
Shortest Cycles With Monotone Submodular Costs

Fedor V. Fomin∗ Petr A. Golovach∗ Tuukka Korhonen∗ Daniel Lokshtanov†

Giannos Stamoulis‡

Abstract

We introduce the following submodular generalization of the Shortest Cycle problem. For a nonnegative
monotone submodular cost function f defined on the edges (or the vertices) of an undirected graph G, we
seek for a cycle C in G of minimum cost OPT = f(C). We give an algorithm that given an n-vertex graph

G, parameter ε > 0, and the function f represented by an oracle, in time nO(log 1/ε) finds a cycle C in G with
f(C) ≤ (1+ε) ·OPT. This is in sharp contrast with the non-approximability of the closely related Monotone
Submodular Shortest (s, t)-Path problem, which requires exponentially many queries to the oracle for

finding an n2/3−ε-approximation [Goel et al., FOCS 2009]. We complement our algorithm with a matching

lower bound. We show that for every ε > 0, obtaining a (1 + ε)-approximation requires at least nΩ(log 1/ε)

queries to the oracle.
When the function f is integer-valued, our algorithm yields that a cycle of cost OPT can be found in time

nO(logOPT). In particular, for OPT = nO(1) this gives a quasipolynomial-time algorithm computing a cycle
of minimum submodular cost. Interestingly, while a quasipolynomial-time algorithm often serves as a good
indication that a polynomial time complexity could be achieved, we show a lower bound that nO(logn) queries
are required even when OPT = O(n).

1 Introduction

Submodular function minimization is a fundamental problem in combinatorial optimization. This problem
is solvable in (strongly) polynomial time [2, 9, 10, 12, 16]. However, the problem becomes intractable even
with straightforward additional cardinality constraints [8, 17]. A significant amount of research on submodular
optimization is on generalizing the classical computer science problems by replacing simpler objective functions
with general submodular functions. Examples of submodular minimizations over combinatorial constraints include
load balancing, balanced cut [17], vertex cover [7, 11, 18], shortest path, perfect matching, spanning tree [7] or
min-cut [15].

However, it seems that for almost every natural graph problem in P (shortest (s, t)-path, matching, spanning
tree, or minimum (s, t)-cut) its submodular generalizations becomes hard. Let f : 2E(G) → Rg0 be a monotone
submodular cost function defined by a value-giving oracle on the edges of an undirected graph G with m edges
and n vertices. The following computational tasks require exponentially many queries to the value oracle:

• Finding an O(n2/3−ε)-approximation of the minimum cost of an (s, t)-path (Submodular Shortest (s, t)-
Path) [7];

• Finding an O(n1−ε)-approximation of the minimum cost of a perfect matching (Submodular Perfect

Matching) [7];

• Finding an O(n1−ε)-approximation of the minimum cost of a spanning tree (Submodular Minimum

Spanning Tree) [7];

• Finding an O(n1/3−ε)-approximation of the minimum cost of an (s, t)-cut (Submodular Minimum (s, t)-
Cut) [15].

∗Department of Informatics, University of Bergen, Norway. fomin@ii.uib.no, petr.golovach@uib.no, tuukka.korhonen@uib.no
†Department of Computer Science, University of California, Santa Barbara, USA. daniello@ucsb.edu
‡LIRMM, Univ Montpellier, CNRS, Montpellier, France. giannos.stamoulis@lirmm.fr

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited2214

D
o

w
n
lo

ad
ed

 0
6
/2

0
/2

5
 t

o
 1

6
9
.2

3
1
.1

8
6
.1

6
7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

We discover an interesting anomaly, a classical problem in P, whose monotone submodular generalization
strongly deviates from this common pattern. This is the problem of computing the girth, that is, the length
of a shortest cycle, of an undirected graph. In sharp contrast to all these non-approximability results, we show
that the problem of finding a cycle in a graph with minimum monotone submodular cost admits a polynomial-
time approximation scheme (PTAS) and a quasipolynomial-time algorithm when the values of the submodular
function are polynomially-bounded integers. More precisely, for a graph G and a function f : 2V (G) → Rg0, we
define OPT = min{f(C) : C ¦ V (G) induces a cycle of G}. Our first main result is the following theorem.

Theorem 1.1. There is an algorithm that given an n-vertex graph G, parameter ε > 0, and a monotone
submodular function f : 2V (G) → Rg0 represented by an oracle, finds a cycle C in G with f(C) f (1+ ε) ·OPT in
time nO(log 1/ε).

We stated Theorem 1.1 for a function f defined on the vertices of a graph. An easy reduction by placing a
new vertex on every edge shows that the same result holds for monotone submodular functions defined on the
edges of a multigraph, see Corollary 3.1.

When the function f is integer-valued, Theorem 1.1 (by setting ε = 1
w+1 with OPT f w f 2OPT, where

w = f(C) for the cycle C returned by the approximation algorithm for ε = 1/2) implies that a cycle of cost OPT
can be found in time nO(logOPT). In particular, when OPT = nO(1), it gives a quasipolynomial-time algorithm
computing a cycle of minimum monotone submodular cost. For example, this holds when f is a rank function of
a matroid.

Corollary 1.1. There is an algorithm that given an n-vertex graph G and an integer monotone submodular
function f : 2V (G) → Zg0 represented by an oracle, finds a cycle C in G with f(C) = OPT in time nO(logOPT).

Our second main result is that the running times of the algorithms of Theorem 1.1 and Corollary 1.1
are asymptotically tight. Note that it is sufficient to prove Corollary 1.1 to be tight, as any improvement to
Theorem 1.1 would also improve Corollary 1.1.

Theorem 1.2. There is no algorithm computing a cycle of cost at most OPT on a given n-vertex graph and an
integer monotone submodular function f : 2V (G) → Zg0 represented by an oracle, using at most g(OPT)·no(logOPT)

queries to the oracle, for any computable function g.

Corollary 1.2. There is no algorithm computing a cycle of cost at most (1 + ε) · OPT on a given n-vertex
graph and an integer monotone submodular function f : 2V (G) → Zg0 represented by an oracle, using at most
t(1/ε) · no(log 1/ε) queries to the oracle, for any computable function t.

In particular, Theorem 1.2 rules out fixed-parameter tractability (FPT) parameterized by OPT and
Corollary 1.2 rules out efficient polynomial-time approximation schemes (EPTAS).

The same construction as in Theorem 1.2 also rules out the improvement of the quasipolynomial time in the
setting where OPT = O(n).

Theorem 1.3. There is no algorithm computing a cycle of cost at most OPT = O(n) on a given n-vertex graph
and an integer monotone submodular function f : 2V (G) → Zg0 represented by an oracle, using at most no(logn)

queries to the oracle.

We note that on directed graphs the problem is much harder: The same construction as the one by Goel et
al. [7] for undirected (s, t)-path shows that O(n2/3−ε)-approximation for the minimum cost directed cycle requires
an exponential number of queries to the oracle.

