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1. Introduction

We consider a number of min-max coverage problems on graphs of bounded treewidth. The task is to find k objects

that together cover the entire vertex set of the graph, so that the largest one of the objects is as small as possible.

In general, the input graph G can have positive edge lengths d : E(G) → R
+ or be unweighted — in this paper, our

results are concerned with unweighted graphs, i.e., those where d(e) = 1 for every edge e. By varying the types of

objects used and by specifying additional information in the input, we obtain different problem formulations. For a

concrete example, in Min-Max Path Cover the task is to cover V(G) by k walks such that the length of the longest

walk (number of edges) is minimized. A walk is a sequence of vertices such that each pair of consecutive vertices are

adjacent. In Min-Max Tree Cover, the task is to cover V(G) by k trees, minimizing the number of edges in the largest

tree.
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Abstract

We consider a number of min-max coverage problems. In each problem, the input is an unweighted graph G and an integer k, and

possibly some additional information, such as a root vertex r. In the Min-Max Path Cover problem, the task is to cover all vertices

of the graph by k walks, minimizing the length of the longest walk. The variant of Min-Max Path Cover in which all walks start

and end at the same prescribed root vertex r is called the k-Traveling Salesmen Problem. In the Min-Max Tree Cover problem,

the task is to cover all vertices of the graph by k trees, minimizing the size (number of edges) of the largest tree. In the rooted

version, Min-Max k-Rooted Tree Cover, the input also contains k roots r1, . . . , rk, and the ith tree must contain the root ri. These

four problems are all known to be APX-hard and to admit a constant-factor approximation. In this paper, we initiate the systematic

study of these problems on trees and, more generally, on graphs of constant treewidth. As opposed to most graph problems, all

four of the above coverage problems remain NP-hard even when G is a tree. We obtain an nO(k)-time exact algorithm for all four

problems on graphs of bounded treewidth. Our main contribution is a quasi-polynomial-time approximation scheme (QPTAS) for

the k-Traveling Salesmen Problem, Min-Max Path Cover, and Min-Max Tree Cover on graphs of bounded treewidth.
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Min-Max Path Cover and Min-Max Tree Cover draw their motivation from applications in robotics, operations

research, and motion planning [1, 2, 3, 4]. Each walk in Min-Max Path Cover can correspond to the movement of a

robot or vehicle, while the vertices represent locations that need to be visited. If the robots all start simultaneously

and move at the same speed, then the maximum length of a walk corresponds to the time when the last location is

visited. In these applications, it is likely that the planner does not have full control over the starting/ending points of

the robots. Thus various rooted variants of these problems have been studied (see [5] and references within). In this

work, we consider the k-Traveling Salesmen Problem (k-TSP), which is the version of Min-Max Path Cover where

every walk must start and end at the same prescribed root vertex r. We also consider the Min-Max k-Rooted Tree

Cover problem, where the input contains k root vertices r1, r2, . . . , rk and the ith tree must contain ri.

All of the above problems depend only on the shortest-path metric of G. In other words, the optimal solution is the

same in G as it is in the complete graph with vertex set V(G) in which each edge uv has weight dG(u, v), i.e., the length

(sum of the weights) of the shortest path between u and v in G. For this reason, several works (e.g., [6, 5]) assume that

G is a metric — a complete graph whose edge lengths satisfy the triangle inequality. In such a graph, we can skip over

any vertex that has already been visited. This is likely the reason behind the slightly confusing name for Min-Max

Path Cover, considering that we cover the graph by walks rather than paths.

The above problems are all known to be NP-hard [5], even when the number of parts k is constant. At the same

time, for all of them, constant-factor approximations are known [6, 7]. Indeed, several of these problems have seen

a string of polynomial-time approximation algorithms, achieving better and better approximation ratios [8, 7, 6, 5].

For example, [8] and [6] each give a 4-approximation algorithm for Min-Max Tree Cover (with positive integer edge

weights), which are both improved upon by the 3-approximation presented in [7]. However, assuming P � NP, each

string of improvements has to converge, since these problems are all known to be APX-hard, even on unweighted

graphs [9]. For instance, in the case of Min-Max Tree Cover, the APX-hardness lower bound is 3
2
. This motivates the

study of min-max coverage problems on classes of graphs for which these problems become more tractable.

