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Given a graph G and an integer k, the INTERVAL VERTEX DELETION (IVD) problem asks whether there exists
a subset S C V(G) of size at most k such that G — S is an interval graph. This problem is known to be NP-
complete (according to Yannakakis at STOC 1978). Originally in 2012, Cao and Marx showed that IVD is fixed
parameter tractable: they exhibited an algorithm with running time 10n9()). The existence of a polynomial
kernel for IVD remained a well-known open problem in parameterized complexity. In this article, we settle
this problem in the affirmative.
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1 INTRODUCTION

In a graph modification problem, the input consists of an n-vertex graph G and an integer k. The
objective is to determine whether k modification operations—such as vertex deletions, or edge
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deletions, insertions or contractions—are sufficient to obtain a graph with prescribed structural
properties such as being planar, bipartite, chordal, interval, acyclic, or edgeless. Graph modifica-
tion problems include some of the most basic problems in graph theory and graph algorithms.
Unfortunately, most of these problems are NP-complete [45, 53]. Therefore, they have been studied
intensively within algorithmic paradigms for coping with NP-completeness [22, 26, 48], including
approximation algorithms, parameterized complexity, and algorithms for restricted input classes.

Graph modification problems have played a central role in the development of parameterized
complexity (see Section 1.2). Here, the number of allowed modifications, k, is considered a pa-
rameter. With respect to k, we seek a Fixed Parameter Tractable (FPT) algorithm, namely an
algorithm whose running time has the form f(k)n®® for some computable function f. One way
to obtain such an algorithm is to exhibit a kernelization algorithm, or kernel. A kernel for a graph
problem II is an algorithm that given an instance (G, k) of I runs in polynomial time and outputs
an equivalent instance (G’, k”) of IT such that |V (G’)| and k" are upper bounded by f (k) for some
computable function f. The function f is called the size of the kernel, and if f is a polynomial
function, then we say that the kernel is a polynomial kernel. A kernel for a problem immediately
implies that it admits an FPT algorithm, but kernels are also interesting in their own right. In par-
ticular, kernels allow us to model the performance of polynomial-time pre-processing algorithms.
The field of kernelization has received a significant amount of attention, especially after the in-
troduction of methods for showing kernelization lower bounds [6, 15, 16, 19, 25, 30, 31]. We refer
to the surveys [24, 29, 41, 46], as well as the books [13, 18, 20, 51], for a detailed treatment of the
area of kernelization. In this article, we study the kernelization complexity of modification (using
vertex deletions) to interval graphs. A graph is an interval graph if it is the intersection graph of
intervals on the real line. Formally, we study the following problem.

INTERVAL VERTEX DELETION (IVD) Parameter: k
Input: A graph G and an integer k.

Question: Does there exist a subset S C V(G) of size at most k such that G — S is an interval
graph?

Due to their intriguing combinatorial properties and many applications in diverse areas, such
as industrial engineering and archeology [5, 38], the class of interval graphs is perhaps one of
the most studied graph classes [8, 28]. Whether INTERVAL VERTEX DELETION (IVD) admits an
FPT algorithm has been a long-standing open problem in the area until it was resolved by Cao and
Marx [11], who gave an algorithm with running time O(10¥n°). Subsequently, Cao [9] designed an
FPT algorithm with linear dependence on the input size, as well as slightly better dependence on
the parameter k. More precisely, Cao’s algorithm has running time O (8* (n+m)). A natural follow-
up question to this work, explicitly asked multiple times in the literature [14, 32, 34], is whether
IVD admits a polynomial kernel. In this article, we resolve this question in the affirmative.

THEOREM 1. IVD admits a polynomial kernel.

1.1 Methods

The first ingredient of our kernelization algorithm is the factor 8 polynomial-time approximation
algorithm for IVD by Cao [9] (Theorem 6.1). We use this algorithm to obtain an approximate
solution of size at most 8k, or conclude that no solution of size at most k exists. By re-running
the approximation algorithm on the graph with some of the vertices marked as “undeletable,” we
grow our approximate solution to a 9-redundant solution M of size O(k'°). Here, 9-redundancy
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Fig. 1. The set of obstructions for an interval graph.

roughly means that for every subset W € M of size at most 9, either M \ W is also a solution or
every solution S’ of size at most k + 2 has non-empty intersection with W.!

Our kernelization heavily uses the characterization of interval graphs in terms of their forbidden
induced subgraphs, also called obstructions. Specifically, a graph H is an obstruction to the class of
interval graphs if H is not an interval graph, and for every vertex v € V(H) we have that H — {v} is
an interval graph. A graph G is an interval graph if and only if it does not contain any obstruction
as an induced subgraph. The set of obstructions to interval graphs have been completely charac-
terized by Lekkeikerker and Boland [44]. It consists of the long claw, the whipping top, the net, and
the tent, as well as three infinite families of graphs: the single-dagger asteroidal witness (1-AW), the
double-dagger asteroidal witnesses (-AW), and the cycle of length at least 4 (Figure 1). (The vertices
te tr, tina T-AW and a -AW are said to form an asteroidal triple.)

Having a 9-redundant solution yields the following advantage. In several places, we remove a
carefully chosen vertex v ¢ M from G and claim that G — {v} has a solution of size at most k
if and only if G does. One direction of the equivalence is trivial. The interesting direction is to
show that a solution X of size at most k to G — {v} implies the existence of a solution of size at
most k for G. The starting point for such an analysis is to ask why X is not already a solution
for G. The only possible reason is that G — X contains an obstruction O, and O must contain v.
We claim that O contains at least 10 vertices from M. Suppose not, then let W be the intersection
of M and Q. We know that (G — (M \ W)) contains O, and therefore it is not an interval graph.
Hence, by the 9-redundancy of M, this implies that X (being a solution of size at most k + 2) must
intersect O, which contradicts the choice of O. Thus, in this analysis, we only need to care about
large obstructions that, furthermore, have a large intersection with M. This is crucial throughout
the design and analysis of the kernel.

We then proceed to classify the connected components of G — M based on whether they are
modules in G or not. (Recall that a module is a set X such that all vertices in X have the same
neighbors outside X.) For each component C that is not a module, there is an edge (1, v) in C and
a vertex w in M such that w is adjacent to u but not to v. Thus, if there are more than (k + 2)|M|

IThe precise definition in Section 3 contains another condition that is not specified in Section 1 for the sake of clarity of
exposition.
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non-module components in total, then there must exist k +3 non-module components and a vertex
w € M such that each of these components has an edge (u, v), where w is adjacent to u but not
to v. However, this means that for every subset S € V(G) of size at most k, either w € Sor G — S
contains a long claw (whose center ¢ is w) and hence not interval. It follows that w must belong
to every solution of size at most k + 2; thus, we can simply remove w and decrease the budget
k by 1. Hence, the number of non-module components can be bounded by (k + 2)|M|, which is
polynomial in k.

As G—M is an interval graph, an obstruction cannot be entirely contained in G—M. In particular,
if an obstruction contains a vertex from a connected component in G — M that is a module in G,
then this obstruction must also contain a vertex from M. From the preceding, we can obtain that
every obstruction (with more than four vertices) can intersect every module component in at most
one vertex. Furthermore, there is no point in keeping more than k + 1 copies of any vertex, and
this allows us to reduce the module components to cliques of size k + 1.

We are left with the following situation. We have a 9-redundant solution M of size O (k'°). At
most O(k|M]|) components of G — M are not modules, but these components could be arbitrarily
large. The remaining components are all modules that are cliques of size at most k + 1; thus, the
module components are structured and small, but there could be arbitrarily many of them. This
means that we are left with two tasks: (i) reduce the number of module components, and (ii) reduce
the size of the non-module components. These two tasks can be approached separately, and both
turn out to be non-trivial. Since both tasks are quite technically involved, we only give a few
highlights in the remainder of this overview.

Bounding the Number of Module Components. Consider first the case where there are no non-
module components at all, and every module component is a single vertex. In this case, G — M is
edgeless, so M is a vertex cover of G. The kernelization complexity of even this very special case
was asked as an open problem by Fomin et al. [21].

A key ingredient in our solution to this special case is a new bound for the setting considered
in the classic two families theorem of Bollobas [7]. Suppose there are two families of sets over a
universe U, Ay, ..., Ap and By, ..., B, such that every set A; has size p, every set B; has size g,
and for every i, the sets A; and B; are disjoint, whereas for every i # j, the sets A; and B; intersect.
The two families theorem gives an upper bound of (P ;q) for the size m of the family. The upper
bound on m is independent of the universe size, and this has been extensively used in the design of
parameterized algorithms [23, 49]. Further, when p or q is a constant, the bound is polynomial in
p + g, and this has been extensively used in kernelization [42].

In our setting, neither the sets Ay, ..., A, nor the sets By, ..., B,, have constant cardinality.
However, we know that for every i # j, |A; N B;| € {1, 2}. We prove that in this case, the bound is
O(|U|?). More generally, we prove the following.

LEMMA 1.1 (BOUNDED INTERSECTION Two FAMILIES LEMMA). Let Aq,...,Ap and By, ..., By, be
families over a universe U such that (i) for every i < m, A; N B; = 0, and (ii) for every j # i,

|A; N Bjl € (1,....c}. Then,m < 35, (V1)

Comparing Lemma 1.1 with the two families theorem, the bound in Lemma 1.1 does depend on
the universe size |U|. However, the exponent of |U| only depends on the maximum cardinality ¢
of the intersection between the sets A; and B;.

In the setting of kernelizing IVD parameterized by the size of a vertex cover M, the size of the
kernel is intimately linked to m for the case where Ay, ..., A,, is a collection of cliques in G[M],
whereas By, ..., By, is a collection of induced paths. Since a clique can only intersect an induced
path in at most two vertices, we can apply Lemma 1.1 with ¢ = 2, thereby obtaining an O(|M|?)
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bound for m and (after a significant amount of additional efforts, which we skip in this overview)
a polynomial bound on the kernel size.

The kernel for IVD parameterized by the size of a vertex cover quite simply translates into a
procedure that bounds the number, and therefore the total size, of module components of G-M. We
remark that because the number of non-module components is bounded by O (k|M|), by bounding
the number of module components we also bound the total number of components of G — M.

Bounding the Size of Non-Module Components. Suppose now that the number of module compo-
nents has been bounded by k%)), We can now include all of the module components in M and
proceed under the assumption that there are no module components at all.

The size reduction of non-module components proceeds in three phases. In the first phase, we
bound the maximum clique size in a component. Our clique-reduction procedure builds upon
the clique-reduction procedure of Marx [50], which was used in kernelizations for CHORDAL
VERTEX DELETION [2, 35]. Both the procedure of Marx and ours are based on an “irrelevant
vertex rule” However, our procedure is necessarily much more involved—our irrelevant vertex
rule needs to preserve not only long induced cycles but also large single- and double-dagger
asteroidal witnesses.

Having reduced the maximum clique size in the component, we proceed to the second phase,
where we reduce the set of vertices that appear in at least two maximal cliques in the component. In
this phase, we partition the component into k%)) “long” and “thin” parts, and prove that an optimal
solution will either not touch a part at all or it will cut it into two pieces using a minimal separator.
Then, provided that a part is sufficiently large, we identify an edge e whose contraction does not
decrease the size of any minimal separator inside the part. Thus, on the one hand, contracting e
does not decrease the size of an optimal solution. On the other hand, contracting e—or any edge
for that matter—cannot increase the size of an optimal solution (since interval graphs are closed
under contraction).

After the second phase, the number of vertices appearing in at least two maximal cliques of the
component is upper bounded by k2. In the third phase, we bound the number of the remaining
vertices—these are the vertices that are “private” to some maximal clique of the component. At
this point, we can take the set of vertices appearing in at least two components and add them to M.
This makes M grow by k() vertices, but now the large component breaks up into components
whose size is not larger than that of a maximal clique—that is, k<?Y). We can now re-apply the
procedure for bounding the number of components, and this bounds the total number of vertices
in G by k9W. We remark that, for technical reasons, in the actual proof, phases 2 and 3 as described
here are interleaved.

1.2 Related Work on Parameterized Graph Modification Problems

The ¥ -VERTEX DELETION problems corresponding to the families of edgeless graphs, forests,
chordal graphs, interval graphs, bipartite graphs, and planar graphs are known as VERTEX COVER,
FEEDBACK VERTEX SET, CHORDAL VERTEX DELETION, IVD, OpD CYCLE TRANSVERSAL/VERTEX
B1PARTIZATION, and PLANAR VERTEX DELETION, respectively. These problems are among the
most well studied problems in the field of parameterized complexity. The study of parameterized
graph deletion problems together with their various restrictions and generalizations has been an
extremely active subarea over the past few years. In fact, just over the course of the past few years,
there have been results on parameterized algorithms for CHORDAL EDITING [12], UNIT INTERVAL
VERTEX (EDGE) DELETION [10, 37], INTERVAL VERTEX (EDGE) DELETION [9, 11], PLANAR ¥ DELE-
TION [22, 40], PLANAR VERTEX DELETION [33], BLocK GRAPH DELETION [1, 39], and SIMULTANEOUS
FEEDBACK VERTEX SET [4]. It is important to note that for many of these problems, polynomial
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kernels gave rise to several new techniques in the area. However, the problem that is closest to ours
is the CHORDAL VERTEX DELETION problem. In a recent breakthrough, Jansen and Pilipczuk [35, 36]
gave a polynomial kernel (of size O (k!?)) for CHORDAL VERTEX DELETION, resolving a more than
a decade old open problem. Shortly afterward, Agrawal et al. [2, 3] gave a kernel of size O (k'%).

2 PRELIMINARIES

We denote the set of natural numbers by N. For n € N, we use [n] and [n], as shorthands for
{1,2,...,n}and {0, 1,...,n}, respectively. For a set X and an integer n € N, by X" we denote the
set {(ay,az,...,ay) | ay,az,...,a, € X}.

Basic Graph Theory. We refer to standard terminology from the book of Diestel [17] for those
graph-related terms that are not explicitly defined here. Consider a graph G. We denote the vertex
set and the edge set of G by V(G) and E(G), respectively. For a vertex v € V(G), Ng(v) denotes
the neighborhood of v in G and Ng[v] = Ng(v) U {v}. For a subset S C V(G), we define Ng(S) =
(UpesNG(v)) \ S. We omit the subscript G from the preceding two notations whenever the context
is clear. Given a set C of connected components of G, denote V(C) = Jcec V(C). Moreover, when
the graph G is clear from context, denote n = |V(G)|. Given a subset U C V(G), G[U] denotes the
subgraph of G induced by U. Accordingly, a graph H is an induced subgraph of G if there exists
U € V(G) such that G[U] is isomorphic to H. For a set of vertices X C V(G), G — X denotes the
induced subgraph G[V(G)\ X]—that is, the graph obtained by deleting the vertices in X from G. For
an edge (u,v) € E(G), G/(u,v) denotes the graph obtained by contracting the edge (u, v)—that is,
the graph obtained by introducing a new vertex that is adjacent to all vertices in N(u) U N(v) and
deleting the vertices {u, v}. We say that G is a clique if for all distinct vertices u,v € V(G), we have
that (u,v) € E(G), and that V(G) is an independent set if for all distinct vertices u,v € V(G) we
have that (u,v) ¢ E(G). A subset U C V(G) is a module if for all u,u’ € U and v € V(G) \ U either
both u and u’ are adjacent to v or both u and u’ are not adjacent to v. For the sake of simplicity,
we also call G[U] a module (where we mean that it is a module in G) when the graph G is clear
from the context.

A path P = (x1,x2,...,x¢) in G is a subgraph of G where V(P) = {x1,%3,...,x¢} € V(G) and
E(P) = {(xi,xi+1) | i € [ = 1]} € E(G), where ¢ € [n]. The vertices x; and x; are the endpoints
of P, and the remaining vertices in V(P) are the internal vertices of P. A cycle C = (x1,x2,...,X¢)
in G is a subgraph of G where V(C) = {x1,x2,...,x¢} € V(G) and E(C) = {(xj;,xi+1) | i €
[€ — 1]} U {(x1,x¢)} C E(G). We say that (u,v) € E(G) is a chord of a path P if u,v € V(P)
but (u,v) ¢ E(P). Similarly, we say that (u,v) € E(G) is a chord of a cycle C if u,v € V(C) but
(u,v) ¢ E(C). A path P or cycle C is said to be induced (or, alternatively, chordless) if it has no chords.

Interval Graphs. An interval graph is a graph that does not contain any of the following graphs,
called obstructions, as an induced subgraph (see Figure 1):

o Long claw: A graph O such that V(0) = {t,,t,,t,¢, b1, by, b3} and E(O) = {(tz, b1), (¢, b3),
(t9 bz)’ (C’ bl)s (C, bZ)’ (C’ b3)}

e Whipping top: A graph O such that V(0) = {ts,t,,t,c,by, by, b3} and E(O) = {(t¢, b1),
(tr»bz) (C t) (C bl) (C b2) (b3’ tf) (b3’b1) (b3a )7 b37b2) (b3, tr)

e -AW: A graph O such that V(0) = {t,, t,,t,c}U{by, bs, ..., b,}, where ty = by and t, = b 4,
E(Q) = {(t,c), (te, by), (tr, b))} U {(c,b;) | i € [z]} U {(b;,bir1) | i € [z—1]},and z > 2. A
T-AW where z = 2 will be called a net.

e 1-AW: A graph O such that V(O) = {t¢,t,,t,c1,¢c0} U {b1, by, ..., b}, where t; = by and
tr = bz+1, E(O) = {(t7 cl)7 (t» Cz), (cl»cz)v (tfv bl)’ (tr7 bz), (tfa Cl)’ (trch)} ) {(C’ bl) | i€ [Z]} )
{(bi,biy1) | i € [z—1]},and z > 1. A $-AW where z = 1 will be called a tent.

e Hole: A chordless cycle on at least four vertices.
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We refer to T-AW and £-AW as AWs. In each of the first four obstructions, the vertices ty, t,., and
t are called terminals; the vertices ¢, ¢q, and ¢y are called centers; and the other vertices are called
base vertices. Furthermore, the vertex t is called the shallow terminal and the vertices t, and t, are
called the non-shallow terminals. In the case where O is one of the AWs, the induced path on the
set of base vertices is called the base of the AW, and it is denoted by base(Q). Moreover, we say
that the induced path on the set of base vertices, t¢, and t, is the extended base of the AW, and it is
denoted by P(0O).

Path Decomposition. A path decomposition of a connected graph G is a pair (P, ), where P is a
path and 8 : V(P) — 2V(© is a function that satisfies the following properties:

(1) Uxev(p) B(x) = V(G).
(2) For any edge (u,v) € E(G), there is a node x € V(P) such that u,v € f(x).
(3) For any v € V(G), the collection of nodes P, = {x € V(P) | v € f(x)} is a subpath of P.

For v € V(P), we call f(v) the bag of v. We refer to the vertices in V(P) as nodes. A clique path of a
connected graph G is a path decomposition of G where every bag is a distinct maximal clique. If a
graph G admits a clique path, then we say that G is a clique path. The following proposition states
that the class of interval graphs is exactly the class of graphs where each connected component is
a clique path.

PROPOSITION 2.1 ([27], SECTIONS 2 AND 3 OF [28]). A graph is an interval graph if and only if
each connected component of it is a clique path. Moreover, such a clique path can be found in linear
time.

Parameterized Complexity. Let IT be an NP-hard problem. In the framework of parameterized
complexity, each instance of II is associated with an integer k, which is called the parameter. Here,
the goal is to confine the combinatorial explosion in the running time of an algorithm for II to
depend only on k. The main concepts defined to achieve this goal are of fixed-parameter tractabil-
ity and kernelization. First, we say that II is FPT if any instance (I, k) of II is solvable in time
f(k) - 111°0), where f(-) is an arbitrary (computable) function of k. Second, IT is said to admit a
polynomial kernel if there is a polynomial-time algorithm (the degree of polynomial is indepen-
dent of the parameter k), called a kernelization algorithm, that transforms the input instance into
an equivalent instance of IT whose size is bounded by a polynomial p(k) in k. Here, two instances
are equivalent if one of them is a Yes-instance if and only if the other one is a Yes-instance. The
reduced instance is called a p(k)-kernel for II. For a detailed introduction to the field of kerneliza-
tion, we refer to the following surveys [41, 46] and the corresponding chapters in the following
books [13, 18, 20, 51].

Kernelization algorithms often rely on the design of reduction rules. The rules are numbered, and
each rule consists of a condition and an action. We always apply the first rule whose condition is
true. Given a problem instance (I, k), the rule computes (in polynomial time) an instance (I’, k")
of the same problem, where k’ < k. Typically, |I’| < |I|, where if this is not the case, it should be
argued why the rule can be applied only polynomially many times. We say that the rule safe if the
instances (I, k) and (I’, k) are equivalent.

Linear Algebra. For a set A and X, by an operation of A onto X we mean a function f : AXX — X.
For an element (a,x) € A X X by ax, we denote the element f(a,x) € X. For a field F with
+ as the additive operation and - as the multiplicative operation, a commutative group (V,+)
with an operation of F onto V is a vector space over F if for all a,b € F and x,y € V, we have
(i) a(bx) = (ab)x, (i) a(x + y) = ax + ay, (iii) (a + b)x = ax + bx, and (iv) 1 - x = x. Here, 1 is
the multiplicative identity of the field F. If V is a vector space over F, then the elements of V are
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11:8 A. Agrawal et al.

called vectors. One of the natural candidates for vector spaces over a field IF is F”, where n € N and
the function f(-) is the component-wise multiplication. In this article, we restrict ourselves only
to such types of vector spaces.

In the following, consider a field F and a vector space V' = F", where n € N. For a vector

v = (by,by,...,b,) € F" and an integer i € [n], by v[i] we denote the i" element (or entry) of
v (i.e., the element b;). For vectors v, vy,...,v; € F" a linear combination of them is a vector
ajvy + agvy + -+ - + a;vs, where ay, ap, .. .,a; € F. Furthermore, a linear relation among them is
exhibited when a;v; + apvy + -+ + a;v; = 0, for some ay,az,...,a; € F.In the preceding, the

a;s are called the coefficients. A set of vectors is said to be linearly independent if there is no linear
relation among them except the trivial one, where each of the coefficients is 0. A set of vectors
that is not linearly independent is said to be linearly dependent. An inclusion-wise maximal set of
linearly independent vectors is called a basis of the vector space. It is known that for bases B, B” of
a vector space, we have |B| = |B’|. By F,, we denote the field with exactly two elements, namely 0
and 1, with the usual addition and multiplication modulo 2 as the field operations. For two vectors
u,v € V', u - v denotes the dot product of these two vectors. We refer the reader to the work of
Lay [43] for more details on linear algebra.

Matroids. A pair M = (E, I'), where E is a set (called ground set) and I is a family of subsets of
E (called independent sets) is called a matroid if the following conditions are satisfied:

e )eT;
elfAe 7 and A’ C A thenA € T;
e If A,B € I and |A| < |B|, then thereis x € B\ Asuch that AU {x} € 1.

An inclusion-wise maximal set in J is called a basis of M. All the bases of a matroid are of same
size. The size of a basis is called the rank of the matroid. One of the important notions of a matroid
that we use is linear representations of matroids.

A matroid is a linear matroid (or representable matroid) if, for some field F, it can be defined as
follows. Let A be a matrix over a field F and E its set of columns. Then, the matroid M = (E, 1)
is defined as follows: a subset X C E is an independent set in M if and only if the set of columns
in X is linearly independent over F. The matrix A is called a representation of M, and M is
said to be representable over F. Thus, a matroid is linear (alternatively, representable) if it is
representable over some field IF. We refer the reader to the work of Oxley [52] for more details on
matroids.

For n,k € N, where k < n, a pair M = (E, I'), where |E| = n is a k-uniform matroid (or simply,
a uniform matroid) if I = {X C E | |X| < k}, where k € [n]; such a matroid will be denoted by
Up, k- The uniform matroid U, i is representable over any field with at least n + 1 elements, and a
representation for it can be found in polynomial time (e.g., see Section 12.1.2 [13]).

q-Representative Family. Let M = (E, I') be a matroid and B be a family of subsets of size p of E.
We say that BCBisa q-representative for B if for every set Y C E of size g, if thereisaset X € B
suchthat X NY =0and X UY € 7, then there is a setX € B such thatXﬂ Y=0andXUY €.

If8 C Bisa g-representative for B, then we use the notation B c _,ep B. The following result
asserts that small representative families can be computed efficiently.

ProrosiTION 2.2 ([23]). Let M = (E,I) be a linear matroid of rank k = p + q, and let matrix
A be a representation of M over a field F. Additionally, let B = {By,B;,...,B;} be a family of

independent sets of size p over E. Then, there exists BC _rep B of size at most (P;q), Moreover, such B

can be computed in at most O((p;q) tp® + t(p;q) ) operations over F. Here, w is the exponent in
the running time of matrix multiplication.
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3 COMPUTING A REDUNDANT SOLUTION

Let (G, k) be an instance of IVD. A subset S C V(G) such that G — S is an interval graph is
called a solution, and a solution of size at most t is called a t-solution. Toward the definition of
redundancy, we need to introduce a few simple notions related to hitting and covering. Given a
family ‘W C 2V(9), we say that a subset S C V(G) hits ‘W if for all W € ‘W we have SNW # 0. A
family ‘W C 2V is t-necessary if every solution of size at most ¢ hits ‘W. Moreover, we say that
an obstruction O is covered by ‘W if there exists W € ‘W such that W C V(0). Now, we are ready
to formally define our notion of redundancy.

Definition 3.1. Given a family ‘W C 2V(®) and t € N, a subset M C V(G) is t-redundant with
respect to ‘W if for every obstruction O that is not covered by ‘W it holds that [M N V(0)| > t.

The purpose of this section is to prove Lemma 3.2. Intuitively, this lemma asserts that an r-
redundant solution M whose size is polynomial in k (for a fixed constant r) can be computed in
polynomial time. Such a set M plays a central role in all of our subsequent reduction rules that
comprise our kernelization algorithm. We remark that in this statement we use the letter £ rather
than k to avoid confusion, as we will use this result with £ = k + 2.

LEMMA 3.2. Let r € N be a fixed constant, and let (G, ) be an instance of IVD. In polynomial
time, it is possible to either conclude that (G,{) is a No-instance, or compute an {-necessary family
W c 2V and a set M C V(G), such that W C 2M and M is a (r + 1)(8¢)"*'-solution that is
r-redundant with respect to ‘W

A central component in our proof of Lemma 3.2 is an approximation algorithm for IVD, given
by Cao [9].

PROPOSITION 3.3 (THEOREM 6.1 [9]). IVD admits a polynomial-time 8-approximation algorithm,
called ApproxIVD.

In particular, a main idea in our proofis to iteratively grow the redundancy of a solution by mak-
ing calls to this approximation algorithm. Besides Proposition 3.3, toward the proof of Lemma 3.2,
we give a simple definition of a graph on which we will apply the approximation algorithm and
hence determine whether a set of vertices should be added to “W'.

Definition 3.4. Let Gbe a graph, U C V(G),and t € N. Then, copy(G, U, t) is defined as the graph
G’ on the vertex set V(G)U{v' | v € U,i € [t]} and the edge set E(G) U{(u},v) | (u,v) € E(G),u €
U,i€[t]}U{(u!,v)) | (u,v) € E(G),u,v € U,i,j€[t]}U{(v,0") |veU,iec[t]}U{@,v)|ve
Ui je [t],i#j).

Informally, copy(G, U, t) is simply the graph G where for every vertex u € U we add t twins
that (together with u) form a clique. Intuitively, this operation allows us to make a vertex set
“undeletable”; in particular, this enables us to test later whether a vertex set is “redundant” and
hence we can grow the redundancy of our solution, or whether it is “necessary” and hence we
should update ‘W accordingly. Before we turn to discuss computational issues, let us first assert
that the operation in Definition 3.4 does not makes an interval graph become a non-interval graph.
This is a basic requirement to verify before turning to design the preceding test.

LEmMMA 3.5. Let G be a graph, U C V(G), andt € N. If G is an interval graph, then G’ =
copy(G, U, t) is an interval graph as well.

ProoF. Suppose that G is an interval graph. Then, by Proposition 2.1, G admits a
clique path (P,f). Now, we define (P’,f’) as follows: P’ = P, and for all x € V(P’),
B'(x) = B(x) U {v' | v e B(x) NU,i € [t]}. We claim that (P’, 8’) is a clique path for G’. By using
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the fact that (P, ) is a path decomposition of G, we directly have the following properties. First, it
is clear that ey (pry B/ (x) = V(G’). Second, for any edge e = (u,v) € E(G’) such thatu,v € V(G),
there exists x, € V(P’) such that u,v € f’(x.). Then, since for all v € U and i € [¢] it holds that
B ~(v) = B71(v?), we derive that for any edge (u’,v’) € E(G’) there is a node x € V(P’) such
that u’,v” € f’(x). Third, for any v € V(G), the collection of nodes P, = {x € V(P’) | v € ' (u)}
is a subpath of P’, and since for any v € U and i € [¢] it holds that f~!(v) = B"~!(v?), we derive
that for any v” € V(G’) the collection of nodes P;, = {x € V(P’) | v’ € ’(x)} is a subpath of P’.
Now, note that for all x € V(P’), f(x) is a clique, and for all u,v € f(x) (possibly u = v) and
i,j € [t], u' is adjacent to u, v/ (if i # j), v and v/, which implies that §’(x) is also a clique path.
Hence, (P’, f’) is indeed clique path for G’. By Proposition 2.1, we derive that G’ is an interval
graph. ]

Now, let us present two simple claims that exhibit relations between the algorithm ApproxIVD
and Definition 3.4. After presenting these two claims, we will be ready to give our algorithm for
computing a redundant solution. Roughly speaking, the first claim exhibits the meaning of a situ-
ation where ApproxIVD returns a “large” solution; intuitively, for the purpose of the design of our
algorithm, we interpret this meaning as an indicator to extend W.

LEMMA 3.6. Let G be a graph, U C V(G), and € € N. If the algorithm ApproxIVD returns a set A
of size larger than 8¢ when called with G’ = copy(G, U, 8¢) as input, then {U} is {-necessary.

Proor. Suppose that ApproxIVD returns a set A of size larger than 8/ when called with G’ as
input. Then, (G’, €) is a No-instance. Suppose, by way of contradiction, that {U} is not {-necessary.
If (G, ) is a No-instance, then trivially we can say that {U} is {-necessary (as there is no solution of
size at most £, so the statement is vacuously true). Now consider the case when G has an ¢-solution
S such that SNU = 0. In particular, G = G — S is an interval graph such that U C V(G). However,
this means that copy(@, U,8() = G’ — S, which by Lemma 3.5 implies that G’ — S is an interval
graph. Thus, S is an ¢-solution for G’, which is a contradiction (as (G’, {) is a No-instance). O

Complementing our first claim, the second claim exhibits the meaning of a situation where
ApproxIVD returns a “small” solution A; we interpret this meaning as an indicator to grow the
redundancy of our current solution M by adding A—indeed, this lemma implies that every ob-
struction is hit one more time when adding A to a subset U € M (to grow the redundancy of M,
every subset U € M will have to be considered).