Theorem 1.1 also yields a PTAS for computing the submodular connectivity of a planar multigraph. The
connectivity of a connected multigraph is the size of its minimum cut, that is, the minimum number of edges whose
removal disconnects it. In Monotone Submodular Connectivity (also known as Monotone Submodular

Min-Cut), for a connected multigraph G with monotone submodular cost function f on E(G), the task is to
identify the minimum cost f(C) of a cut C ¦ E(G). In a connected planar multigraph G, an edge set of every
simple cycle of G is an edge set of an inclusion minimal edge cut in the dual of G, and vice versa. Thus by
Theorem 1.1, we have the following corollary.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited2215

D
o

w
n
lo

ad
ed

 0
6
/2

0
/2

5
 t

o
 1

6
9
.2

3
1
.1

8
6
.1

6
7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Corollary 1.3. There is an algorithm that given a planar m-edge multigraph G, parameter ε > 0, and
a monotone submodular function f : 2E(G) → Rg0 represented by an oracle, finds a cut C in G with
f(C) f (1 + ε) · OPT in time mO(log 1/ε) (where OPT is the minimum cost of a cut).

The same lower bounds of Theorem 1.2 and Theorem 1.3 apply also to this setting (with n replaced by m),
showing that Corollary 1.3 is optimal, because the graph we use for the lower bound is planar (in particular, it is
a dual of a planar multigraph). The best previously known upper bound on submodular connectivity on planar
graphs is due to Jegelka and Bilmes [15] who gave an O(

√
n)-approximation for this problem.

An interesting variant of submodular connectivity was considered by Ghaffari, Karger, and Panigrahi [6].
In the Hedge Connectivity problem, the edge set of a multigraph G is partitioned into sets called hedges.
The graph is k-hedge-connected if it is necessary to remove at least k edge sets (hedges) in order to disconnect
G. Ghaffari, Karger, and Panigrahi [6] gave a PTAS of running time nO(log 1/ε) and a quasipolynomial-time
exact algorithm for hedge connectivity. Very recently Jaffke et al. [14] (see also [13]) complemented this result
by showing that the quasi-polynomial running time is optimal up to the Exponential Time Hypothesis (ETH).

Namely, they proved that the existence of an algorithm with running time (nk)o(logn/(log logn)2) would contradict
ETH. The hedge function (i.e., the number of hedges covering an edge subset) is a monotone submodular function.
Thus, on planar graphs, Corollary 1.3 extends the PTAS of [6] from hedges to monotone submodular functions.
Similarly, the quasipolynomial algorithm for integer-valued monotone submodular functions with OPT = nO(1),
extends the quasipolynomial exact algorithm of Ghaffari, Karger, and Panigrahi on planar graphs.

While Theorem 1.2 refutes the existence of a polynomial-time (or even FPT) algorithm computing a
submodular minimum cycle or submodular minimum cut in planar graphs with polynomially bounded integer-
valued functions, the complexity of the hedge variants of these problems remains open (here, by hedge minimum
cycle we mean the minimum number of hedges covering a cycle). In graph theory, this problem is also known as
the Colored Cycle problem [1]. In this reformulation of the problem, the edges (or vertices) of the given graph
are colored and the task is to select a cycle containing the minimum number of different colors. Broersma et
al. claimed the Colored Cycle problem to be NP-hard, without proof [1, Corollary 16]. The quasipolynomial
algorithm for this problem that follows by Corollary 1.1 raises serious concerns about this claim. Note that the
hedge minimum (s, t)-cut and hedge minimum (s, t)-path are indeed NP-hard [1, 19].

Motivated by the question on whether Hedge Minimum Cycle admits a polynomial-time algorithm or
our quasipolynomial-time algorithm is optimal, we study the problem in a special case that corresponds to a
natural problem about families of sets. In particular, we consider the Hedge Minimum Cycle problem on the
subdivisions of the graphs used for the lower bound construction of Theorem 1.2 and Theorem 1.3 – see Figure 1.
In these graphs, the Hedge Minimum Cycle problem is equivalent to the following set family problem: For an
integer k and universe U , we say that a family F of sets over U is k-wide if for any two distinct sets A,B ∈ F it
holds that |A ∪B| > k. In the Wide Family Hitting problem, we are given a universe U , an integer k, and m
k-wide families F1, . . . ,Fm. The task is to decide if it is possible to select one set Si ∈ Fi from each family Fi so
that |⋃m

i=1 Si| f k. We denote the input size by N =
∑m

i=1

∑

A∈Fi
|A|. The algorithm of Corollary 1.1 gives an

NO(log k) time algorithm for Wide family hitting, in particular it can be solved in quasipolynomial time, and
therefore is unlikely to be NP-hard.

While it remains open whether Wide Family Hitting admits a polynomial-time algorithm, we show
two results giving evidence that the special case of hedges is indeed easier than the general case of monotone
submodular functions. First, we show that Wide Family Hitting is fixed-parameter tractable when
parameterized by k. This is in contrast to the lower bound of Theorem 1.2.

Theorem 1.4. There is a 2O(k log k)NO(1) time algorithm for Wide Family Hitting.

We then show that there is a polynomial-time algorithm if |Fi| is bounded for every i. This corresponds to
the case when the graph of the construction has bounded degree.

Theorem 1.5. Let |Fi| f d for every i. Then there is a kO(log d)NO(1) time randomized algorithm for Wide

Family Hitting.

The rest of the paper is organized as follows. In Section 2 we give formal definitions and preliminary results.
In Section 3 we give the algorithm of Theorem 1.1. In Section 4 we show the lower bounds Theorem 1.2 and

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited2216

D
o

w
n
lo

ad
ed

 0
6
/2

0
/2

5
 t

o
 1

6
9
.2

3
1
.1

8
6
.1

6
7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Theorem 1.3. In Section 5 we prove Theorem 1.4 and Theorem 1.5. We then conclude in Section 6, in particular
discussing open problems related to Hedge Minimum Cycle and Wide Family Hitting.

2 Preliminaries

In this section, we introduce basic notation used throughout the paper.
We use standard graph-theoretic terminology and refer to the textbook of Diestel [3] for missing notions. We

consider only finite graphs, and the considered graphs are assumed to be undirected if it is not explicitly said to
be otherwise. For a graph G, we use V (G) and E(G) to denote its vertex and edge set, respectively. Throughout
the paper we use n = |V (G)| = |G| and m = |E(G)|. For a graph G and a subset X ¦ V (G) of vertices, we write
G[X] to denote the subgraph of G induced by X. For a vertex v, we denote by NG(v) the (open) neighborhood of
v, i.e., the set of vertices that are adjacent to v in G. For X ¦ V (G), NG(X) =

(
⋃

v∈X NG(v)
)

\X. The degree
of a vertex v is dG(v) = |NG(v)|. We may omit subscripts if the considered graph is clear from a context.

A path P in G is a subgraph of G with V (P) = {v0, . . . , vℓ} and E(P) = {vi−1vi | 1 f i f ℓ}. We write
v0v1 · · · vℓ to denote P ; the vertices v0 and vℓ are end-vertices of P , the vertices v1, . . . , vℓ−1 are internal, and ℓ
is the length of P . For a path P with end-vertices s and t, we say that P is an (s, t)-path. A cycle is a graph C
with V (C) = {v1, . . . , vℓ} for ℓ g 3 and E(C) = {vi−1vi | 1 f i f ℓ}, where we assume that v0 = vℓ. We write
C = v1 · · · vℓ to denote a cycle in G.