1.1. Our results

In this work, we initiate the systematic study of min-max coverage problems on unweighted trees and unweighted

graphs of constant treewidth. Unlike most graph problems, which become trivially solvable in polynomial time on

trees, all of the above problems remain NP-hard on trees. (This can be proved via a reduction from 3-Partition for

each problem — see the full version of the paper for details.) Therefore, we switch our focus to parameterized [10] and

approximation algorithms [11] for these problems on trees and graphs of bounded treewidth. Our first positive result

is an n4k+1ωO(kω)-time algorithm for a class of min-max coverage problems on graphs of treewidth ω. In particular,

this result implies a 2O(k)n4k+1-time algorithm on trees for all of the above problems: k-TSP, Min-Max Path Cover,

Min-Max Tree Cover, and Min-Max k-Rooted Tree Cover. Furthermore, if we define Map Visitation as the variant

of Min-Max Path Cover where the input contains k root vertices r1, r2, . . . , rk and the ith walk must start at ri (but

can end anywhere), then this algorithm patches an error in a claimed polynomial-time algorithm for Map Visitation

on trees with k = 2 [12]. In the full version of the paper, we also show two corresponding lower bounds: (1) the

above class of min-max coverage problems on trees is W[1]-hard1 parameterized by k; (2) assuming ETH, there is no

f (k)no(k/ log k)-time algorithm for this class of problems on trees.

Our main technical contribution is a quasi-polynomial-time approximation scheme (QPTAS) for a class of min-

max coverage problems on graphs of treewidth ω. The algorithm obtains a (1 + ϵ)-approximate solution in time

n · k(log n)2ωO(ω)/ε. This algorithm still works for most of the problems discussed so far (namely k-TSP, Min-Max Path

Cover, and Min-Max Tree Cover), but it is slightly less general than our exact algorithm. In particular, the QPTAS

fails for asymmetric coverage problems such as Min-Max k-Rooted Tree Cover. “Asymmetric” refers to the fact that

the different solution trees are no longer interchangeable, since distinct trees are allowed to have distinct roots. In the

full version of the paper, we show that the more general class of problems which allows asymmetry is APX-hard even

on unweighted trees.

1 This implies that there is no FPT algorithm (i.e., one with running time f (k)nO(1)) for this class of problems unless FPT = W[1].
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1.2. Our methods

The n4k+1ωO(kω)-time exact algorithm on graphs of treewidth ω is a fairly standard dynamic-programming algo-

rithm. We consider a rooted tree decomposition, and for every node t of the decomposition tree T we construct a family

of partial solutions for Gt, the subgraph of G induced by the union of all bags in the subtree of T rooted at t. The crux

of the algorithm is to group partial solutions into nkωO(kω) equivalence classes, such that any two partial solutions in

the same class are interchangeable (i.e., if one can be completed to an optimal solution then so can the other). Thus we

only keep at most one solution from each equivalence class at each node t. Let Xt be the bag at node t. The grouping

of partial solutions into equivalence classes is based on how many edges of Gt are visited by each walk/tree (the factor

nk in the number of equivalence classes comes from this), and on which vertices of Xt are in the “same component”

of the walk/tree.

While the exact algorithm is fairly standard, it serves as a warm-up for the QPTAS. The QPTAS is built on a

new twist to the technique of Lampis [13], who showed that for many problems that admit nω-time algorithms when

parameterized by treewidth ω, if that running time comes from ω numbers ranging between 1, . . . , n, then one can

often obtain (1 + ϵ)-approximation algorithms with running time f (ϵ, ω)nO(1). On the one hand, this technique seems

applicable to our setting since G has bounded treewidth and the hardness appears to come from large numbers. On the

other hand, this technique appears not to be applicable because ω is not the parameter in the exponent of n. In fact,

the problem is already NP-hard for ω = 1.

Following Lampis [13], we store approximate values of the costs (numbers of edges visited in Gt) in a partial

solution, in such a way that the error is at most 1 + ε. As is, this gives a running time of about (ωO(ω) · (log n)2)O(k),

when ε is fixed. To obtain a QPTAS, the crucial observation is that now, the number of essentially different ways

(types) that each of the k walks/trees can intersect with Gt is bounded by (log n)2ωO(ω). For symmetric coverage

problems with interchangeable parts (walks/trees), it is sufficient to store how many parts there are of each type. Since

there are (log n)2ωO(ω) types and at most k parts of each type, the number of equivalence classes (which dominates the

running time) drops down to k(log n)2ωO(ω)

.