LEmMA 3.7. Let G be a graph, U C V(G), and € € N. If the algorithm ApproxIVD returns a set A
of size at most 8¢ when called with G’ = copy(G, U, 8() as input, then for every obstruction O of G,
VO)NU|+1<|VO)N (U UANV(G)))I.

Proor. Suppose that ApproxIVD returned a set A of size at most 8¢ when called with G as input.
Let O be some obstruction of G, and denote B = V(O) N U. Since |A| < 8¢, for every vertex v € B,
we have that v € V(G’) \ A or there exists i(v) = i € [8(] such that v’ € V(G’) \ A. Moreover, we
have that the graph obtained from O by replacing each vertex v € BN A by v'(®) is an obstruction
(as v and ©'(?) are twins). Thus, as A is a solution for G’, there exists v € V(G) \ B such that
v € ANV(0). Hence, we have that [V(Q) NU|+ 1 < |[V(0) N (UU (AN V(G)))I. O

Now, let us describe our algorithm, RedundantIVD, to compute a redundant solution. First,
RedundantIVD initializes M, to be the output obtained by calling the algorithm ApproxIVD with G
as input, Wy := 0 and 75 := {(v) | v € My}. If [My| > 8¢, then RedundantIVD concludes that (G, ¢)
is a No-instance. Otherwise, for i = 1,2, ..., r (in this order), the algorithm executes the following
steps:
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(1) Initialize M; := M;_, W; := Wi_; and 7; := 0.
(2) For every tuple (vg, vy, ..., 0i-1) € Ti-1:
(a) Let A be the output obtained by calling the algorithm ApproxIVD with copy
(G, {vg,v1, ..., vi-1},8() as input.
(b) If |A| > 8¢, then insert {vg, vy, . ..,v;—1} into W;.
(c) Otherwise, insert every vertex in (A N V(G)) \ {vg,v1, . ..,v;—1} into M;, and for all u €
(ANV(G)\ {vg,v1,...,0i_1}, insert (vy, vy, . ..,0;_1,u) into ;.

Eventually, the algorithm outputs the pair (M, W;).

Let us comment that in this algorithm, we make use of the sets 7;_; rather than going over
all subsets of size i of M;_; to obtain a substantially better algorithm in terms of the size of the
produced redundant solution.

The properties of the algorithm RedundantIVD that are relevant to us are summarized in the
following lemma and observation, which are proved by induction and by making use of Lem-
mas 3.5, 3.6, and 3.7. Roughly speaking, we first assert that, unless (G, ¢) is concluded to be a
No-instance, we compute sets ‘W; that are {-necessary as well as that the tuples in 7; “hit more
vertices” of the obstructions in the input as i grows larger.

LEmMA 3.8. Consider a call to RedundantIVD with (G, {,r) as input that did not conclude that
(G, ) is a No-instance. For all i € [r]o, the following conditions hold:

(1) For any set W € ‘W, every solution S of size at most € satisfies W N S # 0.
(2) For any obstruction O of G that is not covered by ‘W, there exists (vy, vy, . ..,v;) € T; such
that {vy, vy, ...,v;} € V(O).

Proor. The proof is by induction on i. In the base case, where i = 0, Condition 1 trivially holds
as ‘W, = 0, and thus there are no sets in “W,. Condition 2 holds as M, is a solution (so each
obstruction must contain at least one vertex from M) and 7, simply contains a 1-vertex tuple for
every vertex in My. Now, suppose that the claim is true for i — 1 > 0, and let us prove it for i.

To prove Condition 1, consider some set W € ‘W;. If W € “W,;_;, then by the inductive hypothesis,
every solution of size at most £ satisfies W N S # 0. Thus, we next suppose that W € ‘W; \ ‘W,_;.
Then, there exists a tuple (vg, vy, . .., vi—1) € 7i-1 in whose iteration RedundantIVD inserted W =
{vo, U1, ..., v;—1} into W;. In that iteration, ApproxIVD was called with copy(G, W, 8¢) as input
and returned a set A of size larger than 8¢. Thus, by Lemma 3.6, every solution S of size at most £
satisfies W N S # 0.

To prove Condition 2, consider some obstruction O of G that is not covered by “W;. By the
inductive hypothesis and since W;_; € W, there exists a tuple (vg, vy, ..., v;—1) € Ti-1 such that
{vo, v1,...,vi—1} € V(0). Consider the iteration of RedundantIVD corresponding to this tuple, and
denote U = {vy, vy, . . ., vj—1}. In that iteration, ApproxIVD was called with copy(G, U, 8¢) as input
and returned a set A of size at most 8¢. By Lemma 3.7, [V(Q)NU|+1 < [V(O) N (U U (ANV(G)))|.
Thus, there exists v; € (ANV(G)) \ U such that U U {v;} € V(O). However, by the specification of
ApproxIVD, this means that there exists (vy, vy, .. .,v;) € 7; such that {vg,vy,...,v;} CV(0Q). O

Toward showing that the output set M, is “small,” let us upper bound the sizes of the sets M;
and 7;.

OBSERVATION 3.9. Consider a call to RedundantIVD with (G, {,r) as input that did not conclude
that (G, ) is a No-instance. For all i € [r]o, |M;| < Z}:O(Sf)f“, |77] < (80)"1, and every tuple in T;
consists of distinct vertices.

Proor. The proof is by induction on i. In the base case, where i = 0, the correctness follows
as ApproxIVD returned a set of size at most 8£. Now, suppose that the claim is true for i — 1 >
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0, and let us prove it for i. By the specification of the algorithm and inductive hypothesis, we
have that [M;| < |M;_1| + 8|7i_1| < X11(8¢) and |7;| < 8€|7;-1| < (8€)*1. Moreover, by the

j=1
inductive hypothesis, for every tuple in 7;, the first i vertices are distinct, and by the specification
of ApproxIVD, the last vertex is not equal to any of them. O

By the specification of RedundantIVD, as a corollary to Lemma 3.8 and Observation 3.9, we
directly obtain the following result.

COROLLARY 3.10. Consider a call toRedundantIVD with (G, ¢, r) as input that did not conclude that
(G, ¢) is a No-instance. For alli € [r]o, ‘W; is an {-necessary family and M; is a Z}ZO(Sf)ﬁl -solution
that is i-redundant with respect to ‘Wi;.

Clearly, RedundantIVD runs in polynomial time (as r is a fixed constant), and by the correctness
of ApproxIVD, if it concludes that (G, €) is a No-instance, then this decision is correct. Thus, since

T o(80)"1 < (r +1)(8¢)"*", the correctness of Lemma 3.2 now directly follows as a special case
of Corollary 3.10. Thus, our proof of Lemma 3.2 is complete.

In light of Lemma 3.2, from now on, we suppose that we have a (k + 2)-necessary family ‘W C
2V(©) along with a (r + 1)(8(k +2))"*'-solution M that is r-redundant with respect to ‘W for r = 9.
Let us note that any obstruction in G that is not covered by ‘W intersects M in at least 10 vertices.
We have the following reduction rule that follows immediately from Lemma 3.8.

Reduction Rule 3.1. Let v be avertex such that {v} € ‘W. Then, output the instance (G—{v}, k—1).

Henceforward, we will assume that each set in ‘W has size at least 2.

4 HANDLING MODULE COMPONENTS

Let (G, k) be an instance of IVD. We will assume that k > 2, as otherwise, in polynomial time,
we can check whether or not (G, k) is a Yes-instance and accordingly return a trivial kernel of
constant size. Let us explicitly recap the steps taken so far and then state our current objective in
this context. First, we call Lemma 3.2 with r = 9 and ¢ = k + 2,2 and one of the following holds. If
(in polynomial time) we conclude that (G, k + 2) is a No-instance, then we can (correctly) conclude
that (G, k) is a No-instance as well. Otherwise, in polynomial time, we obtain a (k + 2)-necessary
family ‘W C 2V(%) and a set M C V(G) such that W C 2M and M is a 10(8(k + 2))'*-solution that
is 9-redundant with respect to ‘W. Furthermore, each set in ‘W has size at least 2. The main goal
of this section is to bound the total number of vertices across all module connected components of
G — M. We remark that we will prove a slightly more general result, as it will be used later in our
algorithm. Before that, we provide a simple reduction rule to bound the number of non-module
components.

Bounding the Number of Non-Module Components. Let C denote the set of connected com-
ponents of G — M. Moreover, we let D denote the set of connected components in C that are
modules, and D = C \ D. To bound the size of D, we apply the following reduction rule.

Reduction Rule 4.1. Suppose that there exist v € M and a set A C D of size k + 3 such that
for each D € A there exist u,w € V(D) such that u € Ng(v) and w ¢ Ng(v). Then, output the
instance (G — {v},k — 1).

2We use Lemma 3.2 with £ = k + 2 because at a later stage (particularly, in Section 6) we find an irrelevant edge to contract.
With the parameter k + 2, we are still able to exclude the need to argue about obstructions that are covered by ‘W, as the
additional 2 allows us to add the two endpoints of the contracted edge to an assumed solution in our arguments. We use
the lemma with r = 9 since it helps us to find large obstructions that contain enough vertices from M in base(Q), for an
AW 0.
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LEmMA 4.1. Reduction Rule 4.1 is safe.

PRroOF. In one direction, suppose that (G, k) is a Yes-instance, and let S be a k-solution for G.
Since |A| > k + 3, there exist three connected components Dy, Dy, D3 € A such that SN (V(D;) U
V(Dz) U V(D3)) = 0. However, for each i € [3], the subgraph of G induced by the vertex set
consisting of v, together with an edge e in D; with one endpoint of e being a neighbor of v and
the other endpoint of e being a non-neighbor of v, is a long claw. Here, we relied on the fact that
for each i € [3], D; is connected. Thus, as G — S is an interval graph, we derive that v € S, and
therefore S \ {v} is a (k — 1)-solution for G — {v}.

In the other direction, it is clear that if (G — {v},k — 1) is a Yes-instance, then (G, k) is a Yes-
instance. O

We now observe that our rule indeed bounds the size of D.

OBSERVATION 4.2. After the exhaustive application of Reduction Rule 4.1, |D| < (k + 2)|M].

Proor. After the exhaustive application of Reduction Rule 4.1, every vertex in M has at most
k + 2 connected components in C where it has both a neighbor and a non-neighbor. Since for a
connected component in D that is not a module there must exist a vertex in M that has both a
neighbor and a non-neighbor in that component, we conclude that the observation is correct. O

The Main Lemma of This Section. From now on, we focus on the main goal of this section:
bound the total number of vertices in D. As mentioned earlier, the arguments used to derive this
bound will also be necessary at a later stage of our kernelization algorithm, and hence we present
our goal in the form of a more general statement.

LEMMA 4.3. Let M C V(G), and let C be some set of connected components of G — (M U ]\71) that
are modules. In polynomial time, it is possible to either output an instance (G’, k) equivalent to (G, k)
where [V(G")| < [V(G)|, or to compute a subset B C V(C) of size at most 8(k+1)*|MUM|™, such that
for any subset S C V(G) of size at most k, the following property holds: If there exists an obstruction
O for G that is not covered by ‘W and such that V(0) NS = 0, then there exists an obstruction Q" for

G such that V(0') NS = 0 and V(Q’) N (V(C) \ B) = 0.

Intuitively, the statement of this lemma expands M to M U M and zooms into a subset C of the
set of connected components in G — (M U ]\71) that are modules in G. Then, either it enables us
to reduce the instance, or it produces a “small” subset B C V(a ) and implies that we need not
“worry” about obstructions that intersect V(E) bBt not B—if such an obstruction is not hit, then

there is an obstruction that does not intersect V(C) \ B and which is not hit as well.
Let us now show that having Lemma 4.3 at hand, we can indeed bound the total number of
vertices in all module components.

Reduction Rule 4.2. Let X be the output of the algorithm in Lemma 4.3 when called with M=0
and C = D. If X is an instance (G’, k), then output X. Otherwise, X is a set B C V(D), and we
output the instance (G — {v}, k) for a vertex v arbitrarily chosen from V(D) \ B.

By using Lemma 4.3, we derive the safeness of Reduction Rule 4.2.

LEMMA 4.4. Reduction Rule 4.2 is safe.

Proor. If X is an instance (G’, k), then Lemma 4.3 directly implies that the rule is safe. Thus, we
next suppose that X = B. In one direction, it is clear that if (G, k) is a Yes-instance, then (G —{v}, k)
is a Yes-instance as well.
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In the other direction, suppose that (G—{v}, k) is a Yes-instance. Let S be a k-solution for G—{v}.
We claim that S is also a k-solution for G. Suppose, by way of contradiction, that this claim is false.
Then, there exists an obstruction O for G — S. As S U {v} is a (k + 1)-solution for G and W is
(k + 2)-necessary, we have that S U {v} hits ‘W. Since v ¢ M and W C 2M e derive that S hits
‘W. Thus, since O is an obstruction for G — S, we deduce that O is not covered by “W. Hence, by
Lemma 4.3, there exists an obstruction O’ for G such that V(OQ’)NS = @ and V(O")N(V(D)\B) = 0.
However, as v € V(D) \ B, this implies that O’ is also an obstruction for (G — {v}) — S, which is a
contradiction as S is a k-solution for G — {v}. |

Due to Reduction Rule 4.2, we have the following result.
OBSERVATION 4.5. After the exhaustive application of Reduction Rule 4.2, |V (D)| < 8(k+1)%|M|*.

We now turn to prove Lemma 4.3. In what follows, M and 6 are as stated in this lemma. We
denote M’ = M U M. Note that since M is 9-redundant with respect to ‘W, we have that M’ is also
9-redundant with respect to “W. We begin our proof by showing that the common neighborhood
outside M’ of any two non-adjacent vertices, unless these two vertices form a pair in ‘W, induces
a clique. This simple claim will come in handy in several arguments later.

LEMMA 4.6. Let u,v € V(G) be distinct vertices such that (u,v) ¢ E(G) and {u,v} ¢ ‘W. Then,
G[(Ng(u) N Ng(v)) \ M] is a clique.

Proor. Suppose, by way of contradiction, that G[(Ng(u) N Ng(v)) \ M’] is not a clique. Then,
there exist two vertices x,y € (Ng(u) N Ng(v)) \ M’ that are not neighbors in G. Note that O =
G[{u,v,x,y}] is a hole, and that M N V(0O) C {u, v}. Moreover, O is not covered by W (because
{u,0} ¢ W and every set in ‘W has size at least 2). Since M is 9-redundant, this means that
IMNV(Q)| > 9. However, |V(0)| = 4, hence we have reached a contradiction. O

Structure of Obstructions Intersecting Module Components. To reduce our instance or to
obtain a set B as required to prove Lemma 4.3, we need to understand how obstructions can inter-
sect module components. For this purpose, we state a simple proposition by Cao and Marx [11].
This proposition asserts that because we are dealing with modules, these intersections are quite
restricted.

ProposiTION 4.7 ([11]). Let C be a module in G, and let O be an obstruction. If [V (Q)| > 4, then
either V(0) C V(C) or|[V(0) N V(C)| < 1.

By Proposition 4.7, we directly obtain the following lemma.

LEMMA 4.8. Let C be a module such that V(C) N M’ = 0, and let O be an obstruction that is not
covered by ‘W. Then, [V(0) N V(C)| < 1.

Proor. Since O is an obstruction that is not covered by ‘W, it holds that M’ N V(O)| > 9. In
particular, as V(C) N M’ = 0, we have that [V (0)| > 4 and V(0) \ V(C) # 0. Then, as C is a module,
by Proposition 4.7, we have that |[V(0) N V(C)| < 1. O

Reducing the Size of Module Components. To ensure we have only small module components,
we apply the following rule.

Reduction Rule 4.3. Suppose that there exists C € C such that |[V(C)| > k + 1. Then, output the
instance (G — {v}, k), where v is an arbitrarily chosen vertex of C.

LEMMA 4.9. Reduction Rule 4.3 is safe.
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ProOF. In one direction, it is clear that if (G, k) is a Yes-instance, then (G — {v}, k) is a Yes-
instance as well.

In the other direction, suppose that (G—{v}, k) is a Yes-instance. Let S be a k-solution for G—{v}.
We claim that S is also a k-solution for G. Suppose, by way of contradiction, that this claim is false.
Then, there exists an obstruction O for G — S. As S U {v} is a (k + 1)-solution for G and W is
(k + 2)-necessary, we have that S U {ov} hits ‘W. Since v ¢ M and ‘W C 2M we derive that S hits
“W. Thus, since O is an obstruction for G — S, we deduce that O is not covered by “W. Hence, by
Lemma 4.8, [V(0) N V(C)| < 1. Thus, V(O) N V(C) = {v}. Then, as C is a module, for any vertex
u € V(C), it holds that G[(V(0) \ {v}) U {u}] is an obstruction. Since |V(C)| > k + 1, we have that
V(C) \ (S U {v}) # 0. However, this implies that there exists an obstruction O’ for (G — {v}) — S,
which is a contradiction as S is a k-solution for G — {v}. O

Preliminary Marking Scheme. By Lemma 4.6, for all u,v € M’ such that (u,v) ¢ E(G) and
{u,v} ¢ W, there exists at most one C € C, denoted by Cy, such that Ng(u) N Ng(v) NV (C) # 0.
Accordingly, denote

C* = {Cuo € C | u,v € M', (u,v) ¢ E(G). {u, v} ¢ W}.
Moreover, denote A* = V(C*). From Reduction Rule 4.3, we have the following observation.
OBSERVATION 4.10. The size of A* is upper bounded by (k + 1)|M’|2.

Thus, in what follows, we do not need to “worry” about the modules in C* since we already
know that they contain only few vertices in total. In the following, we proceed to analyze the
modules in C \ C*. An important property of every vertex v in the modules in C \ C*, unlike the
modules in C*, is that every pair of vertices in its neighborhood in M’ must be adjacent unless
they form a set in ‘W.

OBSERVATION 4.11. Consider a vertex v € V(é \ C*). For (distinct) vertices u,w € Ng(v) N M’,
at least one of {u, w} € ‘W or (u,w) € E(G) holds.

Proor. For v € V(é \ C*), and (distinct) vertices u,w € Ng(v) N M’, if one of {u,w} € W
or (u,v) € E(G) holds, then the claim trivially holds. Therefore, we assume that {u, w} ¢ W
and (u,v) ¢ E(G). Recall that each set in ‘W is of size at least 2 (since Reduction Rule 3.1 is
not applicable). From the preceding discussions together with Lemma 4.6, we obtain that there
is at most one connected component C,,, € C such that Ng(u) N Ng(w) N V(Cyyy) # 0. Since
u,w € Ng(v), it must be the case that v € V(Cy,,). But by our preliminary marking scheme,
Cuw € C*. This contradicts that v € V(C \ C*). O

Let us also consider the relation between obstructions and the modules in C\C*. Roughly speak-
ing, the following lemma already implies that we can focus on AWs of a very specific form. How-
ever, handling these obstructions requires a substantive amount of work in the rest of this section.

LEMMA 4.12. Let C € 5 \ C*, and let O be an obstruction that is not covered by ‘W such that
V(Q) N V(C) # 0. Then, [V(0O) N V(C)| = 1 and O is an AW where the vertex in V(0Q) N V(C) is a
terminal.

Proo¥. Consider C € C \ C* and an obstruction O that is not covered by ‘W such that V(O) N
V(C) # 0. First, as C is a module, from Lemma 4.8 we deduce that |V(O) NV (C)| = 1. Furthermore,
as O is not covered by ‘W, we have that |V(Q)| > 9. This means that O is not a long claw, a
whipping top, a net, or a tent. Let v be the unique vertex in V(C) N V(0). If O is an induced cycle
on at least four vertices, or one of the AWs where v is not one of the terminals, then Ng(v) NV (O)
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contains a pair of non-adjacent vertices. But from Observation 4.11 together with the facts that
O is not covered by W and Ng(v) € V(C) U M, for each u,w € Ng(v) N M’ N V(0), we have
(u,v) € E(G). Thus, we conclude that O is one of the AWs, where v is one of the terminals. O

Marking Scheme to Handle Non-Shallow Terminals. For every two subsets X,Y € M’ such
that |X| < 2 and |Y| < 2, denote Axy = {v € V(é\ C*) | X € Ng(v),Y N Ng(v) = 0}. Now, if
|[Ax y| < k + 1, then define A’X y = Ax,y, and otherwise let AB(,Y be an arbitrarily chosen subset
of size k + 1 of Ax y. Let us denote A’ =  Jx y AX v where X, Y range over all subsets X,Y € M’
such that |X| < 2 and |Y| < 2. Let us first observe that |A’| is small.

OBSERVATION 4.13. The size of A’ is upper bounded by (k + 1)|M’|*.
PROOF. Let t = [M’|. Note that |A'| < Xic(o.1.2) (1) Zjeqo.r.z) (') (k+1). Note that the following

hs ()3 + ()() + (1) = 2556 ()59 + () + () = 252, ma i
(g) (tgz) + (;) ('IZ) + (;) (t;z) = —’4_4’317’2 AL Thus, we can obtain that [A’] < (k+1)- —t4_2t3+zt2+2”4.
Ast > k > 2, we can obtain that —2t>+7t%+2t+4 < 3t*. Hence, we can obtain that |A’| < (k+1)t* =

(k + 1)|M'|*.

Now, let us verify that we have thus marked a set of vertices that is sufficient to “handle” non-
shallow terminals. Roughly speaking, by this we mean that for any vertex v and obstruction O
that satisfy the premise in this lemma, we can find k + 1 “replacements” of v (so that we still have
an obstruction) that belong to our marked set A’

LEMMA 4.14. LetC € é\C*, v € V(C)\A’, and O be an obstruction that is not covered by ‘W such
thatv € V(0). IfO is an AW where v is a non-shallow terminal, then there exists a subset A C A" of
size k + 1 such that for eachu € A, G[(V(O) \ {v}) U {u}] contains an obstruction.

Proor. First, by Lemma 4.12, we have that O is an AW such that V(0) N V(C) = {v} and v is a
terminal of Q. Let us also note that Ng(v) € M’ U V(C), and therefore Ng(v) N V(Q) C M’. Let
O comprise of the base path base(0) = (by, b2, . ..,b,), non-shallow terminals ¢, and t,, shallow
terminal ¢, and centers c¢; and ¢, (as in the definition in Section 2). Here, if O is a 1-AW, then we let
¢ = ¢ = ¢3. Suppose that v is not the shallow terminal of O. Then, we have that v is either t; or t,.
Without loss of generality, suppose that v = .. Let us consider two cases, depending on whether
O1isa T-AW or a £-AW:

e Suppose that O is a T-AW. Notice that b; € M’ as (by,v) € E(G), V(0) N V(C) = {v}, and
Ng(v) € M’ U V(C). From Lemma 4.12, any vertex in V((O)) N V(E\ C*) must be one of
the terminals. Thus, we have V(é\ C*) N ({by, by, ..., b.} U{c}) = 0. We also recall that for
eachu € V(C \ C*) we have Ng(u) € M' U V(C\ C*).In partlcular if by (or ¢) is not in M’,
no vertex in V(C \ C*) can be adjacent to b, (or ¢). The preceding discussions together w1th
the construction of A’ implies the following: there exists a subset Q C A’ of k + 1 vertices
such that for each u € Q, u is adjacent to by, and u is not adjacent to b, and c. Indeed, these
are the vertices in the set A 1 (b e (the size of this set is k + 1 since otherwise v should
have belonged to it, but v ¢ A’) Furthermore, by is not adjacent to any vertex on O besides
v, ¢, and b,. Therefore, for all u € Q, using Observation 4.11 for obstructions not covered
by W, we have that u is not adjacent to any vertex on V(O) N M’ besides b;. Furthermore,
for all u € Q, since Ng(u) C V(é\ C*) UM, we have that u is not adjacent to any vertex
on V(0) N V(C™). Last, because V((O)) N V(C) = {v}, for all u € Q, we have that u is not
adjacent to any vertex on V(O) N V(C \C*) be51des p0551bly v. Hence, for any vertex u € Q,
G[(V(0) \ {v}) U {u}] is also a T-AW.
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e Suppose that O is a $-AW. Notice that by, ¢c; € M’ as (b1, v), (¢1,v) € E(G), V(O)NV(C) = {v},
and Ng(v) € M’UV(C). From Lemma 4.12, any vertex in V((O))ﬂV(é\C*) must be one of the
terminals. Thus, we have V(6\ C*)N({b1,by,...,b,}U{c}) = 0. We also recall that for each
ue V(é\C*), we have Ng(u) C M'UV((:‘\\C*). The preceding discussions together with the
construction of A” implies the following: there exists a subset Q € A’ of k + 1 vertices u € A’
such that u is adjacent to both ¢; and by, and u is adjacent to neither ¢, nor b,. Indeed, these
are the vertices in the set A’{ broci ). (bas ey JAM” (as in the previous case, the size of this set is k + 1
since otherwise v should have belonged to it, but v ¢ A’). Notice that b; is not adjacent to any
vertex on O besides v, ¢y, ¢, and b,. For all u € Q, using Observation 4.11 for obstructions
not covered by ‘W and the facts that Ng(u) C V(CA‘\ C*)UM’ and V(0)NV(C) = {v} (using
the exact same rationale as in the previous case), we have that u is not adjacent to any vertex
on O—{v} besides c¢; and b;. Hence, for any vertex u € Q, G[(V(O)\{v})U{u}] is also a -AW.

In both cases, we derived the desired claim, and thus the proof is complete. O

Marking Scheme to Handle Shallow Terminals. For this part in our proof, we require the
following notation: we say that a path P is covered by ‘W if there is a set W € ‘W such that
W C V(P). Intuitively, we think of P as part of the base of an obstruction, hence the preceding
notation is a natural extension of covering to this context.

Before we present our marking scheme, let us explicitly state the following observation, which
follows from Observation 4.11 in the same manner as Lemma 4.12.

OBSERVATION 4.15. Let P be an induced path in G[V(G) \ V(C)] for some C € 6\ C* such that P
is not covered by ‘W. For allv € V(C), [INg(v) NV (P)| < 2, and if [Ng(v) N V(P)| = 2, then the two
vertices in Ng(v) N V(P) are adjacent on P.

Proo¥. Consider C € C\ C*, v € V(C), and an induced path P in G[V(G) \ V(C)] that is not
covered by ‘W.If [Ng(v) N V(P)| < 1, then the claim trivially follows. Otherwise, we assume that
NG (v) N V(P)| > 2. Consider (distinct) vertices u, w € Ng(v) N V(P). From Observation 4.11, we
have that (u, w) € E(G). Here, we relied on the fact that P is not covered by “W. Since P is an
induced path, u and w must be adjacent vertices in P. From the preceding, we can conclude that v
cannot have three neighbors in P, as P is an induced path in G. Moreover, if v has two neighbors
in P, then they must be adjacent vertices. O

Denote N = M’ U A* U A’. (Recall that A* = V(C*) and that A’ is the set of vertices marked
when we dealt with non-shallow terminals.) For all (not necessarily distinct) vertices c1,c, € M’,
denote A, ¢,) = {v € V(é) \(A*UA") | {c1,c2} € Ng(v)}. Intuitively, Ayc,.c,) is the set of vertices
among the unmarked vertices in C that are neighbors of both ¢; and ¢; and hence can play the
role of shallow terminals in obstructions having ¢; and c; as centers. Moreover, let us arbitrarily
order N and E(G[N]) as follows: N = {v1,0;,...,vn|} and E(G[N]) = {er, ez,...,e5GN])I}-
Thus, when we define vectors having |N| or |[E(G[N])| entries below, we can work with a natural
correspondence between the index of an entry in the vector and an element of N or E(G[N]),
respectively.

In what follows, we begin the part in our analysis that is based on linear algebra. To this end, we
first need to encode our problem in this language, which entails the introduction of appropriate
notations. Afterward, we will present a marking scheme based on these notations. The analysis of
this scheme is done in a sequence of several lemmas, after which we will be ready to conclude the
proof of Lemma 4.3.

First, with every vertex u € V((,A‘ ) \ (A* U A’), we associate two binary vectors that capture
incidence relations between u and the elements (vertices and edges) in G[N]:
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e Vertex incidence relations: vinc(u) = (b1, by, ...,bjn)), where for all i € [[N]], b; = 1if
and only if v; € Ng(u);

e Edge incidence relations: einc(u) = (b1, b, ..., bg[ny)|), Where for all i € [|[E(G[N])I],
b; = 1if and only if u is adjacent to both endpoints of e;.

Complete Incidence Relations. In addition, we define inc(u) as the vector that is the concatena-
tion of vinc(u) and einc(u), to which we add 1 at the end. Formally, inc(u) is a binary vector with

= |N| + |[E(G[N])| + 1 entries, where for all i € [[N|], the i*" entry of inc(u) equals the i entry
of vinc(u), for all i € [|[E(G[N])| + |N|] \ [IN]], the i*" entry of inc(u) equals the (i — [N|)" entry
of einc(u), and the last entry of inc(u) is 1. These incidence vectors are associated with the vector
space FY, and all calculations related to these vectors are performed accordingly. This completes
the description of the notations required to present our marking scheme.

For all (not necessarily distinct) vertices c¢q, c; € M’, we have the following subprocedure of our
marking scheme. First, we define Vy,, ,} to be the multiset {inc(u) | u € Ay,,c,)}. More precisely,
the number of occurrences of a vector in V., .,} equals the number of vertices u € Ay, ¢,} such
that inc(u) equals that vector. Now, we proceed as follows:

(1) Initialize V({)C o) = 0.
(2) Fori=1,2,. k + 1, compute some basis B’c o) for the vector subspace V¢, ¢, \ V{Cl &)
(with respect to F{),* and denote V’ =Vi-l UB! )
1,2} {c1. e} {cr,c2)

(3) For every occurrence of a vector v € V’f:llcz P arbitrarily choose a unique vertex u € Ay, ¢,)
such that inc(u) = v and denote it by uy (the existence of sufficiently many such distinct
vertices dlrectly follows from the definition of V,, e 1-

(4) Denote A (cne) = Uy 1V E ch“c }} and note that A {ci.c,} 1S @ set (rather than a multiset).

Finally, having performed all subprocedures, we denote A= Uey.crem A {c1,c,)- Here, union refers
to sets—that is, every vertex occurs in A once even if it belongs to more than one set of the form
A\[CI,Q ;- This completes the description of our marking scheme.

