theorem 1.1 and conclude this section with a
proof of Theorem 1.1. We begin this section by stating some well known results which we will need later on. The
three key ideas of this section are Lemma 5.5 which shows that the neighborhood of a vertex v of a k-creature-free
graph G can intersect the minimal separators of G that do not contain v in at most nk different ways, Lemma 5.13
which shows that all minimal separators of graphs that are k-creature-free and do not contain a k-skinny-ladder
as an induced minor can be dominated by a constant number vertices, and Lemma 5.14 which uses a branching
algorithm to list all minimal separators of its input graph assuming the input graph satisfies certain properties
and proves a bound on the number of minimal separators produced by this algorithm. An easy proof combining
Lemma 5.5, and Lemma 5.14 is then used to establish Theorem 1.1. Most of the work of this section goes into
proving lemmas needed for the proof of Lemma 5.13, in particular, Lemmas 5.6 through 5.12 build up to a proof
of Lemma 5.13. In this section and the rest of the paper when we refer to k-creatures and k-skinny-ladders we
will assume k > 1.

Lemma 5.1. (Ramsey’s Theorem) [20]
For every pair of positive integer k and ℓ there is a least positive integer R(k, ℓ) such that every graph with at

least R(k, ℓ) vertices contains a clique of size k or an independent set of size ℓ.

Throughout this paper we will us the notation R(k, ℓ) to denote the least positive integer such that every
graph with at least R(k, ℓ) vertices contains a clique of size k or an independent set of size ℓ.

Lemma 5.2. (Erdös-Szekeres Theorem) [9]
For every pair on positive integers r and s, any sequence of distinct real numbers of length at least (r-1)(s-1)

+ 1 contains a monotone increasing subsequence of length r or a monotone decreasing subsequence of length s.

Definition 5.1. (VC-Dimension) Let F = {S1, S2, . . .} be a finite family of finite sets and let H be a set. F
is said to shatter H if for every subset H ′ ¦ H there is a Si ∈ F such that H ′ = Si ∩H. The V C-dimension of
F is the cardinality of the largest set that it shatters.

Lemma 5.3. (Sauer-Shelah Lemma) [22] Let F be a finite family of finite sets such that the VC-dimension of
F is k > 1, and let n = |

⋃
Si∈F Si|, so n is the number of distinct elements contained in the sets of F . Then the

number of sets of F is at most Σk
i=0

(

n
i

)

f nk.

Lemma 5.4. Let S be a u, v-minimal separator and a u,w-separator and let S′ ¢ S be a u,w-minimal separator.
Then N(w) ∩ S′ = N(w) ∩ S.

Proof. Let S be a u, v-minimal separator and a u,w-separator, let S′ ¢ S be a u,w-minimal separator, and let
Cu and C ′

u be the connected components that u lies in in G − S and G − S′ respectively. Note that Cu ¦ C ′
u.

Clearly N(w) ∩ S′ ¦ N(w) ∩ S. Now let y ∈ N(w) ∩ S. Then there is a path from y to u such that all internal
vertices of this path are contained in Cu. This same path has its internal vertices in C ′

u, so if y /∈ S′ then S′ does
not separate u from w. The result follows.

Lemma 5.5. Let G be a k-creature-free graph and let S be a set of minimal separators of G. Then for every
v ∈ G, if Sv = {N(v) ∩ S| S ∈ S and v /∈ S} then |Sv| f |V (G)|k.

Proof. Let G be a k-creature-free graph with n vertices, let S be a set of minimal separators of G, and fix two
non-adjacent vertices u, v. Let Sv,u = {N(v) ∩ S|S ∈ S and S is a u, v-minimal separator of G}. We first show
that |Sv,u| f nk−1. Assume for a contradiction that |Sv,u| > nk−1, then by the Sauer-Shelah Lemma there is a
subset of size k of N(v) that is shattered by Sv,u. It follows that there are vertices V = {v1, . . . , vk} in N(v) such
that each vi belongs to a private u, v-minimal separator Si, i.e., V ∩ Si = {vi}. Now, let Ci be the component
that u belongs to in G − Si, Ci dominates Si since Si is a u, v-minimal separator. Let v′i be a neighbor of vi in
Ci with minimum distance to u (note that vi is not a neighbor of u or else there would be a u, v path in G− Sj

for j ̸= i, hence v′i ̸= u), and let Pi be a shortest path from v′i to u in Ci. Let P =
⋃

i=1

(V (Pi)− {v′i}).

We claim that (v, P , {v1, v2, . . . , vk}, {v
′
1, v

′
2, . . . , v

′
k}) is a k-creature (see Figure 3 to for a visual description

of this step of the proof). To see this note that (1) G[P ] is connected since it is a set of paths which all contain u.
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(2) v is anti-complete with each Pi since v and Pi are both contained in two different Si-full components hence
v is anti-complete with P and {v′1, v

′
2, . . . , v

′
k}. To see that P is anti-complete with {v1, v2, . . . , vk} note that

each Pi − v′i is anti-complete with vi since v′i was chosen to be a neighbor of vi in Ci that is as close as possible
to u and Pi is a shortest path from v′i to u in Ci. Furthermore, if Pi was not anti-complete with vj for i ̸= j
then Si would not be a u, v-minimal separator since by assumption vj /∈ Si and no vertex of Pi is in Si (since
V (Pi) ¦ Ci), hence there would be a path from v to u in G − Si. It then follows that P is anti-complete with
{v1, v2, . . . , vk}. (3) P dominates {v′1, v

′
2, . . . , v

′
k} follows from how we defined P and {v1, v2, . . . , vk} ¦ N(v). (4)

vi is anti-complete with Pj for i ̸= j was showing when establishing (2), hence vi is a neighbor of v′j only if i = j.
So, (v, P , {v1, v2, . . . , vk}, {v

′
1, v

′
2, . . . , v

′
k}) is a k-creature, a contradiction to G being k-creature-free. It follows

that |Sv,u| f nk−1.
Now, let S ∈ S such that v /∈ S and assume that S is an x, y-separator. S must be either a v, x-separator

or a v, y-separator, let us assume without loss of generality that S is a v, x-separator, so there is an S′ ¦ S that
is a v, x-minimal separator. By Lemma 5.4 we have that N(v) ∩ S′ = N(v) ∩ S, hence N(v) ∩ S ∈ Sv,x, where
Sv,x = {N(v) ∩ S′′|S′′ ∈ S and S′′ is a v, x-minimal separator of G}. It follows that if Sv = {N(v) ∩ S′′| S′′ ∈ S
and v /∈ S′′} then Sv =

⋃

x∈V (G)

Sv,x. Then by the conclusion of the previous paragraph, it follows that |Sv| f nk.

The following corollary will be needed in Sections 7 and 8.

Corollary 5.1. If G is a k-creature-free graph and every minimal separator, S, of G can be dominated by k′

vertices of G not in S, then G has at most |V (G)|kk
′+k′

minimal separators.

Proof. Assume G is a k-creature-free graph and every minimal separator, S, of G can be dominated by k′ vertices
of G not in S. For every v ∈ G let Sv = {N(v) ∩ S|v /∈ S and S is a minimal separator of G}. By Lemma 5.5
it holds that |Sv| f |V (G)|k. Let X =

⋃

v∈G Sv. Then |X| = |V (G)|k+1 and the assumption that all minimal
separators, S, of G can be dominated by k′ vertices in G not in S implies that S is the union of at most k′ sets
in X. It follows there are at most |V (G)|kk

′+k′

minimal separators in G.

We remark that it is possible to generalize Lemma 5.5 and Corollary 5.1 to the rth neighborhood of a
vertex for any fixed positive integer r while still maintaining polynomial bounds by using the fact the family of
k-creature-free graphs are closed under contracting edges.

The following lemmas will be building towards a proof of Lemma 5.13, that all minimal separators of a graph
that is k-creature-free and has no k-skinny-ladder as an induced minor can be dominated by few vertices. We
begin with a proof that minimal separators can be dominated by a few induced paths in k-creature-free graphs
(the paths may have edges between them).

Lemma 5.6. Let G be a graph that is k-creature-free, let S be a minimal separator of G, and let A be an S-full
component of G− S. Then S is dominated by a set of less than k induced paths of A.

Proof. Let G, S, and A be as in the statement of this lemma, and let A′ be a minimally connected induced
subgraph of A such that S is dominated by A′. Let T be a breadth first search tree of A′ rooted at some
vertex v ∈ A′, and let L = {ℓ1, ℓ2, . . . , ℓc} be the set of leaves of T . Since A′ is minimal each leaf, ℓi ∈ L,
must have a neighbor si ∈ S such that no other vertex of A′ is a neighbor of si, else A′ − si would still be
connected and dominate S. Then if K is another S-full component different from A we claim that the tuple
(V (A′)−L, V (K), L = {ℓ1, ℓ2, . . . , ℓc}, {s1, s2, . . . , sc}) forms a c-creature. To see this, note that (1) G[V (A′)−L]
is still connected since L is a set of leaves of T , hence T −L is a spanning tree of G[V (A′)−L]. Additionally, K is
connected by definition. (2) V (A′)−L is anti-complete with {s1, s2, . . . , sc} since ℓi is the only vertex of A′ that
is neighbors of si, V (A′) is anti-complete with V (K) since they are contained in two different S-full components
hence V (A′−L) and V (K ′) are anti-complete and V (K ′) and L are anti-complete. (3) That V (A′)−L dominates
L is straight forward, and K dominates {s1, s2, . . . , sc} since K is an S-full component. (4) By how we chose the
si’s we have have ℓi is a neighbor of sj if and only if i = j.

It follows that if G is k-creature-free, then T has at most k − 1 leaves. Since T is a breadth first search tree
of A′, a root to leaf path in T is also an induced path in A′, therefore A′ is the union of at most k − 1 induced
paths and the result follows.
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Figure 5: P, S, and H and the vertex v of Lemma 5.7

A key step to proving Lemma 5.13 is to show that if a k-creature-free graph G has a minimal separator, S,
that cannot be dominated by f(k) vertices, then using Lemma 5.6 we can find an induced path in an S-full, call
the induced path PL, and another induced paths from another S-full component, call this induced path PR, such
that we can find a large independent set, I, of S where every vertex in I has at least one neighbor in PL and one
neighbor in PR and furthermore, no pair of vertices in I share a neighbor in either PL or PR. This is proven in
Lemma 5.9.

The paths PL and PR are paths obtained by selecting induced paths such that the set S1 = N(PL)∩S∩N(PR)
takes at least f(k)/k2 vertices to dominate, such paths must exits by Lemma 5.6. The idea of the proof of Lemma
5.9 is to find a special vertex v1 ∈ S1, such that we can find a small set of vertices X1 such that no vertex in
S1−N [X1] shares a neighbor with v1 in PL and we find a small set of vertices Y1 such that no vertex in S1−N [Y1]
shares a neighbor with v1 in PR. We then add v1 to I and set S2 = S1 − (N [X1] ∪N [Y1] ∪ {v1}). Then we find
a special vertex v2 ∈ S2 and repeat. If the Xi’s and Yi’s are small in size and S1 cannot be dominated by few
vertices then we can create a large set I in this way so that no vertices in PL and PR have more than one neighbor
in I, so we get our desired PL, PR, and I.

The following lemma shows us how to locate Xi given the vertex vi. The specially chosen vertex vi will have
the property that there exists a connected graph H such that all vertices of Si have at least one neighbor in H
except for vi, and H is anti-complete with PL (see Figure 5, where PL = P, Si = S, and vi = v). In this situation,
Lemma 5.7 shows how to obtain the desired set Xi, such that no vertex of Si −N [Xi] shares a neighbor with vi
in the path PL.

Lemma 5.7. Let G be a k-creature-free graph and let (S,H, P, v) be a tuple of disjoint subsets of V (G) with the
following properties (see Figure 5): G[H] is connected, G[P ] is an induced path, H is anti-complete with P and
v, and H dominates S. Then there is a set, X, of size at most k such that N(S −N [X]) ∩N(v) ∩ P = ∅ and no
vertex of S −N [X] is a neighbor of v.

