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Abstract

A class of graphs ö admits the Erdős–Pósa property if

for any graph , either has vertex‐disjoint <copies=

of the graphs in ö , or there is a set ⊆ of

vertices that intersects all copies of the graphs in ö .

For any graph class ÷ , it is natural to ask whether

the family of obstructions to ÷ has the Erdős–Pósa

property. In this paper, we prove that the family of

obstructions to interval graphs—namely, the family of

chordless cycles and asteroidal witnesses (AWs)—

admits the Erdős–Pósa property. In turn, this yields

an algorithm to decide whether a given graph has

vertex‐disjoint AWs and chordless cycles, or there

exists a set of vertices in that hits all AWs

and chordless cycles.
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1 | INTRODUCTION

Packing and covering problems are ubiquitous in both graph theory and computer science. The

duality between packing and covering problems lies at the heart of not only fundamental

combinatorial proofs, but also well‐known algorithmic methods such as the primal‐dual

method for approximation and win/win‐approach for parameterized analysis. The very essence

of this duality is encompassed by a well‐known property called the Erdős–Pósa property. This
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property, being both simple and powerful, has been extensively studied for over five decades

(see below). In the context of any graph class ÷ , the most natural question that arises in this

regard is as follows—do obstructions to ÷ have the Erdős–Pósa property?

Having this view in mind, we focus on the class of interval graphs. Arguably, this is the

most basic class of graphs that can be viewed as geometric inputs—indeed, an interval graph is

the intersection graph of a family of intervals on real lines. In general, interval graphs are

among the most well‐studied classes of graphs in the literature. In particular, the usage of

interval graphs as models is relevant to a wide variety of applications, ranging from resource

allocation in operations research and scheduling theory to assembling contiguous sub-

sequences in DNA mapping. From an algorithmic point of view, the structural properties of

interval graphs are also intensively studied as they allow to design polynomial‐time algorithms

for well‐known problems in computer science, such as Independent Set and Hamiltonian Path,

that are NP‐hard on general graphs. Our main contribution is the first proof that obstructions to

interval graphs admit the Erdős–Pósa property.

Before we turn to consider our contribution in more detail, we present a gentle introduction to

the rich realm of studies of Erdős–Pósa properties. For this purpose, we first define packing and

covering problems. Let≼ be a containment relation (of a graph into another graph), and let ö be a

family of graphs. For example, we can define the containment relationship≼ as follows: for graphs

and ≼ if and only if is an induced subgraph/subgraph/minor/topological minor of . In

this setting, ö ≼ ‐Packing is the problem whose input consists of a graph and an integer , and

the objective is to decide if has vertex‐disjoint subsets, ⊆ , where for each∈ , there exists ö∈ such that ≼ . For example, if ö and the relation refers to

induced subgraphs, then we simply ask whether has vertex‐disjoint <exact copies= of . The

ö ≼ ‐Covering problem has the same input, but its objective is to decide if there is a set ⊆
of size at most such that there does not exist ö∈ that satisfies ≼ − . Some well‐known

examples of packing problems (and their corresponding covering problems) are MaximumMatching

(Vertex Cover), Vertex‐Disjoint ‐ Paths ( ‐ ‐Separator), Cycle Packing (Feedback Vertex Set),

‐Packing (Cluster Vertex Deletion), and Triangle Packing (Triangle Free Deletion). Kőnig's and

Menger's theorems are cornerstones of Graph Theory in general, and of the study of packing and

covering problems in particular, which have also found a wide variety of applications in computer

science. For example, Menger's theorem is particularly relevant to survivable network design (see,

e.g., [5, 49]) and combinatorial optimization (see, e.g., [20, 46]). Formally, Kőnig's theorem states

that in bipartite graphs, the maximum size of matching equals the minimum size of a vertex cover

[14, 32]. Menger's theorem also exhibits equality—it states that for a given graph and a pair of

vertices and , either has vertex‐disjoint paths between and or there is a set ⊆ ⧹
of size such that − has no path between and [14, 36]. Both theorems relate a packing

problem to a covering problem,1 by exhibiting equality between the size of a maximum packing and

the size of a minimum covering. However, most natural packing and covering problems are not

known to exhibit such an equality; in fact, frequently such an equality is proven not to exist. By

simply relaxing the notion of equality, we enter the rich realm of the Erdős–Pósa properties.