We proceed to analyze our marking scheme. Let us first observe that we have not marked “many”
vertices—that is, we upper bound Igl. Recall that N = A’ U A* U M’ and k > 2, and thus |[M’| > 2.
Hence, using Observations 4.10 and 4.13, we can obtain that [N| < 2(k + 1)|M’|*.

LEMMA 4.16. The size ofg is upper bounded by (k + 1)|M’|?|N|? < 4(k + 1)3|M’|*°.

Proor. To show that |A] < (k + 1)|M’|?IN|?, it is sufficient to show that for all c1,c, € M/,
|E{C1,C2}I < (k + 1)|N|%. To this end, consider some ¢y, c, € M’. Now, observe that the number of
entries of the vectors in Vi, ¢,) is ¢ = IN| + |[E(G[N])| + 1 < |[N| + w +1 < |N|2 (In the
preceding, we use the assumption that k > 2, and thus |[N| > 2.) Hence, every basis of V., ¢, (or of
a subset of V¢, c,) is of size at most |[N|%. As VI{C:Q} is a multiset that is the union of (k + 1) bases
of V{¢,.c,) (or of subsets of V¢, c,}), we have that |V]l<:;’102}| < (k+1)|N|%. Since IV’[‘;’:CZ}I = |K|c1,cz] l,
the proof is complete. ]

Now, let us verify that we have a set of vertices that is sufficient to “handle” shallow terminals.
This will be done in a sequence of two lemmas and a corollary. For this purpose, we need the
following notation where we alter incidence vectors by nullifying some of their entries:

3Here, note that the subtraction concerns multisets. In particular, if an element occurs x times in a multiset X, and y times
in a multiset Y C X, then it occurs x — y timesin X \ Y.
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e Nullifying subsets of vertices and edges: Given a pair (X,Y), where X € N and Y C
E(G[N]), and a vertex u € V(a) \ (A* U A’), we define inc®*Y (u) to be the vector obtained
from inc(u) by changing all the entries associated with vertices and edges that do not belong
to X U 'Y to 0. Formally, inc®*Y (u) is a binary vector with [N| + |E(G[N])| + 1 entries, where
for all i € [|N]], the i*" entry of inc®>Y (1) equals the i*”* entry of vinc(u) if v; € X and to 0
otherwise, for all i € [|[E(G[N])|+|N|]\[IN]], the i*" entry of incX>Y (1) equals the (i—|N])*"
entry of einc(u) if e;_|n| € Y and to 0 otherwise, and the last entry of inc® ¥ (u) is 1.

e Nullifying an induced path: Furthermore, for an induced path P in G- (V(é) \ (A*UA"))
and a vertex u € V((?) \ (A* UA’), we denote inc? (u) = inc® Y (1), where X = V(P) NN and
Y = E(P) N E(G[N)).

Moreover, recall that given a vector v and an entry index i, v[i] denotes the i*" entry of v.

LEmMA 4.17. Let P be an induced path in G[V(G) \ V(C)] for some C € 5\ C* such that P is not
covered by ‘W. For allu € V(C), ?:1 inc?(u)[i] =1 mod 2 if and only if Ng(u) N V(P) = 0.

Proor. Consider some vertex u € V(C). For the reverse direction of the proof, suppose that
Ng(u) N V(P) = 0. Then, all of the entries of inc” (1) equal 0, except for the last entry that equals
1. Thus, Z?zl inc’(u)[i] =1 mod 2.

For the forward direction of the proof, suppose that N (u)NV(P) # 0. Then, by Observation 4.15,
NG (u) N V(P)] is either 1 or 2, and if it is 2, then the two vertices in Ng(u) N V(P) are adjacent
on P. Furthermore, observe that as V(P) N V(C) = 0 and Ng(u) € V(C) U M’, we have that
Ng(u) NV (P) € M’. Thus, in case |[Ng(u) N V(P)| = 1, it follows that there exists exactly one entry
in inc”(u) that equals 1 apart from the last entry, which is the entry corresponding to the vertex
in Ng(u) N V(P). Moreover, in case |[Ng(u) N V(P)| = 2, it follows that there exist exactly three
entries in inc’ (u) that equal 1 apart from the last entry, which are the two entries corresponding
to the two vertices in Ng(u) N V(P) and the entry corresponding to the edge between these two
vertices. In both cases, we derive that Z?=1 inc”(u)[i] =0 mod 2 as desired. O

The reason we need Lemma 4.17 is that we make use of it in the proof of the following lemma.
Informally, this lemma exhibits the existence of k + 1 “replacements” for each unmarked shallow
terminal.

LEMMA 4.18. Letw € V(é) \(A*UA U E), and let O be an AW that is not covered by ‘W such
that V(Q) N (V(é) \ (A* UA’ UA)) = {w} and w is the shallow terminal of Q. Let {cy, ca} be the set
of centers of O (with ¢; = ¢ if O is a t-AW). Then, for all i € [k + 1], there exists v € B’{cbcz} such
that G[(V(Q) \ {w}) U {uy}] is an obstruction.

Proor. Consider some i € [k + 1]. Let C be the connected component in C containing w. Notice
that ¢1,c; € M’ as (c1, w), (c2,w) € E(G), V(O) N (V(C) \ (A* UA"UA)) = {w}, and Ng(w) C
M’'UV/(C). Let us first argue that there exists an occurrence of inc(w) in Vi, ¢,} \Vi;l o) To this end,

note that as w is the shallow terminal of O, it is adjacent to ¢; and c;, and therefore w € Ay, c,}.

Moreover, because w ¢ Z there exists an occurrence of inc(w) that does not belong to V]{C;lcz},
-1
c,e2}”

. . 3ri-1 i
As we have shown that inc(w) in Vi, ¢, \ Vl{cl,CZ}’ the fact that B?Cl

which implies that there exists an occurrence of inc(w) in V¢, ¢,} \ Vi

o) is a basis for V¢, ¢,} \

V’%;l o) implies that there exist vectors vy, vy, ..., v, for some t € N (in particular, ¢ > 1) and

non-zero coefficients Ay, Ay, ..., A; such that A;v; + A3vs + -+ + A;v; = inc(w) over ]Fg. As the
coefficient are from field F,, they are all necessarily 1. Thus, we have that

Vi + Vs + -+ +V; = inc(w) over Fg.
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Denote u; = uy, foralli € [t]. Then, inc(uy)+inc(uz)+: - -+inc(u;) = inc(w) oveng.Inparticular,
inc? (uy) + incP(uz) + - +incl(u;) = incf(w) over ]Fg, where P is the extended base of O. This

implies that Z ch(u Wil = ;.1 . inc” (w)[j] mod 2. (Note that since V(@)ﬁ(V(é)\(A*U
AU A)) = the extended base is completely contained in G[V(G) \ (V (5 Y\ (A*UA U ;f))],

and furthermore P is not covered by ‘W by the premise of the lemma.) By Lemma 4.17 and since
Ng(w)NV(P) =0 (because w is the shallow terminal of Q), we have that Z?:l inc? (w)[j] =

1 mod 2. Thus, /_ |ncP(ul)[]] = 1 mod 2. This implies that there exists i € [t] such
that Z L inc Py, )[)] = 1 mod 2. However, by Lemma 4.17, this means that Ng(u;) N V(P) = 0.

Moreover we have that u; € Ay, ,} because u; is associated with the vector v; which belongs to
B’{'C1 o,)- Hence, G[(V(O) \ {w}) U {u;}] is an AW. This completes the proof. O

Due to the definition of A, as a direct corollary to Lemma 4.18 we have the following result.

COROLLARY 4.19. Letw € V(C) (A* UA U E), and let O be an AW that is not covered by ‘W
such that V(O) NV (C) \ (A* UA’UA)) = {w} and w is the shallow terminal of Q. Then, there exists
aset ACA of size k + 1 such that for eachu € A, G[(V(Q) \ {w}) U {u}] is an obstruction.

We are now ready to conclude the proof of Lemma 4.3 and thereby this section.

Proor or LEMMA 4.3. Toward the proof, first note that if the condition of Reduction Rule 4.3
applies, then we are clearly done—indeed, in this case, we output an instance (G’, k) equivalent to
(G, k) where |V(G’) < |[V(G)|. Thus, we next suppose that this rule has been applied exhaustively.
Then, our output is the set B= A* UA’ UA. By Observations 4.10 and 4.13, and by Lemma 4.16, we
have that |B| < |[A*| + |A] + |A] < (k+ DIM'2 + (k + 1)IM'|* + 4(k + 1)} M1 < 8(k + 1)3|M’|1°
as desired (recall that |M’| > k > 2).

Let S € V(G) be some arbitrary set of size at most k. We claim that the following property holds:
If there exists an obstruction O for G that is not covered by ‘W and such that V(0) N S = 0, then
there exists an obstruction O’ for G such that V(0’) NS = @ and V(O’) N (V(é) \ B) = 0. Clearly, if
there does not exist any obstruction O for G that is not covered by ‘W and such that V(Q) NS = 0,
then our proof is complete. Hence, we next suppose that such an obstruction exists, and we let
Q’ be such an obstruction that minimizes |V (Q’) N (V(é) \ B)|. We claim that for this obstruction
Q’, it holds that V(O’) N (V(é ) \ B) = 0, which would complete the proof. Suppose, by way of
contradiction, that this claim is false. Then, as V(C*) C B, there exists C € C \ C* and v € V(C)
such that v € V(O’). By Lemma 4.12, [V(0’) N V(C)| = 1 and O’ is an AW where v is a terminal.

Let us first suppose that v is not the shallow terminal of O’. Then, by Lemma 4.14, there exist
(k + 1) vertices u € A’ such that G[(V(0Q’) \ {v}) U {u}] is an obstruction. However, as |S| < k, this
means that there exists u € A’ \ S such that G[(V(Q’) \ {v}) U {u}] is an obstruction. As A” C B and
G[(V(O’) \ {v}) U {u}] has fewer vertices from V(é) \ B than O’, we have reached a contradiction
to the choice of O’. _

As the choice of v was arbitrary, we derive that V(O’) N (V(C) \ B) contains exactly one vertex,
which we denote by w, that is the shallow terminal of O’. In this case, by Corollary 4.19, there exist
(k + 1) vertices u € A such that G[(V(O’) \ {w}) U {u}] is an obstruction. However, as |S| < k, this
means that there exists u € X\ S such that G[(V(Q’) \ {w}) U {u}] is an obstruction. As ACBand
G[(V(O’) \ {w}) U {u}] has no vertices from V(é) \ B, we have again reached a contradiction to
the choice of O’. This completes the proof. O

4.1 Bounded Intersection Two Families Lemma

At the heart of our marking scheme to handle shallow terminals is in fact the special case of
Lemma 1.1 where ¢ = 2. Indeed, viewing this case in a more abstract manner, let us give a rough
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description of the relation between it and the statement of Lemma 1.1. For all ¢1, ¢, € M’, we have
sets Aj, Ay, ..., A; and By, By, . .., B;, which are defined as follows. First, the universe is the set of
all vertices and pairs of vertices in N. Second, let W denote a set of vertices w € V(C) \ (A* U A’)
such that (i) w is adjacent to ¢; and c;, and (ii) w has at least one induced path in G[N], say P,,,
which contains no vertex adjacent to w, so that the two following properties hold:

e For all distinct w, w’ € W, w is adjacent to at least one vertex on P, .
e For every induced path P in G[N] that has no vertex adjacent to some vertex in V(C) \ (A* U
A’), there also exists a vertex in W that is not adjacent to any vertex on P.

These properties mean, in a sense, that W is a minimal set that “covers” all induced paths in G[N]
that can potentially create AWs together with ¢; and c; as centers. Then, t = |W|, and denote
W = {wy,wy...,w;}. For every vertex w; € W, we create the new set A;, which contains all
the neighbors of w; in N, and the new set B;, which is equal to V(P,,,). Clearly, for all i € [¢],
A; N B; =0, and due to Observation 4.15, for all distinct i, j € [t], |A; N B;| € {1,2}.

Let us now turn to the proof of Lemma 1.1. For convenience, let us restate it.

LEMMA 1.1 (BOUNDED INTERSECTION Two FAMILIES LEMMA). Let Ay,...,A,, and By, ..., By, be
families over a universe U such that (i) for every i < m, A; N B; = 0, and (ii) for every j #+ i,
A N Bjl € {1,....c}. Then,m < 25, ('7").

Proor. Let |[U| = n,and letd = }}7_, (';) Let D be the set of all subsets of U of size at most ¢
(including the empty set). Note that we have |D| = d. Fix a bijection between D and {1, 2,...,d}.
We construct an incidence vector v; for each set A;, where v; is indexed by the subsets of U of
size up to c. More precisely, we have a vector v; € {0, 1}¢, where v;[X] = 1 if and only if X C A;.
Let us note that v;[@] = 1 for all 1 < i < m. We consider these vectors as elements of the vector
space ]Fg. Similarly, we construct vectors uy, uy, . .., u,, for each set By, By, . . ., By,,. We first claim
that for every i € [m], we have v; - u; = 1. This follows from the fact that A; N B; = (). We next
claim that for each i, j € [m], where i # j, we have v; - u; = 0. This follows from the following
observation. Let C;; = A; N B;. Then, as |C;;| € [c], we have that 2Ci C D, where 2€5 denotes the
collection of all subsets of C;;. Now, observe that v;[X]u;[X] = 1 if and only if X C C;;. As |25¥/]
is an even number (greater than or equal to 2), it follows that v; - u; = 0 over the field FF;.

Now, suppose that m > d. Then, the collection vy, vy, ..., Vv, is not linearly independent in Fg.
Hence, there is a vector, say v,,, such that v, = a;vy + apvy + - - - + d—1 V-1, Where a; € F, for
each j € [m — 1]. We claim that there is a vector v; such that v; - u,, = 1 for some i € [m — 1]. This
follows from the following equation.

m—1
Z ;v |- Uy
=1

Vi Uy, =
m-—1
= 1= Z a;j(Vj - uy,)
=1
However, this is a contradiction. Hence, m < d. This concludes the proof of this lemma. O

5 BOUNDING THE MAXIMUM SIZE OF A CLIQUE OF NON-MODULE COMPONENTS

Let n = 21 . 4(k + 5)('%'). Recall that C is the set of connected components of G — M, D is

the set of connected components in C that are modules, and D = C \ D. Let (P, §) be a clique

path of G[V(D)], V(P) = {x1,x2,...,x;:}, and for each i € [t] we let B; = (x;). Furthermore, let
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B(P) = U!_ B(x;). Let B; be a bag such that |B;| > 5. Toward bounding the size of B;, we mark
some of the vertices in B; and delete all the unmarked vertices in B; from G. In fact, in a step, we
only delete one unmarked vertex and then repeat the whole kernelization algorithm on the reduced
instance. In the following, we describe the precise marking procedure.

Marking Scheme. To define our marking scheme, we first introduce some notations. We define
two functions, namely, idfﬁ, idiht : B;i — [t]. Intuitively, these functions denote how far or close
a vertex appears in the bags that are to the left and right of B;, respectively. For a vertex v € B;,
idl"ft (v) is the smallest integer x € [t] such that v € By, and idiht(v) is the largest integer y € [¢]
such that v € By. Note that for each v € B;, we have idliﬂ(v) <i< idﬁht(v). A frame F = (X,Y)
in G is a pair of vertex subsets such that X C M of size at most 10 and Y C X. A vertex v € V(G)
is said to fit a frame F = (X,Y) if Ng(v) N X = Y. We now move to the construction of the set
H; C B;, of marked vertices. For each frame F in G, we create four sets LE:, L]F’i, RF’i, RE’; C B; of

cls’ far
marked vertices each of size at most k + 5 (and add these vertices to H;) as follows:

e We create the set Lf;: as follows. Let W be the set of unmarked vertices in B;, which fit the

frame F. If |W| < k + 5, then add all the vertices in W to LE:. Else, let Wiow € W be the set
F,i

of k + 5 vertices with lowest idlift values among the vertices in W. Add Wioy to L, .

e We create the set L]CF]’: as follows. Let W be the set of unmarked vertices in B;, which fit the
frame F. If |W| < k + 5, then add all the vertices in W to L]CFI’:. Else, let Whigh € W be the set
of k + 5 vertices with highest idfft values among the vertices in W. Add Whigh to L]CFL:

e We create the set R]f;ri as follows. Let W be the set of unmarked vertices in B;, which fit the

frame F. If [W| < k + 5, then add all the vertices in W to Rg:. Else, let Whigh C W be the set

of k + 5 vertices with highest idﬁht values among the vertices in W. Add Whgp to R?ar'

e We create the set RE’! as follows. Let W be the set of unmarked vertices in B;, which fit the
frame F. If |W| < k + 5, then add all the vertices in W to RE’Si. Else, let Wiow € W be the set
of k + 5 vertices with lowest idiht values among the vertices in W. Add Wiy, to RE’si.

Notice that |H;| < 21°-4(k+5) ('%‘) = 1. Before proceeding further, we observe (Observations 5.1
and 5.2) certain useful properties regarding a frame F to which v € B; \ H; fits and the vertices in
[Fi gRE i g pRi

far® ~“far’ “cls’ cls”

OBSERVATION 5.1. For a frame F = (X, Y) to whichv € B; \ H; fits and a vertex w € Ng(v), the

following holds:

o [fweY, then L]f’: URE: C Ng(w).

al

o Ifw e V(G) \ M, then at least one ofL]f;f \ {w} € Ng(w) oer;: \ {w} € Ng(w) holds.

Proor. In the first case, it follows from the definition that L]z;ri U Rf;: C Ng(w). Now we prove
the second part of the observation. First, consider the case when both v and w belong to B;. In this
case, the second claim holds because B; is a clique, L]E;: C B; and RE: C B;. So let us assume that
w ¢ B;. However, w € Ng(v) and hence both v and w lie in the same bag, say B;, on the clique path
PP. Since the bags in which w is present occur consecutively on P, we have that all these bags either
appear left of B; or right of B;. Let us consider the case when all the bags containing w appear left
of B;. The other case when all the bags containing w appear right of B; is symmetric. We will show
that L]f;: \ {w} € Ng(w). Toward this, we will show that for every x € L]f;f \ {w}, there exists a bag
that contains both x and w. For a vertex z, let s, denote the leftmost bag on P in which z appears
and e, denote the rightmost bag on P in which z appears. Recall that v is an unmarked vertex in B;
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and thus s, < s, < i < ey. Furthermore, we know that s, < j < i. This implies that x also belongs
to B;. Hence, we have shown that LE: \ {w} € Ng(w). This concludes the proof. |

OBSERVATION 5.2. For a frameF = (X,Y) to whichv € B; \ H; fits and a vertex w ¢ Ng(v), the
following holds:

o IfweX\Y, then (L' URSY) N Ng(w) = 0.

cls

o Ifw e V(G) \ M, then at least one ofL]f[’Si N Ng(w) =0 orRE’si N Ng(w) = 0 holds.

ProoOF. In the first case, it follows from the definition that (L]F’i U R]F’i) N Ng(w) = 0. In the

cls cls

second case, if w ¢ V(E), then the claim trivially holds. Otherwise, v and w lie in the clique path
P. Since w ¢ Ng(v), there is no bag that contains both v and w, and v € B;. On the one hand,
w appears only in the bags (strictly) to the left of B;, in which case v being an unmarked vertex
implies that L]CFfSi N Ng(w) = 0. On the other hand, if w appears only in the bags (strictly) to the

right of B;, we have RS’Si N Ng(w) = 0. O
Next, we give a reduction rule that deletes unmarked vertices from B; in G.

Reduction Rule 5.1. Let v be a vertex in B; \ H;. Delete v from G—that is, the resulting instance

is (G — {v}, k).
LEmMMA 5.3. Reduction Rule 5.1 is safe.

Before moving to the proof of Lemma 5.3, we note that using it we immediately obtain the
following lemma.

LEMMA 5.4. If Reduction Rule 5.1 is not applicable, then for each j € [t], we have |Bj| < 7.

Proor. Follows from the safeness of Reduction Rule 5.1 (Lemma 5.3) and the fact that |H;| < 7,
for each j € [t]. O

In the remainder of this section, we focus on the proof of Lemma 5.3. Let v be a vertex in B; \ H;
and G’ = G — {v}. We will show that (G, k) is a Yes-instance of IVD if and only if (G’,k) is a
Yes-instance of IVD. In the forward direction, let S be a solution to IVD in (G, k). As G — S is an
interval graph and so are all its induced subgraphs, we therefore have that S \ {v} is a solution to
IVD in (G, k).

In the reverse direction, let S be a solution to IVD in (G’, k). We will show that G—S is an interval
graph. Suppose not, then there must be an obstruction in G — S. Note that all the obstructions in
G — § are guaranteed to contain v, as otherwise the obstruction is also present in G’ — S, which
contradicts that S is a solution to IVD in (G’, k). This implies that S U {v} is a (k + 1)-solution for
G. Recall that ‘W is (k + 1)-necessary, and therefore S U {v} hits ‘W. Since v ¢ M and ‘W C 2™,
we derive that S hits ‘W. But then any obstruction in G — S is not covered by ‘W since v ¢ M. This
together with the fact that M is a 9-redundant solution implies that for any obstruction O’ in G-,
we have |[V(O’) N M| > 10. Moreover, such an obstruction can either be a cycle, a T-AW, or a £-AW
on at least 10 vertices. Among all obstructions in G—S§ (containing v), we will proof the correctness
of the lemma by carefully choosing an (available) obstruction, and in each case arriving at some
contradiction. In the following, we describe the choice of the obstruction O in G — S:

(1) If G — S has an induced cycle Q (containing v) of length at least 10, then O is set to Q.
(2) Otherwise, O is an obstruction in G — S (containing v) of minimum possible size, and over
all such minimum sized obstructions, O maximizes the number of vertices from B;.
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We will consider cases depending on which type of obstruction O is, as well as the role that v
plays in O. In the case when O is an induced cycle, our goal will be to obtain an obstruction not
containing v in G — S. In all other cases, we either will obtain an obstruction not containing v, or
a smaller sized obstruction, or an obstruction that has the same number of vertices as O but has
more vertices from B; than O has from B;. In each such case, this will contradict the choice of O.

Next, we consider the cases depending on whether O is a cycle, a 1-AW, or a $-AW. We remark
that whenever we are dealing with a particular case, we will assume that the cases stated prior to
it are not applicable.

O Is a Cycle

Let us first note that |[V(0) N B;| < 2 as B; is a clique. Let x, y be the neighbors of v in O, and
note that they lie in M U S(PP). Since O is not covered by ‘W, we have |[V(O) N M| > 10. Let
M=Mn V(0), M’ C M of size 3 such that M N {x,y} € M’,and F = (M’, M’ N {x,y}). Next,
consider the sets L¢,, = LL;a: \ (SUV(0)) and Ry, = RZ: \ (SUV(0)). Since |S| < k, v ¢ H;, and B;
is a clique, therefore L, Rfar # 0. Let z € M’ \ {x, y}, which exists since |M’| = 3. Now suppose
that there is v* € Lgy U Rgy, such that (0™, x), (v*,y) € E(G), then we claim that we can obtain a
cycle on at least four vertices not containing v in G — S. Since v* fits F, therefore (v*,z) ¢ E(G).
Consider the paths Py, and Py, from x to z and y to z in O — {v}, respectively. Furthermore, let x*
and y* be the last vertices in Py, and P,; which are adjacent to v*. Note that x* and y* exists since
(x,2%), (y,v") € E(G). But then the path from x* to y* in O — {v} along with v* forms an induced
cycle on at least four vertices in G — S that does not contain v.

Next, we assume that any vertex in Lg,, U R, is adjacent to at most one of x, y. From Observa-
tion 5.1 (together with (x, y) ¢ E(G)), it follows that either L,y € Ng(x) and Rear € N (y), or Rear C
Ng(x) and Ly, € Ng(y), must hold. Suppose that Le,, € Ng(x) and Rg,y © Ng(y) (the other case
is symmetric). Consider vertices u* € L, and v* € Ry, Note that (u”, x), (v*, y), (u*,v*) € E(G)
and (u*,y), (v*,x), (u",2), (v*, z) ¢ E(G). Consider the paths P, and P, from x to z and y to z in
O — {v}, respectively. Let x* be the last vertex in the path Py, such that N (x*) N {u*,v*} # 0. Sim-
ilarly, let y* be the last vertex in the path P, such that Ng(y*) N {u",v"} # 0. Let Py-, and P+ be
the paths from x* to z and z to y* in O—{v}, respectively. Notice that G[V (Py«;) UV (P,y+)U{u*, v"}]
contains an induced cycle (not containing v) on at least four vertices.

O Is a T-AW

Let O comprise of the base path base(Q) = (by,bs,...,b;), non-shallow terminals ¢, and t,,
shallow terminal ¢, and center ¢ (as in the definition in Section 2). Furthermore, let P(0) =
(te, b1, by, ..., by ty), and let by = ty, and b, = t,. Let M=Mn V(0). Recall that O is not covered
by ‘W, and thus |M| > 10.Let M’ be a subset of M of size 8 such that MN{c, t, t7, ty, by, by, by_1,b,} C
M’;and F = (M’, M’ N Ng(v)). Next, we define the following sets, whose vertices will be used to
either construct an obstruction not containing v, or an obstruction containing v but with (strictly)
smaller size, or an obstruction with same number of vertices as O but containing strictly more
vertices from B; than O contains from B;. Let Lg,, = L]fa’: \ (SUV(0)), Lgs = L]chsi \ (S U V(0)),
Rear = Ri:1\ (SUV(0)), and Ras = RS\ (S U V(0)). Notice that [V(0) N B;| < 3, since no 1-AW
contains a clique of size 4 and G[B;] is a clique. This together with the fact that v ¢ H; and |S| < k
implies that Ly, Leis, Rfar, Reis # 0. Next, we consider cases depending on the role that v plays in
the obstruction O.

Suppose v Is the Shallow Terminal. In this case, (v, c) € E(G), and therefore from Observation 5.1,
one of Li,y € Ng(c) or Rear € Ng(c) must hold. Consider the case when L¢,, € Ng(c) (the other
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fo b1 by be1be beptbeibe tr te by by be 1bybary be1be beyrbe 1b b
+-AW.S.3.A +-AW.S.3.B

Fig. 2. Construction of an obstruction when O is {-AW and v = t.

case is symmetric), and let v* be a vertex in Lg,,. Next, we consider the following cases based on
the neighborhood of v* in O (Figure 2).

Case T-AW.S.1. Ng (v*) N V(P(Q))] = 0. In this case, G[(V(0) \ {v}) U {v*}] isa 1-AW in G’ - S.

Case 1-AW.S.2. If |Ng(v*) N V(P(Q))| = 1. If (v*,t,) € E(G), then G[{v",c,ts,b;}] is an in-
duced cycle on four vertices not containing v in G — S. Analogous argument can be given when
(v*, t,) € E(G). Therefore, we assume that N (v*)NV(P(Q)) = {b;}, where i € [z].Ifi € [z]\{1, z},
then G[{v*,v,b;,bi_1,bi_2,bi+1,bi+2}] is a long claw in G — S. This cannot happen, as any ob-
struction in G — S is of size at least 10. If none of the preceding cases are applicable, then
Ng(v") N V(P(0)) € {{b1},{b.}}. Suppose that Ng(v*) N V(P(Q)) = {b1} (the other case is sym-
metric), then G[{c, v, v", by, by, bs, t¢}] is a whipping top in G — S.

Case T-AW.S.3. |[Ng (v*) N V(P(Q))| > 2. If neighbors of v* are not consecutive in the path
P(0), then we can obtain an induced cycle on at least four vertices in G[{v*} U V(P(0))], and
therefore we assume that the neighbors of v* in P(Q) are consecutive. By the construction of F
and v*, we know that there are at least seven vertices in P(Q) that are non-adjacent to v* (recall
that we are in the case when v is the shallow terminal). This also implies that |{t¢, t,}"Ng(v™)| < 1.
Without loss of generality, we assume that (v*, t,) ¢ E(G). Next, we consider the following cases
based on whether or not (v*, t¢) € E(G):

(A) (v*, tg) € E(G).In this case, there exists e € [z—2] such that b, € Ng(v*) and bey1 ¢ Ng(0*).
Let V' = {v,v", ¢, tg}U{by, by, . .., be, bey1}. Observe that G[V'] is a £-AW with |V’| < [V(0)],
a contradiction to the choice of O.

(B) (v* tr) € E(G). Let by and b, be the first and the last vertices in P(O) that are adjacent to v*,
respectively. Notice that s # e (since |[Ng(v*) N V(P(0))| > 2), and {bs, bs+1, .. . be, bes1} C
{b1,bs,...b,} (strict subset). Let V' = {v,0"} U {bs_1, b5, bst1,...,be,bes1}. Observe that
|[V’| < |V(0)]| and G[V'] is a T-AW.

Suppose v Is the Center. In this case, (t7,v), (tr,v) ¢ E(G). Since v ¢ H; and each vertex in
Lcis U Rgjs fits the frame F, from Observation 5.2 one of the following holds: (1) Ng(t¢) N Lgs = 0
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te bl b2 bs—l bs bs+1 bs+2 bc bc+1 bz—l bz ty te bl b2 bs—l bs bs+1 bs+2 bc bc+1 bz—l bz tr
+-AW.C.1 +-AW.C.2

te . s Dst1 be

+-AW.C.3.A +-AW.C.3.B

Fig. 3. Construction of an obstruction when O is {-AW and v = c.

and Ng(t;) N Res = 0, (2) Ng(t) N Lgs = 0 and Ng(te) N Rys = 0, (3) Ng(te) N Las = O and
NG (t;)NL¢s = 0,0r (4) Ng(tr)NRes = 0 and NG (t,)NRes = 0. Consider a vertex v* € LgsURs, and
let bs and b, be the first and the last vertices in the path P(O) that are adjacent to v*, respectively.
The existence and distinctness of bs, b, follow from the fact that [Ng(v*) N V(P(Q))| > 5, which
in turn is implied from the choice of M’ and v* fitting the frame F. The neighbors of v* in P(O)
must be consecutive, as otherwise we can obtain an induced cycle of length at least 4, which does
not contain v. We further consider subcases based on whether or not the following two criterions
are satisfied (Figure 3):

(1) t € No(v*);
(2) No(v™) N {te, tr} = 0.

Case T-AW.C.1.t ¢ Ng(v*).If {tr, 1} € Ng(v*), then G[{v", t¢, by, v, b, t,, t}] is a whipping top.
Here, we rely on the fact that neighbors of v* in P(0) are consecutive and b; and b, are not adjacent
as O has at least 11 vertices. From the preceding, we can assume that |{t,,t,} N Ng(v*)| < 1. Let
V' = (V(O)\ {bss1, bsta, ..., be—1}) U{v*}. Notice that |V’| < |[V(Q)] since [Ng(v*) NV (P(Q))| > 5
and neighbors of v* are consecutive. Moreover, G[V'] is an (induced) -AW or a net, which is of
strictly smaller size than O, contradicting the choice of Q. Here, we crucially rely on the fact that
ING (") N {te, 1} < 1.