Proof. Let G, S, H, P , and v be as in the statement of this lemma. Let P ′ = P∩N(v), let S′ = (S∩N(P ′))−N(v),
and let P ′′ = {p1, p2, . . . , pc} be a minimal subset of P ′ that dominates S′. Since P ′′ is a minimal dominating
set each element of P ′′ has a private neighbor in S′, in other words for each pi ∈ P ′′ there is an si ∈ S′ such
that pi is a neighbor of si and pj is not a neighbor of si if i ̸= j. We claim that the tuple ({v}, H, P ′′ =
{p1, p2, . . . , pc}, {s1, s2, . . . , sc}) forms a c-creature (see figure 6). To see this note that (1) by assumption G[H]
is connected. (2) By assumption v and H are anti-complete, v and {s1, s2, . . . , sc} ¦ S′ are anti-complete
by how S′ was defined, and by assumption H and {p1, p2, . . . , pc} ¦ P are anti-complete. (3) v dominates
{p1, p2, . . . , pc} ¦ P ′ by how P ′ is defined and H dominates {s1, s2, . . . , sc} since H dominates S by assumption.
(4) By how the si’s were chosen, si is a neighbor of pj if and only if i = j.

Hence, since G is k-creature free we may assume that c f k − 1. By how P ′′ was chosen then we have that
N(S′ −N [P ′′])∩N(v)∪P = ∅. Then setting X = P ′′ ∪ {v} is a set of size at most k that satisfies the conclusion
of this lemma.

While Lemma 5.7 works for finding Xi such that no vertex of Si − N [Xi] has a common neighbor with vi
in PL, it will not work to obtain a corresponding Yi for PR, the problem will lie in finding a suitable H with
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PL PRIFigure 6: The k-creature formed in Lemma 5.7
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Figure 7: P, S, and H and the vertex v of Lemma 5.8

respect to PR, Si, and vi (vi is chosen specifically so we can find a suitable H with respect to PL, Si, and vi,
the path PR is not taken into consideration in this selection). This issue is taken care of by Lemma 5.8, which
shows that there is a set of at most k− 1 connected components, C1, C2, . . . , Ck−1 of PL −N(vi) that collectively
dominated Si. Then for each Cj clearly all vertices of Si ∩ N(Cj) have a neighbor in Cj , and PR and vi are
anti-complete with Cj , so we can apply Lemma 5.7 to (Si ∩ N(Cj), Ci, PR, vi) to get a set Yi,j such that no
vertex of (Si ∩ N(Cj)) − N [Yi,j ] shares a neighbor with vi in PR. Since collectively all the Cj ’s dominate Si, if
we take Yi =

⋃

j

Yi,j then no vertex of Si −N [Yi] shares a neighbor with vi in PR.

Lemma 5.8. Let G be a k-creature-free graph and let (S,H, P, v) be a tuple of disjoint subsets of V (G) with the
following properties (see Figure 7): G[H] is connected, G[P ] is an induced path, H is anti-complete with P and
v, v is anti-complete with S, S is dominated by H and S is dominated by P , and N(S) ∩ N(v) ∩ P = ∅. Then
there is a set of at most k − 1 connected components of G[P ] −N(v) such that every vertex of S has a neighbor
in at least one of these connected components.

Proof. Let G,S,H, P , and v be as in the statement of this lemma. Assume for a contradiction that there does not
exists a set of at most k−1 connected components of G[P ]−N(v) such that every vertex of S has a neighbor in at
least one of these connected components. It follows then there is a set of k connected components of G[P ]−N(v),
say C1, C2, . . . , Ck, such that there exists s1, s2, . . . , sk in S where N(si) ∩ V (Cj) ̸= ∅ if and only if i = j. Since
G[P ] is connected, for every Ci there exists a vertex ci ∈ N(v) ∩ P such that ci ∈ N(Ci) (the ci’s may not be
unique even though the Ci’s are). Now, for each si, let s

′
i be the vertex in Ci that si is a neighbor of such that

there exists an induced path Pi from s′i to ci with internal vertices in Ci such that s′i is the only neighbor of si
on the path Pi (recall by assumption that N(S) ∩N(v) ∩ V (P ) = ∅ so si cannot be a neighbor of ci).

We claim the tuple ({v} ∪
⋃

V (Pi − s′i), H, {s′1, s
′
2 . . . , s

′
k}, {s1, s2 . . . , sk}) is a k-creature, contradicting the

assumption G is k-creature-free. To see this note that (1) H is connected by assumption and for all i, 1 f i f k, ci
belongs to Pi−s′i which is a neighbor of v, so {v}∪

⋃
V (Pi−s′i) induces a connected graph, (2) {v}∪

⋃
V (Pi−s′i) is

anti-complete withH by definition, {v}∪
⋃
V (Pi−s′i) is anti-complete with {s1, s2 . . . , sk} by how the paths Pi were
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chosen and by the assumption that v is anti-complete with S, and H is anti-complete with {s′1, s
′
2 . . . , s

′
k} ¦ V (P )

by assumption. (3) {v}∪
⋃
V (Pi−s′i) dominates {s′1, s

′
2 . . . , s

′
k} since s′i ∈ Pi and H dominates {s1, s2 . . . , sk} ¦ S

by assumption. (4) si is a neighbor of s′i by how s′i was chosen and for i ̸= j si is not a neighbor of s′j ∈ Cj

because si has no neighbor in Cj by how the Cj ’s where chosen.

We are now ready to prove Lemma 5.9.

Lemma 5.9. Let S be a minimal separator of a k-creature-free graph G such that S cannot be dominated by 2k4x
vertices. Then there exists there exists an independent subset I of S of size x such that there exists two induced
paths, PL and PR, in two different components of G− S that dominate the vertices of I and no vertex of PL nor
PR has more than one neighbor in I (see Figure 8).

Proof. Assume that G is a k-creature-free graph, and let S be a minimal separator of G that cannot be dominated
by 2k4x vertices of G, and let L and R be two different S′-full components of G. It follows from Lemma 5.6
that there is a set of less than k induced paths in L that together dominated S and there is a set of less than
k induced paths in R that together dominate S. So, since there are less than k2 pairs of these induced paths
with one from R and one from L, it follows there exists two induced paths PL in L and PR in R such that
(N(PL)∩ S ∩N(PR)) cannot be dominated by 2k2x vertices of G. Let S′ = (N(PL)∩ S ∩ (N(PR)). Number the
vertices of PR sequentially 1 through |V (PR)|.

Assume that we have an independent set of vertices Ii−1 of size i− 1, 1 f i f x, and a vertex set Zi−1 of size
at most 2k2(i− 1), with the properties that no vertex of S′−N [Zi−1] is a neighbor of a vertex in Ii−1, and for all
v ∈ Ii−1 if w ∈ Ii−1 ∪ (S′ −N [Zi−1]), v ̸= w, then N(v) ∩N(w) ∩ (V (PL) ∪ V (PR)) = ∅, that is for all v ∈ Ii−1,
no w ∈ Ii−1 ∪ (S′ −N [Zi−1]), w ̸= v, shares a neighbor with v in PL nor PR. We will show how to produce a set
Ii of size i and Zi of size at most 2k2i with the same properties, assuming i f x. Note that for the base case the
empty set satisfies the conditions required of S0 and Z0.

Let S′′ = S′−N [Zi−1], since i f x and since S′ cannot be dominated by 4k2x vertices S′′ must be non-empty.
Label the vertices of S′′ according to the lowest numbered neighbor it has in PR. Let v be a highest labeled vertex
in S′′. Let w be the lowest numbered neighbor v has in PR and assume w (and therefore v) is labeled with the
number p. Let H denote the subpath of PR that is made up of the vertices labeled 1 through p − 1, hence H is
anti-complete with v and H dominates all vertices of S′′ − N(w) (since v is a highest labeled vertex of S′′ and
has label p, all vertices of S′′ −N(w) must have a neighbor that has a label lower than p and hence in H).

We now wish to apply Lemma 5.7 using (S′′ − N(w), V (H), V (PL), v). To see that this tuple satisfies the
assumption of Lemma 5.7 note that H and PL are paths and therefore connected, H is anti-complete with PL

since they are contained in two different S-full components, that H is anti-complete with v was noted at the end
of the previous paragraph, and that H dominates S′′−N(w) was also noted at the end of the previous paragraph.
Hence, we may apply Lemma 5.7 using (S′′ −N(w), V (H), V (PL), v) to get a set X of size at most k such that
N((S′′−N [w])−N [X])∩N(v)∩V (PL) = ∅ and no vertex of (S′′−N [w])−N [X] is a neighbor of v. This implies
if we set X ′ = X ∪{w} then N(S′′ −N [X ′])∩N(v)∩V (PL) = ∅, no vertex of S′′ −N [X ′] is a neighbor of v, and
v /∈ S′′ −N [X ′].

We now wish to find a set Y of size less than k2 such that no vertex of S′′− (N [X ′]∪N [Y ]) shares a neighbor
with v in either PL or PR. For ease of notation, set S′′′ = S′′ −N [X ′]. It is tempting to try to use Lemma 5.7 on
something like (S′′′, PL, PR, v), but this lemma requires that v not have any neighbors in PL. Instead, we first use
Lemma 5.8 on (S′′′, V (H), V (PL), v). To see that we can apply this lemma, note that both H and PL are paths,
H is anti-complete with PL since they are contained in two different S-full components, that H is anti-complete
with v was noted at in the last sentence two paragraphs ago as was the fact that H dominates S′′′ ¦ S′′ −N(w)
(recall w ∈ X), that v is anti-complete with S′′′ = S′′ −N [X ′] was noted at the end of the previous paragraph,
and PL dominates S′′′ because PL dominates S′ by assumption and S′′′ ¦ S′.

So, we use Lemma 5.8 on (S′′′, V (H), V (PL), v) to get connected components C1, C2, . . . , Cc, c < k, of
PL −N(v) (hence v has no neighbors in each Ci) such that all vertices of S′′′ have a neighbor in at least one Ci.
Now, for each Ci we apply Lemma 5.7 on (S′′′ ∩ N(Ci), Ci, PR, v) to get a set Yi of size at most k such that
N((S′′′ ∩ V (Ci))−N [Yi]) ∩N(v) ∩ V (PR) = ∅.

Since the Ci’s dominate S′′′, it follows that if we set Y =
⋃

Yi then N(S′′′ − N [Y ]) ∩ N(v) ∩ V (PR) = ∅.
Since S′′′ = S′′ −N [X ′] and N(S′′ −N [X ′])∩N(v)∩V (PL) = ∅ it follows that if we set Zi = Zi−1 ∪X ′ ∪Y then
no vertex S′−N [Zi] shares a neighbor with v in PL nor PR. We may set Ii = Ii−1 ∪{v} and Zi = Zi−1 ∪X ′ ∪Y .
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Figure 8: An example of a graph produced by Lemma 5.9

Since each Yi has at most k vertices we have that |Y | f k2 and |X ′| f k so |Zi| f |Zi−1| + k + k2 f 2k2i as
required.

The statement of the lemma now follows from the fact that S cannot be dominated by 2k2x vertices so this
process can continue until we attain the set Ix, which has the property that for any pair v, w ∈ Ix v ̸= w it holds
that N(v) ∩N(w) ∩ (V (PL) ∪ V (PR)) = ∅. So Ix which is the desired set, along with the paths PL and PR.

We now present three straightforward lemmas that will help us in the proof of Lemma 5.13. This first lemma
is essentially a quick application of the Erdös-Szekeres Theorem. First we must give the following definition.

We call a graph G a k-almost-skinny-ladder if the following conditions hold:

• V (G) = L ∪ S ∪R with L, S, and R mutually disjoint and |S| = k.

• G[L] and G[R] form induced paths of G and L is anti-complete with R.

• Each s ∈ S has at least one neighbor in L and at least one neighbor in R.

• For all pairs x, y ∈ S, if a, b are neighbors of x in L, then y has no neighbors on the subpath of G[L] that has
a and b as its endpoints. Similarly, if a, b are neighbors of x in R, then y has no neighbors on the subpath
of G[R] that has a and b as its endpoints.

The last condition of almost-skinny-ladders requires that no vertex of L or R has more than one neighbor
in S. It is a straight forward application of the Erdös-Szekeres Theorem to show that a k-almost-skinny-ladder
contains a k-skinny-ladder as an induced minor, as the next lemma shows.

Lemma 5.10. Let G be a graph that contains a k2-almost-skinny-ladder as an induced subgraph. Then G contains
a k-skinny-ladder as an induced minor.

Proof. Let G be a graph that has a k2-almost-skinny-ladder, H, as an induced subgraph. V (H) = L ∪ S ∪ R
where L, S,R each have the same meaning as in the definition of an almost-skinny-ladder. Number the vertices
of L sequentially 1 through |V (L)|, and similarly, number the vertices of R sequentially 1 through |V (R)|.

