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Given a graph G and an integer k , the Interval Vertex Deletion (IVD) problem asks whether there exists

a subset S ⊆ V (G ) of size at most k such that G − S is an interval graph. This problem is known to be NP-

complete (according to Yannakakis at STOC 1978). Originally in 2012, Cao and Marx showed that IVD is oxed

parameter tractable: they exhibited an algorithm with running time 10knO (1) . The existence of a polynomial

kernel for IVD remained a well-known open problem in parameterized complexity. In this article, we settle

this problem in the aormative.
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1 INTRODUCTION

In a graph modiocation problem, the input consists of an n-vertex graph G and an integer k . The
objective is to determine whether k modiocation operations—such as vertex deletions, or edge
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11:2 A. Agrawal et al.

deletions, insertions or contractions—are suocient to obtain a graph with prescribed structural
properties such as being planar, bipartite, chordal, interval, acyclic, or edgeless. Graph modioca-
tion problems include some of the most basic problems in graph theory and graph algorithms.
Unfortunately, most of these problems areNP-complete [45, 53]. Therefore, they have been studied
intensively within algorithmic paradigms for coping with NP-completeness [22, 26, 48], including
approximation algorithms, parameterized complexity, and algorithms for restricted input classes.
Graph modiocation problems have played a central role in the development of parameterized

complexity (see Section 1.2). Here, the number of allowed modiocations, k , is considered a pa-

rameter. With respect to k , we seek a Fixed Parameter Tractable (FPT) algorithm, namely an

algorithm whose running time has the form f (k )nO (1) for some computable function f . One way
to obtain such an algorithm is to exhibit a kernelization algorithm, or kernel. A kernel for a graph
problem Π is an algorithm that given an instance (G,k ) of Π runs in polynomial time and outputs
an equivalent instance (G ′,k ′) of Π such that |V (G ′) | and k ′ are upper bounded by f (k ) for some
computable function f . The function f is called the size of the kernel, and if f is a polynomial
function, then we say that the kernel is a polynomial kernel. A kernel for a problem immediately
implies that it admits an FPT algorithm, but kernels are also interesting in their own right. In par-
ticular, kernels allow us to model the performance of polynomial-time pre-processing algorithms.
The oeld of kernelization has received a signiocant amount of attention, especially after the in-
troduction of methods for showing kernelization lower bounds [6, 15, 16, 19, 25, 30, 31]. We refer
to the surveys [24, 29, 41, 46], as well as the books [13, 18, 20, 51], for a detailed treatment of the
area of kernelization. In this article, we study the kernelization complexity of modiocation (using
vertex deletions) to interval graphs. A graph is an interval graph if it is the intersection graph of
intervals on the real line. Formally, we study the following problem.

Interval Vertex Deletion (IVD) Parameter: k

Input: A graph G and an integer k .
Question: Does there exist a subset S ⊆ V (G ) of size at most k such that G − S is an interval
graph?

Due to their intriguing combinatorial properties and many applications in diverse areas, such
as industrial engineering and archeology [5, 38], the class of interval graphs is perhaps one of
the most studied graph classes [8, 28]. Whether Interval Vertex Deletion (IVD) admits an
FPT algorithm has been a long-standing open problem in the area until it was resolved by Cao and
Marx [11], who gave an algorithmwith running time O (10kn9). Subsequently, Cao [9] designed an
FPT algorithm with linear dependence on the input size, as well as slightly better dependence on
the parameter k . More precisely, Cao9s algorithm has running time O (8k (n+m)). A natural follow-
up question to this work, explicitly asked multiple times in the literature [14, 32, 34], is whether
IVD admits a polynomial kernel. In this article, we resolve this question in the aormative.

Theorem 1. IVD admits a polynomial kernel.

1.1 Methods

The orst ingredient of our kernelization algorithm is the factor 8 polynomial-time approximation
algorithm for IVD by Cao [9] (Theorem 6.1). We use this algorithm to obtain an approximate
solution of size at most 8k , or conclude that no solution of size at most k exists. By re-running
the approximation algorithm on the graph with some of the vertices marked as <undeletable,= we
grow our approximate solution to a 9-redundant solution M of size O (k10). Here, 9-redundancy
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Fig. 1. The set of obstructions for an interval graph.

roughly means that for every subsetW ⊆ M of size at most 9, either M \W is also a solution or
every solution S ′ of size at most k + 2 has non-empty intersection withW .1

Our kernelization heavily uses the characterization of interval graphs in terms of their forbidden
induced subgraphs, also called obstructions. Speciocally, a graph H is an obstruction to the class of
interval graphs ifH is not an interval graph, and for every vertexv ∈ V (H ) we have thatH −{v} is
an interval graph. A graphG is an interval graph if and only if it does not contain any obstruction
as an induced subgraph. The set of obstructions to interval graphs have been completely charac-
terized by Lekkeikerker and Boland [44]. It consists of the long claw, the whipping top, the net, and
the tent, as well as three inonite families of graphs: the single-dagger asteroidal witness ( -AW), the
double-dagger asteroidal witnesses (!-AW), and the cycle of length at least 4 (Figure 1). (The vertices
t�, tr , t in a  -AW and a !-AW are said to form an asteroidal triple.)

Having a 9-redundant solution yields the following advantage. In several places, we remove a
carefully chosen vertex v � M from G and claim that G − {v} has a solution of size at most k
if and only if G does. One direction of the equivalence is trivial. The interesting direction is to
show that a solution X of size at most k to G − {v} implies the existence of a solution of size at
most k for G. The starting point for such an analysis is to ask why X is not already a solution
for G. The only possible reason is that G − X contains an obstruction O, and O must contain v .
We claim that O contains at least 10 vertices from M . Suppose not, then letW be the intersection
of M and O. We know that (G − (M \W )) contains O, and therefore it is not an interval graph.
Hence, by the 9-redundancy ofM , this implies that X (being a solution of size at most k + 2) must
intersect O, which contradicts the choice of O. Thus, in this analysis, we only need to care about
large obstructions that, furthermore, have a large intersection with M . This is crucial throughout
the design and analysis of the kernel.
We then proceed to classify the connected components of G − M based on whether they are

modules in G or not. (Recall that a module is a set X such that all vertices in X have the same
neighbors outside X .) For each component C that is not a module, there is an edge (u,v ) in C and
a vertex w in M such that w is adjacent to u but not to v . Thus, if there are more than (k + 2) |M |

1The precise deonition in Section 3 contains another condition that is not specioed in Section 1 for the sake of clarity of

exposition.
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11:4 A. Agrawal et al.

non-module components in total, then there must exist k+3 non-module components and a vertex
w ∈ M such that each of these components has an edge (u,v ), where w is adjacent to u but not
to v . However, this means that for every subset S ⊆ V (G ) of size at most k , either w ∈ S or G − S

contains a long claw (whose center c is w) and hence not interval. It follows that w must belong
to every solution of size at most k + 2; thus, we can simply remove w and decrease the budget
k by 1. Hence, the number of non-module components can be bounded by (k + 2) |M |, which is
polynomial in k .

AsG−M is an interval graph, an obstruction cannot be entirely contained inG−M . In particular,
if an obstruction contains a vertex from a connected component in G −M that is a module in G,
then this obstruction must also contain a vertex from M . From the preceding, we can obtain that
every obstruction (with more than four vertices) can intersect every module component in at most
one vertex. Furthermore, there is no point in keeping more than k + 1 copies of any vertex, and
this allows us to reduce the module components to cliques of size k + 1.
We are left with the following situation. We have a 9-redundant solution M of size O (k10). At

most O (k |M |) components of G −M are not modules, but these components could be arbitrarily
large. The remaining components are all modules that are cliques of size at most k + 1; thus, the
module components are structured and small, but there could be arbitrarily many of them. This
means that we are left with two tasks: (i) reduce the number of module components, and (ii) reduce
the size of the non-module components. These two tasks can be approached separately, and both
turn out to be non-trivial. Since both tasks are quite technically involved, we only give a few
highlights in the remainder of this overview.

Bounding the Number of Module Components. Consider orst the case where there are no non-
module components at all, and every module component is a single vertex. In this case, G −M is
edgeless, so M is a vertex cover of G. The kernelization complexity of even this very special case
was asked as an open problem by Fomin et al. [21].

A key ingredient in our solution to this special case is a new bound for the setting considered
in the classic two families theorem of Bollobás [7]. Suppose there are two families of sets over a
universe U , A1, . . . ,Am and B1, . . . ,Bm such that every set Ai has size p, every set Bj has size q,
and for every i, the setsAi and Bi are disjoint, whereas for every i � j, the setsAi and Bj intersect.

The two families theorem gives an upper bound of
(

p+q
p

)

for the sizem of the family. The upper

bound onm is independent of the universe size, and this has been extensively used in the design of
parameterized algorithms [23, 49]. Further, when p or q is a constant, the bound is polynomial in
p + q, and this has been extensively used in kernelization [42].

In our setting, neither the sets A1, . . . ,Am nor the sets B1, . . . ,Bm have constant cardinality.
However, we know that for every i � j, |Ai ∩ Bj | ∈ {1, 2}. We prove that in this case, the bound is
O ( |U |2). More generally, we prove the following.

Lemma 1.1 (Bounded Intersection Two Families Lemma). Let A1, . . . ,Am and B1, . . . ,Bm be

families over a universe U such that (i) for every i ≤ m, Ai ∩ Bi = ∅, and (ii) for every j � i ,

|Ai ∩ Bj | ∈ {1, . . . , c}. Then,m ≤
∑c

t=0

(

|U |
t

)

.

Comparing Lemma 1.1 with the two families theorem, the bound in Lemma 1.1 does depend on
the universe size |U |. However, the exponent of |U | only depends on the maximum cardinality c

of the intersection between the sets Ai and Bj .
In the setting of kernelizing IVD parameterized by the size of a vertex cover M , the size of the

kernel is intimately linked tom for the case where A1, . . . ,Am is a collection of cliques in G[M],
whereas B1, . . . ,Bm is a collection of induced paths. Since a clique can only intersect an induced
path in at most two vertices, we can apply Lemma 1.1 with c = 2, thereby obtaining an O ( |M |2)
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bound form and (after a signiocant amount of additional eforts, which we skip in this overview)
a polynomial bound on the kernel size.
The kernel for IVD parameterized by the size of a vertex cover quite simply translates into a

procedure that bounds the number, and therefore the total size, of module components ofG−M .We
remark that because the number of non-module components is bounded by O (k |M |), by bounding
the number of module components we also bound the total number of components ofG −M .

Bounding the Size of Non-Module Components. Suppose now that the number of module compo-

nents has been bounded by kO (1) . We can now include all of the module components in M and
proceed under the assumption that there are no module components at all.

The size reduction of non-module components proceeds in three phases. In the orst phase, we
bound the maximum clique size in a component. Our clique-reduction procedure builds upon
the clique-reduction procedure of Marx [50], which was used in kernelizations for Chordal
Vertex Deletion [2, 35]. Both the procedure of Marx and ours are based on an <irrelevant
vertex rule.= However, our procedure is necessarily much more involved—our irrelevant vertex
rule needs to preserve not only long induced cycles but also large single- and double-dagger
asteroidal witnesses.
Having reduced the maximum clique size in the component, we proceed to the second phase,

wherewe reduce the set of vertices that appear in at least twomaximal cliques in the component. In

this phase, we partition the component intokO (1) <long= and <thin= parts, and prove that an optimal
solution will either not touch a part at all or it will cut it into two pieces using a minimal separator.
Then, provided that a part is suociently large, we identify an edge e whose contraction does not
decrease the size of any minimal separator inside the part. Thus, on the one hand, contracting e

does not decrease the size of an optimal solution. On the other hand, contracting e—or any edge
for that matter—cannot increase the size of an optimal solution (since interval graphs are closed
under contraction).
After the second phase, the number of vertices appearing in at least two maximal cliques of the

component is upper bounded by kO (1) . In the third phase, we bound the number of the remaining
vertices—these are the vertices that are <private= to some maximal clique of the component. At
this point, we can take the set of vertices appearing in at least two components and add them toM .

This makes M grow by kO (1) vertices, but now the large component breaks up into components

whose size is not larger than that of a maximal clique—that is, kO (1) . We can now re-apply the
procedure for bounding the number of components, and this bounds the total number of vertices

in G by kO (1) . We remark that, for technical reasons, in the actual proof, phases 2 and 3 as described
here are interleaved.

1.2 Related Work on Parameterized Graph Modification Problems

The F -Vertex Deletion problems corresponding to the families of edgeless graphs, forests,
chordal graphs, interval graphs, bipartite graphs, and planar graphs are known as Vertex Cover,
Feedback Vertex Set, Chordal Vertex Deletion, IVD, Odd Cycle Transversal/Vertex
Bipartization, and Planar Vertex Deletion, respectively. These problems are among the
most well studied problems in the oeld of parameterized complexity. The study of parameterized
graph deletion problems together with their various restrictions and generalizations has been an
extremely active subarea over the past few years. In fact, just over the course of the past few years,
there have been results on parameterized algorithms for Chordal Editing [12], Unit Interval
Vertex (Edge) Deletion [10, 37], Interval Vertex (Edge) Deletion [9, 11], Planar F Dele-
tion [22, 40], Planar Vertex Deletion [33], Block Graph Deletion [1, 39], and Simultaneous
Feedback Vertex Set [4]. It is important to note that for many of these problems, polynomial
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11:6 A. Agrawal et al.

kernels gave rise to several new techniques in the area. However, the problem that is closest to ours
is the Chordal VertexDeletion problem. In a recent breakthrough, Jansen and Pilipczuk [35, 36]
gave a polynomial kernel (of size O (k162)) for Chordal Vertex Deletion, resolving a more than
a decade old open problem. Shortly afterward, Agrawal et al. [2, 3] gave a kernel of size O (k13).

2 PRELIMINARIES

We denote the set of natural numbers by N. For n ∈ N, we use [n] and [n]0 as shorthands for
{1, 2, . . . ,n} and {0, 1, . . . ,n}, respectively. For a set X and an integer n ∈ N, by Xn we denote the
set {(a1,a2, . . . ,an ) | a1,a2, . . . ,an ∈ X }.

Basic Graph Theory. We refer to standard terminology from the book of Diestel [17] for those
graph-related terms that are not explicitly deoned here. Consider a graphG. We denote the vertex
set and the edge set of G by V (G ) and E (G ), respectively. For a vertex v ∈ V (G ), NG (v ) denotes
the neighborhood of v in G and NG [v] = NG (v ) ∪ {v}. For a subset S ⊆ V (G ), we deone NG (S ) =

(∪v ∈SNG (v )) \S . We omit the subscriptG from the preceding two notations whenever the context
is clear. Given a set C of connected components ofG, denoteV (C) =

⋃

C ∈C V (C ). Moreover, when
the graphG is clear from context, denote n = |V (G ) |. Given a subsetU ⊆ V (G ),G[U ] denotes the
subgraph of G induced by U . Accordingly, a graph H is an induced subgraph of G if there exists
U ⊆ V (G ) such that G[U ] is isomorphic to H . For a set of vertices X ⊆ V (G ), G − X denotes the
induced subgraphG[V (G )\X ]—that is, the graph obtained by deleting the vertices inX fromG. For
an edge (u,v ) ∈ E (G ),G/(u,v ) denotes the graph obtained by contracting the edge (u,v )—that is,
the graph obtained by introducing a new vertex that is adjacent to all vertices in N (u) ∪N (v ) and
deleting the vertices {u,v}. We say thatG is a clique if for all distinct vertices u,v ∈ V (G ), we have
that (u,v ) ∈ E (G ), and that V (G ) is an independent set if for all distinct vertices u,v ∈ V (G ) we
have that (u,v ) � E (G ). A subsetU ⊆ V (G ) is a module if for all u,u ′ ∈ U and v ∈ V (G ) \U either
both u and u ′ are adjacent to v or both u and u ′ are not adjacent to v . For the sake of simplicity,
we also call G[U ] a module (where we mean that it is a module in G) when the graph G is clear
from the context.
A path P = (x1,x2, . . . ,x� ) in G is a subgraph of G where V (P ) = {x1,x2, . . . ,x� } ⊆ V (G ) and

E (P ) = {(xi ,xi+1) | i ∈ [� − 1]} ⊆ E (G ), where � ∈ [n]. The vertices x1 and x� are the endpoints
of P , and the remaining vertices in V (P ) are the internal vertices of P . A cycle C = (x1,x2, . . . ,x� )

in G is a subgraph of G where V (C ) = {x1,x2, . . . ,x� } ⊆ V (G ) and E (C ) = {(xi ,xi+1) | i ∈

[� − 1]} ∪ {(x1,x� )} ⊆ E (G ). We say that (u,v ) ∈ E (G ) is a chord of a path P if u,v ∈ V (P )

but (u,v ) � E (P ). Similarly, we say that (u,v ) ∈ E (G ) is a chord of a cycle C if u,v ∈ V (C ) but
(u,v ) � E (C ). A path P or cycleC is said to be induced (or, alternatively, chordless) if it has no chords.

Interval Graphs. An interval graph is a graph that does not contain any of the following graphs,
called obstructions, as an induced subgraph (see Figure 1):

• Long claw: A graph O such that V (O) = {t�, tr , t , c,b1,b2,b3} and E (O) = {(t�,b1), (tr ,b3),

(t ,b2), (c,b1), (c,b2), (c,b3)}.
• Whipping top: A graph O such that V (O) = {t�, tr , t , c,b1,b2,b3} and E (O) = {(t�,b1),

(tr ,b2), (c, t ), (c,b1), (c,b2), (b3, t� ), (b3,b1), (b3, c ), (b3,b2), (b3, tr )}.
•  -AW: A graphO such thatV (O) = {t�, tr , t , c} ∪ {b1,b2, . . . ,bz }, where t� = b0 and tr = bz+1,
E (O) = {(t , c ), (t�,b1), (tr ,bz )} ∪ {(c,bi ) | i ∈ [z]} ∪ {(bi ,bi+1) | i ∈ [z − 1]}, and z ≥ 2. A
 -AW where z = 2 will be called a net.

• !-AW: A graph O such that V (O) = {t�, tr , t , c1, c2} ∪ {b1,b2, . . . ,bz }, where t� = b0 and
tr = bz+1, E (O) = {(t , c1), (t , c2), (c1, c2), (t�,b1), (tr ,bz ), (t�, c1), (tr , c2)} ∪ {(c,bi ) | i ∈ [z]} ∪
{(bi ,bi+1) | i ∈ [z − 1]}, and z ≥ 1. A !-AW where z = 1 will be called a tent.

• Hole: A chordless cycle on at least four vertices.
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We refer to  -AW and !-AW as AWs. In each of the orst four obstructions, the vertices t�, tr , and
t are called terminals; the vertices c, c1, and c2 are called centers; and the other vertices are called
base vertices. Furthermore, the vertex t is called the shallow terminal and the vertices t� and tr are
called the non-shallow terminals. In the case where O is one of the AWs, the induced path on the
set of base vertices is called the base of the AW, and it is denoted by base(O). Moreover, we say
that the induced path on the set of base vertices, t�, and tr is the extended base of the AW, and it is
denoted by P (O).

Path Decomposition. A path decomposition of a connected graph G is a pair (P , β ), where P is a

path and β : V (P ) → 2V (G ) is a function that satisoes the following properties:

(1)
⋃

x ∈V (P ) β (x ) = V (G ).
(2) For any edge (u,v ) ∈ E (G ), there is a node x ∈ V (P ) such that u,v ∈ β (x ).
(3) For any v ∈ V (G ), the collection of nodes Pv = {x ∈ V (P ) | v ∈ β (x )} is a subpath of P .

Forv ∈ V (P ), we call β (v ) the bag ofv . We refer to the vertices inV (P ) as nodes. A clique path of a
connected graphG is a path decomposition ofG where every bag is a distinct maximal clique. If a
graphG admits a clique path, then we say thatG is a clique path. The following proposition states
that the class of interval graphs is exactly the class of graphs where each connected component is
a clique path.

Proposition 2.1 ([27], Sections 2 and 3 of [28]). A graph is an interval graph if and only if

each connected component of it is a clique path. Moreover, such a clique path can be found in linear

time.

Parameterized Complexity. Let Π be an NP-hard problem. In the framework of parameterized
complexity, each instance of Π is associated with an integer k , which is called the parameter. Here,
the goal is to conone the combinatorial explosion in the running time of an algorithm for Π to
depend only on k . The main concepts deoned to achieve this goal are of oxed-parameter tractabil-

ity and kernelization. First, we say that Π is FPT if any instance (I ,k ) of Π is solvable in time

f (k ) · |I |O (1) , where f (·) is an arbitrary (computable) function of k . Second, Π is said to admit a
polynomial kernel if there is a polynomial-time algorithm (the degree of polynomial is indepen-
dent of the parameter k), called a kernelization algorithm, that transforms the input instance into
an equivalent instance of Π whose size is bounded by a polynomial p (k ) in k . Here, two instances
are equivalent if one of them is a Yes-instance if and only if the other one is a Yes-instance. The
reduced instance is called a p (k )-kernel for Π. For a detailed introduction to the oeld of kerneliza-
tion, we refer to the following surveys [41, 46] and the corresponding chapters in the following
books [13, 18, 20, 51].

Kernelization algorithms often rely on the design of reduction rules. The rules are numbered, and
each rule consists of a condition and an action. We always apply the orst rule whose condition is
true. Given a problem instance (I ,k ), the rule computes (in polynomial time) an instance (I ′,k ′)

of the same problem, where k ′ ≤ k . Typically, |I ′ | < |I |, where if this is not the case, it should be
argued why the rule can be applied only polynomially many times. We say that the rule safe if the
instances (I ,k ) and (I ′,k ′) are equivalent.

Linear Algebra. For a setA andX , by an operation ofA ontoX wemean a function f : A×X → X .
For an element (a,x ) ∈ A × X by ax , we denote the element f (a,x ) ∈ X . For a oeld F with
+ as the additive operation and · as the multiplicative operation, a commutative group (V ,+)

with an operation of F onto V is a vector space over F if for all a,b ∈ F and x ,y ∈ V , we have
(i) a(bx ) = (ab)x , (ii) a(x + y) = ax + ay, (iii) (a + b)x = ax + bx , and (iv) 1 · x = x . Here, 1 is
the multiplicative identity of the oeld F. If V is a vector space over F, then the elements of V are
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11:8 A. Agrawal et al.

called vectors. One of the natural candidates for vector spaces over a oeld F is Fn , where n ∈ N and
the function f (·) is the component-wise multiplication. In this article, we restrict ourselves only
to such types of vector spaces.
In the following, consider a oeld F and a vector space V = Fn , where n ∈ N. For a vector

v = (b1,b2, . . . ,bn ) ∈ Fn and an integer i ∈ [n], by v[i] we denote the ith element (or entry) of
v (i.e., the element bi ). For vectors v1, v2, . . . , vt ∈ Fn , a linear combination of them is a vector
a1v1 + a2v2 + · · · + atvt , where a1,a2, . . . ,at ∈ F. Furthermore, a linear relation among them is
exhibited when a1v1 + a2v2 + · · · + atvt = 0, for some a1,a2, . . . ,at ∈ F. In the preceding, the
ai s are called the coeocients. A set of vectors is said to be linearly independent if there is no linear
relation among them except the trivial one, where each of the coeocients is 0. A set of vectors
that is not linearly independent is said to be linearly dependent. An inclusion-wise maximal set of
linearly independent vectors is called a basis of the vector space. It is known that for bases B,B′ of
a vector space, we have |B | = |B′ |. By F2, we denote the oeld with exactly two elements, namely 0
and 1, with the usual addition and multiplication modulo 2 as the oeld operations. For two vectors
u, v ∈ V ′, u · v denotes the dot product of these two vectors. We refer the reader to the work of
Lay [43] for more details on linear algebra.

Matroids. A pairM = (E,I), where E is a set (called ground set) and I is a family of subsets of
E (called independent sets) is called a matroid if the following conditions are satisoed:

• ∅ ∈ I;
• If A ∈ I and A′ ⊆ A, then A′ ∈ I;
• If A,B ∈ I and |A| < |B |, then there is x ∈ B \A such that A ∪ {x } ∈ I.

An inclusion-wise maximal set in I is called a basis ofM. All the bases of a matroid are of same
size. The size of a basis is called the rank of the matroid. One of the important notions of a matroid
that we use is linear representations of matroids.
A matroid is a linear matroid (or representable matroid) if, for some oeld F, it can be deoned as

follows. Let A be a matrix over a oeld F and E its set of columns. Then, the matroid M = (E,I)

is deoned as follows: a subset X ⊆ E is an independent set in M if and only if the set of columns
in X is linearly independent over F. The matrix A is called a representation of M, and M is
said to be representable over F. Thus, a matroid is linear (alternatively, representable) if it is
representable over some oeld F. We refer the reader to the work of Oxley [52] for more details on
matroids.
For n,k ∈ N, where k ≤ n, a pair M = (E,I), where |E | = n is a k-uniform matroid (or simply,

a uniform matroid) if I = {X ⊆ E | |X | ≤ k }, where k ∈ [n]; such a matroid will be denoted by
Un,k . The uniform matroid Un,k is representable over any oeld with at least n + 1 elements, and a
representation for it can be found in polynomial time (e.g., see Section 12.1.2 [13]).

q-Representative Family. LetM = (E,I) be a matroid and B be a family of subsets of size p of E.

We say that B̂ ⊆ B is a q-representative for B if for every set Y ⊆ E of size q, if there is a set X ∈ B

such that X ∩Y = ∅ and X ∪Y ∈ I, then there is a set X̂ ∈ B̂ such that X̂ ∩Y = ∅ and X̂ ∪Y ∈ I.

If B̂ ⊆ B is a q-representative for B, then we use the notation B̂ ⊆
q
rep B. The following result

asserts that small representative families can be computed eociently.

Proposition 2.2 ([23]). Let M = (E,I) be a linear matroid of rank k = p + q, and let matrix

AM be a representation of M over a oeld F. Additionally, let B = {B1,B2, . . . ,Bt } be a family of

independent sets of size p over E. Then, there exists B̂ ⊆
q
rep B of size at most

(

p+q
p

)

. Moreover, such B̂

can be computed in at most O (
(

p+q
p

)

tpω + t
(

p+q
p

)ω−1
) operations over F. Here, ω is the exponent in

the running time of matrix multiplication.
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3 COMPUTING A REDUNDANT SOLUTION

Let (G,k ) be an instance of IVD. A subset S ⊆ V (G ) such that G − S is an interval graph is
called a solution, and a solution of size at most t is called a t-solution. Toward the deonition of
redundancy, we need to introduce a few simple notions related to hitting and covering. Given a

familyW ⊆ 2V (G ) , we say that a subset S ⊆ V (G ) hitsW if for allW ∈ W we have S ∩W � ∅. A
familyW ⊆ 2V (G ) is t-necessary if every solution of size at most t hitsW . Moreover, we say that
an obstruction O is covered byW if there existsW ∈ W such thatW ⊆ V (O). Now, we are ready
to formally deone our notion of redundancy.

Deonition 3.1. Given a family W ⊆ 2V (G ) and t ∈ N, a subset M ⊆ V (G ) is t-redundant with
respect to W if for every obstruction O that is not covered by W it holds that |M ∩V (O) | > t .

The purpose of this section is to prove Lemma 3.2. Intuitively, this lemma asserts that an r -
redundant solution M whose size is polynomial in k (for a oxed constant r ) can be computed in
polynomial time. Such a set M plays a central role in all of our subsequent reduction rules that
comprise our kernelization algorithm. We remark that in this statement we use the letter � rather
than k to avoid confusion, as we will use this result with � = k + 2.

Lemma 3.2. Let r ∈ N be a oxed constant, and let (G, �) be an instance of IVD. In polynomial

time, it is possible to either conclude that (G, �) is a No-instance, or compute an �-necessary family

W ⊆ 2V (G ) and a set M ⊆ V (G ), such that W ⊆ 2M and M is a (r + 1) (8�)r+1-solution that is

r -redundant with respect to W .

A central component in our proof of Lemma 3.2 is an approximation algorithm for IVD, given
by Cao [9].

Proposition 3.3 (Theorem 6.1 [9]). IVD admits a polynomial-time 8-approximation algorithm,

called ApproxIVD.

In particular, a main idea in our proof is to iteratively grow the redundancy of a solution by mak-
ing calls to this approximation algorithm. Besides Proposition 3.3, toward the proof of Lemma 3.2,
we give a simple deonition of a graph on which we will apply the approximation algorithm and
hence determine whether a set of vertices should be added to W .

Deonition 3.4. LetG be a graph,U ⊆ V (G ), and t ∈ N. Then, copy(G,U , t ) is deoned as the graph
G ′ on the vertex setV (G )∪ {vi | v ∈ U , i ∈ [t]} and the edge set E (G )∪ {(ui ,v ) | (u,v ) ∈ E (G ),u ∈

U , i ∈ [t]} ∪ {(ui ,v j ) | (u,v ) ∈ E (G ),u,v ∈ U , i, j ∈ [t]} ∪ {(v,vi ) | v ∈ U , i ∈ [t]} ∪ {(vi ,v j ) | v ∈

U , i, j ∈ [t], i � j}.

Informally, copy(G,U , t ) is simply the graph G where for every vertex u ∈ U we add t twins
that (together with u) form a clique. Intuitively, this operation allows us to make a vertex set
<undeletable=; in particular, this enables us to test later whether a vertex set is <redundant= and
hence we can grow the redundancy of our solution, or whether it is <necessary= and hence we
should update W accordingly. Before we turn to discuss computational issues, let us orst assert
that the operation in Deonition 3.4 does not makes an interval graph become a non-interval graph.
This is a basic requirement to verify before turning to design the preceding test.

Lemma 3.5. Let G be a graph, U ⊆ V (G ), and t ∈ N. If G is an interval graph, then G ′
=

copy(G,U , t ) is an interval graph as well.

Proof. Suppose that G is an interval graph. Then, by Proposition 2.1, G admits a
clique path (P , β ). Now, we deone (P ′, β ′) as follows: P ′

= P , and for all x ∈ V (P ′),
β ′(x ) = β (x ) ∪ {vi | v ∈ β (x ) ∩U , i ∈ [t]}. We claim that (P ′, β ′) is a clique path for G ′. By using
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the fact that (P , β ) is a path decomposition ofG, we directly have the following properties. First, it
is clear that

⋃

x ∈V (P ′) β
′(x ) = V (G ′). Second, for any edge e = (u,v ) ∈ E (G ′) such thatu,v ∈ V (G ),

there exists xe ∈ V (P ′) such that u,v ∈ β ′(xe ). Then, since for all v ∈ U and i ∈ [t] it holds that
β ′−1 (v ) = β ′−1 (vi ), we derive that for any edge (u ′,v ′) ∈ E (G ′) there is a node x ∈ V (P ′) such
that u ′,v ′ ∈ β ′(x ). Third, for any v ∈ V (G ), the collection of nodes P ′

v = {x ∈ V (P ′) | v ∈ β ′(u)}

is a subpath of P ′, and since for any v ∈ U and i ∈ [t] it holds that β ′−1 (v ) = β ′−1 (vi ), we derive
that for any v ′ ∈ V (G ′) the collection of nodes P ′

v ′ = {x ∈ V (P ′) | v ′ ∈ β ′(x )} is a subpath of P ′.
Now, note that for all x ∈ V (P ′), β (x ) is a clique, and for all u,v ∈ β (x ) (possibly u = v) and
i, j ∈ [t], ui is adjacent to u, u j (if i � j), v and v j , which implies that β ′(x ) is also a clique path.
Hence, (P ′, β ′) is indeed clique path for G ′. By Proposition 2.1, we derive that G ′ is an interval
graph. �

Now, let us present two simple claims that exhibit relations between the algorithm ApproxIVD

and Deonition 3.4. After presenting these two claims, we will be ready to give our algorithm for
computing a redundant solution. Roughly speaking, the orst claim exhibits the meaning of a situ-
ation where ApproxIVD returns a <large= solution; intuitively, for the purpose of the design of our
algorithm, we interpret this meaning as an indicator to extendW .

Lemma 3.6. Let G be a graph, U ⊆ V (G ), and � ∈ N. If the algorithm ApproxIVD returns a set A

of size larger than 8� when called with G ′
= copy(G,U , 8�) as input, then {U } is �-necessary.

Proof. Suppose that ApproxIVD returns a set A of size larger than 8� when called with G ′ as
input. Then, (G ′, �) is aNo-instance. Suppose, by way of contradiction, that {U } is not �-necessary.
If (G, �) is aNo-instance, then trivially we can say that {U } is �-necessary (as there is no solution of
size at most �, so the statement is vacuously true). Now consider the case whenG has an �-solution

S such that S ∩U = ∅. In particular, Ĝ = G − S is an interval graph such thatU ⊆ V (Ĝ ). However,

this means that copy(Ĝ,U , 8�) = G ′ − S , which by Lemma 3.5 implies that G ′ − S is an interval
graph. Thus, S is an �-solution for G ′, which is a contradiction (as (G ′, �) is a No-instance). �

Complementing our orst claim, the second claim exhibits the meaning of a situation where
ApproxIVD returns a <small= solution A; we interpret this meaning as an indicator to grow the
redundancy of our current solution M by adding A—indeed, this lemma implies that every ob-
struction is hit one more time when adding A to a subset U ⊆ M (to grow the redundancy of M ,
every subsetU ⊆ M will have to be considered).

Lemma 3.7. Let G be a graph, U ⊆ V (G ), and � ∈ N. If the algorithm ApproxIVD returns a set A

of size at most 8� when called with G ′
= copy(G,U , 8�) as input, then for every obstruction O of G,

|V (O) ∩U | + 1 ≤ |V (O) ∩ (U ∪ (A ∩V (G ))) |.