Case T-AW.C.2. t € Ng(v*) and Ng(v*) N {te,t,.} =0. In this case, G[{v*t,bs_1,Ds,
bs+1,...,be,bes1}] forms an (induced) -AW in G — S that does not contain v.

If Cases T-AW.C.1 and -AW.C.2 are not applicable, then for each u € LosURs we have t € Ng(u)
and Ng(u)N{te, t,} # 0. Furthermore, v ¢ H;, (t¢, v), (t,v) ¢ E(G), and each vertex in L¢s URs fits
the frame IF. Therefore, one of the following must hold: (1) Ng(t/)NLcis = @ and N (t,)NRqs = 0 or
(2) NG (t,)NL¢js = 0 and NG (t7)NRyis = 0. Thus, for each u € LsURs, we have |Ng (w)N{te, t,}] = 1.
We assume that Ng(t7) N Lgs = 0 and Ng(t,) N Rs = 0 (the other case is symmetric). Next,
we consider a vertex u* € L5 and a vertex v* € Rs. Notice that (by the preceding discussion)
t € Ng(u") N Ng(v*), tr ¢ Ng(u™), t, € No(u¥), t, ¢ Ng(v*), and ty € Ng(v"). Additionally, since
u*,v* € B;, we have (u*,v*) € E(G). We now consider the remaining case.
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+-AW.T.1 and t-AW.T.2.A +-AW.T.2.B.i.a
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Fig. 4. Construction of an obstruction when O is -AW and v = t.

Case T-AW.C.3.t € Ng(u*) N Ng(v*), Ng(u*) N {ty, t,} = {t,-},and Ng (v*) N {tg, 1.} = {t¢).
We consider the following subcases:

(A) u* and »* have no common neighbor in P(Q). Then G[{u*,v*} U V(P(QO))] contains an
(induced) cycle on at least four vertices.

(B) Otherwise, u* and »* have at least one common neighbor in P(Q). Let b, and b, be the first
and the last common neighbors of u* and v* in P(D), respectively. Notice that b,_; € Ng(v")
and b,_; ¢ Ng(u"). This follows from the fact that t¢,b; € Ng(v*), neighbors of v* are
consecutive vertices in P(0), t; ¢ Ng(u*), and p is the first common neighbor of u* and v*
in P(0). Similarly, we can argue that by4; € Ng(u*) and bgy; ¢ Ng(v*). Consider the set
V' ={t, 0", u"} U{bp_1,bp,...,bg,bg1}. Notice that G[V'] is a £-AW or a tent that does not
contain v.

Suppose v Is One of the Non-Shallow Terminals. We consider the case when v = t,. By a symmet-
ric argument, we can handle the case when v = t,. If ¢ ¢ S(P), then for each u € L5 U Rys we
have (u,c) ¢ E(G), as it fits the frame F and Ng(u) \ (M U B(P)) = Ng(v) \ (M U S(P)) = 0.
Otherwise, ¢ € P(P), and then from Observation 5.2, at least one of Lgs N Ng(c) = 0 or
Ris N Ng(c) = 0 holds. Let Xs € {Lcs, Reis} be a set such that X s N Ng(c) = 0. Similarly,
if by ¢ P(P), then for each u € Lg, U Rp,, we have (u,b) € E(G), as it fits the frame F and
Ng(u) \ (MU B(P)) = Ng(v) \ (M U B(P)) = 0. Otherwise, b; € S(P), and then at least one of
Ltar € Ng(by) or Rear € Ng(by) holds (see Observation 5.1). Let Yar € {Lfar, Rfar} be a set such that
Yrar € Ng(b1). Next, we consider cases based on whether or not b; € B; (Figure 4).

Case T-AW.T.1. by € B;. Consider a vertex v* € Xs. Note that (v*, b;) € E(G) since b; € B;, and
(v*,c) ¢ E(G) by the choice of v*. Additionally, (v*,t) ¢ E(G), and otherwise G[{t,c, b;,v"}] is
cycle on four vertices in G — S. Recall that v* fits the frame F (and (b1, v") € E(G)), and therefore
there exists b, such that b, € Ng(v*) and b,y ¢ Ng(v*), where e € [z — 1] (possibly e = 1).
This together with the fact that neighbors of v* in P(Q) are consecutive (otherwise, we obtain
an induced cycle on at least four vertices not containing v) implies that (v*, t,) ¢ E(G). But then
G[{t,c,0*} U {be,bes1,...,bs, t,}] is a T-AW (or a net) that does not contain v.
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Case 1-AW.T.2.b; ¢ B;.Consider avertex v* € Y, U{u € X5 | (1, b1) € E(G)}, and the following
cases based on its neighborhood in O:

(A) (v*¢) ¢ E(G). In this case, (v*,t) ¢ E(G), and otherwise G[{v*, t, ¢, b1}] is an induced cycle
on four vertices. Recall that v* fits the frame F, and therefore there are at least five vertices
in P(O) that are non-adjacent to v*. This together with the fact that (b, v*) € E(G) implies
that there exists e € [z — 2] such that b, € Ng(v*) and be+; ¢ Ng(v*). But then G[V'] is a
T-AW (or a net) not containing v in G — S, where V' = {t,c, 0", t,} U {be, be+1, ..., b }.

(B) (v*,c) € E(G). We further consider the following cases:

(i) There exists e € [z] \ {1} such that b, € Ng(v*) and b.4; ¢ Ng(v*). By the choice of
M’ and the fact that v* fits F, we have e < z — 2. Consider the following cases based on
whether or not (¢,v") € E(G):

(a) (t,v*) € E(G).Let V' ={t,c,v",v,t,}U{be, bes1,. . .,b.}. Observe that G[V'] is a T-AW in
G —S. Furthermore, either |V’| < |V(Q)] or |V’| = |[V(O)| and |V’ NB;| > |V(O)N B;|. Here,
we rely on the fact that b; ¢ B;. In either case, we obtain a contradiction to the choice of O.

(b) (t,v*) € E(G).Let V' = {t,c,v",v} U{by, by, ..., be,bes1}. Observe that G[V'] is a £-AW
in G — S and |V’| < |[V(0)|, which contradicts the choice of O.

(ii) Otherwise, if (i) does not hold, then the only neighbors of v* in P(O) are b; and v. Consider
the following cases based on whether or not (t,v") € E(G):

(a) (t,v*) € E(G). In this case, G[{v, v", t,c, by, bs}] is a tent.

(b) (t,v*) € E(G). We consider a vertex in u* € X5 to obtain the desired obstruction. We
can assume that (b1, u*) ¢ E(G) as X¢js N Ng(c) = 0 and Case T-AW.T.2.A is not applicable.
Furthermore, (b;, u*) ¢ E(G), for each j € [z]\{1}, and otherwise G[{v, u*}U{by, b,, ... b;}]
will contain an induced cycle on at least four vertices. Let V' = (V(Q) \ {v}) U {v*,u"}.
Observe that G[V’] is a T-AW that does not contain v.

Suppose v Is Either by or b,. Suppose v = by (the other case is symmetric). If t, ¢ S(P), then
for each u € Lg, U Ry, we have (u,t7) € E(G), as it fits the frame F and Ng(u) \ (M U B(P)) =
NG (0)\(MUB(P)) = 0. Otherwise, t, € f(P), and then at least one of L¢,, € Ng(t¢) or Reyy € Ni(te)
holds (see Observation 5.1). Let Xg,y € {Lfar, Rfar} be a set such that Xg,, C Ng(tr). Similarly,
if b, ¢ P(P), then for each u € Lg,, U Rpyy we have (u,b;) € E(G), as it fits the frame F and
Ng(u) \ (MU B(P)) = Ng(v) \ (MU B(P)) = 0. Otherwise, b, € B(P), and then at least one of
Ltar € Ng(b2) or Rear € Ng(bo) holds. Let Yiar € {Lfar, Rfar} be a set such that Yi,, € Ng(by). Next,
we consider cases depending on the neighborhood of vertices in X, U Y, in O (Figure 5).

Case T-AW.B.1. There is a vertex v* € Xgar U Ygo, such that {tg, bo} € Ng(v*). There exists e €
[z—2] such that b, € Ng(v*) and b..; ¢ Ng(v*). This follows from the fact that (v*, b;) € E(G) and
v* fits the frame F. Next, we consider the subcases based on whether or not (v*, ¢), (v*, t) € E(G):

(A) (v*c) € E(G), (v*,t) € E(G). Let V' = {t,c,0", te, tr} U {be,bes1,...,b,}. Observe that
G[V’] is a T-AW that does not contain v.

(B) (v* ¢) € E(G), (v*t) € E(G). Let V' = {t,c,v*,v,tr} U {bs, bs,...,be,ber1}. Observe that
G[V’] is a £-AW that has strictly fewer vertices than O.

(C) (v* c) ¢ E(G). Notice that in this case (v*,t) ¢ E(G), and otherwise G[{v*,t,c, b,}] is an
induced cycle on four vertices. Let V' = {t,c,v", t;} U {be, be+1, - . ., b, }. Observe that G[V']
is an induced T-AW that does not contain v.

Case t-AW.B.2. Suppose that for every u € Xy U Yfar, we have (u, ¢) € E(G). Since Case f-
AW.B.1 is not applicable, we can assume that for each u € Xp,, U Yi,, we have {t,, b} € Ng(u).
By the construction of Xg,, and Yf,,, we know that for each u € Xf, U Yior we have {tz, by} N
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te v by be—1 be beti bero b.o1 b, tr te v by be—1 be bey1 bey2 bio1 bt
+-AWB.LA +-AW.B.LB

t

17 v bg be be+1 be+2 bz,1 bz tr te v 52 b271 bz tr te v b2 be—l be be+1 be+2 bz ty
-AW.B.1.C +-AW.B.2.A -AW.B.2.B
t t

v

e v by be—1 be et bega b. tr 17 v by b,y b, U
+-AW.B.2.C +-AW.B.3.A

Fig. 5. Construction of an obstruction when O is 1-AW and v = b;.

Ng(u) # 0, and Xiay, Yiar # 0. Consider a vertex v* € Xg,, and a vertex u* € Yi,,. We have that
(v*,¢), (u%, c), (V" tp), (u*, by) € E(G) and (v, by), (u*, t7) ¢ E(G). Next, we consider cases based
on whether or not ¢ adjacent to v* and u™:

(A) (t,v*) € E(G). Recall that b, ¢ Ng(v*) and ts, t,c € Ng(v*). But then G[{c, v, v*, by, t¢, t}]
isatentin G - S.

(B) (t,u*) € E(G).Thereexistse € [z—2] such that b, € Ng(u*) and bey; ¢ Ng(u*). This follows
from the fact that (u*, by) € E(G) and u* fits the frame F. Let V' = {by,bs,...,be, ber1} U
{t,u*,tp,v}. Then G[V'] is a -AW in G — S which has strictly fewer vertices than O.

(©) (t,v*), (t,u*) ¢ E(G). We start by arguing that v* cannot be adjacent to b;, where j € [z]\{1}.
For j = 2, it follows from the choice of v*. Next, consider the smallest j > 2 such that
(v*,bj) € E(G). Then, G[{v,v*}U{by, bs, ..., b;}] is an induced cycle on at least four vertices,
which is a contradiction, as we assume previously stated cases are not applicable. Therefore,
we assume that the only neighbor of v* in P(0) are v and t,. Next, we argue about neighbors
of u* in P(0). There exists e € [z—2] such that b, € N5(u*) and b.+1 ¢ Ng(u*). This follows
from the fact that (u*,b;) € E(G) and u* fits the frame F. Let V' = {t,¢,t¢, tr, 0", u*} U
{be,bey1,...,b,}. Observe that G[V’] is a T-AW in G — S that does not contain v.

Case T-AW.B.3. Suppose that there is u € Xg,r U Yg,, such that (u,c) € E(G), and for all

u € Xgar U Ygor we have {tg, by} € Ng(u). Consider vertices v* € X, and u* € Yf,,, and the
following subcases.:

(A) (v* c) ¢ E(G). This implies that (v*,t) ¢ E(G), and otherwise G[v*,¢,t,v] is a cycle on

four vertices. As Case 1-AW.B.1 is not applicable, for each u € Y¢,, we have (u,b;) € E(G)
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te by by bj_1 V' bjt1 be beyi1 b1 b, i
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bj+lbe—l be be+1 b.—1 b, ty
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[28

Fig. 6. Construction of an obstruction when O is ¥-AW and v = bj, where j € [z — 1]\ {1}.

and (u,ty) ¢ E(G). Note that since v is unmarked, therefore Yz, # 0. From the preceding
discussions, we obtain that t, ¢ B;. Observe that v* cannot be adjacent to any b;, where j > 2,
since the neighbors of v* in P(O) must be consecutive, (v*,t¢) € E(G), and (v*, by) ¢ E(G).
But then G[(V(0) \ {t/}) U {v"}] is a T-AW with the same number of vertices as O but with
more vertices from B;.

(B) (u*,c) ¢ E(G). Since Case 7-AW.B.3.A is not applicable, we can assume that (v*,¢) € E(G).
Observe that G[{c, v*,u*, by}] is a cycle on four vertices. Here, we rely on the fact that
(v*, b2) ¢ E(G).

Suppose That v Is a Base Vertex b;, Where j € [z] \ {1, z}. Let Xrar € {Lfar, Rfar} be a set such
that Xy € Ng(bj—1) and Yrar € {Lfar, Rrar} be a set such that Yr,r € Ng(bj+1). We note that
existence of X¢,, and Yy, is guaranteed from Observation 5.1. Next, we consider cases based on the
neighborhood of vertices in Xg,, and Y, in O (Figure 6).

Case T-AW.J.1. There is v* € Xgar U Ygur such that (v%, ¢) € E(G). Note that as (v*,¢) ¢ E(G),
we have (v*,t) ¢ E(G), and otherwise G[{v, v*, c, t}] would be an induced cycle on four vertices.
All the neighbors of v* on P(O) must be consecutive. This together with the choice of F and v*
implies that one of (a) {t¢, b1} N Ng(v*) = 0 or (b) {¢,,b,} N Ng(v*) = 0 must hold. Suppose that
{tr,b;} N Ng(v*) = 0 (the other case is symmetric). Let e € [z — 1] such that b, is the last vertex
in P(0) that is adjacent to v, which exists since t,,b, ¢ Ng(v*) and Ng(v*) N {v, bj_1, bjs1} # 0.
We note that e could possibly be equal to j. Let V' = {t,c,v", t,} U {be, bes1, - - ., b, }. Observe that
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|[V’'| < |V(Q)]| since j € [z] \ {1,z}. Moreover, G[V’] is a -AW in G — S, which contradicts the
choice of Q.

Note that if Case -AW.].1 is not applicable, then for each u € X¢,, U Yi,, we have (u, ¢) € E(G).
Next, we consider cases based on whether or not the following conditions are satisfied for a vertex
U € Xfar U Year:

(1) (u,t) € E(G);
(2) {bj-1,bjs1} S NG (u).

Case T-AW.F.2. If there is v* € X¢ar U Yfar such that (v*,t) € E(G). We start by recalling the
following. Since M is a 9-redundant solution and O is not covered by ‘W, we have IMNV (0)| > 10,
which implies that [V/(0)| > 10. By the choice of FF and the fact that 2 < j < z — 1 (where v = b;),
we have at least four vertices in V(P(Q)) that are non-adjacent to v*. Moreover, by our assumption
that there is no obstruction that is an induced cycle on at least four vertices, we have that all the
neighbors of v* in P(O) must be consecutive. From the preceding discussions, we can conclude
that at least one of {by, by, ty} N Ng(v*) = 0 or {b,—1, b,, t,} N Ng(v*) = 0 must hold. Suppose that
{b,—1,b, t,} N Ng(v*) = 0 holds (the other case is symmetric). We further consider the following
subcases based on whether or not t; € Ng(v*):

(A) tp € Ng(v*). Let s € [j] such that by is the first vertex in P(0) that is adjacent to v*, which
exists since (tp, v*) ¢ E(G) and (v*,v) € E(G). Additionally, let e € [z — 2] such that b, is the
last vertex in P(O) that is adjacent to v*, which exists since (t,, v*), (b, v*), (b,-1,0") ¢ E(G)
and (v*,v) € E(G). Notice that s # e, since by the construction of the sets X, and Yy,
we have that v* is incident to v and at least one of the vertices in {bj_1, bj1}. Let V' =
{t,0"}U{bs_1,bs,...,be,bey1}. Observe that G[V'] isa T-AW in G—S. Moreover, |V’| < |[V(O)]
since t,,c,b, ¢ V and V' C V(Q) U {v*}.

(B) ty € Ng(v*).Lete € [z—2] such that b, is the last vertex in P(O) that is adjacent to v*, which
exists since (t,,v%), (b, v"), (b,—1,v*) ¢ E(G) and (v*,v) € E(G). Let V' = {t,v", ¢, 17} U
{b1,bs,...,be,ber1}. Observe that G[V'] is a £-AW in G — S. Moreover, |V’| < |V(0)]| since
tr,b, ¢ V' and V' C V(0) U {v*}.

Case 1-AW.J.3. There is v* € Xgar U Yor such that (v%t) € E(G) and {bj_1,bj+1} € Ng(v%).
Notice that all the neighbors of v* on P(O) must be consecutive, and there are at least four vertices
on P(0) that are non-adjacent to v*. This follows from the facts that M is a 9-redundant solution,
O is not covered by ‘W, G — S has no obstructions that are induced cycles, and the choices of
F and v*. From the preceding discussions, we can conclude that one of {t¢, b1} N Ng(v*) = 0 or
{tr,b,} N Ng(v*) = 0 must hold. Suppose that {t,,b,} N Ng(v*) = 0 (other case is symmetric).
Let e € [z — 1] such that b, is the last vertex in P(O) that is adjacent to v*, which exists since
tr,b, ¢ Ng(v*) and {bj_1, bjs1} € Ng(v*). Additionally, let s € [z — 1] U {0} be the lowest integer
such that (v*, bs) € E(G) (bs could possibly be same as bj_; or by = t7). Let V' = {t,c,v", ty, t,} U
{b1,bs,...,bs} U {be,bes1,...,b,}. Observe that G[V’] is an induced {-AW in G — S, which does
not contain v. Here, we rely on the fact that Case T-AW.J.1 is not applicable, due to which we have
(v*,¢c) € E(G).

Case t-AW.j.4. For all v* € Xgar U Yiar, we have (v, t) € E(G) and {b;j_1, bj11} € Ng(v*). The
non-applicability of Case -AW].1, -AW.J.2, and -AW.].3 (together with the constructions of X,
and Y,,) imply that for each u € Xp, U Yi,, we have (u,c¢) € E(G), (u,t) ¢ E(G), and |[Ng(u) N
{bj-1,bj11}| = 1. Next, consider a vertex u* € Xp,r and v* € Yg,,. Lets € [j—1]U{0} such that b, is the
first vertex in P(O) adjacent to u”, which exists since (u*, b;_1) € E(G). Additionally, lete € [z+1]
such that b, is the last vertex in P(O) adjacent to v*, which exists since (v*, bj+1) € E(G).Recall that
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(u*,bj_1), (", bj+1) € E(G) and (u*, bj+1), (v*,bj_1) € E(G). Moreover, the neighbors of u* and the
neighbors of v* in P(0) must be consecutive vertices in P(O), respectively. From the preceding
discussions, we can conclude that s # e. Now, we let V' = {t,¢,v*,u*} U {ty, b1, by, bs_1,bs} U
{be,bet1,. .., by, t}. Observe that G[V’] is a T-AW (or a net) in G — S that does not contain v.

O Is a :-AW

Let O comprise of the base path base(Q) = (b1, bs,...,b;), non-shallow terminals ¢, and t,,
shallow terminal ¢, and centers ¢; and ¢, (as in the definition in Section 2). Furthermore, let
P(Q) = (tg, b1,bs, ..., b)), by = tg, and by = t,. Let M=MnN V(0), M’ be a subset of M
of size 9 such that M N {cy, ¢z, £, g, ty, by, by, by, by} € M/, and F = (M’,M’ N Ng(v)). Next,
we define the sets, the vertices from which will be used to either construct an obstruction not
containing v, an obstruction containing v but with (strictly) smaller size, or an obstruction with
same number of vertices as O but containing more vertices from B;. Let Lg,, = L]E;: \ (SUV(0)),

Las = LEI\ (S UV(0), Rear = RZI\ (SUV(0)), and Ry = RS\ (S U V(0)). Notice that
|[V(0)NB;| < 4, since no obstruction contains a clique of size 5 and G[B;] is a clique. This together
with the fact that v ¢ H; and |S| < k implies that Le,, Lcis, Rear, Rels # 0. Next, we consider cases

depending on the role that v plays in O.

Suppose That v Is the Shallow Terminal. For a vertex u € L, U Rear, we have {c1, ¢} N Ng(u) #
(0. This follows from Observation 5.1 and the fact that (v, ¢1), (v,c2) € E(G). Next, consider the
following cases depending on the neighborhood of vertices in Ly, U Ry, in Q.

Case £-AW.S.1. There is v* € Lgar U Riar such that ¢y, ¢c; € Ng(v*). We further consider sub-
cases based on other neighbors (if any) of v* in O (Figure 7):

(A) |INg(v*) N V(P(Q))]| = 0. In this case, G[(V(0) \ {v}) U {v*}]isa :-AW in G — S.

(B) INg (v*) N V(P(Q))| = 1. If (v*,t7) € E(G), then G[{v*, cs,tr,b1}] is an induced cycle
on four vertices. Analogous argument can be given when (v*,t,) € E(G). Therefore,
we assume that Ng(v*) N V(P(Q)) = {b;}, where i € [z]. If i € [z] \ {1,z}, then
Gl{v*,v,b;,bi_1,bi—2,bi11,bis2}] is along claw in G—S. If none of the preceding cases are ap-
plicable, then Ng (v*) NV (P(Q)) is either {b;} or {b,}. Suppose that Ng (v*) NV (P(0)) = {b;}
(the other case is symmetric), then G[{cz, v, v*, by, b, bs, t¢}] is a whipping top in G - S.

(C) INg(v*) N V(P(Q))| = 2. If neighbors of v* are not consecutive in the path P(O), then we
can obtain an induced cycle on at least four vertices in G[{v*} U V(P(Q))], and therefore we
assume that the neighbors of v* in P(Q) are consecutive. By the construction of F and v",
we know that there are at least seven vertices in P(0) that are non-adjacent to v*. From the
preceding discussions, we can conclude that [{tz, t,} N Ng(v*)| < 1. Assume that (v, t,) ¢
E(G) (the other case is symmetric). Next, we consider the following cases based on whether
or not (v*, t7) € E(G):

(i) (v* t¢) € E(G). In this case, there exists e € [z — 2] such that b, € Ng(v*) and b, ¢
Ng(v*). Let V! = {v,0", ¢z, tp} U {b1,bs, ..., be, ber1}. Observe that G[V'] is a £-AW with
vV’ < |V(O)l.

(ii) (v t¢) € E(G). Let bs and b, be the first and the last vertex in P(O) that are adjacent to
v*, respectively. Notice that s # e (since |[Ng(v*)NV(P(0))| > 2), and {bs, bs11, . .. be, besr1} C
{b1,bs,...b,}. Let V' = {v,0*}U{bs_1, bs, bsi1,. .., be, ber1}. Observe that |V’| < |V(Q)[, and
G[V’] is a T-AW.

Case :-AW.S.2. For all u € Lgay U Rgayr, we have |{c1, c2} N Ng(v*)| = 1. From Observation 5.1,
we know that for each ¢’ € {cy, ¢y}, we have that one of Lgy, € Ng(c¢’) or Rrar € Ng(c’) holds.
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Fig. 7. Construction of an obstruction when O is $-AW and v = t.

Moreover, from our assumption that for each u € Lg,, U Rg,r we have |{cy, 2} N Ng(v*)| = 1, it
cannot be the case that Lg,, C Ng(ci) and Le,, € Ng(cz). Similarly, it cannot be the case that
Riar € Ng(cq) and Rgyr © Ng(c2). From the preceding discussions, we can conclude that one of
Loy € Ng(c1) and Rear € Ng(cz), or Rear € Ng(c1) and Ley, € Ng(cz), holds. Suppose L,y € Ng(cr)
and Rg,r © Ng(c2) (the other case is symmetric). Next, consider a vertex u™ € L¢,, and a vertex
v* € Rgye. By our assumption and non-applicability of Case £-AW.S.1, we have (u*, c1), (v*, c2) €
E(G) and (u*, c3), (v*,¢1) ¢ E(G). Moreover, u*,v* € B;, and therefore (u*,v*) € E(G). But then
G[{u*,v*, ¢1,c2}] is an induced cycle on four vertices.

Suppose v Is One of the Centers. Suppose v = c; (the other case is symmetric). From Obser-
vation 5.2, we know that at least one of Ng(t,) N Lgs = @ or Ng(t,) N Rgs = @ holds. Let
Xeis € {Leis, Reis} be a set such that Ng(t,) N X¢s = 0. Consider a vertex v* € X, and let by
and b, be the first and last vertex in the path P(O) that are adjacent to v*, respectively. Since M is
a 9-redundant solution and O is not covered by W, we have that |[M N V(Q)| > 10. This together
with the choice of F and v*, and the fact that V(base(Q)) € Ng(v), implies that bs and b, exist and
are distinct. Moreover, from the preceding we can also conclude that |[Ng(v*) N V(base(0))| > 5.
We also note that e < z since (v*, t,) ¢ E(G). The neighbors of v* in P(O) must be consecutive, and
otherwise we can obtain an induced cycle of length at least 4 that does not contain v. We further
consider subcases based on whether or not ¢, c; € Ng(v*) (Figure 8).

Case :-AW.C.1. t,cy € Ng(v*). Let V! = {v*, v, ¢, t, 1} U {be, ber1, . .., b, }. Notice that |[V'| <
|V (0)| since |[Ng(v*) N V(base(0Q))| > 5 and neighbors of v* are consecutive. Moreover, G[V'] is
a }-AW or a tent, which is of strictly smaller size than O, contradicting the choice of O. Here, we
crucially rely on the fact that t, ¢ Ng(v™).

Caset-AW.C.2.t ¢ Ng(v*)andcy, € Ng(v*).Let V' = (V(O)\{bss1,bst2, -+ . s be—2, be—1})U{v"}.
Notice that |V’| < |V(0)]| (since |Ng(v*) N V(base(0))| > 5) and G[V'] is a £-AW.

Case $-AW.C.3. t € Ng(v*) and ¢; € Ng(v*). Recall that Ng(v*) N {by, by, ...,b,} # 0. Con-
sider a vertex b; € Ng(v*) N {by,by,...,b;}. The graph G[{v",t,c,, b;}] is an induced cycle on
fourvertices.
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AW.C.1 AW.C.2

C
177 bl b2 befl be be+1 bzfl bz ty
+AW.C.4.A +AW.C.4.B

Fig. 8. Construction of an obstruction when O is £-AW and v = ¢;.

Casei-AW.C.4.t € Ng(v*) and c; € Ng(v*). We further consider the following subcases based
on whether or not (t;,v*) € E(G):

(A) (tg,v*) € E(G). Let V/ = {t,0"} U {bs_1, bs,...,be,bes1}. Observe that G[V'] is a T-AW in
G — S that does not contain v.

(B) (tg, v*) € E(G). Let V' = {t,0", o, tp} U{by, bo, ..., be,beyr}. Observe that G[V'] is a $-AW
in G — S that does not contain v.

Suppose v Is One of the Non-Shallow Terminals. We consider the case when v = t,. By a symmet-
ric argument, we can handle the case when v = t,. If ¢; ¢ S(P), then for each u € L5 U R s we
have (u, c;) ¢ E(G) as it fits the frame F and Ng(u) \ (M U S(P)) = Ng(v) \ (M U B(P)) = 0. Oth-
erwise, ¢, € f(PP), and then using Observation 5.2 we obtain that at least one of L¢s N\ Ng(cz) = 0
or Res N Ng(c2) = 0 holds. Let X5 € {Lcis, Reis} be a set such that Xgs N Ng(cz) = 0. Similarly,
if by ¢ PB(P), then for each u € Lg, U Ry, we have (u,by) € E(G) as it fits the frame F and
Ng(u) \ (M U B(P)) = Ng(v) \ (MU B(P)) = 0. Otherwise, b; € B(P), and then using Observa-
tion 5.1 we obtain that at least one of Ly, € Ng(by) or Rray € Ng(b1) holds. Let Yiar € {Lfar, Rfar} be
a set such that Yg,, € Ng(b;). Next, we consider cases based on whether or not b; € B; (Figure 9).

Case £-AW.T.1. b; € B;. Consider a vertex v* € Xs. Note that (by, v*) € E(G) since b; € B;, and
(v*, c2) ¢ E(G), by the choice of v*. Additionally, (v*,t) ¢ E(G), and otherwise G[{t, ¢z, b1, v*}] is
an induced cycle on four vertices in G — S. Recall that v* fits the frame F (and (b1, v*) € E(G)), and
therefore there exists e € [z — 2] such that b, € Ng(v*) and bey1 € Ng(v*). This together with
the fact that neighbors of v* in P(Q) are consecutive (otherwise, we obtain an induced cycle on
at least 4 vertices not containing v) implies that (v*, t,) ¢ E(G). Next, we consider cases based on
whether or not (v*, ¢1) € E(G):

(A) (v*,c1) € E(G). Let V/ = {t,c1, ¢, 0", t,} U {be, bey1, ..., b,}. Observe that G[V'] is a $-AW
in G — S not containing v.

(B) (v*c1) € E(G). Let V' = {t,c1,0%, t} U {be, bes1, . . ., b, }. Observe that G[V'] is a T-AW in
G — S not containing v.
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Fig. 9. Construction of an obstruction when O is £-AW and v = t,.

Caset-AW.T.2. b, ¢ B;.Consider a vertex v* € Y, U{u € Xcis | (4, b1) € E(G)} and the following
cases based on its neighborhood in O:

(A) (v* ¢2) € E(G). Notice that this case is the same as Case $-AW.T.1, and therefore we can
obtain an obstruction in a similar way.

(B) (v* c1) € E(G). Observe that (v*,t) ¢ E(G), and otherwise G[{v*, by, ¢, t}] is an induced
cycleon four vertices in G — S. Now, we can obtain an obstruction as in Case £-AW.T.1.B.