Next we label each vertex in S with a number 1 through |S| such that for all si, sj ∈ S i > j if and only if all
of si’s neighbors in L have a higher number than all of sj ’s neighbors in L (by the definition of an almost-skinny-
ladder such a numbering exists). Let n(si) be the number of the highest numbered neighbor si has is R. We
now apply the Erdös-Szekeres Theorem to the sequence n(s1), n(s2) . . . , n(sk2) to get an increasing or decreasing
subsequence of length at least k and set S∗ to be the subset of S that corresponds to the subsequence obtained from
our application of the Erdös-Szekeres Theorem. If the Erdös-Szekeres Theorem returned a decreasing subsequence
then reverse the numbering of R, else leave it unchanged. Then for every si, sj ∈ S∗, if i > j then all of si’s
neighbors in L have a higher number than all of sj ’s neighbors in L and all of si’s neighbors in R have a higher
number than all of sj ’s neighbors in R. We can now apply the obvious edge contractions to L and R to form a
k-skinny-ladder.
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Lemma 5.11. Let G be a graph, let a, b ∈ G be two non adjacent vertices of G, and let P1, P2, . . . , Pk be k mutually
anti-complete induced paths. Assume for all Pi that both a and b have a neighbor in Pi and no vertex of Pi is a
neighbor of both a and b. Then G contains a k-creature.

Proof. Let G, a, b, P1, P2, . . . , Pk be as in the statement of the lemma. For each Pi we can then, by assumption,
find a subpath of Pi, call it P

∗
i , such that P ∗

i has endpoints ai, bi where ai is a neighbor of a, bi is a neighbor of
b, no internal vertex is a neighbor of a or b. Since a and b do not share any neighbors in Pi we can see that P ∗

i

has at least 2 vertices and since the P ∗
i ’s are anti-complete by assumption, together the P ∗

i ’s along with a and b
make a k-creature.

Lemma 5.12. Let G be a directed graph with maximum out-degree or maximum in-degree at most c, c > 0. Then
G has an independent set (no vertex is an in-neighbor or out-neighbor of any other vertex in this set) of size at

least |V (G)|
2c+1 . Furthermore, if |V (G)| g 2t and the maximum out-degree or maximum in-degree of G is at most

1
4t |V (G)|, then G has an independent set of size at least t.

Proof. Let G be a directed graph. We will prove the statements for bounded maximum out-degree (for maximum
in-degree the proof is nearly identical). If the maximum out-degree of G is c, c > 0, then as long as G has at
least one vertex, there must exists a vertex v ∈ G with in-degree at most c. If we let G′ be the subgraph induced
by all vertices of G − v that do not have v as an in-neighbor or an out-neighbor, then the size of G′ is at least
|V (G)| − 2c − 1, and G′ has maximum out-degree c. It follows by an inductive argument that we can find an

independent set of size at least |V (G)|
2c+1 .

To prove the furthermore statement, assume the maximum out-degree of G is at most 1
4t |V (G)|, t > 0, and

|V (G)| g 2t, so we have that |V (G)|
2t +1 f |V (G)|

t
. From the first paragraph we have that G contains an independent

set of size at least |V (G)|
2|V (G)|

4t +1
= |V (G)|

|V (G)|
2t +1

g |V (G)|
|V (G)|

t

= t.

We are now in a position to prove Lemma 5.13, which states that if our graph G is k-creature-free and has
a minimal separator that cannot be dominated by few vertices, then G contains a k-skinny-ladder as an induced
minor. How do we show this? By Lemma 5.9 we know that if our graph G is k-creature-free and has a minimal
separator that cannot be dominated by few vertices, then we can find a large independent set I and paths PL and
PR such that all vertices of I have neighbors in PL and PR and no vertex in PL and PR has over one neighbor in
I. This is the starting point for the proof of Lemma 5.13

Heuristically, the idea of the proof is that we set I1 = I, L1 = PL, and R1 = PR and we can either find a
large subset A ¢ I1 that satisfies certain properties, in which case we use Lemmas 5.12 and 5.10 to show that L1,
R1 and A contain a k-skinny-ladder as an induced minor, or there is a large subset I2 ¢ I1 such there is a way to
divide either L1 or R2 into two “halves” such that both halves dominate I2, for simplicity let us say we can do
this with L1. We then set P1 to be one half of L1, we set L2 to be the other half, and we set R2 = R1. We now
repeat this process with L2, R2 and I2 and so on. In the end we either end up with our desired k-skinny-ladder,
or we end up with k anti-complete induced paths all of which dominate some independent set Ik, and no vertices
in Ik have a common neighbor in any of these anti-complete paths. But Lemma 5.11 shows this implies the
existence of a k-creature in G which is a contradiction, so we must be in the case where this process produces a
k-skinny-ladder as an induced minor.

Lemma 5.13. Let S be a minimal separator of a k-creature-free graph G such that S cannot be dominated by
2k4[(8k2)k+1] vertices. Then G contains a k-skinny-ladder as an induced minor.

Proof. Assume that G is k-creature-free and S is a minimal separator of G such that S cannot be dominated by
2k4[(8k2)k+1] vertices. It follows from Lemma 5.9 that there is an independent set I ¦ S of (8k2)k+1 vertices and
two induced paths PL and PR that dominate I, PL anti-complete with PR, and every vertex in v ∈ V (PL)∪V (PR)
has at most one neighbor in I.

Number the vertices of PL sequentially 1 through |V (PL)| and number the vertices of PR sequentially 1
through |V (PR)|. For a vertex x in PL or PR we will use the notation n(x) to denote the number it has been
given in PL or PR. For every v ∈ I let ℓ(v) and r(v) denote the highest numbered vertex v is a neighbor of in
PL and PR respectively. We now set L1 = PL, R1 = PR, and I1 = I. We will consider the following process to
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produce a k2-almost-skinny-ladder. We will show this process cannot go past k iterations do to the fact that G
is k-creature-free.

We will ensure the following properties are met at the end of the ith step (and we will assume that these
properties hold for the previous steps). At the ith step we produce Li+1 which is a subpath of Li, Ri+1 which is
a subpath of Ri, Ii+1 ¦ Ii, |Ii+1| g (8k2)k−i+1, and for every v ∈ Ii+1 it holds that ℓ(v) ∈ Li+1 and r(v) ∈ Ri+1.
We will also produce Pi which will be either a subpath of Li or Ri and is anti-complete with Li+1, anti-complete
with Ri+1, and anti-complete with Pj for j < i, and Pi will dominate Ij if i < j (note by Lemma 5.11 that if we
have k such paths then G would have a k-creature, so this process cannot go past k steps).

At the ith step, 1 f i f k, we do as follows. Create an auxiliary directed graph, Ai, whose vertex set is Ii
and there is an edge from v ∈ Ii to w ∈ Ii if at least one of the following two cases hold

1. n(ℓ(v)) > n(ℓ(w)) and v has a neighbor x in Li such that n(x) < n(ℓ(w))

2. n(r(v)) > n(r(w)) and v has a neighbor x in Ri such that n(x) < n(r(w))

If the maximum in-degree of Ai is at most 1
4k2 |Ii| then we stop. Since by assumption |Ii| g (8k2)k−i+2 this

gives an independent set of size at least k2 by Lemma 5.12. If there is an st ∈ Ii with in-degree over 1
4k2 |Ii| then

either case 1 or case 2 is satisfied for at least half of st’s in-neighbors. This means that for at least 1
8k2 fraction

of the vertices of Ii, call this subset of vertices Ii+1, all vertices s ∈ Ii+1 must satisfy case 1 with s playing the
role of v and st playing the role of w, or all vertices s ∈ Ii+1 must satisfy case 2 again with s playing the role of
v and st playing the role of w. For both case 1 and case 2 we now describe what to do if all the vertices of Ii+1

satisfy that case (if all vertices of Ii+1 happen to satisfy both cases, then we go with case 1). Each number here
corresponds with what to do in that case.

1. In case 1, set Pi to the subpath of Li that is made up of vertices numbered less than n(ℓ(st)), set Ri+1 =
Ri, and set Li+1 to be the vertices of Li numbered greater than n(ℓ(st)).

2. In case 2, set Pi to the subpath of Ri that is made up of vertices numbered less than n(r(st)), set Li+1 =
Li, and set Ri+1 to be the vertices of Ri numbered greater than n(r(st)).

This concludes the ith step. We now show that in case 1, all properties required of Li+1, Ri+1, Ii+1, and Pi

are met (the argument is identical when we are in case 2). It is straight forward to see that Li+1 is a subpath of Li,
Ri+1 is a subpath of Ri, and Ii+1 ¦ Ii. Since Ii was assumed to have size at least (8k2)k−i+2 and |Ii+1| g

1
8k |Ii|,

it holds that |Ii+1| g (8k2)k−i+1. Since Li+1 is made up of vertices of Li numbered greater than n(ℓ(st)) and
for every vertex s ∈ Ii+1 it holds that n(ℓ(s)) g n(ℓ(st)) it follows that ℓ(s) ∈ Li+1. Also, since Ri+1 = Ri it
follows that r(s) ∈ Ri. Lastly, we can see that Pi is a subpath of Li and is anti-complete with Li+1 and Ri+1.
By definition every vertex s ∈ Ii+1 must have a neighbor x ∈ Li such that n(x) f n(ℓ(st)) and therefore x ∈ Pi

so Pi dominates Ii+1.
Now we observe that for a < b that Pa dominates Ib. This follows from the fact that Pa dominated Ia+1 and

that Ib ¦ Ia+1 (since Ia ¦ Ia+1 ¦ . . . Ib). Also observe that Pa is anti-complete with Pb since Pa is anti-complete
with La+1 and Ra+1 and therefore Lb and Rb, which Pb is a subpath of. Hence the Pa’s are pairwise anti-complete.
Lastly, observe that if x, y ∈ Ii+1 then x, y ∈ I which means x and y share no neighbors in PL and PR. We
can now see that the conditions of Lemma 5.11 are satisfied, therefore this process cannot go past the kth step
without producing a k-creature.

We conclude there is some step j f k such that the auxiliary graph Aj has max in-degree less than 1
4k2 |Ij |, and

since |Ij | g (8k2)k−i+2 g 8k2 it therefore has an independent set of size k2 by Lemma 5.12. Let I∗ denote such
an independent set, we claim that G[V (Lj)∪ I∗∪V (Rj)] makes an k2-almost-skinny-ladder. Let x, y ∈ I∗ and let
a, b be the highest and lowest numbered neighbors of x in Lj respectively, and assume that y has a neighbor c on
the induced path of Lj that has a and b as its endpoints. If y’s highest numbered neighbor in Lj is greater than
n(a) then y has an edge to x in Aj by case 1. If y’s highest numbered neighbor is Lj is less than n(a), then x has
an edge to y again by case 1. Both cases yield a contradiction to I∗ being an independent set in Aj . A symmetric
argument show that if a′, b′ are x’s highest and lowest numbered neighbors Rj respectively, then y cannot have a
neighbor in the induced subpath of R that has a′, b′ as its endpoints. It follows that G[V (Lj) ∪ I∗ ∪ V (Rj)] is a
k2-almost-skinny-ladder. Applying Lemma 5.10 shows that G contains a k-skinny-ladder as an induced minor.
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The following lemma uses a branching algorithm to produce all of the minimal separators of a graph G and
proves a bound on the number of minimal separators produced by this algorithm. See Claim 2.3 of Section 2 and
the discussion following the claim for a high level description of Lemma 5.14.

Lemma 5.14. There exists a function f : N → N such that the following holds. Let G be a graph and let k and
c be integers such that for all induced subgraphs G′ of G and for all v ∈ G′, if Sv

G′ = {N(v) ∩ S : v /∈ S and S
is a minimal separator of G′}, then |Sv

G′ | f c and every minimal separator of any induced subgraph of G can be
dominated by k vertices. Then G has a most (c+ nk)f(k) log(n) minimal separators where n = |V (G)|.

Proof. Let G, Sv
G, k, c, and n be as in the statement of this lemma. The proof of the bound makes use of a

branching algorithm. The algorithm takes as input G and X ¦ V (G) and the algorithm will use the set Kret to
store the vertex sets it will return. It will return Kret which will contain all minimal separators of G contained
in X (possibly along with other vertex sets which are not minimal separators). We have no concern about the
runtime of the algorithm, but we care about the size of the final set it returns. The algorithm is intended to be
used initially on the input (G, V (G)).

Assume the the input to the algorithm is (G,X). If X is empty, then the algorithm returns {∅} (if G is
disconnected then ∅ is a minimal separator of G). Else, the algorithm determines the set Q ¦ V (G) where Q
contains all vertices v ∈ G such that |N [v] ∩X| g 1

2k |X|. The algorithm then initializes Kret to ∅ then branches
in the following two ways:

1. For every q ∈ Q and every Y ∈ Sq
G the algorithm recursively calls itself on (G−Y , X−NG[q]). The recursive

call (G − Y , X − NG[q]) returns the collection K ′ of vertex sets and for each set S in K ′, the algorithm
adds the set S ∪ Y to Kret.