1For example, Kőnig's theorem addresses the class ö such that is the graph on a single edge, where≼ refers to

induced subgraphs/subgraphs.
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1.1 | The Erdős–Pósa property

A celebrated theorem by Erdős and Pósa [15] states that for any graph , either there is a set of

vertex‐disjoint cycles in , or there is a set ⊆ of  vertices that

intersects (covers) all cycles of .2 Notably, Erdős and Pósa [15] also showed that there exists a

constant and infinitely many pairs such that has neither vertex‐disjoint cycles nor a

set ⊆ of vertices that covers all cycles of . That is, not only equality cannot be

expected, but also any function . We remark that later, Simonovits [48]

provided concrete examples which realize the lower bound. The result of Erdős and Pósa [15]

initiated a flurry of extensive study of the so called <Erdős–Pósa property= for various families

of graphs as well as containment relationships. Formally, a family of graphs ö and a

containment relation≼ are said to admit the Erdős–Pósa property if there exists a function ç
such that given a graph and an integer , either there are vertex‐disjoint subsets⊆ so that for each ∈ , there is ö∈ satisfying ≼ , or there is a set⊆ of size at most so that there is no ö∈ satisfying ≼ − . Here, the first

question that comes to mind is—do all natural families of graphs ö and containment

relationships ≼ exhibit the Erdős–Pósa property?

The answer to this question is negative. For example, consider a fixed graph , and letö be

the family of graphs that contain as a minor. Robertson and Seymour [44] showed that ö
with the containment relation referring to subgraphs admits the Erdős–Pósa property if and only if

is a planar graph. This result generalizes the result in [15]. However, the function ç given by

[44] is exponential—can it be made polynomial? A few years ago, the bound was improved to

 by Chekuri and Chuzhoy [12] following a more general approach that is applicable to

other families as well. A well‐known example of a different flavor concerns odd cycles. Specifically,

for ö being the family of odd‐length cycles, Dejter and Neumann‐Lara [13] showed that ö (for

subgraphs and induced subgraphs) does not admit the Erdős–Pósa property.

Since the emergence of the result of Erdős and Pósa [15], a multitude of studies on the

Erdős–Pósa property have appeared in the literature for several combinatorial objects beyond

graphs. This includes extensions to digraphs [21, 23, 35, 42, 47], rooted graphs [9, 26, 28, 38],

labeled graphs [25], signed graphs [3, 24], hypergraphs [1, 6, 7], matroids [17], helly‐type

theorems [22], ‐minors [45], ‐immersions [18, 34], and ‐butterfly directed minors [2] (also

see [43]). This list is not comprehensive but rather illustrative. We refer to surveys such as [40]

for more information. Even for subfamilies of cycles alone, there is a vast literature devoted to

the Erdős–Pósa property. Studies of the Erdős–Pósa property for subfamilies of cycles include,

for example, long cycles (subgraphs) [4, 37], directed cycles (subgraphs and induced subgraphs)

[21, 42], holes3 (induced subgraphs) [31] and cycles intersecting a prescribed vertex set [29, 38].

Not all subfamiles of cycles admit the Erdős–Pósa property. For example, recall the result stated

earlier regarding the family of odd cycles [13]. For this subfamily of cycles alone, there has been

a sequence of research about finding classes of graphs for which the family of odd cycles

(subgraphs and induced subgraphs) admits the Erdős–Pósa property. This includes planar

graphs [16], graphs with certain connectivity constraints [27, 30, 39, 51], and more [41]. Not

only the subfamily of odd cycles does not admit the Erdős–Pósa property, but also subfamilies

such as the family of all holes of length at least 5 [31].