(C) (v*, c1), (v c2) € E(G). We further consider the following cases based on the neighbor-
hood of v* in P(0):
(i) There exists e € [z] \ {1} such that (v*, b.) € Ng(v*) and (v*, be+1) € Ng(v*). Observe
that by the choices of F and v*, we have e < z — 1. Consider the following cases based on
whether or not (t,v*) € E(G):

(a) (t,v*) & E(G). Let V' = {t,c1,c0, 0", 0,8} U {be, bet1, ..., b, }. Observe that G[V'] is a §-
AW in G-S. Furthermore, either |V’| < [V(Q)| or |[V’| = |V(O)| and |V'NB;| > |[V(Q)NB;].
Here, we rely on the fact that b; ¢ B;. In either case, we obtain a contradiction to the choice
of Q.

(b) (t,v*) € E(G).Let V' = {t,v",cs,0} U{by, by, ..., be, bey1}. Observe that G[V'] is a -AW
inG-Sand|V’| <|V(0)|.

(ii) If (i) does not hold, then the only neighbors of ©* in P(Q) are b; and ». Consider the
following cases based on whether or not (¢, v*) € E(G):
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(a) (t,v*) € E(G). In this case, G[{v, v*, t, c3, by, by }] is a tent.

(b) (t,v*) € E(G). We consider a vertex u* € X5 to obtain the desired obstruction. Recall
that from the construction of X5, we have (u*,c;) ¢ E(G). Moreover, by the premise
of Case #-AW.T.2.C, we have (v*,c2) € E(G). From the preceding discussions, we can
conclude that (u*,t) ¢ E(G), as otherwise G[{u*, v, ¢,,t}] is an induced cycle on four
vertices. We assume that (u*, b;) ¢ E(G), and otherwise u* would satisfy the premise of
Case £-AW.T.2.A and we can obtain an obstruction using it. Additionally, (u*, b;) ¢ E(G),
for each j € [z]\ {1}, and otherwise G[{v, u*}U{by, by, . . . b;}] will contain an induced cycle
on at least four vertices, which is an obstruction containing v with strictly less number
of vertices than O. Next, we consider the following cases depending on whether or not
(u*,c1) € E(G):

(@) (u*yc1) € E(G). Let V' = {t,cq,u*, 0", t,} U {by,bs,...,b,}. Observe that G[V'] is a
T-AW in G — S, which does not contain v.
(B) (u*,c1) € E(G). Let V' = {t,cy,c2,u™, 0", t,} U {by, bo, ..., b,}. Observe that G[V'] is a
#-AW in G — S, which does not contain v.

Suppose v Is by or b,. Suppose v = by (the other case is symmetric). If t, ¢ S(P), then for
each u € L, U R, we have (u,t7) € E(G) as it fits the frame F and Ng(u) \ (M U S(P)) =
NG (0)\(MUB(P)) = 0. Otherwise, t, € f(P), and then at least one of Lg,, € Ng(t¢) or Reay € Ng(tr)
holds (see Observation 5.1). Let X¢yr € {Lfar, Rfar} be a set such that X¢, C Ng(tr). Similarly,
if b, ¢ PB(P), then for each u € Lg, U Ry, we have (u,by) € E(G) as it fits the frame F and
Ng(u) \ (MU B(P)) = Ng(v) \ (M U B(P)) = 0. Otherwise, b, € B(P), and then at least one of
Ltar € Ng(bs) or Rear € N (b2) holds (see Observation 5.1). Let Yiar € {Lfar, Rear} be a set such that
Yrar € Ng(b2). Next, we consider cases depending on the neighborhood of vertices in X, U Yg,, in
O (Figure 10).

Case t-AW.B.1. There is v* € Xfar U Ygar such that {tg, b2} C Ng(v*). There exists e € [z — 2]
such that b, € Ng(v*) and be41 ¢ Ng(v*). This follows from the choices of F and v*, and the facts
that (v, b;) € E(G) and v™ fits F. We assume that the neighbors of v* in P(0) are consecutive, as
otherwise we can obtain an obstruction that is an induced cycle on at least four vertices. Next, we
consider the subcases based on whether or not (v*, ¢1), (v*, ¢3), (v*, t) € E(G):

(A) (v*cy) € E(G), (v*t) € E(G). Let V' = {t,cp,0%, t¢} U {by1, by, ..., be,bes1}. Observe that

G[V’] is a $-AW such that |V’| < |[V(0)].
If Case £-AW.B.1.A is not applicable, then (v*, cz) ¢ E(G) or (v*, t) ¢ E(G) must hold.

(B) (v*,t) ¢ E(G). We consider the following cases:
(i) (v*¢c1) € E(G).Let V' = {t,c1, 0", t;} U {be, bes1, . .. b, }. Observe that G[V'] is a T-AW in
G — S not containing v.
(i) (v*, ¢1) € E(G). Let V' = {t,¢1, ¢, 0", tr, te} U {be, bey1 . . . b, }. Observe that G[V’] con-
tains a £-AW not containing v, which is present in G — S. We note that such an obstruction
can be found both when (v*, ¢;) € E(G) and when (v*, ¢;) ¢ E(G).

(C) (v* c2) € E(G). Since Case -AW.B.1.B is not applicable, we can assume that (v*, t) € E(G).
But then G[{v", by, ¢, t}] is a cycle on four vertices.

Case t-AW.B.2.For allu € Xfar U Yfar, we have {tg, b2} € Ng(u). Furthermore, by the construc-
tion of Xf,, and Yf,, we know that X, € Ng(t), Yrar € Ng(b2), and Xgar, Year # 0. Hence,
for any pair of vertices u* € Xp, and v* € Yg,, we have that (u*,t¢), (v*,b;) € E(G) and
(u*, by), (v*,tr) ¢ E(G) (since Case -AW.B.1 is not applicable). Next, we consider cases based
on whether or not t and ¢, are adjacent to vertices in X, U Ygu:
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ty v b2 befl be be+1 be+2 bz—l bz ty te v b2 befl be be+1 be+2 bz—l bz ty
-AW.B.1.A -AW.B.1.B.i

Fig. 10. Construction of an obstruction when O is £-AW and v = by.

(A) Consider the case when there is v* € X, U Yar such that (v% ¢;) € E(G). In this case,
(v*,t) ¢ E(G), and otherwise we obtain an induced cycle G[{v*, v, ¢1, t}] on four vertices.
Let e € [z — 2] such that b, is the last vertex in base(Q) that is adjacent to v*. Let V' =
{t,c1,0",t,} U {be, bes1,...,b,}. Notice that G[V’] is a T-AW that excludes v.

Hereafter, we assume that for each u € X, U Yoy, we have (u, ¢;) € E(G).

(B) Consider the case when there is v* € X,y U Yg,, such that (v, ¢;) € E(G). In this case,
(v, t) ¢ E(G), and otherwise G[v*,t,c3,v] is a cycle on four vertices. Let e € [z — 2]
such that b, is the last vertex in base(Q) that is adjacent to v*. Let V' = {t, ¢y, ¢, 0%, 1, } U
{be,bet1,...,b,}. Notice that G[V'] is a $-AW that has either fewer vertices than O or has the
same number of vertices as O but has more vertices from B; (than O has from B;). Here, we
rely on the fact that t, ¢ B;, which is ensured by the fact that Yg,, # 0 and Y, N Ng(t7) = 0.

Hereafter, we will assume that for each u € Xf,, U Y, we have ¢, c; € Ng(u).

(C) If there is u* € Xga, such that (u*, t) € E(G). Recall that (u*, t;) € E(G) and (u*, bs) ¢ E(G).
In this case, G[{t,u", ¢z, t¢, v, by}] is a tent.

(D) If there is ©* € Yf,, such that (v* t) € E(G). Recall that,(v*, by) € E(G) and (v*, t7) ¢ E(G).
Let e € [z — 2] such that b, is the last vertex in base(Q) that is adjacent to v*. Note that
e >2asv* € Y € Ng(by). Let V! = {t,0", ty, bey1} U {0, b3, ..., b.}. Observe that G[V']
is a T-AW in G — S with strictly fewer vertices than O, as we (at least) exclude ¢y, c; and
include v*.
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Fig. 11. Construction of an obstruction when O is £-AW and v = bj, where j € [z — 1] \ {1}.

(E) Consider a vertex u* € X¢,, and a vertex v* € Ygy,. Since all the previous cases are not ap-
plicable, therefore (u*, c1), (u*, c2), (v*, 1), (v*, c2) € E(G), and (u*, t), (v*,t) ¢ E(G). Recall
that neighbors of u*,v* in P(0) are consecutive. Furthermore, (v*,t,) ¢ E(G) and there is
no b; adjacent to u*, where j > 2. Let e € [z — 2] such that b, is the last neighbor of v* in
P(0). Now, let V' = {tp,u*,v", c1,¢2,t} U {be, bet1, ..., by, tr}. Observe that G[V’] is a £-AW
in G — S that does not contain v.

Suppose v = bj, Where j € [z] \ {1, z}. Let Xrar € {Lrar, Rrar} be a set such that Xg,r € Ng(bj—1)
and Yrar € {Lfar, Rrar} be a set such that Yg,, € Ng(bj+1). The existence of X, and Y., is guaranteed
from Observation 5.1. Recall that [M’| = 9. Thus, |[V(P(Q)) N M’| > 6, and therefore v must have
at least four non-neighbors in V(P(0)) N M’. From the preceding, we can conclude that one of
({6} Ulb1. b, . by DM \NG ()] 2 208 [({£,)U(bjs2. bjas. . ... b )N(M'\N (0))] = 2 holds.
Assume that [({t,} U {bjs2,bjs3,...,b2}) N (M"\ Ng(v))| > 2 holds (the other case is symmetric).
For each u € X, U Ygu, the neighbors of u in P(O) must be consecutive, and otherwise we can
obtain an induced cycle on at least four vertices. From the preceding discussions, together with
the facts that (u,v) € E(G) and u fits F, we can conclude that {t,,b,} N Ng(u) = 0. Here, we rely
on our assumption that [({t,} U {bj.2,bjs3,...,b;}) N (M"\ Ng(v))| > 2. We consider cases based
on the neighborhood of vertices in X, U Yg,r in O (Figure 11).

Case 1-AW.F.1. If there is v* € Xga, U Yo, such that (0% ¢1) € E(G). Note that if (v*, ¢1) ¢ E(G),
then (v*,t) ¢ E(G), and otherwise G[{v,v", c1,t}] is a cycle on four vertices. Additionally, the
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neighbors of v* in P(0) must be consecutive, and otherwise we can obtain an induced cycle on
at least four vertices. Since {t,,b,} N Ng(v*) = 0 and (v,v*) € E(G), there exists e € [z — 1]
such that b, is the last vertex in P(Q) that adjacent to v*. Let V' = {t, ¢y, 0", £, } U {be, bet1, ..., b2}
Observe that G[V'] is a T-AW with strictly fewer vertices than O, as we (at least) exclude ¢, t, by
and include v*.

Case $-AW.7.2. If there is v* € X¢ar U Ygu, such that (v%, ¢;) € E(G). Since Case £-AW.]J.1 is not
applicable, we can assume that (v*, ¢;) € E(G). Note that if (v*, cz) ¢ E(G), then (v*,t) ¢ E(G), and
otherwise G[{v, v*, ¢y, t}] is a cycle on four vertices. Additionally, the neighbors of v* in P(0) must
be consecutive. Let e € [z — 1] such that b, is the last vertex in P(O) that is adjacent to v*, which
exists since {t,,b,} N Ng(v*) = 0 and (v, v*) € E(G). Let V' = {t,¢q,¢2,0%, t} U {be, bet1, ..., b}
Observe that G[V'] is a £-AW (or a net) with strictly fewer vertices than O, as we (at least) exclude
t¢, by and include v*.

Note that if Cases $-AW.J.1 and £-AW.].2 are not applicable, then for each u € Xg,, U Y, we
have (u, ¢1), (4, ¢z) € E(G). Moreover, by our assumption, we have Ng(u) N {t,,b,} = 0. The cases
we consider next are based on whether or not the following conditions are satisfied for a vertex
u € Xpar U Ypar:

(1) (u,t) € E(G);
(2) {bj-1,bj+1} S Ng(u).

Case £-AW.1.3. If there is v* € Xgar U Ygur such that (v%, t) € E(G). We further consider the
following subcases based on whether or not t, € Ng(v*):

(A) ty € Ng(v*). Let s € [j] such that by is the first vertex in P(O) that is adjacent to v*, which
exists since (tg,v*) ¢ E(G) and (v*,v) € E(G). Additionally, let e € [z — 1] such that b,
is the last vertex in P(0) that is adjacent to v*, which exists since {t,,b,} N Ng(v*) = 0
and (v*,v) € E(G). Notice that s # e, since by the construction of the sets X, and Yy,
we have that v* is incident to v and at least one of the vertices in {bj_1, bj1}. Let V' =
{t,0"} U {bs_1,bs,...,be,ber1}). Observe that G[V'] is a -AW in G — S with |V’| < |[V(Q)].
Here, we rely on the fact thate < z — 1.

(B) ty € Ng(v*). Let e € [z — 1] such that b, is the last vertex in P(QO) that is adjacent to
0", which exists since {t,,b,} N Ng(v*) = 0 and (v*,v) € E(G). Let V' = {t,0%, ¢, t¢} U
{b1,bs,...,be,bey1}is a £-AW in G — S. Moreover, |V’| < |[V(0)]| since t,,c; ¢ V' and V' C
V(0) U {v*}.

Case £-AW.3.4. If there is ©* € Xfar U Ygar such that (0% t) € E(G) and {bj_1, bj4+1} € Ng(v*).
Notice that all the neighbors of v* on P(O) must be consecutive. Let e € [z — 1] such that b, is the
last vertex in P(Q) that is adjacent to v*, which exists since {t,, b,}Ng(v*) = @ and (v*,v) € E(G).
Additionally, let s € [z — 1] U {0} be the lowest integer such that (v*, bs) € E(G) (bs could possibly
be same as bj_y or by = t¢). Let V' = {t,c1, ¢, 0", t,} U {by, by, ..., bs} U {be,beyy, ..., b} Observe
that G[V’] is a £-AW in G — S that does not contain v.

Case £-AW.7.5. For all u € Xgar U Ygar, we have cy,c2 € Ng(u), (u,t) € E(G), and {bj_q,
bj+1} € Ng(u). Additionally, we have Xr,r € Ng(bj—1) and Yiar € Ng(bj+1). Next, consider a ver-
tex u* € Xg,r and a vertex v* € Yy,,. Let s € [j—1]U{0} such that by is the first vertex in P(O) that is
adjacent to u*, which exists since (u*, bj_1) € E(G). Additionally, let e € [z — 1] such that b, is the
last vertex in P(0) that is adjacent to v*, which exists since (t,, v*), (b;,v") € E(G) and (v*, bj41) €
E(G). Notice that s # e. Let V' = {t, ¢y, co, 0", u*} U {t¢, by, by, bs_1,bs} U {be, bes1, ..., by, 1} Ob-
serve that G[V'] is a £-AW in G — S that does not contain v.
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We have exhaustively considered all the cases and obtained a desired type of obstruction for
each of the cases. This concludes the proof of Lemma 5.3.

6 BOUNDING THE LENGTH OF A CLIQUE PATH

Let us first recall the various sets we are dealing with, with respect to the instance (G, k) of IVD:

e A (k+2)-necessary family ‘W C 2M along with a solution M that is 9-redundant with respect
to W (see Lemma 3.2).

e Every set in ‘W has size at least 2 (see Reduction Rule 3.1).

e (C is the set of connected components of G — M, D is the set of connected components in C
that are modules, and D = C \ D. We know that [V (D)| < k%" (see Lemma 4.3 Reduction
Rule 4.2, and Observation 4.5) and [D| < k91 (see Observation 4.2).

e Each component in D has at most k + 1 vertices (see Reduction Rule 4.3). The preceding
together with Lemma 5.4 implies that every maximal clique (and hence every clique) in
G — M has size bounded by 5, where n = 210 - 4(k + 5)('%').

Let us now turn to the problem of bounding the sizes of non-module components. Observe that
to bound this, it is sufficient to “bound the length of the clique path” of a non-module component.
This together with the fact that each maximal clique is bounded will lead to the desired result. Our
approach mirrors that of other works [3, 36] but also requires additional structural observations
corresponding to interval graphs and its obstructions [8, 28]. Each non-module component is a
clique path in G — M.

Let K = (K,p) be a clique path of a non-module component C, where K is the path
(x1,%2,...,x;), and for each i € [t] we let B; = f(x;). (In the remainder of this section, we will be
working with this fixed clique path K and the component C.) We will refer to the sets B;, 1 < i < t,
as the bags in K. We will assume that for any two distinct bags B, B” in K, neither B C B’ nor
B’ C B. Any bag B; in the clique path K has at most n = 2'° - 4(k + 5)('%|
every maximal clique in G — M has size bounded by 7, by Lemma 5.4). We let S(K) = U!_ f(x;).
Furthermore, for a subpath K’ of K, by K’ = (K’, f’) we denote the sub-clique path induced by K.
In other words, for x € V(K’), f’(x) = B(x). Moreover, by S(K’), we denote the set U,y (x)B(x).
Note that there is a vertex in M that has a neighbor as well as a non-neighbor in C.

In this section, we consider the problem of reducing the number of bags in K. Toward our goal,
we will devise a collection of “marking schemes” that mark some polynomially (in k) many bags in
K such that the obstructions are “well behaved” in the region between any two consecutive marked
bags. In particular, our marking schemes ensure that if any obstruction intersects an unmarked
region of the clique path, then the intersection is an induced path. Then, we design reduction
rules that “preserve” a minimum separator of the unmarked region. More precisely, we identify an
irrelevant vertex or an irrelevant edge, then delete it or contract it in the graph. The correctness of
these reduction rules follows from the structural properties ensured by the marking schemes.

Let us now define some notations that will be required in this section. Note that these notations
apply to K = (K, ) as well as any sub-clique path of it. We fix an ordering (from left to right) of
the bags of K, which is given by the path K of the clique path K. We will maintain a set of bags
Bmarked in K, which we will call marked bags. Initially, Bmarked = 0, and we will add some carefully
chosen bags in K to it as we proceed:

) vertices (because

(1) For two bags B; and B; in K, 1 < i < j < t, by K[B;, B;] = (K, #’) we denote the sub-clique
path of K between B; and B; (including B; and B;).

(2) For a sub-clique path K’ of K, Bje (K’) and Byight (K’) denote the leftmost bag and the right-
most bag of K, respectively. Observe that K’ = K[Bes; (K’), Bright (K’)]. All other bags of K’,
except Bies; (K') and Byight (K'), are called interior bags of K'.
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(3) For asub-clique path K’ of K, let C(K") = Bjest (K')NByight(K’) and I(K’) = B(K")\ (Bjert (K")U
Bright (K')). Here, ‘C’ stands for “common” and ‘I’ stands for “internal”

(4) We say that a vertex v € B(K) is a marked vertex if there is a marked bag that contains it,
and otherwise it is an unmarked vertex.

(5) Consider a collection of bags B*. We say that two distinct bags B, B’ € B8* are consecutive
if K[B, B] contains no other bags in 8* except for B and B’.

(6) We say that two distinct bags B, B’ in K are adjacent if there is no other bag that lies between
them—that is, K[B, B'] has only two bags, namely B and B’.

(7) For a bag B in K, B~! and B*! denote the bags (if they exist) adjacent to B on its left and
right, respectively.

6.1 Partition into Manageable Clique Paths

In this section, we partition the clique path K into a collection of so-called “manageable clique
paths,” which are well structured with respect to the set M. We will construct our first set of
marked bags, denoted by Bmarked (), based on the edges between the vertices in f(K) and M. Let
us initialize Bmarked (I) as the set containing the first and the last bags of K. We begin by stating a
property of interval graphs, which will be useful later.

OBSERVATION 6.1. Let H be an interval graph and let H' be the graph obtained by one of the
following operations:

(a) Forv e V(H),H = H — {v}.
(b) For (u,v) € E(H), H = H/(u,v).

Then, H' is an interval graph. Furthermore, the size of any clique in H’ is upper bounded by the size
of a maximum clique in H.

The preceding observation follows from the definition of interval graphs and their interval rep-
resentation [28]. In particular, statement (b) follows from the observation that an interval repre-
sentation of H/(u, v) can be obtained by taking an interval representation of H and “merging” the
intervals of u and v.

In the following, we will define (auxiliary) graphs that will be helpful in obtaining some useful
bags in K. To this end, consider a vertex m € M. Let Hy, be the bipartite graph with vertex bipar-
tition Ng(m) N B(K) and B(K) \ Ng(m), where u € Ng(m) N f(K) and v € B(K) \ Ng(m) are
adjacent in H,, if and only if (u,v) € E(G). Next, we prove the following lemma about the graph
H,,. (Recall that 5 is an upper bound on the size of any clique in G — M.)

LEMMA 6.2. Form € M, let Y,, be a maximum matching in Hy,,. Then, |Yp,| < 27.

ProoOF. Suppose, toward a contradiction, that |Y,,| > 27. Let T be the graph obtained from
G[B(K)] by contracting all the edges in Y,,,. Additionally, for each edge (u,v) in Y,,, let wy,, be
the vertex resulting from its contraction. Recall that G — M is an interval graph of maximum
clique size at most 1, which together with Observation 6.1 implies that both G[(K)] and T are
also interval graphs, and that the maximum size of a clique in these graphs is upper bounded
by 5. Next, let T be the graph T[{wy,, | (u,v) € Y,}]. We note that the definition of T relies
on the fact that Y, is a matching in H,,, and thus it has |Y,;,| > 2n many vertices. From the
construction of T and Observation 6.1, it follows that T is also an interval graph and that the size
of any clique in T is bounded by 5. Interval graphs are perfect graphs, and on a perfect graph H
we know that w(H)a(H) > |V(H)|, where w(H) and a(H) denote the size of a maximum clique
and a maximum independent set in H, respectively [47] (or Theorem 3.3 [28]). This implies that
there is an independent set in T of size at least |Y;u|/n > 2. Consider an independent set of size
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3 in T and the corresponding edges of the matching Y,,,. It follows that these three edges and the
vertex m form a long claw O in G, which is an obstruction of size 7. Since Reduction Rule 3.1 is not
applicable, each set in ‘W is of size at least 2. Moreover, |V(Q)NM| = 1. Therefore, O is not covered
by W. But then, since M is a 9-redundant solution, each obstruction in G that is not covered by
W must contain at least 10 vertices from M. But this is a contradiction. Thus, we deduce that
|Y;,| > 25 cannot hold. |

For each m € M, we compute a maximum matching Y, in the graph H,,. Then, for each edge in
Y, we pick a bag in K that contains this edge and add it to Bmarked (I). Let us observe that we have
added at most 2n|M| bags to Bmarked (I). Before proceeding further, we will add some more bags to
BMarked (I) that give us some additional structural properties. To this end, we state the following
observation, which will be useful in designing the following marking scheme for bags in K.

OBSERVATION 6.3. Let my, my € M be (distinct) vertices such that {mi,my} ¢ W and (m{,m,) ¢
E(G). Then, (Ng(m1) N Ng(m3)) \ M induces a clique in G.

Proor. This observation is the special case of Lemma 4.6 with M’ = M,u = m;,v = my, and
u,v € M. O

Next, consider (distinct) my, my € M such that {m,ms} ¢ ‘W, (my,ms) ¢ E(G), and (Ng(m;) N
Ng(my)) \ M # 0. Let B(mq, my) be a bag in K such that (Ng(m1) N Ng(mz)) N (K) € B(mq, my).
We note that the existence of B(my, m;) is guaranteed from Observation 6.3. We add B(m1, m;) to
the set Bmarked (). We are now ready to state our first bag-marking scheme.

Marking Scheme I. Add all the bags in Bmarked (I) to Bmarked-

Note that |Bmarked (I)| is at most 25|M| + |M|? + 2. This bound is obtained because(i) Bumarked (I)
contains the first and last bags of K, (ii) at most 27 bags in K were added corresponding to the
matching Y,, for each m € M (and H,,), and (iii) for (distinct) my, my € M, such that {m;,my} ¢ W
and (my, my) ¢ E(G), we added a bag to Bmarked (1) Thus, using Marking Scheme I, we have marked
at most’ 2n|M| + |M|? + 2 < 4n|M| | bags in K. Here, we used the fact that n > [M].

Next, we state an observation regarding vertices that are not present in any bag in Bmarked (I),
which will be useful later. We note that this observation is quite similar to Observation 4.11 of
Section 4.

OBSERVATION 6.4. Consider a vertexv € (K) such that there is no bag in Bmarked (I) that contains
v. For (distinct) vertices u, w € Ng(v) N M, at least one of {u, w} € W or (u,w) € E(G) holds.

Proor. Consider v € §(K) such that there is no bag in Bumarked (I) that contains v, and (distinct)
vertices u, w € Ng(v) N M. Suppose, by way of contradiction, that {u, w} ¢ W and (u,v) ¢ E(G).
This together with Observation 6.3 implies that (Ng(u) N Ng(w)) \ M induces a clique in G. From
the preceding and Marking Scheme I, it follows that there is a bag B(u, w) in Bmarked (I) such that
(Ng(u) N Ng(w)) \ M C B(u, w). However, v € (Ng(u) N Ng(w)) \ M, and hence v € B(u, w). This
contradicts that v is not contained in any bag in Bmarked (I)- |

Let By, By € Bumarked(I) be two consecutive marked bags in K. We define the graph G[B¢, B, ]
to be the graph induced on the vertices appearing in the sub-clique path K[B¢, B,] excluding the
vertices in By and B,. In other words, G[B¢, B,] = G[V[Bg, B,]], where V[B¢, B,] = B(K[B¢, B/]) \
(B¢ U B;). Note that although G[S(K[By, B,])] is a connected subgraph of G, G[B¢, B, ] need not be
a connected graph. We refer to a connected component of G[By, B, ] as an obtruded component of
K[By, B,]. We extend this definition to say that an induced subgraph H of G[$(K)] is an obtruded
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component of K if there are consecutive marked bags By, B, € Bmarked (I) such that H is an obtruded
component of K[By, B,]. We remark the following regarding vertices of K outside Ugeg,,, ,..(nB-

OBSERVATION 6.5. For each v € B(K) \ (Upeg,,a(1)B) there is an obtruded component H of K
such thatv € V(H).

In the following, we prove a property regarding the obtruded components of K.

LEMMA 6.6. Let H be an obtruded component of K. For each m € M, either we have V(H) C Ng(m)
or we have V(H) N Ng(m) = 0.

ProoF. Suppose, toward a contradiction, that there exists m € M that has both a neighbor and
a non-neighbor from the set V(H) in G. Because H is connected, this implies that there is an edge
e € E(H) such that one endpoint of e lies in Ng(m) N B(K) and the other endpoint of e lies in
B(K) \ Ng(m) (i.e., e € E(Hp,)). Furthermore, by construction, both these endpoints are different
from all the vertices belonging to the edges of the matching Y,, in H,,. Therefore, Y,, U {e} is also
a matching in H,,. However, this is a contradiction, as Y;, is a maximum matching in H,,. This
concludes the proof. O

Let us fix a pair of consecutive marked bags B, B, € Bmarked (I) and consider the obtruded com-
ponents of K[By, B, ]. Note that Lemma 6.6 can be interpreted as follows. Any obtruded component
of K[By, B,] is a “module with respect to M.” The following lemma shows that all but at most 4z
of these obtruded components are actually modules in the graph G.

LEmMA 6.7. All but at most 41 of the obtruded components of K[Be, B,] are modules in G.

Proor. Let H be an obtruded component of K[Bg, B, ]. For any vertex v € By U B,, there are at
most two obtruded components in K[By, B,] with the property that v has both a neighbor and a
non-neighbor in the component. Indeed, if this were not the case, then we would have obtained
a long claw in G[B(K)] — M, which is a contradiction. Notice that there are at most 25 vertices
in By U B,. Hence, it follows that all but at most 45 obtruded components of K[By, B,] have the
following property: Each vertex v € By U B, is adjacent either to all vertices of this obtruded
component or to none of them. Finally, observe that the neighborhood of a vertex in an obtruded
component H, excluding the neighbors that belong to H itself, is a subset of M U B, U B,.. Hence, it
follows from the preceding arguments and Lemma 6.6 that all but at most 45 obtruded components
of K[By, B,] are modules in G. O

Let us note another useful property of the obtruded components.

LEmMA 6.8. Let H be an obtruded component of K[By, B, ]. Then, there is a sub-clique path K%'I“S of
K[Be, B,] such that V(H) € B(KS*) € V(H) U B¢ U B,.

Proor. Since H is a connected graph and K is a path decomposition, it follows from the defini-
tion of a path decomposition that the set of bags of K that have non-empty intersection with V (H)
forms a sub-clique path K‘;}’S of K. Furthermore, as H is a connected component of G[B¢, B,] =
G[V[B¢, B,]], where V[By, B,] = B(K[Bg, B;])\ (BfUB,), it follows that V(H) = ﬂ(K}’}’S) \(BrUB,).

Therefore, Kg}’s is a sub-clique path of K[B¢, B,] and V(H) C ﬁ(K}’})S) C V(H) U By U B,. O

The obtruded components of K[By, B,] can be divided into two groups, those that are modules
in G and the rest. We will first consider the problem of reducing the module obtruded components.
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6.1.1 Handling Obtruded Modules of K. In this section, our goal will be to upper bound the total
number of vertices across all bags B that have that following property: B has non-empty intersec-
tion with at least one obtruded component of K that is a module in G. First, we will only reduce the
total number of vertices in the obtruded components of K that are modules in G. To achieve this,
we will employ Lemma 4.3 (see Section 4). To this end, consider a pair of consecutive marked bags
B¢, B, in Bparked (I). Let C be the set of obtruded components of K[By, B,] that are modules in G.
Note that by the construction, C is the set of connected components in G[By, B;] = G[V[Bg, B,]]
(where V[By, B,] = f(K[Be¢, B;]) \ (B¢ U B,)) that are modules. Thus, from the definition of a path
decomposition, it follows that C is a subcollection of the collection of all the connected components
in G — (M U B U B,) that are modules. Moreover, note that [M U B, U B,| < M| + 2n.

Now we apply Lemma 4.3 for M = By U B,, and obtain a subset Z of V(C) of size at most
8(k + 1)*(IM| + 21)*° such that the following holds:

If S € V(G) of size at most k and O is an obstruction in G — S that is not covered by
‘W, then there is another obstruction O’ in G — S such that 0’ N (V(C) \ Z) = 0.

This gives the following reduction rule.

Reduction Rule 6.1. Suppose there is v € V(C) \ Z. Then, delete v from the graph G. In other
words, the resulting instance is (G — {v}, k).

LEMMA 6.9. Reduction Rule 6.1 is safe.