Definition 1. Given a finite set U , a function f : 2U → R is submodular if for every X,Y ¦ U ,

f(X) + f(Y) g f(X ∪ Y) + f(X ∩ Y).

We also will use an equivalent formulation of submodularity, that is, for any X ¦ Y and v ̸∈ Y ,

f(X ∪ {v})− f(X) g f(Y ∪ {v})− f(Y).

Throughout the paper we assume that the considered submodular functions f : 2U → R are given by value-
giving oracles returning the value f(X) for everyX ¦ U in unit time. We also assume the real RAM computational
model for operations with the values of considered functions, i.e., we assume that basic arithmetic operations over
real numbers are performed in unit time. In this paper, we consider functions f defined on subsets of the vertex or
edge set of a graph. Slightly abusing notation, we may write f(H) instead of f(V (H)) or f(E(H)) for a subgraph
H of G.

A submodular function is monotone if for every X ¦ Y ¦ U , f(X) f f(Y). We note that it is well-known
that a rank function of a matroid is a monotone submodular function with nonnegative integer values.

3 PTAS for shortest cycles with monotone submodular costs

In this section, we demonstrate a PTAS for finding a shortest cycle with nonnegative monotone submodular costs.
If a connected component of a graph G is a tree, it does not contain any cycle. In this case, the problem of finding
a cycle in this component is meaningless. From now on, we assume that all connected components of graphs
considered throughout the section contain cycles. For a graph G and a function f : 2V (G) → Rg0, we define

OPT(G, f) = min{f(C) | C ¦ V (G) induces a cycle of G};

we write OPT instead of OPT(G, f) if G and f are clear from the contexts.
First, we show that the problem admits a factor-2 approximation. Besides an approximate solution, our

algorithm computes a family of induced tree-subgraphs rooted in the vertices of G that will be crucial for PTAS.

Lemma 3.1. There is an algorithm A that, given a graph G and a monotone submodular function f : 2V (G) →
Rg0, in time O(n(m+ n log n)) finds a cycle C with f(C) f 2OPT. Furthermore, the algorithm returns a family
of induced tree-subgraphs Tf = {Tf (v)}v∈V (G) in G such that for every v ∈ V (G), (i) v ∈ V (Tf (v)) and (ii) for
every x ∈ V (Tf (v)) and y ∈ NG(x) \ V (Tf (v)), f(Py) g OPT/2, where P is the unique (v, x)-path in Tf (v).

Proof. Our algorithm is based on the classical Dijkstra’s algorithm for finding shortest paths [4]. Let v ∈ V (G).
The algorithm constructs a tree rooted in v by assigning labels p(x) for vertices x ∈ V (G), where p(x) is the
parent of x in the tree; initially p(v) = v and p(x) is empty for every x ∈ V (G) distinct from v. For x ∈ V (G)

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited2217

D
o

w
n
lo

ad
ed

 0
6
/2

0
/2

5
 t

o
 1

6
9
.2

3
1
.1

8
6
.1

6
7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

with nonempty p(x), we use Px to denote the unique (v, x)-path defined by these labels. We also assign labels
d(x) for x ∈ V (G), where d(x) = f(Px) if p(x) is nonempty. Then the following subroutine computes a cycle Cv

associated with v and Tf (v) defined by the set of vertices given together with their labels p(x).

Algorithm 1: Cycle(G, v, f)

Input: A graph G with v ∈ V (G) and a function f .
Result: A cycle Cv and a tree Tf (v).

1 begin

2 set S := V (G), p(v) := v, d(v) := f(v);
3 foreach x ∈ V (G) \ {v} do

4 set p(x) := ∅ and d(x) := +∞
5 end

6 while S ̸= ∅ do

7 find x ∈ S s.t. d(x) = min{d(y) : y ∈ S} and set S := S \ {x};
8 if there is y ∈ NG(x) \ {p(x)} with d(y) f d(x) then

9 find a cycle Cv in G[V (Px) ∪ V (Py)] and output Cv;
10 output Tf (v) with the set of vertices {z ∈ V (G) : d(z) < d(x)};
11 quit

12 else

13 foreach y ∈ NG(x) \ {p(x)} with d(y) > f(Pxy) do
14 set d(y) := f(Pxy) and p(y) := x
15 end

16 end

17 end

18 end

To analyze the algorithm, denote by g(x) = min{f(P) : P is a (v, x)-path in G} for every x ∈ V (G). Clearly,
g(x) f d(x) for x ∈ V (G). For a real number h g f(v), let Gh be the subgraph of G induced by the set of vertices
{x ∈ V (G) : g(x) f h}. Let h∗ g f(v) be the minimum number such that Gh∗ contains a cycle. Notice that
such a number exists, because the connected component of G containing v is not a tree. Note also that for every
h < h∗, Gh is a tree. The crucial observation is that the algorithm assigns the labels d(x) = g(x) for x ∈ V (Gh)
if h < h∗ and the labels p(x) define the induced tree Gh. Furthermore, the algorithm stops in line (8), where
d(x) = g(x) = h∗ and d(y) = g(y) f h∗. Because xy ∈ E(G) and y ̸= p(x), the graph G[V (Px) ∪ V (Py)] contains
a cycle Cv. Because f(Px) = g(x) and f(Py) = g(y), we have that f(Cv) f 2h∗. Since d(x) = h∗, we have that
Tf (v) constructed in line (10) is an induced tree in G.

Clearly, v ∈ V (Tf (v)), and condition (i) for Tf (v) is fulfilled. By definition, f(Cv) g OPT. Hence,
h∗ g OPT/2. If there are x ∈ V (Tf (v)) and y ∈ NG(v) \ V (Tf (v)) such that f(Pxy) < OPT/2, then g(y) < h∗

and y should be in Tf (v). This implies that (ii) holds.
We run Cycle(G, v, f) for all v ∈ V (G) and construct Tf = {Tf (v)}v∈V (G). To find C, we consider the cycles

Cv for v ∈ V (G) and select a cycle C of minimum cost. To show that f(C) f 2OPT, consider v ∈ V (C). Then C
contains a (v, y)-path P = Pxy, where x ∈ V (Tf (v)) and y is adjacent to x. Then f(P) g h∗ for h∗ defined for
this vertex v. Because C = Cv and f(Cv) f 2h∗, f(C) f 2OPT.

To evaluate the running time, note that Dijkstra’s algorithm can be implemented to run in O(m + n log n)
time by the results of Fredman and Tarjan [5]. Using exactly the same approach, we conclude that for each
v ∈ V (G), Cycle(G, v, f) can be implemented to run in O(m + n log n) time. Since the algorithm is called for
every v ∈ V (G), the total running time is O(n(m+ n log n)). This concludes the proof.

Let T = {T (v)}v∈V (G) be a family of induced tree-subgraphs in a graph G such that v ∈ V (T (v)) for every
v ∈ V (G). For v ∈ V (G), we define the family of paths

(3.1) P(v) = {Py : P is a (v, x)-path for x ∈ V (T (v)) and y ∈ NG(x) \ V (T (v))},

and set P(T) =
⋃

v∈V (G) P(v). We use the following easy property of these paths.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited2218

D
o

w
n
lo

ad
ed

 0
6
/2

0
/2

5
 t

o
 1

6
9
.2

3
1
.1

8
6
.1

6
7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Lemma 3.2. Let P(T) be the family of paths constructed for T = {T (v)}v∈V (G). Then for every cycle C, there
is a path P ∈ P such that P is a segment of C. Furthermore, |P(T)| f nm and the sets of vertices of the paths
of P(T) can be listed in O(n2m) time.