To the best of our knowledge, this is the first use of the method of Lampis [13] to obtain an approximation algorithm

that runs in (quasi) polynomial time when the relevant parameter is unbounded. Typically, this method transforms

an exact XP algorithm into an FPT approximation algorithm that runs in exponential time when the parameter is

unbounded. However, we transform an exact XP algorithm (parameterized by k) into an approximation algorithm that

runs in quasi-polynomial time even when k = n. We believe this proof of concept will lead to further applications of

this method in the design of approximation algorithms.

2. Exact algorithm for Min-Max Coverage on graphs of bounded treewidth

We define a general problem framework called Min-Max Coverage, encompassing k-TSP, Min-Max Path Cover,

Min-Max Tree Cover, and Min-Max k-Rooted Tree Cover. In this setting, we wish to cover the vertices of the input

graph G by k walks/trees, which we call sections. This framework will allow us to exploit the strong similarities

between these four problems.

The input to Min-Max Coverage is a graph G, a positive integer k (the number of sections), an identifier ℓ ∈

{“Path Cover”, “Tree Cover”} that specifies which type of problem we are solving, a list of sets S 1, . . . , S k ⊆ V(G) of

allowable starting points, and a list of sets Z1, . . . ,Zk ⊆ V(G) of allowable ending points. (The starting/ending point

terminology here stems from Path Cover. For Tree Cover, we can think of these points as roots.) Naturally, to solve

k-TSP or Min-Max Path Cover we set ℓ = “Path Cover”, and to solve either of the Tree Cover problems, we set

ℓ = “Tree Cover”.

For k-TSP, we set S i = Zi = {r} for all i ∈ [k]. For Min-Max Path Cover and for Min-Max Tree Cover, we set

S i = Zi = V(G) for all i ∈ [k]. For Min-Max k-Rooted Tree Cover, we set S i = Zi = {ri} for each i ∈ [k]. This

framework also encompasses more general problems than the four above, such as the version of Path Cover in which

each walk is given an arbitrary set of allowable starting points and allowable ending points. We can formulate similar

variations of Tree Cover as well.

Feasible solutions can be expressed as follows. A function-tuple is a k-tuple of functions f = ( f1, . . . , fk), where

fi : E(G) → {0, 1, 2} for all i ∈ [k]. For such a function fi, we define G fi to be the subgraph of G whose edge set is
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{e ∈ E(G) : fi(e) ≥ 1} and whose vertex set consists of just the endpoints of those edges. In addition, for a function fi
and a vertex v ∈ V(G), we define deg fi

(v) �
∑

e inc with v fi(e). Here the sum is over all edges incident with v.

Definition 1. A feasible solution to Min-Max Coverage is a function-tuple f = ( f1, . . . , fk), along with a starting

point si ∈ S i and an ending point zi ∈ Zi for all i ∈ [k], that satisfy the following:

1. The graph G fi is connected for all i ∈ [k].

2. For all v ∈ V(G) \ {s1, . . . , sk, z1, . . . , zk}, deg fi
(v) ≥ 1 for some i ∈ [k], i.e., every vertex is covered.

3. For all i ∈ [k], one of the following is true:

• deg fi
(si) ≥ 1 and deg fi

(zi) ≥ 1,

• si = zi, and fi(e) = 0 for all e ∈ E(G).

4. If ℓ = “Path Cover”, then for all i ∈ [k], the following statements hold:

• deg fi
(v) is even for all v ∈ V(G) \ {si, zi},

• if si = zi, then deg fi
(si) and deg fi

(zi) are both even,

• if si � zi, then deg fi
(si) and deg fi

(zi) are both odd.

The third requirement checks that each section respects the starting and ending points. The fourth ensures that for

each section in the covering, all degrees are even if that section is a closed walk, and all vertices except for si and zi

have even degree if si � zi. Finally, the objective is to minimize maxi∈[k]

∑
e∈E(G) fi(e), i.e., minimize the size of the

largest section in the covering. For a feasible solution f , the cost of f refers to the quantity maxi∈[k]

∑
e∈E(G) fi(e).

Theorem 1. Let G be an n-vertex graph, given with its tree decomposition of width ω. Then Min-Max Coverage on

G with k sections can be solved in time n4k+1ωO(kω).