Proor. Letv € V(é) \ Z,and G’ = G — {v}. We will show that (G, k) is a Yes-instance of IVD if
and only if (G’, k) is. In the forward direction, let S be a solution to (G, k). As G’ — S is an induced
subgraph of G — S, Observation 6.1 implies that S is a solution to (G, k).

In the reverse direction, let " be a solution to (G’, k). We claim that S’ is a solution to (G, k). Let
Sy = S’ U {v} and observe that it is a solution of size k + 1 in G. Toward a contradiction, suppose
that this claim is false. Then, there is an obstruction O in G — S’. Notice that O is not covered by
‘W—indeed, if O were covered by ‘W, then because S, "M = S"NM and W C 2M s a (k +2)-
necessary family, it would have followed that V(0) N'S” # (. Thus, Lemma 4.3 implies that there
is an obstruction O’ in G — S’ that is disjoint from V((?) \ Z. The obstruction O’ does not contain
the vertex v, hence it is also an obstruction in (G — {v}) — S = G — S,,. Since we have reached a
contradiction, the proof is complete. ]

If Reduction Rule 6.1 is not applicable, then we can assume that the (total) number of vertices in
V(C) is bounded by 8(k + 1)*(|M| + 21)*°. In the following lemma, we bound the number of bags
in K that have non-empty intersection with V(C).

LEMMA 6.10. The number of bags in K having non-empty intersection with V(C) is bounded by
48(k + 1)3(|M| + 2n)1°.

Proor. Let us first note that any bag in K that contains at least one vertex of V(é) is a subset
of V(é) U By U B, and is also a bag in K[By, B, ]. To prove the desired claim, we create a special set
of bags S, as follows. First, add By, B, to S. Recall that B, appears before B, in the ordering of the
bags given by K. For each x € By, let B* be the first bag in K[B,, B, ] that does not contain x, where
if such a bag does not exist we then set B¥ = B,. Similarly, for each y € B,, let BY be the first bag
in K[By, B,] that contains y, which exists since y € B,. We add all the bags in {B* | x € B¢} U {§y |
y € B,} to S. Next, for each v € V(é), let F¥ and L® be the first bag and last bag in K[B,, B,]
containing v, respectively. We further add each bag in {F® | v € V(@)} U{LY | v € V(@)} to S.
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Recall that [V(C)| < 8(k + 1)*(IM| + 27)'® and > [M| > k > 1, and thus we can obtain that
IS| < |B¢| + |By] +2[V(C)| + 2 < 3- 8(k + 1)3(IM| + 27)'° = 24(k + 1)*(]M| + 21)°. Consider any
two bags By, B, in S (where B; appears before B; in the ordering given by K) such that there is
no bag from S in K[By, B;] other than B; and B,. We call the sub-clique path K[B}', B;'] (which
might be empty) a restricted region of the sub-clique path K[B, B,]. In the following, we will
argue that all the bags belonging to the same restricted region contain the same set of vertices
from By U B, U V(é ). We make this argument with respect to B; and B;. To this end, consider the
collection of bags 8" = {X € K[By,B;] | X ¢ {Bj, B2}}. We will argue that for any X,Y € §’, we
have X N (B; U B, U V(é)) =YN(BsUB, U V(E)) Toward this, consider some X,Y € 8’ such
that X appears before Y in the ordering given by K. We consider two cases as follows, and in each
of the cases we rely on the property that in a clique path, the set of bags containing a fixed vertex
forms a sub-clique path:

e Thereisv € (X\Y)N(B,UB,U V((?)). Note that v ¢ B,, as otherwise it belongs to X N B, but
not to Y, which violates the sub-clique path property of a clique path. Consider the subcase
where v € By. This implies that v belongs to each bag in K[By, X]. But as v ¢ Y, the bag
B? € S must belong to K[X, Y]. This contradicts the fact that K[X, Y] does not contain any
bag from S. Next, consider the subcase where v € V(a). Again, as v € X andv ¢ Y, we
have that the bag L” must belong to K[X, Y], which is a contradiction.

e Thereisv € (Y\X)N(B;UB,U V(é)). Note that v ¢ By, as otherwise it belongs to B,NY but
not to X, which violates the sub-clique path property of a clique path. Consider the subcase
where v € B,. This implies that v belongs to each bag in K[Y, B,]. But as v ¢ X, the bag
BY € S must belong to K[X, Y]. This contradicts the fact that K[X, Y] does not contain any
bag from S. Next, consider the subcase where v € V(é). Again,asv ¢ X and v € Y, we
have that the bag F¥ must belong to K[X, Y], which is a contradiction.

From the preceding, we conclude that bags in the same restricted region contain the same set of
vertices from By UB, U V(a ). In what follows, we will show why this statement implies that in any
restricted region there can be at most one bag that has non-empty intersection with V(C). Before
showing that the claim is true, let us argue that having this claim concludes the proof. Indeed, since
|S| < 24(k + 1)*(IM| + 2)'° and By, B, € S, there are at most 24(k + 1)*(|M| + 21)'° restricted
regions that can have non-empty intersection with V(C). Each one of these regions has only one
bag that has non-empty intersection with V(@ ). Adding up the bags in § itself, we conclude that
there are at most 48(k + 1)3(|M| + 217)!° bags in K that contain a vertex from V(é)

We now turn to show that in any restricted region, there can be at most one bag that has non-
empty intersection with V(C). For this purpose, consider some restricted region K[B}', B;']. Then,
all bags in this region contain the same set of vertices from B,UB, U V(C). Suppose that this region
contains some vertex v € V(E ). By the definition of C, there exists an obtruded component H of
K[B¢, B,] that contains v. Because v belongs to every bag in K[B{!, B,'] and by Lemma 6.8, it
follows that H contains all vertices across all bags in K[B}!, B, '] apart from those in B; U B,.. Thus,
all vertices across all bags in K[B}"', B;'] belong to B, U B, U V(é) Because distinct bags on a

clique path correspond to distinct sets of vertices, this means that K[B}!, B;'] can only contain a

single bag that has a non-empty intersection with V(é )- This concludes the proof. O

Recall that there are at most 4n|M| pairs of consecutive marked bags in Bmarked(I). Applying
Reduction Rule 6.1 for every such pair, we obtain the following. There are at most 48(k +1)3(|M| +
2n7)'° - 4n|M| bags of K that contain vertices from obtruded modules. Let C(K) denote the set of
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vertices that appear in obtruded modules. Let Bparked (II) denote the collection of all bags in K
that contain a vertex in C(K).

Marking Scheme II. Add all the bags in Bmarked (II) to Bmarked-

From Lemma 6.10, we obtain that we have marked at most | 48(k + 1)3(|]M| + 25) - 45|M| | bags
of K using Marking Scheme IL

6.1.2  Obtaining Manageable Clique Paths. In this section, we will focus on the obtruded compo-
nents of K that are not modules in G. To this end, we mark some more bags in K so that the regions
between unmarked bags have additional structural properties. We will refer to the sub-clique paths
obtained by this process as manageable clique paths. In the following, we start by defining some
notation that will be helpful in describing this marking scheme.

Let By, B, be two consecutive bags in Bmarked (I), where By appears before B, in the ordering
given by K. Next, consider a non-module obtruded component H of K[By, B,] (and note that
it contains an unmarked vertex), and let K;}’t be the sub-clique path of K[B,, B,] provided by
Lemma 6.8. Let Bieft (K%’t) and Bright(K;Ibt) be the first and last bags of K, respectively. Before
moving on to our next marking scheme, we construct two sets of bags, £L;(H) and L;(H). Ini-
tially, we have £, (H) = {B|eft(K?{bt), Bright (K?}’t)}. We note that the construction of £;(H) is quite
similar to the construction of § used in the proof of Lemma 6.10. For each u € By, let B¥(H)
be the first bag in K‘I’_}’t that does not contain u, where if such a bag does not exist we then set
B%(H) = Bright(K?}’t). Additionally, for each v € B, \ By, let BY (H) be the first bag in K‘;}’t that
contains v, where if such a bag does not existwe then set BY (H) = Br;ght(K%’t). We add all the bags
in {B¥(H) | u € B¢} U {E”(H) | v € B, \ Br} to £L1(H). We initialize L,(H) = L,(H). For each bag
Be Li(H) in K?jl?t, we add to L, (H) the bags adjacent to B, namely B~! and B*! (if they exist) in
K‘I)}“. Note that the number of bags in £,(H) is bounded by 105.*

For consecutive marked bags By, B, € Bmarked(I) in K, let H (B, B,) be the set of non-module
obtruded components of K[By, B,]. Furthermore, let L(B¢, B,) be the union of the sets £L;(H)
taken over all H € H (B¢, B;). From Lemma 6.7, we know that there are at most 45 obtruded
components of K[By, B, ] that are not modules. Thus, the number of bags in £(B, B,) is bounded
by 405°. Finally, let Bpmarked (III) be the union of the sets of bags £ (B, B,) taken over all B, and
B, that are consecutive marked bags in Bmarked(I). Recall that |Bmarked (I)| is bounded by 4n|M|.
Thus, the number of bags in Buarked (II) is bounded by 1601°|M|. We are now ready to state our
third marking scheme.

Marking Scheme III. Add all the bags in Bmarked (I1I) t0 Bmarked-

Note that we marked at most bags using the preceding marking scheme. We now fur-
ther partition K using the bags marked in the preceding scheme.

In the following, we will give some useful properties regarding the region between consecutive
marked bags in Bmarked (III). To this end, let By, B, € Bmarked(I) be consecutive marked bags in
K, where we consider marked bags only in Bmarked (I). We assume that B, appears before B, in
the ordering given by K. Consider an obtruded non-module component H of K[B, B,], and let
K?}’t be the sub-clique path provided by Lemma 6.8. Note that from the lemma, bags marked in
Bmarked (II) do not occur in K‘I’;t. In the following, we write Kx, Ky, ... and so forth to denote

“The number 10 in 107 is a slightly larger constant than what can actually be achieved, and we use this constant only to
simplify calculations.
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various sub-clique paths of K. Here X, Y, ... are used as indices to identify these clique paths,
unless we state otherwise.

Definition 6.11 (Manageable Clique Path). Let Kx be a sub-clique path of K such that it contains
at least one other bag apart from B (Kx) and Byight(Kx). The sub-clique path Kx is called a
manageable clique path if all interior bags of Kx do not lie in Bmarked (1) U Bmarked (II) U Bmarked (I11).
Furthermore, if Ky is a sub-clique path of K[By, B,], where By, B, are consecutive marked bags in
BMarked (1), then Ky is called a (B¢, B, )-manageable clique path.

We note that in the preceding definition, there is a non-module obtruded component H of
K[Be, B] such that B(Kx) € B(KS') C V(H) U By U B,, where Ko is the sub-clique path pro-
vided by Lemma 6.8 (also see Observation 6.5). Observe that a manageable clique path Ky is not a
clique in G, since it contains at least three distinct bags of the clique path K. Further observe that
for the manageable clique path Ky, the bags Bjes;(Kx) and Byigh:(Kx) are not necessarily marked
bags. However, this is true for any maximal manageable clique path Kx (i.e., those manageable
clique paths that are not contained in another manageable clique path). Then observe that the
endpoint bags of Kx must lie in Bmarked () U Bmarked (III), since any manageable clique path is
contained in a non-module obtruded component of K[By, B,] for some consecutive pair of bags
B¢, By € Bmarked(I), and these end bags are not in Bmarked (II) by the definition of Bmarked (I11)
(recall that from Lemma 6.8, we have ﬁ(Kg’t) C V(H) U By U B,). This gives us the following
observation (from Marking Schemes I and III).

OBSERVATION 6.12. The number of maximal manageable clique paths in K is upper bounded by
16013 |M].

Next, we derive the following property using the notations we introduced earlier. Consider a
manageable clique path Kx that is a sub-clique path of the clique path K;}’t, where H is a non-
module obtruded component of K[By, B, ]. (Note that Kx is a (B, B,)-manageable clique path.)

LEMMA 6.13. For any two bags B, B” in a (B¢, B, )-manageable clique path Kx, we have BN (By U
B,) =B’ N (B, UB,).

Proor. Let us consider a maximal (B, B,)-manageable clique path Kx that contains Ky as a
sub-clique path. Furthermore, let H be a non-module obtruded component of K[B;, B,] such that
B(Kx) C B (K;',’t), where K‘;Ibt is the sub-clique path provided by Lemma 6.8.

We will prove the lemma for Kx, thereby implying the lemma for Kx. Recall that by the con-
struction of L1(H) and Ly(H), Kx contains no bag from L;(H). Consider two bags S, T in Kx
such that S appears before T in the ordering given by K. We consider the following cases, and in
each of the cases we rely on the property that in a clique path, the set of bags containing a fixed
vertex forms a sub-clique path:

e Thereisv € (S\ T) N (B¢ U B,). Note that v ¢ B,, as otherwise it belongs to S N B, but not
to T, which violates the sub-clique path property of a clique path. From the preceding, we
can conclude that v € B,. This implies that v belongs to each bag in K[B,, S]. Butasv ¢ T,
the bag BY(H) € £L;(H) must belong to K[S, T]. This contradicts the fact that Kx does not
contain any bag from £, (H).

e Thereisv € (T \ S) N (B¢ U B,). Note that v ¢ By, as otherwise it belongs to T N B, but not
to S, which violates the sub-clique path property of a clique path. From the preceding, we
can conclude that v € B,. This implies that v belongs to each bag in K[T, B,]. Butas v ¢ S,
the bag BY (H) € £1(H) must belong to K[S, T]. This contradicts the fact that Kx does not
contain any bag from £L;(H).

This concludes the proof. O
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We will conclude this section by deriving a few more properties of manageable clique paths,
which will be useful later. Consider a (B, B, )-manageable clique path Kx, and recall that C(Kx) =
Bleft (KX) N Bright(KX)-

OBSERVATION 6.14. Form € M, either f(Kx)\C(Kx) € Ng(m) or (B(Kx)\C(Kx))NNg(m) = 0.
Furthermore, forv € f(Kx) \ C(Kx) and distinct u,w € Ng(v) N M, at least one of {u, w} € W or
(u, w) € E(G) holds.

Proor. Consider m € M. Note that all the vertices in f(Kx) \ C(Kx) must belong a single
obtruded component. Thus, the first part of the observation follows from Lemma 6.6, and the
second part of the observation follows from Observation 6.4. ]

For a manageable clique path Ky, let us define Mai(Kx) = M N N(f(Kx) \ C(Kx)), and
Mpiv(Ex) = M\ Maj(Kx). Note that N(Mpiy(Kx)) N f(Kx) € C(Kx), and thus, in the nota-
tion in the previous sentence, the word ‘Priv’ stands for the possible “private” neighbors (in M) of
vertices in C(Kx). The following observation will be helpful in ruling out the case when there is
a vertex v € C(Ky) and a vertex m € Mu(Kx) such that (v, m) ¢ E(G).

OBSERVATION 6.15. Consider v € C(Kx) and m € Ma(Kx) such that (v,m) ¢ E(G). Then,
G[p(Kx)] is a clique in G.

Proor. Notice that C(Kx) C Bjert(Kx) and Bjest (Kx) is a clique in G, and thus G[C(Kx)] is a
clique. Additionally, every vertex in C(Kx)UMaj(Kx) is adjacent to every vertex in (K x)\C(Kx)
in the graph G. Therefore, if there is a pair of non-adjacent vertices u, w € f(Kx) \ C(Kx), then
O = G[{u,v,w,m}] is an induced cycle on 4 vertices. Since Reduction Rule 3.1 is not applicable,
each set in ‘W has size at least 2, and hence O is not covered by W. But then any obstruc-
tion that is not covered by ‘W must intersect M in at least 10 vertices. Hence, we arrive at a
contradiction. |

OBSERVATION 6.16. For a manageable clique path Kx, each of the following holds:

(1) Foranyv € (Kx) and m € Mp(Kx), we have (v, m) € E(G).
(2) Foreachu € C(Kx) and v € f(Kx), where u # v, we have (u,v) € E(G).
(3) For distinct my, my € Ma(Kx), at least one of {my, my} € ‘W or (my, my) € E(G) holds.

Proor. The first item follows from Observation 6.14 and 6.15 because G[S(Kx)] cannot be a
clique. Since C(Kx) is a clique that is contained in every bag of Kx in G, the second item of
the observation follows. Last, the third item follows from Observation 6.14 and the definition of
Man(Kx). m

OBSERVATION 6.17. Let Kx be a manageable clique path, and let K’ be any sub-clique path of Kx,
such that G[f(K")] is not a clique. Then, C(Kx) € C(K") and Mai(K’) = Man(Kx) (Figure 12).

ProorF. By the definition of a path decomposition, any vertex that belongs to both Ber (Kx)
and Byight (Kx) must also belong to every bag in between these two bags, and particularly to both
Blert (K’) and Byight (K'). Thus, it follows that C(Kx) € C(K’). This containment directly implies
that Maj(K") € Mai(Kx). However, we need to show that these two sets are in fact equal. To this
end, consider a vertex m € Maj(Kx). By Observation 6.14, we have that f(Kx) \ C(Kx) € Ng(m),
and therefore f(K’) \ C(K’) € Ng(m). Thus, unless S(K’) \ C(K’) is empty, the last containment
implies that m € M (K’). However, f(K’) \ C(K’) cannot be empty, since then K’ would have
induced a clique. ]

ACM Transactions on Algorithms, Vol. 19, No. 2, Article 11. Publication date: April 2023.



Polynomial Kernel for Interval Vertex Deletion 11:49

Mail(K') = Main(Kx) Mpiv (Kx)

ST 5

Blert (Kx) Blert (K') Bright (K')  Bright(Kx)

Fig. 12. A manageable clique path Ky, a sub-clique path K’, and an illustration of various sets in Observa-
tion 6.17.

6.2 Handling Manageable Clique Paths

We start by recalling that the number of maximal manageable clique paths is bounded by 1607°|M]|.
For the sake of simplicity, intuitively speaking, our next marking scheme will mark bags, which will
help us ensure that after this marking scheme we are able to apply Observation 6.17. To this end, we
let Bmarked (IV) be the set of bags in K, which contains, for every maximal manageable clique path
that exactly has three bags, the middle bag of it. Notice that for each maximal manageable clique
path Kx, for A = Bjest (Kx )\ (Bieft (KX))+1 and A" = Bright (KX)\(Bright(KX))il’ if G[f(Kx)\(AUA")]
is a clique, then all the bags in Kx must belong to the set Bmarked (1) U Bmarked (II) U Bmarked (II1T) U
BMarked (IV). (Recall our assumption that in K, there are no two distinct bags where one is a subset
of the other.) For simplicity in our arguments later, we mark all the bags in Bmarked (IV)—that is,
we have the following marking scheme.

Marking Scheme IV. Add all the bags in Bmarked (IV) to Bmarked-

We note that by the preceding marking scheme, we have marked at most | 1607°|M| | many bags.

In the following, consider a (not necessarily maximal) manageable clique path Kx. Recall that
C(Kx) = Biert(Kx) N Bright(Kx) and I(Kx) = B(Kx) \ (Bieft (Kx) U Byight (Kx)). Observe that no
vertex in [(Kx) belongs to any marked bag (among all bags marked so far). Further recall that
Man(Kx) = M N N(B(Kx) \ C(Kx)), and Mpiy (Kx) = M\ Mai(Kx).

We will devise a sequence of marking schemes that mark a polynomial in k number of bags in
Kx such that the obstructions are “well behaved” with respect to the marked bags, where, loosely
speaking, well behavedness will be captured by the obstruction being a path in each of the man-
ageable clique paths. Intuitively speaking, this will allow us to focus mainly on AWs, as (large)
cycles already have such a property. To this end, we have the following definition related to an
obstruction.

Definition 6.18 (Manageable Obstruction). For a manageable clique path Ky, an obstruction O is
called Kx-manageable if either O is an induced cycle on at least four vertices or it is an AW where
no terminal of O belongs to I(Kx). Furthermore, we say that O is a manageable obstruction if it is
Kx-manageable for every manageable clique path Kx.

OBSERVATION 6.19. IfKx is a manageable clique path that is a sub-clique path of another man-
ageable clique path K and O is a Kg-manageable obstruction, then O is also a Kx-manageable
obstruction.
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Recall that an induced cycle O on at least four vertices is a manageable obstruction (see Defini-
tion 6.18), and this allows us to mainly focus on AWs. Intuitively speaking, our goal is to mark a
polynomial in k number of bags in each maximal manageable clique path Kx so that, for any set S
of k + 2 or fewer vertices, if there is an AW O in G-, then (i) either O is already a Kx-manageable
obstruction, or (ii) there is an AW O’ in G — S such that all its vertices appear in marked bags
(including the bags that we mark in our upcoming marking scheme). We present Lemma 6.20 to
characterize the intersection between a manageable clique path Kx and an induced path P in G.

LEmMMA 6.20. Let Kx be a manageable clique path. Let P = (v, vy, . . ., v;) be an induced path in
G such that all of the following conditions are satisfied:

(1) (V(P)\{ov1,0:}) N1(Kx) # 0,
(2) V(P) n Man(Kx) = 0, and
(3) V(P) N (V(G) \ I(Kx)) # 0.

Then, V(P) N C(Kx) = 0. Furthermore, if vy, vs ¢ (Kx), then the following properties hold:

e Px = P[V(P) N B(Kx)] is an induced path in G between a vertex in B (Kx) \ C(Kx) and a
vertex in Bight(Kx) \ C(Kx).
o Py — (Biert (Kx) U Bright (Kx)) is an induced path in G[I(Kx)].

Proor. Consider a vertex v € (V(P) N1(Kx)) \ {v1,v;}, and let v_; and v, be its two neighbors
in P. Recall that N(Mp,;, (Kx)) N f(Kx) € C(Kx), and hence Ng(v) N Mp,iy (Kx) = 0. We thus
observe, because Ng(v) C S(Kx)UMa(Kx) and V(P) N M (Kx) = 0, it follows that the vertices
v_1 and vy must belong to f(Kyx). Furthermore, C(Kx) is a clique, and for any w € C(Kx) we
have Ng(v) € Ng(w) (see Observation 6.16). Therefore, V(P) N C(Kx) = 0. Indeed, if it were not
the case, then we obtain a chord in the induced path P between a vertex w € V(P) N C(Kx) and
(at least) one of v_; or vy, due to the containment {v_1,v,;} C Ng(v) € Ng(w). This shows that
V(P) N C(Kx) = 0 (i.e., it concludes the proof of first part of the lemma).

Now, we turn to prove the second part of the lemma, and thus we assume that vy, v; ¢ 1(Kx).
Toward this, consider the set V(P) N f(Kx), and let vs € 1(Kx) be the vertex with the smallest
index (i.e., subscript) in P that belongs to the set 1(Kx). The existence of such a vertex v, follows
from the assumption that (V(P) \ {vy, v:}) N1(Kx) # 0. Moreover, note thats € {2,...,t—1} due to
the assumption that vy, v; € 1(Kx). Let v, (possibly the same as v;) be the vertex with the largest
index in P that belongs to [(Kx) such that for every i € {s,s +1,...,e}, v; € I(Kx). As before, we
have thate € {2,...,t — 1}.

Next, we consider the vertices vs_; and v.4; along with the induced subpath P’ =
P[{vs_1,Vs, . .., Ves1}]. From the construction of vs_; and ve41, the premise that V(P)NMai(Kx) =
(0, and the first part of the lemma, it follows that vs_1, vet1 € I(Kx) UMan(Kx) UC(Kx). Moreover,
(Vs—1, Vs), (Ve, Ve+1) € E(G), and for v* € {vs, v, }, we have Ng (v*) C (K x)UMa;(Kx). Therefore,
Vs—1,Ver1 € (Biert(Kx) U Bright (Kx)) \ C(Kx). Without loss of generality, we assume that vg_; €
Biet (Kx) \ C(Kx). Then, vei1 ¢ Blet (Kx) \ C(Kx), since otherwise we have the chord (vs_1, ve+1)
in P. This implies that vey; € Biight(Kx) \ C(Kx). Therefore, P’ = P[{vs_1, s, ..., Ves1}] is an
induced path from a vertex in Bjer (Kx) \ C(Kx) to a vertex in Bigh (Kx) \ C(Kx).

Notice that vs_;_;, for any i > 2, cannot belong to B (Kx), since otherwise there will be a chord
in P (between vs_;—; and vs_1). We note that vs_, could possibly belong to Bt (Kx) \ C(Kx) but
not to C(Kx). Symmetrically, we derive that v,y14;, for any i > 2, cannot belong to Byight (Kx),
whereas v,y could possibly belong to Byignt(Kx) \ C(Kx) but not to C(Kx). Let s* € {s — 1,5 - 2}
be the smallest index such that vs- € V(P) N (Bt (Kx) \ C(Kx)), and let e* € {e + 1,e + 2}

5This implies that P has at least three vertices.
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be the largest index such that v.- € V(P) N (Byignt(Kx) \ C(Kx)). From this, we conclude that
P* = P[{vs+, Us*41, . . ., Ue+}] is an induced path from a vertex in B (Kx) \ C(Kx) to a vertex in
Bright(KX) \ C(KX)

Thus, to complete the proof of the lemma, it remains to show that v; ¢ [(Kx) for all i €
{1,2,...,s =2} U{e+ 2,e + 3,...,t}. Suppose not, then there is an integer i* € [s — 2] U {e +
2,e +3,...,t} such that v;» € 1(Kx). Since v;- € I(Ky), it must hold that v; belong to a bag, say
B* in Kx, which is different from Bjes(Kx) and Byight (Kx). Recall that P’ is a subpath of P from
Us—1 € Blert(Kx) \ C(Kx) to veq1 € Byight (Kx) \ C(Kx). Therefore, P’ intersects every bag in the
manageable clique path Kx. In particular, it contains a vertex different from v;-, say v’, from B*.
But then (v”, v;+) € E(G) is a chord in the induced path P, which is a contradiction. This concludes
the proof of the lemma. O

OBSERVATION 6.21. Letv € f(Kx) \ C(Kx). Then, v is not a center vertex of any AW in G that is
not covered by ‘W.

Proor. Let O be an AW in G that is not covered by W, and suppose that v € f(Kx) \ C(Kx)
is a center vertex of Q. Then, v must be adjacent (in G) to all the vertices of base(Q). As M is
a 9-redundant solution, there are at least five vertices of M in base(Q), and therefore there are
vertices my, my € M such that (m;,mz) ¢ E(G) and (my,v), (mz,v) € E(G). Moreover, from Ob-
servation 6.14, for (distinct) u,w € Ng(v) N M one of {u,w} € W or (u,w) € E(G) holds. But
(m1,my) ¢ E(G), and therefore {m, m,} € W must hold. This contradicts the fact that O is not
covered by W. O

Toward Our Case Distinction. Let us now consider the interaction between manageable clique
paths and the obstructions in the graph that are not covered by ‘W. Let O be any AW (not covered
by W) in G. Recall that P(O) denotes the extended base of O (including terminal vertices, t, and
t;). In what follows, we consider two cases based on the intersection between the vertex set of
O and 1(Kx) U Maj1(Kx). Before this, for the sake of clarity and summarization, let us recall the
following facts:

(1) The obstruction O is an AW in G that is not covered by ‘W.

(2) The sets B (Kx) and Byight(Kx) are cliques in G, and By (Kx) U Bright (Kx) U Mai(Kx)
separates |(Kx) from the rest of the graph.

(3) Every vertex of My (Kx) is adjacent to all vertices in (Kx) in G (by Observation 6.16).

(4) The vertices of f(Kx) \ C(Kx), and particularly [(Kx), cannot be the center vertices of any
AW in G that is not covered by ‘W (by Observation 6.21). Therefore, every vertex of [(Kx)
is either a base vertex or a terminal of the AW Q.

6.2.1 V(base(0)) N1(Kx) # 0 and V(P(0)) N Mai(Kx) = 0. The goal of this section will
be to show that any AW O in G that is not covered by ‘W, and satisfies V(base(0)) N 1(Kx) # 0
and V(P(0)) N Mai(Kx) = 0, is in fact already a Kx-manageable obstruction. To this end, we let
O be an AW in G. Furthermore, we remind that ¢; and ¢, are the centers of O (in case O is a T-AW,
we have ¢ = ¢; = ¢3), ty, t, are the non-shallow terminals, ¢ is the shallow terminal, base(Q) is the
base, and P(0O) is the extended base.

In the following, we obtain some useful properties of O that satisfies the premise of this section—
that is, V(base(0)) N [(Kx) # 0 and V(P(0)) N Mai(Kx) = 0. This will be done in a sequence of
four statements, after which we will be able to obtain the desired result. We first observe that the
center(s) must belong to C(Kx) U Maj(Kx).

OBSERVATION 6.22. IfO is an AW not covered by ‘W and V (base(0)) N I(Kx) # 0, then ¢y, ¢y €
C(Kx) U Man(Kx).
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Proor. Consider v € V(base(0)) N I(Kx). Because v € 1(Kx), we have Ng(v) € f(Kx) U
Mai(Kx), hence no vertex outside f(Kx) U Mai(Kx) can be a center (as c;, c; must belong to
Ng(v)). Moreover, recall that by Observation 6.21, no vertex in f(Kx) \ C(Kx) can be a center
vertex of an AW in G (that is uncovered by W). Therefore, we have that c¢;,c; € Mai(Kx) U
C(Kx) O

Second, we observe that the non-shallow terminals do not belong to f(Kx) U Maj(Kx) (which
already brings us close to the goal of this section), the base does not traverse C(Kx) U Maj(Kx),
and the shallow terminal does not belong to C(Kx) U Mai(Kx).

OBSERVATION 6.23. If O is an AW not covered by ‘W, V(base(0)) N (Kx) # 0 and V(P(0)) N
Man(Kx) = 0, then te, t, ¢ B(Kx) U Ma(Kx). Furthermore, V(base(Q)) N (C(Kx) U Ma(Kx)) =
0 andt ¢ C(Kx) U Man(Kx).

Proor. From Observation 6.22, V(base(0)) N1(Kx) # 0 implies that ¢, c; € C(Kx) UMai(Kx).
From Observation 6.16, we have that any vertex of C(Kx) U Maj(Kx) is adjacent to every vertex
in f(Kx) in G. As ¢; € C(Kx) UMa(Kx) is not adjacent to ¢,, we obtain that ¢, ¢ f(Kx). Toward
a contradiction, consider the case where ¢, € Maj(Kx). Since O is not covered by ‘W, we have
{ci,t,} ¢ ‘W. But then from Observation 6.16, we obtain that (c;,t.) € E(G). This contradicts
that O is an AW in G. From the preceding, we obtain that ¢, ¢ f(Kx) U Ma;(Kx). An analogous
argument can be given to show that t, ¢ f(Kx) U Maj(Kx). This proves the first part of the
observation.