2In the terminology of packing and covering, we address the class ö of all cycles, where≼ refers to induced subgraphs/

subgraphs.
3Throughout this paper, we use the term hole to refer to a chordless cycle of length at least 4.
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A large number of the results above can be viewed as the question of packing or covering

obstructions to a class of graphs. In some of these papers, this view is explicitly stated as the

motivation behind the conducted studies. For example, the classic result by Erdős and Pósa [15]

regards the question of packing and covering obstructions to forests. The results concerning

odd cycles address obstructions to bipartite graphs. The setting of the work about packing and

covering holes, as presented by [31], addresses obstructions to chordal graphs. Furthermore,

Kőnig's theorem relates to obstructions to edgeless graphs, and the work by Robertson and

Seymour [44] relates to obstructions to subfamilies of minor free graphs. We remark that other

results can also be interpreted in this manner. Given that the class of interval graphs is among

the most basic, well‐studied families of graphs, we find it important to study the Erdős–Pósa

[15] property with respect to it. Let ö be the family of holes and asteroidal witnesses (AWs); see

Section 2. It is well known that the class of interval graphs is precisely the class of graphs that

exclude every graph in ö as an induced subgraph [8, 19]. Given this clean characterization, the

following question naturally arises:

Does the family of holes and AWs—that is, obstructions to interval graphs—admit

the Erdős–Pósa property?

1.2 | Our contribution

We provide an affirmative answer to the question above. Moreover, the dependency of the size

of the covering set on in our result is only .4 Specifically, we obtain the following

theorem, where obstructions refer to AWs and holes.

Theorem 1. Let be a graph, and let ∈ . At least one of the following conditions
holds: (i) has vertex‐disjoint obstructions; (ii) there exists a subset ⊆ of size
 such that − is an interval graph.

In other words, we show that there exists a constant such that, for any graph and ∈ ,

either has vertex‐disjoint obstructions, or there exists a subset of of size at mostç that intersects all obstructions of . As a consequence of our main theorem, we also

derive an algorithm to decide whether an input graph has vertex‐disjoint obstructions (to

interval graphs), or there exists a set of vertices in that hits all such obstructions.

It remains an interesting open question to <shave= the logarithmic factor to achieve a bound of

 ; we remark that this logarithmic factor appears due to our use of the work by [31] in a

black box manner.

We conclude the introduction with a high‐level (informal) overview of our proof. We begin

by easily <getting rid= of all holes due to the work by [31], as well as all small AWs. Now, the

heart of our proof consists of two main components. First, we exhibit the Erdős–Pósa property

of the family of AWs on graphs that have a clique caterpillar (i.e., a tree decomposition i.e., a

caterpillar, where every bag is a clique). Second, we show how this result can be utilized to

4In fact, all of our arguments achieve the dependency , but we gain an extra factor due to an invocation of

the above‐mentioned result by Kwon and Kim [31]. Shaving off the factor in the result by [31] will automatically

also shave it off from our result.
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derive our main theorem by analyzing conflict‐free sets with respect to a modular tree

decomposition of the graph. Let us now elaborate on each component.

To analyze the case of a clique caterpillar, we present a procedure that at each iteration,

finds an AW with specific properties, inserts a set of  new vertices into a set è
initialized to be empty, and removes the vertices in from the graph (only for the sake of the

execution of the procedure). Specifically, the set consists of the terminals, centers and a few

base vertices of , as well as all of the vertices of a <small= separator between the non‐shallow

terminals of that we push as much as possible to the right of the caterpillar. The procedure

terminates once the graph becomes an interval graph. Hence, it is clear that if at most 
iterations take place, then è is a set of size that intersects all AWs, which implies that

our job is done. Otherwise, we require an intricate analysis to establish the existence of

vertex‐disjoint AWs. This analysis consists of showing the following two items:

1. Consider the AWs found by the above procedure, and order them in a sequence based on the

iteration where they where found (from small to large). Based this sequence, we construct

another sequence of AWs of the same length (of possibly different AWs) where each AW has

the following property: the subpath of its base that lies after the separator is vertex‐disjoint

from any AW positioned after it in the sequence.

2. From the new sequence obtained in the first item, we extract a subsequence of AWs where

each AW has a stronger property: the entire subpath of its base is vertex‐disjoint from any

AW positioned after it in the sequence.

Towards the proof of the second item, we first show the following. Consider any sequence

<resembling= the one found by our procedure, and any pair of AWs and 2 in that sequence

such that 2 appears before . Then, only the leftmost terminal and base vertex of can belong

to the part of the base path of 2 that lies before the separator associated with 2, and even that

is only possible under certain conditions. This result then allows us to further argue about the

relation between every three AWs in the sequence with respect to the <left sides of separators.=

Having established this relation, the argument about a complete sequence is derived.