This algorithm will be precisely what we need to solve the four problems of interest. Specifically, for k-TSP or

Min-Max Path Cover, each ith walk can be represented by a function fi : E(G) → N≥0. For each e ∈ E(G), fi(e)

specifies how many times the edge e is visited by the ith walk. In fact, for both of these problems, it is sufficient to

only consider feasible solutions that visit each edge at most twice. Indeed, given a feasible solution that visits some

edge more than twice, by Euler’s theorem, we can convert this into a solution of the desired form with at most the

same cost in the following way: for each e ∈ E(G), if fi(e) is odd (resp. even) and nonzero, then set fi(e) = 1 (resp.

fi(e) = 2). In both Tree Cover problems, each ith tree can be represented by a function fi : E(G) → {0, 1}. We let

fi(e) = 1 if e belongs to the ith tree, and fi(e) = 0 otherwise. We can also solve this problem in the framework that

allows fi to map to {0, 1, 2} since we can assume each fi in the optimal solution maps to {0, 1}. In addition, we can

assume the optimal solution is acyclic since any feasible solution containing a cycle can be improved to obtain an

acyclic solution. Therefore, Theorem 1 immediately implies the following corollary:

Corollary 2. Let G be an n-vertex graph, given with its tree decomposition of width ω. Then k-TSP, Min-Max Path

Cover, Min-Max Tree Cover, and Min-Max k-Rooted Tree Cover can all be solved on G in time n4k+1ωO(kω). Here

k is the number of walks/trees in the covering.

To prove Theorem 1, suppose we have an algorithm for the special case in which each set S i, Zi contains a single

vertex. Given such an algorithm, we can guess the starting and ending point for each section to solve the problem with

arbitrary sets S i, Zi, incurring only an additional factor of n2k in the running time. Therefore, it is sufficient to prove

the following:

Theorem 3. Let G be an n-vertex graph, given with its tree decomposition of width ω. Then Min-Max Coverage with

k sections on G with singleton starting point sets {s1}, . . . , {sk} and ending point sets {z1}, . . . , {zk} can be solved in

time n2k+1ωO(kω).

Exact algorithm overview. At each node in the tree decomposition, we store a collection of “signatures” representing

partial solutions. The signature of a partial solution includes the cost (so far) for each section, as well as information
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that captures in what ways it can be feasibly extended to the remainder of G. The algorithm moves upward from the

leaves to the root, so that in the end the set of signatures at the root allows us to solve the coverage problem for G.

We assume we are given a nice tree decomposition T = (T, {Xt}t∈V(T )) of G with introduce vertex nodes, intro-

duce edge nodes, forget vertex nodes, and join nodes (see [10] for details). In particular, we assume our nice tree

decomposition has the following properties: every edge in E(G) is introduced exactly once, and every vertex in V(G)

is forgotten exactly once, although a vertex may be introduced multiple times. For t ∈ V(T ), let Et ⊆ E(G) be the set

of edges introduced in the subtree of T rooted at t, and let Yt ⊆ V(G) be the set of vertices forgotten in the subtree of

T rooted at t.

A partial solution with respect to a node t ∈ V(T ) is a k-tuple of functions f = ( f1, . . . , fk), where fi : Et → {0, 1, 2}

for all i ∈ [k]. We no longer need to include si and zi in a (partial or feasible) solution since those are now given in the

input. For a partial solution f = ( f1, . . . , fk) with respect to t, and for v ∈ V(G), we define the degree of each fi at v

as follows: deg fi
(v) �

∑
e∈Et , e inc with v fi(e). This generalizes the definition of deg fi

(v) above, since at the root r of the

tree decomposition, we have Er = E(G). For a partial solution f = ( f1, . . . , fk) with respect to t, for i ∈ [k], we define

G
(t)

fi
to be the subgraph of G whose edge set is {(u, v) ∈ E(G) : fi(u, v) ≥ 1 and u, v ∈ Yt} and whose vertex set consists

of the endpoints of those edges. Intuitively, G
(t)

fi
consists of the components of G fi that have been forgotten.

Definition 2. Let f = ( f1, . . . , fk) be a partial solution with respect to t. We say that f is feasible if it satisfies the

following requirements for every v ∈ Yt:

1. The graph G
(t)

fi
is connected for all i ∈ [k].

2. If v � {s1, . . . , sk, z1, . . . , zk}, then deg fi
(v) ≥ 1 for some i ∈ [k].

3. For all i ∈ [k] such that v ∈ {si, zi} and deg fi
(v) = 0, we have si = zi, and fi(e) = 0 for all e ∈ Et.

4. If ℓ = “Path Cover”, then for all i ∈ [k], the following holds:

• if v � {si, zi} or v = si = zi, then deg fi
(v) is even,

• if v ∈ {si, zi} and si � zi, then deg fi
(v) is odd.