Proof. Suppose that ApproxIVD returned a setA of size at most 8� when called withG ′ as input.
Let O be some obstruction of G, and denote B = V (O) ∩U . Since |A| ≤ 8�, for every vertex v ∈ B,
we have that v ∈ V (G ′) \A or there exists i (v ) = i ∈ [8�] such that vi ∈ V (G ′) \A. Moreover, we
have that the graph obtained from O by replacing each vertex v ∈ B ∩A by vi (v ) is an obstruction

(as v and vi (v ) are twins). Thus, as A is a solution for G ′, there exists v ∈ V (G ) \ B such that
v ∈ A ∩V (O). Hence, we have that |V (O) ∩U | + 1 ≤ |V (O) ∩ (U ∪ (A ∩V (G ))) |. �

Now, let us describe our algorithm, RedundantIVD, to compute a redundant solution. First,
RedundantIVD initializesM0 to be the output obtained by calling the algorithm ApproxIVDwithG
as input,W0 := ∅ and T0 := {(v ) | v ∈ M0}. If |M0 | > 8�, then RedundantIVD concludes that (G, �)
is a No-instance. Otherwise, for i = 1, 2, . . . , r (in this order), the algorithm executes the following
steps:
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(1) InitializeMi := Mi−1,Wi :=Wi−1 and Ti := ∅.
(2) For every tuple (v0,v1, . . . ,vi−1) ∈ Ti−1:
(a) Let A be the output obtained by calling the algorithm ApproxIVD with copy

(G, {v0,v1, . . . ,vi−1}, 8�) as input.
(b) If |A| > 8�, then insert {v0,v1, . . . ,vi−1} intoWi .
(c) Otherwise, insert every vertex in (A ∩ V (G )) \ {v0,v1, . . . ,vi−1} into Mi , and for all u ∈

(A ∩V (G )) \ {v0,v1, . . . ,vi−1}, insert (v0,v1, . . . ,vi−1,u) into Ti .

Eventually, the algorithm outputs the pair (Mr ,Wr ).
Let us comment that in this algorithm, we make use of the sets Ti−1 rather than going over

all subsets of size i of Mi−1 to obtain a substantially better algorithm in terms of the size of the
produced redundant solution.
The properties of the algorithm RedundantIVD that are relevant to us are summarized in the

following lemma and observation, which are proved by induction and by making use of Lem-
mas 3.5, 3.6, and 3.7. Roughly speaking, we orst assert that, unless (G, �) is concluded to be a
No-instance, we compute sets Wi that are �-necessary as well as that the tuples in Ti <hit more
vertices= of the obstructions in the input as i grows larger.

Lemma 3.8. Consider a call to RedundantIVD with (G, �, r ) as input that did not conclude that

(G, �) is a No-instance. For all i ∈ [r ]0, the following conditions hold:

(1) For any setW ∈ Wi , every solution S of size at most � satisoesW ∩ S � ∅.

(2) For any obstruction O of G that is not covered by Wi , there exists (v0,v1, . . . ,vi ) ∈ Ti such

that {v0,v1, . . . ,vi } ⊆ V (O).

Proof. The proof is by induction on i . In the base case, where i = 0, Condition 1 trivially holds
as W0 = ∅, and thus there are no sets in W0. Condition 2 holds as M0 is a solution (so each
obstruction must contain at least one vertex from M0) and T0 simply contains a 1-vertex tuple for
every vertex inM0. Now, suppose that the claim is true for i − 1 ≥ 0, and let us prove it for i .
To prove Condition 1, consider some setW ∈ Wi . IfW ∈ Wi−1, then by the inductive hypothesis,

every solution of size at most � satisoesW ∩ S � ∅. Thus, we next suppose thatW ∈ Wi \Wi−1.
Then, there exists a tuple (v0,v1, . . . ,vi−1) ∈ Ti−1 in whose iteration RedundantIVD insertedW =
{v0,v1, . . . ,vi−1} into Wi . In that iteration, ApproxIVD was called with copy(G,W , 8�) as input
and returned a set A of size larger than 8�. Thus, by Lemma 3.6, every solution S of size at most �
satisoesW ∩ S � ∅.
To prove Condition 2, consider some obstruction O of G that is not covered by Wi . By the

inductive hypothesis and sinceWi−1 ⊆ Wi , there exists a tuple (v0,v1, . . . ,vi−1) ∈ Ti−1 such that
{v0,v1, . . . ,vi−1} ⊆ V (O). Consider the iteration of RedundantIVD corresponding to this tuple, and
denoteU = {v0,v1, . . . ,vi−1}. In that iteration, ApproxIVD was called with copy(G,U , 8�) as input
and returned a setA of size at most 8�. By Lemma 3.7, |V (O) ∩U | + 1 ≤ |V (O) ∩ (U ∪ (A∩V (G ))) |.
Thus, there existsvi ∈ (A∩V (G )) \U such thatU ∪ {vi } ⊆ V (O). However, by the speciocation of
ApproxIVD, this means that there exists (v0,v1, . . . ,vi ) ∈ Ti such that {v0,v1, . . . ,vi } ⊆ V (O). �

Toward showing that the output set Mr is <small,= let us upper bound the sizes of the sets Mi

and Ti .

Observation 3.9. Consider a call to RedundantIVD with (G, �, r ) as input that did not conclude

that (G, �) is a No-instance. For all i ∈ [r ]0, |Mi | ≤
∑i

j=0 (8�)
j+1, |Ti | ≤ (8�)i+1, and every tuple in Ti

consists of distinct vertices.

Proof. The proof is by induction on i . In the base case, where i = 0, the correctness follows
as ApproxIVD returned a set of size at most 8�. Now, suppose that the claim is true for i − 1 ≥
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0, and let us prove it for i . By the speciocation of the algorithm and inductive hypothesis, we
have that |Mi | ≤ |Mi−1 | + 8� |Ti−1 | ≤

∑i+1
j=1 (8�)

j and |Ti | ≤ 8� |Ti−1 | ≤ (8�)i+1. Moreover, by the

inductive hypothesis, for every tuple in Ti , the orst i vertices are distinct, and by the speciocation
of ApproxIVD, the last vertex is not equal to any of them. �

By the speciocation of RedundantIVD, as a corollary to Lemma 3.8 and Observation 3.9, we
directly obtain the following result.

Corollary 3.10. Consider a call to RedundantIVDwith (G, �, r ) as input that did not conclude that
(G, �) is a No-instance. For all i ∈ [r ]0,Wi is an �-necessary family andMi is a

∑i
j=0 (8�)

j+1-solution

that is i-redundant with respect to Wi .

Clearly, RedundantIVD runs in polynomial time (as r is a oxed constant), and by the correctness
of ApproxIVD, if it concludes that (G, �) is a No-instance, then this decision is correct. Thus, since
∑r

i=0 (8�)
i+1 ≤ (r + 1) (8�)r+1, the correctness of Lemma 3.2 now directly follows as a special case

of Corollary 3.10. Thus, our proof of Lemma 3.2 is complete.
In light of Lemma 3.2, from now on, we suppose that we have a (k + 2)-necessary familyW ⊆

2V (G ) along with a (r + 1) (8(k + 2))r+1-solutionM that is r -redundant with respect toW for r = 9.
Let us note that any obstruction inG that is not covered byW intersectsM in at least 10 vertices.
We have the following reduction rule that follows immediately from Lemma 3.8.

Reduction Rule 3.1. Letv be a vertex such that {v} ∈ W . Then, output the instance (G−{v},k−1).

Henceforward, we will assume that each set in W has size at least 2.

4 HANDLING MODULE COMPONENTS

Let (G,k ) be an instance of IVD. We will assume that k ≥ 2, as otherwise, in polynomial time,
we can check whether or not (G,k ) is a Yes-instance and accordingly return a trivial kernel of
constant size. Let us explicitly recap the steps taken so far and then state our current objective in
this context. First, we call Lemma 3.2 with r = 9 and � = k + 2,2 and one of the following holds. If
(in polynomial time) we conclude that (G,k +2) is aNo-instance, then we can (correctly) conclude
that (G,k ) is a No-instance as well. Otherwise, in polynomial time, we obtain a (k + 2)-necessary

familyW ⊆ 2V (G ) and a setM ⊆ V (G ) such thatW ⊆ 2M andM is a 10(8(k + 2))10-solution that
is 9-redundant with respect to W . Furthermore, each set in W has size at least 2. The main goal
of this section is to bound the total number of vertices across all module connected components of
G −M . We remark that we will prove a slightly more general result, as it will be used later in our
algorithm. Before that, we provide a simple reduction rule to bound the number of non-module
components.

Bounding the Number of Non-Module Components. Let C denote the set of connected com-
ponents of G − M . Moreover, we let D denote the set of connected components in C that are

modules, and D = C \ D. To bound the size of D, we apply the following reduction rule.

Reduction Rule 4.1. Suppose that there exist v ∈ M and a set A ⊆ D of size k + 3 such that
for each D ∈ A there exist u,w ∈ V (D) such that u ∈ NG (v ) and w � NG (v ). Then, output the
instance (G − {v},k − 1).

2We use Lemma 3.2 with � = k +2 because at a later stage (particularly, in Section 6) we ond an irrelevant edge to contract.

With the parameter k + 2, we are still able to exclude the need to argue about obstructions that are covered by W , as the

additional 2 allows us to add the two endpoints of the contracted edge to an assumed solution in our arguments. We use

the lemma with r = 9 since it helps us to ond large obstructions that contain enough vertices from M in base(O), for an

AW O.
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Lemma 4.1. Reduction Rule 4.1 is safe.

Proof. In one direction, suppose that (G,k ) is a Yes-instance, and let S be a k-solution for G.
Since |A| ≥ k + 3, there exist three connected components D1,D2,D3 ∈ A such that S ∩ (V (D1) ∪

V (D2) ∪ V (D3)) = ∅. However, for each i ∈ [3], the subgraph of G induced by the vertex set
consisting of v , together with an edge e in Di with one endpoint of e being a neighbor of v and
the other endpoint of e being a non-neighbor of v , is a long claw. Here, we relied on the fact that
for each i ∈ [3], Di is connected. Thus, as G − S is an interval graph, we derive that v ∈ S , and
therefore S \ {v} is a (k − 1)-solution for G − {v}.
In the other direction, it is clear that if (G − {v},k − 1) is a Yes-instance, then (G,k ) is a Yes-

instance. �

We now observe that our rule indeed bounds the size of D.

Observation 4.2. After the exhaustive application of Reduction Rule 4.1, |D| ≤ (k + 2) |M |.

Proof. After the exhaustive application of Reduction Rule 4.1, every vertex in M has at most
k + 2 connected components in C where it has both a neighbor and a non-neighbor. Since for a

connected component in D that is not a module there must exist a vertex in M that has both a
neighbor and a non-neighbor in that component, we conclude that the observation is correct. �

The Main Lemma of This Section. From now on, we focus on the main goal of this section:
bound the total number of vertices in D. As mentioned earlier, the arguments used to derive this
bound will also be necessary at a later stage of our kernelization algorithm, and hence we present
our goal in the form of a more general statement.

Lemma 4.3. Let M̂ ⊆ V (G ), and let Ĉ be some set of connected components of G − (M ∪ M̂ ) that

are modules. In polynomial time, it is possible to either output an instance (G ′,k ) equivalent to (G,k )

where |V (G ′) | < |V (G ) |, or to compute a subset B ⊆ V (Ĉ) of size at most 8(k+1)3 |M∪M̂ |10, such that

for any subset S ⊆ V (G ) of size at most k , the following property holds: If there exists an obstruction

O forG that is not covered byW and such thatV (O) ∩ S = ∅, then there exists an obstruction O′ for

G such that V (O′) ∩ S = ∅ and V (O′) ∩ (V (Ĉ) \ B) = ∅.

Intuitively, the statement of this lemma expandsM to M ∪ M̂ and zooms into a subset Ĉ of the

set of connected components in G − (M ∪ M̂ ) that are modules in G. Then, either it enables us

to reduce the instance, or it produces a <small= subset B ⊆ V (Ĉ) and implies that we need not

<worry= about obstructions that intersect V (Ĉ) but not B—if such an obstruction is not hit, then

there is an obstruction that does not intersect V (Ĉ) \ B and which is not hit as well.
Let us now show that having Lemma 4.3 at hand, we can indeed bound the total number of

vertices in all module components.

Reduction Rule 4.2. Let X be the output of the algorithm in Lemma 4.3 when called with M̂ = ∅

and Ĉ = D. If X is an instance (G ′,k ), then output X . Otherwise, X is a set B ⊆ V (D), and we
output the instance (G − {v},k ) for a vertex v arbitrarily chosen from V (D) \ B.

By using Lemma 4.3, we derive the safeness of Reduction Rule 4.2.

Lemma 4.4. Reduction Rule 4.2 is safe.

Proof. IfX is an instance (G ′,k ), then Lemma 4.3 directly implies that the rule is safe. Thus, we
next suppose thatX = B. In one direction, it is clear that if (G,k ) is a Yes-instance, then (G−{v},k )

is a Yes-instance as well.
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In the other direction, suppose that (G−{v},k ) is a Yes-instance. Let S be a k-solution forG−{v}.
We claim that S is also a k-solution forG. Suppose, by way of contradiction, that this claim is false.
Then, there exists an obstruction O for G − S . As S ∪ {v} is a (k + 1)-solution for G and W is
(k + 2)-necessary, we have that S ∪ {v} hits W . Since v � M and W ⊆ 2M , we derive that S hits
W . Thus, since O is an obstruction for G − S , we deduce that O is not covered by W . Hence, by
Lemma 4.3, there exists an obstructionO′ forG such thatV (O′)∩S = ∅ andV (O′)∩ (V (D)\B) = ∅.
However, as v ∈ V (D) \ B, this implies that O′ is also an obstruction for (G − {v}) − S , which is a
contradiction as S is a k-solution for G − {v}. �

Due to Reduction Rule 4.2, we have the following result.

Observation 4.5. After the exhaustive application of Reduction Rule 4.2, |V (D) | ≤ 8(k+1)3 |M |10.

We now turn to prove Lemma 4.3. In what follows, M̂ and Ĉ are as stated in this lemma. We

denoteM ′
= M ∪ M̂ . Note that sinceM is 9-redundant with respect toW , we have thatM ′ is also

9-redundant with respect to W . We begin our proof by showing that the common neighborhood
outsideM ′ of any two non-adjacent vertices, unless these two vertices form a pair inW , induces
a clique. This simple claim will come in handy in several arguments later.

Lemma 4.6. Let u,v ∈ V (G ) be distinct vertices such that (u,v ) � E (G ) and {u,v} � W . Then,

G[(NG (u) ∩ NG (v )) \M
′] is a clique.

Proof. Suppose, by way of contradiction, that G[(NG (u) ∩ NG (v )) \M
′] is not a clique. Then,

there exist two vertices x ,y ∈ (NG (u) ∩ NG (v )) \M
′ that are not neighbors in G. Note that O =

G[{u,v,x ,y}] is a hole, and that M ∩ V (O) ⊆ {u,v}. Moreover, O is not covered by W (because
{u,v} � W and every set in W has size at least 2). Since M is 9-redundant, this means that
|M ∩V (O) | > 9. However, |V (O) | = 4, hence we have reached a contradiction. �

Structure of Obstructions Intersecting Module Components. To reduce our instance or to
obtain a set B as required to prove Lemma 4.3, we need to understand how obstructions can inter-
sect module components. For this purpose, we state a simple proposition by Cao and Marx [11].
This proposition asserts that because we are dealing with modules, these intersections are quite
restricted.

Proposition 4.7 ([11]). Let C be a module in G, and let O be an obstruction. If |V (O) | > 4, then
either V (O) ⊆ V (C ) or |V (O) ∩V (C ) | ≤ 1.

By Proposition 4.7, we directly obtain the following lemma.

Lemma 4.8. Let C be a module such that V (C ) ∩ M ′
= ∅, and let O be an obstruction that is not

covered by W . Then, |V (O) ∩V (C ) | ≤ 1.

Proof. Since O is an obstruction that is not covered by W , it holds that |M ′ ∩ V (O) | > 9. In
particular, asV (C )∩M ′

= ∅, we have that |V (O) | > 4 andV (O) \V (C ) � ∅. Then, asC is a module,
by Proposition 4.7, we have that |V (O) ∩V (C ) | ≤ 1. �

Reducing the Size ofModule Components. To ensure we have only small module components,
we apply the following rule.

Reduction Rule 4.3. Suppose that there exists C ∈ Ĉ such that |V (C ) | > k + 1. Then, output the
instance (G − {v},k ), where v is an arbitrarily chosen vertex of C .

Lemma 4.9. Reduction Rule 4.3 is safe.
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Proof. In one direction, it is clear that if (G,k ) is a Yes-instance, then (G − {v},k ) is a Yes-
instance as well.
In the other direction, suppose that (G−{v},k ) is a Yes-instance. Let S be a k-solution forG−{v}.

We claim that S is also a k-solution forG. Suppose, by way of contradiction, that this claim is false.
Then, there exists an obstruction O for G − S . As S ∪ {v} is a (k + 1)-solution for G and W is
(k + 2)-necessary, we have that S ∪ {v} hits W . Since v � M and W ⊆ 2M , we derive that S hits
W . Thus, since O is an obstruction for G − S , we deduce that O is not covered by W . Hence, by
Lemma 4.8, |V (O) ∩V (C ) | ≤ 1. Thus, V (O) ∩V (C ) = {v}. Then, as C is a module, for any vertex
u ∈ V (C ), it holds thatG[(V (O) \ {v}) ∪ {u}] is an obstruction. Since |V (C ) | > k + 1, we have that
V (C ) \ (S ∪ {v}) � ∅. However, this implies that there exists an obstruction O′ for (G − {v}) − S ,
which is a contradiction as S is a k-solution for G − {v}. �

Preliminary Marking Scheme. By Lemma 4.6, for all u,v ∈ M ′ such that (u,v ) � E (G ) and

{u,v} �W , there exists at most oneC ∈ Ĉ, denoted byCuv , such that NG (u) ∩NG (v ) ∩V (C ) � ∅.
Accordingly, denote

C�
= {Cuv ∈ Ĉ | u,v ∈ M ′, (u,v ) � E (G ), {u,v} �W}.

Moreover, denote A�
= V (C�). From Reduction Rule 4.3, we have the following observation.

Observation 4.10. The size of A� is upper bounded by (k + 1) |M ′ |2.

Thus, in what follows, we do not need to <worry= about the modules in C� since we already
know that they contain only few vertices in total. In the following, we proceed to analyze the

modules in Ĉ \ C�. An important property of every vertex v in the modules in Ĉ \ C�, unlike the
modules in C�, is that every pair of vertices in its neighborhood in M ′ must be adjacent unless
they form a set in W .

Observation 4.11. Consider a vertex v ∈ V (Ĉ \ C�). For (distinct) vertices u,w ∈ NG (v ) ∩M ′,

at least one of {u,w } ∈ W or (u,w ) ∈ E (G ) holds.

Proof. For v ∈ V (Ĉ \ C�), and (distinct) vertices u,w ∈ NG (v ) ∩ M ′, if one of {u,w } ∈ W

or (u,v ) ∈ E (G ) holds, then the claim trivially holds. Therefore, we assume that {u,w } � W

and (u,v ) � E (G ). Recall that each set in W is of size at least 2 (since Reduction Rule 3.1 is
not applicable). From the preceding discussions together with Lemma 4.6, we obtain that there

is at most one connected component Cuw ∈ Ĉ such that NG (u) ∩ NG (w ) ∩ V (Cuw ) � ∅. Since
u,w ∈ NG (v ), it must be the case that v ∈ V (Cuw ). But by our preliminary marking scheme,

Cuw ∈ C�. This contradicts that v ∈ V (Ĉ \ C�). �

Let us also consider the relation between obstructions and themodules in Ĉ\C�. Roughly speak-
ing, the following lemma already implies that we can focus on AWs of a very specioc form. How-
ever, handling these obstructions requires a substantive amount of work in the rest of this section.

Lemma 4.12. Let C ∈ Ĉ \ C�, and let O be an obstruction that is not covered by W such that

V (O) ∩V (C ) � ∅. Then, |V (O) ∩V (C ) | = 1 and O is an AW where the vertex in V (O) ∩V (C ) is a

terminal.

Proof. Consider C ∈ Ĉ \ C� and an obstruction O that is not covered byW such that V (O) ∩

V (C ) � ∅. First, asC is a module, from Lemma 4.8 we deduce that |V (O)∩V (C ) | = 1. Furthermore,
as O is not covered by W , we have that |V (O) | > 9. This means that O is not a long claw, a
whipping top, a net, or a tent. Let v be the unique vertex in V (C ) ∩V (O). If O is an induced cycle
on at least four vertices, or one of the AWs wherev is not one of the terminals, then NG (v )∩V (O)
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contains a pair of non-adjacent vertices. But from Observation 4.11 together with the facts that
O is not covered by W and NG (v ) ⊆ V (C ) ∪ M , for each u,w ∈ NG (v ) ∩ M ′ ∩ V (O), we have
(u,v ) ∈ E (G ). Thus, we conclude that O is one of the AWs, where v is one of the terminals. �

Marking Scheme to Handle Non-Shallow Terminals. For every two subsets X ,Y ⊆ M ′ such

that |X | ≤ 2 and |Y | ≤ 2, denote AX ,Y = {v ∈ V (Ĉ \ C�) | X ⊆ NG (v ),Y ∩ NG (v ) = ∅}. Now, if
|AX ,Y | ≤ k + 1, then deone A′

X ,Y = AX ,Y , and otherwise let A′
X ,Y be an arbitrarily chosen subset

of size k + 1 of AX ,Y . Let us denote A
′
=

⋃

X ,Y A′
X ,Y , where X ,Y range over all subsets X ,Y ⊆ M ′

such that |X | ≤ 2 and |Y | ≤ 2. Let us orst observe that |A′ | is small.

Observation 4.13. The size of A′ is upper bounded by (k + 1) |M ′ |4.

Proof. Let t = |M ′ |. Note that |A′ | ≤
∑

i ∈{0,1,2}

(

t
i

)

∑

j ∈{0,1,2}

(

t−i
j

)

(k+1). Note that the following

holds: (i)
(

t
0

) (

t
0

)

+

(

t
0

) (

t
1

)

+

(

t
0

) (

t
2

)

=
t 2+t+2

2 , (ii)
(

t
1

) (

t−1
0

)

+

(

t
1

) (

t−1
1

)

+

(

t
1

) (

t−1
2

)

=
t 3−t 2+2t

2 , and (iii)
(

t
2

) (

t−2
0

)

+

(

t
2

) (

t−2
1

)

+

(

t
2

) (

t−2
2

)

=
t 4−4t 3+7t 2−4t

4 . Thus, we can obtain that |A′ | ≤ (k+1) · t
4−2t 3+7t 2+2t+4

4 .

As t ≥ k ≥ 2, we can obtain that−2t3+7t2+2t+4 ≤ 3t4. Hence, we can obtain that |A′ | ≤ (k+1)t4 =
(k + 1) |M ′ |4. �

Now, let us verify that we have thus marked a set of vertices that is suocient to <handle= non-
shallow terminals. Roughly speaking, by this we mean that for any vertex v and obstruction O
that satisfy the premise in this lemma, we can ond k + 1 <replacements= of v (so that we still have
an obstruction) that belong to our marked set A′.

Lemma 4.14. LetC ∈ Ĉ \C�,v ∈ V (C ) \A′, andO be an obstruction that is not covered byW such

that v ∈ V (O). If O is an AW where v is a non-shallow terminal, then there exists a subset Â ⊆ A′ of

size k + 1 such that for each u ∈ Â, G[(V (O) \ {v}) ∪ {u}] contains an obstruction.

Proof. First, by Lemma 4.12, we have that O is an AW such that V (O) ∩V (C ) = {v} and v is a
terminal of O. Let us also note that NG (v ) ⊆ M ′ ∪ V (C ), and therefore NG (v ) ∩ V (O) ⊆ M ′. Let
O comprise of the base path base(O) = (b1,b2, . . . ,bz ), non-shallow terminals t� and tr , shallow
terminal t , and centers c1 and c2 (as in the deonition in Section 2). Here, if O is a  -AW, then we let
c = c1 = c2. Suppose that v is not the shallow terminal of O. Then, we have that v is either t� or tr .
Without loss of generality, suppose that v = t� . Let us consider two cases, depending on whether
O is a  -AW or a !-AW:

• Suppose that O is a  -AW. Notice that b1 ∈ M ′ as (b1,v ) ∈ E (G ), V (O) ∩ V (C ) = {v}, and

NG (v ) ⊆ M ′ ∪ V (C ). From Lemma 4.12, any vertex in V (O) ∩ V (Ĉ \ C�) must be one of

the terminals. Thus, we haveV (Ĉ \ C�) ∩ ({b1,b2, . . . ,bz } ∪ {c}) = ∅. We also recall that for

each u ∈ V (Ĉ \ C�), we have NG (u) ⊆ M ′ ∪V (Ĉ \ C�). In particular, if b2 (or c) is not inM ′,

no vertex inV (Ĉ \ C�) can be adjacent to b2 (or c). The preceding discussions together with
the construction of A′ implies the following: there exists a subset Q ⊆ A′ of k + 1 vertices
such that for each u ∈ Q , u is adjacent to b1, and u is not adjacent to b2 and c . Indeed, these
are the vertices in the set A′

{b1 }, {b2,c }∩M ′ (the size of this set is k + 1 since otherwise v should

have belonged to it, but v � A′). Furthermore, b1 is not adjacent to any vertex on O besides
v, c, and b2. Therefore, for all u ∈ Q , using Observation 4.11 for obstructions not covered
by W , we have that u is not adjacent to any vertex on V (O) ∩M ′ besides b1. Furthermore,

for all u ∈ Q , since NG (u) ⊆ V (Ĉ \ C�) ∪M ′, we have that u is not adjacent to any vertex
on V (O) ∩ V (C�). Last, because V (O) ∩ V (C ) = {v}, for all u ∈ Q , we have that u is not

adjacent to any vertex onV (O) ∩V (Ĉ \ C�) besides possiblyv . Hence, for any vertex u ∈ Q ,
G[(V (O) \ {v}) ∪ {u}] is also a  -AW.
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• Suppose thatO is a !-AW. Notice thatb1, c1 ∈ M ′ as (b1,v ), (c1,v ) ∈ E (G ),V (O)∩V (C ) = {v},

andNG (v ) ⊆ M ′∪V (C ). From Lemma 4.12, any vertex inV (O)∩V (Ĉ\C�)must be one of the

terminals. Thus, we haveV (Ĉ \ C�)∩ ({b1,b2, . . . ,bz } ∪ {c}) = ∅. We also recall that for each

u ∈ V (Ĉ\C�), we haveNG (u) ⊆ M ′∪V (Ĉ\C�). The preceding discussions togetherwith the
construction ofA′ implies the following: there exists a subsetQ ⊆ A′ of k + 1 vertices u ∈ A′

such that u is adjacent to both c1 and b1, and u is adjacent to neither c2 nor b2. Indeed, these
are the vertices in the setA′

{b1,c1 }, {b2,c2 }∩M ′ (as in the previous case, the size of this set is k +1

since otherwisev should have belonged to it, butv � A′). Notice thatb1 is not adjacent to any
vertex on O besides v, c1, c2, and b2. For all u ∈ Q , using Observation 4.11 for obstructions

not covered byW and the facts that NG (u) ⊆ V (Ĉ \C�)∪M ′ andV (O)∩V (C ) = {v} (using
the exact same rationale as in the previous case), we have thatu is not adjacent to any vertex
onO−{v} besides c1 and b1. Hence, for any vertexu ∈ Q ,G[(V (O)\{v})∪{u}] is also a !-AW.

In both cases, we derived the desired claim, and thus the proof is complete. �

Marking Scheme to Handle Shallow Terminals. For this part in our proof, we require the
following notation: we say that a path P is covered by W if there is a set W ∈ W such that
W ⊆ V (P ). Intuitively, we think of P as part of the base of an obstruction, hence the preceding
notation is a natural extension of covering to this context.
Before we present our marking scheme, let us explicitly state the following observation, which

follows from Observation 4.11 in the same manner as Lemma 4.12.

Observation 4.15. Let P be an induced path inG[V (G ) \V (C )] for someC ∈ Ĉ \ C� such that P

is not covered byW . For all v ∈ V (C ), |NG (v ) ∩V (P ) | ≤ 2, and if |NG (v ) ∩V (P ) | = 2, then the two

vertices in NG (v ) ∩V (P ) are adjacent on P .

Proof. Consider C ∈ Ĉ \ C�, v ∈ V (C ), and an induced path P in G[V (G ) \ V (C )] that is not
covered byW . If |NG (v ) ∩V (P ) | ≤ 1, then the claim trivially follows. Otherwise, we assume that
|NG (v ) ∩V (P ) | ≥ 2. Consider (distinct) vertices u,w ∈ NG (v ) ∩V (P ). From Observation 4.11, we
have that (u,w ) ∈ E (G ). Here, we relied on the fact that P is not covered by W . Since P is an
induced path, u andw must be adjacent vertices in P . From the preceding, we can conclude that v
cannot have three neighbors in P , as P is an induced path in G. Moreover, if v has two neighbors
in P , then they must be adjacent vertices. �

Denote N = M ′ ∪ A� ∪ A′. (Recall that A�
= V (C�) and that A′ is the set of vertices marked

when we dealt with non-shallow terminals.) For all (not necessarily distinct) vertices c1, c2 ∈ M ′,

denoteA {c1,c2 } = {v ∈ V (Ĉ) \ (A�∪A′) | {c1, c2} ⊆ NG (v )}. Intuitively,A {c1,c2 } is the set of vertices

among the unmarked vertices in Ĉ that are neighbors of both c1 and c2 and hence can play the
role of shallow terminals in obstructions having c1 and c2 as centers. Moreover, let us arbitrarily
order N and E (G[N ]) as follows: N = {v1,v2, . . . ,v |N | } and E (G[N ]) = {e1, e2, . . . , e |E (G[N ]) | }.
Thus, when we deone vectors having |N | or |E (G[N ]) | entries below, we can work with a natural
correspondence between the index of an entry in the vector and an element of N or E (G[N ]),
respectively.
In what follows, we begin the part in our analysis that is based on linear algebra. To this end, we

orst need to encode our problem in this language, which entails the introduction of appropriate
notations. Afterward, we will present a marking scheme based on these notations. The analysis of
this scheme is done in a sequence of several lemmas, after which we will be ready to conclude the
proof of Lemma 4.3.

First, with every vertex u ∈ V (Ĉ) \ (A� ∪ A′), we associate two binary vectors that capture
incidence relations between u and the elements (vertices and edges) in G[N ]:
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• Vertex incidence relations: vinc(u) = (b1,b2, . . . ,b |N | ), where for all i ∈ [|N |], bi = 1 if
and only if vi ∈ NG (u);

• Edge incidence relations: einc(u) = (b1,b2, . . . ,b |E (G[N ]) | ), where for all i ∈ [|E (G[N ]) |],
bi = 1 if and only if u is adjacent to both endpoints of ei .

Complete Incidence Relations. In addition, we deone inc(u) as the vector that is the concatena-
tion of vinc(u) and einc(u), to which we add 1 at the end. Formally, inc(u) is a binary vector with
q = |N | + |E (G[N ]) | + 1 entries, where for all i ∈ [|N |], the ith entry of inc(u) equals the ith entry
of vinc(u), for all i ∈ [|E (G[N ]) | + |N |] \ [|N |], the ith entry of inc(u) equals the (i − |N |)th entry
of einc(u), and the last entry of inc(u) is 1. These incidence vectors are associated with the vector
space F

q
2 , and all calculations related to these vectors are performed accordingly. This completes

the description of the notations required to present our marking scheme.
For all (not necessarily distinct) vertices c1, c2 ∈ M ′, we have the following subprocedure of our

marking scheme. First, we deone V{c1,c2 } to be the multiset {inc(u) | u ∈ A {c1,c2 }}. More precisely,
the number of occurrences of a vector in V{c1,c2 } equals the number of vertices u ∈ A {c1,c2 } such
that inc(u) equals that vector. Now, we proceed as follows:

(1) Initialize V̂0
{c1,c2 }

= ∅.

(2) For i = 1, 2, . . . ,k + 1, compute some basis Bi
{c1,c2 }

for the vector subspace V{c1,c2 } \ V̂
i−1
{c1,c2 }

(with respect to F
q
2 ),

3 and denote V̂i
{c1,c2 }

= V̂i−1
{c1,c2 }

∪ Bi
{c1,c2 }

.

(3) For every occurrence of a vector v ∈ V̂k+1
{c1,c2 }

, arbitrarily choose a unique vertex u ∈ A {c1,c2 }

such that inc(u) = v and denote it by uv (the existence of suociently many such distinct
vertices directly follows from the deonition of V{c1,c2 }).

(4) Denote Â {c1,c2 } = {uv : v ∈ V̂k+1
{c1,c2 }

}, and note that Â {c1,c2 } is a set (rather than a multiset).

Finally, having performed all subprocedures, we denote Â =
⋃

c1,c2∈M ′ Â {c1,c2 } . Here, union refers

to sets—that is, every vertex occurs in Â once even if it belongs to more than one set of the form

Â {c1,c2 } . This completes the description of our marking scheme.
We proceed to analyze ourmarking scheme. Let us orst observe that we have notmarked <many=

vertices—that is, we upper bound |Â|. Recall that N = A′ ∪A∗ ∪M ′ and k ≥ 2, and thus |M ′ | ≥ 2.
Hence, using Observations 4.10 and 4.13, we can obtain that |N | ≤ 2(k + 1) |M ′ |4.