Towards the proof of the first item, we first show that for any AW in the sequence, we can

find a path between a vertex in the separator associated with and the right terminal of that

avoids all AWs that appear after in the sequence. Then, by relying on structural results by

Cao and Marx [11], we argue that this path can be used to replace part of so that the result is

yet another AW.

Let us now turn to our analysis of the general case—specifically, we explain how it is

reduced to instances of the case of a clique caterpillar. We define <problematic= nodes in the

modular tree decomposition of the input graph as the nodes associated with subgraphs that

contain at least one AW that is not present in any of the subgraphs associated with their

children. This definition also immediately gives rise to an association between nodes and AWs,

so that each AW is associated with exactly one node. We observe that maximal modules of

problematic nodes are vertex‐disjoint, and that each problematic node has <many= children. It

is also easily shown that the set of all problematic nodes can be partitioned into two sets that

have no <conflict=—that is, on the unique path between every two nodes of one set, there exists

a node of the other set. The point in analyzing each conflict‐free set separately is that for each

problematic node in such a set, we prove that there exist at least vertices in the subgraph

associated with that node that do not belong to any subgraph associated with its problematic

descendants from . In particular, this allows us to examine each problematic node
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individually, and associate an instance of the clique caterpillar case with it (the construction of

the caterpillar decomposition itself partially follows from structural results by Cao and Marx

[11]). Specifically, we are able to collect the sets of AWs found in each instance, and argue that

(after some modification) all of these AWs across all the sets are in fact vertex‐disjoint. This

result then allows us to handle the <packing perspective= of the proof. We remark that although

we can create  instances of the clique caterpillar case, and each individual instance can

create a gap of , we eventually get a gap of only rather than as we argue that

the sum of the contributions to the gap of all individual instances is  .

2 | PRELIMINARIES

For ∈ , we use as a shorthand for . Given a function → and a subset⊂2 , we use  2 to denote the restriction of to 2.

2.1 | Basic graph theory

Let us remind some terminology required for this paper. We refer to the book of Diestel [14] for

a comprehensive introduction. Given a graph , we denote its vertex set and its edge set by

and , respectively. Given a set  of subgraphs of , denote  ∈ . The

disjoint union of (vertex‐disjoint) graphs is the graph of the vertex set∪ ∪ ⋯∪ and edge set ∪ ∪ ⋯∪ . Moreover, when

graph is clear from context, denote   and  . Given a subset⊆ denotes the subgraph of induced by . Moreover, a graph is an induced
subgraph of if there exists ⊆ such that . For a set of vertices⊆ − denotes the induced subgraph ⧹ , that is, the graph obtained by

deleting the vertices in from . We say that is a clique if for all distinct vertices ∈ ,

we have that ∈ , and that is an independent set if for all distinct vertices ∈ ,

we have that ∉ . Given a vertex ∈ denotes the neighborhood of in

. We say that is simplicial if is a clique.

A path ⋯− − − ℓ in is a subgraph of , where ⊆ℓ and∈ ⊆ ℓ − , where ∈ℓ . A walk ⋯− − − ℓ in is a

sequence of (not necessarily distinct) vertices of such that for all ∈ ∈ℓ − . A

cycle ⋯− − − −ℓ in is a subgraph of where ⊆ℓ and∈ ∪ ⊆ ℓ − ℓ . We say that ∈ is a chord of if∈ but ∉ . Similarly, we say that ∈ is a chord of if ∈
but ∉ . A path or cycle is said to be induced (or, alternatively, chordless) if it has no
chords. We use the term hole to refer to a chordless cycle on at least four vertices. A caterpillar is a

tree for which there exists a subpath of , called a central path, such that the removal of the

vertices of from results in an edgeless graph. (We remark that a caterpillar can have multiple

central paths). Given a rooted tree and a vertex ∈ , we use  to denote the subtree of

rooted at . Moreover, denotes the set of children of in , and denotes the set of

descendants of in (we do not treat a node as a descendant of itself). A chordal graph is a graph

that has no hole.
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2.2 | Interval graphs

An interval graph is a graph that does not contain any of the following graphs, called

obstructions, as an induced subgraph (see Figure 1).

• Long Claw. A graph such that ℓ and

ℓ .