Next, toward a contradiction, suppose that there exists w € V(base(0)) N (C(Kx) U Mai(Kx)).
By the assumption that V(P(0)) N Man(Kx) = 0, we have w ¢ Ma(Kx). Hence, w € C(Kx),
which means (by Observation 6.16) that w is adjacent to every vertex in f(Kx) U Mai(Kx). Let
v € V(base(0)) N I(Kx) (which exists by the assumption that V(base(0)) N I(Kx) # 0) and u be
the neighbor of v in P(O) that is different than w. Recall that Ng(v) € B(Kx) U Mai(Kx), and
therefore u € f(Kx) U Mai(Kx). However, this implies that P(O)[{v, u, w}] is a cycle on three
vertices, contradicting that P(O) is an induced path.

Finally, if t € C(Kx) U Maj(Kx), then (t,v) € E(G) (O is not covered by W), which is a
contradiction. This completes the proof. O

Third, we consider induced subgraph Px = P(0)[f(Kx) \ C(Kx)] of P(0). Due to Lemma 6.20,
the following lemma is almost immediate.

LEmMA 6.24. IfV(base(0)) N 1(Kx) # 0 and V(P(0)) N Mai(Kx) = 0, then Px = P(O)[f(Kx) \
C(Kx)] is an induced path between a vertex in Bief (Kx ) \ C(Kx) and a vertex in Byigh (Kx ) \ C(Kx)
that contains a vertex of |(Kx). And further, Px is a subpath of base(0).

Proor. We note that P(0) is an induced path in G and O is not covered by ‘W. We further note
that the following conditions are satisfied:

(1) (V(P(O)\{v1, v:))NI(Kx) # 0, where vy = ty and v; = t,. This follows from our assumption
that V(base(0)) N 1(Kx) # 0.

(2) V(P(0)) N Mai(Kx) = 0, as this is one of our assumptions.

(3) V(P(0)) N (V(G) \ (Kx)) # 0 and t,,t, ¢ I(Kx). This follows from the fact that t,,t, ¢
B(Kx) U Mai(Kx), which is obtained from Observation 6.23

Thus, using Lemma 6.20, we obtain that Px = P(O)[f(Kx) \ C(Kx)] is an induced path between a
vertex in Bjes; (Kx) \ C(Kx) and a vertex in Byigh: (Kx) \ C(Kx), and Px is a subpath of base(0). O

Using Lemma 6.24, we obtain the following observation.
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OBSERVATION 6.25. If V(base(0)) N 1(Kx) # 0 and V(P(0)) N Man(Kx) = 0, thent ¢ f(Kx) U
Man(Kx).

Proor. From Observation 6.23, we can obtain that t ¢ M (Kx). Now, toward a contradiction,
suppose that t € B(Kx). Using Lemma 6.24, we obtain that Px = P(0)[f(Kx) \ C(Kx)] is an
induced path between a vertex in B (Kx) \ C(Kx) and a vertex in Byight(Kx) \ C(Kx), and Px
is a subpath of base(Q). But then Py intersects every bag in Kx and ¢ must lie in one of the bags
in Kx. From this, we conclude that there is v € V(P(0)) such that (¢,v) € E(G), which again
contradicts that O is an AW in G. O

The next lemma, whose proof was the goal of this section, follows directly from the preceding
results and the definition of Kx-manageable obstructions. Indeed, Observation 6.23 states that
the non-shallow terminals cannot belong to f(Kx), and Observation 6.25 states that the shallow
terminal cannot belong to f(Kx).

LEMMA 6.26. Let Kx be a manageable clique path. Let O be an AW in G such that O is not covered
by W, V(base(0)) N I(Kx) # 0, and V(P(0)) N Man(Kx) = 0. Then, O is a Kx-manageable
obstruction that satisfies the following:

(i) The center vertices c1, ¢, of O lie in Maj(Kx) U C(Kx).
(ii) The terminals te,t,,t lie outside f(Kx) U Maj(Kx).
(iii) AndP = G[V(O)N(B(Kx)\C(Kx))] is an induced path between a vertex in Bies (Kx) \ C(Kx)
and a vertex in Byight (Kx) \ C(Kx) that contains a vertex of |(Kx). Furthermore, P is a subpath
of base(0).

6.2.2 V(base(Q)) N I(Kx) = 0 or V(P(0)) N Man(Kx) # 0. Irrespective of whether
V(base(0)) N1(Kx) = 0 or V(P(O)) N Man(Kx) # 0, let us first observe that since O is an AW, for
any clique Ain G, we have |V (A)NV(0)| < 4. This implies that [V (0)N(Bjef (Kx ) UByight (Kx))| < 8.
Moreover, since O is not covered by ‘W, for distinct m, m” € Ma(Kx) NV (O), we have (m,m’) €
E(G) (see Observation 6.16). Thus, |[V(0) N Maji(Kx)| < 4. From this, we obtain the following
inequality:

[V(0) N (Man(Kx) U Biet (Kx) U Biight (Kx))| < 12.

Let ¢1, ¢z be the center vertices of O (in the case of a T-AW, we have ¢ = ¢; = ¢;). Then, depending
on whether V(base(0)) N [(Kx) = 0 or V(P(0)) N Mai(Kx) # 0, we note the following:

e First, suppose that V(base(O)) N I(Kx) = 0. In this subcase, from Observation 6.21, we have
V(0) N I(Kx) C {te, tr, t} (possibly, V(0) N I(Kx) = 0).

e Second, suppose that there is a vertex m € V(P(O)) N Ma(Kx). Recall that every vertex in
Man(Kx) is adjacent to all the vertices in 1(Kx). Thus, in this subcase, |[V(0) N 1(Kx)| < 2,
and otherwise m € V(P(Q)) will be adjacent to three vertices of V(0) \ {c1, ¢z} (see Obser-
vations 6.16 and 6.21).

In summary, V(O) N (F(Kx) UMai(Kx)) contains at most 15 vertices: up to 12 of these vertices are
in Maj(Kx) U Best (Kx) U Bright (Kx ), and up to 3 of these vertices are in I(Kx). We will use these
bounds to derive our next marking scheme. In particular, since we deal with an obstruction whose
intersection with f(Kx) U Mai(Kx) is upper bounded by a fixed constant, the relevance of the
tool of representative families (defined in Section 2) is presented as a possibility—intuitively, we
would like to capture enough vertices to represent every possibility of how the (up to) 3 vertices
from I(Kx) can “behave” within the small intersection. Toward that end, we proceed as follows.

Computation of Representative Families. We first restrict our attention to only a maximal man-
ageable clique path Ky. Consider a tuple R = (R, Rp, R;), where R is a graph on the vertex set
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Rp U Ry (these are new dummy vertices), |Rg| < 12 and |R;| < 3. Furthermore, consider a set
Z C MAH(K;) U Bief (K;() u Bright(@) of |Rp| vertices, a bijective function f : Z — Rp, and an
integer d € [3]. For every such tuple (R, Z, f, d), we will perform a computation of a representative
family as follows. Here, the family to be represented is AR 7, r, 4, the family of all d-sized subsets

Y C I(K}) such that the following condition is satisfied:

There exists an isomorphism ¢ between G[ZUY] and R whose restriction to Z is equal
to f—that is, for all z € Z, we have ¢(z) = f(z).

Intuitively, we consider every “frame” that consists of the following: (i) the identity and topology
of the (up to) 12 vertices in MA”(K;) U B|eft(K;() U Bright(K}) that lie in the intersection—this
includes the specification of what are the identities of these vertices (given by Z) and what are the
edges among them in G (given by R[Rp]), and (ii) the topology of the (up to) 3 vertices in I(K;() that
lie in the intersection (given by R[R;]) and the edges between them and the previously mentioned
12 vertices (given by R). However, this information is not sufficient, and we require to also have
explicit restriction of which vertex in Z is mapped to which vertex in R, and this is provided to us
by the function f.

Next, consider the matroid M = (U,7), where U = V(G)and I = {U' C U | |[U’]| £ d+
k + 2}. Notice that M is a uniform matroid with universe size at most |V(G)|, and therefore it
is representable over a field of size |V(G)| + 1 (see [13]). Furthermore, for such a field, the field
operations can be done in time polynomial in |V(G)| (even with very simple implementations).
Thus, using Proposition 2.2, we find a (k + 2)-representative family 3@7 d Qf:pz AR, z,f,4 In
polynomial time.

Marking Based on the Representative Families. We now construct a set K(Rep, K}) of bags in Kx
as follows. For every tuple (R, Z, f,d) defined earlier for the (maximal) manageable clique path
Kx, and for every vertex v that belongs to at least one set in @7 4> we choose (arbitrarily) a
bag in KX that contains v and add this bag to the set K(Rep, KX) Finally, we let BMarked( V) be the
union of the bags in K(Rep, KX) across every maximal manageable clique path Kx.

Marking Scheme V. Add all the bags in Bmarked (V) to Bmarked-

Toward bounding the number of bags we marked using the preceding marking scheme, consider
a maximal manageable clique path Ky with end bags Bje (Kx ), Bright (Kx ). We observe that there
are at most O(1) choices for the graph R and its partition into Rg and R;. Furthermore, there are

IMan (B ) UBJeft () UBighe (K x) |
<12

of Z. Thus, by Proposition 2.2, there are at most O(k®) sets in L?’(R’;? 4 and each set contains at
most d < 3 vertices. Hence, overall, we marked at most O((2n + |M|)'2k?) bags in the maximal
manageable clique path Kx. As there are at most O (n*|M|) manageable clique paths in K, Marking

Scheme V marks at most | O (n*°|M|k®) | bags.

In the following, we prove a property regarding bags marked by Marking Scheme V.

at most ( ) choices for Z and at most O(1) choices for f given the choice

LEMMA 6.27. Let S be a set of size at most k + 2 that intersects every set in ‘W, Kx be a manageable

clique path, andKx be the maximal manageable clique path such that Kx is a sub-clique path of@.
Additionally, let O be an AW in G — S that is not covered by ‘W such that V (base(0)) N (Kx) = 0
or V(P(0)) N Mai(Kx) # 0. Then, there is also an AW Q’ in G — S that is not covered by ‘W such

that (i) 0’ = 1(Kx) =0 — I(K;() and (ii) each vertex in V(Q’) N I(K}) appears in some marked bag
from BMarked (I) U Bumarked (II) ... U BMarked (V)
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Proor. Note that by Observation 6.17, Mo (Kx) = MA”(K;(). By the premise of the lemma, we
have that V(base(0)) N I(Kx) = 0 or V(P(0)) N MA”(K}) 0.

Consider the graph R = O[V(0) N (ﬁ(]ﬁ;) U MA“(K)\())] (where we forget the “labeling” of the
vertices, i.e., the graph R is supposed to be on |V (R)| dummy vertices). Let Z’ = V(O) N (ﬁ(K}) v
Mai(Ex)). Furthermore, let Z = Z’ N (Mal(Kx) U Bjest (Kx) UByight (Kx)) and Y = Z’\ Z. Observe
that Y C I(K}) Note that if Y = 0, then trivially, O’ = O is a Kx-manageable obstruction (see
Definition 6.18). Thus, hereafter we assume that Y # 0.

From the earlier discussion in this section, it follows that |[V(R)| < 15, |Z] < 12,and 1 < |Y| < 3.
Let d = |Y|. Moreover, f is the function that maps every vertex in Z to the vertex in R that was
originally labeled by Z.

Notice that Y € Ag z,f,4. Thus, from Proposition 2.2, there is a set Y’ € @7 4 such that the
following condition holds:

There is an isomorphism ¢ between G[Z U Y’] and R whose restriction to Z is equal
to f.
Since both Y and Y’ are subsets of I(K}), their neighbors in G belong to MA”(K}) U B|eﬂ(K;() U
Bright (Kx) U I(Kx). Let O" = G[(V(0) \ Y) U Y’]. Note that both N(Y) N V(0) € Z and N(Y") N
V(O’) € Z. Together with the preceding condition, we thus obtain that O’ is isomorphic to O.

Hence, O’ is an AW in G — S with the property that all of the vertices of O’ from Kx appear in the
marked bags from Bumarked (I) U Bmarked (II) - . . U Bmarked (V). |

6.3 Nice Clique Paths and Nice Obstructions

We now consider a pair of consecutive marked bags in K that were marked by Marking Schemes
I through V. In particular, for each maximal manageable clique path Ky, we marked a collection
of bags in Kx via Marking Scheme V, which (further) partitions Kx into sub-clique paths, which
will be called nice clique paths.

Definition 6.28 (Nice Clique Path). Let Ky be a sub-clique path of K such that it contains at least
one bag apart from Bies; (Ky) and Byight(Ky). Then, Ky is called a nice clique path if all interior
bags of Ky are unmarked in Bmarked (1) U Bmarked (IT) - - - U Bmarked (V).

Note that any nice clique path has at least three bags and it is contained in a manageable clique
path, and therefore it is also a manageable clique path. We also note that the end bags of a nice
clique path Ky need not be marked, and this is only true for maximal nice clique paths. In the
following, we define the notion of nice obstructions.

Definition 6.29 (Nice Obstruction). Let Ky be a nice clique path and O be an obstruction. Fur-
thermore, let J = V(0) N (f(Ky) \ C(Ky)). The obstruction O is called a Ky -nice obstruction (or
Ky -nice) if one of the following holds:

(1) J S Biet(Ky) U Byignt (Ky), or
(2) G[J] is an induced path between a vertex in B (Ky) \ C(Ky) and a vertex in Byigh:(Ky) \
C(Ky) that contains a vertex of [(Ky).

Moreover, O is a nice obstruction if it is Ky-nice for every nice clique path Ky.

The following observation is easily obtained from the preceding definition and the fact that a
nice clique path is also a manageable clique path.

OBSERVATION 6.30. IfKy is a nice clique path that is a sub-clique path of another nice clique path
Kz, and O is a Kz -nice obstruction, then Q is a Ky -nice obstruction. Hence, an obstruction Q is a nice
obstruction if it is Ky -nice for every maximal nice clique path Ky.
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Proor. Let Jz = V(0O)N(B(Kz)\C(Kz)) and Jy = V(O)NB(Ky).If Jz C Biert(Kz) UBright (K2),
then as (Biet(Kz) U Bright(K2)) N B(Ky) S Bieft(Ky) U Byight(Ky), we have Jy C Bient(Ky) U
Bright (Ky). Hence, O is a Ky-nice obstruction.

Otherwise, J7 is an induced path from a vertex in Bjei(Kz) \ C(Kz) to a vertex in Bight (Kz) \
C(Kz).If Jy € (Bieft (Ky)UByight(Ky)), then O is a Ky-nice obstruction. Otherwise, Jy \ (Bjef (Ky)U
Bright(Ky)) # 0, and hence Jy N I(Ky) # 0. Consider a vertex v € Jy N I(Ky). Note that as J is
an induced path from a vertex in Bjes; (Kz) \ C(Kz) to a vertex in Byight(Kz) \ C(Kz), (Bert(Kz) \
C(Kz)) N I(Ky) = 0, and (Byight(Kz) \ C(Kz)) N I(Ky) = 0, therefore v is an internal vertex
of the path Jz. We will show that Jy N C(Ky) = 0. To see the preceding statement, toward a
contradiction, we consider a vertex u € Jy N C(Ky). This together with Observation 6.16 implies
that N(v) C f(Ky) UMai(Ky) € N[u]. This contradicts the fact that J is an induced path (as v is
an internal vertex of J;). Hence, Jy N C(Ky) = 0, and therefore from Lemma 6.20 (invoking it with
Ky and Jz), Jy is an induced path from a vertex in Bje (Ky) \ C(Ky) to a vertex Byight (Ky) \ C(Ky)
that contains a vertex of [(Ky). Hence, O is a Ky-nice obstruction. O

The following lemma shows that an induced cycle on at least four vertices, which is not covered
by ‘W, is always a nice obstruction. We recall that by definition, a chordless cycle on four vertices
is a manageable obstruction.

LEMMA 6.31. Let O be a chordless cycle on at least four vertices that is not covered by ‘W. Then, O
is a nice obstruction.

Proor. Let us consider a maximal nice clique path Ky, and suppose that ] = V(O) N (f(Ky) \
C(Ky)) € Biet (Ky) U Bright (Ky). Consider a vertex v € J\ (Beft (Ky) U Byight (Ky)). Since I(Ky) =
BKy) \ (Bieft (Ky) U Biight (Ky)), we have that v € J N I(Ky). As O is not covered by W, there is
a pair of (distinct) vertices my,m; € M N V(O) such that the path segment P between m; and m;
in O contains the vertex v and V(O) \ V(P) # 0. Here, we rely on the fact that O is not covered
by ‘W, and therefore |[M N V(O)| > 10, which implies that |[V(O)| > 10. Let P* be the subpath
of P from mj € M to mj € M containing v such that |[V(P*) N M| = 2. Note that P* exists and
could possibly be the same as P. As V(O) \ V(P) # 0, (m],m;) ¢ E(G). Next, we argue that
mj, m; € Mai(Ky). Consider the case when both mj, m; € Maj(Ky). Since O is not covered by
W, from Observation 6.16, we have (mj,m;) € E(G), which is a contradiction. Next, suppose
that m] € Mai(Ky) and m; € Mp, (Ky) (the other case is symmetric). In this case, we have that
(v,m;) ¢ E(G). Observe that v has no neighbor outside f(Ky) U Ma;(Ky) and m; is adjacent
to all vertices in f(Ky) U (Man(Ky) N V(Q)) (Observation 6.16). Now let u be the neighbor of
v in the subpath of P* from v to m;. Observe that u € S(Ky), and therefore we obtain a chord
(m},u) in P*, which is a contradiction. Therefore, mj,m; ¢ Ma(Ky), and thus we have that
V(P*) N Mai(Ky) = 0. Observe that P* satisfies the premise of Lemma 6.20, as the endpoints of
P* lie outside f(Ky), and it contains an internal vertex from [(Ky), and V(P*) N Mai(Ky) = 0.
Therefore, P*[V(P*) N f(Ky)] is an induced path from a vertex in Bjes(Ky) \ C(Ky) to a vertex
in Byight(Ky) \ C(Ky) such that P* — (Bjest(Ky) U Biight(Ky)) is an induced path contained in
[(Ky). Note that the endpoints of P* in O belong to Mp;iy(Ky). The preceding together with the
fact that P*[V(P*) N B(Ky)] is an induced path from a vertex in B (Ky) \ C(Ky) to a vertex
in Bright(Ky) \ C(Ky) implies that J cannot contain a vertex that does not belong to V(P*) (as
otherwise, we can obtain a chord in Q). Thus, we conclude that O is a Ky-nice obstruction. Finally,
as this argument holds for every nice clique path, the lemma follows. ]

Next, for each obstruction (not covered by ‘W), we argue about existence of a nice obstruction.

LEMMA 6.32. Let S € V(G) be a set of size at most k + 2 that intersects each set in W. If O is an
obstruction in G — S, then there is a nice obstruction O’ in G — S.
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Proor. Since S intersects each set in ‘W and O is an obstruction in G — S, therefore O is not
covered by ‘W. Thus, O contains at least 10 vertices from M. If O is a chordless cycle, then by
Lemma 6.31 it is a nice obstruction. Now, we assume that O is an AW, and suppose that it is not a
nice obstruction. Let O’ be an obstruction in G — S such that for each manageable path Kx we have
that (i) either O’ is a Kx-manageable obstruction or (ii) each vertex in V(0’) N V(Kx) appears in
some marked bag from Bmarked (I) U Bmarked (IT) - - . U Bmarked (V). Note that O’ can be obtained by
iterative application of Lemma 6.26 or Lemma 6.27 for every maximal manageable clique path Ky,
depending on the sets V(base(0)) N I(Kx) and V(P(O)) N Mai(Kx). Note that each application
of these lemmas modifies the obstruction O” only within the corresponding maximal manageable
clique path. Moreover, these lemmas also ensure that O’ is not covered by W, since O was not
covered by “W. Thus, we have that Q' is not covered by “‘W.

We claim that O’ is a nice obstruction in G — S. From Observation 6.30, it is enough to argue
that O’ is a Ky-nice obstruction for every maximal nice clique paths. For the rest of the proof, fix
a maximal nice clique path Ky and let Kx be the maximal manageable clique path of which Ky is
a sub-clique path. Recall that O’ is either a Kx-manageable obstruction or each vertex in V(0’) N
V(Kx) appears in some marked bag from Bmarked (I) U Bmarked (II) . . . U Bmarked (V). As V(Ky) C
V(Kx), in the latter case, V(0’) N V(Ky) € Biet(Ky) U Byight(Ky) must hold, and thus we can
conclude that O’ is a Ky-nice obstruction. We now focus on the case when O’ is a Kx-manageable
obstruction. As a nice clique path is also a manageable clique path, from Observation 6.19 we can
obtain that O’ is a Ky-manageable obstruction that is not covered by ‘W. We must now show that
V(O)N(B(Ky)\C(Ky)) is either a subset of Bjes; (Ky) UByight (Ky) or it is an induced path between
a vertex in B (Ky) \ C(Ky) and a vertex in Byight(Ky) \ C(Ky) that contains a vertex of I(Ky).
In other words, we show that O’ is a Ky-nice obstruction. Next, we consider the following cases:

(1) Consider the case when V(base(O’)) N I(Ky) = 0. Since O’ is a Ky-manageable obstruction,
the terminals of O’ must lie in the marked bags or in M, and hence they cannot belong to
vertices in [(Ky) = B(Ky) \ (Bies: (Ky) U Byignt(Ky)). Since O’ is not covered by ‘W, from
Observation 6.21 we can obtain that the center vertices of O” do not belong to I(Ky). From
the preceding discussions, together with the assumption that V(base(O’)) N I(Ky) = 0, we
conclude that V(0’) N (B(Ky) \ C(Ky)) € Biert (Ky) U Byight(Ky). Therefore, O” is Ky-nice.

(2) Consider the case when V(P(Q")) N Mai(Ky) # 0. Recall that O’ is Ky-manageable. Thus,
the terminals of O’ must lie in the marked bags or in M, and hence they cannot belong
to vertices in I1(Ky). By using an argument similar to the one used for the previous case,
we can deduce that the centers cannot belong to 1(Ky). Finally, if there is a vertex v €
I(Ky) N base(Q’), consider its two (non-adjacent) neighbors x, y in P(Q’). Notice that since
Ng(v) € B(Ky) UMai(Ky), we have x,y € f(Ky) U Mai(Ky). Since O’ is not covered by
W, using Observation 6.16 we can deduce that at most one of x, y can belong to May(Ky). If
x € Mail(Ky) and y ¢ Maj(Ky), which means that y € f(Ky), then using Observation 6.16,
we have that (x,y) € E(G). We can give similar arguments for the case when x ¢ Ma;(Ky)
andy € Maj(Ky). Thus, we now assume that x, y € f(Ky). Consider a vertexu € V(P(0’))N
Mai(Ky), which exists by our assumption in this case. Then u, v are both adjacent to x,y
(see Observation 6.16), contradicting that P(Q’) is an induced path. Thus, we conclude that
V(O") N (B(Ky) \ C(Ky)) C Bieft (Ky) U Byight(Ky). Therefore, O” is Ky-nice.

(3) Otherwise, we have base(V(0’)) N1(Ky) # 0 and V(P(O’)) N Ma(Ky) = 0. Recall that O’ is
Ky-manageable. Then, Lemma 6.26 implies the following. P = G[V(O’) N (B(Ky) \ C(Ky))]
is an induced path from a vertex in Bjen (Ky) \ C(Ky) to a vertex in Byignt (Ky) \ C(Ky) that
contains a vertex of [(Ky). Further, P is a subpath of base(Q’). Furthermore, the centers cy, c;
of O lie in Mu;(Ky) U C(Ky), whereas the terminals t¢, t,,t ¢ B(Ky) U Maj(Ky). Hence,
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G[V(O")N(p(Ky)\ C(Ky))] is an induced path from a vertex in B (Ky) \ C(Ky) to a vertex
in Bight(Ky) \ C(Ky) that contains a vertex of I(Ky). Therefore, O” is Ky-nice.

Hence, O’ is Ky-nice, and further we can conclude that Q’ is a nice obstruction in G — S. m]

COROLLARY 6.33. Let Ky be a nice clique path, and let O be an AW such that it is a nice obstruction
not covered by ‘W. Further, let G[V(0) N (B(Ky) \ C(Ky))] be an induced path between a vertex in
Biert (Ky) \ C(Ky) and a vertex in Byight(Ky) \ C(Ky) that contains a vertex of I(Ky). Then, the
following holds:

(i) V(0) n (C(Ky) U Man(Ky)) = {c1, ca}, the centers of O.
(ii) The terminalste,t,,t ¢ B(Ky) U Man(Ky).
(iii) And G[V(0) N (B(Ky) \ C(Ky))] is a subpath of base(QO), and G[V(0) N 1(Ky)] is an induced
path in G[I(Ky)].

Proor. Let ] = V(0) N (f(Ky) \ C(Ky)). Note that J contains a vertex of [(Ky). We can obtain
that base(Q) N 1(Ky) # 0 as follows. If base(O) N 1(Ky) = 0, then using the arguments similar to
the arguments of Case 1 in the proof of Lemma 6.32, we can obtain that V(O)NI(Ky) = 0 (and thus,
reaching a contradiction). Similarly, using the arguments of Case 2 in the proof of Lemma 6.32, we
can obtain that V(P(0)) N Ma(Ky) = 0.

Consider the first property, and we have {c1, c;} € V(O)N(C(Ky)UMa(Ky)) (from Lemma 6.26).
We argue that indeed these sets are equal. Suppose not. Note that no terminal vertex of O lies in
C(Ky)UMai(Ky) (from Lemma 6.26), hence any vertex w € (V(0) N (C(Ky)UMan(Ky))) \{c1, c2}
must be from base(Q). Note that G[J] is a subpath of base(Q) (from Lemma 6.26) and it contains at
least three vertices (at least one from each of Biet (Ky) \ C(Ky), I(Ky) and Byight (Ky) \ C(Ky)), and
any vertex of M (Ky) U C(Ky) must be adjacent to all vertices of f(Ky) (by Observation 6.16).
From the preceding, we obtain that w € V(base(0)) is adjacent to at least three vertices, which
contradicts that base(Q) is an induced path.

Note that the second property follows directly from Lemma 6.26. Now consider the third prop-
erty, and we have that G[J] is an induced path between a vertex in Bjer (Ky) \ C(Ky) and a vertex in
Bright (Ky) \ C(Ky) that contains a vertex of [(Ky). Further, G[]] is a subpath of base(Q). We only
need to argue that G[V(0) N1(Ky)] is an induced path in G[I(Ky)]. Observe that G[V(0O) N I(Ky)]
is an induced subgraph of the path G[J]. Suppose that it is not connected. Then there must be ver-
tices u, ay, az, as, v in the path G[J] that occur in this sequence (not necessarily as a subpath) such
that u, v, a; € Bieft (Ky) U Byight(Ky) and ay, a3 € I(Ky). But then, say u, a; € Bt (Ky) (the other
case is symmetric). This is a contradiction, since G[J] is an induced path, and (u, a;) is an edge
in the clique G[Bje (Ky)]. Therefore, G[V(O) N I(Ky)] must be a connected induced subgraph of
G[J], and hence it is a induced path in G[I(Ky)]. O

We will require a strengthening of the preceding corollary that allows us to “replace” the path
P =G[V(O)n (B(Ky) \ C(Ky))] in O with another path P’ between the endpoint bags of Ky and
obtain a new obstruction.

Let O be a nice obstruction in G that is not covered by “W. Consider a nice clique path Ky, and
let P = G[V(0) N (B(Ky) \ C(Ky))]. From Definition 6.29, either V(P) C Bieft(Ky) U Byight (Ky),
or P is an induced path between a vertex in Bjef; (Ky) \ C(Ky) and a vertex in Bight (Ky) \ C(Ky)
that contains a vertex in I(Ky). Consider the latter case (i.e., when P is an induced path between a
vertex in Bje (Ky) \ C(Ky) and a vertex in Byigh: (Ky) \ C(Ky) that contains a vertex in I(Ky)), and
let u and v be the endpoints of P in B (Ky) \ C(Ky) and Bight(Ky) \ C(Ky), respectively. Note
that as P contains an internal vertex (from 1(Ky)), (u,v) ¢ E(G). Let P’ be any other induced path
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between u and v in G[B(Ky) \ C(Ky)] such that V(P") € V(P) U I(Ky). In the following lemma,
we show how we can obtain another nice obstruction using P’.

LEMMA 6.34. There is a nice obstruction Q" that is not covered by ‘W such that Q' is an induced
subgraph of G[(V(QO) \ V(P)) U V(P")].

Proor. Let O’ = G[(V(0)\V(P))UV(P’)]. We now have two cases. First consider the case when
O is a chordless cycle. Let us argue that O’ is a nice chordless cycle that is not covered by ‘W. Let
u* and v* be the neighbors of u and v, respectively, in O that lie outside V(P). Since O is a Ky-nice
obstruction and V(P) = (Ky)NV(0), it follows that O[u*, v*] = G[V(0)\V(P)] is a path between
u* and v* such that all vertices of this path lie outside f(Ky). We claim that O[u*, v*]NMa(Ky) =
0. As P contains at least 3 vertices, any vertex in Maj(Ky) is adjacent to all vertices of P (by
Observation 6.16.), this claim follows. Then, it is clear that O’ = G[V(O[u",v*]) UV (P’)] is a cycle
in G. Next, observe that V(Q’) \ I(Ky) € V(0) \ I(Ky), since V(P") € V(P) U I(Ky). Further,
N (w) NV(O[u*,v*]) = 0 for every vertex w € V(O’) N I(Ky), since Ng(w) C S(Ky) UMan(Ky).
Therefore, there are no edges in G between V(0Q’) N [(Ky) and V(O[u", v*]). Finally, as O is not
covered by W and M is a 9-redundant solution, there must be at least 10 vertices of O in M, which
implies that O’ contain at least 10 vertices. Hence, O’ contains a chordless cycle in G on at least 10
vertices. We note that O’ is not covered by ‘W, as V(O) N M = V(O’) N M (and |V(0O) N M| > 10).
Finally, from Lemma 6.31, it follows that O’ is a nice obstruction.

Now we consider the case when O is an AW. Recall that V(0) N (f(Ky) \ C(Ky)) is an induced
path between a vertex in Bes(Ky) \ C(Ky) and a vertex in Byignt(Ky) \ C(Ky) that contains a
vertex of I(Ky). Furthermore, we have the following properties from Corollary 6.33:

(1) V(O) N (C(Ky) UMan(Ky)) = {c1, ca}, where ¢y, ¢, are the centers of O.
(if) The terminals tz, t,,t ¢ f(Ky) U Mai(Ky).
(iii) The path P (= G[V(0)N(B(Ky)\ C(Ky))]) is an induced path between a vertex in Beg (Ky) \
C(Ky) and a vertex in Byight (Ky) \ C(Ky) that contains a vertex of |(Ky). Furthermore, P is a
subpath of base(0), and G[V(0) NI(Ky)] = P[V(P) N I(Ky)] is an induced path in G[1(Ky)].