Proof. Let P(T) =
⋃

v∈V (G) P(v), where P(v) is defined as in (3.1). Consider a vertex v ∈ V (C). Because T (v)

is an induced tree in G, C contains a path Py, where P is a (v, x)-path P in T (v) and y ∈ NG(x) \ V (T (v)).
By definition, Py ∈ P(v). This proves that C contains as a segment a path from P(T). Since every vertex
y ∈ V (G) \ V (T (v)) has at most degG(y) neighbors in T (v), the number of paths in P(v) does not exceed m.
Hence, |P(T)| f nm. To list the set of vertices of the paths of P(v), we consider every vertex y ∈ V (G)\V (T (v))
and for each neighbor x in T (v), we trace the unique (x, v)-path with at most n vertices. Therefore, the sets of
vertices of the paths of P(T) can listed in O(n2m) time.

We are ready to prove Theorem 1.1, which we restate here.

Theorem 3.1. There is an algorithm that given an n-vertex graph G, parameter ε > 0, and a monotone
submodular function f : 2V (G) → Rg0 represented by an oracle, finds a cycle C in G with f(C) f (1+ ε) ·OPT in
time nO(log 1/ε).

Proof. The rough idea is that we construct a recursive branching algorithm using Lemma 3.1 and Lemma 3.2.
In particular, the algorithm from Lemma 3.1 constructs a family of induced trees Tf . Then by Lemma 3.2, a
solution cycle C should contain some path P ∈ P(Tf) as a segment. We branch on these paths. However, instead
of looking for a cycle containing P , we simply redefine the function by setting g(X) = f(X ∪ V (P)) − f(P)
for each X ¦ V (G) using the property that for any cycle C, f(C) f f(V (C) ∪ V (P)) = g(C) + f(P) and
f(C) = g(C) + f(P) if V (P) ¦ V (C). Then we solve the problem recursively for the new function. Because
f(P) g OPT/2 by Lemma 3.1, we require a logarithmic in 1/ε depth of the search tree before we can apply a
2-approximation from Lemma 3.1 to obtain a factor-(1 + ε) approximation.

To describe the algorithm formally, we construct the subroutine Find-Cycle(G, g, k), which takes as its
input G, a monotone submodular function g : 2V (G) → Rg0, and an integer k g 0. The subroutine returns a cycle
C of G with g(C) f

(

1 + 1
2k

)

OPT(G, g). Initially, g := f . The parameter k defines the depth of recursion and is
initially set to k := +log 1/ε,. To solve the problem for our original instance, we call Find-Cycle(G, f, +log 1/ε,).
Recall that we use A to denote the algorithm from Lemma 3.1.

Algorithm 2: Find-Cycle(G, g, k)

Input: A graph G, function g, and k g 0.
Result: A cycle C of G.

1 begin

2 call A(G, g) to obtain a cycle C and a family of subtrees Tg;
3 if g(C) > 0 and k > 0 then

4 construct P = P(Tg);
5 foreach P ∈ P do

6 set g′(X) := g(V (P) ∪X)− g(P) for X ¦ V (G) ;
7 call Find-Cycle(G, g′, k − 1) to find a cycle C ′ ;
8 if g(C ′) < g(C) then

9 set C := C ′

10 end

11 end

12 end

13 return C

14 end

To show correctness, note that if g : 2V (G) → Rg2 is a monotone submodular function, then each function
g′ introduced in line (6) is also a monotone submodular function with nonnegative values, that is, the input
Find-Cycle(G, g′, k − 1) in line (7) is feasible. Further, Find-Cycle(G, g, k) is finite, because the depth of the
recursion is upper bounded by k. Also the subroutine algorithm always returns some cycle of G because G is

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited2219

D
o

w
n
lo

ad
ed

 0
6
/2

0
/2

5
 t

o
 1

6
9
.2

3
1
.1

8
6
.1

6
7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

distinct from a forest by our assumption. Hence, to prove the correctness of Find-Cycle(G, g, k), we have to
show that it returns a cycle C with g(C) f

(

1 + 1
2k

)

OPT(G, g). We show this by induction on k.
If k = 0, then the algorithm returns the cycle C produced by A(G, g) and, therefore, g(C) f 2OPT(G, g) =

(

1 + 1
2k

)

OPT(G, g). Let k > 0 and assume that Find-Cycle(G, g′, k − 1) called in line (7) outputs C ′ with

g′(C ′) f
(

1 + 1
2k−1

)

OPT(G, g′).
If g(C) = 0 for the cycle C constructed by A(G, g) in line (2), then the claim is trivial. Assume that g(C) > 0.

Let C∗ be a cycle of G with g(C∗) = OPT(G, g). By Lemma 3.1 and Lemma 3.2, there is P ∈ P(Tg) such that P
is a segment of C∗ and g(P) g OPT(G, g)/2. We consider P in the loop in lines (5)-(11). Then, for the function
g′ considered in line (6),

g′(C∗) = g(C∗)− g(P) f g(C∗)− OPT(G, g)/2 = OPT(G, g)/2.

Therefore,

(3.2) OPT(G, g′) f OPT(G, g)− g(P) and OPT(G, g′) f OPT(G, g)/2.

Let C ′ be the cycle produced by Find-Cycle(G, g′, k − 1) in line (7). By the inductive assumption

g′(C ′) f
(

1 +
1

2k−1

)

OPT(G, g′).

Then by the definition of g and (3.2),

g(C ′) f g(V (C ′) ∪ V (P)) = g′(C ′) + g(P) f
(

1 +
1

2k−1

)

OPT(G, g′) + g(P)

= (OPT(G, g′) + g(P)) +
1

2k−1
OPT(G, g′)

f OPT(G, g) +
1

2k
OPT(G, g) =

(

1 +
1

2k
)

OPT(G, g).

By the choice of C in lines (8)–(9), the algorithm outputs a cycle C with g(C) f g(C ′) f
(

1 + 1
2k

)

OPT(G, g).
This concludes the correctness proof.

We call Find-Cycle(G, f, k), where k = +log 1/ε,, to solve the problem for the original instance. Because
the algorithm outputs a cycle C with f(C) f

(

1 + 1
2k

)

OPT(G, f) and k = +log 1/ε,, f(C) f (1 + ε)OPT(G, f),
that is, we obtain the desired approximation.

To evaluate the running time, note first that we switch to the function g in line (6). We can make the following
easy observation about such functions. Suppose that f1, f2, f3 : 2

V (G) → Rg0 are functions such that for every
X ¦ V (G), f2(X) = f1(X ∪A)− f1(A) and f3(X) = f2(X ∪B)− f2(B) for some A,B ¦ V (G). Then

f3(X) =f2(X ∪B)− f2(B) = (f1(X ∪B ∪A)− f1(A))− (f1(A ∪B)− f1(A))

=f1(X ∪ (B ∪A))− f1(A ∪B).

Using this observation iteratively, using only the oracle for the input function f , the values of all other functions
occurring in the algorithm could be computed in O(n) time for each X ¦ V (G).