Lemma 4.16. The size of Â is upper bounded by (k + 1) |M ′ |2 |N |2 ≤ 4(k + 1)3 |M ′ |10.

Proof. To show that |Â| ≤ (k + 1) |M ′ |2 |N |2, it is suocient to show that for all c1, c2 ∈ M ′,

|Â {c1,c2 } | ≤ (k + 1) |N |2. To this end, consider some c1, c2 ∈ M ′. Now, observe that the number of

entries of the vectors in V{c1,c2 } is q = |N | + |E (G[N ]) | + 1 ≤ |N | +
|N |( |N |−1)

2 + 1 ≤ |N |2. (In the
preceding, we use the assumption that k ≥ 2, and thus |N | ≥ 2.) Hence, every basis of V{c1,c2 } (or of

a subset of V{c1,c2 }) is of size at most |N |2. As V̂k+1
{c1,c2 }

is a multiset that is the union of (k + 1) bases

of V{c1,c2 } (or of subsets of V{c1,c2 }), we have that |V̂
k+1
{c1,c2 }

| ≤ (k +1) |N |2. Since |V̂k+1
{c1,c2 }

| = |Â {c1,c2 } |,

the proof is complete. �

Now, let us verify that we have a set of vertices that is suocient to <handle= shallow terminals.
This will be done in a sequence of two lemmas and a corollary. For this purpose, we need the
following notation where we alter incidence vectors by nullifying some of their entries:

3Here, note that the subtraction concerns multisets. In particular, if an element occurs x times in a multiset X , and y times

in a multiset Y ⊆ X , then it occurs x − y times in X \ Y .
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• Nullifying subsets of vertices and edges: Given a pair (X ,Y ), where X ⊆ N and Y ⊆

E (G[N ]), and a vertex u ∈ V (Ĉ) \ (A� ∪ A′), we deone incX ,Y (u) to be the vector obtained
from inc(u) by changing all the entries associated with vertices and edges that do not belong
to X ∪Y to 0. Formally, incX ,Y (u) is a binary vector with |N | + |E (G[N ]) | + 1 entries, where
for all i ∈ [|N |], the ith entry of incX ,Y (u) equals the ith entry of vinc(u) if vi ∈ X and to 0
otherwise, for all i ∈ [|E (G[N ]) |+ |N |]\[|N |], the ith entry of incX ,Y (u) equals the (i−|N |)th

entry of einc(u) if ei−|N | ∈ Y and to 0 otherwise, and the last entry of incX ,Y (u) is 1.

• Nullifying an induced path: Furthermore, for an induced path P inG − (V (Ĉ) \ (A�∪A′))

and a vertex u ∈ V (Ĉ) \ (A�∪A′), we denote incP (u) = incX ,Y (u),where X = V (P ) ∩N and
Y = E (P ) ∩ E (G[N ]).

Moreover, recall that given a vector v and an entry index i , v[i] denotes the ith entry of v.

Lemma 4.17. Let P be an induced path inG[V (G ) \V (C )] for some C ∈ Ĉ \ C� such that P is not

covered by W . For all u ∈ V (C ),
∑q

i=1 inc
P (u)[i] = 1 mod 2 if and only if NG (u) ∩V (P ) = ∅.

Proof. Consider some vertex u ∈ V (C ). For the reverse direction of the proof, suppose that
NG (u) ∩V (P ) = ∅. Then, all of the entries of incP (u) equal 0, except for the last entry that equals
1. Thus,

∑q
i=1 inc

P (u)[i] = 1 mod 2.
For the forward direction of the proof, suppose thatNG (u)∩V (P ) � ∅. Then, byObservation 4.15,

|NG (u) ∩ V (P ) | is either 1 or 2, and if it is 2, then the two vertices in NG (u) ∩ V (P ) are adjacent
on P . Furthermore, observe that as V (P ) ∩ V (C ) = ∅ and NG (u) ⊆ V (C ) ∪ M ′, we have that
NG (u)∩V (P ) ⊆ M ′. Thus, in case |NG (u)∩V (P ) | = 1, it follows that there exists exactly one entry
in incP (u) that equals 1 apart from the last entry, which is the entry corresponding to the vertex
in NG (u) ∩ V (P ). Moreover, in case |NG (u) ∩ V (P ) | = 2, it follows that there exist exactly three
entries in incP (u) that equal 1 apart from the last entry, which are the two entries corresponding
to the two vertices in NG (u) ∩ V (P ) and the entry corresponding to the edge between these two
vertices. In both cases, we derive that

∑q
i=1 inc

P (u)[i] = 0 mod 2 as desired. �

The reason we need Lemma 4.17 is that we make use of it in the proof of the following lemma.
Informally, this lemma exhibits the existence of k + 1 <replacements= for each unmarked shallow
terminal.

Lemma 4.18. Let w ∈ V (Ĉ) \ (A� ∪ A′ ∪ Â), and let O be an AW that is not covered by W such

that V (O) ∩ (V (Ĉ) \ (A� ∪A′ ∪ Â)) = {w } andw is the shallow terminal of O. Let {c1, c2} be the set

of centers of O (with c1 = c2 if O is a  -AW). Then, for all i ∈ [k + 1], there exists v ∈ Bi
{c1,c2 }

such

that G[(V (O) \ {w }) ∪ {uv}] is an obstruction.

Proof. Consider some i ∈ [k +1]. LetC be the connected component in Ĉ containingw . Notice

that c1, c2 ∈ M ′ as (c1,w ), (c2,w ) ∈ E (G ), V (O) ∩ (V (Ĉ) \ (A� ∪ A′ ∪ Â)) = {w }, and NG (w ) ⊆

M ′∪V (C ). Let us orst argue that there exists an occurrence of inc(w ) inV{c1,c2 }\V̂
i−1
{c1,c2 }

. To this end,

note that as w is the shallow terminal of O, it is adjacent to c1 and c2, and therefore w ∈ A {c1,c2 } .

Moreover, because w � Â, there exists an occurrence of inc(w ) that does not belong to Vk+1
{c1,c2 }

,

which implies that there exists an occurrence of inc(w ) in V{c1,c2 } \ V̂
i−1
{c1,c2 }

.

As we have shown that inc(w ) in V{c1,c2 } \ V̂
i−1
{c1,c2 }

, the fact that Bi
{c1,c2 }

is a basis for V{c1,c2 } \

V̂i−1
{c1,c2 }

implies that there exist vectors v1, v2, . . . , vt for some t ∈ N (in particular, t ≥ 1) and

non-zero coeocients λ1, λ2, . . . , λt such that λ1v1 + λ2v2 + · · · + λtvt = inc(w ) over F
q
2 . As the

coeocient are from oeld F2, they are all necessarily 1. Thus, we have that

v1 + v2 + · · · + vt = inc(w ) over F
q
2 .
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Denoteui = uvi for all i ∈ [t]. Then, inc(u1)+inc(u2)+· · ·+inc(ut ) = inc(w ) over F
q
2 . In particular,

incP (u1) + incP (u2) + · · · + incP (ut ) = incP (w ) over F
q
2 , where P is the extended base of O. This

implies that
∑t

i=1

∑q
j=1 inc

P (ui )[j] =
∑q

j=1 inc
P (w )[j] mod 2. (Note that sinceV (O)∩ (V (Ĉ)\ (A�∪

A′ ∪ Â)) = {w }, the extended base is completely contained in G[V (G ) \ (V (Ĉ) \ (A� ∪ A′ ∪ Â))],
and furthermore P is not covered by W by the premise of the lemma.) By Lemma 4.17 and since
NG (w ) ∩ V (P ) = ∅ (because w is the shallow terminal of O), we have that

∑q
j=1 inc

P (w )[j] =

1 mod 2. Thus,
∑t

i=1

∑q
j=1 inc

P (ui )[j] = 1 mod 2. This implies that there exists i ∈ [t] such

that
∑q

j=1 inc
P (ui )[j] = 1 mod 2. However, by Lemma 4.17, this means that NG (ui ) ∩ V (P ) = ∅.

Moreover, we have that ui ∈ A {c1,c2 } because ui is associated with the vector vi which belongs to
Bi
{c1,c2 }

. Hence, G[(V (O) \ {w }) ∪ {ui }] is an AW. This completes the proof. �

Due to the deonition of Â, as a direct corollary to Lemma 4.18 we have the following result.

Corollary 4.19. Let w ∈ V (Ĉ) \ (A� ∪ A′ ∪ Â), and let O be an AW that is not covered by W

such thatV (O) ∩ (V (Ĉ) \ (A�∪A′∪ Â)) = {w } andw is the shallow terminal of O. Then, there exists

a set Ã ⊆ Â of size k + 1 such that for each u ∈ Ã, G[(V (O) \ {w }) ∪ {u}] is an obstruction.

We are now ready to conclude the proof of Lemma 4.3 and thereby this section.

Proof of Lemma 4.3. Toward the proof, orst note that if the condition of Reduction Rule 4.3
applies, then we are clearly done—indeed, in this case, we output an instance (G ′,k ) equivalent to
(G,k ) where |V (G ′) < |V (G ) |. Thus, we next suppose that this rule has been applied exhaustively.

Then, our output is the set B = A�∪A′∪ Â. By Observations 4.10 and 4.13, and by Lemma 4.16, we

have that |B | ≤ |A� | + |A′ | + |Â| ≤ (k + 1) |M ′ |2 + (k + 1) |M ′ |4 + 4(k + 1)3 |M ′ |10 ≤ 8(k + 1)3 |M ′ |10

as desired (recall that |M ′ | ≥ k ≥ 2).
Let S ⊆ V (G ) be some arbitrary set of size at most k . We claim that the following property holds:

If there exists an obstruction O for G that is not covered by W and such that V (O) ∩ S = ∅, then

there exists an obstructionO′ forG such thatV (O′)∩S = ∅ andV (O′)∩ (V (Ĉ) \B) = ∅. Clearly, if
there does not exist any obstruction O forG that is not covered byW and such thatV (O) ∩S = ∅,
then our proof is complete. Hence, we next suppose that such an obstruction exists, and we let

O′ be such an obstruction that minimizes |V (O′) ∩ (V (Ĉ) \ B) |. We claim that for this obstruction

O′, it holds that V (O′) ∩ (V (Ĉ) \ B) = ∅, which would complete the proof. Suppose, by way of

contradiction, that this claim is false. Then, as V (C�) ⊆ B, there exists C ∈ Ĉ \ C� and v ∈ V (C )

such that v ∈ V (O′). By Lemma 4.12, |V (O′) ∩V (C ) | = 1 and O′ is an AW where v is a terminal.
Let us orst suppose that v is not the shallow terminal of O′. Then, by Lemma 4.14, there exist

(k + 1) vertices u ∈ A′ such thatG[(V (O′) \ {v}) ∪ {u}] is an obstruction. However, as |S | ≤ k , this
means that there exists u ∈ A′ \S such thatG[(V (O′) \ {v})∪ {u}] is an obstruction. AsA′ ⊆ B and

G[(V (O′) \ {v}) ∪ {u}] has fewer vertices fromV (Ĉ) \ B than O′, we have reached a contradiction
to the choice of O′.
As the choice of v was arbitrary, we derive thatV (O′) ∩ (V (Ĉ) \B) contains exactly one vertex,

which we denote byw , that is the shallow terminal ofO′. In this case, by Corollary 4.19, there exist

(k + 1) vertices u ∈ Â such thatG[(V (O′) \ {w }) ∪ {u}] is an obstruction. However, as |S | ≤ k , this

means that there exists u ∈ Â \ S such thatG[(V (O′) \ {w }) ∪ {u}] is an obstruction. As Â ⊆ B and

G[(V (O′) \ {w }) ∪ {u}] has no vertices from V (Ĉ) \ B, we have again reached a contradiction to
the choice of O′. This completes the proof. �

4.1 Bounded Intersection Two Families Lemma

At the heart of our marking scheme to handle shallow terminals is in fact the special case of
Lemma 1.1 where c = 2. Indeed, viewing this case in a more abstract manner, let us give a rough
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description of the relation between it and the statement of Lemma 1.1. For all c1, c2 ∈ M ′, we have
sets A1,A2, . . . ,At and B1,B2, . . . ,Bt , which are deoned as follows. First, the universe is the set of

all vertices and pairs of vertices in N . Second, letW denote a set of verticesw ∈ V (Ĉ) \ (A� ∪A′)

such that (i) w is adjacent to c1 and c2, and (ii) w has at least one induced path in G[N ], say Pw ,
which contains no vertex adjacent tow , so that the two following properties hold:

• For all distinctw,w ′ ∈W ,w is adjacent to at least one vertex on Pw ′ .

• For every induced path P inG[N ] that has no vertex adjacent to some vertex inV (Ĉ) \ (A�∪

A′), there also exists a vertex inW that is not adjacent to any vertex on P .

These properties mean, in a sense, thatW is a minimal set that <covers= all induced paths inG[N ]
that can potentially create AWs together with c1 and c2 as centers. Then, t = |W |, and denote
W = {w1,w2 . . . ,wt }. For every vertex wi ∈ W , we create the new set Ai , which contains all
the neighbors of wi in N , and the new set Bi , which is equal to V (Pwi

). Clearly, for all i ∈ [t],
Ai ∩ Bi = ∅, and due to Observation 4.15, for all distinct i, j ∈ [t], |Ai ∩ Bj | ∈ {1, 2}.

Let us now turn to the proof of Lemma 1.1. For convenience, let us restate it.

Lemma 1.1 (Bounded Intersection Two Families Lemma). Let A1, . . . ,Am and B1, . . . ,Bm be

families over a universe U such that (i) for every i ≤ m, Ai ∩ Bi = ∅, and (ii) for every j � i ,

|Ai ∩ Bj | ∈ {1, . . . , c}. Then,m ≤
∑c

t=0

(

|U |
t

)

.

Proof. Let |U | = n, and let d =
∑c

t=0

(

n
t

)

. Let D be the set of all subsets of U of size at most c

(including the empty set). Note that we have |D | = d . Fix a bijection between D and {1, 2, . . . ,d }.
We construct an incidence vector vi for each set Ai , where vi is indexed by the subsets of U of
size up to c . More precisely, we have a vector vi ∈ {0, 1}d , where vi [X ] = 1 if and only if X ⊆ Ai .
Let us note that vi [∅] = 1 for all 1 ≤ i ≤ m. We consider these vectors as elements of the vector
space Fd2 . Similarly, we construct vectors u1, u2, . . . , um for each set B1,B2, . . . ,Bm . We orst claim
that for every i ∈ [m], we have vi · ui = 1. This follows from the fact that Ai ∩ Bi = ∅. We next
claim that for each i, j ∈ [m], where i � j, we have vi · uj = 0. This follows from the following

observation. Let Ci j = Ai ∩ Bj . Then, as |Ci j | ∈ [c], we have that 2Ci j ⊆ D, where 2Ci j denotes the

collection of all subsets of Ci j . Now, observe that vi [X ]uj [X ] = 1 if and only if X ⊆ Ci j . As |2
Ci j |

is an even number (greater than or equal to 2), it follows that vi · uj = 0 over the oeld F2.

Now, suppose thatm > d . Then, the collection v1, v2, . . . , vm is not linearly independent in Fd2 .
Hence, there is a vector, say vm , such that vm = α1v1 + α2v2 + · · · + αm−1vm−1, where α j ∈ F2 for
each j ∈ [m − 1]. We claim that there is a vector vi such that vi · um = 1 for some i ∈ [m − 1]. This
follows from the following equation.

vm · um =
��
�

m−1
∑

j=1

α jvj
��
�
· um

=⇒ 1 =

m−1
∑

j=1

α j (vj · um )

However, this is a contradiction. Hence,m ≤ d . This concludes the proof of this lemma. �

5 BOUNDING THEMAXIMUM SIZE OF A CLIQUE OF NON-MODULE COMPONENTS

Let η = 210 · 4(k + 5)
(

|M |
10

)

. Recall that C is the set of connected components of G − M , D is

the set of connected components in C that are modules, and D = C \ D. Let (P, β ) be a clique

path of G[V (D)], V (P) = {x1,x2, . . . ,xt }, and for each i ∈ [t] we let Bi = β (xi ). Furthermore, let
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β (P) = ∪t
i=1β (xi ). Let Bi be a bag such that |Bi | > η. Toward bounding the size of Bi , we mark

some of the vertices in Bi and delete all the unmarked vertices in Bi from G. In fact, in a step, we
only delete one unmarked vertex and then repeat the whole kernelization algorithm on the reduced
instance. In the following, we describe the precise marking procedure.

Marking Scheme. To deone our marking scheme, we orst introduce some notations. We deone
two functions, namely, idilv, id

i
rht : Bi → [t]. Intuitively, these functions denote how far or close

a vertex appears in the bags that are to the left and right of Bi , respectively. For a vertex v ∈ Bi ,
idilv (v ) is the smallest integer x ∈ [t] such that v ∈ Bx , and idirht (v ) is the largest integer y ∈ [t]

such that v ∈ By . Note that for each v ∈ Bi , we have id
i
lv (v ) ≤ i ≤ idirht (v ). A frame F = (X ,Y )

in G is a pair of vertex subsets such that X ⊆ M of size at most 10 and Y ⊆ X . A vertex v ∈ V (G )

is said to ot a frame F = (X ,Y ) if NG (v ) ∩ X = Y . We now move to the construction of the set

Hi ⊆ Bi , of marked vertices. For each frame F in G, we create four sets LF,i
far
,LF,i

cls
,RF,i

far
,RF,i

cls
⊆ Bi of

marked vertices each of size at most k + 5 (and add these vertices to Hi ) as follows:

• We create the set LF,i
far

as follows. LetW be the set of unmarked vertices in Bi , which ot the

frame F. If |W | ≤ k + 5, then add all the vertices inW to LF,i
far
. Else, letWlow ⊆W be the set

of k + 5 vertices with lowest idilv values among the vertices inW . AddWlow to LF,i
far
.

• We create the set LF,i
cls

as follows. LetW be the set of unmarked vertices in Bi , which ot the

frame F. If |W | ≤ k + 5, then add all the vertices inW to LF,i
cls
. Else, letWhigh ⊆W be the set

of k + 5 vertices with highest idilv values among the vertices inW . AddWhigh to L
F,i
cls
.

• We create the set RF,i
far

as follows. LetW be the set of unmarked vertices in Bi , which ot the

frame F. If |W | ≤ k + 5, then add all the vertices inW to RF,i
far
. Else, letWhigh ⊆W be the set

of k + 5 vertices with highest idirht values among the vertices inW . AddWhigh to R
F,i
far
.

• We create the set RF,i
cls

as follows. LetW be the set of unmarked vertices in Bi , which ot the

frame F. If |W | ≤ k + 5, then add all the vertices inW to RF,i
cls
. Else, letWlow ⊆W be the set

of k + 5 vertices with lowest idirht values among the vertices inW . AddWlow to RF,i
cls
.

Notice that |Hi | ≤ 210 ·4(k+5)
(

|M |
10

)

= η. Before proceeding further, we observe (Observations 5.1

and 5.2) certain useful properties regarding a frame F to which v ∈ Bi \Hi ots and the vertices in

LF,i
far
,RF,i

far
,LF,i

cls
, and RF,i

cls
.

Observation 5.1. For a frame F = (X ,Y ) to which v ∈ Bi \ Hi ots and a vertex w ∈ NG (v ), the

following holds:

• Ifw ∈ Y , then LF,i
far

∪ RF,i
far

⊆ NG (w ).

• Ifw ∈ V (G ) \M , then at least one of LF,i
far

\ {w } ⊆ NG (w ) or RF,i
far

\ {w } ⊆ NG (w ) holds.

Proof. In the orst case, it follows from the deonition that LF,i
far

∪ RF,i
far

⊆ NG (w ). Now we prove
the second part of the observation. First, consider the case when bothv andw belong to Bi . In this

case, the second claim holds because Bi is a clique, L
F,i
far

⊆ Bi and R
F,i
far

⊆ Bi . So let us assume that
w � Bi . However,w ∈ NG (v ) and hence bothv andw lie in the same bag, say Bj , on the clique path
P. Since the bags in whichw is present occur consecutively on P, we have that all these bags either
appear left of Bi or right of Bi . Let us consider the case when all the bags containingw appear left
of Bi . The other case when all the bags containingw appear right of Bi is symmetric. We will show

that LF,i
far

\ {w } ⊆ NG (w ). Toward this, we will show that for every x ∈ LF,i
far

\ {w }, there exists a bag
that contains both x and w . For a vertex z, let sz denote the leftmost bag on P in which z appears
and ez denote the rightmost bag on P in which z appears. Recall thatv is an unmarked vertex in Bi
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and thus sx ≤ sv ≤ i ≤ ex . Furthermore, we know that sx ≤ j < i . This implies that x also belongs

to Bj . Hence, we have shown that LF,i
far

\ {w } ⊆ NG (w ). This concludes the proof. �

Observation 5.2. For a frame F = (X ,Y ) to which v ∈ Bi \ Hi ots and a vertex w � NG (v ), the

following holds:

• Ifw ∈ X \ Y , then (LF,i
cls

∪ RF,i
cls

) ∩ NG (w ) = ∅.

• Ifw ∈ V (G ) \M , then at least one of LF,i
cls

∩ NG (w ) = ∅ or RF,i
cls

∩ NG (w ) = ∅ holds.

Proof. In the orst case, it follows from the deonition that (LF,i
cls

∪ RF,i
cls

) ∩ NG (w ) = ∅. In the

second case, ifw � V (D), then the claim trivially holds. Otherwise, v andw lie in the clique path
P. Since w � NG (v ), there is no bag that contains both v and w , and v ∈ Bi . On the one hand,
w appears only in the bags (strictly) to the left of Bi , in which case v being an unmarked vertex

implies that LF,i
cls

∩ NG (w ) = ∅. On the other hand, if w appears only in the bags (strictly) to the

right of Bi , we have R
F,i
cls

∩ NG (w ) = ∅. �

Next, we give a reduction rule that deletes unmarked vertices from Bi in G.

Reduction Rule 5.1. Let v be a vertex in Bi \ Hi . Delete v from G—that is, the resulting instance
is (G − {v},k ).

Lemma 5.3. Reduction Rule 5.1 is safe.

Before moving to the proof of Lemma 5.3, we note that using it we immediately obtain the
following lemma.

Lemma 5.4. If Reduction Rule 5.1 is not applicable, then for each j ∈ [t], we have |Bj | ≤ η.

Proof. Follows from the safeness of Reduction Rule 5.1 (Lemma 5.3) and the fact that |Hj | ≤ η,
for each j ∈ [t]. �

In the remainder of this section, we focus on the proof of Lemma 5.3. Letv be a vertex in Bi \Hi

and G ′
= G − {v}. We will show that (G,k ) is a Yes-instance of IVD if and only if (G ′,k ) is a

Yes-instance of IVD. In the forward direction, let S be a solution to IVD in (G,k ). As G − S is an
interval graph and so are all its induced subgraphs, we therefore have that S \ {v} is a solution to
IVD in (G ′,k ).
In the reverse direction, let S be a solution to IVD in (G ′,k ). Wewill show thatG−S is an interval

graph. Suppose not, then there must be an obstruction in G − S . Note that all the obstructions in
G − S are guaranteed to contain v , as otherwise the obstruction is also present in G ′ − S , which
contradicts that S is a solution to IVD in (G ′,k ). This implies that S ∪ {v} is a (k + 1)-solution for
G. Recall that W is (k + 1)-necessary, and therefore S ∪ {v} hits W . Since v � M and W ⊆ 2M ,
we derive that S hitsW . But then any obstruction inG −S is not covered byW sincev � M . This
together with the fact thatM is a 9-redundant solution implies that for any obstructionO′ inG−S,

we have |V (O′)∩M | ≥ 10. Moreover, such an obstruction can either be a cycle, a  -AW, or a !-AW
on at least 10 vertices. Among all obstructions inG−S (containingv), we will proof the correctness
of the lemma by carefully choosing an (available) obstruction, and in each case arriving at some
contradiction. In the following, we describe the choice of the obstruction O in G − S :

(1) If G − S has an induced cycle Q (containing v) of length at least 10, then O is set to Q .
(2) Otherwise, O is an obstruction in G − S (containing v) of minimum possible size, and over

all such minimum sized obstructions, O maximizes the number of vertices from Bi .
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We will consider cases depending on which type of obstruction O is, as well as the role that v
plays in O. In the case when O is an induced cycle, our goal will be to obtain an obstruction not
containing v in G − S . In all other cases, we either will obtain an obstruction not containing v , or
a smaller sized obstruction, or an obstruction that has the same number of vertices as O but has
more vertices from Bi than O has from Bi . In each such case, this will contradict the choice of O.

Next, we consider the cases depending on whether O is a cycle, a  -AW, or a !-AW. We remark
that whenever we are dealing with a particular case, we will assume that the cases stated prior to
it are not applicable.

O Is a Cycle

Let us orst note that |V (O) ∩ Bi | ≤ 2 as Bi is a clique. Let x ,y be the neighbors of v in O, and
note that they lie in M ∪ β (P). Since O is not covered by W , we have |V (O) ∩ M | ≥ 10. Let

M̂ = M ∩ V (O), M ′ ⊆ M̂ of size 3 such that M̂ ∩ {x ,y} ⊆ M ′, and F = (M ′,M ′ ∩ {x ,y}). Next,

consider the sets Lfar = LF,i
far

\ (S ∪V (O)) and Rfar = RF,i
far

\ (S ∪V (O)). Since |S | ≤ k , v � Hi , and Bi
is a clique, therefore Lfar,Rfar � ∅. Let z ∈ M ′ \ {x ,y}, which exists since |M ′ | = 3. Now suppose
that there is v∗ ∈ Lfar ∪ Rfar such that (v∗,x ), (v∗,y) ∈ E (G ), then we claim that we can obtain a
cycle on at least four vertices not containing v in G − S . Since v∗ ots F, therefore (v∗, z) � E (G ).
Consider the paths Pxz and Pyz from x to z and y to z in O − {v}, respectively. Furthermore, let x∗

and y∗ be the last vertices in Pxz and Pyz which are adjacent tov∗. Note that x∗ and y∗ exists since
(x ,v∗), (y,v∗) ∈ E (G ). But then the path from x∗ to y∗ in O − {v} along with v∗ forms an induced
cycle on at least four vertices in G − S that does not contain v .
Next, we assume that any vertex in Lfar ∪ Rfar is adjacent to at most one of x ,y. From Observa-

tion 5.1 (togetherwith (x ,y) � E (G )), it follows that either Lfar ⊆ NG (x ) andRfar ⊆ NG (y), orRfar ⊆

NG (x ) and Lfar ⊆ NG (y), must hold. Suppose that Lfar ⊆ NG (x ) and Rfar ⊆ NG (y) (the other case
is symmetric). Consider vertices u∗ ∈ Lfar and v

∗ ∈ Rfar. Note that (u
∗,x ), (v∗,y), (u∗,v∗) ∈ E (G )

and (u∗,y), (v∗,x ), (u∗, z), (v∗, z) � E (G ). Consider the paths Pxz and Pyz from x to z and y to z in
O− {v}, respectively. Let x∗ be the last vertex in the path Pxz such that NG (x

∗) ∩ {u∗,v∗} � ∅. Sim-
ilarly, let y∗ be the last vertex in the path Pyz such that NG (y

∗) ∩ {u∗,v∗} � ∅. Let Px ∗z and Pzy∗ be
the paths from x∗ to z and z toy∗ inO−{v}, respectively. Notice thatG[V (Px ∗z )∪V (Pzy∗ )∪{u∗,v∗}]
contains an induced cycle (not containing v) on at least four vertices.

O Is a  -AW

Let O comprise of the base path base(O) = (b1,b2, . . . ,bz ), non-shallow terminals t� and tr ,
shallow terminal t , and center c (as in the deonition in Section 2). Furthermore, let P (O) =
(t�,b1,b2, . . . ,bz , tr ), and let b0 = t� , and bz+1 = tr . Let M̂ = M ∩V (O). Recall that O is not covered
byW , and thus |M̂ | ≥ 10. LetM ′ be a subset of M̂ of size 8 such that M̂∩{c, t , t�, tr ,b1,b2,bz−1,bz } ⊆

M ′, and F = (M ′,M ′ ∩ NG (v )). Next, we deone the following sets, whose vertices will be used to
either construct an obstruction not containingv , or an obstruction containingv but with (strictly)
smaller size, or an obstruction with same number of vertices as O but containing strictly more

vertices from Bi than O contains from Bi . Let Lfar = LF,i
far

\ (S ∪ V (O)), Lcls = LF,i
cls

\ (S ∪ V (O)),

Rfar = RF,i
far

\ (S ∪V (O)), and Rcls = RF,i
cls

\ (S ∪V (O)). Notice that |V (O) ∩ Bi | ≤ 3, since no  -AW
contains a clique of size 4 andG[Bi ] is a clique. This together with the fact thatv � Hi and |S | ≤ k

implies that Lfar,Lcls,Rfar,Rcls � ∅. Next, we consider cases depending on the role that v plays in
the obstruction O.

Supposev Is the Shallow Terminal. In this case, (v, c ) ∈ E (G ), and therefore fromObservation 5.1,
one of Lfar ⊆ NG (c ) or Rfar ⊆ NG (c ) must hold. Consider the case when Lfar ⊆ NG (c ) (the other
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Fig. 2. Construction of an obstruction when O is  -AW and v = t .

case is symmetric), and let v∗ be a vertex in Lfar. Next, we consider the following cases based on
the neighborhood of v∗ in O (Figure 2).

Case  -AW.S.1. NG (v∗) ∩ V (P (O)) | = 0. In this case,G[(V (O) \ {v}) ∪ {v∗}] is a  -AW inG ′−S .

Case  -AW.S.2. If |NG (v∗) ∩ V (P (O)) | = 1. If (v∗, t� ) ∈ E (G ), then G[{v∗, c, t�,b1}] is an in-
duced cycle on four vertices not containing v in G − S . Analogous argument can be given when
(v∗, tr ) ∈ E (G ). Therefore, we assume thatNG (v

∗)∩V (P (O)) = {bi }, where i ∈ [z]. If i ∈ [z]\{1, z},
then G[{v∗,v,bi ,bi−1,bi−2,bi+1,bi+2}] is a long claw in G − S . This cannot happen, as any ob-
struction in G − S is of size at least 10. If none of the preceding cases are applicable, then
NG (v

∗) ∩ V (P (O)) ∈ {{b1}, {bz }}. Suppose that NG (v
∗) ∩ V (P (O)) = {b1} (the other case is sym-

metric), then G[{c,v,v∗,b1,b2,b3, t� }] is a whipping top in G − S .

Case  -AW.S.3. |NG (v∗) ∩ V (P (O)) | ≥ 2. If neighbors of v∗ are not consecutive in the path
P (O), then we can obtain an induced cycle on at least four vertices in G[{v∗} ∪ V (P (O))], and
therefore we assume that the neighbors of v∗ in P (O) are consecutive. By the construction of F
and v∗, we know that there are at least seven vertices in P (O) that are non-adjacent to v∗ (recall
that we are in the case whenv is the shallow terminal). This also implies that |{t�, tr }∩NG (v

∗) | ≤ 1.
Without loss of generality, we assume that (v∗, tr ) � E (G ). Next, we consider the following cases
based on whether or not (v∗, t� ) ∈ E (G ):

(A) (v∗, t� ) ∈ E (G). In this case, there exists e ∈ [z−2] such thatbe ∈ NG (v
∗) andbe+1 � NG (v

∗).
LetV ′

= {v,v∗, c, t� }∪{b1,b2, . . . ,be ,be+1}. Observe thatG[V
′] is a !-AWwith |V ′ | < |V (O) |,

a contradiction to the choice of O.
(B) (v∗, t� ) � E (G). Let bs and be be the orst and the last vertices in P (O) that are adjacent tov

∗,
respectively. Notice that s � e (since |NG (v

∗) ∩V (P (O)) | ≥ 2), and {bs ,bs+1, . . .be ,be+1} ⊂

{b1,b2, . . .bz } (strict subset). Let V
′
= {v,v∗} ∪ {bs−1,bs ,bs+1, . . . ,be ,be+1}. Observe that

|V ′ | < |V (O) | and G[V ′] is a  -AW.

Suppose v Is the Center. In this case, (t�,v ), (tr ,v ) � E (G ). Since v � Hi and each vertex in
Lcls ∪ Rcls ots the frame F, from Observation 5.2 one of the following holds: (1) NG (t� ) ∩ Lcls = ∅
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Fig. 3. Construction of an obstruction when O is  -AW and v = c .

and NG (tr ) ∩ Rcls = ∅, (2) NG (tr ) ∩ Lcls = ∅ and NG (t� ) ∩ Rcls = ∅, (3) NG (t� ) ∩ Lcls = ∅ and
NG (tr )∩Lcls = ∅, or (4)NG (t� )∩Rcls = ∅ andNG (tr )∩Rcls = ∅. Consider a vertexv∗ ∈ Lcls∪Rcls, and
let bs and be be the orst and the last vertices in the path P (O) that are adjacent to v∗, respectively.
The existence and distinctness of bs ,be follow from the fact that |NG (v

∗) ∩V (P (O)) | ≥ 5, which
in turn is implied from the choice of M ′ and v∗ otting the frame F. The neighbors of v∗ in P (O)

must be consecutive, as otherwise we can obtain an induced cycle of length at least 4, which does
not contain v . We further consider subcases based on whether or not the following two criterions
are satisoed (Figure 3):

(1) t ∈ NG (v
∗);

(2) NG (v
∗) ∩ {t�, tr } = ∅.