• Whipping Top. A graph such that ℓ and

ℓ ℓ .

• ‐AW. A graph such that ∪ℓ , where ℓ and∪ ∈ ∪ ∈  −ℓ , and g . A

‐AW where is called a net.

• ‐AW. A graph such that ∪ℓ , where ℓ and∪ ∈ ∪ℓ ℓ∈ − , and g . A ‐AW where is called a tent.

• Hole. A chordless cycle on at least four vertices.

We remark that interval graphs have other equivalent definitions in the literature,

and that the one we present above is based on [33]. Notice that each of the obstructions

above is inclusion‐wise minimal, that is, there does not exist an obstruction 2 such that⊊2 .

An asteroidal triple (AT) in a graph is a triple of vertices such that for each pair of

these vertices, there is a path in that does not contain any vertex from the closed

neighborhood of the third vertex of the triple. An AW is inclusion‐wise minimal induced

subgraph containing an AT. Observe that long claws, whipping tops, ‐AWs and ‐AWs are

all AWs, but we shall reserve this name for ‐AWs and ‐AWs. In each of the first four

obstructions, the vertices ℓ , and are called terminals, the vertices , and are called

centers, and the other vertices are called base vertices. To simplify notation, when we consider a

‐AW, we use and to refer to (this allows us to refer to a ‐AW and a ‐AW in a unified

FIGURE 1 The set of obstructions for an interval graph
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manner). Furthermore, the vertex is called the shallow terminal. In the case of an AW , the

induced path on the set of base vertices is called the base of the AW, and it is denoted by

. Moreover, we say that the induced path on the set of base vertices, ℓ and is the

extended base of the AW, and it is denoted by . Given a graph , a vertex is shallow in
if has at least one AW where is the shallow terminal.

2.3 | Tree decomposition

A tree decomposition of a graph is a pair ´ where is a tree, and →´ is a

function that satisfies the following properties:

(i) ∈ ´ ,

(ii) for any edge ∈ there is a node ∈ such that ∈ ´ , and

(iii) for any ∈ , the collection of nodes ∈ ∈ ´ induces a subtree of .

For ∈ , we call ´ the bag of . In case is a path, then ´ is also called a path
decomposition, and in case is a caterpillar then ´ is also called a caterpillar decomposition.
We refer to the vertices in as nodes. A clique path (clique caterpillar) of a graph is a path

decomposition (resp. caterpillar decomposition) of where every bag is a distinct maximal

clique. We remark that not every graph admits a clique caterpillar.

2.4 | Modules

Let be a graph. A subset ⊆ is a module if for all ∈ and ∈ ⧹ , either

both and are adjacent to or both and are not adjacent to . A module is nontrivial if
neither ∅ nor .

The following simple proposition asserts that a <large= obstruction cannot intersect a

module in more than one vertex unless it is contained in that module.

Proposition 2.1 (Proposition 4.4 [11]). Let be a module in and be an obstruction.
If   , then either ⊆ or ∩ f  .

Intuitively, a modular tree decomposition of a graph is a linear‐size

representation of all its modules [50]. Formally, it consists of a rooted tree , a function→ ⧹ ∅ and a function → , which satisfy the following properties:

1. is a nonempty module of if and only if there is a node ∈ for which, either

, or both and there is a subset of the set of children of such that∈ .

2. Every ∈ that have the same parent in satisfy ∩ ∅. Further, for a

node ∈ with child nodes ∈ℓ , we have ∪ℓ .

3. If ∈ is the root node of , then . And if ∈ is a leaf node, then  .

4. f  − .

AGRAWAL ET AL. | 709

 1
0
9
7
0
1
1
8
, 2

0
2
3
, 4

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/jg

t.2
2
8
9
5
 b

y
 U

n
iv

ersity
 O

f C
alifo

rn
ia S

an
ta B

arb
ara, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

0
/0

6
/2

0
2

5
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n

 W
iley

 O
n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o

m
m

o
n

s L
icen

se



Furthermore, no node in has exactly one child.

We remark that above is meant to indicate (by assigning 1) every vertex that has the

property that, for every subset of its children, the union of the sets assigned by to the children

in the subset yields a module. In particular, it follows from the first condition that if a vertex

does not have this property, it should be assigned 0. Further, if a vertex is assigned 0, then it

does not have any subset of children such that the union of the sets assigned to them by yields

a module.