Computing C and Tg in line (2) can be done in O(n2(m + n log n)) time by Lemma 3.1 taking into account
that each value g(X) can be computed in O(n) time. The construction of P(Tg) can be done in O(n2m) time
by Lemma 3.2. The number of paths P considered in the loop in lines (5)–(11) is at most nm by Lemma 3.2.
Therefore, the number of recursive calls of Find-Cycle(G, g′, k − 1) in line (7) is at most nm f n3. The depth
of the search tree is at most +log 1/ε,. Therefore, the total running time is nO(log 1/ε). This concludes the
proof.

When the function f is integer-valued, Theorem 1.1 (by setting ε = 1
w+1 with OPT f w f 2OPT, where

w = f(C) for the cycle C returned by the approximation algorithm for ε = 1/2) implies that a cycle of cost
OPT can be found in time nO(logOPT). In particular, when OPT = nO(1), we obtain a quasi-polynomial algorithm
computing the cycle of minimum submodular cost. For example, this holds if f is a rank function of a matroid.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited2220

D
o

w
n
lo

ad
ed

 0
6
/2

0
/2

5
 t

o
 1

6
9
.2

3
1
.1

8
6
.1

6
7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

v1 v2 vk+1

ek+1

p ...
... · · ·

...

Figure 1: Construction of the multigraph G(k, p).

Corollary 1.1. There is an algorithm that given an n-vertex graph G and an integer monotone submodular
function f : 2V (G) → Zg0 represented by an oracle, finds a cycle C in G with f(C) = OPT in time nO(logOPT).

Finally in this section, we observe that our results can be easily translated for the edge version of the problem,
even on multigraphs. For monotone submodular function f : 2E(G) → Rg0, we define OPT = min{f(C) : C ¦
E(G) is a cycle of G} in the same way as for the vertex costs.

Corollary 3.1. Let G be an m-edge multigraph, ε > 0, and f : 2E(G) → Rg0 a monotone submodular function
represented by an oracle. Then a cycle C in G with f(C) f (1 + ε) · OPT can be found in time mO(log 1/ε).

Proof. We construct a graph G′ by subdividing each edge of G once, that is, for each edge xy ∈ E(G), we introduce
a new vertex vxy, make vxy adjacent to x and y, and delete xy. For a subdivision vertex vxy, define e(vxy) = xy.

Let W be the set of subdivision vertices. We define g : 2V (G′) → Rg0 by setting g(X) = f({e(v) : v ∈ W ∩X}) for

each X ¦ V (G′). The definition implies that g : 2V (G′) → Rg0 is a monotone submodular function and that an
oracle for f can be translated into an oracle for g. There is one-to-one correspondence between cycles of G and
G′, because each cycle C ′ is obtained from a cycle C of G by subdividing edges and f(C) = g(C ′). Therefore, we
can apply Theorem 1.1 for G′ and g.

4 Lower bound

In this section we prove the lower bounds of Theorem 1.2 and Theorem 1.3. Both of these lower bounds will
follow from the same construction, although with different parameters.

We give the lower bounds for the setting where the function f is defined on the edges of a multigraph, which
then by Corollary 3.1 translates into a lower bound when the function is defined on vertices of a graph. In our
construction the function f is integer-valued.

Our lower bound is based on the following construction. For positive integers k and p we define a multigraph
G(k, p) with k+1 vertices and pk+1 edges (see Figure 1) and a monotone submodular function f : 2E(G(k,p)) → N

so that OPT(G(k, p), f) = 2k+1 − 1. Then, for each cycle C of length k + 1 of G(k, p) we define a monotone
submodular function fC : 2E(G(k,p)) → N so that OPT(G(k, p), fC) = 2k+1 − 2 and fC differs from f only on
the cycle C. Deciding whether an oracle represents the function f or one of the functions fC will then require
querying each cycle C of length k + 1 and there are pk such cycles in G(k, p).

Construction of G(k, p). The multigraph G(k, p) has vertex set {v1, v2, . . . , vk+1}. For every pair of consecutive
vertices vi, vi+1, 1 f i f k, there are p parallel edges Fi = {e1i , . . . , e

p
i } with endpoints vi and vi+1. One more edge

ek+1 connects v1 and vk+1, see Figure 1. In total, G(k, p) has k+1 vertices and m = pk+1 edges. The multigraph
G(k, p) contains pk cycles of length k + 1. Each such cycle passes through all the vertices of the multigraph in
the order v1, v2, . . . , vk+1, v1.

Constructions of f and fC . We define the following function f on the subsets X of E(G(k, p)). First, if
X ¦ E(G(k, p)) contains a cycle, i.e., |X| g k + 1 or there is i so that |X ∩ Fi| g 2, we define

f(X) = 2k+1 − 1.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited2221

D
o

w
n
lo

ad
ed

 0
6
/2

0
/2

5
 t

o
 1

6
9
.2

3
1
.1

8
6
.1

6
7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Otherwise, i.e., X ¦ E(G(k, p)) does not contain a cycle, we define

f(X) = 2k+1 − 2k+1−|X|,

and by definition we have that OPT(G(k, p), f) = 2k+1 − 1.
For a cycle C ¦ E(G(k, p)) of length |C| = k + 1, the function fC is defined as fC(X) = f(X) for X ̸= C,

and fC(C) = 2k+1 − 2. Clearly OPT(G(k, p), fC) = 2k+1 − 2, and this optimum is given uniquely by the cycle C.
It is clear from the definitions that the functions f and fC are monotone. Next we establish the

submodularities of f and fC . Note that it is sufficient to prove that fC is submodular, as then the submodularity
of f follows by writing f as a restriction of fC on G(k, p+ 1).

Lemma 4.1. The function fC is submodular.

Proof. To prove the submodularity of fC , we show that for every two sets X ¢ Y ¢ E(G(k, p)) and
e ∈ E(G(k, p)) \ Y ,

(4.3) fC(X ∪ {e})− fC(X) g fC(Y ∪ {e})− fC(Y).

Depending on X, Y , and e, we consider different cases.

Case 1: fC(X ∪ {e}) = 2k+1 − 1. Then also fC(Y ∪ {e}) = 2k+1 − 1, and as fC(X) f fC(Y) by monotonicity,
(4.3) follows.

Case 2: fC(Y) = 2k+1 − 1. In this case fC(Y) = fC(Y ∪ {e}), and (4.3) follows by the monotonicity of fC .

Case 3: fC(Y ∪ {e}) = 2k+1 − 1. If either fC(X ∪ {e}) = 2k+1 − 1 or fC(Y) = 2k+1 − 1, then we are done by the
previous cases. Otherwise, |X ∪ {e}| f |Y | f k + 1, and we consider two subcases.

Subcase 3a: X ∪ {e} = C. Then |X| = k and hence |Y | g k + 1. In this case because Y ̸= X ∪ {e},
fC(Y) = fC(Y ∪ {e}) = 2k+1 − 1, while fC(X) f fC(X ∪ {e}) by the monotonicity of fC .