Case  -AW.C.1. t � NG (v∗). If {t�, tr } ⊆ NG (v
∗), thenG[{v∗, t�,b1,v,bz , tr , t }] is a whipping top.

Here, we rely on the fact that neighbors ofv∗ in P (O) are consecutive andb1 andbz are not adjacent
as O has at least 11 vertices. From the preceding, we can assume that |{t�, tr } ∩ NG (v

∗) | ≤ 1. Let
V ′
= (V (O) \ {bs+1,bs+2, . . . ,be−1})∪ {v∗}. Notice that |V ′ | < |V (O) | since |NG (v

∗)∩V (P (O)) | ≥ 5
and neighbors of v∗ are consecutive. Moreover, G[V ′] is an (induced)  -AW or a net, which is of
strictly smaller size than O, contradicting the choice of O. Here, we crucially rely on the fact that
|NG (v

∗) ∩ {t�, tr }| ≤ 1.

Case  -AW.C.2. t ∈ NG (v∗) and NG (v∗) ∩ {t�, tr } = ∅. In this case, G[{v∗, t ,bs−1,bs ,

bs+1, . . . ,be ,be+1}] forms an (induced)  -AW in G − S that does not contain v .

If Cases  -AW.C.1 and  -AW.C.2 are not applicable, then for eachu ∈ Lcls∪Rcls we have t ∈ NG (u)

andNG (u)∩{t�, tr } � ∅. Furthermore,v � Hi , (t�,v ), (tr ,v ) � E (G ), and each vertex in Lcls∪Rcls ots
the frame F. Therefore, one of the followingmust hold: (1)NG (t� )∩Lcls = ∅ andNG (tr )∩Rcls = ∅ or
(2)NG (tr )∩Lcls = ∅ andNG (t� )∩Rcls = ∅. Thus, for eachu ∈ Lcls∪Rcls,we have |NG (u)∩{t�, tr }| = 1.
We assume that NG (t� ) ∩ Lcls = ∅ and NG (tr ) ∩ Rcls = ∅ (the other case is symmetric). Next,
we consider a vertex u∗ ∈ Lcls and a vertex v∗ ∈ Rcls. Notice that (by the preceding discussion)
t ∈ NG (u

∗) ∩ NG (v
∗), t� � NG (u

∗), tr ∈ NG (u
∗), tr � NG (v

∗), and t� ∈ NG (v
∗). Additionally, since

u∗,v∗ ∈ Bi , we have (u
∗,v∗) ∈ E (G ). We now consider the remaining case.
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Fig. 4. Construction of an obstruction when O is  -AW and v = t� .

Case  -AW.C.3. t ∈ NG (u∗) ∩ NG (v∗), NG (u∗) ∩ {t�, tr } = {tr }, andNG (v∗) ∩ {t�, tr } = {t�}.
We consider the following subcases:

(A) u∗ and v
∗ have no common neighbor in P (O). Then G[{u∗,v∗} ∪ V (P (O))] contains an

(induced) cycle on at least four vertices.
(B) Otherwise, u∗ andv∗ have at least one common neighbor in P (O). Let bp and bq be the orst

and the last common neighbors ofu∗ andv∗ in P (O), respectively. Notice that bp−1 ∈ NG (v
∗)

and bp−1 � NG (u
∗). This follows from the fact that t�,bq ∈ NG (v

∗), neighbors of v∗ are
consecutive vertices in P (O), t� � NG (u

∗), and p is the orst common neighbor of u∗ and v∗

in P (O). Similarly, we can argue that bq+1 ∈ NG (u
∗) and bq+1 � NG (v

∗). Consider the set
V ′
= {t ,v∗,u∗} ∪ {bp−1,bp , . . . ,bq ,bq+1}. Notice thatG[V

′] is a !-AW or a tent that does not
contain v .

Supposev Is One of the Non-Shallow Terminals. We consider the case whenv = t� . By a symmet-
ric argument, we can handle the case when v = tr . If c � β (P), then for each u ∈ Lcls ∪ Rcls we
have (u, c ) � E (G ), as it ots the frame F and NG (u) \ (M ∪ β (P)) = NG (v ) \ (M ∪ β (P)) = ∅.
Otherwise, c ∈ β (P), and then from Observation 5.2, at least one of Lcls ∩ NG (c ) = ∅ or
Rcls ∩ NG (c ) = ∅ holds. Let Xcls ∈ {Lcls,Rcls} be a set such that Xcls ∩ NG (c ) = ∅. Similarly,
if b1 � β (P), then for each u ∈ Lfar ∪ Rfar we have (u,b1) ∈ E (G ), as it ots the frame F and
NG (u) \ (M ∪ β (P)) = NG (v ) \ (M ∪ β (P)) = ∅. Otherwise, b1 ∈ β (P), and then at least one of
Lfar ⊆ NG (b1) or Rfar ⊆ NG (b1) holds (see Observation 5.1). Let Yfar ∈ {Lfar,Rfar} be a set such that
Yfar ⊆ NG (b1). Next, we consider cases based on whether or not b1 ∈ Bi (Figure 4).

Case  -AW.T.1. b1 ∈ Bi . Consider a vertex v
∗ ∈ Xcls. Note that (v

∗,b1) ∈ E (G ) since b1 ∈ Bi , and
(v∗, c ) � E (G ) by the choice of v∗. Additionally, (v∗, t ) � E (G ), and otherwise G[{t , c,b1,v

∗}] is
cycle on four vertices in G − S . Recall that v∗ ots the frame F (and (b1,v

∗) ∈ E (G )), and therefore
there exists be such that be ∈ NG (v

∗) and be+1 � NG (v
∗), where e ∈ [z − 1] (possibly e = 1).

This together with the fact that neighbors of v∗ in P (O) are consecutive (otherwise, we obtain
an induced cycle on at least four vertices not containing v) implies that (v∗, tr ) � E (G ). But then
G[{t , c,v∗} ∪ {be ,be+1, . . . ,bz , tr }] is a  -AW (or a net) that does not contain v .
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Case  -AW.T.2.b1 � Bi . Consider a vertexv
∗ ∈ Yfar∪{u ∈ Xcls | (u,b1) ∈ E (G )}, and the following

cases based on its neighborhood in O:

(A) (v∗, c ) � E (G). In this case, (v∗, t ) � E (G ), and otherwiseG[{v∗, t , c,b1}] is an induced cycle
on four vertices. Recall that v∗ ots the frame F, and therefore there are at least ove vertices
in P (O) that are non-adjacent to v∗. This together with the fact that (b1,v

∗) ∈ E (G ) implies
that there exists e ∈ [z − 2] such that be ∈ NG (v

∗) and be+1 � NG (v
∗). But then G[V ′] is a

 -AW (or a net) not containing v in G − S , where V ′
= {t , c,v∗, tr } ∪ {be ,be+1, . . . ,bz }.

(B) (v∗, c ) ∈ E (G). We further consider the following cases:
(i) There exists e ∈ [z] \ {1} such that be ∈ NG (v∗) and be+1 � NG (v∗). By the choice of
M ′ and the fact that v∗ ots F, we have e ≤ z − 2. Consider the following cases based on
whether or not (t ,v∗) ∈ E (G ):

(a) (t,v∗) � E (G). LetV ′
= {t , c,v∗,v, tr }∪{be ,be+1, . . . ,bz }. Observe thatG[V

′] is a  -AW in
G−S . Furthermore, either |V ′ | < |V (O) | or |V ′ | = |V (O) | and |V ′∩Bi | > |V (O)∩Bi |. Here,
we rely on the fact that b1 � Bi . In either case, we obtain a contradiction to the choice ofO.

(b) (t,v∗) ∈ E (G). Let V ′
= {t , c,v∗,v} ∪ {b1,b2, . . . ,be ,be+1}. Observe that G[V

′] is a !-AW
in G − S and |V ′ | < |V (O) |, which contradicts the choice of O.

(ii) Otherwise, if (i) does not hold, then the only neighbors ofv∗ in P (O) areb1 andv . Consider
the following cases based on whether or not (t ,v∗) ∈ E (G ):

(a) (t,v∗) ∈ E (G). In this case, G[{v,v∗, t , c,b1,b2}] is a tent.
(b) (t,v∗) � E (G). We consider a vertex in u∗ ∈ Xcls to obtain the desired obstruction. We

can assume that (b1,u
∗) � E (G ) as Xcls ∩NG (c ) = ∅ and Case  -AW.T.2.A is not applicable.

Furthermore, (bj ,u
∗) � E (G ), for each j ∈ [z]\{1}, and otherwiseG[{v,u∗}∪{b1,b2, . . .bj }]

will contain an induced cycle on at least four vertices. Let V ′
= (V (O) \ {v}) ∪ {v∗,u∗}.

Observe that G[V ′] is a  -AW that does not contain v .

Suppose v Is Either b1 or bz . Suppose v = b1 (the other case is symmetric). If t� � β (P), then
for each u ∈ Lfar ∪ Rfar we have (u, t� ) ∈ E (G ), as it ots the frame F and NG (u) \ (M ∪ β (P)) =

NG (v )\(M∪β (P)) = ∅. Otherwise, t� ∈ β (P), and then at least one ofLfar ⊆ NG (t� ) orRfar ⊆ NG (t� )

holds (see Observation 5.1). Let Xfar ∈ {Lfar,Rfar} be a set such that Xfar ⊆ NG (t� ). Similarly,
if b2 � β (P), then for each u ∈ Lfar ∪ Rfar we have (u,b2) ∈ E (G ), as it ots the frame F and
NG (u) \ (M ∪ β (P)) = NG (v ) \ (M ∪ β (P)) = ∅. Otherwise, b2 ∈ β (P), and then at least one of
Lfar ⊆ NG (b2) or Rfar ⊆ NG (b2) holds. Let Yfar ∈ {Lfar,Rfar} be a set such that Yfar ⊆ NG (b2). Next,
we consider cases depending on the neighborhood of vertices in Xfar ∪ Yfar in O (Figure 5).

Case  -AW.B.1. There is a vertexv∗ ∈ Xfar ∪ Yfar such that {t�, b2} ⊆ NG (v∗). There exists e ∈

[z−2] such thatbe ∈ NG (v
∗) andbe+1 � NG (v

∗). This follows from the fact that (v∗,b2) ∈ E (G ) and
v∗ ots the frame F. Next, we consider the subcases based on whether or not (v∗, c ), (v∗, t ) ∈ E (G ):

(A) (v∗, c ) ∈ E (G), (v∗, t ) � E (G). Let V ′
= {t , c,v∗, t�, tr } ∪ {be ,be+1, . . . ,bz }. Observe that

G[V ′] is a  -AW that does not contain v .
(B) (v∗, c ) ∈ E (G), (v∗, t ) ∈ E (G). Let V ′

= {t , c,v∗,v, t� } ∪ {b2,b3, . . . ,be ,be+1}. Observe that
G[V ′] is a !-AW that has strictly fewer vertices than O.

(C) (v∗, c ) � E (G). Notice that in this case (v∗, t ) � E (G ), and otherwise G[{v∗, t , c,b2}] is an
induced cycle on four vertices. Let V ′

= {t , c,v∗, tr } ∪ {be ,be+1, . . . ,bz }. Observe that G[V
′]

is an induced  -AW that does not contain v .

Case  -AW.B.2. Suppose that for every u ∈ Xfar ∪ Yfar, we have (u, c ) ∈ E (G). Since Case  -
AW.B.1 is not applicable, we can assume that for each u ∈ Xfar ∪ Yfar we have {t�,b2} � NG (u).
By the construction of Xfar and Yfar, we know that for each u ∈ Xfar ∪ Yfar we have {t�,b2} ∩
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Fig. 5. Construction of an obstruction when O is  -AW and v = b1.

NG (u) � ∅, and Xfar,Yfar � ∅. Consider a vertex v∗ ∈ Xfar and a vertex u∗ ∈ Yfar. We have that
(v∗, c ), (u∗, c ), (v∗, t� ), (u

∗,b2) ∈ E (G ) and (v∗,b2), (u
∗, t� ) � E (G ). Next, we consider cases based

on whether or not t adjacent to v∗ and u∗:

(A) (t,v∗) ∈ E (G). Recall that b2 � NG (v
∗) and t�, t , c ∈ NG (v

∗). But then G[{c,v,v∗,b2, t�, t }]
is a tent in G − S .

(B) (t,u∗) ∈ E (G). There exists e ∈ [z−2] such thatbe ∈ NG (u
∗) andbe+1 � NG (u

∗). This follows
from the fact that (u∗,b2) ∈ E (G ) and u∗ ots the frame F. Let V ′

= {b2,b3, . . . ,be ,be+1} ∪

{t ,u∗, t�,v}. Then G[V
′] is a  -AW in G − S which has strictly fewer vertices than O.

(C) (t,v∗), (t,u∗) � E (G).We start by arguing thatv∗ cannot be adjacent tobj , where j ∈ [z]\{1}.
For j = 2, it follows from the choice of v∗. Next, consider the smallest j > 2 such that
(v∗,bj ) ∈ E (G ). Then,G[{v,v∗}∪{b2,b3, . . . ,bj }] is an induced cycle on at least four vertices,
which is a contradiction, as we assume previously stated cases are not applicable. Therefore,
we assume that the only neighbor ofv∗ in P (O) arev and t� . Next, we argue about neighbors
ofu∗ in P (O). There exists e ∈ [z−2] such that be ∈ NG (u

∗) and be+1 � NG (u
∗). This follows

from the fact that (u∗,b2) ∈ E (G ) and u∗ ots the frame F. Let V ′
= {t , c, t�, tr ,v

∗,u∗} ∪

{be ,be+1, . . . ,bz }. Observe that G[V
′] is a  -AW in G − S that does not contain v .

Case  -AW.B.3. Suppose that there is u ∈ Xfar ∪ Yfar such that (u, c ) � E (G), and for all
u ∈ Xfar ∪ Yfar we have {t�, b2} � NG (u). Consider vertices v∗ ∈ Xfar and u∗ ∈ Yfar, and the
following subcases.:

(A) (v∗, c ) � E (G). This implies that (v∗, t ) � E (G ), and otherwise G[v∗, c, t ,v] is a cycle on
four vertices. As Case  -AW.B.1 is not applicable, for each u ∈ Yfar we have (u,b2) ∈ E (G )

ACM Transactions on Algorithms, Vol. 19, No. 2, Article 11. Publication date: April 2023.



11:30 A. Agrawal et al.

Fig. 6. Construction of an obstruction when O is  -AW and v = bj , where j ∈ [z − 1] \ {1}.

and (u, t� ) � E (G ). Note that since v is unmarked, therefore Yfar � ∅. From the preceding
discussions, we obtain that t� � Bi . Observe thatv

∗ cannot be adjacent to anybj , where j ≥ 2,
since the neighbors of v∗ in P (O) must be consecutive, (v∗, t� ) ∈ E (G ), and (v∗,b2) � E (G ).
But then G[(V (O) \ {t� }) ∪ {v∗}] is a  -AW with the same number of vertices as O but with
more vertices from Bi .

(B) (u∗, c ) � E (G). Since Case  -AW.B.3.A is not applicable, we can assume that (v∗, c ) ∈ E (G ).
Observe that G[{c,v∗,u∗,b2}] is a cycle on four vertices. Here, we rely on the fact that
(v∗,b2) � E (G ).

Suppose That v Is a Base Vertex bj , Where j ∈ [z] \ {1, z}. Let Xfar ∈ {Lfar,Rfar} be a set such
that Xfar ⊆ NG (bj−1) and Yfar ∈ {Lfar,Rfar} be a set such that Yfar ⊆ NG (bj+1). We note that
existence ofXfar and Yfar is guaranteed from Observation 5.1. Next, we consider cases based on the
neighborhood of vertices in Xfar and Yfar in O (Figure 6).

Case  -AW.J.1. There is v∗ ∈ Xfar ∪ Yfar such that (v∗, c ) � E (G). Note that as (v∗, c ) � E (G ),
we have (v∗, t ) � E (G ), and otherwise G[{v,v∗, c, t }] would be an induced cycle on four vertices.
All the neighbors of v∗ on P (O) must be consecutive. This together with the choice of F and v∗

implies that one of (a) {t�,b1} ∩ NG (v
∗) = ∅ or (b) {tr ,bz } ∩ NG (v

∗) = ∅ must hold. Suppose that
{tr ,bz } ∩ NG (v

∗) = ∅ (the other case is symmetric). Let e ∈ [z − 1] such that be is the last vertex
in P (O) that is adjacent to v∗, which exists since tr ,bz � NG (v

∗) and NG (v
∗) ∩ {v,bj−1,bj+1} � ∅.

We note that e could possibly be equal to j. Let V ′
= {t , c,v∗, tr } ∪ {be ,be+1, . . . ,bz }. Observe that
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|V ′ | < |V (O) | since j ∈ [z] \ {1, z}. Moreover, G[V ′] is a  -AW in G − S , which contradicts the
choice of O.

Note that if Case  -AW.J.1 is not applicable, then for each u ∈ Xfar ∪ Yfar we have (u, c ) ∈ E (G ).
Next, we consider cases based on whether or not the following conditions are satisoed for a vertex
u ∈ Xfar ∪ Yfar:

(1) (u, t ) ∈ E (G );
(2) {bj−1,bj+1} ⊆ NG (u).

Case  -AW.J.2. If there is v∗ ∈ Xfar ∪ Yfar such that (v∗, t ) ∈ E (G). We start by recalling the
following. SinceM is a 9-redundant solution andO is not covered byW , we have |M∩V (O) | ≥ 10,
which implies that |V (O) | ≥ 10. By the choice of F and the fact that 2 ≤ j ≤ z − 1 (where v = bj ),
we have at least four vertices inV (P (O)) that are non-adjacent tov∗. Moreover, by our assumption
that there is no obstruction that is an induced cycle on at least four vertices, we have that all the
neighbors of v∗ in P (O) must be consecutive. From the preceding discussions, we can conclude
that at least one of {b1,b2, t� } ∩ NG (v

∗) = ∅ or {bz−1,bz , tr } ∩ NG (v
∗) = ∅ must hold. Suppose that

{bz−1,bz , tr } ∩ NG (v
∗) = ∅ holds (the other case is symmetric). We further consider the following

subcases based on whether or not t� ∈ NG (v
∗):

(A) t� � NG (v∗). Let s ∈ [j] such that bs is the orst vertex in P (O) that is adjacent to v∗, which
exists since (t�,v

∗) � E (G ) and (v∗,v ) ∈ E (G ). Additionally, let e ∈ [z − 2] such that be is the
last vertex in P (O) that is adjacent tov∗, which exists since (tr ,v

∗), (bz ,v
∗), (bz−1,v

∗) � E (G )

and (v∗,v ) ∈ E (G ). Notice that s � e, since by the construction of the sets Xfar and Yfar
we have that v∗ is incident to v and at least one of the vertices in {bj−1,bj+1}. Let V

′
=

{t ,v∗}∪{bs−1,bs , . . . ,be ,be+1}. Observe thatG[V
′] is a  -AW inG−S . Moreover, |V ′ | < |V (O) |

since tr , c,bz � V
′ and V ′ ⊆ V (O) ∪ {v∗}.

(B) t� ∈ NG (v∗). Let e ∈ [z−2] such thatbe is the last vertex in P (O) that is adjacent tov
∗, which

exists since (tr ,v
∗), (bz ,v

∗), (bz−1,v
∗) � E (G ) and (v∗,v ) ∈ E (G ). Let V ′

= {t ,v∗, c, t� } ∪

{b1,b2, . . . ,be ,be+1}. Observe that G[V
′] is a !-AW in G − S . Moreover, |V ′ | < |V (O) | since

tr ,bz � V
′ and V ′ ⊆ V (O) ∪ {v∗}.

Case  -AW.J.3. There is v∗ ∈ Xfar ∪ Yfar such that (v∗, t ) � E (G) and {bj−1, bj+1} ⊆ NG (v∗).
Notice that all the neighbors ofv∗ on P (O) must be consecutive, and there are at least four vertices
on P (O) that are non-adjacent to v∗. This follows from the facts thatM is a 9-redundant solution,
O is not covered by W , G − S has no obstructions that are induced cycles, and the choices of
F and v∗. From the preceding discussions, we can conclude that one of {t�,b1} ∩ NG (v

∗) = ∅ or
{tr ,bz } ∩ NG (v

∗) = ∅ must hold. Suppose that {tr ,bz } ∩ NG (v
∗) = ∅ (other case is symmetric).

Let e ∈ [z − 1] such that be is the last vertex in P (O) that is adjacent to v∗, which exists since
tr ,bz � NG (v

∗) and {bj−1,bj+1} ⊆ NG (v
∗). Additionally, let s ∈ [z − 1] ∪ {0} be the lowest integer

such that (v∗,bs ) ∈ E (G ) (bs could possibly be same as bj−1 or b0 = t�). Let V
′
= {t , c,v∗, t�, tr } ∪

{b1,b2, . . . ,bs } ∪ {be ,be+1, . . . ,bz }. Observe that G[V
′] is an induced  -AW in G − S , which does

not containv . Here, we rely on the fact that Case  -AW.J.1 is not applicable, due to which we have
(v∗, c ) ∈ E (G ).

Case  -AW.J.4. For allv∗ ∈ Xfar ∪ Yfar, we have (v
∗
, t ) � E (G) and {bj−1, bj+1} � NG (v∗). The

non-applicability of Case  -AW.J.1,  -AW.J.2, and  -AW.J.3 (together with the constructions of Xfar

and Yfar) imply that for each u ∈ Xfar ∪ Yfar we have (u, c ) ∈ E (G ), (u, t ) � E (G ), and |NG (u) ∩

{bj−1,bj+1}| = 1. Next, consider a vertexu∗ ∈ Xfar andv
∗ ∈ Yfar. Let s ∈ [j−1]∪{0} such thatbs is the

orst vertex in P (O) adjacent to u∗, which exists since (u∗,bj−1) ∈ E (G ). Additionally, let e ∈ [z + 1]
such thatbe is the last vertex in P (O) adjacent tov

∗, which exists since (v∗,bj+1) ∈ E (G ). Recall that
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(u∗,bj−1), (v
∗,bj+1) ∈ E (G ) and (u∗,bj+1), (v

∗,bj−1) � E (G ). Moreover, the neighbors of u∗ and the
neighbors of v∗ in P (O) must be consecutive vertices in P (O), respectively. From the preceding
discussions, we can conclude that s � e . Now, we let V ′

= {t , c,v∗,u∗} ∪ {t�,b1,b2,bs−1,bs } ∪

{be ,be+1, . . . ,bz , tr }. Observe that G[V
′] is a  -AW (or a net) in G − S that does not contain v .

O Is a !-AW

Let O comprise of the base path base(O) = (b1,b2, . . . ,bz ), non-shallow terminals t� and tr ,
shallow terminal t , and centers c1 and c2 (as in the deonition in Section 2). Furthermore, let
P (O) = (t�,b1,b2, . . . ,bz , tr ), b0 = t� , and bz+1 = tr . Let M̂ = M ∩ V (O), M ′ be a subset of M̂
of size 9 such that M̂ ∩ {c1, c2, t , t�, tr ,b1,b2,bz−1,bz } ⊆ M ′, and F = (M ′,M ′ ∩ NG (v )). Next,
we deone the sets, the vertices from which will be used to either construct an obstruction not
containing v , an obstruction containing v but with (strictly) smaller size, or an obstruction with

same number of vertices as O but containing more vertices from Bi . Let Lfar = LF,i
far

\ (S ∪ V (O)),

Lcls = LF,i
cls

\ (S ∪ V (O)), Rfar = RF,i
far

\ (S ∪ V (O)), and Rcls = RF,i
cls

\ (S ∪ V (O)). Notice that
|V (O)∩Bi | ≤ 4, since no obstruction contains a clique of size 5 andG[Bi ] is a clique. This together
with the fact that v � Hi and |S | ≤ k implies that Lfar,Lcls,Rfar,Rcls � ∅. Next, we consider cases
depending on the role that v plays in O.

Suppose That v Is the Shallow Terminal. For a vertex u ∈ Lfar ∪ Rfar, we have {c1, c2} ∩ NG (u) �

∅. This follows from Observation 5.1 and the fact that (v, c1), (v, c2) ∈ E (G ). Next, consider the
following cases depending on the neighborhood of vertices in Lfar ∪ Rfar in O.

Case !-AW.S.1. There is v∗ ∈ Lfar ∪ Rfar such that c1, c2 ∈ NG (v∗). We further consider sub-
cases based on other neighbors (if any) of v∗ in O (Figure 7):

(A) |NG (v∗) ∩ V (P (O)) | = 0. In this case, G[(V (O) \ {v}) ∪ {v∗}] is a !-AW in G − S .
(B) |NG (v∗) ∩ V (P (O)) | = 1. If (v∗, t� ) ∈ E (G ), then G[{v∗, c2, t�,b1}] is an induced cycle

on four vertices. Analogous argument can be given when (v∗, tr ) ∈ E (G ). Therefore,
we assume that NG (v

∗) ∩ V (P (O)) = {bi }, where i ∈ [z]. If i ∈ [z] \ {1, z}, then
G[{v∗,v,bi ,bi−1,bi−2,bi+1,bi+2}] is a long claw inG−S . If none of the preceding cases are ap-
plicable, then NG (v

∗)∩V (P (O)) is either {b1} or {bz }. Suppose that NG (v
∗)∩V (P (O)) = {b1}

(the other case is symmetric), then G[{c2,v,v
∗,b1,b2,b3, t� }] is a whipping top in G − S .

(C) |NG (v∗) ∩ V (P (O)) | ≥ 2. If neighbors of v∗ are not consecutive in the path P (O), then we
can obtain an induced cycle on at least four vertices inG[{v∗} ∪V (P (O))], and therefore we
assume that the neighbors of v∗ in P (O) are consecutive. By the construction of F and v∗,

we know that there are at least seven vertices in P (O) that are non-adjacent to v∗. From the
preceding discussions, we can conclude that |{t�, tr } ∩ NG (v

∗) | ≤ 1. Assume that (v∗, tr ) �

E (G ) (the other case is symmetric). Next, we consider the following cases based on whether
or not (v∗, t� ) ∈ E (G ):
(i) (v∗, t� ) ∈ E (G). In this case, there exists e ∈ [z − 2] such that be ∈ NG (v

∗) and be+1 �

NG (v
∗). Let V ′

= {v,v∗, c2, t� } ∪ {b1,b2, . . . ,be ,be+1}. Observe that G[V ′] is a !-AW with
|V ′ | < |V (O) |.
(ii) (v∗, t� ) � E (G). Let bs and be be the orst and the last vertex in P (O) that are adjacent to
v∗, respectively. Notice that s � e (since |NG (v

∗)∩V (P (O)) | ≥ 2), and {bs ,bs+1, . . .be ,be+1} ⊂
{b1,b2, . . .bz }. LetV

′
= {v,v∗}∪{bs−1,bs ,bs+1, . . . ,be ,be+1}. Observe that |V

′ | < |V (O) |, and
G[V ′] is a  -AW.

Case !-AW.S.2. For all u ∈ Lfar ∪ Rfar, we have |{c1, c2} ∩ NG (v∗) | = 1. From Observation 5.1,
we know that for each c ′ ∈ {c1, c2}, we have that one of Lfar ⊆ NG (c

′) or Rfar ⊆ NG (c
′) holds.
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Fig. 7. Construction of an obstruction when O is !-AW and v = t .

Moreover, from our assumption that for each u ∈ Lfar ∪ Rfar we have |{c1, c2} ∩ NG (v
∗) | = 1, it

cannot be the case that Lfar ⊆ NG (c1) and Lfar ⊆ NG (c2). Similarly, it cannot be the case that
Rfar ⊆ NG (c1) and Rfar ⊆ NG (c2). From the preceding discussions, we can conclude that one of
Lfar ⊆ NG (c1) and Rfar ⊆ NG (c2), or Rfar ⊆ NG (c1) and Lfar ⊆ NG (c2), holds. Suppose Lfar ⊆ NG (c1)

and Rfar ⊆ NG (c2) (the other case is symmetric). Next, consider a vertex u∗ ∈ Lfar and a vertex
v∗ ∈ Rfar. By our assumption and non-applicability of Case !-AW.S.1, we have (u∗, c1), (v

∗, c2) ∈

E (G ) and (u∗, c2), (v
∗, c1) � E (G ). Moreover, u∗,v∗ ∈ Bi , and therefore (u∗,v∗) ∈ E (G ). But then

G[{u∗,v∗, c1, c2}] is an induced cycle on four vertices.

Suppose v Is One of the Centers. Suppose v = c1 (the other case is symmetric). From Obser-
vation 5.2, we know that at least one of NG (tr ) ∩ Lcls = ∅ or NG (tr ) ∩ Rcls = ∅ holds. Let
Xcls ∈ {Lcls,Rcls} be a set such that NG (tr ) ∩ Xcls = ∅. Consider a vertex v∗ ∈ Xcls, and let bs
and be be the orst and last vertex in the path P (O) that are adjacent to v∗, respectively. SinceM is
a 9-redundant solution and O is not covered by W , we have that |M ∩V (O) | ≥ 10. This together
with the choice of F andv∗, and the fact thatV (base(O)) ⊆ NG (v ), implies that bs and be exist and
are distinct. Moreover, from the preceding we can also conclude that |NG (v

∗) ∩V (base(O)) | ≥ 5.
We also note that e ≤ z since (v∗, tr ) � E (G ). The neighbors ofv∗ in P (O) must be consecutive, and
otherwise we can obtain an induced cycle of length at least 4 that does not contain v . We further
consider subcases based on whether or not t , c2 ∈ NG (v

∗) (Figure 8).

Case !-AW.C.1. t, c2 � NG (v∗). Let V ′
= {v∗,v, c2, t , tr } ∪ {be ,be+1, . . . ,bz }. Notice that |V

′ | <

|V (O) | since |NG (v
∗) ∩V (base(O)) | ≥ 5 and neighbors of v∗ are consecutive. Moreover, G[V ′] is

a !-AW or a tent, which is of strictly smaller size than O, contradicting the choice of O. Here, we
crucially rely on the fact that tr � NG (v

∗).

Case !-AW.C.2. t � NG (v∗) and c2 ∈ NG (v∗). LetV ′
= (V (O)\{bs+1,bs+2, . . . ,be−2,be−1})∪{v

∗}.
Notice that |V ′ | < |V (O) | (since |NG (v

∗) ∩V (base(O)) | ≥ 5) and G[V ′] is a !-AW.

Case !-AW.C.3. t ∈ NG (v∗) and c2 � NG (v∗). Recall that NG (v
∗) ∩ {b1,b2, . . . ,bz } � ∅. Con-

sider a vertex bj ∈ NG (v
∗) ∩ {b1,b2, . . . ,bz }. The graph G[{v∗, t , c2,bj }] is an induced cycle on

fourvertices.
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Fig. 8. Construction of an obstruction when O is !-AW and v = c1.

Case !-AW.C.4. t ∈ NG (v∗) and c2 ∈ NG (v∗). We further consider the following subcases based
on whether or not (t�,v

∗) ∈ E (G ):

(A) (t�,v
∗) � E (G). Let V ′

= {t ,v∗} ∪ {bs−1,bs , . . . ,be ,be+1}. Observe that G[V
′] is a  -AW in

G − S that does not contain v .
(B) (t�,v

∗) ∈ E (G). Let V ′
= {t ,v∗, c2, t� } ∪ {b1,b2, . . . ,be ,be+1}. Observe that G[V

′] is a !-AW
in G − S that does not contain v .

Supposev Is One of the Non-Shallow Terminals. We consider the case whenv = t� . By a symmet-
ric argument, we can handle the case when v = tr . If c2 � β (P), then for each u ∈ Lcls ∪ Rcls we
have (u, c2) � E (G ) as it ots the frame F and NG (u) \ (M ∪ β (P)) = NG (v ) \ (M ∪ β (P)) = ∅. Oth-
erwise, c2 ∈ β (P), and then using Observation 5.2 we obtain that at least one of Lcls ∩ NG (c2) = ∅

or Rcls ∩ NG (c2) = ∅ holds. Let Xcls ∈ {Lcls,Rcls} be a set such that Xcls ∩ NG (c2) = ∅. Similarly,
if b1 � β (P), then for each u ∈ Lfar ∪ Rfar we have (u,b1) ∈ E (G ) as it ots the frame F and
NG (u) \ (M ∪ β (P)) = NG (v ) \ (M ∪ β (P)) = ∅. Otherwise, b1 ∈ β (P), and then using Observa-
tion 5.1 we obtain that at least one of Lfar ⊆ NG (b1) or Rfar ⊆ NG (b1) holds. LetYfar ∈ {Lfar,Rfar} be
a set such that Yfar ⊆ NG (b1). Next, we consider cases based on whether or not b1 ∈ Bi (Figure 9).