Every graph admits a modular tree decomposition. In fact, such a decomposition can be

constructed in time and space:

Proposition 2.2 (Tedder et al. [50]). Given a graph , a modular tree decomposition exists
and it can be constructed in time and  space.

3 | HITTING CHORDLESS CYCLES AND SMALL
OBSTRUCTIONS

We start by stating the following proposition, which already handles holes.

Proposition 3.1 (Kim and Kwon [31]). Let be a graph, and let ∈ . At least one of the

following conditions holds: (i) has vertex‐disjoint holes; (ii) there exists a subset⊆ of size  such that − is a chordal graph.

We proceed with the following simple lemma to deal with small ATs.

Lemma 3.1. Let be a graph, and let ∈ . At least one of the following conditions

holds: (i) has vertex‐disjoint obstructions on at most vertices; (ii) there
exists a subset ⊆ of size  such that − has no obstruction on at most

vertices.

Proof. If the first condition holds, then we are done. Thus, suppose that it does not hold,

which means that has no vertex‐disjoint obstructions on at most vertices.

Let be a set of maximum size of vertex‐disjoint obstructions in on at most

vertices. Then,  f  − , which implies that  f ç  − .

By the maximality of, we have that − has no obstruction on at most

vertices. Thus, the second condition holds. □
As a corollary of Proposition 3.1 and Lemma 3.1, we have the following.

Corollary 3.1. Let be a graph, and let ∈ . At least one of the following conditions
holds: (i) has vertex‐disjoint obstructions; (ii) there exists a subset ⊆ of size
 such that − is a chordal graph that has no obstruction on at most

vertices.
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4 | THE CASE OF A CLIQUE CATERPILLAR

This section analyzes the Erdős–Pósa Property of AWs on graphs with a clique caterpillar. Let

us begin with a definition.

Definition 4.1. Let be a graph. A clique caterpillar ´ of is nice if every shallow
vertex belongs to the bag of only one node of and that node is a leaf.

The objective of this section is to prove the following lemma.

Lemma 4.1. Let ∈ , and let be a graph with a nice clique caterpillar ´ , such
that is chordal and has no obstruction on at most 10 vertices.5 Then, at least one of the
following conditions holds: (i) has vertex‐disjoint AWs; (ii) there exists a subset⊆ of size  such that − is an interval graph.

To simplify statements in this section, let us fix ∈ and a chordal graph with a nice

clique caterpillar ´ , which has no obstruction on at most ten vertices. Thus, whenever we

discuss an obstruction in , that obstruction is necessarily an AW on more than ten vertices.

Moreover, let us fix a central path of , and call it . We denote ⋯− − − for . We think of as a path oriented from to . For a vertex ∈ , we let

be the first node on such that ∈ ´ (if such a vertex does not exist, define ),

and we let be the last node on such that ∈ ´ (if such a vertex does not exist,

define ). The notation means that (similarly, we definef). Note that as
nonterminal vertices of an AW have nonadjacent neighbors, we have the following observation.

Observation 4.1. Let be an AW in . For every nonterminal vertex of , there exists∈ such that ∈ ´ .

Observation 4.1 implies that the notation presented next is well‐defined. In what follows, when

we consider an AW , we index the base vertices η such that f η .

When is clear from context, we simplify the notation, also in the context of terminal and center

vertices.6 Note that gη , as does not have AWs on at most 10 vertices (we use this observation

implicitly throughout our arguments, for example, to assume that η η− − , and η are

distinct vertices). We remark that clearly, for all ∈ fη − −
(this is also stated as Proposition 8.4 in [11]).

Our analysis relies on a notion of a special type of obstruction, defined by Cao and Marx

[11], to exploit the <almost linear nature= of a caterpillar. To this end, we have the following

notation. Given an AW ö denotes the set of vertices ∈ such that is adjacent to

every vertex in . We also need to give three definitions.

5We remark that the existence of the clique caterpillar already implies that is chordal [8, 19].
6For example, if we consider an AW denoted by 2 and , then we use ( η), 2 ( 22η ), ( η ) to refer to the first

(last) base vertex of 2 and , respectively.
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Definition 4.2 (Definition 8.5 in [11]). An AW in is minimal if there does not exist
an AW 2 such that f f f2 22η η , and 2 or

22η η .