Subcase 3b: X ∪ {e} ≠ C. In this case, X ∪ {e} does not contain a cycle, and therefore we have that
fC(X ∪ {e}) − fC(X) = 2k+1 − 2k+1−|X|−1 − (2k+1 − 2k+1−|X|) = 2k−|X| and |X| f k − 1. Then, if Y = C,
we have that fC(Y ∪ {e}) − fC(Y) = 1 f 2k−|X|. If Y ̸= C, then Y does not contain a cycle and we have
that fC(Y ∪ {e}) − fC(Y) = 2k+1 − 1 − (2k+1 − 2k+1−|Y |) < 2k+1−|Y | f 2k−|X|. (For the last inequality we use
|X| < |Y |.)

Case 4: None of the previous cases holds. In this case X ∪ {e} does not contain a cycle, so we have that
fC(X ∪ {e})− fC(X) = 2k−|X|. If Y ∪ {e} = C, then fC(Y ∪ {e})− fC(Y) = 2k+1 − 2− (2k+1 − 2k+1−k) = 0. If
Y ∪ {e} ≠ C, then fC(Y ∪ {e})− fC(Y) = 2k−|Y | f 2k−|X|.

Now each of the functions fC and the function f could be represented by the oracle, and the optimum depends
on whether the function represented by the oracle is f or one of the functions fC . Therefore, it remains to argue
that we cannot distinguish between f or one of fC in less than pk queries.

Lemma 4.2. Let g : 2E(G(k,p)) → N be a function represented by an oracle, with a promise that either g = f or
g = fC for some cycle C of G(k, p) of length |C| = k+1. It requires at least pk queries to the oracle to determine
if g = f .

Proof. Suppose the oracle answers the queries always according to the function f , and an algorithm terminates
after asking less than pk queries. Because G(k, p) has pk cycles of length k + 1, there exists some cycle C so
that the algorithm has not queried C, and therefore as f and fC are equivalent on all inputs except C, all the
answers are consistent with both f and fC . Therefore the algorithm cannot decide correctly whether g = f or
g = fC .

Next we summarize the lower bound that follows from the constructions of the multigraph G(k, p), the
functions f , and fC , and Lemma 4.2.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited2222

D
o

w
n
lo

ad
ed

 0
6
/2

0
/2

5
 t

o
 1

6
9
.2

3
1
.1

8
6
.1

6
7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Lemma 4.3. For any positive integers p, k, there exists a graph G with kp + k + 2 vertices and an integer
submodular function f : 2V (G) → N represented by an oracle so that deciding whether OPT(G, f) = 2k+1 − 2
or OPT(G, f) = 2k+1 − 1 requires at least pk queries to the oracle.

Proof. We take the multigraph G(k, p) with m = kp+1 edges and let f : 2E(G(k,p)) → N be a function represented
by an oracle. By Lemma 4.2, deciding whether OPT(G(k, p), f) = 2k+1−2 or OPT(G(k, p), f) = 2k+1−1 requires
pk queries to the oracle in the worst case. This construction is for a multigraph where the function is on the
edges, but by the argument of Corollary 3.1 the lower bound also holds for graphs with kp+ k+2 vertices where
the function is on the vertices.

By making use of Lemma 4.3, we establish Theorem 1.2 with the lower bound matching the algorithmic
bound of Theorem 1.1. We restate the theorem here.

Theorem 4.1. There is no algorithm computing a cycle of cost at most OPT on a given n-vertex graph and an
integer monotone submodular function f : 2V (G) → Zg0 represented by an oracle, using at most g(OPT)·no(logOPT)

queries to the oracle, for any computable function g.

Proof. We assume without loss of generality that g is non-decreasing and g(x) g x for every x ∈ Rg0. Assume
that there is an algorithm that makes at most t(OPT, n) = g(OPT) · no(logOPT) queries. Now, there exists some
large enough N and k′ so that t(OPT, n) < g(OPT) · n(log

2
OPT)/16 for all OPT g k′ and n g N . We apply

Lemma 4.3 with p = g(4k′) · N and k = +log2 k
′,. Let n = kp + k + 2 = g(4k′)N + +log2 k

′, + 2. Because
g is non-decreasing and g(x) g x for every x ∈ Rg0, we have that +log2 k

′, f k′ f g(4k′) and it holds that
N f n f 3g(4k′)N f (g(4k′) ·N)2 if N g 3. We get a graph with n vertices, where N f n f (g(4k′) ·N)2, and
optimum OPT with k′ f OPT f 4k′ in which the problem requires at least

(g(4k′) ·N)+log2
k′, g g(4k′) · (g(4k′) ·N)+log2

k′,−1 g g(OPT) · n(log
2
OPT)/16

queries to solve. This contradicts the existence of such an algorithm.

We then establish Theorem 1.3.

Theorem 4.2. There is no algorithm computing a cycle of cost at most OPT = O(n) on a given n-vertex graph
and an integer monotone submodular function f : 2V (G) → Zg0 represented by an oracle, using at most no(logn)

queries to the oracle.

Proof. Assume there is an algorithm that makes at most t(n) = no(logn) queries. Now, there exists a large enough
N so that t(n) < n(log

2
n)/4 for all n g N . However, applying Lemma 4.3 with p = N and k = +log2 N, gives

a graph with n vertices, where N f n f N2, and optimum OPT f 4n, in which the problem requires at least
N+log

2
N, g n(log

2
n)/4 queries to solve. This contradicts the existence of such an algorithm.

5 The wide family hitting problem

Motivated by the question whether Hedge Minimum Cycle admits a polynomial-time algorithm, and the fact
that our algorithm for monotone submodular functions is optimal already on a very restricted class of graphs
considered in Section 4, we study the complexity of Hedge Minimum Cycle on the subdivisions of G(k, p)
(see Figure 1). In this class, Hedge Minimum Cycle is equivalent to a problem which we call Wide Family

Hitting.
For an integer k and a universe U , we say that a family F of sets is k-wide if for any two distinct sets A,B ∈ F

it holds that |A ∪B| > k. In the Wide Family Hitting problem, the input consists of an integer k, a universe
U , and m k-wide families F1, . . . ,Fm over the universe U . The task is to decide if it is possible to select one set
from each family, i.e., sets S1 ∈ F1, S2 ∈ F2, . . . , Sm ∈ Fm so that |

⋃m
i=1 Si| f k. We denote the size of the input

by N =
∑m

i=1

∑

A∈Fi
|A|.

To see the relations between Hedge Minimum Cycle and Wide Family Hitting, we first show reduction
from Wide Family Hitting to Hedge Minimum Cycle. Consider m k-wide families F1, . . . ,Fm over the
universe U . We construct the vertex-colored graph G, where the vertices are colored by the elements of U , as
follows:

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited2223

D
o

w
n
lo

ad
ed

 0
6
/2

0
/2

5
 t

o
 1

6
9
.2

3
1
.1

8
6
.1

6
7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

• construct m+ 1 vertices v0, . . . , vm and color them by a special color c /∈ U ;

• for each i ∈ {1, . . . ,m}, construct |Fi| (vi−1, vi)-paths such that for every S ∈ Fi, we have a path with |S|
internal vertices colored by the elements of S ¦ U ;

• make v0 and vm adjacent.