Case !-AW.T.1. b1 ∈ Bi . Consider a vertex v
∗ ∈ Xcls. Note that (b1,v

∗) ∈ E (G ) since b1 ∈ Bi , and
(v∗, c2) � E (G ), by the choice of v∗. Additionally, (v∗, t ) � E (G ), and otherwise G[{t , c2,b1,v

∗}] is
an induced cycle on four vertices inG −S . Recall thatv∗ ots the frame F (and (b1,v

∗) ∈ E (G )), and
therefore there exists e ∈ [z − 2] such that be ∈ NG (v

∗) and be+1 � NG (v
∗). This together with

the fact that neighbors of v∗ in P (O) are consecutive (otherwise, we obtain an induced cycle on
at least 4 vertices not containing v) implies that (v∗, tr ) � E (G ). Next, we consider cases based on
whether or not (v∗, c1) ∈ E (G ):

(A) (v∗, c1) ∈ E (G). Let V ′
= {t , c1, c2,v

∗, tr } ∪ {be ,be+1, . . . ,bz }. Observe that G[V
′] is a !-AW

in G − S not containing v .
(B) (v∗, c1) � E (G). Let V ′

= {t , c1,v
∗, tr } ∪ {be ,be+1, . . . ,bz }. Observe that G[V

′] is a  -AW in
G − S not containing v .
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Fig. 9. Construction of an obstruction when O is !-AW and v = t� .

Case !-AW.T.2.b1 � Bi . Consider a vertexv
∗ ∈ Yfar∪{u ∈ Xcls | (u,b1) ∈ E (G )} and the following

cases based on its neighborhood in O:

(A) (v∗, c2) � E (G). Notice that this case is the same as Case !-AW.T.1, and therefore we can
obtain an obstruction in a similar way.

(B) (v∗, c1) � E (G). Observe that (v∗, t ) � E (G ), and otherwise G[{v∗,b1, c1, t }] is an induced
cycleon four vertices in G − S . Now, we can obtain an obstruction as in Case !-AW.T.1.B.

(C) (v∗, c1), (v
∗
, c2) ∈ E (G). We further consider the following cases based on the neighbor-

hood of v∗ in P (O):
(i) There existse ∈ [z] \ {1} such that (v∗, be ) ∈ NG (v∗) and (v∗, be+1) � NG (v∗). Observe
that by the choices of F and v∗, we have e < z − 1. Consider the following cases based on
whether or not (t ,v∗) ∈ E (G ):

(a) (t,v∗) � E (G). Let V ′
= {t , c1, c2,v

∗,v, tr } ∪ {be ,be+1, . . . ,bz }. Observe that G[V
′] is a !-

AW inG−S . Furthermore, either |V ′ | < |V (O) | or |V ′ | = |V (O) | and |V ′∩Bi | > |V (O)∩Bi |.
Here, we rely on the fact thatb1 � Bi . In either case, we obtain a contradiction to the choice
of O.

(b) (t,v∗) ∈ E (G). LetV ′
= {t ,v∗, c2,v} ∪ {b1,b2, . . . ,be ,be+1}. Observe thatG[V

′] is a !-AW
in G − S and |V ′ | < |V (O) |.

(ii) If (i) does not hold, then the only neighbors of v∗ in P (O) are b1 and v . Consider the
following cases based on whether or not (t ,v∗) ∈ E (G ):
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(a) (t,v∗) ∈ E (G). In this case,G[{v,v∗, t , c2,b1,b2}] is a tent.
(b) (t,v∗) � E (G). We consider a vertex u∗ ∈ Xcls to obtain the desired obstruction. Recall

that from the construction of Xcls, we have (u∗, c2) � E (G ). Moreover, by the premise
of Case !-AW.T.2.C, we have (v∗, c2) ∈ E (G ). From the preceding discussions, we can
conclude that (u∗, t ) � E (G ), as otherwise G[{u∗,v∗, c2, t }] is an induced cycle on four
vertices. We assume that (u∗,b1) � E (G ), and otherwise u∗ would satisfy the premise of
Case !-AW.T.2.A and we can obtain an obstruction using it. Additionally, (u∗,bj ) � E (G ),
for each j ∈ [z]\{1}, and otherwiseG[{v,u∗}∪{b1,b2, . . .bj }] will contain an induced cycle
on at least four vertices, which is an obstruction containing v with strictly less number
of vertices than O. Next, we consider the following cases depending on whether or not
(u∗, c1) ∈ E (G ):
(α ) (u∗, c1) � E (G). Let V ′

= {t , c1,u
∗,v∗, tr } ∪ {b1,b2, . . . ,bz }. Observe that G[V ′] is a

 -AW in G − S , which does not contain v .
(β) (u∗, c1) ∈ E (G). LetV ′

= {t , c1, c2,u
∗,v∗, tr } ∪ {b1,b2, . . . ,bz }. Observe thatG[V

′] is a
!-AW in G − S , which does not contain v .

Suppose v Is b1 or bz . Suppose v = b1 (the other case is symmetric). If t� � β (P), then for
each u ∈ Lfar ∪ Rfar we have (u, t� ) ∈ E (G ) as it ots the frame F and NG (u) \ (M ∪ β (P)) =

NG (v )\(M∪β (P)) = ∅. Otherwise, t� ∈ β (P), and then at least one ofLfar ⊆ NG (t� ) orRfar ⊆ NG (t� )

holds (see Observation 5.1). Let Xfar ∈ {Lfar,Rfar} be a set such that Xfar ⊆ NG (t� ). Similarly,
if b2 � β (P), then for each u ∈ Lfar ∪ Rfar we have (u,b2) ∈ E (G ) as it ots the frame F and
NG (u) \ (M ∪ β (P)) = NG (v ) \ (M ∪ β (P)) = ∅. Otherwise, b2 ∈ β (P), and then at least one of
Lfar ⊆ NG (b2) or Rfar ⊆ NG (b2) holds (see Observation 5.1). Let Yfar ∈ {Lfar,Rfar} be a set such that
Yfar ⊆ NG (b2). Next, we consider cases depending on the neighborhood of vertices in Xfar ∪Yfar in
O (Figure 10).

Case !-AW.B.1. There is v∗ ∈ Xfar ∪ Yfar such that {t�, b2} ⊆ NG (v∗). There exists e ∈ [z − 2]
such that be ∈ NG (v

∗) and be+1 � NG (v
∗). This follows from the choices of F and v∗, and the facts

that (v∗,b2) ∈ E (G ) and v∗ ots F. We assume that the neighbors of v∗ in P (O) are consecutive, as
otherwise we can obtain an obstruction that is an induced cycle on at least four vertices. Next, we
consider the subcases based on whether or not (v∗, c1), (v

∗, c2), (v
∗, t ) ∈ E (G ):

(A) (v∗, c2) ∈ E (G), (v∗, t ) ∈ E (G). Let V ′
= {t , c2,v

∗, t� } ∪ {b1,b2, . . . ,be ,be+1}. Observe that
G[V ′] is a !-AW such that |V ′ | < |V (O) |.

If Case !-AW.B.1.A is not applicable, then (v∗, c2) � E (G ) or (v∗, t ) � E (G ) must hold.
(B) (v∗, t ) � E (G). We consider the following cases:

(i) (v∗, c1) � E (G). LetV ′
= {t , c1,v

∗, tr } ∪ {be ,be+1, . . .bz }. Observe thatG[V
′] is a  -AW in

G − S not containing v .
(ii) (v∗, c1) ∈ E (G). Let V ′

= {t , c1, c2,v
∗, tr , t� } ∪ {be ,be+1 . . .bz }. Observe that G[V

′] con-
tains a !-AW not containing v , which is present in G − S . We note that such an obstruction
can be found both when (v∗, c2) ∈ E (G ) and when (v∗, c2) � E (G ).

(C) (v∗, c2) � E (G). Since Case !-AW.B.1.B is not applicable, we can assume that (v∗, t ) ∈ E (G ).
But then G[{v∗,b2, c2, t }] is a cycle on four vertices.

Case !-AW.B.2. For allu ∈ Xfar ∪ Yfar, we have {t�, b2} � NG (u). Furthermore, by the construc-
tion of Xfar and Yfar, we know that Xfar ⊆ NG (t� ), Yfar ⊆ NG (b2), and Xfar,Yfar � ∅. Hence,
for any pair of vertices u∗ ∈ Xfar and v∗ ∈ Yfar, we have that (u∗, t� ), (v

∗,b2) ∈ E (G ) and
(u∗,b2), (v

∗, t� ) � E (G ) (since Case !-AW.B.1 is not applicable). Next, we consider cases based
on whether or not t and c2 are adjacent to vertices in Xfar ∪ Yfar:
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Fig. 10. Construction of an obstruction when O is !-AW and v = b1.

(A) Consider the case when there is v∗ ∈ Xfar ∪ Yfar such that (v∗, c1) � E (G). In this case,
(v∗, t ) � E (G ), and otherwise we obtain an induced cycle G[{v∗,v, c1, t }] on four vertices.
Let e ∈ [z − 2] such that be is the last vertex in base(O) that is adjacent to v∗. Let V ′

=

{t , c1,v
∗, tr } ∪ {be ,be+1, . . . ,bz }. Notice that G[V

′] is a  -AW that excludes v .
Hereafter, we assume that for each u ∈ Xfar ∪ Yfar, we have (u, c1) ∈ E (G ).

(B) Consider the case when there is v∗ ∈ Xfar ∪ Yfar such that (v∗, c2) � E (G). In this case,
(v∗, t ) � E (G ), and otherwise G[v∗, t , c2,v] is a cycle on four vertices. Let e ∈ [z − 2]
such that be is the last vertex in base(O) that is adjacent to v∗. Let V ′

= {t , c1, c2,v
∗, tr } ∪

{be ,be+1, . . . ,bz }. Notice thatG[V
′] is a !-AW that has either fewer vertices thanO or has the

same number of vertices as O but has more vertices from Bi (than O has from Bi ). Here, we
rely on the fact that t� � Bi , which is ensured by the fact that Yfar � ∅ and Yfar ∩ NG (t� ) = ∅.

Hereafter, we will assume that for each u ∈ Xfar ∪ Yfar we have c1, c2 ∈ NG (u).
(C) If there is u∗ ∈ Xfar such that (u∗, t ) ∈ E (G). Recall that (u∗, t� ) ∈ E (G ) and (u∗,b2) � E (G ).

In this case,G[{t ,u∗, c2, t�,v,b2}] is a tent.
(D) If there isv∗ ∈ Yfar such that (v∗, t ) ∈ E (G). Recall that,(v∗,b2) ∈ E (G ) and (v∗, t� ) � E (G ).

Let e ∈ [z − 2] such that be is the last vertex in base(O) that is adjacent to v∗. Note that
e ≥ 2 as v∗ ∈ Yfar ⊆ NG (b2). Let V

′
= {t ,v∗, t�,be+1} ∪ {v,b3, . . . ,be }. Observe that G[V

′]
is a  -AW in G − S with strictly fewer vertices than O, as we (at least) exclude c1, c2 and
include v∗.
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Fig. 11. Construction of an obstruction when O is !-AW and v = bj , where j ∈ [z − 1] \ {1}.

(E) Consider a vertex u∗ ∈ Xfar and a vertex v∗ ∈ Yfar. Since all the previous cases are not ap-
plicable, therefore (u∗, c1), (u

∗, c2), (v
∗, c1), (v

∗, c2) ∈ E (G ), and (u∗, t ), (v∗, t ) � E (G ). Recall
that neighbors of u∗,v∗ in P (O) are consecutive. Furthermore, (v∗, t� ) � E (G ) and there is
no bj adjacent to u

∗, where j ≥ 2. Let e ∈ [z − 2] such that be is the last neighbor of v∗ in
P (O). Now, let V ′

= {t�,u
∗,v∗, c1, c2, t } ∪ {be ,be+1, . . . ,bz , tr }. Observe thatG[V

′] is a !-AW
in G − S that does not contain v .

Suppose v = bj , Where j ∈ [z] \ {1, z}. Let Xfar ∈ {Lfar,Rfar} be a set such that Xfar ⊆ NG (bj−1)

andYfar ∈ {Lfar,Rfar} be a set such thatYfar ⊆ NG (bj+1). The existence ofXfar andYfar is guaranteed
from Observation 5.1. Recall that |M ′ | = 9. Thus, |V (P (O)) ∩M ′ | ≥ 6, and therefore v must have
at least four non-neighbors in V (P (O)) ∩ M ′. From the preceding, we can conclude that one of
|({t� }∪{b1,b2, . . . ,bj−2})∩(M

′\NG (v )) | ≥ 2 or |({tr }∪{bj+2,bj+3, . . . ,bz })∩(M
′\NG (v )) | ≥ 2 holds.

Assume that |({tr } ∪ {bj+2,bj+3, . . . ,bz }) ∩ (M ′ \ NG (v )) | ≥ 2 holds (the other case is symmetric).
For each u ∈ Xfar ∪ Yfar, the neighbors of u in P (O) must be consecutive, and otherwise we can
obtain an induced cycle on at least four vertices. From the preceding discussions, together with
the facts that (u,v ) ∈ E (G ) and u ots F, we can conclude that {tr ,bz } ∩ NG (u) = ∅. Here, we rely
on our assumption that |({tr } ∪ {bj+2,bj+3, . . . ,bz }) ∩ (M ′ \ NG (v )) | ≥ 2. We consider cases based
on the neighborhood of vertices in Xfar ∪ Yfar in O (Figure 11).

Case !-AW.J.1. If there isv∗ ∈ Xfar ∪ Yfar such that (v
∗
, c1) � E (G). Note that if (v∗, c1) � E (G ),

then (v∗, t ) � E (G ), and otherwise G[{v,v∗, c1, t }] is a cycle on four vertices. Additionally, the
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neighbors of v∗ in P (O) must be consecutive, and otherwise we can obtain an induced cycle on
at least four vertices. Since {tr ,bz } ∩ NG (v

∗) = ∅ and (v,v∗) ∈ E (G ), there exists e ∈ [z − 1]
such that be is the last vertex in P (O) that adjacent to v∗. LetV ′

= {t , c1,v
∗, tr } ∪ {be ,be+1, . . . ,bz }.

Observe that G[V ′] is a  -AW with strictly fewer vertices than O, as we (at least) exclude c2, t�,b1
and include v∗.

Case !-AW.J.2. If there isv∗ ∈ Xfar ∪ Yfar such that (v∗, c2) � E (G). Since Case !-AW.J.1 is not
applicable, we can assume that (v∗, c1) ∈ E (G ). Note that if (v∗, c2) � E (G ), then (v∗, t ) � E (G ), and
otherwiseG[{v,v∗, c2, t }] is a cycle on four vertices. Additionally, the neighbors ofv

∗ in P (O) must
be consecutive. Let e ∈ [z − 1] such that be is the last vertex in P (O) that is adjacent to v∗, which
exists since {tr ,bz } ∩ NG (v

∗) = ∅ and (v,v∗) ∈ E (G ). Let V ′
= {t , c1, c2,v

∗, tr } ∪ {be ,be+1, . . . ,bz }.
Observe thatG[V ′] is a !-AW (or a net) with strictly fewer vertices than O, as we (at least) exclude
t�,b1 and include v∗.

Note that if Cases !-AW.J.1 and !-AW.J.2 are not applicable, then for each u ∈ Xfar ∪ Yfar we
have (u, c1), (u, c2) ∈ E (G ). Moreover, by our assumption, we have NG (u) ∩ {tr ,bz } = ∅. The cases
we consider next are based on whether or not the following conditions are satisoed for a vertex
u ∈ Xfar ∪ Yfar:

(1) (u, t ) ∈ E (G );
(2) {bj−1,bj+1} ⊆ NG (u).

Case !-AW.J.3. If there is v∗ ∈ Xfar ∪ Yfar such that (v∗, t ) ∈ E (G). We further consider the
following subcases based on whether or not t� ∈ NG (v

∗):

(A) t� � NG (v∗). Let s ∈ [j] such that bs is the orst vertex in P (O) that is adjacent to v∗, which
exists since (t�,v

∗) � E (G ) and (v∗,v ) ∈ E (G ). Additionally, let e ∈ [z − 1] such that be
is the last vertex in P (O) that is adjacent to v∗, which exists since {tr ,bz } ∩ NG (v

∗) = ∅

and (v∗,v ) ∈ E (G ). Notice that s � e, since by the construction of the sets Xfar and Yfar
we have that v∗ is incident to v and at least one of the vertices in {bj−1,bj+1}. Let V

′
=

{t ,v∗} ∪ {bs−1,bs , . . . ,be ,be+1}. Observe that G[V
′] is a  -AW in G − S with |V ′ | < |V (O) |.

Here, we rely on the fact that e ≤ z − 1.
(B) t� ∈ NG (v∗). Let e ∈ [z − 1] such that be is the last vertex in P (O) that is adjacent to

v∗, which exists since {tr ,bz } ∩ NG (v
∗) = ∅ and (v∗,v ) ∈ E (G ). Let V ′

= {t ,v∗, c2, t� } ∪

{b1,b2, . . . ,be ,be+1} is a !-AW in G − S . Moreover, |V ′ | < |V (O) | since tr , c1 � V
′ and V ′ ⊆

V (O) ∪ {v∗}.

Case !-AW.J.4. If there is v∗ ∈ Xfar ∪ Yfar such that (v∗, t ) � E (G) and {bj−1, bj+1} ⊆ NG (v∗).
Notice that all the neighbors of v∗ on P (O) must be consecutive. Let e ∈ [z − 1] such that be is the
last vertex in P (O) that is adjacent tov∗, which exists since {tr ,bz }∩NG (v

∗) = ∅ and (v∗,v ) ∈ E (G ).
Additionally, let s ∈ [z − 1]∪ {0} be the lowest integer such that (v∗,bs ) ∈ E (G ) (bs could possibly
be same as bj−1 or b0 = t�). Let V

′
= {t , c1, c2,v

∗, tr } ∪ {b1,b2, . . . ,bs } ∪ {be ,be+1, . . . ,bz }. Observe
that G[V ′] is a !-AW in G − S that does not contain v .

Case !-AW.J.5. For all u ∈ Xfar ∪ Yfar, we have c1, c2 ∈ NG (u), (u, t ) � E (G), and {bj−1,
bj+1} � NG (u). Additionally, we have Xfar ⊆ NG (bj−1) and Yfar ⊆ NG (bj+1). Next, consider a ver-
texu∗ ∈ Xfar and a vertexv

∗ ∈ Yfar. Let s ∈ [j−1]∪{0} such that bs is the orst vertex in P (O) that is
adjacent to u∗, which exists since (u∗,bj−1) ∈ E (G ). Additionally, let e ∈ [z − 1] such that be is the
last vertex in P (O) that is adjacent tov∗, which exists since (tr ,v

∗), (bz ,v
∗) � E (G ) and (v∗,bj+1) ∈

E (G ). Notice that s � e . Let V ′
= {t , c1, c2,v

∗,u∗} ∪ {t�,b1,b2,bs−1,bs } ∪ {be ,be+1, . . . ,bz , tr }. Ob-
serve that G[V ′] is a !-AW in G − S that does not contain v .
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We have exhaustively considered all the cases and obtained a desired type of obstruction for
each of the cases. This concludes the proof of Lemma 5.3.

6 BOUNDING THE LENGTH OF A CLIQUE PATH

Let us orst recall the various sets we are dealing with, with respect to the instance (G,k ) of IVD:

• A (k+2)-necessary familyW ⊆ 2M alongwith a solutionM that is 9-redundant with respect
toW (see Lemma 3.2).

• Every set inW has size at least 2 (see Reduction Rule 3.1).
• C is the set of connected components ofG −M , D is the set of connected components in C

that are modules, and D = C \ D. We know that |V (D) | ≤ kO (1) (see Lemma 4.3 Reduction

Rule 4.2, and Observation 4.5) and |D| ≤ kO (1) (see Observation 4.2).
• Each component in D has at most k + 1 vertices (see Reduction Rule 4.3). The preceding
together with Lemma 5.4 implies that every maximal clique (and hence every clique) in

G −M has size bounded by η, where η = 210 · 4(k + 5)
(

|M |
10

)

.

Let us now turn to the problem of bounding the sizes of non-module components. Observe that
to bound this, it is suocient to <bound the length of the clique path= of a non-module component.
This together with the fact that each maximal clique is bounded will lead to the desired result. Our
approach mirrors that of other works [3, 36] but also requires additional structural observations
corresponding to interval graphs and its obstructions [8, 28]. Each non-module component is a
clique path in G −M .

Let K = (K , β ) be a clique path of a non-module component C , where K is the path
(x1,x2, . . . ,xt ), and for each i ∈ [t] we let Bi = β (xi ). (In the remainder of this section, we will be
working with this oxed clique pathK and the componentC .) We will refer to the sets Bi , 1 ≤ i ≤ t ,
as the bags in K. We will assume that for any two distinct bags B,B′ in K, neither B ⊆ B′ nor

B′ ⊆ B. Any bag Bi in the clique path K has at most η = 210 · 4(k + 5)
(

|M |
10

)

vertices (because

every maximal clique in G − M has size bounded by η, by Lemma 5.4). We let β (K) = ∪t
i=1β (xi ).

Furthermore, for a subpath K ′ of K , by K′
= (K ′, β ′) we denote the sub-clique path induced by K ′.

In other words, for x ∈ V (K ′), β ′(x ) = β (x ). Moreover, by β (K′), we denote the set ∪x ∈V (K ′)β (x ).
Note that there is a vertex inM that has a neighbor as well as a non-neighbor in C .

In this section, we consider the problem of reducing the number of bags in K. Toward our goal,
we will devise a collection of <marking schemes= that mark some polynomially (in k) many bags in
K such that the obstructions are <well behaved= in the region between any two consecutivemarked
bags. In particular, our marking schemes ensure that if any obstruction intersects an unmarked
region of the clique path, then the intersection is an induced path. Then, we design reduction
rules that <preserve= a minimum separator of the unmarked region. More precisely, we identify an
irrelevant vertex or an irrelevant edge, then delete it or contract it in the graph. The correctness of
these reduction rules follows from the structural properties ensured by the marking schemes.
Let us now deone some notations that will be required in this section. Note that these notations

apply to K = (K , β ) as well as any sub-clique path of it. We ox an ordering (from left to right) of
the bags of K, which is given by the path K of the clique path K. We will maintain a set of bags
BMarked inK, which we will callmarked bags. Initially, BMarked = ∅, and we will add some carefully
chosen bags in K to it as we proceed:

(1) For two bags Bi and Bj in K, 1 ≤ i ≤ j ≤ t , by K[Bi ,Bj ] = (K ′, β ′) we denote the sub-clique
path of K between Bi and Bj (including Bi and Bj ).

(2) For a sub-clique path K′ of K, Blev (K
′) and Bright (K

′) denote the leftmost bag and the right-
most bag of K′, respectively. Observe that K′

= K[Blev (K
′),Bright (K

′)]. All other bags of K′,
except Blev (K

′) and Bright (K
′), are called interior bags of K′.
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(3) For a sub-clique pathK′ ofK, letC(K′) = Blev (K
′)∩Bright (K

′) and I(K′) = β (K′)\(Blev (K
′)∪

Bright (K
′)). Here, 8C9 stands for <common= and 8I9 stands for <internal.=

(4) We say that a vertex v ∈ β (K) is a marked vertex if there is a marked bag that contains it,
and otherwise it is an unmarked vertex.

(5) Consider a collection of bags B�. We say that two distinct bags B,B′ ∈ B� are consecutive
if K[B,B′] contains no other bags in B� except for B and B′.

(6) We say that two distinct bags B,B′ inK are adjacent if there is no other bag that lies between
them—that is, K[B,B′] has only two bags, namely B and B′.

(7) For a bag B in K, B−1 and B+1 denote the bags (if they exist) adjacent to B on its left and
right, respectively.

6.1 Partition into Manageable Clique Paths

In this section, we partition the clique path K into a collection of so-called <manageable clique
paths,= which are well structured with respect to the set M . We will construct our orst set of
marked bags, denoted by BMarked (I ), based on the edges between the vertices in β (K) and M . Let
us initialize BMarked (I ) as the set containing the orst and the last bags of K. We begin by stating a
property of interval graphs, which will be useful later.

Observation 6.1. Let H be an interval graph and let H ′ be the graph obtained by one of the

following operations:

(a) For v ∈ V (H ), H ′
= H − {v}.

(b) For (u,v ) ∈ E (H ), H ′
= H/(u,v ).

Then, H ′ is an interval graph. Furthermore, the size of any clique in H ′ is upper bounded by the size

of a maximum clique in H .

The preceding observation follows from the deonition of interval graphs and their interval rep-
resentation [28]. In particular, statement (b) follows from the observation that an interval repre-
sentation of H/(u,v ) can be obtained by taking an interval representation of H and <merging= the
intervals of u and v .
In the following, we will deone (auxiliary) graphs that will be helpful in obtaining some useful

bags in K. To this end, consider a vertexm ∈ M . Let Hm be the bipartite graph with vertex bipar-
tition NG (m) ∩ β (K) and β (K) \ NG (m), where u ∈ NG (m) ∩ β (K) and v ∈ β (K) \ NG (m) are
adjacent in Hm if and only if (u,v ) ∈ E (G ). Next, we prove the following lemma about the graph
Hm . (Recall that η is an upper bound on the size of any clique in G −M .)

Lemma 6.2. Form ∈ M , let Ym be a maximum matching in Hm . Then, |Ym | ≤ 2η.

Proof. Suppose, toward a contradiction, that |Ym | > 2η. Let T be the graph obtained from
G[β (K)] by contracting all the edges in Ym . Additionally, for each edge (u,v ) in Ym , let wuv be
the vertex resulting from its contraction. Recall that G − M is an interval graph of maximum
clique size at most η, which together with Observation 6.1 implies that both G[β (K)] and T are
also interval graphs, and that the maximum size of a clique in these graphs is upper bounded

by η. Next, let T̃ be the graph T [{wuv | (u,v ) ∈ Ym }]. We note that the deonition of T̃ relies
on the fact that Ym is a matching in Hm , and thus it has |Ym | > 2η many vertices. From the

construction of T̃ and Observation 6.1, it follows that T̃ is also an interval graph and that the size

of any clique in T̃ is bounded by η. Interval graphs are perfect graphs, and on a perfect graph H

we know that ω (H )α (H ) ≥ |V (H ) |, where ω (H ) and α (H ) denote the size of a maximum clique
and a maximum independent set in H , respectively [47] (or Theorem 3.3 [28]). This implies that

there is an independent set in T̃ of size at least |Ym |/η > 2. Consider an independent set of size
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3 in T̃ and the corresponding edges of the matching Ym . It follows that these three edges and the
vertexm form a long clawO inG, which is an obstruction of size 7. Since Reduction Rule 3.1 is not
applicable, each set inW is of size at least 2. Moreover, |V (O)∩M | = 1. Therefore,O is not covered
by W . But then, since M is a 9-redundant solution, each obstruction in G that is not covered by
W must contain at least 10 vertices from M . But this is a contradiction. Thus, we deduce that
|Ym | > 2η cannot hold. �

For eachm ∈ M , we compute a maximum matching Ym in the graph Hm . Then, for each edge in
Ym ,we pick a bag inK that contains this edge and add it to BMarked (I ). Let us observe that we have
added at most 2η |M | bags to BMarked (I ). Before proceeding further, we will add some more bags to
BMarked (I ) that give us some additional structural properties. To this end, we state the following
observation, which will be useful in designing the following marking scheme for bags in K.

Observation 6.3. Letm1,m2 ∈ M be (distinct) vertices such that {m1,m2} �W and (m1,m2) �

E (G ). Then, (NG (m1) ∩ NG (m2)) \M induces a clique in G.

Proof. This observation is the special case of Lemma 4.6 with M ′
= M,u = m1,v = m2, and

u,v ∈ M . �

Next, consider (distinct)m1,m2 ∈ M such that {m1,m2} �W , (m1,m2) � E (G ), and (NG (m1) ∩

NG (m2)) \M � ∅. Let B (m1,m2) be a bag in K such that (NG (m1) ∩ NG (m2)) ∩ β (K) ⊆ B (m1,m2).
We note that the existence of B (m1,m2) is guaranteed from Observation 6.3. We add B (m1,m2) to
the set BMarked (I ). We are now ready to state our orst bag-marking scheme.

Marking Scheme I. Add all the bags in BMarked (I ) to BMarked.

Note that |BMarked (I ) | is at most 2η |M | + |M |2 + 2. This bound is obtained because(i) BMarked (I )

contains the orst and last bags of K, (ii) at most 2η bags in K were added corresponding to the
matching Ym for eachm ∈ M (andHm ), and (iii) for (distinct)m1,m2 ∈ M , such that {m1,m2} �W

and (m1,m2) � E (G ), we added a bag toBMarked (I ). Thus, usingMarking Scheme I, we havemarked

at most 2η |M | + |M |2 + 2 < 4η |M | bags in K. Here, we used the fact that η ≥ |M |.

Next, we state an observation regarding vertices that are not present in any bag in BMarked (I ),
which will be useful later. We note that this observation is quite similar to Observation 4.11 of
Section 4.

Observation 6.4. Consider a vertexv ∈ β (K) such that there is no bag inBMarked (I ) that contains

v . For (distinct) vertices u,w ∈ NG (v ) ∩M , at least one of {u,w } ∈ W or (u,w ) ∈ E (G ) holds.

Proof. Consider v ∈ β (K) such that there is no bag in BMarked (I ) that contains v , and (distinct)
vertices u,w ∈ NG (v ) ∩M . Suppose, by way of contradiction, that {u,w } �W and (u,v ) � E (G ).
This together with Observation 6.3 implies that (NG (u) ∩NG (w )) \M induces a clique inG. From
the preceding and Marking Scheme I, it follows that there is a bag B (u,w ) in BMarked (I ) such that
(NG (u) ∩NG (w )) \M ⊆ B (u,w ). However,v ∈ (NG (u) ∩NG (w )) \M, and hencev ∈ B (u,w ). This
contradicts that v is not contained in any bag in BMarked (I ). �

Let B�,Br ∈ BMarked (I ) be two consecutive marked bags in K. We deone the graph G[B�,Br ]
to be the graph induced on the vertices appearing in the sub-clique path K[B�,Br ] excluding the
vertices in B� and Br . In other words,G[B�,Br ] = G[V [B�,Br ]], whereV [B�,Br ] = β (K[B�,Br ]) \
(B� ∪Br ). Note that althoughG[β (K[B�,Br ])] is a connected subgraph ofG,G[B�,Br ] need not be
a connected graph. We refer to a connected component of G[B�,Br ] as an obtruded component of

K[B�,Br ]. We extend this deonition to say that an induced subgraph H of G[β (K)] is an obtruded
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component ofK if there are consecutivemarked bags B�,Br ∈ BMarked (I ) such thatH is an obtruded
component of K[B�,Br ]. We remark the following regarding vertices of K outside ∪B∈BMarked (I )B.

Observation 6.5. For each v ∈ β (K) \ (∪B∈BMarked (I )B), there is an obtruded component H of K

such that v ∈ V (H ).

In the following, we prove a property regarding the obtruded components of K.

Lemma 6.6. LetH be an obtruded component ofK. For eachm ∈ M , either we haveV (H ) ⊆ NG (m)

or we have V (H ) ∩ NG (m) = ∅.

Proof. Suppose, toward a contradiction, that there existsm ∈ M that has both a neighbor and
a non-neighbor from the setV (H ) inG. Because H is connected, this implies that there is an edge
e ∈ E (H ) such that one endpoint of e lies in NG (m) ∩ β (K) and the other endpoint of e lies in
β (K) \ NG (m) (i.e., e ∈ E (Hm )). Furthermore, by construction, both these endpoints are diferent
from all the vertices belonging to the edges of the matching Ym in Hm . Therefore, Ym ∪ {e} is also
a matching in Hm . However, this is a contradiction, as Ym is a maximum matching in Hm . This
concludes the proof. �

Let us ox a pair of consecutive marked bags B�,Br ∈ BMarked (I ) and consider the obtruded com-
ponents ofK[B�,Br ]. Note that Lemma 6.6 can be interpreted as follows. Any obtruded component
of K[B�,Br ] is a <module with respect to M .= The following lemma shows that all but at most 4η
of these obtruded components are actually modules in the graph G.

Lemma 6.7. All but at most 4η of the obtruded components of K[B�,Br ] are modules in G.

Proof. Let H be an obtruded component of K[B�,Br ]. For any vertex v ∈ B� ∪ Br , there are at
most two obtruded components in K[B�,Br ] with the property that v has both a neighbor and a
non-neighbor in the component. Indeed, if this were not the case, then we would have obtained
a long claw in G[β (K)] − M , which is a contradiction. Notice that there are at most 2η vertices
in B� ∪ Br . Hence, it follows that all but at most 4η obtruded components of K[B�,Br ] have the
following property: Each vertex v ∈ B� ∪ Br is adjacent either to all vertices of this obtruded
component or to none of them. Finally, observe that the neighborhood of a vertex in an obtruded
component H , excluding the neighbors that belong to H itself, is a subset ofM ∪B� ∪Br . Hence, it
follows from the preceding arguments and Lemma 6.6 that all but at most 4η obtruded components
of K[B�,Br ] are modules in G. �

Let us note another useful property of the obtruded components.

Lemma 6.8. Let H be an obtruded component of K[B�,Br ]. Then, there is a sub-clique path K
obs
H

of

K[B�,Br ] such that V (H ) ⊆ β (Kobs
H ) ⊆ V (H ) ∪ B� ∪ Br .

Proof. Since H is a connected graph and K is a path decomposition, it follows from the deoni-
tion of a path decomposition that the set of bags ofK that have non-empty intersection withV (H )

forms a sub-clique path Kobs
H of K. Furthermore, as H is a connected component of G[B�,Br ] =

G[V [B�,Br ]],whereV [B�,Br ] = β (K[B�,Br ])\ (B�∪Br ), it follows thatV (H ) = β (Kobs
H

)\ (B�∪Br ).