2. For every set R of k vertices of G such that R ∩ Q = ∅, the algorithm recursively calls itself on (G − Q,
(X − Q) ∩ NG(R)). The recursive call (G − Q, (X − Q) ∩ NG(R)) returns a collection K ′ of vertex sets.
Then for each set, S in K ′ the algorithm adds the set S ∪Q to Kret.

After completing this, the algorithm then returns the set Kret.
This algorithm will terminate since each recursive call is on input (G′, X ′) where the size of X ′ is strictly

less than X. Note that since the set R has no vertex in Q and |R| = k, the neighborhood of R contains at most
1
2 of the vertices of X, so in (2) each recursive call made is on input (G′, X ′) where |X| g 1

2 |X
′|, additionally

note by how the vertices of Q were chosen, in (1) each recursive call is made on input (G′, X ′) where is made on
|X| g 1

2k |X
′|.

We now show that if this algorithm is called on an instance (G,X) the set returned from this algorithm
contains all minimal separators of G contained in X. Let S be a minimal separator of G contained in X. Assume
all of the recursive calls (G′, X ′) the algorithm makes returns a set that contains all minimal separators of G′

contained in X ′, possibly along with additional vertex sets (note that the base case for when X = ∅ is handled
by returning {∅}). If Y = NG(q)∩ S for some q ∈ G and q /∈ S, then S − Y is a minimal separator of G− Y that
is contained in X − NG[q]. So if there is a q ∈ Q such that q /∈ S, then S gets added to Kret in (1). If Q ¦ S,
then S−Q is a minimal separator of G−Q, and by assumption there exists some collection of at most k vertices,
R, in G−Q such that S −Q ¦ NG−Q(R) and therefore S −Q ¦ (X −Q) ∩NG(R). It follows that in this case
we also have S gets added to Kret in (2). Induction on the the depth of the recursive call now shows that this
algorithm returns all minimal separators.

Let T (n, x) denote the maximum number of minimal separators that a vertex set X of size at most x can
contains for any graph G with |V (G)| f n and X ¢ V (G), such that the graph G satisfies the conditions
of the lemma. The algorithm just shown makes at most cn recursive calls in (1) and nk recursive calls in
(2), each on an instance (G′, X ′) where |X| g 1

2k |X
′|. Hence, T (n, x) f (cn + nk)T (n, [1 − 1

2k ]x). Using the
fact that (1 − 1

y
)y f 1

e
< 1

2 we expand the inequality T (n, x) f (cn + nk)T (n, [1 − 1
2k ]x) out 2k times to get

T (n, x) f (cn+nk)2kT (n, 1
2x), then expanding this inequality log(x) times gives T (n, x) f (cn+nk)2k log(x)T (n, 1).

Since T (n, 1) = 2 it follows that T (n, x) f 2(cn+ nk)2k log(x). By taking the initial set X to be V (G), it follows
that G then contains at most 2(cn+ nk)2k log(n) minimal separator.

We are now ready to prove Theorem 1.1.
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Proof. [Proof of Theorem 1.1] Let G be a graph that is k-creature-free and has no k-skinny-ladder as an induced
minor and let n = |V (G)|. For every induced subgraph G′ of G and for every v ∈ G′, let Sv

G′ = {N(v)∩S : v /∈ S
and S is a minimal separator of G′}. Then |Sv

G′ | f nk for by Lemma 5.5. By Lemma 5.13, since G is k-creature-
free and has no k-skinny-ladder as an induced minor every minimal separator of any induced subgraph of G′ is
dominated by k′ = 2k4[(8k2)k+1] vertices. Lemma 5.14 then implies that G has at most 2(nk+1 + nk′

)2k
′ log(n)

minimal separators. It follows that the family of graphs that are k-creature-free and do not contain a k-skinny-
ladder as an induced minor are strongly-quasi-tame.

6 Finite Forbidden Induced Subgraphs

In this section we will provide the lemmas needed in the proofs of Theorems 1.2 and 1.3 as well give a proof
of these theorems. The majority of the work of this section goes into proving that given an integer k, if G
contains a k′-creature for large enough k′, then G must contain a k-theta, k-prism, k-pyramid, k-ladder-theta,
k-ladder-prism, or k-ladder as an induced subgraph.

We will require a number of new graph definitions for this section. The following graphs, except for k-ladder
graphs, appear in the statement of Theorem 1.3. Figure 2 depicts these graphs. It can be seen that all graphs
here except for k-claw and k-paw graphs contains at least 2k−2 minimal separators.

• A graph G is a k-theta if G consist of two vertices a, b and k induced paths P1, P2, . . . Pk. For 1 f i f k the
end points of Pi are a and b, every Pi is anti-complete with Pj , and every Pi has length at least 4.

• A graph G is a k-prism if G consist of two disjoint cliques a1, a2, . . . , ak and b1, b2, . . . , bk along with k
induced paths P1, P2, . . . Pk each of length at least 2. For 1 f i f k the end points of Pi are ai and bi, every
Pi − {ai, bi} is anti complete with Pj , and ai is neighbors with bj if and only if i = j and Pi is a path of
length 2.

• A graph G is a k-pyramid if G consist of a vertex a and a clique b1, b2, . . . , bk, where a is anti-complete
with b1, b2, . . . , bk, along with k induced paths P1, P2, . . . Pk each of length at least 3. For 1 f i f k the end
points of Pi are a and bi and every Pi − {a, bi} is anti complete with Pj − {a}.

• A graph G is a k-ladder if G consists of two anti-complete paths L and R with the vertices of L and R
are numbered sequentially from 1 to |V (L)| and 1 to |V (R)|, along with k anti-complete induced paths
P1, P2, . . . Pk that are also disjoint from L and R, each of length at least 2. For 1 f i f k the end points
of Pi are ai and bi. Every ai has at least one neighbor in L, every bi has at least one neighbor in R.
Furthermore if i > j, then every neighbor of ai in L has a higher number then every neighbor of bj in L
and every neighbor of bi in R has a higher number then every neighbor of bj in R.

• A graph G is a k-contracted-ladder if can be obtained from a k-ladder by contracting each of the the paths
P1, P2, . . . Pk into single vertices.

• A graph G is a k-ladder-theta if G consists of an induced path L and a vertex b anti-complete with L, along
with k induced paths P1, P2, . . . Pk that are also disjoint from L, each of length at least 3. For 1 f i f k
the end points of Pi are ai and b, every Pi − {b} is anti-complete with Pj − {b}, Pi − {ai} is anti-complete
with L, every ai has at least one neighbor in L, and if x, y are neighbors with ai in L, then no aj with i ̸= j
has a neighbor in the induced subpath of L that has x and y as its endpoints.

• A graph G is a k-ladder-prism if G consists of an induced path L and clique b1, b2, . . . , bk where L is anti-
complete with b1, b2, . . . , bk, along with k induced paths P1, P2, . . . Pk that are also disjoint from L, each of
length at least 2. For 1 f i f k the end points of Pi are ai and bi, every Pi −{bi} is anti-complete with Pj ,
Pi − {ai} is anti-complete with L, every ai has at least one neighbor in L, and if x, y are neighbors with ai
in L, then no aj with i ̸= j has a neighbor in the induced subpath of L that has x and y as its endpoints.

• A graph G is a k-claw if G consists of k anti-complete copies of the following graph which we call a long-claw
of arm length k: let v be a vertex and P1, P2, P3 be three paths of length k each with v as one of its
endpoints and Pi − {v} is anti-complete with Pj − {v} (i.e., the graph is a claw with each edge subdivide
k − 2 times)
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• A graph G is a k-paw if G consists of k anti-complete copies of the following graph which we call a long-paw
of arm length k: let v1, v2, v3 be a triangle and P1, P2, P3 be three disjoint induced paths of length k each
such that Pi has vi as one of its endpoints and Pi − {vi} is anti-complete with Pj for 1 f i ̸= j f 3.

It will be useful in this section to define the following graphs as well. These graphs are depicted in Figure 9.

• A graph G is a k-half -theta if G consists of a vertex v and k induced paths P1, P2, . . . , Pk of G such that
each path has length at least 2, for 1 f i f k it holds that v is one endpoint of Pi, and for j ̸= i it hold
that Pi − v is anti-complete with Pj − v. Let xi denote the endpoint of Pi that is not v. Then we say the
vertices x1, x2, . . . , xk are the endpoints of the k-half-theta. If X is a vertex set and xi ∈ X for all i with
1 f i f k, then we say G is a k-half-theta ending in X.

• A graph G is a k-half -prism if G consists of a clique of vertices v1, v2, . . . , vk and k induced paths P1, P2,
. . . , Pk of G such that each path has length at least 1, for 1 f i f k it holds that vi is one endpoint of Pi,
and for j ̸= i it hold that Pi − vi is anti-complete with Pj . If the length of Pi is greater than 1 then let xi

denote the endpoint of Pi that is not vi, and if the length of Pi is 1 then let xi = vi. We say the vertices
x1, x2, . . . , xk are the endpoints of the k-half-prism. If X is a vertex set and xi ∈ X for all i with 1 f i f k,
then we say G is a k-half-prism ending in X.

• A graph G is a k-half -ladder if G consists of a path P of G along with k additional paths P1, P2, . . . , Pk of
G such that each path has length at least 1. For 1 f i f k let Pi’s endpoints be vi and xi (with vi possibly
equal to xi). We call P the backbone path and the Pi’s the auxiliary paths. We require that vi has at least
one neighbor in P , P is anti-complete with Pi − vi, and for j ̸= i Pi is anti-complete with Pj . Lastly, we
also require that if a and b are two neighbors of some vi in P , then there is no vj , i ̸= j such that vj has
a neighbor in the induced subpath of P with endpoint a and b. We say the vertices x1, x2, . . . , xk are the
endpoints of the k-half-ladder. If X is a vertex set and xi ∈ X for all i with 1 f i f k, then we say G is a
k-half-ladder ending in X.

• A graphG is a k-half -quasi-ladder ifG consists of a path P ofG along with k additional paths P1, P2, . . . , Pk

of G such that each path has length at least 1. For 1 f i f k let Pi’s endpoints be vi and xi (with vi
possibly equal to xi). We call P the backbone path and the Pi’s the auxiliary paths. We require that vi has
at least one neighbor in P , P is anti-complete with Pi − vi, and for j ̸= i Pi is anti-complete with Pj . We
say the vertices x1, x2, . . . , xk are the endpoints of the k-half-quasi-ladder. If X is a vertex set and xi ∈ X
for all i with 1 f i f k, then we say G is a k-half-ladder ending in X. Note that a k-half-quasi-ladder is
almost the same as a k-half-ladder, but we drop the requirement that if a and b are two neighbors of some
vi in P , then there is no vj , i ̸= j such that vj has a neighbor in the subpath of P with endpoint a and b.

The following lemmas, culminating with Lemma 6.9, work towards proving that given an integer k, if G
contains a k′-creature for large enough k′, then G must contain an induced k-theta, k-prism, k-pyramid, k-ladder-
theta, k-ladder-prism, or k-ladder.

Our first goal is to show that if we have a k′ creature (A, B, {x1, x2, . . . , xk′}, {y1, y2, . . . , yk′}) for large
enough k′, then if we focus in on one half, say that half with A and {x1, x2, . . . , xk′}, then we can find a k-
half-theta, k-half-prism, or k-half-quasi-ladder that that ends in {x1, x2, . . . , xk′}. This goal is accomplished with
Lemmas 6.1 through 6.4. Since if we have a k-clique in the set {x1, x2, . . . , xk′} then we have a k-half-prism
ending in {x1, x2, . . . , xk′} we may assume, by Ramsey’s Theorem, that {x1, x2, . . . , xk′} is an independent set.

Lemma 6.1. Let G be a graph that contains a k-creature (A, B, {x1, x2, . . . , xk}, {y1, y2, . . . , yk}) where
{x1, x2, . . . , xk} is an independent set of G. Let A′ be a minimally connected induced subgraph of G[A] such that
{x1, x2, . . . , xk} ¢ N(A′). If A′ contains a vertex with degree at least R(d, d) in A′, then G[A ∪ {x1, x2, . . . , xk}]
contains a d-half theta or a d-half-prism ending in {x1, x2, . . . , xk}.