Let also k′ = k + 1. It can be seen that G has a cycle C, whose vertices are colored by at most k′ colors, if and
only if there are Si ∈ Fi for i ∈ {1, . . . ,m} such that |

⋃m
i=1 Si| f k. To prove this, notice that because F1, . . . ,Fm

are k-wide, any cycle C in G containing vertices of at most k′ = k + 1 colors should contain (vi−1, vi)-paths for
each i ∈ {1, . . . ,m}. For every i ∈ {1, . . . ,m}, let Si ∈ Fi be the set of colors of the internal vertices of the
(vi−1, vi)-path in C. If C contains vertices of at most k′ = k + 1 colors, then |

⋃m
i=1 Si| f k. For the opposite

direction, let Si ∈ Fi for i ∈ {1, . . . ,m} be such that |
⋃m

i=1 Si| f k. Then we construct the cycle C in G by
concatenating the (vi−1, vi)-paths whose internal vertices are colored by the elements of Si and completing the
cycle by the addition of the edge v0vm. Clearly, the vertices of C are colored by at most k′ = k + 1 colors.

To reduce Hedge Minimum Cycle to Wide Family Hitting on subdivisions of the graphs G illustrated
on Figure 1, assume that G is of the following form:

• G has m+ 1 vertices v0, . . . , vm and v0 is adjacent to vm,

• for each for each i ∈ {1, . . . ,m}, G has a family of vertex-disjoint paths Pi such that each path has at least
one internal vertex.

Suppose also that c : V (G) → U is a coloring function that colors the vertices of G by colors from a set U . For
each i ∈ {1, . . . ,m}, we define Fi = {c(V (P)) : P ∈ Pi}, that is, Fi is the family of the sets of colors of the paths
from Pi. If C is a cycle of G, then either (i) C is formed by two paths P,Q ∈ Pi for some i ∈ {1, . . . ,m} or (ii) C
contains the concatenation of m paths Pi ∈ Pi for i ∈ {1, . . . ,m}. If we are looking for a cycle C containing at
most k colors, we can use brute force to check whether there is such a cycle of type (i), because the number of
such cycles is quadratic in the size of G. Suppose that this is not the case and we have (ii). Then each family Fi is
k-wide, and a cycle containing vertices of at most k colors exists if and only if there are Si ∈ Fi for i ∈ {1, . . . ,m}
such that |

⋃m
i=1 Si| f k.

We first show that in contrast to the lower bound from Theorem 1.3, the Wide Family Hitting problem is
fixed-parameter-tractable when parameterized by k. We use the following lemma for it.

Lemma 5.1. Let X ¦ U be a set and F a k-wide family of sets over U . There are at most 2|X| sets A ∈ F with
|A ∪X| f k and |A| f |X|.

Proof. Suppose there are sets A,B ∈ F with A∩X = B∩X, |A∪X| f k, |B∪X| f k, |A| f |X|, and |B| f |X|.
Then we have that

|A ∪B| = |A|+ |B| − |A ∩B| f |A|+ |B| − |A ∩X| f |A|+ |X| − |A ∩X| = |A ∪X| f k,

which would contradict the fact that F is k-wide. Therefore, all sets A ∈ F with |A∪X| f k and |A| f |X| have
a different intersection with X, implying that there are at most 2|X| of them.

We will also use the following lemma in both of the algorithms of this section.

Lemma 5.2. Let X ¦ U be a set with |X| f k and F a k-wide family of sets over U . For any two sets A,B ∈ F
it holds that |X ∪A| − |X|+ |X ∪B| − |X| > k − |X|.

Proof. Note that |X ∪A|+ |X ∪B| − |X| g |A ∪B| > k.

Now we give our FPT algorithm.

Theorem 5.1. There is a 2O(k log k)NO(1) time algorithm for Wide Family Hitting.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited2224

D
o

w
n
lo

ad
ed

 0
6
/2

0
/2

5
 t

o
 1

6
9
.2

3
1
.1

8
6
.1

6
7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Proof. First, we guess the largest set X = Si selected to the solution. Then we can remove all sets A from the
other families with |A| > |X| or |A ∪ X| > k. Therefore, as |X| f k, by Lemma 5.1, we can now assume that
|Fi| f 2k for each i.

Then, we process the families Fi in an order from i = 1 to i = m, accumulating a partial solution X being
the union of the selected sets so far. Suppose that at index i, the family Fi contains a set Si with Si ¦ X. Then,
we can greedily include Si to the solution. Otherwise, we branch on which set Si ∈ Fi we include to the solution,
which increases the size of our partial solution X. As we can increase X at most k times and |Fi| f 2k, this gives

a (2k)kNO(1) = 2O(k2)NO(1) time algorithm.
To optimize the algorithm to 2O(k log k)NO(1) time, we say that a set A ∈ Fi is light with respect to the

partial solution X if |X ∪A| − |X| f (k− |X|)/2. In particular, a set A is light if including it to X decreases the
remaining budget by at most half, while a set A is heavy if including it to X decreases the remaining budget by
more than a half. By Lemma 5.2, Fi contains at most one light set.

In the branching, we can select a heavy set at most O(log k) times, and otherwise we select a light set. As
there are 2k options only when we select a heavy set and only one option when we select a light set, the time
complexity becomes 2k(2k)O(log k)NO(1) = 2O(k log k)NO(1).

Then, we give a polynomial-time algorithm when |Fi| is bounded.

Theorem 5.2. Let |Fi| f d for every i. Then there is a kO(log d)NO(1) time randomized algorithm for Wide

Family Hitting.

Proof. As in the proof of Theorem 1.4, we again process the families Fi from i = 1 to i = m, but this time instead
of branching, we decide probabilistically which set to include in the solution.

At step i, let X ¦ U denote the accumulated partial solution so far (the union of the selected sets), and let
b = k−|X| be the remaining budget. Again, as in Theorem 1.4, we say that set A ∈ Fi is light if |X∪A|−|X| f b/2,
i.e., including A to the solution takes less than half of the remaining budget. Otherwise a set A ∈ Fi is heavy.
By Lemma 5.2, there is at most one light set in Fi.

First, if there is a set A ∈ Fi with A ¦ X, we can greedily select the set A. Otherwise, if b = 0 we must
return that there is no solution, and if b g 1, our algorithm selects a set from Fi as follows. If there is a light set
L ∈ Fi, let c = |X ∪ L| − |X| g 1 be the cost of L. Otherwise, we let c = b/2. Note that in both cases c f b/2.
By Lemma 5.2, the cost of any heavy set H ∈ F is |X ∪H| − |X| > b− c. Our algorithm includes the light set L
to the solution with probability b−c

b (if a light set exists), and any heavy set H with probability c
bd . Note that as

|Fi| f d, these probabilities sum up to a number at most 1.
We claim that the probability that our algorithm finds a solution if one exists is at least

1

2b
·

(

1

d

)1+log
2
b

.

We prove this by induction on b. The base case is that the set in Fi that belongs to the solution takes up all of
the remaining budget, in particular, that a heavy set H ∈ Fi with |X ∪H| − |X| = b is in the solution. In this
case, the algorithm is correct as long as it selects H at this step, as the remaining steps will be deterministic. As
c g 1/2 and b g 1, the probability of correctness is

c

bd
g

1

2b
·
1

d
g

1

2b

(

1

d

)1+log
2
b

,

so the base case is satisfied.
Otherwise, a set from Fi that does not take all of the remaining budget belongs to the correct solution.