Therefore, Kobs
H

is a sub-clique path of K[B�,Br ] and V (H ) ⊆ β (Kobs
H

) ⊆ V (H ) ∪ B� ∪ Br . �

The obtruded components of K[B�,Br ] can be divided into two groups, those that are modules
inG and the rest. We will orst consider the problem of reducing the module obtruded components.
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6.1.1 Handling ObtrudedModules ofK. In this section, our goal will be to upper bound the total
number of vertices across all bags B that have that following property: B has non-empty intersec-
tion with at least one obtruded component ofK that is a module inG. First, we will only reduce the
total number of vertices in the obtruded components of K that are modules in G. To achieve this,
we will employ Lemma 4.3 (see Section 4). To this end, consider a pair of consecutive marked bags

B�,Br in BMarked (I ). Let Ĉ be the set of obtruded components of K[B�,Br ] that are modules in G.

Note that by the construction, Ĉ is the set of connected components in G[B�,Br ] = G[V [B�,Br ]]
(whereV [B�,Br ] = β (K[B�,Br ]) \ (B� ∪ Br )) that are modules. Thus, from the deonition of a path

decomposition, it follows that Ĉ is a subcollection of the collection of all the connected components
in G − (M ∪ B� ∪ Br ) that are modules. Moreover, note that |M ∪ B� ∪ Br | ≤ |M | + 2η.

Now we apply Lemma 4.3 for M̂ = B� ∪ Br , and obtain a subset Z of V (Ĉ) of size at most
8(k + 1)3 ( |M | + 2η)10 such that the following holds:

If S ⊆ V (G ) of size at most k and O is an obstruction in G − S that is not covered by

W , then there is another obstruction O′ in G − S such that O′ ∩ (V (Ĉ) \ Z ) = ∅.

This gives the following reduction rule.

Reduction Rule 6.1. Suppose there is v ∈ V (Ĉ) \ Z . Then, delete v from the graph G. In other
words, the resulting instance is (G − {v},k ).

Lemma 6.9. Reduction Rule 6.1 is safe.

Proof. Let v ∈ V (Ĉ) \Z , andG ′
= G − {v}. We will show that (G,k ) is a Yes-instance of IVD if

and only if (G ′,k ) is. In the forward direction, let S be a solution to (G,k ). AsG ′ − S is an induced
subgraph of G − S , Observation 6.1 implies that S is a solution to (G ′,k ).
In the reverse direction, let S ′ be a solution to (G ′,k ). We claim that S ′ is a solution to (G,k ). Let

Sv = S ′ ∪ {v} and observe that it is a solution of size k + 1 in G. Toward a contradiction, suppose
that this claim is false. Then, there is an obstruction O in G − S ′. Notice that O is not covered by
W—indeed, if O were covered by W , then because Sv ∩M = S ′ ∩M and W ⊆ 2M is a (k + 2)-
necessary family, it would have followed that V (O) ∩ S ′ � ∅. Thus, Lemma 4.3 implies that there

is an obstruction O′ in G − S ′ that is disjoint from V (Ĉ) \ Z . The obstruction O′ does not contain
the vertex v , hence it is also an obstruction in (G − {v}) − S ′ = G − Sv . Since we have reached a
contradiction, the proof is complete. �

If Reduction Rule 6.1 is not applicable, then we can assume that the (total) number of vertices in

V (Ĉ) is bounded by 8(k + 1)3 ( |M | + 2η)10. In the following lemma, we bound the number of bags

in K that have non-empty intersection with V (Ĉ).

Lemma 6.10. The number of bags in K having non-empty intersection with V (Ĉ) is bounded by

48(k + 1)3 ( |M | + 2η)10.

Proof. Let us orst note that any bag in K that contains at least one vertex of V (Ĉ) is a subset

ofV (Ĉ) ∪B� ∪Br and is also a bag in K[B�,Br ]. To prove the desired claim, we create a special set
of bags S, as follows. First, add B�,Br to S. Recall that B� appears before Br in the ordering of the
bags given byK. For each x ∈ B� , let B

x be the orst bag inK[B�,Br ] that does not contain x , where

if such a bag does not exist we then set Bx = Br . Similarly, for each y ∈ Br , let B̂
y be the orst bag

in K[B�,Br ] that contains y, which exists since y ∈ Br . We add all the bags in {Bx | x ∈ B� } ∪ {B̂y |

y ∈ Br } to S. Next, for each v ∈ V (Ĉ), let Fv and Lv be the orst bag and last bag in K[B�,Br ]

containing v , respectively. We further add each bag in {Fv | v ∈ V (Ĉ)} ∪ {Lv | v ∈ V (Ĉ)} to S.
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Recall that |V (Ĉ) | ≤ 8(k + 1)3 ( |M | + 2η)10 and η ≥ |M | ≥ k ≥ 1, and thus we can obtain that

|S| ≤ |B� | + |Br | + 2|V (Ĉ) | + 2 ≤ 3 · 8(k + 1)3 ( |M | + 2η)10 = 24(k + 1)3 ( |M | + 2η)10. Consider any
two bags B1,B2 in S (where B1 appears before B2 in the ordering given by K) such that there is
no bag from S in K[B1,B2] other than B1 and B2. We call the sub-clique path K[B+11 ,B

−1
2 ] (which

might be empty) a restricted region of the sub-clique path K[B�,Br ]. In the following, we will
argue that all the bags belonging to the same restricted region contain the same set of vertices

from B� ∪ Br ∪V (Ĉ). We make this argument with respect to B1 and B2. To this end, consider the
collection of bags S′

= {X ∈ K[B1,B2] | X � {B1,B2}}. We will argue that for any X ,Y ∈ S′, we

have X ∩ (B� ∪ Br ∪V (Ĉ)) = Y ∩ (B� ∪ Br ∪V (Ĉ)). Toward this, consider some X ,Y ∈ S′ such
that X appears before Y in the ordering given by K. We consider two cases as follows, and in each
of the cases we rely on the property that in a clique path, the set of bags containing a oxed vertex
forms a sub-clique path:

• There isv ∈ (X \Y )∩ (B�∪Br ∪V (Ĉ)). Note thatv � Br , as otherwise it belongs toX ∩Br but
not to Y , which violates the sub-clique path property of a clique path. Consider the subcase
where v ∈ B� . This implies that v belongs to each bag in K[B�,X ]. But as v � Y , the bag
Bv ∈ S must belong to K[X ,Y ]. This contradicts the fact that K[X ,Y ] does not contain any

bag from S. Next, consider the subcase where v ∈ V (Ĉ). Again, as v ∈ X and v � Y , we
have that the bag Lv must belong to K[X ,Y ], which is a contradiction.

• There isv ∈ (Y \X )∩ (B�∪Br ∪V (Ĉ)). Note thatv � B�, as otherwise it belongs to B�∩Y but
not to X , which violates the sub-clique path property of a clique path. Consider the subcase
where v ∈ Br . This implies that v belongs to each bag in K[Y ,Br ]. But as v � X , the bag

B̂v ∈ S must belong to K[X ,Y ]. This contradicts the fact that K[X ,Y ] does not contain any

bag from S. Next, consider the subcase where v ∈ V (Ĉ). Again, as v � X and v ∈ Y , we
have that the bag Fv must belong to K[X ,Y ], which is a contradiction.

From the preceding, we conclude that bags in the same restricted region contain the same set of

vertices from B�∪Br ∪V (Ĉ). In what follows, we will show why this statement implies that in any

restricted region there can be at most one bag that has non-empty intersection withV (Ĉ). Before
showing that the claim is true, let us argue that having this claim concludes the proof. Indeed, since
|S| ≤ 24(k + 1)3 ( |M | + 2η)10 and B�,Br ∈ S, there are at most 24(k + 1)3 ( |M | + 2η)10 restricted

regions that can have non-empty intersection with V (Ĉ). Each one of these regions has only one

bag that has non-empty intersection with V (Ĉ). Adding up the bags in S itself, we conclude that

there are at most 48(k + 1)3 ( |M | + 2η)10 bags in K that contain a vertex from V (Ĉ).
We now turn to show that in any restricted region, there can be at most one bag that has non-

empty intersection withV (Ĉ). For this purpose, consider some restricted regionK[B+11 ,B
−1
2 ]. Then,

all bags in this region contain the same set of vertices from B�∪Br ∪V (Ĉ). Suppose that this region

contains some vertex v ∈ V (Ĉ). By the deonition of Ĉ, there exists an obtruded component H of
K[B�,Br ] that contains v . Because v belongs to every bag in K[B+11 ,B

−1
2 ] and by Lemma 6.8, it

follows thatH contains all vertices across all bags inK[B+11 ,B
−1
2 ] apart from those in B�∪Br . Thus,

all vertices across all bags in K[B+11 ,B
−1
2 ] belong to B� ∪ Br ∪ V (Ĉ). Because distinct bags on a

clique path correspond to distinct sets of vertices, this means that K[B+11 ,B
−1
2 ] can only contain a

single bag that has a non-empty intersection with V (Ĉ). This concludes the proof. �

Recall that there are at most 4η |M | pairs of consecutive marked bags in BMarked (I ). Applying
Reduction Rule 6.1 for every such pair, we obtain the following. There are at most 48(k +1)3 ( |M |+

2η)10 · 4η |M | bags of K that contain vertices from obtruded modules. Let C (K) denote the set of
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vertices that appear in obtruded modules. Let BMarked (I I ) denote the collection of all bags in K
that contain a vertex in C (K).

Marking Scheme II. Add all the bags in BMarked (I I ) to BMarked.

From Lemma 6.10, we obtain that we have marked at most 48(k + 1)3 ( |M | + 2η)10 · 4η |M | bags

of K using Marking Scheme II.

6.1.2 Obtaining Manageable Clique Paths. In this section, we will focus on the obtruded compo-
nents ofK that are not modules inG. To this end, we mark somemore bags inK so that the regions
between unmarked bags have additional structural properties.Wewill refer to the sub-clique paths
obtained by this process as manageable clique paths. In the following, we start by deoning some
notation that will be helpful in describing this marking scheme.

Let B�,Br be two consecutive bags in BMarked (I ), where B� appears before Br in the ordering
given by K. Next, consider a non-module obtruded component H of K[B�,Br ] (and note that
it contains an unmarked vertex), and let Kobt

H
be the sub-clique path of K[B�,Br ] provided by

Lemma 6.8. Let Blev (K
obt
H

) and Bright (K
obt
H

) be the orst and last bags of Kobt
H

, respectively. Before
moving on to our next marking scheme, we construct two sets of bags, L1 (H ) and L2 (H ). Ini-
tially, we have L1 (H ) = {Blev (K

obt
H

),Bright (K
obt
H

)}. We note that the construction of L1 (H ) is quite
similar to the construction of S used in the proof of Lemma 6.10. For each u ∈ B� , let B

u (H )

be the orst bag in Kobt
H

that does not contain u, where if such a bag does not exist we then set

Bu (H ) = Bright (K
obt
H

). Additionally, for each v ∈ Br \ B� , let B̂
v (H ) be the orst bag in Kobt

H
that

containsv , where if such a bag does not existwe then set B̂v (H ) = Bright (K
obt
H

). We add all the bags

in {Bu (H ) | u ∈ B� } ∪ {B̂v (H ) | v ∈ Br \ B� } to L1 (H ). We initialize L2 (H ) = L1 (H ). For each bag
B ∈ L1 (H ) in Kobt

H
, we add to L2 (H ) the bags adjacent to B, namely B−1 and B+1 (if they exist) in

Kobt
H

. Note that the number of bags in L2 (H ) is bounded by 10η.4

For consecutive marked bags B�,Br ∈ BMarked (I ) in K, let H (B�,Br ) be the set of non-module
obtruded components of K[B�,Br ]. Furthermore, let L (B�,Br ) be the union of the sets L2 (H )

taken over all H ∈ H (B�,Br ). From Lemma 6.7, we know that there are at most 4η obtruded
components of K[B�,Br ] that are not modules. Thus, the number of bags in L (B�,Br ) is bounded
by 40η2. Finally, let BMarked (I I I ) be the union of the sets of bags L (B�,Br ) taken over all B� and
Br that are consecutive marked bags in BMarked (I ). Recall that |BMarked (I ) | is bounded by 4η |M |.
Thus, the number of bags in BMarked (I I I ) is bounded by 160η3 |M |. We are now ready to state our
third marking scheme.

Marking Scheme III. Add all the bags in BMarked (I I I ) to BMarked.

Note that we marked at most 160η3 |M | bags using the preceding marking scheme. We now fur-

ther partition K using the bags marked in the preceding scheme.
In the following, we will give some useful properties regarding the region between consecutive

marked bags in BMarked (I I I ). To this end, let B�,Br ∈ BMarked (I ) be consecutive marked bags in
K, where we consider marked bags only in BMarked (I ). We assume that B� appears before Br in
the ordering given by K. Consider an obtruded non-module component H of K[B�,Br ], and let
Kobt
H

be the sub-clique path provided by Lemma 6.8. Note that from the lemma, bags marked in

BMarked (I I ) do not occur in Kobt
H

. In the following, we write KX ,KY , . . . and so forth to denote

4The number 10 in 10η is a slightly larger constant than what can actually be achieved, and we use this constant only to

simplify calculations.
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various sub-clique paths of K. Here X ,Y , . . . are used as indices to identify these clique paths,
unless we state otherwise.

Deonition 6.11 (Manageable Clique Path). Let KX be a sub-clique path of K such that it contains
at least one other bag apart from Blev (KX ) and Bright (KX ). The sub-clique path KX is called a
manageable clique path if all interior bags ofKX do not lie inBMarked (I )∪BMarked (I I )∪BMarked (I I I ).
Furthermore, if KX is a sub-clique path of K[B�,Br ], where B�,Br are consecutive marked bags in
BMarked (I ), then KX is called a (B�,Br )-manageable clique path.

We note that in the preceding deonition, there is a non-module obtruded component H of
K[B�,Br ] such that β (KX ) ⊆ β (Kobt

H
) ⊆ V (H ) ∪ B� ∪ Br , where K

obt
H

is the sub-clique path pro-
vided by Lemma 6.8 (also see Observation 6.5). Observe that a manageable clique path KX is not a
clique in G, since it contains at least three distinct bags of the clique path K. Further observe that
for the manageable clique path KX , the bags Blev (KX ) and Bright (KX ) are not necessarily marked
bags. However, this is true for any maximal manageable clique path KX (i.e., those manageable
clique paths that are not contained in another manageable clique path). Then observe that the
endpoint bags of KX must lie in BMarked (I ) ∪ BMarked (I I I ), since any manageable clique path is
contained in a non-module obtruded component of K[B�,Br ] for some consecutive pair of bags
B�,Br ∈ BMarked (I ), and these end bags are not in BMarked (I I ) by the deonition of BMarked (I I I )

(recall that from Lemma 6.8, we have β (Kobt
H

) ⊆ V (H ) ∪ B� ∪ Br ). This gives us the following
observation (from Marking Schemes I and III).

Observation 6.12. The number of maximal manageable clique paths in K is upper bounded by

160η3 |M |.

Next, we derive the following property using the notations we introduced earlier. Consider a
manageable clique path KX that is a sub-clique path of the clique path Kobt

H
, where H is a non-

module obtruded component of K[B�,Br ]. (Note that KX is a (B�,Br )-manageable clique path.)

Lemma 6.13. For any two bags B,B′ in a (B�,Br )-manageable clique path KX , we have B ∩ (B� ∪

Br ) = B′ ∩ (B� ∪ Br ).

Proof. Let us consider a maximal (B�,Br )-manageable clique path K̂X that contains KX as a
sub-clique path. Furthermore, let H be a non-module obtruded component of K[B�,Br ] such that

β (K̂X ) ⊆ β (Kobt
H

), where Kobt
H

is the sub-clique path provided by Lemma 6.8.

We will prove the lemma for K̂X , thereby implying the lemma for KX . Recall that by the con-

struction of L1 (H ) and L2 (H ), K̂X contains no bag from L1 (H ). Consider two bags S,T in K̂X
such that S appears before T in the ordering given by K. We consider the following cases, and in
each of the cases we rely on the property that in a clique path, the set of bags containing a oxed
vertex forms a sub-clique path:

• There is v ∈ (S \T ) ∩ (B� ∪ Br ). Note that v � Br , as otherwise it belongs to S ∩ Br but not
to T , which violates the sub-clique path property of a clique path. From the preceding, we
can conclude that v ∈ B� . This implies that v belongs to each bag in K[B�, S]. But as v � T ,

the bag Bv (H ) ∈ L1 (H ) must belong to K[S,T ]. This contradicts the fact that K̂X does not
contain any bag from L1 (H ).

• There is v ∈ (T \ S ) ∩ (B� ∪ Br ). Note that v � B�, as otherwise it belongs to T ∩ B� but not
to S , which violates the sub-clique path property of a clique path. From the preceding, we
can conclude that v ∈ Br . This implies that v belongs to each bag in K[T ,Br ]. But as v � S ,

the bag B̂v (H ) ∈ L1 (H ) must belong to K[S,T ]. This contradicts the fact that K̂X does not
contain any bag from L1 (H ).

This concludes the proof. �
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We will conclude this section by deriving a few more properties of manageable clique paths,
which will be useful later. Consider a (B�,Br )-manageable clique pathKX , and recall thatC(KX ) =
Blev (KX ) ∩ Bright (KX ).

Observation 6.14. Form ∈ M , either β (KX )\C(KX ) ⊆ NG (m) or (β (KX )\C(KX ))∩NG (m) = ∅.

Furthermore, for v ∈ β (KX ) \ C(KX ) and distinct u,w ∈ NG (v ) ∩M , at least one of {u,w } ∈ W or

(u,w ) ∈ E (G ) holds.

Proof. Consider m ∈ M . Note that all the vertices in β (KX ) \ C(KX ) must belong a single
obtruded component. Thus, the orst part of the observation follows from Lemma 6.6, and the
second part of the observation follows from Observation 6.4. �

For a manageable clique path KX , let us deone MAll (KX ) = M ∩ N (β (KX ) \ C(KX )), and
MPriv (KX ) = M \ MAll (KX ). Note that N (MPriv (KX )) ∩ β (KX ) ⊆ C(KX ), and thus, in the nota-
tion in the previous sentence, the word 8Priv9 stands for the possible <private= neighbors (inM) of
vertices in C(KX ). The following observation will be helpful in ruling out the case when there is
a vertex v ∈ C(KX ) and a vertexm ∈ MAll (KX ) such that (v,m) � E (G ).

Observation 6.15. Consider v ∈ C(KX ) and m ∈ MAll (KX ) such that (v,m) � E (G ). Then,

G[β (KX )] is a clique in G.

Proof. Notice that C(KX ) ⊆ Blev (KX ) and Blev (KX ) is a clique in G, and thus G[C(KX )] is a
clique. Additionally, every vertex inC(KX )∪MAll (KX ) is adjacent to every vertex in β (KX )\C(KX )
in the graph G. Therefore, if there is a pair of non-adjacent vertices u,w ∈ β (KX ) \ C(KX ), then
O = G[{u,v,w,m}] is an induced cycle on 4 vertices. Since Reduction Rule 3.1 is not applicable,
each set in W has size at least 2, and hence O is not covered by W . But then any obstruc-
tion that is not covered by W must intersect M in at least 10 vertices. Hence, we arrive at a
contradiction. �

Observation 6.16. For a manageable clique path KX , each of the following holds:

(1) For any v ∈ β (KX ) andm ∈ MAll (KX ), we have (v,m) ∈ E (G ).

(2) For each u ∈ C(KX ) and v ∈ β (KX ), where u � v , we have (u,v ) ∈ E (G ).

(3) For distinctm1,m2 ∈ MAll (KX ), at least one of {m1,m2} ∈ W or (m1,m2) ∈ E (G ) holds.

Proof. The orst item follows from Observation 6.14 and 6.15 because G[β (KX )] cannot be a
clique. Since C(KX ) is a clique that is contained in every bag of KX in G, the second item of
the observation follows. Last, the third item follows from Observation 6.14 and the deonition of
MAll (KX ). �

Observation 6.17. Let KX be a manageable clique path, and let K′ be any sub-clique path of KX ,

such that G[β (K′)] is not a clique. Then, C(KX ) ⊆ C(K′) and MAll (K
′) = MAll (KX ) (Figure 12).

Proof. By the deonition of a path decomposition, any vertex that belongs to both Blev (KX )

and Bright (KX ) must also belong to every bag in between these two bags, and particularly to both
Blev (K

′) and Bright (K
′). Thus, it follows that C(KX ) ⊆ C(K′). This containment directly implies

thatMAll (K
′) ⊆ MAll (KX ). However, we need to show that these two sets are in fact equal. To this

end, consider a vertexm ∈ MAll (KX ). By Observation 6.14, we have that β (KX ) \C(KX ) ⊆ NG (m),
and therefore β (K′) \ C(K′) ⊆ NG (m). Thus, unless β (K′) \ C(K′) is empty, the last containment
implies that m ∈ MAll (K

′). However, β (K′) \ C(K′) cannot be empty, since then K′ would have
induced a clique. �
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Fig. 12. A manageable clique path KX , a sub-clique path K
′, and an illustration of various sets in Observa-

tion 6.17.

6.2 Handling Manageable Clique Paths

We start by recalling that the number of maximal manageable clique paths is bounded by 160η3 |M |.
For the sake of simplicity, intuitively speaking, our nextmarking schemewill mark bags, whichwill
help us ensure that after this marking schemewe are able to apply Observation 6.17. To this end, we
let BMarked (IV ) be the set of bags in K, which contains, for every maximal manageable clique path
that exactly has three bags, the middle bag of it. Notice that for each maximal manageable clique
pathKX , forA = Blev (KX )\(Blev (KX ))

+1 andA′
= Bright (KX )\(Bright (KX ))

−1, ifG[β (KX )\(A∪A
′)]

is a clique, then all the bags in KX must belong to the set BMarked (I )∪BMarked (I I )∪BMarked (I I I )∪

BMarked (IV ). (Recall our assumption that inK, there are no two distinct bags where one is a subset
of the other.) For simplicity in our arguments later, we mark all the bags in BMarked (IV )—that is,
we have the following marking scheme.

Marking Scheme IV. Add all the bags in BMarked (IV ) to BMarked.

We note that by the preceding marking scheme, we have marked at most 160η3 |M | many bags.

In the following, consider a (not necessarily maximal) manageable clique path KX . Recall that
C(KX ) = Blev (KX ) ∩ Bright (KX ) and I(KX ) = β (KX ) \ (Blev (KX ) ∪ Bright (KX )). Observe that no
vertex in I(KX ) belongs to any marked bag (among all bags marked so far). Further recall that
MAll (KX ) = M ∩ N (β (KX ) \ C(KX )), and MPriv (KX ) = M \MAll (KX ).

We will devise a sequence of marking schemes that mark a polynomial in k number of bags in
KX such that the obstructions are <well behaved= with respect to the marked bags, where, loosely
speaking, well behavedness will be captured by the obstruction being a path in each of the man-
ageable clique paths. Intuitively speaking, this will allow us to focus mainly on AWs, as (large)
cycles already have such a property. To this end, we have the following deonition related to an
obstruction.

Deonition 6.18 (Manageable Obstruction). For a manageable clique path KX , an obstruction O is
called KX -manageable if either O is an induced cycle on at least four vertices or it is an AWwhere
no terminal of O belongs to I(KX ). Furthermore, we say that O is a manageable obstruction if it is
KX -manageable for every manageable clique path KX .

Observation 6.19. If KX is a manageable clique path that is a sub-clique path of another man-

ageable clique path KX̃ and O is a KX̃ -manageable obstruction, then O is also a KX -manageable

obstruction.
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Recall that an induced cycle O on at least four vertices is a manageable obstruction (see Deoni-
tion 6.18), and this allows us to mainly focus on AWs. Intuitively speaking, our goal is to mark a
polynomial in k number of bags in each maximal manageable clique path KX so that, for any set S
of k+2 or fewer vertices, if there is an AWO inG−S , then (i) eitherO is already aKX -manageable
obstruction, or (ii) there is an AW O′ in G − S such that all its vertices appear in marked bags
(including the bags that we mark in our upcoming marking scheme). We present Lemma 6.20 to
characterize the intersection between a manageable clique path KX and an induced path P in G.

Lemma 6.20. Let KX be a manageable clique path. Let P = (v1,v2, . . . ,vt ) be an induced path in

G such that all of the following conditions are satisoed:

(1) (V (P ) \ {v1,vt }) ∩ I(KX ) � ∅,5

(2) V (P ) ∩MAll (KX ) = ∅, and

(3) V (P ) ∩ (V (G ) \ I(KX )) � ∅.

Then, V (P ) ∩ C(KX ) = ∅. Furthermore, if v1,vt � I(KX ), then the following properties hold:

• PX = P[V (P ) ∩ β (KX )] is an induced path in G between a vertex in Blev (KX ) \ C(KX ) and a

vertex in Bright (KX ) \ C(KX ).

• PX − (Blev (KX ) ∪ Bright (KX )) is an induced path in G[I(KX )].

Proof. Consider a vertexv ∈ (V (P )∩ I(KX )) \ {v1,vt }, and letv−1 andv+1 be its two neighbors
in P . Recall that N (MPriv (KX )) ∩ β (KX ) ⊆ C(KX ), and hence NG (v ) ∩ MPriv (KX ) = ∅. We thus
observe, because NG (v ) ⊆ β (KX )∪MAll (KX ) andV (P )∩MAll (KX ) = ∅, it follows that the vertices
v−1 and v+1 must belong to β (KX ). Furthermore, C(KX ) is a clique, and for any w ∈ C(KX ) we
have NG (v ) ⊆ NG (w ) (see Observation 6.16). Therefore, V (P ) ∩ C(KX ) = ∅. Indeed, if it were not
the case, then we obtain a chord in the induced path P between a vertex w ∈ V (P ) ∩ C(KX ) and
(at least) one of v−1 or v+1 due to the containment {v−1,v+1} ⊆ NG (v ) ⊆ NG (w ). This shows that
V (P ) ∩ C(KX ) = ∅ (i.e., it concludes the proof of orst part of the lemma).

Now, we turn to prove the second part of the lemma, and thus we assume that v1,vt � I(KX ).
Toward this, consider the set V (P ) ∩ β (KX ), and let vs ∈ I(KX ) be the vertex with the smallest
index (i.e., subscript) in P that belongs to the set I(KX ). The existence of such a vertex vs follows
from the assumption that (V (P ) \ {v1,vt })∩ I(KX ) � ∅. Moreover, note that s ∈ {2, . . . , t −1} due to
the assumption that v1,vt � I(KX ). Let ve (possibly the same as vs ) be the vertex with the largest
index in P that belongs to I(KX ) such that for every i ∈ {s, s + 1, . . . , e}, vi ∈ I(KX ). As before, we
have that e ∈ {2, . . . , t − 1}.
Next, we consider the vertices vs−1 and ve+1 along with the induced subpath P ′

=

P[{vs−1,vs , . . . ,ve+1}]. From the construction ofvs−1 andve+1, the premise thatV (P )∩MAll (KX ) =

∅, and the orst part of the lemma, it follows thatvs−1,ve+1 � I(KX )∪MAll (KX )∪C(KX ). Moreover,
(vs−1,vs ), (ve ,ve+1) ∈ E (G ), and forv∗ ∈ {vs ,ve }, we haveNG (v

∗) ⊆ β (KX )∪MAll (KX ). Therefore,
vs−1,ve+1 ∈ (Blev (KX ) ∪ Bright (KX )) \ C(KX ). Without loss of generality, we assume that vs−1 ∈

Blev (KX ) \C(KX ). Then,ve+1 � Blev (KX ) \C(KX ), since otherwise we have the chord (vs−1,ve+1)

in P . This implies that ve+1 ∈ Bright (KX ) \ C(KX ). Therefore, P
′
= P[{vs−1,vs , . . . ,ve+1}] is an

induced path from a vertex in Blev (KX ) \ C(KX ) to a vertex in Bright (KX ) \ C(KX ).
Notice thatvs−1−i , for any i ≥ 2, cannot belong toBlev (KX ), since otherwise therewill be a chord

in P (between vs−1−i and vs−1). We note that vs−2 could possibly belong to Blev (KX ) \ C(KX ) but
not to C(KX ). Symmetrically, we derive that ve+1+i , for any i ≥ 2, cannot belong to Bright (KX ),
whereas ve+2 could possibly belong to Bright (KX ) \C(KX ) but not to C(KX ). Let s

∗ ∈ {s − 1, s − 2}
be the smallest index such that vs∗ ∈ V (P ) ∩ (Blev (KX ) \ C(KX )), and let e∗ ∈ {e + 1, e + 2}

5This implies that P has at least three vertices.
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be the largest index such that ve∗ ∈ V (P ) ∩ (Bright (KX ) \ C(KX )). From this, we conclude that
P∗
= P[{vs∗ ,vs∗+1, . . . ,ve∗ }] is an induced path from a vertex in Blev (KX ) \ C(KX ) to a vertex in

Bright (KX ) \ C(KX ).
Thus, to complete the proof of the lemma, it remains to show that vi � I(KX ) for all i ∈

{1, 2, . . . , s − 2} ∪ {e + 2, e + 3, . . . , t }. Suppose not, then there is an integer i∗ ∈ [s − 2] ∪ {e +

2, e + 3, . . . , t } such that vi∗ ∈ I(KX ). Since vi∗ ∈ I(KX ), it must hold that vi∗ belong to a bag, say
B∗ in KX , which is diferent from Blev (KX ) and Bright (KX ). Recall that P

′ is a subpath of P from
vs−1 ∈ Blev (KX ) \ C(KX ) to ve+1 ∈ Bright (KX ) \ C(KX ). Therefore, P

′ intersects every bag in the
manageable clique path KX . In particular, it contains a vertex diferent from vi∗ , say v

′, from B∗.
But then (v ′,vi∗ ) ∈ E (G ) is a chord in the induced path P , which is a contradiction. This concludes
the proof of the lemma. �

Observation 6.21. Let v ∈ β (KX ) \C(KX ). Then, v is not a center vertex of any AW inG that is

not covered by W .

Proof. Let O be an AW in G that is not covered by W , and suppose that v ∈ β (KX ) \ C(KX )

is a center vertex of O. Then, v must be adjacent (in G) to all the vertices of base(O). As M is
a 9-redundant solution, there are at least ove vertices of M in base(O), and therefore there are
vertices m1,m2 ∈ M such that (m1,m2) � E (G ) and (m1,v ), (m2,v ) ∈ E (G ). Moreover, from Ob-
servation 6.14, for (distinct) u,w ∈ NG (v ) ∩ M one of {u,w } ∈ W or (u,w ) ∈ E (G ) holds. But
(m1,m2) � E (G ), and therefore {m1,m2} ∈ W must hold. This contradicts the fact that O is not
covered byW . �

Toward Our Case Distinction. Let us now consider the interaction between manageable clique
paths and the obstructions in the graph that are not covered byW . Let O be any AW (not covered
by W) in G. Recall that P (O) denotes the extended base of O (including terminal vertices, t� and
tr ). In what follows, we consider two cases based on the intersection between the vertex set of
O and I(KX ) ∪ MAll (KX ). Before this, for the sake of clarity and summarization, let us recall the
following facts:

(1) The obstruction O is an AW in G that is not covered by W .
(2) The sets Blev (KX ) and Bright (KX ) are cliques in G, and Blev (KX ) ∪ Bright (KX ) ∪ MAll (KX )

separates I(KX ) from the rest of the graph.
(3) Every vertex ofMAll (KX ) is adjacent to all vertices in β (KX ) in G (by Observation 6.16).
(4) The vertices of β (KX ) \C(KX ), and particularly I(KX ), cannot be the center vertices of any

AW in G that is not covered by W (by Observation 6.21). Therefore, every vertex of I(KX )
is either a base vertex or a terminal of the AW O.

6.2.1 V (base(O)) ∩ I(KX ) � ∅ andV (P (O)) ∩MAll (KX ) = ∅. The goal of this section will
be to show that any AW O in G that is not covered by W , and satisoes V (base(O)) ∩ I(KX ) � ∅

and V (P (O)) ∩MAll (KX ) = ∅, is in fact already a KX -manageable obstruction. To this end, we let
O be an AW inG. Furthermore, we remind that c1 and c2 are the centers of O (in case O is a  -AW,
we have c = c1 = c2), t�, tr are the non-shallow terminals, t is the shallow terminal, base(O) is the
base, and P (O) is the extended base.
In the following, we obtain some useful properties ofO that satisoes the premise of this section—

that is, V (base(O)) ∩ I(KX ) � ∅ and V (P (O)) ∩MAll (KX ) = ∅. This will be done in a sequence of
four statements, after which we will be able to obtain the desired result. We orst observe that the
center(s) must belong to C(KX ) ∪MAll (KX ).

Observation 6.22. If O is an AW not covered by W and V (base(O)) ∩ I(KX ) � ∅, then c1, c2 ∈

C(KX ) ∪MAll (KX ).
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Proof. Consider v ∈ V (base(O)) ∩ I(KX ). Because v ∈ I(KX ), we have NG (v ) ⊆ β (KX ) ∪

MAll (KX ), hence no vertex outside β (KX ) ∪ MAll (KX ) can be a center (as c1, c2 must belong to
NG (v )). Moreover, recall that by Observation 6.21, no vertex in β (KX ) \ C(KX ) can be a center
vertex of an AW in G (that is uncovered by W). Therefore, we have that c1, c2 ∈ MAll (KX ) ∪

C(KX ). �

Second, we observe that the non-shallow terminals do not belong to β (KX ) ∪MAll (KX ) (which
already brings us close to the goal of this section), the base does not traverse C(KX ) ∪MAll (KX ),
and the shallow terminal does not belong to C(KX ) ∪MAll (KX ).