Intuitively, a feasible partial solution is one in which the forgotten vertices have been covered in a “feasible” way.

Note that a partial solution, or even a feasible partial solution, does not necessarily extend to some feasible solution

for G. However, at the root of the tree decomposition, feasible partial solutions with respect to the root are exactly the

same as feasible solutions for G.

Let f = ( f1, . . . , fk) be a partial solution with respect to t. The weight of fi on Et is defined as w fi (Et) �
∑

e∈Et
fi(e).

In words, this is the cost of section i, restricted to edges in Et. We define E
(0)
t to be the set of edges in Et having neither

endpoint in the bag Xt, and we define E+
t,i
� {e ∈ Et : fi(e) ≥ 1}, i.e., this is the subset of Et consisting of edges that

section i covers at least once. In the following, the phrases in normal text are the formal definition, and the phrases in

italics are intuition.

Definition 3. Suppose f = ( f1, . . . , fk) is a partial solution with respect to some t ∈ V(T ). The signature of f consists

of five components:

1. A k-tuple of costs (c1, . . . , ck), where ci = w fi (Et) for each i ∈ [k], i.e., ci is the cost of section i on the edges

introduced thus far.

2. For each v ∈ Xt, i ∈ [k], we have a boolean bv,i, where bv,i = 1 if and only if deg fi
(v) ≥ 1.

3. For each v ∈ Xt, i ∈ [k], we have a boolean pv,i, where pv,i ≡ deg fi
(v) (mod 2).

4. For each i ∈ [k], we have a boolean qi, where qi = 1 if and only if either one of the following holds:

• There exists an edge e ∈ E
(0)
t such that fi(e) ≥ 1 and such that there is no path in G from an endpoint of e

to a vertex in Xt using only edges from E+
t,i

, i.e., section i has been forgotten and is disconnected from Xt.

• We have si = zi ∈ Yt, and deg fi
(si) = 0, i.e., section i is the single vertex si = zi, and this vertex has been

forgotten.
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5. For each i ∈ [k], we have a partition Pi of Xt; for each pair of vertices u, v ∈ Xt, u and v belong to the same part

in Pi if and only if there exists a path from u to v in G using only edges from E+
t,i

, i.e., u and v belong to the

same part if and only if there is a path from u to v using only (introduced) edges from section i; in particular, any

vertex not covered by section i belongs to a singleton part in Pi.

For a partial solution f whose k-tuple of costs in its signature is (c1, . . . , ck), the cost of f is maxi∈[k] ci. At each

node t ∈ T , we store the set of all signatures of feasible partial solutions with respect to t that have cost at most 2n− 2.

We denote this set by c[t]. We can jettison any solutions of cost greater than 2n− 2 since whenever a feasible solution

exists, there must be a feasible solution of cost at most 2n − 2 (in particular, one can be obtained from a spanning

forest of G). This means there are at most (2n)k possible k-tuples of costs for a signature at a given node. Overall, one

can show that there are at most nkωO(kω) distinct possible signatures at each node, which leads to the desired running

time. The full details of the exact algorithm (including how the signatures are computed at each type of node in the

tree decomposition), as well as the running time analysis and the proof of correctness, can all be found in the full

version of the paper. What follows is a brief overview of the proof of correctness.

Soundness and completeness. For a feasible solution f = ( f1, . . . , fk) for G and a node t ∈ V(T ), we say f restricted

to Et to refer to the partial solution ( f1|Et
, . . . , fk |Et

), and we denote this by f |Et
. For t ∈ V(T ), we say that c[t] contains

a complete set of signatures for t if the following is true: for every feasible solution f for G of cost at most 2n− 2, c[t]

contains the signature of f |Et
with respect to t. For the root r of T , we say that c[r] is a sound set of signatures for r if

the “converse” is true: for every signature Π ∈ c[r], there exists a feasible solution f such that Π is the signature of f

with respect to r. In the full version of the paper, we prove the following two lemmas:

Lemma 4. For all t ∈ V(T ), c[t] contains a complete set of signatures for t.

Lemma 5. At the root r of T , c[r] is a sound set of signatures for r.