Proof. Let G be a graph that contains a k-creature (A, B, {x1, x2, . . . , xk}, {y1, y2, . . . , yk}). Let A
′ be a minimally

connected induced subgraph of G[A] such that {x1, x2, . . . , xk} ¢ NG(A
′). Assume v ∈ A′ has degree at least

R(d, d) in A′. Let v1, v2, . . . , vR(d,d) be distinct neighbors of v in A′. By the minimality of A′, for each vi there
must be a vertex xvi

such that every path starting from v and ending at xvi
with internal vertices contained A′
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k-quasi-half-ladder

Figure 9: Dashed lines represent the option of having an arbitrary length path (possibly of length 0). The blue
lines used in the k-half-ladder and k-almost-half-ladder graphs represents the option of either having or not having
that edge, but for each vertex not on the backbone path that is adjacent at least one blue edges, at least one of
those blue edges must belong to the graph.
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must contain vi, since if this does not happen for some given vi then the connected component of A′ − vi that
contains v would be a proper induced subgraph of A′ that is connected and whose open neighborhood contains
{x1, x2, . . . , xk}. It follows there must exist induced paths P1, P2, . . . , PR(d,d) such that vi ∈ Pi, Pi’s endpoints are
vi and xvi , and Pi− vi is anti-complete with Pj . We then apply Ramsey’s Theorem to the vi’s get a subset of size
d of the Pi’s that along with v form a d-half theta that ends in {x1, x2, . . . , xk} (if Ramsey’s Theorem provides
an independent set of size d) or a subset of size d of the Pi’s that form a d-half prism that ends in {x1, x2, . . . , xk}
(if Ramsey’s Theorem provides a clique of size d) and the result now follows.

Lemma 6.2. Let G be connected graph with maximum degree d and contains at least dk vertices with degree greater
than 2. Then there exists an induced path of G that contains at least k vertices of degree greater than 2.

Proof. Let G be a connected graph with maximum degree d and contains at least dk vertices with degree greater
than 2. Let T be a breadth first search tree of G rooted at some vertex v ∈ G. We create the desired path as
follows. Let v1 be the first descendent of v in T that has degree greater than 2 in G (v1 could be v). We begin
our path at v1. We will grow the path Pi = {x1, x2, . . . xm} where x1 = v1, xj is the parent of xj+1 in T , Pi

contains at least i vertices of G with degree greater than 2 in G, and the subtree of T rooted at xm contains at
least dk−i+1 vertices of G with degree greater than 2 in G.

Assume that we have such a path Pi = {x1, x2, . . . xm}, i < k (the vertex v1 satisfies the conditions of P1).
We will show how to attain Pi+1. Since the maximum degree in G is d, xm has at most d children in T , and by
assumption the subtree of T rooted at xm has at least dk−i+1 vertices of degree greater than 2 in G, it follows
that for at least one child, call it xm+1, the subtree rooted at xm+1 has at least dk−i vertices of G with degree
greater than 2 in G. Now let vi+1 be the first descendant of xm+1 with degree different from 2 in G (vi+1 could be
xm+1) and let Pi+1 be the path Pi along with the induced path in T from xm+1 to vi+1. It follows Pi+1 satisfies
the required conditions.

Hence we can produce a Pk that satisfies the conditions stated before, and we can then see that Pk is an
induced path in G with at least k vertices of degree greater than 2.

Lemma 6.3. Let G be a graph that contains a k-creature (A, B, {x1, x2, . . . , xk}, {y1, y2, . . . , yk}) where
{x1, x2, . . . , xk} is an independent set. Let A′ be a minimally connected subgraph of G[A] such that {x1, x2, . . . , xk}
¢ N(A′). If A′ contains an induced path, P , with at least R(d, d) vertices of degree greater than 2 in A′, then
there is a d-half-quasi-ladder or a d-half-prism in G[A ∪ {x1, x2, . . . , xk}] that ends in {x1, x2, . . . , xk}.

Proof. Let G, A′, {x1, x2, . . . , xk}, and P be as in the statement of the lemma, let v1, v2, . . . , vR(d,d) be vertices of
P that have degree greater than 2 in A′, and for each vi let v

′
i be a neighbor of vi in A′ that is not in P . By the

minimality of A′, for each v′i there must exist a vertex xvi
such that every path from vi to xvi

with internal vertices
contains in A′ must contain v′i, since if this does not happen for some given v′i then the component of A′− v′i that
contains vi would be a proper induced subgraph of A′ that is connected and whose open neighborhood contains
{x1, x2, . . . , xk}. It follows there must exists induced paths P1, P2, . . . , PR(d,d) disjoint from P with internal
vertices contained in A′, Pi’s endpoints are v′i and xvi

, and Pi − v′i is anti-complete with Pj . We then apply
Ramsey’s Theorem to the v′i’s to get a subset of size d of the Pi’s along with P that form a d-half-quasi-ladder
that ends in {x1, x2, . . . , xk} (if Ramsey’s Theorem provides an independent set of size d) or a subset of size d of
the Pi’s that yield a d-half-prism that ends in {x1, x2, . . . , xk} (if Ramsey’s Theorem provides a clique of size d).

Lemma 6.4. Let G be a graph that contains a k · (dc+1 + d)-creature (A, B, {x1, x2, . . . , xk·(dc+1+d)},
{y1, y2, . . . , yk·(dc+1+d)}). Let A′ be a minimally connected subgraph of G[A] such that {x1, x2, . . . , xk·(dc+1+d)}
¢ N(A′). Assume the max degree in A′ is d and that A′ contains less than dc vertices of degree greater than 2 in
A′. Then G[A ∪ {x1, x2, . . . , xk·(dc+1+d)}] contains a k-half-quasi-ladder ending in {x1, x2, . . . , xk·(dc+1+d)}.

Proof. Let G, A′ and {x1, x2, . . . , xk·(dc+1+d)} be as in the statement of the lemma. Let T be a breadth first search
tree of A′ rooted at some vertex v. Then T is a tree in which every vertex except for the root can have at most
d − 1 children, hence there are at most dc + 1 vertices that have more than one descendent, and the maximum
number of descendants any vertex from this set can have is d. It follows that there are at most dc+1 + d leaves of
T , and therefore A′ is the union of at most dc+1 + d induced paths in A′. Hence, there exists some induced path
P in A′ such that P ’s open neighborhood contains at least k vertices in {x1, x2, . . . , xk·(dc+1+d)}, which gives us
a k-half-quasi-ladder ending in {x1, x2, . . . , xk·(dc+1+d)}.
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Lemma 6.5. Let k′ = k ·R(k, k)R(k,k)+1+R(k, k), and let G be a graph that contains an R(k′, k′)-creature (A, B,
{x1, x2, . . . , xR(k′,k′)}, {y1, y2, . . . , yR(k′,k′)}). Then G[A∪{x1, x2, . . . , xR(k′,k′)}] contains an induced k-half-theta,
k-half-prism, or a k-half-quasi-ladder, ending in {x1, x2, . . . , xR(k′,k′)}.

Proof. Let k′ = k · R(k, k)R(k,k)+1 + R(k, k). Assume that G contains a R(k′, k′)-creature (A, B,
{x1, x2, . . . , xR(k′,k′)}, {y1, y2, . . . , yR(k′,k′)}). Apply Ramsey’s Theorem to {x1, x2, . . . , xR(k′,k′)}. If Ramsey’s
Theorem returns a clique of size k′ or more then we have that G[A ∪ {x1, x2, . . . , xR(k′,k′)}] contains a k-half-
prism ending in {x1, x2, . . . , xR(k′,k′)}, so we can assume that Ramseys theorem returns an independent set of
size at least k′. By relabeling the xi’s and yi’s if follows that G contains a k′-creature (A, B, {x1, x2, . . . , xk′},
{y1, y2, . . . , yk′}) where {x1, x2, . . . , xk′} is an independent set.

Let A′ be a minimally connected induced subgraph of G[A] such that {x1, x2, . . . , xk′} ¢ N(A′). If A′ contains
a vertex of degree R(k, k) in A′, then by Lemma 6.1 G[A ∪ {x1, x2, . . . , xk′}] contains a k-half-theta ending in
{x1, x2, . . . , xk′}. So we may assume max degree of A′ is R(k, k).

If A′ contains R(k, k)R(k,k) vertices of degree greater than two, then there is an induced path of A′ that
contains R(k, k) vertices of degree greater than two by Lemma 6.2. Then by Lemma 6.3 G[A ∪ {x1, x2, . . . , xk′}]
contains a k-half-quasi-ladder or a k-half-prism ending in {x1, x2, . . . , xk′}. So we may assume that A′ has
maximum degree R(k, k) and contains fewer than R(k, k)R(k,k) vertices of degree greater than two. It then follows
from Lemma 6.4 that G[A ∪ {x1, x2, . . . , xk′}] contains a k-half-quasi-ladder ending in {x1, x2, . . . , xk′}.

If in the statement of Lemma 6.5 we would replace k-half-quasi-ladder with k-half-ladder, then we would
basically be done. If we had a k′′-creature (A, B, {x1, x2, . . . , xk′′}, {y1, y2, . . . , yk′′}) for large enough k′′ then
we could find a k′-half-theta, k′-half-prism, or k′-half-ladder in A ∪ {x1, x2, . . . , xk′′}. We could then switch
over to the other side with B and {y1, y2, . . . , yk′′} and restricting our self to the k′ vertices of {y1, y2, . . . , yk′′}
that match up with end endpoints of the k′-half-theta, k′-half-prism, or k′-half-ladder in {x1, x2, . . . , xk′′} we
just found, repeat the same process in B and {y1, y2, . . . , yk′′} to find a k-theta, k-pyramid, k-prism, k-ladder,
k-ladder-theta, k-ladder-prism. Our goal then now is clear, we must clean up a k′-half-quasi-ladder to give use a
k-half-ladder (or possible a k-half theta or even a k-theta).

The next three lemmas show how to clean up a half-quasi-ladder into a half-ladder, half-theta, or theta. Their
proofs are similar to those of lemmas 5.7 5.9, and 5.13 respectively, although the conclusions we draw from them
are somewhat different.

So, we are now in a situation where we have have found a k′-half-quasi-ladder. Let us say that P is the
backbone path, and P1, P2, . . . , Pk′ are the auxiliary paths of the k′-half-quasi-ladder where Pi has endpoints si
and xi, and let the xi’s be the endpoint of our half-quasi-ladder. Set S equal to the set of si’s. To turn our
k′-half-quasi-ladder into a k-half-ladder, we first want to find a subset S′ ¢ S such that no vertices of S′ share
a neighbor in P . Notice that if any vertex of P has k neighbors in S, then we have a k-half-theta ending in
{x1, x2, . . . , xk′} and we are done, so we can assume that the vertices of S cannot be dominated by a small set of
vertices of P . So, what the next lemma shows that if we take some v ∈ S then we can either find a k-half-theta
ending in V (and therefore W ) or find a small set X ¢ V (P ) such that no vertex of S −N [X] shares a neighbor
with v in P . As S cannot be dominated by a small subset of P , this lemma can be repeatedly used to give us
a large subset S′ of S such that no two vertices of S′ share a neighbor in P , which is precisely what we do in
Lemma 6.7.

Lemma 6.6. Let (G, S, P , v) be a tuple where G is a graph, v ∈ G, S ¢ V (G), and P is an induced path of G
such that (S ∪ {v}) and V (P ) are disjoint. Assume G[V (P ) ∪ S ∪ {v}] does not have a k-half-theta ending in S,
then there is a set X ¢ S ∪ V (P ) ∪ {v} of size at most 4k − 1 such that N(S −N [X]) ∩N(v) ∩ V (P ) = ∅, and
no vertex of S −N [X] is neighbors with v.

Proof. Let G, S, P , and v be as in the statement of this lemma. Number the vertices of P 1 through |V (P )| such
that the vertex numbered i is neighbors with the vertices numbers i− 1 and i+1. We now consider the following
process to build the set desired set X such that N(S −N [X]) ∩N(v) ∩ V (P ) = ∅ and X ¢ S ∪ V (P ) ∪ {v}.