Observation 6.23. If O is an AW not covered by W , V (base(O)) ∩ I(KX ) � ∅ and V (P (O)) ∩

MAll (KX ) = ∅, then t�, tr � β (KX ) ∪MAll (KX ). Furthermore, V (base(O)) ∩ (C(KX ) ∪MAll (KX )) =

∅ and t � C(KX ) ∪MAll (KX ).

Proof. From Observation 6.22,V (base(O))∩ I(KX ) � ∅ implies that c1, c2 ∈ C(KX )∪MAll (KX ).
From Observation 6.16, we have that any vertex of C(KX ) ∪MAll (KX ) is adjacent to every vertex
in β (KX ) inG. As c1 ∈ C(KX )∪MAll (KX ) is not adjacent to tr , we obtain that tr � β (KX ). Toward
a contradiction, consider the case where tr ∈ MAll (KX ). Since O is not covered by W , we have
{c1, tr } � W . But then from Observation 6.16, we obtain that (c1, tr ) ∈ E (G ). This contradicts
that O is an AW in G. From the preceding, we obtain that tr � β (KX ) ∪MAll (KX ). An analogous
argument can be given to show that t� � β (KX ) ∪ MAll (KX ). This proves the orst part of the
observation.
Next, toward a contradiction, suppose that there existsw ∈ V (base(O)) ∩ (C(KX ) ∪MAll (KX )).

By the assumption that V (P (O)) ∩ MAll (KX ) = ∅, we have w � MAll (KX ). Hence, w ∈ C(KX ),
which means (by Observation 6.16) that w is adjacent to every vertex in β (KX ) ∪ MAll (KX ). Let
v ∈ V (base(O)) ∩ I(KX ) (which exists by the assumption that V (base(O)) ∩ I(KX ) � ∅) and u be
the neighbor of v in P (O) that is diferent than w . Recall that NG (v ) ⊆ β (KX ) ∪ MAll (KX ), and
therefore u ∈ β (KX ) ∪ MAll (KX ). However, this implies that P (O)[{v,u,w }] is a cycle on three
vertices, contradicting that P (O) is an induced path.

Finally, if t ∈ C(KX ) ∪ MAll (KX ), then (t ,v ) ∈ E (G ) (O is not covered by W), which is a
contradiction. This completes the proof. �

Third, we consider induced subgraph PX = P (O)[β (KX ) \ C(KX )] of P (O). Due to Lemma 6.20,
the following lemma is almost immediate.

Lemma 6.24. IfV (base(O)) ∩ I(KX ) � ∅ andV (P (O)) ∩MAll (KX ) = ∅, then PX = P (O)[β (KX ) \
C(KX )] is an induced path between a vertex in Blev (KX ) \C(KX ) and a vertex in Bright (KX ) \C(KX )

that contains a vertex of I(KX ). And further, PX is a subpath of base(O).

Proof. We note that P (O) is an induced path inG and O is not covered byW . We further note
that the following conditions are satisoed:

(1) (V (P (O))\{v1,vt })∩I(KX ) � ∅, wherev1 = t� andvt = tr . This follows from our assumption
that V (base(O)) ∩ I(KX ) � ∅.

(2) V (P (O)) ∩MAll (KX ) = ∅, as this is one of our assumptions.
(3) V (P (O)) ∩ (V (G ) \ I(KX )) � ∅ and t�, tr � I(KX ). This follows from the fact that t�, tr �

β (KX ) ∪MAll (KX ), which is obtained from Observation 6.23

Thus, using Lemma 6.20, we obtain that PX = P (O)[β (KX ) \C(KX )] is an induced path between a
vertex in Blev (KX ) \C(KX ) and a vertex in Bright (KX ) \C(KX ), and PX is a subpath of base(O). �

Using Lemma 6.24, we obtain the following observation.
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Observation 6.25. If V (base(O)) ∩ I(KX ) � ∅ and V (P (O)) ∩MAll (KX ) = ∅, then t � β (KX ) ∪

MAll (KX ).

Proof. From Observation 6.23, we can obtain that t � MAll (KX ). Now, toward a contradiction,
suppose that t ∈ β (KX ). Using Lemma 6.24, we obtain that PX = P (O)[β (KX ) \ C(KX )] is an
induced path between a vertex in Blev (KX ) \ C(KX ) and a vertex in Bright (KX ) \ C(KX ), and PX
is a subpath of base(O). But then PX intersects every bag in KX and t must lie in one of the bags
in KX . From this, we conclude that there is v ∈ V (P (O)) such that (t ,v ) ∈ E (G ), which again
contradicts that O is an AW in G. �

The next lemma, whose proof was the goal of this section, follows directly from the preceding
results and the deonition of KX -manageable obstructions. Indeed, Observation 6.23 states that
the non-shallow terminals cannot belong to β (KX ), and Observation 6.25 states that the shallow
terminal cannot belong to β (KX ).

Lemma 6.26. Let KX be a manageable clique path. Let O be an AW inG such that O is not covered

by W , V (base(O)) ∩ I(KX ) � ∅, and V (P (O)) ∩ MAll (KX ) = ∅. Then, O is a KX -manageable

obstruction that satisoes the following:

(i) The center vertices c1, c2 of O lie in MAll (KX ) ∪ C(KX ).

(ii) The terminals t�, tr , t lie outside β (KX ) ∪MAll (KX ).

(iii) And P = G[V (O)∩ (β (KX ) \C(KX ))] is an induced path between a vertex in Blev (KX ) \C(KX )

and a vertex in Bright (KX ) \C(KX ) that contains a vertex of I(KX ). Furthermore, P is a subpath

of base(O).

6.2.2 V (base(O)) ∩ I(KX ) = ∅ or V (P (O)) ∩ MAll (KX ) � ∅. Irrespective of whether
V (base(O)) ∩ I(KX ) = ∅ orV (P (O)) ∩MAll (KX ) � ∅, let us orst observe that since O is an AW, for
any cliqueA inG, we have |V (A)∩V (O) | ≤ 4. This implies that |V (O)∩(Blev (KX )∪Bright (KX )) | ≤ 8.
Moreover, since O is not covered byW , for distinctm,m′ ∈ MAll (KX ) ∩V (O), we have (m,m′) ∈

E (G ) (see Observation 6.16). Thus, |V (O) ∩ MAll (KX ) | ≤ 4. From this, we obtain the following
inequality:

|V (O) ∩ (MAll (KX ) ∪ Blev (KX ) ∪ Bright (KX )) | ≤ 12.

Let c1, c2 be the center vertices ofO (in the case of a  -AW, we have c = c1 = c2). Then, depending
on whether V (base(O)) ∩ I(KX ) = ∅ or V (P (O)) ∩MAll (KX ) � ∅, we note the following:

• First, suppose thatV (base(O)) ∩ I(KX ) = ∅. In this subcase, from Observation 6.21, we have
V (O) ∩ I(KX ) ⊆ {t�, tr , t } (possibly, V (O) ∩ I(KX ) = ∅).

• Second, suppose that there is a vertexm ∈ V (P (O)) ∩MAll (KX ). Recall that every vertex in
MAll (KX ) is adjacent to all the vertices in I(KX ). Thus, in this subcase, |V (O) ∩ I(KX ) | ≤ 2,
and otherwisem ∈ V (P (O)) will be adjacent to three vertices of V (O) \ {c1, c2} (see Obser-
vations 6.16 and 6.21).

In summary,V (O)∩ (β (KX )∪MAll (KX )) contains at most 15 vertices: up to 12 of these vertices are
inMAll (KX ) ∪ Blev (KX ) ∪ Bright (KX ), and up to 3 of these vertices are in I(KX ). We will use these
bounds to derive our next marking scheme. In particular, since we deal with an obstruction whose
intersection with β (KX ) ∪ MAll (KX ) is upper bounded by a oxed constant, the relevance of the
tool of representative families (deoned in Section 2) is presented as a possibility—intuitively, we
would like to capture enough vertices to represent every possibility of how the (up to) 3 vertices
from I(KX ) can <behave= within the small intersection. Toward that end, we proceed as follows.

Computation of Representative Families. We orst restrict our attention to only a maximal man-

ageable clique path K̂X . Consider a tuple R = (R,RB ,RI ), where R is a graph on the vertex set
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RB ∪ RI (these are new dummy vertices), |RB | ≤ 12 and |RI | ≤ 3. Furthermore, consider a set

Z ⊆ MAll (K̂X ) ∪ Blev (K̂X ) ∪ Bright (K̂X ) of |RB | vertices, a bijective function f : Z → RB , and an
integerd ∈ [3]. For every such tuple (R,Z , f ,d ), we will perform a computation of a representative
family as follows. Here, the family to be represented is AR,Z ,f ,d , the family of all d-sized subsets

Y ⊆ I(K̂X ) such that the following condition is satisoed:

There exists an isomorphism φ betweenG[Z ∪Y ] and R whose restriction toZ is equal
to f —that is, for all z ∈ Z , we have φ (z) = f (z).

Intuitively, we consider every <frame= that consists of the following: (i) the identity and topology

of the (up to) 12 vertices in MAll (K̂X ) ∪ Blev (K̂X ) ∪ Bright (K̂X ) that lie in the intersection—this
includes the speciocation of what are the identities of these vertices (given by Z ) and what are the

edges among them inG (given by R[RB]), and (ii) the topology of the (up to) 3 vertices in I(K̂X ) that
lie in the intersection (given by R[RI ]) and the edges between them and the previously mentioned
12 vertices (given by R). However, this information is not suocient, and we require to also have
explicit restriction of which vertex in Z is mapped to which vertex in R, and this is provided to us
by the function f .
Next, consider the matroid M = (U ,I), where U = V (G ) and I = {U ′ ⊆ U | |U ′ | ≤ d +

k + 2}. Notice that M is a uniform matroid with universe size at most |V (G ) |, and therefore it
is representable over a oeld of size |V (G ) | + 1 (see [13]). Furthermore, for such a oeld, the oeld
operations can be done in time polynomial in |V (G ) | (even with very simple implementations).

Thus, using Proposition 2.2, we ond a (k + 2)-representative family �AR,Z ,f ,d ⊆k+2
r ep AR,Z ,f ,d in

polynomial time.

Marking Based on the Representative Families. We now construct a setK(Rep, K̂X ) of bags in K̂X
as follows. For every tuple (R,Z , f ,d ) deoned earlier for the (maximal) manageable clique path

K̂X , and for every vertex v that belongs to at least one set in �AR,Z ,f ,d , we choose (arbitrarily) a

bag in K̂X that containsv and add this bag to the set K(Rep, K̂X ). Finally, we let BMarked (V ) be the

union of the bags in K(Rep, K̂X ) across every maximal manageable clique path K̂X .

Marking Scheme V. Add all the bags in BMarked (V ) to BMarked.

Toward bounding the number of bags wemarked using the precedingmarking scheme, consider

a maximal manageable clique path K̂X with end bags Blev (K̂X ),Bright (K̂X ). We observe that there
are at most O (1) choices for the graph R and its partition into RB and RI . Furthermore, there are

at most
(

|MAll (K̂X )∪Blev (K̂X )∪Bright (K̂X ) |

≤12

)

choices for Z and at most O (1) choices for f given the choice

of Z . Thus, by Proposition 2.2, there are at most O (k3) sets in �AR,Z ,f ,d and each set contains at

most d ≤ 3 vertices. Hence, overall, we marked at most O ((2η + |M |)12k3) bags in the maximal

manageable clique path K̂X . As there are at most O (η3 |M |) manageable clique paths inK, Marking

Scheme V marks at most O (η15 |M |k3) bags.

In the following, we prove a property regarding bags marked by Marking Scheme V.

Lemma 6.27. Let S be a set of size at most k+2 that intersects every set inW ,KX be a manageable

clique path, and K̂X be the maximal manageable clique path such thatKX is a sub-clique path of K̂X .

Additionally, let O be an AW in G − S that is not covered by W such that V (base(O)) ∩ I(KX ) = ∅

or V (P (O)) ∩ MAll (KX ) � ∅. Then, there is also an AW O′ in G − S that is not covered by W such

that (i) O′ − I(K̂X ) = O − I(K̂X ) and (ii) each vertex in V (O′) ∩ I(K̂X ) appears in some marked bag

from BMarked (I ) ∪ BMarked (I I ) . . . ∪ BMarked (V ).
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Proof. Note that by Observation 6.17,MAll (KX ) = MAll (K̂X ). By the premise of the lemma, we

have that V (base(O)) ∩ I(K̂X ) = ∅ or V (P (O)) ∩MAll (K̂X ) � ∅.

Consider the graph R = O[V (O) ∩ (β (K̂X ) ∪MAll (K̂X ))] (where we forget the <labeling= of the

vertices, i.e., the graph R is supposed to be on |V (R) | dummy vertices). Let Z ′
= V (O) ∩ (β (K̂X ) ∪

MAll (K̂X )). Furthermore, let Z = Z ′∩ (MAll (K̂X )∪Blev (K̂X )∪Bright (K̂X )) and Y = Z ′ \Z . Observe

that Y ⊆ I(K̂X ). Note that if Y = ∅, then trivially, O′
= O is a KX -manageable obstruction (see

Deonition 6.18). Thus, hereafter we assume that Y � ∅.
From the earlier discussion in this section, it follows that |V (R) | ≤ 15, |Z | ≤ 12, and 1 ≤ |Y | ≤ 3.

Let d = |Y |. Moreover, f is the function that maps every vertex in Z to the vertex in R that was
originally labeled by Z .

Notice that Y ∈ AR,Z ,f ,d . Thus, from Proposition 2.2, there is a set Y ′ ∈ �AR,Z ,f ,d such that the
following condition holds:

There is an isomorphism φ between G[Z ∪ Y ′] and R whose restriction to Z is equal
to f .

Since both Y and Y ′ are subsets of I(K̂X ), their neighbors inG belong toMAll (K̂X )∪Blev (K̂X )∪

Bright (K̂X ) ∪ I(K̂X ). Let O
′
= G[(V (O) \ Y ) ∪ Y ′]. Note that both N (Y ) ∩V (O) ⊆ Z and N (Y ′) ∩

V (O′) ⊆ Z . Together with the preceding condition, we thus obtain that O′ is isomorphic to O.

Hence, O′ is an AW inG − S with the property that all of the vertices of O′ from K̂X appear in the
marked bags from BMarked (I ) ∪ BMarked (I I ) . . . ∪ BMarked (V ). �

6.3 Nice Clique Paths and Nice Obstructions

We now consider a pair of consecutive marked bags in K that were marked by Marking Schemes
I through V. In particular, for each maximal manageable clique path KX , we marked a collection
of bags in KX via Marking Scheme V, which (further) partitions KX into sub-clique paths, which
will be called nice clique paths.

Deonition 6.28 (Nice Clique Path). Let KY be a sub-clique path of K such that it contains at least
one bag apart from Blev (KY ) and Bright (KY ). Then, KY is called a nice clique path if all interior
bags of KY are unmarked in BMarked (I ) ∪ BMarked (I I ) . . . ∪ BMarked (V ).

Note that any nice clique path has at least three bags and it is contained in a manageable clique
path, and therefore it is also a manageable clique path. We also note that the end bags of a nice
clique path KY need not be marked, and this is only true for maximal nice clique paths. In the
following, we deone the notion of nice obstructions.

Deonition 6.29 (Nice Obstruction). Let KY be a nice clique path and O be an obstruction. Fur-
thermore, let J = V (O) ∩ (β (KY ) \ C(KY )). The obstruction O is called a KY -nice obstruction (or
KY -nice) if one of the following holds:

(1) J ⊆ Blev (KY ) ∪ Bright (KY ), or
(2) G[J ] is an induced path between a vertex in Blev (KY ) \ C(KY ) and a vertex in Bright (KY ) \

C(KY ) that contains a vertex of I(KY ).

Moreover, O is a nice obstruction if it is KY -nice for every nice clique path KY .

The following observation is easily obtained from the preceding deonition and the fact that a
nice clique path is also a manageable clique path.

Observation 6.30. If KY is a nice clique path that is a sub-clique path of another nice clique path

KZ , andO is aKZ -nice obstruction, thenO is aKY -nice obstruction. Hence, an obstructionO is a nice

obstruction if it is KY -nice for every maximal nice clique path KY .
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Proof. Let JZ = V (O)∩ (β (KZ )\C(KZ )) and JY = V (O)∩β (KY ). If JZ ⊆ Blev (KZ )∪Bright (KZ ),

then as (Blev (KZ ) ∪ Bright (KZ )) ∩ β (KY ) ⊆ Blev (KY ) ∪ Bright (KY ), we have JY ⊆ Blev (KY ) ∪

Bright (KY ). Hence, O is a KY -nice obstruction.
Otherwise, JZ is an induced path from a vertex in Blev (KZ ) \ C(KZ ) to a vertex in Bright (KZ ) \

C(KZ ). If JY ⊆ (Blev (KY )∪Bright (KY )), thenO is aKY -nice obstruction. Otherwise, JY \(Blev (KY )∪

Bright (KY )) � ∅, and hence JY ∩ I(KY ) � ∅. Consider a vertex v ∈ JY ∩ I(KY ). Note that as JZ is
an induced path from a vertex in Blev (KZ ) \C(KZ ) to a vertex in Bright (KZ ) \C(KZ ), (Blev (KZ ) \

C(KZ )) ∩ I(KY ) = ∅, and (Bright (KZ ) \ C(KZ )) ∩ I(KY ) = ∅, therefore v is an internal vertex
of the path JZ . We will show that JY ∩ C(KY ) = ∅. To see the preceding statement, toward a
contradiction, we consider a vertex u ∈ JY ∩ C(KY ). This together with Observation 6.16 implies
that N (v ) ⊆ β (KY )∪MAll (KY ) ⊆ N [u]. This contradicts the fact that JZ is an induced path (asv is
an internal vertex of JZ ). Hence, JY ∩C(KY ) = ∅, and therefore from Lemma 6.20 (invoking it with
KY and JZ ), JY is an induced path from a vertex in Blev (KY ) \C(KY ) to a vertex Bright (KY ) \C(KY )

that contains a vertex of I(KY ). Hence, O is a KY -nice obstruction. �

The following lemma shows that an induced cycle on at least four vertices, which is not covered
byW , is always a nice obstruction. We recall that by deonition, a chordless cycle on four vertices
is a manageable obstruction.

Lemma 6.31. Let O be a chordless cycle on at least four vertices that is not covered byW . Then, O

is a nice obstruction.

Proof. Let us consider a maximal nice clique path KY , and suppose that J = V (O) ∩ (β (KY ) \

C(KY )) � Blev (KY ) ∪Bright (KY ). Consider a vertex v ∈ J \ (Blev (KY ) ∪Bright (KY )). Since I(KY ) =
β (KY ) \ (Blev (KY ) ∪ Bright (KY )), we have that v ∈ J ∩ I(KY ). As O is not covered by W , there is
a pair of (distinct) verticesm1,m2 ∈ M ∩V (O) such that the path segment P betweenm1 andm2

in O contains the vertex v and V (O) \ V (P ) � ∅. Here, we rely on the fact that O is not covered
by W , and therefore |M ∩ V (O) | ≥ 10, which implies that |V (O) | ≥ 10. Let P∗ be the subpath
of P from m∗

1 ∈ M to m∗
2 ∈ M containing v such that |V (P∗) ∩ M | = 2. Note that P∗ exists and

could possibly be the same as P . As V (O) \ V (P ) � ∅, (m∗
1,m

∗
2) � E (G ). Next, we argue that

m∗
1,m

∗
2 � MAll (KY ). Consider the case when bothm∗

1,m
∗
2 ∈ MAll (KY ). Since O is not covered by

W , from Observation 6.16, we have (m∗
1,m

∗
2) ∈ E (G ), which is a contradiction. Next, suppose

thatm∗
1 ∈ MAll (KY ) andm

∗
2 ∈ MPriv (KY ) (the other case is symmetric). In this case, we have that

(v,m∗
2) � E (G ). Observe that v has no neighbor outside β (KY ) ∪ MAll (KY ) and m1 is adjacent

to all vertices in β (KY ) ∪ (MAll (KY ) ∩ V (O)) (Observation 6.16). Now let u be the neighbor of
v in the subpath of P∗ from v to m∗

2. Observe that u ∈ β (KY ), and therefore we obtain a chord
(m∗

1,u) in P∗, which is a contradiction. Therefore, m∗
1,m

∗
2 � MAll (KY ), and thus we have that

V (P∗) ∩ MAll (KY ) = ∅. Observe that P∗ satisoes the premise of Lemma 6.20, as the endpoints of
P∗ lie outside β (KY ), and it contains an internal vertex from I(KY ), and V (P∗) ∩ MAll (KY ) = ∅.
Therefore, P∗[V (P∗) ∩ β (KY )] is an induced path from a vertex in Blev (KY ) \ C(KY ) to a vertex
in Bright (KY ) \ C(KY ) such that P∗ − (Blev (KY ) ∪ Bright (KY )) is an induced path contained in
I(KY ). Note that the endpoints of P

∗ in O belong to MPriv (KY ). The preceding together with the
fact that P∗[V (P∗) ∩ β (KY )] is an induced path from a vertex in Blev (KY ) \ C(KY ) to a vertex
in Bright (KY ) \ C(KY ) implies that J cannot contain a vertex that does not belong to V (P∗) (as
otherwise, we can obtain a chord inO). Thus, we conclude thatO is aKY -nice obstruction. Finally,
as this argument holds for every nice clique path, the lemma follows. �

Next, for each obstruction (not covered byW), we argue about existence of a nice obstruction.

Lemma 6.32. Let S ⊆ V (G ) be a set of size at most k + 2 that intersects each set in W . If O is an

obstruction in G − S , then there is a nice obstruction O′ in G − S .
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Proof. Since S intersects each set in W and O is an obstruction in G − S , therefore O is not
covered by W . Thus, O contains at least 10 vertices from M . If O is a chordless cycle, then by
Lemma 6.31 it is a nice obstruction. Now, we assume that O is an AW, and suppose that it is not a
nice obstruction. LetO′ be an obstruction inG−S such that for each manageable pathKX we have
that (i) either O′ is a KX -manageable obstruction or (ii) each vertex in V (O′) ∩V (KX ) appears in
some marked bag from BMarked (I ) ∪BMarked (I I ) . . .∪BMarked (V ). Note that O′ can be obtained by
iterative application of Lemma 6.26 or Lemma 6.27 for every maximal manageable clique path KX ,
depending on the sets V (base(O)) ∩ I(KX ) and V (P (O)) ∩ MAll (KX ). Note that each application
of these lemmas modioes the obstruction O′ only within the corresponding maximal manageable
clique path. Moreover, these lemmas also ensure that O′ is not covered by W , since O was not
covered byW . Thus, we have that O′ is not covered byW .
We claim that O′ is a nice obstruction in G − S . From Observation 6.30, it is enough to argue

that O′ is a KY -nice obstruction for every maximal nice clique paths. For the rest of the proof, ox
a maximal nice clique path KY and let KX be the maximal manageable clique path of which KY is
a sub-clique path. Recall that O′ is either a KX -manageable obstruction or each vertex inV (O′) ∩

V (KX ) appears in some marked bag from BMarked (I ) ∪ BMarked (I I ) . . . ∪ BMarked (V ). As V (KY ) ⊆

V (KX ), in the latter case, V (O′) ∩ V (KY ) ⊆ Blev (KY ) ∪ Bright (KY ) must hold, and thus we can
conclude thatO′ is aKY -nice obstruction. We now focus on the case whenO′ is aKX -manageable
obstruction. As a nice clique path is also a manageable clique path, from Observation 6.19 we can
obtain that O′ is a KY -manageable obstruction that is not covered byW . We must now show that
V (O′)∩ (β (KY )\C(KY )) is either a subset of Blev (KY )∪Bright (KY ) or it is an induced path between
a vertex in Blev (KY ) \ C(KY ) and a vertex in Bright (KY ) \ C(KY ) that contains a vertex of I(KY ).
In other words, we show that O′ is a KY -nice obstruction. Next, we consider the following cases:

(1) Consider the case whenV (base(O′)) ∩ I(KY ) = ∅. Since O′ is a KY -manageable obstruction,
the terminals of O′ must lie in the marked bags or in M , and hence they cannot belong to
vertices in I(KY ) = β (KY ) \ (Blev (KY ) ∪ Bright (KY )). Since O

′ is not covered by W , from
Observation 6.21 we can obtain that the center vertices of O′ do not belong to I(KY ). From
the preceding discussions, together with the assumption that V (base(O′)) ∩ I(KY ) = ∅, we
conclude that V (O′) ∩ (β (KY ) \ C(KY )) ⊆ Blev (KY ) ∪ Bright (KY ). Therefore, O

′ is KY -nice.
(2) Consider the case when V (P (O′)) ∩MAll (KY ) � ∅. Recall that O′ is KY -manageable. Thus,

the terminals of O′ must lie in the marked bags or in M , and hence they cannot belong
to vertices in I(KY ). By using an argument similar to the one used for the previous case,
we can deduce that the centers cannot belong to I(KY ). Finally, if there is a vertex v ∈

I(KY ) ∩ base(O′), consider its two (non-adjacent) neighbors x ,y in P (O′). Notice that since
NG (v ) ⊆ β (KY ) ∪MAll (KY ), we have x ,y ∈ β (KY ) ∪MAll (KY ). Since O

′ is not covered by
W , using Observation 6.16 we can deduce that at most one of x ,y can belong toMAll (KY ). If
x ∈ MAll (KY ) and y � MAll (KY ), which means that y ∈ β (KY ), then using Observation 6.16,
we have that (x ,y) ∈ E (G ). We can give similar arguments for the case when x � MAll (KY )

andy ∈ MAll (KY ). Thus, we now assume that x ,y ∈ β (KY ). Consider a vertexu ∈ V (P (O′))∩

MAll (KY ), which exists by our assumption in this case. Then u,v are both adjacent to x ,y

(see Observation 6.16), contradicting that P (O′) is an induced path. Thus, we conclude that
V (O′) ∩ (β (KY ) \ C(KY )) ⊆ Blev (KY ) ∪ Bright (KY ). Therefore, O

′ is KY -nice.
(3) Otherwise, we have base(V (O′))∩ I(KY ) � ∅ andV (P (O′))∩MAll (KY ) = ∅. Recall thatO′ is
KY -manageable. Then, Lemma 6.26 implies the following. P = G[V (O′) ∩ (β (KY ) \C(KY ))]
is an induced path from a vertex in Blev (KY ) \C(KY ) to a vertex in Bright (KY ) \C(KY ) that
contains a vertex of I(KY ). Further, P is a subpath of base(O′). Furthermore, the centers c1, c2
of O′ lie in MAll (KY ) ∪ C(KY ), whereas the terminals t�, tr , t � β (KY ) ∪ MAll (KY ). Hence,
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G[V (O′)∩ (β (KY ) \C(KY ))] is an induced path from a vertex in Blev (KY ) \C(KY ) to a vertex
in Bright (KY ) \ C(KY ) that contains a vertex of I(KY ). Therefore, O

′ is KY -nice.

Hence, O′ is KY -nice, and further we can conclude that O′ is a nice obstruction in G − S . �

Corollary 6.33. LetKY be a nice clique path, and letO be an AW such that it is a nice obstruction

not covered by W . Further, let G[V (O) ∩ (β (KY ) \ C(KY ))] be an induced path between a vertex in

Blev (KY ) \ C(KY ) and a vertex in Bright (KY ) \ C(KY ) that contains a vertex of I(KY ). Then, the

following holds:

(i) V (O) ∩ (C(KY ) ∪MAll (KY )) = {c1, c2}, the centers of O.

(ii) The terminals t�, tr , t � β (KY ) ∪MAll (KY ).

(iii) AndG[V (O) ∩ (β (KY ) \C(KY ))] is a subpath of base(O), andG[V (O) ∩ I(KY )] is an induced
path in G[I(KY )].

Proof. Let J = V (O) ∩ (β (KY ) \C(KY )). Note that J contains a vertex of I(KY ). We can obtain
that base(O) ∩ I(KY ) � ∅ as follows. If base(O) ∩ I(KY ) = ∅, then using the arguments similar to
the arguments of Case 1 in the proof of Lemma 6.32, we can obtain thatV (O)∩I(KY ) = ∅ (and thus,
reaching a contradiction). Similarly, using the arguments of Case 2 in the proof of Lemma 6.32, we
can obtain that V (P (O)) ∩MAll (KY ) = ∅.
Consider the orst property, andwe have {c1, c2} ⊆ V (O)∩(C(KY )∪MAll (KY )) (fromLemma 6.26).

We argue that indeed these sets are equal. Suppose not. Note that no terminal vertex of O lies in
C(KY )∪MAll (KY ) (from Lemma 6.26), hence any vertexw ∈ (V (O)∩ (C(KY )∪MAll (KY )))\{c1, c2}

must be from base (O). Note thatG[J ] is a subpath of base(O) (from Lemma 6.26) and it contains at
least three vertices (at least one from each of Blev (KY ) \C(KY ), I(KY ) and Bright (KY ) \C(KY )), and
any vertex of MAll (KY ) ∪ C(KY ) must be adjacent to all vertices of β (KY ) (by Observation 6.16).
From the preceding, we obtain that w ∈ V (base(O)) is adjacent to at least three vertices, which
contradicts that base(O) is an induced path.
Note that the second property follows directly from Lemma 6.26. Now consider the third prop-

erty, and we have thatG[J ] is an induced path between a vertex in Blev (KY )\C(KY ) and a vertex in
Bright (KY ) \C(KY ) that contains a vertex of I(KY ). Further,G[J ] is a subpath of base(O). We only
need to argue thatG[V (O)∩ I(KY )] is an induced path inG[I(KY )]. Observe thatG[V (O)∩ I(KY )]
is an induced subgraph of the pathG[J ]. Suppose that it is not connected. Then there must be ver-
tices u,a1,a2,a3,v in the pathG[J ] that occur in this sequence (not necessarily as a subpath) such
that u,v,a2 ∈ Blev (KY ) ∪ Bright (KY ) and a1,a3 ∈ I(KY ). But then, say u,a2 ∈ Blev (KY ) (the other
case is symmetric). This is a contradiction, since G[J ] is an induced path, and (u,a2) is an edge
in the clique G[Blev (KY )]. Therefore, G[V (O) ∩ I(KY )] must be a connected induced subgraph of
G[J ], and hence it is a induced path in G[I(KY )]. �

We will require a strengthening of the preceding corollary that allows us to <replace= the path
P = G[V (O) ∩ (β (KY ) \C(KY ))] in O with another path P ′ between the endpoint bags of KY and
obtain a new obstruction.
Let O be a nice obstruction inG that is not covered byW . Consider a nice clique path KY , and

let P = G[V (O) ∩ (β (KY ) \ C(KY ))]. From Deonition 6.29, either V (P ) ⊆ Blev (KY ) ∪ Bright (KY ),
or P is an induced path between a vertex in Blev (KY ) \ C(KY ) and a vertex in Bright (KY ) \ C(KY )

that contains a vertex in I(KY ). Consider the latter case (i.e., when P is an induced path between a
vertex in Blev (KY ) \C(KY ) and a vertex in Bright (KY ) \C(KY ) that contains a vertex in I(KY )), and
let u and v be the endpoints of P in Blev (KY ) \ C(KY ) and Bright (KY ) \ C(KY ), respectively. Note
that as P contains an internal vertex (from I(KY )), (u,v ) � E (G ). Let P ′ be any other induced path
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between u and v in G[β (KY ) \ C(KY )] such that V (P ′) ⊆ V (P ) ∪ I(KY ). In the following lemma,
we show how we can obtain another nice obstruction using P ′.

Lemma 6.34. There is a nice obstruction O′ that is not covered by W such that O′ is an induced

subgraph of G[(V (O) \V (P )) ∪V (P ′)].

Proof. LetO′
= G[(V (O)\V (P ))∪V (P ′)]. We now have two cases. First consider the case when

O is a chordless cycle. Let us argue that O′ is a nice chordless cycle that is not covered byW . Let
u∗ andv∗ be the neighbors of u andv , respectively, in O that lie outsideV (P ). Since O is a KY -nice
obstruction andV (P ) = β (KY )∩V (O), it follows thatO[u∗,v∗] = G[V (O)\V (P )] is a path between
u∗ andv∗ such that all vertices of this path lie outside β (KY ). We claim thatO[u∗,v∗]∩MAll (KY ) =

∅. As P contains at least 3 vertices, any vertex in MAll (KY ) is adjacent to all vertices of P (by
Observation 6.16.), this claim follows. Then, it is clear that O′

= G[V (O[u∗,v∗]) ∪V (P ′)] is a cycle
in G. Next, observe that V (O′) \ I(KY ) ⊆ V (O) \ I(KY ), since V (P ′) ⊆ V (P ) ∪ I(KY ). Further,
NG (w ) ∩V (O[u∗,v∗]) = ∅ for every vertexw ∈ V (O′) ∩ I(KY ), since NG (w ) ⊆ β (KY ) ∪MAll (KY ).
Therefore, there are no edges in G between V (O′) ∩ I(KY ) and V (O[u∗,v∗]). Finally, as O is not
covered byW andM is a 9-redundant solution, there must be at least 10 vertices ofO inM , which
implies that O′ contain at least 10 vertices. Hence, O′ contains a chordless cycle inG on at least 10
vertices. We note that O′ is not covered byW , as V (O) ∩M = V (O′) ∩M (and |V (O) ∩M | ≥ 10).
Finally, from Lemma 6.31, it follows that O′ is a nice obstruction.
Now we consider the case when O is an AW. Recall thatV (O) ∩ (β (KY ) \C(KY )) is an induced

path between a vertex in Blev (KY ) \ C(KY ) and a vertex in Bright (KY ) \ C(KY ) that contains a
vertex of I(KY ). Furthermore, we have the following properties from Corollary 6.33:

(i) V (O) ∩ (C(KY ) ∪MAll (KY )) = {c1, c2}, where c1, c2 are the centers of O.
(ii) The terminals t�, tr , t � β (KY ) ∪MAll (KY ).
(iii) The path P (= G[V (O)∩ (β (KY )\C(KY ))]) is an induced path between a vertex in Blev (KY )\

C(KY ) and a vertex in Bright (KY ) \C(KY ) that contains a vertex of I(KY ). Furthermore, P is a
subpath of base(O), andG[V (O)∩ I(KY )] = P[V (P )∩ I(KY )] is an induced path inG[I(KY )].