Although we only prove soundness for the root of the tree decomposition, the stronger statement mentioned above

in fact holds: at every node t, c[t] is exactly the set of all signatures of feasible partial solutions with respect to t of

cost at most 2n − 2. We mention this because it may provide some intuition for which signatures are stored at each

node, and which are filtered out.

3. QPTAS for SymmetricMin-Max Coverage on graphs of bounded treewidth

In our exact algorithm, the nO(k) bottleneck in the running time comes from the fact that there are (2n)k possibilities

for the k-tuple of costs in each signature. We labeled the sections as 1, 2, . . . , k, and the signature of a partial solution

included some information about each section i, including its cost ci. However, we could have taken a slightly different

approach. We could have defined the “type” of a section to be its cost ci along with the booleans and partition for that

particular section, and then we could have defined the signature of a partial solution to keep track of how many

sections there are of each type. This would have saved space in the dynamic-programming table by a factor of up to k!

in symmetric instances, which is quite small considering the running time of the exact algorithm, so we chose to label

the distinct sections for a slightly cleaner presentation. However, in our approximation algorithm, we will round up

each cost ci to an approximate value in such a way that there are only O
( (log n)2

ε

)

distinct possible approximate costs,

rather than O(n) possibilities. Therefore, taking the latter approach with types will lead to a dramatic time savings.

To ensure that we can group together sections of the same type, we restrict our attention to symmetric coverage

problems where the sections are interchangeable according to their allowable starting and ending points. Our QPTAS

solves the problem of SymmetricMin-Max Coverage, which is defined to include all instances of Min-Max Coverage

in which the starting and ending point sets are symmetric, i.e., we have sets S and Z such that S i = S and Zi = Z for

all i ∈ [k].

Theorem 6. Let G be an n-vertex graph, given with its tree decomposition of width ω. Given any ε > 0, for the

problem of Symmetric Min-Max Coverage on G with k sections, one can compute a (1 + ε)-approximate solution in

time n · k(log n)2ωO(ω)/ε.

In particular, Theorem 6 immediately implies the following corollary:
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Corollary 7. Let G be an n-vertex graph, given with its tree decomposition of width ω. Given any ε > 0, for the

problems k-TSP, Min-Max Path Cover, and Min-Max Tree Cover on G, one can compute a (1 + ε)-approximate

solution in time n · k(log n)2ωO(ω)/ε. Here k is the number of walks/trees in the covering.

QPTAS algorithm overview. At each node in the tree decomposition, we store a collection of “approximate signa-

tures” representing partial solutions, each of which keeps track of the number of sections of each “approximate type.”

The approximate type of a section contains an approximation of its cost ci, as well as its booleans and partition. This

allows us to handle sections having the same approximate type collectively, rather than storing information about

each section individually. This idea is based on the technique of Lampis [13] in which costs are computed using

approximate addition trees.

We first modify the given tree decomposition so that it has depth d = O(ω log n). This will allow us to keep the

magnitude of the round-off errors under control as we proceed up the decomposition tree. To see why this leads to a

(1+ ε)-approximate solution, suppose we have a partial solution whose k-tuple of costs is (c1, . . . , ck). Let δ = ε

2d
. We

round each cost ci up to the nearest power of 1+ δ so that in the resulting k-tuple (c̃1, . . . , c̃k), there are now only about

log1+δ(2n) possible “buckets” for each c̃i. This rounding procedure introduces a multiplicative error of at most 1 + δ

at each level (i.e., distance from the root) of the tree decomposition. Since we have chosen δ so that (1 + δ)d ≤ 1 + ε,

this gives a multiplicative error of at most 1 + ε at the root.

Running time. The running time hinges on the number of distinct possible approximate costs. One can show that this

value is essentially log(1+δ)(2n) ≤
4(log n)2

ε
. Hence there are k(log n)2ωO(ω)/ε possible approximate signatures at each node,

since each signature stores the number of sections of each approximate type: clearly there are at most k sections of

each type, and one can show that there are at most
(log n)2

ε
·ωO(ω) possible types. This gives us the claimed running time.

The factor of n appears in the running time since we can assume there are O(n) nodes in the given tree decomposition

[10].

3.1. QPTAS setup, definitions, and algorithm

At the start of the QPTAS, we use the following result (Lemma 2.2 in [14]) to obtain a tree decomposition of depth

O(log n) for G. This result is originally a parallel algorithm, but here we use its sequential form.