We stress that in the definition above we do not compare the base paths of and 2 in the

sense that one should be a subpath of the other—we make the comparison based only on two

particular vertices on each of these base paths and the nodes in that correspond to them.

Definition 4.3 (Definition 8.7 in [11]). An AW in is short if is the shortest path

between ℓ and in ö∪ ∪ ⋯∪ ∪´ ´ ´ −ℓ , where

and η .

Definition 4.4 (Based on Lemma 8.9 in [11]). An AW in is first if there does not
exist an AW 2 such that 22η η .

We say that an AW is good if it is first, minimal and short. The following proposition asserts

that a good AW exists. In this context, recall that we implicitly assume that is not an arbitrary

graph, but in particular it is a graph that has a nice clique caterpillar.

Proposition 4.1 (Lemma 8.8 and Proof of Theorem 2.4 (Page 31) [11]). If is not an
interval graph, then it has a good AW.

Before we proceed with our analysis, we state one more proposition by [11] that is used

later.

Proposition 4.2 (Claim 5 [11]). Let be a good AW. For any vertex ∈ ∪´
ö∪ ⋯ ⧹´ ´ , where η− , it holds that is not adjacent to any

vertex that is shallow in .

4.1 | Procedure SeparateProcedure

Now, we present a procedure called SeparateProcedure. Initialize and . Now, as

long as is not an interval graph, we execute the following instructions:

1. Let be a good AW in , whose existence is guaranteed by Proposition 4.1.

2. Denote η − and . For all ∈¶ , denote ∩´ ´¶ ¶ .

Let µ µ be the index in − such that

• there does not exist an index ∈¶ µ µ − such that
ö∩ ⧹ ´ ´¶ ¶ , and

• ö∩ ⧹ ´ ´µ µ .

If such an index µ does not exist, define µ . Intuitively, µ is the largest index of a <small=

separator in ö⧹ between and η− .

712 | AGRAWAL ET AL.

 1
0
9
7
0
1
1
8
, 2

0
2
3
, 4

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/jg

t.2
2
8
9
5
 b

y
 U

n
iv

ersity
 O

f C
alifo

rn
ia S

an
ta B

arb
ara, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

0
/0

6
/2

0
2

5
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n

 W
iley

 O
n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o

m
m

o
n

s L
icen

se



3. Denote ö∩ ⧹´ ´µ µ if ≠µ , and ∅ otherwise.

4. Define ⧹ ∪ ∪− η η η η− − − .

5. Increment by 1.

Let è denote the last index considered by SeparateProcedure. In particular,
è
is an interval

graph. Let us denote ⧹è è
. Then, è− is an interval graph. Furthermore, note

that  çè è  .

To analyze this procedure, we first have the following immediate observation.

Observation 4.2. If fè , then ⊆è is a set of size such that è− is an

interval graph.

Thus, to prove Lemma 4.1, it is sufficient to prove the following claim, which will be the

focus of the rest of this section.

Lemma 4.2. If è , then has vertex‐disjoint obstructions.

In what follows, we suppose that è . To prove this lemma, we first need to introduce

the following definitions.

Definition 4.5. Let ∈ . We say that an AW in is ‐relevant if it is an AW in

η η η ηℓ ℓ − − − − and

η η .
7 If in addition and η η− − , then we say that is highly ‐relevant.

Due to Step 4 of SeparateProcedure, the following observation follows directly from

Definition 4.5.

Observation 4.3. Let ∈2 where 2, and let 2 be an 2‐relevant AW. Then, does not

contain any vertex from ⧹ ∪ ∪2 2 2 2 2 22 22 22 22 2η η η η− − − .

Definition 4.6. We say that a tuple õ õ õ is relevant if for all õ∈ is

‐relevant.

We further need the following notation. For every ∈ ∪´∪ ⋯∪´ ´ µ if ≠µ and ∅ otherwise. The heart of the proof of

Lemma 4.2 is given by two statements (Lemmas 4.4 and 4.6 in this section). Towards the

first one, let us first prove the following claim.