We do the following for the first step of the process. Let X1 = {v}, and let S1 = {s : s ∈ S − N(X1) and
N(s) ∩N(v) ∩ V (P ) ̸= ∅} (i.e., S1 is the set of vertices of S −N(X1) that share a neighbor with v in P ). Label
the vertices of S1 by the lowest numbered vertex it is neighbors with in V (P )∩N(v). Let s1 be a highest labeled
vertex in S1, and let p1 be s1’s lowest numbered neighbor in N(v) ∩ V (P ). This completes the first step.
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For the ith step we do the following. Let Xi = Xi−1 ∪ {si−1, pi−1}, and let Si = Si−1 −N [Xi] and label the
vertices of Si by the lowest vertex it sees in V (P ) ∩N(v) (the vertices of Si inherit their labels from their labels
in Si−1). Let si be a highest labeled vertex in Si and let pi be si’s lowest neighbor in N(v)∩ V (P ). Note by how
we selected v, s1, p1, s2, p2, . . . si, pi that sa, 1 f a f i, cannot be neighbors with pb if a > b since pb would
be in Xa and therefore sa would not be in Sa, and sa cannot have a neighbor with pb if a < b since that would
contradict either pa being sa’s lowest numbered neighbor in N(v) ∩ P or sa being a highest labeled vertex in Sa.
Hence, we then have that among these vertices sj is only neighbors with pj for 1 f j f i, and v is only neighbors
with pj for 1 f j f i. p2i could be neighbors with p2i+1 and/or p2i−1 since they could be consecutive vertices on
the path P , but p2i cannot be neighbors with p2j . It follows that the set {v}∪ {p2, p4, . . . , p2c}∪ {s2, s4, . . . , p2c},
2c f i, forms a c-half-theta in G[V (P ) ∪ S{v}] ending in S.

We continue this process until we reach an Sj that is empty. By what we noted in the previous paragraph,
this process cannot go past the 2kth step if G[V (P )∪S ∪{v}] does not contain a k-half-theta ending in S. Set X
to be Xj . Since Sj is empty, it follows N(S−N [X])∩N(v)∩V (P ) = ∅. We also have that no vertex of S−N [X]
is neighbors with v since v ∈ X and |X| f 4k − 1 since j f 2k and since the first step adds a single vertex and
each step after that only adds two vertices.

Lemma 6.7. Let (G,S, P ) be a tuple such that G is a graph, S ¢ V (G) such that S cannot be dominated by 4kx
vertices and P is an induced path disjoint from S that dominates S. Assume G[V (P ) ∪ S] does not contain a
k-half-theta ending in S. Then there exists a subset S′ of S of size x such that no vertex of P has more than one
neighbor in S′.

Proof. Let G, S, and P be as in the statement of the lemma. Assume that we have an independent set of vertices
vertices Si−1 of size i − 1, i f k, and a set Zi−1 of size at most 4k(i − 1), with the properties that no vertex
S − N [Zi−1] is neighbors with a vertex in Si−1, and any vertex in P that is neighbor with some vertex in Si−1

has no other neighbors in Si−1 nor in S −N [Zi−1]. We will use this to produce a set Si of size i and Zi of size
at most 4k2i with the same properties. Note that the empty set satisfies the conditions of S0.

Let S′ = S −N [Zi−1]. Let s be some vertex in S′, since i f k and S cannot be dominated by 4kx vertices,
such an s must exists. We can then apply Lemma 6.6 using (G,S′, P, s) and to get a set X of size at most 4k− 1
such that (S′ − N [X]) ∩ N(s) ∩ V (P ) = ∅ and no vertex of S′ − N [X] is neighbors with s. We then set Si =
Si−1 ∪ {s} and Zi = Zi−1 ∪X and we can see these sets satisfies the required properties.

Since the empty set satisfies the properties of S0 and S cannot be dominated by 4kx vertices, we can continue
the process until we generate the set Sx which has size x and no vertex of P has more than one neighbor in Sx.

The previous two lemmas now give us a k′-half-quasi-ladder with backbone path P , auxiliary paths
P1, P2, . . . , Pk′ where Pi has endpoints si and wi such that no vertex of P is neighbors with more than one
of the si’s. The next lemma now show use how to take such a k′-half-quasi-ladder and produce a k-half-ladder.

Lemma 6.8. Let T be an induced 4k[2(4k)k+1]2-half-quasi-ladder of a graph G ending in X. Assume T does
not have an induced k-half-theta ending in X and assume that G does not contain an induced k-theta. Then T
contains a k-half-ladder ending in X.

Proof. Let G, T , and X be as in the statement of the lemma. Let P be the backbone path of T and
P1, P2, . . . , P4k[2(4k)k+1]2 be its auxiliary paths, where the endpoints of Pi are vi and xi, and the xi’s are the
endpoints of T , so xi ∈ X. Let S = {v1, v2, . . . , v4k[2(4k)k+1]2}. Clearly, if any vertex of P is neighbors with k
distinct vi’s, then T contains a k-half-theta ending in X. It follows that since T does not have a k-half-theta
ending in X, the vertices of S cannot be dominated by less than 4[2(4k)k+1]2 vertices in T . Also, if G[S ∪ V (P )]
contain a k-half-theta ending in S, then it contains a k-half-theta ending in X, so we can apply Lemma 6.7 with
(G,P, S) to get a set S′ ¢ S of size 2(4k)k+1 such that no vertex of P is neighbors with more than one vertex
in S′. It follows that by only taking the paths Pi such that vi ∈ S′, that these Pi’s together with P , form a
2(4k)k+1-half-quasi-ladder where no vertex of P has a neighbor with more than one vertex in any of the Pi’s.
We will call this 2(4k)k+1-half-quasi-ladder T ′, we will call its backbone path P ′ so P ′ = P , and we will call the
auxiliary paths P ′

1, P
′
2, . . . , P

′
2(4k)k+1 where the endpoints of P ′

i are v′i and x′
i, and the x′

i’s are the endpoints of T
′,

so x′
i ∈ X. We use S′ as before to denote the set of v′i’s.
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Now, number the vertices of P ′ 1 through |V (P ′)| such that the vertex numbered i is neighbors with the
vertices numbers i − 1 and i + 1. For a vertex x in P ′ we will use the notation n(x) to denote the number it
has been given in P ′. For every sj ∈ S′ let pj ∈ P ′ be the highest numbered neighbor sj has in P . We now set
P1 = P ′ and S1 = S′. We will consider the following process, where we will try to produce a large independent
set in an auxiliary graph related to some Pi and Si which we will then use to produce a k-half-ladder. We will
show this process cannot go past k iterations if T does not have a k-half-theta ending in X. We will ensure that
at the ith step that V (Pi) ¢ V (P ′), Si ¢ S′, |Si| g 2(4k)k−i+2, Pi is an induced path, and if sj ∈ Si then pj ∈ Pi.
We will also produce induced subpaths Di of P such that the Di’s are anti-complete with respect to one another
and the vertices of Di will dominate Sj if i < j.

At the ith step we do as follows. Create an auxiliary directed graph, AUXi, whose vertex set is Si and there
is an edge from sa ∈ Si to sb ∈ Si if the following condition holds

1. n(pa) > n(pb) and sa has a neighbor x in P ′ such that n(x) < n(pb)

If the maximum in degree of AUXi is at most 1
4k |Si| then we stop. If i f k (which we will show must happen)

then since |Si| g 2(4k)k−i+2 this gives an independent set of size at least k by Lemma 5.12. If there is an sj ∈ Si

with in degree at least 1
4k |Si| then for at least 1

4k fraction of the vertices of Si must satisfy (1) playing the role of
sa while sj plays the role of sb. Call this set of vertices Si+1. If sj ∈ Si with in degree at least 1

4k |Si| then we do
as follows. Define Di to be the subpath of Pi that is made up of vertices with numbers less than n(pj). Set Pi+1

to be the vertices of Pi with numbers greater than n(pj). This concludes the ith step.
It can then be seen that V (Pi+1) ¢ V (P ), Si+1 ¢ S, |Si+1| g 2(4k)k−i+1, Pi+1 is an induced path, and if

sj ∈ Si+1 then pj ∈ Pi+1 as required. Furthermore, it can be seen that any of the previously Dj ’s that have been
produced in this process (j f i) dominate all vertices of Si+1. Since the Dj ’s are disjoint and anti complete, By
Lemma 5.11 then, this process cannot go past the kth iteration without producing a k-theta in G.

We conclude there is some step j f k such that the auxiliary graph AUXj has max in-degree less than
1
4k |Sj |, and since |Sj | g 8k it therefore has an independent set of size k by Lemma 5.12. Let S∗ denote such an
independent set.

We claim by only taking the paths P ′
i such that v′i ∈ S∗, that these P ′

i ’s together with P ′, form a k-half-ladder.
Let x, y ∈ S∗ and let a, b be the highest and lowest numbered neighbors of x in L respectively, and assume that y
has a neighbor c on the induced path of L that has a and b as its endpoints. If y’s highest numbered neighbor in
L is greater than n(a) then y has an edge to x in AUXj . If y’s highest numbered neighbor in L is less than n(a),
then x has an edge to y. It follows that taking the P ′

i such that v′i ∈ S∗ together with P ′, form a k-half-ladder.

Corollary 6.1. Let k be a natural number. There exists a natural number k′ large enough such that if G is a
graph that contains a k′-creature (A, B, {x1, x2, . . . , xk′}, {y1, y2, . . . , yk′}), then G[A∪{x1, x2, . . . , xk′}] contains
an induced k-half-theta, k-half-prism, or k-half-ladder ending in {x1, x2, . . . , xk′} or G contains an induced k-theta.

Proof. By Lemma 6.5 there exists a k′ large enough such that if G contains a k′-creature (A, B, {x1, x2, . . . , xk′},
{y1, y2, . . . , yk′}) then G[A ∪ {x1, x2, . . . , xk′}] contains an induced 4k[2(4k)k+1]2-half-theta, 4k[2(4k)k+1]2-half-
prism, or a 4k[2(4k)k+1]2-half-quasi-ladder, ending in {x1, x2, . . . , xk′}. If G[A ∪ {x1, x2, . . . , xk′}] contains
a 4k[2(4k)k+1]2-half-theta or a 4k[2(4k)k+1]2-half-prism ending in {x1, x2, . . . , xk′} then we are done. If
G[A ∪ {x1, x2, . . . , xk′}] contains a 4k[2(4k)k+1]2-half-quasi-ladder ending in {x1, x2, . . . , xk′} then we may apply
Lemma 6.8 to get that either G[A ∪ {x1, x2, . . . , xk′}] contains a k-half-ladder ending in {x1, x2, . . . , xk′} or G
contains a k-theta.

We now know that given a k′-creature (A, B, {x1, x2, . . . , xk′}, {y1, y2, . . . , yk′}) for large enough k′ in each
half, A∪{x1, x2, . . . , xk′} and B∪{y1, y2, . . . , yk′} we can find a k-half-theta, k-half-prism, or k-half-ladder, and we
can combine them together to make a k-theta, k-prism, k-pyramid, k-ladder, k-ladder-theta, or a k-ladder-prism.
The next lemma formalizes this.

Lemma 6.9. Let k be a natural number. Then there exists a natural number k′ large enough such that if G is a
graph that contains a k′-creature (A, B, {x1, x2, . . . , xk′}, {y1, y2, . . . , yk′}), then G contains an induced k-theta,
k-prism, k-pyramid, k-ladder-theta, k-ladder-prism, or a k-ladder.
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Proof. Let k be a natural number. By Corollary 6.1 there exists a k′ large enough such that if G is a graph that
contains a k′-creature (A, B, {x1, x2, . . . , xk′}, {y1, y2, . . . , yk′}), then G[A∪{x1, x2, . . . , xk′}] contains an induced
k2-half-theta, k2-half-prism, or k2-half-ladder ending in {x1, x2, . . . , xk′} or G contains an induced k2-theta. It
then also follows from Corollary 6.1 there exists a k′′ large enough such that if G is a graph that contains a
k′′-creature (A, B, {x1, x2, . . . , xk′′}, {y1, y2, . . . , yk′′}), then G[B ∪ {y1, y2, . . . , yk′′}] contains an induced k′-half-
theta, k′-half-prism, or k′-half-ladder ending in {y1, y2, . . . , yk′′} or G contains an induced k′-theta.

So, assume that G is a graph that contains an k′′-creature (A, B, {x1, x2, . . . , xk′′}, {y1, y2, . . . , yk′′}).
If G contains an induced k′-theta then we are done, so assume that G[B ∪ {y1, y2, . . . , yk′′}] contains an
induced k′-half-theta, k′-half-prism, or k′-half-ladder ending in {y1, y2, . . . , yk′′}. By relabeling the xi’s and
yi’s we can then assume that G contains a k′ creature (A′, B′, {x1, x2, . . . , xk′}, {y1, y2, . . . , yk′}) such that
G[B′ ∪ {y1, y2, . . . , yk′}] is a k′-half-theta, k′-half-prism, or k′-half-ladder. Then applying Corollary 6.1 gives
us that G[A ∪ {x1, x2, . . . , xk′}] contains an induced k2-half-theta, k2-half-prism, or k2-half-ladder ending in
{x1, x2, . . . , xk′}. If G[B′ ∪ {y1, y2, . . . , yk′}] is a k′-half-ladder and G[A ∪ {x1, x2, . . . , xk′}] contains a k2-half-
ladder, then an application of the Erdös-Szekeres Theorem gives us a k-ladder. Otherwise, it follows that G must
contain a k2-theta, a k2-prism, k2-pyramid, k2-ladder-theta, or k2-ladder-prism.