Suppose this set is light. Now, by induction, the probability that the algorithm is correct is

b− c

b
·

1

2(b− c)
·

(

1

d

)1+log
2
(b−c)

=
1

2b
·

(

1

d

)1+log
2
(b−c)

g
1

2b
·

(

1

d

)1+log
2
b

,

so the induction holds.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited2225

D
o

w
n
lo

ad
ed

 0
6
/2

0
/2

5
 t

o
 1

6
9
.2

3
1
.1

8
6
.1

6
7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Then, suppose that the set from Fi that belongs to the correct solution is a heavy set H ∈ Fi. Note that in
this case the remaining budget is b − (|X ∪ H| − |X|) < b − (b − c) < c < b/2. By induction, the algorithm is
correct with probability

c

bd
·

1

2(b− (|X ∪H| − |X|))
·

(

1

d

)1+log
2
(b−(|X∪H|−|X|))

g
c

b
·
1

2c
·

(

1

d

)2+log
2
(b/2)

g
1

2b
·

(

1

d

)1+log
2
b

We have analyzed all cases in the induction, and therefore the algorithm is correct with probability
1
2b · (1/d)

1+log
2
b, and therefore (as initially b = k), repeating it 2k ·dO(log k) = kO(log d) times yields a correct result

wth constant probability.

6 Conclusion

We gave an nO(log 1/ε) time PTAS for the shortest monotone submodular cycle problem, and showed unconditional
lower bounds establishing that this algorithm is optimal even in a very restricted setting, in particular even when
the function is integer-valued, OPT = O(n), and the graph is planar and has bounded pathwidth.

We leave several open questions. The main question about minimum cycles is the complexity of Hedge

Minimum Cycle. From what we know, there is no evidence against the existence of a polynomial-time
algorithm. On the other hand, it also could be that our quasipolynomial-time algorithm for integer-valued
monotone submodular functions is also optimal for Hedge Minimum Cycle. This problem seems difficult, and
therefore we believe it is worth exploring even some special cases of it. In particular, we also ask if the Wide

Family Hitting problem admits a polynomial-time algorithm. While Theorem 1.4 shows that the special case
of Wide Family Hitting is fixed-parameter tractable, it remains a challenging question whether the Hedge

Minimum Cycle is fixed-parameter tractable in the general case. Of course, if the problem is in P this would
resolve all these questions.

In the other direction, towards showing the hardness of Hedge Minimum Cycle, we ask a purely
combinatorial question which is a prerequisite for showing the hardness. We say that a subset S of the hedges
is a minimal partial solution if |S| f k, and there is a pair of vertices s, t so that S induces a (s, t)-path, but no
subset of S induces an (s, t)-path. We ask if there is a construction of a graph with hedges where the number of
minimal partial solutions is superpolynomial. Note that if the number of minimal partial solutions is polynomially
bounded, then we can solve Hedge Minimum Cycle in polynomial time by a simple algorithm enumerating
them.

Acknowledgements

The research leading to these results has received funding from the Research Council of Norway via the project
BWCA (grant no. 314528), from the ANR project ESIGMA (ANR-17-CE23-0010), and from the French-German
Collaboration ANR/DFG Project UTMA (ANR-20-CE92-0027).

References

[1] H. Broersma, X. Li, G. J. Woeginger, and S. Zhang, Paths and cycles in colored graphs, Australas. J Comb.,
31 (2005), pp. 299–312. 3

[2] W. H. Cunningham, On submodular function minimization, Combinatorica, 5 (1985), pp. 185–192. 1
[3] R. Diestel, Graph Theory, 4th Edition, vol. 173 of Graduate texts in mathematics, Springer, 2012. 4
[4] E. W. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik, 1 (1959), pp. 269–271.

4
[5] M. L. Fredman and R. E. Tarjan, Fibonacci heaps and their uses in improved network optimization algorithms,

in 25th Annual Symposium on Foundations of Computer Science, West Palm Beach, Florida, USA, 24-26 October
1984, IEEE Computer Society, 1984, pp. 338–346. 5

[6] M. Ghaffari, D. R. Karger, and D. Panigrahi, Random contractions and sampling for hypergraph and hedge

connectivity, in Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
SIAM, 2017, pp. 1101–1114. 3

[7] G. Goel, C. Karande, P. Tripathi, and L. Wang, Approximability of combinatorial problems with multi-agent

submodular cost functions, in Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), IEEE, 2009, pp. 755–764. 1, 2

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited2226

D
o

w
n
lo

ad
ed

 0
6
/2

0
/2

5
 t

o
 1

6
9
.2

3
1
.1

8
6
.1

6
7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

[8] M. X. Goemans, N. J. A. Harvey, S. Iwata, and V. S. Mirrokni, Approximating submodular functions

everywhere, in Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM,
2009, pp. 535–544. 1

[9] M. Grötschel, L. Lovász, and A. Schrijver, The ellipsoid method and its consequences in combinatorial

optimization, Combinatorica, 1 (1981), pp. 169–197. 1
[10] S. Iwata, L. Fleischer, and S. Fujishige, A combinatorial strongly polynomial algorithm for minimizing

submodular functions, Journal of the ACM (JACM), 48 (2001), pp. 761–777. 1
[11] S. Iwata and K. Nagano, Submodular function minimization under covering constraints, in Proceedings of the 50th

Annual IEEE Symposium on Foundations of Computer Science (FOCS), IEEE, 2009, pp. 671–680. 1
[12] S. Iwata and J. B. Orlin, A simple combinatorial algorithm for submodular function minimization, in Proceedings

of the twentieth annual ACM-SIAM symposium on Discrete algorithms, SIAM, 2009, pp. 1230–1237. 1
[13] L. Jaffke, P. T. Lima, T. Masaŕık, M. Pilipczuk, and U. S. Souza, A tight quasi-polynomial bound for global

label min-cut, CoRR, abs/2207.07426 (2022). 3
[14] , A tight quasi-polynomial bound for global label min-cut, in Proceedings of the 23rd Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA), to appear, SIAM, 2023. 3
[15] S. Jegelka and J. Bilmes, Notes on graph cuts with submodular edge weights, in NIPS 2009 Workshop on Discrete

Optimization in Machine Learning: Submodularity, Sparsity Polyhedra (DISCML), 2009, pp. 1–6. 1, 3
[16] A. Schrijver, A combinatorial algorithm minimizing submodular functions in strongly polynomial time, Journal of

Combinatorial Theory, Series B, 80 (2000), pp. 346–355. 1
[17] Z. Svitkina and L. Fleischer, Submodular approximation: Sampling-based algorithms and lower bounds, SIAM

Journal on Computing, 40 (2011), pp. 1715–1737. 1
[18] L. A. Wolsey, An analysis of the greedy algorithm for the submodular set covering problem, Combinatorica, 2 (1982),

pp. 385–393. 1
[19] P. Zhang, J.-Y. Cai, L.-Q. Tang, and W.-B. Zhao, Approximation and hardness results for label cut and related

problems, Journal of Combinatorial Optimization, 21 (2011), pp. 192–208. 3

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited2227

D
o

w
n
lo

ad
ed

 0
6
/2

0
/2

5
 t

o
 1

6
9
.2

3
1
.1

8
6
.1

6
7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