Let us deone Q = G[(V (P (O)) \ V (P )) ∪ V (P ′)]. Then, we construct O′ by replacing P with P ′

in O. Let us argue that O′ is also an AW. Let u∗ and v∗ be the neighbors of u and v , respectively,
in P (O) that lie outside V (P ). (We note that u∗ and v∗ exist, as P is a subpath of base(O) and
vertices in V (base(O)) are internal vertices of P (O).) Let Pu∗ and Pv∗ be the subpaths of P (O)
from t� to u

∗ and from v∗ to tr , respectively. Note that Q is a path from t� to tr such that V (Q ) \

β (KY ) = V (Pu∗ ) ∪V (Pv∗ ) = V (P (O)) \ β (KY ). Moreover, as V (P ′) ⊆ V (P ) ∪ I(KY ) (together with
Observation 6.14 and 6.16), it follows that Q is an induced path from t� to tr . Similarly, we can
argue that there is no edge between any vertex of Q and the shallow terminal t of O. Moreover,
each vertex ofV (Q )∩I(KY ) is adjacent to c1 and c2. Finally, recall that there are at least ove vertices
in base(O) \ β (KY ) that lie inM , as it is a 9-redundant solution and O is not covered bvW . Hence,
Q contains at least ove internal vertices. Hence, O′ is an AW. Furthermore, by construction, O′ is
a nice obstruction that is not covered by W .
In each of the cases, by construction,O′ is a nice obstruction that is not covered byW . Moreover,

O − β (KY ) = O
′ − β (KY ). �

Consider a maximal nice clique path KY with endpoint bags Blev (KY ) and Bright (KY ). Before
moving on to our next marking scheme, we construct two sets of bags, T1 (KY ) and T2 (KY ). Initially,

we have T1 (KY ) = {Blev (KY ),Bright (KY )}. For each u ∈ Blev (KY ), let 
Bu (KY ) be the last bag in KY
that contains u. Additionally, for each v ∈ Bright (KY ) \Blev (KY ), let �Bv (KY ) be the orst bag in KY
that contains v . We add all the bags in {
Bu (KY ) | u ∈ Blev (KY )} ∪ {�Bv (KY ) | v ∈ Bright (KY ) \
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Blev (KY )} to T1 (KY ). We initialize T2 (KY ) = T1 (KY ). Furthermore, for each bag B ∈ T1 (KY ) in KY ,
we add to T2 (KY ) the bags adjacent to B, namely B−1 and B+1 (if they exist) in KY . Note that the
number of bags in T2 (KY ) is bounded by O (η). Finally, we let BMarked (V I ) be the union of the sets
T2 (KY ) taken over all maximal nice clique paths KY .

Marking Scheme VI. Add all the bags in BMarked (V I ) to BMarked.

We marked at most O (η) bags for each nice clique path. Recall that we have at most O (η3 |M |)

manageable clique paths, and for each manageable clique path we marked at most O (η15 |M |k3)

bags in K using Marking Schemes IV and V, which partitioned the manageable clique path into

nice clique paths. Hence, in Marking Scheme VI, we marked at most O (η16 |M |k3) bags in K.

Deonition 6.35 (Simple Clique Paths). Let Bi ,Bj be a pair of consecutive marked bags (consider-
ing all marking schemes of the section up to now) in a nice clique path KY . Then, KZ = K[Bi ,Bj ]
is called a simple clique path.

Note that any simple clique path is also a nice clique path. Next, we state an observation regard-
ing a simple clique path KZ . We note that this observation is similar to Lemma 6.13 presented in
Section 6.1.2.

Observation 6.36. Consider a pair Bi ,Bj of consecutive marked bags in a maximal nice clique

path KY such that KZ = K[Bi ,Bj ] contains at least three bags. Then, for any B,B′ ∈ KZ , we have

B ∩ (Blev (KY ) ∪ Bright (KY )) = B′ ∩ (Blev (KY ) ∪ Bright (KY )). Therefore, β (KZ ) ∩ (Blev (KY ) ∪

Bright (KY )) ⊆ C(KZ ).

Proof. As KZ = K[Bi ,Bj ] contains at least three bags where Bi and Bj are consecutive marked
bags, both Bi and Bj must belong to T2 (KY ) \T1 (KY ). Thus, KZ has no bags from T1 (KY ). Without
loss of generality, assume that B appears before B′ inKY . If there isu ∈ B∩ (Blev (KY )∪Bright (KY ))

such that u � B′ ∩ (Blev (KY ) ∪ Bright (KY )), then there is a bag strictly before B′ and on/after B
that belongs to T1 (KY ). This contradicts that KZ contains no bags from T1 (KY ). Similarly, when
there is u ∈ B′ ∩ (Blev (KY ) ∪Bright (KY )) such that u � B ∩ (Blev (KY ) ∪Bright (KY )), we can obtain
a contradiction to the fact that KZ contains no bags from T1 (KY ). This concludes the proof. �

In the next observation, we recall a property of interval graphs that will be useful later.

Observation 6.37 (See [8]). For a connected interval graph, any minimal separator of it is an

intersection of adjacent bags in its clique path.

Let us now consider a simple clique pathKZ contained in a nice clique pathKY . In the following,
by a separator inKZ , we mean a separator of Blev (KZ )\C(KZ ) and Bright (KZ )\C(KZ ) in the graph
G[β (KZ ) \ C(KZ )]. From Observation 6.37, any minimal separator in KZ lies in the intersection
of two adjacent bags in KZ , after excluding the vertices in C(KZ ).

Lemma 6.38. Let KZ be a simple clique path with at least three bags that is contained in the maxi-

mal nice clique pathKY . Furthermore, let S be aminimal solution of size atmostk+2 inG that contains

a vertex in I(KZ ), and let SZ = (S ∩ β (KZ )) \C(KZ ). Then, SZ is a separator in KZ . Furthermore, SZ
is a minimal separator in KZ . For any other separator S∗Z in KZ such that SZ \ I(KZ ) = S∗Z \ I(KZ )

and S∗ = (S \ SZ ) ∪ S∗Z has size at most k + 2, the set S∗ is also a solution.

Proof. Consider a vertexw ∈ S ∩ I(KZ ), and note that this vertex lies in SZ . Then, consider an
obstruction O∗ such that S ∩V (O∗) = {w }. Since S is a minimal solution, such an obstruction must
exist. Moreover, as S is a solution of size at most k + 2, it must coverW . As all vertices ofW lie in
M andw ∈ S \M , the set Sw = S \ {w } also coversW . Now, consider the obstruction O∗ inG − Sw .
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Note that O∗ is not covered byW , as otherwise Sw coversW , and thus it intersects O∗, which is
a contradiction to the choice of O∗. Hence, O∗ is an obstruction that is not covered by W that is
present inG −Sw . Then, by Lemma 6.32, there is a nice obstruction O inG −Sw that is not covered
byW . Since O is not present inG − S , we must have that S ∩V (O) = {w }. Let us further note that
w ∈ I(KY ), since I(KZ ) ⊆ I(KY ) by the premise of the lemma.

Let P = G[V (O) ∩ (β (KY ) \ C(KY ))], and note that P contains w . Then, by the deonition of a
nice obstruction (see Deonition 6.29), P is an induced path from a vertex in Blev (KY ) \C(KY ) to a
vertex in Bright (KY ) \C(KY ) that contains a vertex of I(KY ). Let PZ = P[V (P ) ∩ (β (KZ ) \C(KZ ))].
And again, because w ∈ V (P ) (and note that KZ is also a nice clique path), PZ is an induced path
from a vertex in Blev (KZ ) \C(KZ ) to a vertex in Bright (KZ ) \C(KZ ) that contains a vertex of I(KZ ).

Let u and v be the end vertices of the path P in Blev (KY ) \ C(KY ) and Bright (KY ) \ C(KY ),
respectively. Let us note that the induced path P contains an internal vertex w ∈ I(KY ), and
therefore (u,v ) � E (G ). Let uz andvz be the endpoints of PZ in Blev (KZ ) \C(KZ ) and Bright (KZ ) \

C(KZ ), respectively. Then, as before, as PZ is an induced path from uz tovz containingw ∈ I(KZ ),
(uz ,vz ) � E (G ). Nowwe argue (usingObservation 6.36) thatuz ,vz � Blev (KY )∪Bright (KY ). Toward
a contradiction, assume that uz ∈ Blev (KY ) ∪ Bright (KY ), then uz ∈ C(KY ), which implies uz ∈

Bright (KY ), which then implies that (uz ,vz ) ∈ E (G ). Indeed, V (PZ ) ∩ (Blev (KY ) ∪ Bright (KY )) =

∅, since V (PZ ) ∩ C(KZ ) = ∅. Finally, note that u,v,uz ,vz � S , as these vertices belong to the
obstruction O in G − Sw , wherew ∈ S ∩ I(Kz ).

Now suppose that SZ is not a separator inKZ . Then, there is a path P
′
Z inG[β (KZ )]− (S∪C(KZ ))

between uz and vz . We note that such a path exists, because if there is a path from some û ∈

Blev (KZ ) \ C(KZ ) and v̂ ∈ Blev (KZ ) \ C(KZ ) (which exists as SZ is not a separator), then we
can obtain a path from uz to vz , as (uz , û), (vz , v̂ ) ∈ E (G ). We note that w � V (P ′

Z ), as w ∈ SZ .
Additionally, V (P ′

Z ) ∩ C(KZ ) = ∅, which means V (P ′
Z ) ∩ (Blev (KY ) ∪ Bright (KY )) = ∅. Then,

consider an induced path P ′ from u tov inG[(V (P ) \V (PZ ))∪V (P ′
Z )]. Observe thatV (P ′)∩S = ∅,

by construction, and V (P ′) ⊆ V (P ) ∪ I(KY ). Then, by Lemma 6.34, there is a nice obstruction O′

such thatV (O′) ⊆ (V (O) \V (P )) ∪V (P ′). By choice of O and P ′, we haveV (O′) ∩ S = ∅. But this
is a contradiction. Hence, SZ must be a separator in KZ .
Let us now argue that when SZ contains a vertex in I(KZ ), then it is a minimal separator in
KZ . As we have argued that SZ is a separator in KZ , there are two adjacent bags B,B′ in KZ such
that (B ∩ B′) \ C(KZ ) ⊆ SZ (see Observation 6.37). We claim that SZ = (B ∩ B′) \ C(KZ )—that is,
SZ is a minimal separator in KZ . Our arguments are similar to the one in the previous paragraph.
Toward a contraction, assume that SZ � (B ∩B′) \C(KZ ). (Recall that (B ∩B′) \C(KZ ) ⊆ SZ .) Let
S ′Z = (B∩B′)\C(KZ ), and note that SZ \S

′
Z ⊆ I(KZ ). Consider an arbitrary vertexw ∈ SZ \S

′
Z , and

let Sw = S \ {w }. Note that Sw coversW . Then, as S is a minimal solution, there is an obstruction
O∗ such thatV (O∗) ∩ S = {w }. From Lemma 6.32, there is a nice obstruction O that is not covered
byW such thatV (O) ∩S = {w }. Let PZ = G[V (O) ∩ (β (KZ ) \C(KZ ))]. (Note that PZ containsw .)
By the deonition of a nice obstruction, PZ is an induced path from a vertex uz ∈ Blev (KZ ) \C(KZ )

to a vertexvz ∈ Bright (KZ ) \C(KZ ) that contains the vertexw ∈ I(KZ ). But then the path PZ exists
in G − Sw , whereas any path from uz to vz in G[β (KZ ) \ C(KZ )] must intersect S ′Z and S ′Z ⊆ Sw .
This is a contradiction. Hence, SZ = S ′Z—that is, SZ is a minimal separator in KZ .

Let us now argue that for any other separator S∗Z in KZ such that SZ \ I(KZ ) = S∗Z \ I(KZ ) and
S∗ = (S \ SZ ) ∪ S∗Z has size at most k + 2, the set S∗ is also a solution. Suppose not. Note that
S∗ covers W since S∗ ∩ M = S ∩ M . Now consider an obstruction O′ in G − S∗, and note that it
is not covered by W . Therefore, by Lemma 6.32, there is a nice obstruction O in G − S∗ that is
not covered by W . Let w ∈ (SZ \ S∗Z ) ∩ V (O). (Note that w ∈ I(KZ ) by the choice of S∗Z , and it
exists as S is a solution and O is an obstruction in G − S∗.) Let PZ = G[V (O) ∩ (β (KZ ) \ C(KZ ))],
and note that PZ contains w . Then, by the deonition of a nice obstruction, PZ is an induced path
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from a vertex uz ∈ Blev (KZ ) \ C(KZ ) to a vertex vz ∈ Bright (KZ ) \ C(KZ ) that contains a vertex
w ∈ I(KZ ). But any such pathmust intersect S∗Z and therefore S∗, which contradicts the assumption
that S∗ ∩V (O) = ∅. This concludes the proof. �

Let us now identify and mark a collection of minimal separators in KZ such that if there is a
solution, then there is a solution contained in the marked bags. To this end, we orst obtain some
<useful= subsets. Consider a simple clique path KZ . Let S (KZ ) denote the collection of subsets
T ⊆ (Blev (KZ ) ∪Bright (KZ )) \C(KZ ) for which |T | ≤ k and there is a pair of adjacent bags BT ,B

′
T

in KZ such that (i)T = (BT ∩B′
T ) \ (C(KZ ) ∪ I(KZ )) and (ii) (BT ∩B′

T ) ∩ I(KZ ) ≤ k . We can bound
|S (KZ ) | as follows.

Lemma 6.39. |S (KZ ) | ≤ 2k + 1.

Proof. Let us index the bags of KZ by natural numbers starting from 1. Let p be the smallest
index for which there isTp ∈ S (KZ ) such thatTp = (Bp ∩Bp+1) \ (C(KZ ) ∪ I(KZ )). Similarly, let q
be the largest index for which there is Tq ∈ S (KZ ) such that Tq = (Bq ∩ Bq+1) \ (C(KZ ) ∪ I(KZ )).
Note that for any T ∈ S (KZ ), we have T ⊆ Tp ∪Tq . Furthermore, we can order the sets in S (KZ ),
denoted by 8<9, such that for any T < T ′ ∈ S (KZ ) we have T ∩ Blev (KZ ) ⊇ T ′ ∩ Blev (KZ )

and T ∩ Bright (KZ ) ⊆ T ′ ∩ Bright (KZ ). Moreover, as T and T ′ are distinct subsets of Blev (KZ ) ∪

Bright (KZ ) \ (C(KZ ) ∪ I(KZ )), one of those inclusions must be strict. Finally, observe that Tp ∪Tq
contains at most 2k vertices of Blev (KZ ) ∪ Bright (KZ ) \ C(KZ ). Therefore, |S (KZ ) | ≤ 2k + 1. �

We will construct a collection BMarked (V II ) as follows. For each simple clique path KZ and for
each T ∈ S (KZ ), we select a pair of adjacent bags BT ,B

′
T in KZ such that BT ∩ B′

T is of minimum
cardinality and containsT , and add them to BMarked (V II ). Note that BT ∩B

′
T is a minimal separator

in KZ .

Marking Scheme VII. Add all bags in BMarked (V II ) to BMarked.

We note that using the preceding marking scheme, we mark at most O (η16 |M |k4) bags in K,

which follows from the number of bags marked by Marking Scheme VI. We have the following
lemma, which states that the collection of marked bags inBMarked contains a solution if one exists.

Lemma 6.40. Let S be a minimal solution of cardinality at most k . Then, there is another minimal

solution S ′ of size at most |S | such that all vertices of S ′ lie in marked bags.

Proof. Consider any simple clique path KZ . Suppose that S contains an unmarked vertex in
KZ . Then, S contains a vertex in I(KZ ). Then, by Lemma 6.38, SZ = S ∩ (β (KZ ) \ C(KZ )) is
a minimal separator in KZ . Therefore, there is a pair of consecutive bags B,B′ in KZ such that
SZ = (B ∩ B′) \C(KZ ). LetTZ = SZ \ I(KZ ). Then, note thatTZ ∈ S (KZ ) since (i) |TZ | ≤ |SZ | ≤ k ,
(ii)TZ = (B ∩ B′) \ (C(KZ ) ∪ I(KZ )), and (iii) (B ∩ B′) ∩ I(KZ ) ≤ |SZ | ≤ k . Now, corresponding to
TZ ,we have marked a pair of adjacent bags B1,B

′
1 in BMarked (V II ) such that S

′
Z = (B1∩B

′
1) \C(KZ )

is a minimal separator in KZ containing TZ . Note that |S
′
Z | ≤ |SZ | and SZ \ I(KZ ) = S ′Z \ I(KZ ).

Then, again by Lemma 6.38, S ′ = (S \SZ )∪S ′Z is a solution and |S ′ | ≤ |S |. This concludes the proof
of this lemma. �

Now we consider the problem of reducing the set of unmarked vertices in K.

Lemma 6.41. Let v be an unmarked vertex in a simple clique path KZ such that v is contained in

only one bag. Then (G,k ) is a Yes-instance of IVD if and only if (G − {v},k ) is a Yes-instance of IVD.

Proof. In the forward direction, let S be a solution inG of size at most k . Clearly, S is a solution
in G − {v} as well. Now, we consider the reverse direction. Let S be a solution of size at most
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k in G − {v}, and suppose that it is not a solution in G. Observe that S ∪ {v} is a solution in G

of cardinality at most k + 1, and therefore it hits each set in W . Furthermore, as v � M , S hits
every set in W . Now consider an obstruction O in G − S , and clearly it includes v . It follows
that the obstruction O is not covered by W , and V (O) ∩ M contains at least 10 vertices. Let us
consider O in the graphG along with the set S . Observe that N (v ) ⊆ B ∪MAll (KZ ), where B is the
(unique) bag in KZ containing v . Every pair of vertices in (B ∪MAll (KZ )) \ S is either an edge in
G − S or a pair in W (using Observation 6.16). Therefore, v does not have a pair of non-adjacent
neighbors in O. Hence, O is not a chordless cycle, and so it is an AW. Now, by Lemma 6.32, there
is a nice obstruction O′ inG − S . (Note that O′ must contain v , as S is a solution inG − {v}.) Note
that all terminals of O′ lie in marked bags. As v is an unmarked vertex, by Observation 6.21 and
Corollary 6.33, v lies in base(O) and therefore N (v ) must contain a pair of non-adjacent vertices,
which is a contradiction. But then v is not part of the obstruction O′. This implies that that O′ is
an obstruction in G − (S ∪ {v}), which is also a contradiction. Hence, S must also be a solution in
G. This concludes the proof of this lemma. �

The vertices that satisfy the premise of the preceding lemma are called irrelevant vertices. The
preceding lemma gives the following reduction rule.

Reduction Rule 6.2. Let KZ be a simple clique path. Then, pick an unmarked vertex in KZ that
is contained in only one bag, and delete it from the graphG. The resulting instance is (G − {v},k ).

If the preceding reduction rule is not applicable, then there are no unmarked vertices in any
nice clique path KY that are contained in only one bag. Then, observe that for any unmarked bag
B in KY , we have B = (B ∩ B−1) ∪ (B ∩ B+1). Let us now consider the remaining of the unmarked
vertices in K.

Lemma 6.42. Let KZ be a simple clique path that contains an unmarked vertex. Then, there is an

edge (u,v ) such that at least one of its endpoints is an unmarked vertex, and there is only one bag in

KZ that contains this edge.

Proof. Let us walk in KZ starting from Blev (KZ ), and let B be the orst bag in KZ that contains
an unmarked vertex. Let us partition the bag B into three parts as follows, A2 = B−1 ∩ B+1 ⊆ B,
A1 = (B∩B−1) \A2, andA3 = B∩B+1 \A2. Note that B∩B

−1
= A1∪A2, and B∩B

+1
= A2∪A3. Note

that A1 � ∅, and otherwise B = A2 ∪ A3 ⊆ B+1, which is a contradiction as B is a maximal clique
in the clique path KZ , and hence B � B+1. Similarly, we can argue that A3 � ∅. Now, consider an
unmarked vertex u ∈ B and observe that u ∈ A3, by choice of B. Next, we choose a vertex v ∈ A1,

and clearly it is distinct from u. Furthermore, as v � B+1 and u � B−1, we have that the edge (u,v )
is present only in B. �

In the following, we select an edge e = (u,v ) given by Lemma 6.42 that lies in a simple clique
path KZ . We call such an edge an irrelevant edge.

Observation 6.43. Let (u,v ) be an irrelevant edge in a simple clique path KZ such that u is an

unmarked vertex. Then, u ∈ I(KZ ) and v � C(KZ ).

Proof. Since u is unmarked, u � Blev (KZ ) ∪Bright (KZ ) since those bags are marked. Therefore,
u ∈ I(KZ ). And suppose thatv ∈ C(KZ ). Then, as the vertex u lies in at least two consecutive bags
B and B′ (since Reduction Rule 6.2 is not applicable), the edge (u,v ) is present in both B and B′.
But this contradicts the deonition of an irrelevant edge. �

Lemma 6.44. Let (u,v ) be an irrelevant edge in a simple clique path KZ . Then, there is no minimal

separator in KZ that contains both u and v .
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Proof. Recall that KZ \ C(KZ ) is a clique path with endpoint bags Blev (KZ ) \ C(KZ ) and
Bright (KZ ) \ C(KZ ). Therefore, every minimal separator of these endpoint bags is the intersec-
tion of a pair of adjacent bags in KZ \ C(KZ ). If both u and v were in a minimal separator, then
the irrelevant edge (u,v ) appears in at least two bags, which is a contradiction. Therefore, there is
no minimal separator that contains both u and v . �

Observation 6.45. A minimal solution of size at most k + 2 inG contains at most one of u and v ,

where (u,v ) is an irrelevant edge in the simple clique path KZ .

Proof. Suppose not. Let S be a minimal solution inG that contains both ofu andv , and suppose
that v is unmarked. Then, as S contains the vertex v that lies in I(KZ ), SZ = S ∩ (β (KZ ) \ C(KZ ))

is a minimal separator in KZ (see Observation 6.43). Now, by our assumption, SZ contains both u
and v , whereas by Lemma 6.44 SZ contains at most one of them. This is a contradiction. �

Lemma 6.46. Let e = (u,v ) be an irrelevant edge in KZ , where u is an unmarked vertex. Then,

(G,k ) is a Yes-instance of IVD if and only if (G/e,k ) is a Yes-instance of IVD.

Proof. To begin with, let us note that as (u,v ) is an irrelevant edge inKZ andu is an unmarked
vertex, u ∈ I(KZ ) and v ∈ β (KZ ) \ C(KZ ), by Observation 6.43. Let KY be a maximal nice clique
path that contains the simple clique pathKZ . In otherwords,KZ was obtained fromKY byMarking
Scheme VI. As u,v ∈ β (KZ ) \ C(KZ ), and (Blev (KY ) ∪ Bright (KY )) ∩ β (KZ ) ⊆ C(KZ ), we have
u,v ∈ I(KY ) (see Observation 6.36).

Let z∗ denote the vertex obtained by contracting the irrelevant edge e = (u,v ). Let S be a solution
of size at most k in G. Let S ′ = (S \ {u,v}) ∪ {z∗} whenever S ∩ {u,v} � ∅, and S ′ = S otherwise.
In the orst case, observe that G/e − S ′ is isomorphic to G − (S ∪ {u,v}). And in the second case,
G/e − S ′ is isomorphic to (G − S )/e . As interval graphs are closed under edge contractions and
vertex deletions (Observation 6.1), we have that S ′ is a solution in G/e of size at most k .

Now, suppose that S ′ is a solution of size at most k in G/e . We have two cases depending on
whether or not z∗ ∈ S ′. First consider the case when z∗ ∈ S ′. Then, S = (S ′ \ {z∗}) ∪ {u,v} is a
solution of size k + 1 in G, as G − S is isomorphic to G/e − S ′. As S is a solution of size at most
k + 1, from Observation 6.45, it is not a minimal solution. Hence, there is S∗ � S that is solution of
cardinality at most k .
Now consider the case when z∗ � S ′. In this case, let S = S ′ ∪ {u,v}, and observe that it has size

at most k + 2. As G − S is isomorphic to G/e − (S ′ ∪ {z∗}), we have that S is a solution in G. As
W is (k + 2)-necessary, S hits each set inW , which then implies that S ′ hits each set inW (since
u,v � M). We claim that S ′ is a solution of size k inG. Suppose not, and let there be an obstruction
O′ in G − S ′. As S ′ hits W , we have that O′ is not covered by W . Now, from Lemma 6.32, there
is a nice obstruction O in G − S ′ that is not covered by W . Then, V (O) ∩M contains at least 10
vertices, sinceM is a 9-redundant solution.

First, suppose thatV (O) ∩ {u,v} = ∅. Then, clearly O is present inG/e (sinceG − {u,v} = G/e −

{z∗}), and furthermore it is disjoint from S ′. But this is a contradiction, since S ′ is a solution inG/e .
Next, suppose thatV (O) ∩ {u,v} is exactly one of u or v . We claim thatG/e[(V (O) \ {u,v}) ∪ {z∗}]
contains an obstruction. As NG (u) ∪ NG (v ) ⊆ β (KY ) ∪ MAll (KY ), they have no neighbors in
V (O)\(β (KY )∪MAll (KY )) (see Observation 6.16). Now, as P = G[V (O)∩(β (KY )\C(KY ))] contains
a vertex from I(KY ) and O is a nice obstruction (see Deonition 6.29), P must be an induced path
between a vertex ay ∈ Blev (KY ) \ C(KY ) and a vertex by ∈ Bright (KY ) \ C(KY ). Let us note that P
must contain at least 3 vertices, and hence (ay ,by ) � E (G ). Also observe that in G/e , NG/e (z

∗) ⊆

NG (u) ∪ NG (v ) ⊆ β (KY ) ∪MAll (KY ). Now we have the two following cases depending on O:

• Consider the case when O is a chordless cycle. As O is a nice obstruction, we have
|V (O) ∩M | ≥ 10. And as P contains at least 3 vertices, V (O) ∩MAll (KY ) = ∅, as any such
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vertex will have edges to all vertices of P (using Observation 6.16). And since u,v ∈ I(KY ),
we have (NG (u) ∪ NG (v )) ∩ (V (O) ∩MPriv (KY )) = ∅. Recall that as O is not covered byW ,
O contains at least 10 vertices from M (and V (O) ∩MAll (KY ) = ∅). Thus, we can conclude
that G/e[(V (O) \ {u,v}) ∪ {z∗}] contains a chordless cycle.

• Next, we consider the case when O is an AW. As O is a nice obstruction that con-
tains a vertex from I(KY ), by Corollary 6.33 we have the following: (i) P ⊆ P (O) and
P ∩ I(KY ) ⊆ base(O); (ii) V (P (O)) ∩ MAll (KY ) = ∅, as P (O) is an induced path, P
contains at least 3 vertices and any vertex in MAll (KY ) is adjacent to every vertex in KZ
(using Observation 6.16); (iii) all terminals t�, tr , t of O lie outside β (KY ) ∪ MAll (KY ); and
(iv) {c1, c2} ⊆ C(KY ) ∪ MAll (KY ). Hence, V (O) ∩ (β (KY ) ∪ MAll (KY )) = V (P ) ∪ {c1, c2}.
Therefore, (NG (u) ∪ NG (v )) ∩V (O) ⊆ V (P ) ∪ {c1, c2}.

Note that {u,v} ∩V (P ) ⊂ V (base(O)), as u,v ∈ I (KY ). And since |base(O) ∩M | ≥ 5, we
have that P is a strict subset of P (O). Therefore, (NG (u) ∪ NG (v )) ∩ (V (O) \ {c1, c2}) is a
strict subset of V (P (O)) and u,v ∈ NG (c1) ∩ NG (c2). Hence, G/e[(V (P (O)) \ {u,v}) ∪ {z∗}]
contains an induced path P∗ from t� to tr with at least 6 internal vertices including z∗ in
G/e . Observe that the internal vertices of P∗ are adjacent to centers c1, c2 and not adjacent
to the shallow terminal t of O. Now it follows that {t�, tr , t } form an asteroidal triple in
G/e[(V (O) \ {u,v}) ∪ {z∗}]. Hence, G/e[(V (O) \ {u,v}) ∪ {z∗}] contains an AW. Further
observe that this obstruction lies inG/e − S ′, which is a contradiction.

Now we consider the case that both u,v are present in O. Recall that O is not covered by W,

and therefore it contains at least 10 vertices of the 9-redundant solution M . We claim that O/e is
an obstruction inG/e . Indeed, if O is a chordless cycle, then as it contains at least 10 vertices inM ,
it follows that O/e is also a chordless cycle on at least 9 vertices. Otherwise, O is a nice AW. Now,
recall thatu is an unmarked vertex in I(KZ ) ⊆ I(KY ). As before, let P = O[V (O)∩ (β (KZ )\C(KY ))]
and observe that P[V (P ) ∩ I(KY )] � ∅. Therefore, by Corollary 6.33, we have that P is an induced
path between a vertex in Blev (KY ) \C(KY ) and a vertex in Bright (KY ) \C(KY ), which is a subpath
of base(O). Observe that u,v ∈ V (P ), and therefore they are in base(O). Finally, recall that
base(O) contains at least 5 internal vertices of M . Therefore, P (O)/e is an induced path between
t� and tr with at least 6 internal vertices including z∗ in G/e . Hence, it follows that O/e is an AW
of the same type as O, and further it is present in G/e . Finally, observe that O/e is an obstruction
in G/e that is disjoint from S ′. This is a contradiction.

Having obtained a contradiction in all cases, we must conclude that S ′ is a solution in G, and
recall that it has size at most k . This concludes the proof of this lemma. �

The preceding lemma (Lemma 6.46) gives us the following reduction rule.

Reduction Rule 6.3. Let (u,v ) be an irrelevant edge in the simple clique path KZ , where u is an
unmarked vertex. Then, contract the edge (u,v ) in the graphG. The resulting instance is (G/e,k ).

When Reduction Rule 6.3 is not applicable, then there are no unmarked vertices in any simple
clique path. Then, we conclude that all vertices in the clique path K are marked. Finally, we apply
the preceding marking schemes and reduction rules for every clique path inG −M , and conclude
that all the vertices inG −M are marked. We now proceed to bound the number of vertices in the
graph.

7 BOUNDING THE NUMBER OF VERTICES

Let (G,k ) be an instance of IVD on which none of the reduction rules apply. In the following, we
bound the number of vertices in G. Recall that we start by computing a 9-redundant solution M ,
whose size is bounded by O (k10) (see Lemma 3.2). Next, we consider the connected components
of G − M . First, we bound the total number of vertices in the module components of G − M by
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O (k3 |M |10) = O (k103) (see Observation 4.5). Then, we bound the total number of vertices in the
non-module components of G − M by a collection marking rules (and the non-applicability of
a number of reduction rules). From Observation 4.2, we obtain that the number of non-module
components inG−M is bounded by O (k |M |) = O (k11). We note that each non-module component
is a clique path. Then, we consider a clique pathK of a non-module connected component inG−M

and bound the size of the maximum clique in it by η = O (k |M |10) = O (k101) (see Lemma 5.4). Next,
we focus on bounding the number of bags in a clique path K that is a non-module component in
G −M . In the following, for a oxed non-module clique path K, we summarize the number of bags
we marked using each of our bag-marking schemes in Section 6:

(1) Using Marking Scheme I, we mark at most O (η |M |) bags in K.
(2) Using Marking Scheme II, we mark at most O (k3η11 |M |) bags in K.
(3) Using Marking Scheme III, we mark at most O (η3 |M |) bags in K.
(4) Using Marking Scheme IV, we mark at most O (η3 |M |) bags in K.
(5) Using Marking Scheme V, we mark at most O (k3η15 |M |) bags in K.
(6) Using Marking Scheme VI, we mark at most O (k3η16 |M |) bags in K.
(7) Using Marking Scheme VII, we mark at most O (k4η16 |M |) bags in K.

From the preceding, we obtain that the number of marked bags for each (non-module) clique
path is upper bounded by O (k4η16 |M |) = O (k1630). Further, since none of the reduction rules is
applicable, there is no vertex in G that belongs to an unmarked bag of a non-module component.
There are at most O (k11) non-module components in G − M , and a bag in a clique path of a
non-module component has size at most η. Thus, the total number of vertices in G is bounded by
O (k1630 · k11 · k101) = O (k1742).

8 CONCLUSION

In this article, we proved that the IVD problem admits a polynomial kernel. We remark that the
degree in the polynomial that bounds the kernel size can be improved to be about a 100 at the
cost of signiocantly more involved arguments. In particular, this can be done by considering a
solution M of lower redundancy and far more involved case analysis for bounding the clique size
and clique paths of G −M in Sections 5 and 6. However, obtaining a kernel of size around O (k10)

will require new ideas. We leave this as an interesting open problem. We also believe that our
techniques and methods, especially the two families lemma (Lemma 1.1), will be useful in other
algorithmic applications.
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