With Lemma 6.9 in hand we can now provide a proof of Theorem 1.2.

Proof. [Proof of Theorem 1.2] Let G be a graph, |V (G)| = n, where G forbids all k-theta, k-pyramid, k-prism,
k-ladder, k-ladder-theta, and k-ladder-prism graphs as well as k-contracted-ladder graphs. By Lemma 6.9 there
exists a function f : N → N (f in independent of the choice of k or G) such that G is f(k)-creature-free.
Furthermore, we can see that any graph that contains a 2k-skinny-ladder as an induced minor must either
contain a k-ladder or a k-contracted-ladder as an induced subgraph, therefore G contains no 2k-skinny-ladder as
an induced minor. Hence by Theorem 1.1 there is a function f∗ : N → N (f∗ is independent of the choice of k or
G) such that G has at most nf∗(k) log(n) minimal separators. It follows that the family of graphs that forbid all
k-theta, k-pyramid, k-prism, k-ladder, k-ladder-theta, and k-ladder-prism graphs as well as k-contracted-ladder
graphs are strongly-quasi-tame.

The following two lemmas will be used in Lemma 6.12 to establish that if F is a family of graphs defined by
a finite number of forbidden induced subgraphs and F allows for at least one of k-thetas, k-prisms, k-pyramids,
k-ladder-thetas, or k-ladder-prisms, for arbitrarily large k, then we can ensure it contains these graphs where
their number of vertices only grow linearly with respect to k, and therefore have exponentially many minimal
separators. These two lemmas achieve this by showing that a graph in F has certain paths that are too long,
then we can contract part of those paths and maintain that the resulting graph remains in F .

Lemma 6.10. Let G be a graph and let H be a graph with |V (H)| f h, where h > 5. Assume that G contains
an induced path P of length at least 5h where all internal vertices of P have degree 2 in G. Then there exists an
edge e in G such that if Ge contains H as an induced subgraph, then so does G.

Proof. Let G be a graph, let H be a graph with |V (H)| f h where h > 5, and let P be an induced path of G of
length at least 5h where all internal vertices of P have degree 2, say P = p1, p2, . . . , p5h. Let e be the edge between
p+ 5h−1

2 , and p+ 5h+1
2 ,. Let v denote the new vertex p+ 5h−1

2 , and p+ 5h+1
2 , create when e is contracted in G to make Ge,

and let P ′ be what the path P becomes after contracting e in G, so P ′ = p1, p2, . . . , p+ 5h−1
2 ,−1, v, p+ 5h+1

2 ,+1, . . . , p5k.

Assume that Ge contains H as an induced subgraph. We will show that there exists a set X ¢ V (Ge) that induces
H such that v /∈ X. It will then follows that G contains an induced H.

Any component of H that is not an induced path can only contain vertices outside of P ′ or within distance
h of either the endpoints of P ′ since all internal vertices of P ′ have degree 2 in Ge. For the components of H
that are paths, since there are at most h vertices among these components, we can ensure that the vertices of X
that we use to induce these components either do not belong to P ′ or only contain vertices from the subpaths
ph+2, ph+3, . . . , p+ 5h−1

2 ,−1 and p+ 5h+1
2 ,+1, p+ 5h+1

2 ,, . . . , p4h−2. It follows that v /∈ X.

Lemma 6.11. Let G be a graph and let H be a graph with |V (H)| f h, where h > 5. Assume that G contains an
induced path P of length 5h[(h+ 1)(5h)2h+2 + 1] such that the only neighbor the vertices of P might have outside
of P is a single vertex v. Then there exists a subpath P ′ of P such that if GP ′

contains H as an induced subgraph,
then so does G.
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Proof. Let G be a graph and let H be a graph with |V (H)| f h, where h > 5. Assume that G contains an induced
path P of length 5h[(h+1)(5h)2h+2 +1] such that the only neighbor the vertices of P might have outside of P is
a single vertex v. Let a, b be the endpoints of P . Now divide P into a sequence of subpaths P1, P2, . . . , Pk each
of length at least 2 so that all internal vertices of Pi have degree 2 in G, all endpoints of Pi are either a vertex of
degree 3 or a or b, P1 has a and one of its endpoints, Pk has b as one of its endpoints, and Pi shares one of its
endpoints with Pi+1 (i.e., these are subpaths that whose endpoints are a, b, or the vertices that are neighbors with
v and are sequenced going from one end of P to the other). We define a second sequence a1, a2, . . . ak where ai =
|E(Pi)|. If any ai g 5h then the result follows from Lemma 6.10, so we can assume for all i that ai f 5h. It then
follows that k is at least (h+1)(5h)2h+2+1, and therefore by the pigeonhole principle there must be a continuous
subsequence of length 2h+ 2 that is repeated at least h+ 2 times, where none of these continuous subsequences
overlap with each other. Let S = s0, s1, . . . , s2h+1 be this repeated subsequence. So we have h+ 2 sequences for
1 f i f h + 2, Ai = aji , aji+1, . . . , aji+2h+1 where for 1 f m f h + 2 and c, 0 f c f 2h + 1, ajm+c = sc and no
part of Am overlaps with some other An (so |jn − jm| g 2h + 2) and jm > jn if m > n. Fix the values denoted
by jm for 1 f m f h+ 2.

We wish to combine the first half of A1 with the second half of A2 by contracting a path in P . Let x be the
endpoint of Pj1+h+1 that it shares with Pj1+h, and let y be the endpoint Pj2+h+1 shares with Pj2+h. Let P ′ be
the subpath of P that has x and y as its endpoints. Let w be the vertex that gets created when contracting the
path P ′ in G to get GP ′

and let all the subpaths Pi of P in G that were not contained in P ′ retain their labels
in GP ′

, so Pj1+h and Pj2+h+1 share w as an endpoint, and let the ai’s retain their same meaning as long as Pi

was not a subpath of P ′. It follows that GP ′

has h sequences for 3 f i f h + 2, Ai = aji , aji+1, . . . , aji+2h+1

where for 1 f m f h + 2 and c, 0 f c f 2h + 1, ajm+c = sc and no part of Am overlaps with some other
An (so |jn − jm| g 2h + 2) and jm > jn if m > n. Furthermore, A1 and A2 have now been combined to give
A′ = aj1 , aj1+1, . . . , aj1+h, aj2+h+1, aj2+h+2, . . . , aj2+2h+1 so that aj1+c = sc for 0 f c f h and aj2+c = sc for

h + 1 f c f 2h + 1. We will show that if there exists a set X ¢ V (GP ′

) that induces H in GP ′

then we can
require w /∈ X. The result then follows since if w /∈ X then the vertices that correspond to X in G induced an H
in G.

So, assume X ¢ V (GP ′

) and induces H. If w /∈ X then we are done, so assume w ∈ X ′ for some connected
componentX ′ ofX. For i with 3 f i f h+1, let P ∗

i denote the path induced by V (Pji), V (Pji+1), . . . , V (Pji+2h+1)

in GP ′

, so P ∗
i is the path that naturally corresponds to Si, and let P ∗

1 denote the path induced by

V (Pj1), V (Pj1+1), . . . , V (Pj1+h), V (Pj2+h+1), V (Pj2+h+2), . . . , V (Pj2+2h+1),

so P ∗
1 naturally corresponds with A′. Then since X ′ has at most h vertices there is at least one P ∗

i that contains
no vertex of X and since X ′ is connected and contains w, all vertices of X ′ ∩ P must be completely contained
in V (P ∗

1 ) since w is at least distance h from either endpoint of P ∗
1 . It follows that we can replace the vertices of

X ′ ∩ P , which must be completely contained in the interal vertices of P ∗
1 , with the corresponding vertices in a

P ∗
i that contains no vertices of X and still maintain that the vertices of X induce H. Now w /∈ X and the result

then follows.

Lemma 6.12. Let F be a family of graphs determined by a finite number of forbidden induced subgraphs. Then if F
does not forbid all k-thetas, k-prisms, k-pyramids, k-ladder-thetas, k-ladder-prisms, and k-ladders for arbitrarily
large k, then F is feral.

Proof. Let F be a family of graphs determined by a finite number of forbidden induced subgraphs, and let H be a
set of forbidden subgraphs that define F . Let let h > 5 be a number such that for any H ∈ H, |V (H)| f h. First
assume that F allows for either k-thetas k-prisms, or k-pyramids for arbitrarily large k. Then by Lemma 6.10 we
can ensure that all paths with internal vertices all having degree 2 of the k-thetas k-prisms, or k-pyramids are
at most 5h (we keep on contracting the appropriate edges given by Lemma 6.10 until no path where all internal
vertices have degree 2 have length more than 5h) and therefore F contains a k-theta k-prism, or k-pyramid with
at most 5h ·k vertices. Since a k-theta, k-prism, or k-pyramid must have at least 2k minimal separators, it follows
that there exists a c > 1 such that for every natural number N ther exists a G ∈ F such that |V (G)| = n > N
and the number of minimal separators in G is at least cn.

Now assume that F allows for k-ladder-thetas or k-ladder-prisms for arbitrarily large k. Every k-ladder-theta
and k-ladder-prism contains a k-half-ladder and by Lemma 6.10 we can ensure that all paths with internal vertices
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all having degree 2 of the k-ladder-theta or k-ladder-prism are at most 5h and by Lemma 6.11 we can ensure that
the backbone path of the corresponding k-half-ladder has length at most [5h(h+1)(5h)2h+1+1] ·k by contracting
the appropriate edges and paths if necessary while still guaranteeing the resulting graph belongs to F (Lemma
6.11 gives us that if there is a subpath of length over [5h(h + 1)(5h)2h+1 + 1] of the backbone path that only
has one neighbor outside of the backbone path, there there exists a subpath of the backbone path that we can
contract and still maintain that the resulting graph is a k-ladder-theta or k-ladder-prism contained in F). Since
k-ladder-thetas and k-ladder-prisms have at least 2k minimal separators it follows that there exists a contains
c > 1 such that for every natural number N there exists a G ∈ F such that the number of minimal separators in
G is at least cn. It follows that F is feral.

The following lemma shows why it is necessary to forbid k-paw and k-claw graphs for a family of graphs
defined by a finite number of forbidden induced subgraphs to be strongly-quasi-tame. Figure 10 gives a picture
of the two graphs constructed in the following lemma.

Lemma 6.13. Let F be a family of graphs determined by a finite number of forbidden induced subgraphs. Then
if F does not forbid k-claws and k-paws for some natural number k, then F is feral.

Proof. Let F be a family of graphs determined by a finite number of forbidden induced subgraphs, and let H
be a set of forbidden subgraphs that define F . Let h > 5 be a number such that for any H ∈ H, |V (H)| f h.
First we assume that F allows k-claw for arbitrarily large k. We will construct a graph with many minimal
separators. Assume that we have two sets of 2c − 1 long-claws, C1

1 , C
1
2 , . . . C

1
2c , and C2

1 , C
2
2 , . . . C

2
2c where in both

sets each long claw has arm length h. We label the leaves of C1
i as a1i , b

1
i , c

1
i and we label the endpoints of C2

i as
a2i , b

2
i , c

2
i . Then for 1 f i f 2c−1 − 1 we glue a12i to b1i , a

1
2i+1 to c1i , a

2
2i to b2i , and a22i+1 to c2i . Furthermore, for

2c−1 f i f 2c − 1 we add an edge between b1i and b2i and between c1i and c2i . Note that any collection of bjii and

cℓii with 2c−1 f i f 2c − 1 and ji, ℓi = 1 or 2 is a minimal separator, so there are at least 22
c

minimal separators
in this construction. Since the arm length of each long-claw is h, the total number of vertices in this construction
is less than 3h · 2c+1.

If F allows for k-claws, then forest of paths and subdivided claws cannot be forbidden in F , and it can be
seen that any induced subgraph of size at most h of the construction just given is a forest of paths and subdivided
claws (i.e., three anti-complete paths where one endpoint of each path are glued together). It follows that this
construction must belong to F and since this construction has at least 22

c

minimal separators and less than
3h · 2c+1 vertices, the statement of the lemma follows for the case where k-claw graphs for arbitrarily large k are
not forbidden.

Now we assume that F allows k-paw graphs for arbitrarily large k. The construction and analysis we make
in this case is nearly identical to the k-claw case. We present it here for completeness. Assume that we have two
set of 2c − 1 long-paws, C1

1 , C
1
2 , . . . C

1
2c , and C2

1 , C
2
2 , . . . C

2
2c where in both sets each long-paw has arm length h.