Let us define Q = G[(V(P(0)) \ V(P)) U V(P’)]. Then, we construct O’ by replacing P with P’
in O. Let us argue that O’ is also an AW. Let u* and v* be the neighbors of u and v, respectively,
in P(0) that lie outside V(P). (We note that u* and v* exist, as P is a subpath of base(O) and
vertices in V(base(0)) are internal vertices of P(0).) Let P,- and P,- be the subpaths of P(0Q)
from t, to u* and from v* to t,, respectively. Note that Q is a path from ¢, to t, such that V(Q) \
B(Ky) =V (Py:) UV (P,+) = V(P(0)) \ B(Ky). Moreover, as V(P’) € V(P) U I(Ky) (together with
Observation 6.14 and 6.16), it follows that Q is an induced path from t, to t,. Similarly, we can
argue that there is no edge between any vertex of Q and the shallow terminal ¢ of O. Moreover,
each vertex of V(Q)NI(Ky) is adjacent to ¢; and c,. Finally, recall that there are at least five vertices
in base(0) \ f(Ky) that lie in M, as it is a 9-redundant solution and O is not covered bv “W. Hence,
Q contains at least five internal vertices. Hence, O’ is an AW. Furthermore, by construction, O’ is
a nice obstruction that is not covered by ‘W.

In each of the cases, by construction, O’ is a nice obstruction that is not covered by ‘W. Moreover,

0-pB(Ky) =0 - B(Ky). o

Consider a maximal nice clique path Ky with endpoint bags Bje(Ky) and Byight(Ky). Before
moving on to our next marking scheme, we construct two sets of bags, 71 (Ky) and 7;(Ky). Initially,

we have 71(Ky) = {Bieft (Ky), Bright (Ky)}. For each u € Bt (Ky), let B, (Ky) be the last bag in Ky
that contains u. Additionally, for each v € Byight (Ky) \ Bl (Ky), let B, (Ky) be the first bag in Ky

that contains v. We add all the bags in {B,(Ky) | u € Bjeg(Ky)} U {m | v € Bright(Ky) \
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Biest (Ky)} to 71(Ky). We initialize 7;(Ky) = 77 (Ky). Furthermore, for each bag B € 71 (Ky) in Ky,
we add to 7;(Ky) the bags adjacent to B, namely B~! and B*! (if they exist) in Ky. Note that the
number of bags in 73 (Ky) is bounded by O(#). Finally, we let Bmarked (VI) be the union of the sets
72(Ky) taken over all maximal nice clique paths Ky.

Marking Scheme VI. Add all the bags in Bmarked (VI) to Bmarked-

We marked at most O(n) bags for each nice clique path. Recall that we have at most O(n*|M|)
manageable clique paths, and for each manageable clique path we marked at most O (n'*|M|k®)
bags in K using Marking Schemes IV and V, which partitioned the manageable clique path into

nice clique paths. Hence, in Marking Scheme VI, we marked at most | O(5'¢|M|k?®) | bags in K.

Definition 6.35 (Simple Clique Paths). Let B;, Bj be a pair of consecutive marked bags (consider-
ing all marking schemes of the section up to now) in a nice clique path Ky. Then, K, = K[B;, B;]
is called a simple clique path.

Note that any simple clique path is also a nice clique path. Next, we state an observation regard-
ing a simple clique path K. We note that this observation is similar to Lemma 6.13 presented in
Section 6.1.2.

OBSERVATION 6.36. Consider a pair B;, B; of consecutive marked bags in a maximal nice clique
path Ky such that Kz = K[B;, B;j] contains at least three bags. Then, for any B, B’ € K, we have
B N (Biet (Ky) U Bright(Ky)) = B N (Biert(Ky) U Brignt(Ky)). Therefore, B(Kz) N (Biert(Ky) U
Bright (Ky)) € C(Kz).

Proor. As Kz = K[B;, B;] contains at least three bags where B; and B; are consecutive marked
bags, both B; and B; must belong to 7;(Ky) \ 71(Ky). Thus, Kz has no bags from 7; (Ky). Without
loss of generality, assume that B appears before B’ in Ky. If there is u € BN (B (Ky) UByight (Ky))
such that u ¢ B’ N (Bt (Ky) U Byight(Ky)), then there is a bag strictly before B’ and on/after B
that belongs to 77 (Ky). This contradicts that Kz contains no bags from 77(Ky). Similarly, when
there is u € B’ N (Bt (Ky) U Bright (Ky)) such that u ¢ B N (Bjet (Ky) U Byignt(Ky)), we can obtain
a contradiction to the fact that Kz contains no bags from 7;(Ky). This concludes the proof. O

In the next observation, we recall a property of interval graphs that will be useful later.

OBSERVATION 6.37 (SEE [8]). For a connected interval graph, any minimal separator of it is an
intersection of adjacent bags in its clique path.

Let us now consider a simple clique path Kz contained in a nice clique path Ky. In the following,
by a separator in Kz, we mean a separator of Biet (Kz) \ C(Kz) and Byignt (Kz)\ C(K7) in the graph
G[p(Kz) \ C(Kz)]. From Observation 6.37, any minimal separator in K  lies in the intersection
of two adjacent bags in K, after excluding the vertices in C(Ky).

LEmMMA 6.38. Let Kz be a simple clique path with at least three bags that is contained in the maxi-
mal nice clique path Ky . Furthermore, let S be a minimal solution of size at most k+2 in G that contains
avertex in|(Kz), and let Sz = (SN P(Kz)) \ C(Kz). Then, Sz is a separator in K z. Furthermore, Sz
is @ minimal separator in Kz. For any other separator S7, in Kz such that Sz \ (Kz) = S, \ (Kz)
and S* = (S\ Sz) U S}, has size at most k + 2, the set S* is also a solution.

Proor. Consider a vertex w € S N 1(Kz), and note that this vertex lies in S. Then, consider an
obstruction O* such that SN V(0*) = {w}. Since S is a minimal solution, such an obstruction must
exist. Moreover, as S is a solution of size at most k + 2, it must cover ‘W. As all vertices of ‘W lie in
M and w € S\ M, the set S,, = S\ {w} also covers ‘W. Now, consider the obstruction O* in G - S,,.
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Note that O* is not covered by ‘W, as otherwise S,, covers ‘W, and thus it intersects O*, which is
a contradiction to the choice of O*. Hence, O is an obstruction that is not covered by ‘W that is
present in G — S,,. Then, by Lemma 6.32, there is a nice obstruction O in G - S,, that is not covered
by W. Since O is not present in G — S, we must have that SN V(O) = {w}. Let us further note that
w € I(Ky), since I(Kz) C I(Ky) by the premise of the lemma.

Let P = G[V(O) N (B(Ky) \ C(Ky))], and note that P contains w. Then, by the definition of a
nice obstruction (see Definition 6.29), P is an induced path from a vertex in B (Ky) \ C(Ky) to a
vertex in Byight(Ky) \ C(Ky) that contains a vertex of I(Ky). Let Pz = P[V(P) N (f(Kz) \ C(Kz))].
And again, because w € V(P) (and note that K is also a nice clique path), Pz is an induced path
from a vertex in Bieft (Kz) \ C(K7) to a vertex in Byight (K7) \ C(Kz) that contains a vertex of I(Kz).

Let u and v be the end vertices of the path P in Bje;(Ky) \ C(Ky) and Byight(Ky) \ C(Ky),
respectively. Let us note that the induced path P contains an internal vertex w € 1(Ky), and
therefore (u,v) ¢ E(G). Let u, and v, be the endpoints of Pz in B (Kz) \ C(Kz) and Byight(Kz) \
C(Ky), respectively. Then, as before, as Pz is an induced path from u, to v, containing w € I(Kz),
(uz,v;) ¢ E(G). Now we argue (using Observation 6.36) that u,, v, ¢ Bier (Ky)UBright (Ky). Toward
a contradiction, assume that u; € Bier(Ky) U Byight(Ky), then u, € C(Ky), which implies u, €
Biight (Ky), which then implies that (u.,v;) € E(G). Indeed, V(Pz) N (Biest(Ky) U Byight(Ky)) =
0, since V(Pz) N C(Kz) = 0. Finally, note that u,v,u,,v, ¢ S, as these vertices belong to the
obstruction O in G - S,,, where w € SN I(K,).

Now suppose that Sz is not a separator in Kz. Then, there is a path P/, in G[f(Kz)] - (SUC(K 7))
between u, and v,. We note that such a path exists, because if there is a path from some u €
Bieft(Kz) \ C(Kz) and ¥ € B (Kz) \ C(Kz) (which exists as Sz is not a separator), then we
can obtain a path from u; to v, as (uz, ), (v;,0) € E(G). We note that w ¢ V(P}), as w € Sz.
Additionally, V(P,) N C(Kz) = 0, which means V(P},) N (Bjer(Ky) U Byight(Ky)) = 0. Then,
consider an induced path P’ from u to v in G[(V(P) \ V(Pz)) UV (P},)]. Observe that V(P')NS = 0,
by construction, and V(P’) € V(P) U I(Ky). Then, by Lemma 6.34, there is a nice obstruction O’
such that V(0Q’) € (V(0) \ V(P)) U V(P’). By choice of O and P’, we have V(0Q’) NS = (. But this
is a contradiction. Hence, Sz must be a separator in K.

Let us now argue that when Sz contains a vertex in (K ), then it is a minimal separator in
Kz. As we have argued that S is a separator in Kz, there are two adjacent bags B, B in K such
that (BN B’) \ C(Kz) C Sz (see Observation 6.37). We claim that Sz = (BN B’) \ C(Kz)—that is,
Sz is a minimal separator in Kz. Our arguments are similar to the one in the previous paragraph.
Toward a contraction, assume that Sz # (BN B’) \ C(Kz). (Recall that (BN B’) \ C(Kz) C Sz.) Let
S, = (BNB’)\C(Kz), and note that Sz\ S/, C I(Kz). Consider an arbitrary vertex w € Sz\S,, and
let S,, = S\ {w}. Note that S,, covers ‘W. Then, as S is a minimal solution, there is an obstruction
O* such that V(0*) N S = {w}. From Lemma 6.32, there is a nice obstruction O that is not covered
by ‘W such that V(0) NS = {w}. Let Pz = G[V(0) N (f(Kz) \ C(Kz))]. (Note that Pz contains w.)
By the definition of a nice obstruction, Pz is an induced path from a vertex u, € B (Kz) \ C(Kz)
toavertex v; € Bight(Kz) \ C(Kz) that contains the vertex w € I1(Kz). But then the path Pz exists
in G - §,,, whereas any path from u; to v, in G[f(Kz) \ C(Kz)] must intersect S, and S/, C S,,.
This is a contradiction. Hence, Sz = S’,—that is, Sz is a minimal separator in K.

Let us now argue that for any other separator S7, in Kz such that Sz \ I(Kz) = S}, \ I(Kz) and
§* = (S\ Sz) U S}, has size at most k + 2, the set S is also a solution. Suppose not. Note that
S* covers W since S* N M = S N M. Now consider an obstruction Q" in G — S*, and note that it
is not covered by ‘W. Therefore, by Lemma 6.32, there is a nice obstruction O in G — S* that is
not covered by W. Let w € (Sz \ S},) N V(0). (Note that w € I(Kz) by the choice of S, and it
exists as S is a solution and O is an obstruction in G — §*.) Let Pz = G[V(0) N (B(Kz) \ C(K2))],
and note that P, contains w. Then, by the definition of a nice obstruction, Pz is an induced path
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from a vertex u, € B (Kz) \ C(Kz) to a vertex v; € Byight(Kz) \ C(Kz) that contains a vertex
w € |(Kz). But any such path must intersect 57, and therefore S*, which contradicts the assumption
that S* N V(O) = 0. This concludes the proof. O

Let us now identify and mark a collection of minimal separators in Kz such that if there is a
solution, then there is a solution contained in the marked bags. To this end, we first obtain some
“useful” subsets. Consider a simple clique path K . Let S(Kz) denote the collection of subsets
T C (Beft(Kz) U Byight (Kz)) \ C(Kz) for which |T| < k and there is a pair of adjacent bags Br, B’
in Kz such that (i) T = (Br N B}) \ (C(Kz) UI(Kz)) and (ii) (Br N B}) NI(Kz) < k. We can bound
|S(Kz)| as follows.

LEmMA 6.39. |S(Kz)| < 2k + 1.

Proor. Let us index the bags of Kz by natural numbers starting from 1. Let p be the smallest
index for which there is T, € S(Kz) such that T, = (B, N B,41) \ (C(Kz) UI(K7)). Similarly, let
be the largest index for which there is T, € S(Kz) such that T, = (B; N Bgy41) \ (C(Kz) U I(K7)).
Note that for any T € S(Kz), we have T C T, U T,,. Furthermore, we can order the sets in S(Kz),
denoted by ‘<’, such that for any T < T’ € S(K;) we have T N Bieg(Kz) 2 T’ N Biet(K2)
and T N Byight(Kz) € T’ N Byight(Kz). Moreover, as T and T’ are distinct subsets of B (Kz) U
Bright (Kz) \ (C(Kz) U I(K7)), one of those inclusions must be strict. Finally, observe that T,, U T,
contains at most 2k vertices of Bjef; (Kz) U Bright(Kz) \ C(Kz). Therefore, |S(Kz)| < 2k+1. O

We will construct a collection Bumarked (VII) as follows. For each simple clique path K and for
each T € S(Kz), we select a pair of adjacent bags Br, B}. in Kz such that Br N B’ is of minimum
cardinality and contains T, and add them to Bmarked (VII). Note that By N B'T is a minimal separator
in Kz.

Marking Scheme VII. Add all bags in Bmarked (VII) to Bmarked-

We note that using the preceding marking scheme, we mark at most | O(1'®|M|k*) | bags in K,

which follows from the number of bags marked by Marking Scheme VI. We have the following
lemma, which states that the collection of marked bags in Barked contains a solution if one exists.

LEMMA 6.40. Let S be a minimal solution of cardinality at most k. Then, there is another minimal
solution S’ of size at most |S| such that all vertices of S’ lie in marked bags.

Proor. Consider any simple clique path K. Suppose that S contains an unmarked vertex in
Kz. Then, S contains a vertex in I(Kz). Then, by Lemma 6.38, Sz = S N (f(Kz) \ C(Kz)) is
a minimal separator in K . Therefore, there is a pair of consecutive bags B, B’ in Kz such that
S;=(BNB)\C(Kz).Let T, = Sz \ I(Kz). Then, note that T, € S(K ) since (i) |Tz| < |Sz| < k,
(i) Tz = BN B) \ (C(Kz) UI(Kz)), and (iii) (BN B") N 1(Kz) < |Sz| < k. Now, corresponding to
Tz, we have marked a pair of adjacent bags By, B} in Bmarked (VII) such that S, = (B;NB})\C(Kz)
is a minimal separator in Kz containing Tz. Note that |S’,| < |Sz| and Sz \ I(Kz) = S/, \ I(Kz).
Then, again by Lemma 6.38, " = (S\ Sz) US7, is a solution and |S’| < |S|. This concludes the proof
of this lemma. O

Now we consider the problem of reducing the set of unmarked vertices in K.

LEMMA 6.41. Let v be an unmarked vertex in a simple clique path K such that v is contained in
only one bag. Then (G, k) is a Yes-instance of IVD if and only if (G — {v}, k) is a Yes-instance of IVD.

Proor. In the forward direction, let S be a solution in G of size at most k. Clearly, S is a solution
in G — {v} as well. Now, we consider the reverse direction. Let S be a solution of size at most
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k in G — {v}, and suppose that it is not a solution in G. Observe that S U {v} is a solution in G
of cardinality at most k + 1, and therefore it hits each set in ‘W. Furthermore, as v ¢ M, S hits
every set in “W. Now consider an obstruction O in G — S, and clearly it includes v. It follows
that the obstruction O is not covered by W, and V(0) N M contains at least 10 vertices. Let us
consider O in the graph G along with the set S. Observe that N(v) € BU Maj(Kz), where B is the
(unique) bag in K containing v. Every pair of vertices in (B U Ma;(Kz)) \ S is either an edge in
G — S or a pair in ‘W (using Observation 6.16). Therefore, v does not have a pair of non-adjacent
neighbors in Q. Hence, O is not a chordless cycle, and so it is an AW. Now, by Lemma 6.32, there
is a nice obstruction O’ in G — S. (Note that O” must contain v, as S is a solution in G — {v}.) Note
that all terminals of O’ lie in marked bags. As v is an unmarked vertex, by Observation 6.21 and
Corollary 6.33, v lies in base(Q) and therefore N(v) must contain a pair of non-adjacent vertices,
which is a contradiction. But then v is not part of the obstruction Q’. This implies that that O’ is
an obstruction in G — (S U {v}), which is also a contradiction. Hence, S must also be a solution in
G. This concludes the proof of this lemma. O

The vertices that satisfy the premise of the preceding lemma are called irrelevant vertices. The
preceding lemma gives the following reduction rule.

Reduction Rule 6.2. Let K be a simple clique path. Then, pick an unmarked vertex in K that
is contained in only one bag, and delete it from the graph G. The resulting instance is (G — {v}, k).

If the preceding reduction rule is not applicable, then there are no unmarked vertices in any
nice clique path Ky that are contained in only one bag. Then, observe that for any unmarked bag
Bin Ky, we have B = (BN B™!) U (BN B*!). Let us now consider the remaining of the unmarked
vertices in K.

LEmMMA 6.42. Let Kz be a simple clique path that contains an unmarked vertex. Then, there is an
edge (u,v) such that at least one of its endpoints is an unmarked vertex, and there is only one bag in
Kz that contains this edge.

Proor. Let us walk in K starting from B (KKz), and let B be the first bag in K that contains
an unmarked vertex. Let us partition the bag B into three parts as follows, A; = B 'nB*!' C B,
A; = (BNB™Y)\ Ay, and A; = BNB*!'\ A,. Note that BNB™! = A; UA,, and BNB™ = A, UA3. Note
that A; # 0, and otherwise B = A, U A3 C B*!, which is a contradiction as B is a maximal clique
in the clique path Kz, and hence B ¢ B*!. Similarly, we can argue that A; # (. Now, consider an
unmarked vertex u € B and observe that u € As, by choice of B. Next, we choose a vertex v € A;,
and clearly it is distinct from u. Furthermore, as v ¢ B! and u ¢ B!, we have that the edge (u,v)
is present only in B. O

In the following, we select an edge e = (u, v) given by Lemma 6.42 that lies in a simple clique
path Kz. We call such an edge an irrelevant edge.

OBSERVATION 6.43. Let (u,v) be an irrelevant edge in a simple clique path Kz such that u is an
unmarked vertex. Then, u € 1(Kz) andv ¢ C(Ky).

ProoF. Since u is unmarked, u ¢ Bief (Kz) U Byight (K ) since those bags are marked. Therefore,
u € 1(Kz). And suppose that v € C(Kz). Then, as the vertex u lies in at least two consecutive bags
B and B’ (since Reduction Rule 6.2 is not applicable), the edge (u, v) is present in both B and B’.
But this contradicts the definition of an irrelevant edge. O

LEMMA 6.44. Let (u, v) be an irrelevant edge in a simple clique path K. Then, there is no minimal
separator in Kz that contains both u and v.
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Proor. Recall that K7 \ C(K7) is a clique path with endpoint bags B (Kz) \ C(Kz) and
Bright(Kz) \ C(Kz). Therefore, every minimal separator of these endpoint bags is the intersec-
tion of a pair of adjacent bags in Kz \ C(Kz). If both u and v were in a minimal separator, then
the irrelevant edge (u, v) appears in at least two bags, which is a contradiction. Therefore, there is
no minimal separator that contains both u and v. O

OBSERVATION 6.45. A minimal solution of size at most k + 2 in G contains at most one of u and v,
where (u, v) is an irrelevant edge in the simple clique path K.

Proor. Suppose not. Let S be a minimal solution in G that contains both of u and v, and suppose
that v is unmarked. Then, as S contains the vertex v that lies in I(Kz), Sz = SN (f(Kz) \ C(K2))
is a minimal separator in K (see Observation 6.43). Now, by our assumption, S contains both u
and v, whereas by Lemma 6.44 S contains at most one of them. This is a contradiction. O

LEMMA 6.46. Let e = (u,v) be an irrelevant edge in Kz, where u is an unmarked vertex. Then,
(G, k) is a Yes-instance of IVD if and only if (G/e, k) is a Yes-instance of IVD.

Proor. To begin with, let us note that as (4, v) is an irrelevant edge in Kz and u is an unmarked
vertex, u € I(Kz) and v € f(Kz) \ C(Kz), by Observation 6.43. Let Ky be a maximal nice clique
path that contains the simple clique path K. In other words, Kz was obtained from Ky by Marking
Scheme VI. As u,v € B(Kz) \ C(Kz), and (Bjert(Ky) U Bright(Ky)) N B(Kz) € C(Kz), we have
u,v € I(Ky) (see Observation 6.36).

Let z* denote the vertex obtained by contracting the irrelevant edge e = (u, v). Let S be a solution
of size at most k in G. Let S” = (S \ {u,v}) U {z"} whenever S N {u,v} # 0, and S” = S otherwise.
In the first case, observe that G/e — S’ is isomorphic to G — (S U {u,v}). And in the second case,
G/e — S’ is isomorphic to (G — S)/e. As interval graphs are closed under edge contractions and
vertex deletions (Observation 6.1), we have that S’ is a solution in G/e of size at most k.

Now, suppose that S’ is a solution of size at most k in G/e. We have two cases depending on
whether or not z* € S’. First consider the case when z* € S’. Then, S = (5" \ {z*}) U {u,v}isa
solution of size k + 1 in G, as G — S is isomorphic to G/e — S’. As S is a solution of size at most
k + 1, from Observation 6.45, it is not a minimal solution. Hence, there is S* € S that is solution of
cardinality at most k.

Now consider the case when z* ¢ S’. In this case, let S = S’ U {u, v}, and observe that it has size
at most k + 2. As G — S is isomorphic to G/e — (5" U {z"}), we have that S is a solution in G. As
W is (k + 2)-necessary, S hits each set in ‘W, which then implies that S” hits each set in ‘W (since
u, v ¢ M). We claim that S’ is a solution of size k in G. Suppose not, and let there be an obstruction
O"in G - S’. As S’ hits ‘W, we have that O’ is not covered by ‘W. Now, from Lemma 6.32, there
is a nice obstruction O in G — S’ that is not covered by ‘W. Then, V(O) N M contains at least 10
vertices, since M is a 9-redundant solution.

First, suppose that V(Q) N {u, v} = 0. Then, clearly O is present in G/e (since G — {u, v} = G/e —
{z*}), and furthermore it is disjoint from S’. But this is a contradiction, since S’ is a solution in G/e.
Next, suppose that V(O) N {u, v} is exactly one of u or v. We claim that G/e[(V(0) \ {u, v}) U {z"}]
contains an obstruction. As Ng(u) U Ng(v) € B(Ky) U Man(Ky), they have no neighbors in
V(O)\(B(Ky)UMa(Ky)) (see Observation 6.16). Now, as P = G[V(0)N(S(Ky)\C(Ky))] contains
a vertex from I(Ky) and O is a nice obstruction (see Definition 6.29), P must be an induced path
between a vertex a, € Best(Ky) \ C(Ky) and a vertex by, € Byight(Ky) \ C(Ky). Let us note that P
must contain at least 3 vertices, and hence (ay, by) ¢ E(G). Also observe that in G/e, Ng/.(z") C
Ng(u) U Ng(v) € B(Ky) UMai(Ky). Now we have the two following cases depending on O:

e Consider the case when O is a chordless cycle. As O is a nice obstruction, we have
|[V(0) N M| > 10. And as P contains at least 3 vertices, V(O) N Ma(Ky) = 0, as any such
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vertex will have edges to all vertices of P (using Observation 6.16). And since u,v € 1(Ky),
we have (Ng(u) U Ng(v)) N (V(O) N Mpyiy (Ky)) = 0. Recall that as O is not covered by ‘W,
O contains at least 10 vertices from M (and V(Q) N M (Ky) = 0). Thus, we can conclude
that G/e[(V(O) \ {u, v}) U {z"}] contains a chordless cycle.

e Next, we consider the case when O is an AW. As O is a nice obstruction that con-
tains a vertex from I(Ky), by Corollary 6.33 we have the following: (i) P € P(O) and
P N I(Ky) C base(0); (ii) V(P(0)) N Man(Ky) = 0, as P(O) is an induced path, P
contains at least 3 vertices and any vertex in May(Ky) is adjacent to every vertex in Kz
(using Observation 6.16); (iii) all terminals t, t,, ¢ of O lie outside f(Ky) U Mai(Ky); and
(iv) {c1,c2} € C(Ky) U Main(Ky). Hence, V(0) N (B(Ky) U Mai(Ky)) = V(P) U {c1, c2}.
Therefore, (Ng(u) U Ng(v)) N V(O) € V(P) U {cy, ca}.

Note that {u, v} NV (P) C V(base(0)), as u,v € I(Ky). And since |base(Q) N M| > 5, we
have that P is a strict subset of P(Q). Therefore, (Ng(u) U Ng(v)) N (V(O) \ {c1,c2}) is a
strict subset of V(P(Q)) and u,v € Ng(c1) N Ng(c2). Hence, G/e[(V(P(0)) \ {u,v}) U {z"}]
contains an induced path P* from ¢, to t, with at least 6 internal vertices including z* in
G/e. Observe that the internal vertices of P* are adjacent to centers cy, ¢, and not adjacent
to the shallow terminal ¢ of O. Now it follows that {t,,t,,t} form an asteroidal triple in
G/e[(V(0) \ {u,v}) U {z*}]. Hence, G/e[(V(O) \ {u,v}) U {z"}] contains an AW. Further
observe that this obstruction lies in G/e — S’, which is a contradiction.

Now we consider the case that both u, v are present in O. Recall that O is not covered by W,
and therefore it contains at least 10 vertices of the 9-redundant solution M. We claim that O/e is
an obstruction in G/e. Indeed, if O is a chordless cycle, then as it contains at least 10 vertices in M,
it follows that O/e is also a chordless cycle on at least 9 vertices. Otherwise, O is a nice AW. Now,
recall that u is an unmarked vertex in [(Kz) € [(Ky). As before, let P = O[V(O)N(B(K2)\C(Ky))]
and observe that P[V(P) N I(Ky)] # 0. Therefore, by Corollary 6.33, we have that P is an induced
path between a vertex in Bjes; (Ky) \ C(Ky) and a vertex in Byight(Ky) \ C(Ky), which is a subpath
of base(0). Observe that u,v € V(P), and therefore they are in base(Q). Finally, recall that
base(Q) contains at least 5 internal vertices of M. Therefore, P(O)/e is an induced path between
t¢ and t, with at least 6 internal vertices including z* in G/e. Hence, it follows that O/e is an AW
of the same type as O, and further it is present in G/e. Finally, observe that O/e is an obstruction
in G/e that is disjoint from S’. This is a contradiction.

Having obtained a contradiction in all cases, we must conclude that S’ is a solution in G, and
recall that it has size at most k. This concludes the proof of this lemma. O

The preceding lemma (Lemma 6.46) gives us the following reduction rule.

Reduction Rule 6.3. Let (u,v) be an irrelevant edge in the simple clique path Kz, where u is an
unmarked vertex. Then, contract the edge (u, v) in the graph G. The resulting instance is (G/e, k).

When Reduction Rule 6.3 is not applicable, then there are no unmarked vertices in any simple
clique path. Then, we conclude that all vertices in the clique path K are marked. Finally, we apply
the preceding marking schemes and reduction rules for every clique path in G — M, and conclude
that all the vertices in G — M are marked. We now proceed to bound the number of vertices in the
graph.

7 BOUNDING THE NUMBER OF VERTICES

Let (G, k) be an instance of IVD on which none of the reduction rules apply. In the following, we
bound the number of vertices in G. Recall that we start by computing a 9-redundant solution M,
whose size is bounded by O(k!°) (see Lemma 3.2). Next, we consider the connected components
of G — M. First, we bound the total number of vertices in the module components of G — M by
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O(K3IM|'®) = O(k'%) (see Observation 4.5). Then, we bound the total number of vertices in the
non-module components of G — M by a collection marking rules (and the non-applicability of
a number of reduction rules). From Observation 4.2, we obtain that the number of non-module
components in G—M is bounded by O(k|M|) = O(k'!). We note that each non-module component
is a clique path. Then, we consider a clique path K of a non-module connected component in G—M
and bound the size of the maximum clique in it by = O (k|M|*°) = O(k'%!) (see Lemma 5.4). Next,
we focus on bounding the number of bags in a clique path K that is a non-module component in
G — M. In the following, for a fixed non-module clique path K, we summarize the number of bags
we marked using each of our bag-marking schemes in Section 6:

(1) Using Marking Scheme I, we mark at most O(5|M]) bags in K.

(2) Using Marking Scheme II, we mark at most O (k3''|M|) bags in K.
(3) Using Marking Scheme III, we mark at most O(5°|M|) bags in K.

(4) Using Marking Scheme IV, we mark at most O (°|M|) bags in K.

(5) Using Marking Scheme V, we mark at most O (k*5'>|M|) bags in K.
(6) Using Marking Scheme VI, we mark at most O(k*n'°|M|) bags in K.
(7) Using Marking Scheme VII, we mark at most O (k*5!®|M|) bags in K.

From the preceding, we obtain that the number of marked bags for each (non-module) clique
path is upper bounded by O(k*n**|M|) = O(k'®*). Further, since none of the reduction rules is
applicable, there is no vertex in G that belongs to an unmarked bag of a non-module component.
There are at most O(k!') non-module components in G — M, and a bag in a clique path of a

non-module component has size at most . Thus, the total number of vertices in G is bounded by
O(k1630 . kll ,k101) — O(k1742).

8 CONCLUSION

In this article, we proved that the IVD problem admits a polynomial kernel. We remark that the
degree in the polynomial that bounds the kernel size can be improved to be about a 100 at the
cost of significantly more involved arguments. In particular, this can be done by considering a
solution M of lower redundancy and far more involved case analysis for bounding the clique size
and clique paths of G — M in Sections 5 and 6. However, obtaining a kernel of size around O(k?)
will require new ideas. We leave this as an interesting open problem. We also believe that our
techniques and methods, especially the two families lemma (Lemma 1.1), will be useful in other
algorithmic applications.
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