Proposition 8 (Bodlaender and Hagerup [14]). There is an algorithm that, given a tree decomposition for G of width

ω, finds a rooted binary-tree decomposition of G of depth O(log n) and width at most 3ω + 2 in O(ωn) time.

From this tree decomposition of depth O(log n), we can now obtain a nice tree decomposition T = (T, {Xt}t∈V(T )) of

G of depth d = O(ω log n) and width at most 3ω+2 in time O(ω2n) (Lemma 7.4 in [10]). This nice tree decomposition

T has introduce vertex nodes, introduce edge nodes, forget vertex nodes, and join nodes. This is the tree decomposition

that will be used from now on.

Next, we describe our notions of approximate costs, types, and signatures. As mentioned above, let δ = ε

2d
. For

t ∈ V(T ), let Vt ⊆ V(G) be the set of vertices introduced in the subtree of T rooted at t. Recall that Et ⊆ E(G) is the

set of edges introduced in this subtree, and recall that Yt ⊆ V(G) is the set of vertices forgotten in this subtree.

Since S and Z can now contain multiple vertices, we must extend the definition of a partial solution slightly.

From now on, a partial solution with respect to t consists of a k-tuple of functions ( f1, . . . , fk) as before, where

fi : Et → {0, 1, 2} for all i ∈ [k], and in addition, we include the values of the starting and ending points s1, . . . , sk ∈

(S ∩ Xt) ∪ {null, defined} and z1, . . . , zk ∈ (Z ∩ Xt) ∪ {null, defined}. The null values allow for the possibility of later

extending some sections to start or end at a vertex outside of Vt. A value of defined indicates that this staring or ending

point belongs to Yt = Vt \ Xt (in this case we do not need to store the exact value).

Definition 4. Suppose f = (( f1, . . . , fk), (s1, . . . , sk), (z1, . . . , zk)) is a partial solution with respect to some t ∈ V(T ).

Fix i ∈ [k]. A semi-approximate type of section i for the partial solution f consists of six components:

1. A nonnegative integer B that satisfies w fi (Et) ≤ B ≤ (1 + δ)d′w fi (Et), where d′ is the distance from t to its lowest

leaf descendant in the tree decomposition. This is an approximation of w fi (Et), i.e., this tells us which bucket

section i falls into according to its cost on edges introduced thus far.

2. For each v ∈ Xt, we have a boolean bv, where bv = 1 if and only if deg fi
(v) ≥ 1.
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3. For each v ∈ Xt, we have a boolean pv, where pv ≡ deg fi
(v) (mod 2).

4. A boolean q, where q = 1 if and only if either one of the following holds:

• There exists an edge e ∈ E
(0)
t such that fi(e) ≥ 1 and such that there is no path in G from an endpoint of e

to a vertex in Xt using only edges from E+
t,i

.

• We have si = zi ∈ Yt and deg fi
(si) = 0.

5. A partition P of Xt; for each pair of vertices u, v ∈ Xt, u and v belong to the same part in P if and only if there

exists a path from u to v in G using only edges from E+
t,i

.

6. A starting point s and an ending point z, where s = si and z = zi.

A section i in a partial solution f can have various possible semi-approximate types since there may be various

values of B that satisfy w fi (Et) ≤ B ≤ (1 + δ)d′w fi (Et). However, for each section in f , there is one value of B that is

computed by our algorithm, at each node t. The semi-approximate type whose first component is that particular value

of B is called the approximate type of section i in f .

Definition 5. Suppose f = (( f1, . . . , fk), (s1, . . . , sk), (z1, . . . , zk)) is a partial solution with respect to some t ∈ V(T ).

The approximate signature of f is the multiset {α : α is the approximate type of some section in f }. The multiplicity

of each approximate type α in this multiset is the number of sections having approximate type α in f . Thus the sum

of the multiplicities is k.

As mentioned above, at each node in the tree decomposition, we store a set of approximate signatures, denoted by

c[t], representing partial solutions with respect to t. We compute c[t] bottom-up, from the leaves to the root. The full

details of the algorithm, as well as the running time analysis and the proof of correctness, can all be found in the full

version of the paper.

4. Conclusion

Our main result is a QPTAS for Symmetric Min-Max Coverage on graphs of bounded treewidth. This leaves a

natural open problem — can the QPTAS be improved to a PTAS? The APX-hardness result for AsymmetricMin-Max

Path Cover shows that such a PTAS would need to exploit the symmetries between different solution objects.
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