We label the endpoints of C1
i as a1i , b

1
i , c

1
i and we label the endpoints of C2

i as a2i , b
2
i , c

2
i . Then for 1 f i f 2c−1−1

we glue a12i to b1i , a
1
2i+1 to c1i , a

2
2i to b2i , and a22i+1 to c2i . Lastly, for 2

c−1 f i f 2c − 1 we add an edge between a1i
and a2i and between b1i and b2i . Note that any collection of bjii and cℓii with 2c−1 f i f 2c − 1 and ji, ℓi = 1 or 2
is a minimal separator, so there are at least 22

c

minimal separators in this construction. Since the arm length of
each long-claw is h, the total number of vertices in this construction is less than 3h · 2c+1.

Since F allows for k-paws, a forest of paths and subdivided paws cannot be forbidden in F , and it can be
seen that any induced subgraph of size at most h of the construction just given is a forest of paths and subdivided
paws. It follows that this construction must belong to F and since this construction has at least 22

c

minimal
separators and less than 3h · 2c+1 vertices, the statement of the lemma follows for the case where k-paw graphs
for arbitrarily large k are not forbidden.

We are now ready to prove Theorem 1.3

Proof. [Proof of Theorem 1.3] Let F be a family of graphs defined by a finite number of forbidden induced
subgraphs. It follows from Lemmas 6.12 and 6.13 that if F allows for any k-thetas, k-prisms, k-pyramids, k-
ladder-thetas, k-ladder-prisms, k-claws, or k-paws for arbitrarily large k, F is feral.

Now assume that there exists a natural number k such that F forbids k-thetas, k-prisms, k-pyramids, k-
ladder-thetas, k-ladder-prisms, k-claws, and k-paws. Observe that there exists a k′ large enough such that if G
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Figure 10: The two graphs in this figure are small versions of the constructions of the graphs given in Lemma
6.13, explicit vertices are omitted in this graph. The left side graph is the construction provided when when the
k-claw is not forbidden for arbitrarily large k. The right hand side graph is the construction provided when when
the k-paw is not forbidden for arbitrarily large k.

contains an induced k′-ladder, then G contains an induced k-claw or k-paw graph, therefore F forbids k′-ladders.
It then follows from Lemma 6.9 there exists a k′′ such that no G ∈ F can contain a k′′-creature, where the
minimum value of k′′ is a function of k. Furthermore, it is clear that there exists a k′′′ large enough such that if G
contains a k′′′-skinny-ladder as an induced minor, then G contains a k-claw or a k-paw as an induced subgraph.
Hence F forbids k′′′-skinny-ladders as an induced minor. It then follows from Theorem 1.1 that there is a function
f : N → N such that for all G ∈ F the number of minimal separators of G is at most nf(k) log(n). Hence F is
strongly quasi-tame.

7 Long Cycle-free Graphs

Here we present a proof of Theorem 1.4 which is based on an easy application of Corollary 5.1. We will need the
following lemma in order to apply Corollary 5.1.

Lemma 7.1. Let G be a Cgr-free graph and assume G does not contain a k-creature. Then every minimal
separator, S, can be dominated by r · k2 vertices of G not in S.

Proof. Let G be a Cgr-free graph and assume G does not contain a k-creature. Assume for a contradiction that
there exists a minimal separator, S, of G such that S cannot be dominated by r · k2 vertices in G and not in S.
Let H be an S-full component of G− S, then by Lemma 5.6, S is dominated a subset of H that is the union of
k2 induced paths in H. It follows there must exists some induced path P in H such that SP = N(P ) ∩ S cannot
be dominated by r vertices in P . There then exists a subpath P ′ of P such that there are vertices a, b ∈ SP that
have no neighbor in P ′, both component of P − P ′ have vertices that are neighbors with a and/or b. It follows
that we can extend the path P ′ to have endpoints xa and xb such that the only neighbors of a in P ′ is xa and
possible xb and the only neighbors of b in P ′ is xb and possibly xa. If xa and xb are both neighbors with a then
P ′ and a form a cycle of length r, and if xa and xb are both neighbors with b then P ′ and b form a cycle of length
r so assume neither of these cases occur. If a and b are neighbors then P ′ a, b make a cycle of length more than
r. Else, there is an induced path, T between a and b with all of its internal vertices contained in some S-full
component other than H. It follows that P ′, and T makes a cycle of length more than r, a contradiction.

Proof. [Proof of Theorem 1.4] Let G be a Cgk-free graph that is k-theta, k-prism, and k-pyramid free. Since G
is Cgk-free this implies that G is also k-ladder-theta, k-ladder-prism, and k-ladder free. Lemma 6.9 then implies
that there exists a function f : N → N (independent of the choice of k or G) such that G is f(k)-creature-free.
Lemma 7.1 gives that every minimal separator S of G can be dominated by kf(k)2 vertices not in S. Hence, by

Corollary 5.1 G has at most |V (G)|(kf(k)
2)2+2kf(k)2 minimal separators. It follows that the family of graphs that

are Cgk-free, k-theta, k-prism, and k-pyramid free is tame.
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8 Graph With Bounded Clique Size

Here we present a proof of Theorems 1.5 and 1.6 which are based on an easy application of Corollary 5.1. We
will need the following lemma in order to apply Corollary 5.1.

Lemma 8.1. Let k′ = 4[(8k2)k+1]7. If G is k-creature-free, G does not contain a k-skinny-ladder as an induced
minor, and no minimal separator of G contains a clique of size k, then every minimal separator S of G can be
dominated by at most (k′)k+1 vertices of G− S.

Proof. Let k′, k, and G be as in the statement of the lemma. Let G′ be an induced subgraph of G and let S′ be
a minimal separator of G′. Then G′ must be k-creature-free and k-ladder free, so it follow from Lemma 5.13 that
S′ can be dominated by k′ vertices of G′ − S′.

We will produce a set of (k′)k+1 vertices of G − S that dominate S by considering the following recursive
algorithm. The input to the algorithm is (G′,S′) where G′ is a subgraph of G and S′ is a minimal separator of
G′, and the algorithm returns a set of vertices which will be described shortly. The algorithm finds two vertex
sets A and B such that |A| + |B| f k′, A ¢ V (G′), B ¢ S′, and A ∪ B dominate S′ (such a set must exists by
what was established in the previous paragraph). Let B′ be a set of vertices in G′ − S′ such that |B′| f |B| and
B′ dominates B. For each b ∈ B we recursively call the algorithm on (G′ − (S′ − [S′ ∩ N(b)]), S′ ∩ N(b)) (note
that S′ ∩N(b) is a minimal separator of G′ − (S′ − [S′ ∩N(b)])). Let X be the union of the sets returned by each
recursive call. Then algorithm then returns X ∪A ∪B′.

If we initially call this algorithm on (G,S) for some minimal separator S of G, then it is clear that the set
this algorithm returns is a subset of vertices of G−S that dominate S. We can also see the depth of this recursive
algorithm cannot go past k without producing a clique of size k in S since the minimal separator we recursively
call this algorithm on is always dominated by the open neighborhood of some vertex v of S. So, the depth of
the recursion tree is at most k − 1 and each node has at most k′ children since |B| f k′. It follows that since
each recursive call of the algorithm adds at most k′ vertices to the set it returns, the size of the final returned set
cannot exceed k′ · k′k

Proof. [Proof of Theorem 1.5] Let G be a graph that is k-creature-free and does not contain a k-skinny-ladder
as an induced minor, and furthermore assume that no minimal separator of G has a clique of size k. By Lemma
8.1 there exists a function f : N → N such that all minimal separators, S, of any graph that is k-creature-free,
does not contain a k-skinny-ladder as an induced minor, and has no minimal separator that contains a clique
of size k, can be dominated by f(k) vertices outside of S. It then follows from Corollary 5.1 that G has at

most |V (G)|f(k)
2+2f(k) minimal separators. Hence, the family of graphs that are k-creature-free, do not contain

a k-skinny-ladder as an induced minor, and have no minimal separator has a clique of size k is tame.

Proof. [Proof of Theorem 1.6] Let F be a family of graphs defined by a finite number of forbidden induced
subgraphs. Assume that F forbids the complete graph on k vertices for some natural number k. It follows from
Lemmas 6.12 and 6.13 that if F allows for any k′-thetas, k′-ladder-thetas, k′-claws, or k′-paws for arbitrarily large
k′, then F is feral.

Now assume that for some integer k that F forbids k-thetas, k-ladder-thetas, k-claws, and k-claws. Since
F forbids k-cliques as well, it follows that F forbids k-prisms, k-pyramids, and k-ladder-prisms. Observe that
there exists a k′ large enough such that if G contains an induced k′-ladder, then G contains an induced k-claw
or k-paw, therefore G does not contain a k′-ladder. It follows from Lemma 6.9 there exists a k′′ such that no
G ∈ F can contain a k′′-creature, where the minimum value of k′′ is a function of k. Furthermore, it is clear that
there exists a k′′′ large enough such that if G contains a k′′′-skinny-ladder as an induced minor, then G contains
a k-claw or a k-paw as an induced subgraph. Hence F forbids k′′′-skinny-ladders as an induced minor. Now, if
no graph of F contains a minimal separator with a clique of size k, then it follows by Lemma 8.1 there exists a
function f : N → N such that for all G ∈ F it holds that all minimal separators S of G can be bounded by f(k)

vertices in G − S. It then follows from Corollary 5.1 that for all G ∈ F has at most |V (G)|f(k)
2+2f(k) minimal

separators. Therefore F is tame.

9 Conclusion

In this paper we disproved a conjecture of Abrishami et al. [1] that for any natural number k, the family of graphs
that exclude k-creatures is tame. On the other hand, we proved a weakened form of the conjecture, that every
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family of graphs that excludes k-creatures and also excludes k-skinny-ladders as induced minors is strongly-quasi-
tame. This led to a complete classification of graph families defined by a finite number of forbidden induced
subgraphs into strongly-quasi-tame and feral, substantially generalizing the main result of Milanič and Pivač [19].
The tools we develop on the way to prove our main results yield with some additional effort polynomial upper
bounds instead of quasi-polynomial, proving tameness instead of strong quasi-tameness, for two interesting special
cases. In particular we show that the conjecture of Abrishami et al. [1] is true for Cgr-free graphs for every integer
r, as well as forKr-free graphs excluding an r-skinny-ladder for every integer r. The first of these results generalizes
work of Chudnovsky et al. [6], who proved that Cg5-free, k-creature-free graphs are tame,

Although Theorems 1.1 and 1.3 provide a strongly-quasi-tame bound we have no examples of non-tame
families that exclude k-creatures and k-skinny-ladders for some k. We conjecture that these classes of graphs are
actually tame.

Conjecture 9.1. For every natural number k, the family of graphs that are k-creature-free and do not contain
a k-skinny-ladder as an induced minor is tame.

Conjecture 9.1, if true, put together with the proof of Theorem 1.3 would lead to the following classification of
hereditary families defined by a finite set of forbidden induced subgraphs.

Conjecture 9.2. Let F be a graph family defined by a finite number of forbidden induced subgraphs. If there
exists a natural number k such that F forbids all k-theta, k-prism, k-pyramid, k-ladder-theta, k-ladder-prism,
k-claw, and k-paw graphs, then F is tame. Otherwise F is feral.

We remark that Conjecture 9.1 implies Conjecture 9.2, but not the other way around. In particular Conjecture 9.2
might be easier to prove.

We have so far been unsuccessful in identifying other counterexamples to Conjecture 1.1 that look
“substantially different” from the k-twisted ladders constructed in Section 4. For this reason it is tempting
to conjecture that at least for induced minor closed classes, a ”clean” classification of all classes into tame or feral
is possible.

Conjecture 9.3. Every induced-minor-closed class F is either tame or feral.

Since removing vertices and contracting edges can not increase the number of minimal separators, Conjecture 9.3,
would show (in an informal sense) that both the brittleness of the boundary between tame and non-tame hereditary
classes, as well as the existence of non-tame hereditary classes that are not feral is primarily due to “number
fiddling” effects such as in the example of Abrishami et al. [1] of a tame family containing k-creatures for arbitrarily
large k.

Remark: As mentioned in the introduction, subsequent work [11, 2], has confirmed that Conjectures 9.1 and 9.2
are true, while Conjecture 9.3 is false. We nevertheless keep the statements of these conjectures here, both because
they provided guidance and motivation for the subsequent work [11, 2] and to ensure backwards compatibility of
citations.
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problem in graphs without induced cycles of length at least five, SIAM J. Discret. Math., 34 (2020), pp. 1472–1483.
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