Lemma 4.3. For all ∈2 , where 2 ‐relevant AW and 2‐relevant AW 2, it
holds that

1. ∩ ∩ ⊆2 2 ℓ ,

7That is, and the AW considered in the th iteration of SeparateProcedure have the same terminals, centers and

two first and three last base vertices.
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2. ∩ ∩ f 2 2 , and
3. if ∈ ∩ ∩2 2 then ∉ ∈ ´ℓ .

Proof. Arbitrarily select ∈2 such that 2, an ‐relevant AW and an

2‐relevant AW 2. For simplicity, denote µ µ2 2 (recall that µ 2 is set in

SeparateProcedure). Suppose that there exists ∈ ∩ ∩è 2 2 , else we

are done. (Note that this implies that ≠µ2 , and in particular ≠ ∅2 .) Recall that∪ ∪ ⋯∪´ ´ ´2 2µ and 2 22µ η − . Now, we have thatf2 2 2η η η− − . Because is ‐relevant and 2 is 2‐relevant where
2 , we have that f22η η . Further, since ∈è , which is a subset of

, Observation 4.3 implies that è is neither a center nor a terminal of 2, and it is

neither 22η − nor 22η . Thus,
è and 22η are not adjacent (specifically, è

22η ),

and therefore ö∉è 2 . Since ∈è 2 , we have that fè
2µ . Since∉è 2 (as ∩ ∅2 ), we have that fè

2µ ; see Figure 2. From this, we

first derive that è
η . This means that è is not a center of . Moreover, since

´ is nice, it is not shallow. Therefore, è belongs to the extended base of , which

we denoted by . Since fè
2µ η and is an induced path,

we have that must contain at least one vertex from ∩´ ´2 2µ µ with one

neighbor (on ) from ∪ ⋯ ∪´ ´ 2µ and the other neighbor (on ) from∪ ⋯ ∪´ ´2µ . Since is ‐relevant and 2, this vertex cannot belong to 2. This
means that contains as a base vertex è that is adjacent to all the vertices of 2 .

Since is ‐relevant and 2, and because ∈ ∩è 2 , Observation 4.3

implies that è must be a base vertex of 2, and it can be neither 2 nor 2. In particular,

we derive that è is a neighbor of è. Recall that we have argued that è and è belong to

. As is an induced path, è cannot be adjacent to the other neighbor of è on

(if one exists). Let us suppose that such a neighbor exists, and denote it by è. We

claim that ∉ ∪ ⋯∪è ´ ´ . To show this, suppose by way of contradiction that

this claim is false. Because è is adjacent to all the vertices of 2 but not to è that

is supposed to belong to ∪ ⋯∪´ ´ , this means that either è 2 orè
22η . However, as we have already argued that è

22η , while

FIGURE 2 Illustration for the proof of Lemma 4.3
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è and è are neighbors, it is impossible that è
22η , so è 2 .

Moreover, as è can be neither 2 nor 2 but it belongs to 2 , we have thatè2 , which means that è è . However, this implies that è
and è are not adjacent, which is a contradiction. Thus, ∉ ∪ ⋯∪è ´ ´ .

Overall, we have shown that ∈è è is adjacent to è on , and that eitherè has no other neighbor on or its other neighbor does not belong to ∈ ´ . By

Observation 4.1, this means that either è
ℓ or both è and ∉ ∈ ´ℓ . To

conclude the proof, it remains to show that ∩ ∩ f 2 2 . Suppose, by

way of contradiction, that this claim is false, and let ∈ ∩ ∩è 2 2
such that ≠è è. Then, as the choice of è was arbitrary, we again derive that è

ℓ or

both è and ∉ ∈ ´ℓ . Then, without loss of generality, suppose that è
ℓ

and è . However, this means that ∉è ∈ ´ . This is a contradiction because∈è 2 . □
We now present the first statement that lies at the heart of the proof.

Lemma 4.4. Let ∈2 be such that 2 , let be an ‐relevant AW, let 2 be
an 2‐relevant AW, and let õ be an ‐relevant AW. For at least one index ∈ 2 , the
following condition holds: ∩ ∩ ∅.

Proof. Arbitrarily select ∈2 such that 2 , an ‐relevant AW , an

2‐relevant AW 2 and an ‐relevant AW õ. Suppose, by way of contradiction, that∩ ∩ ≠ ∅2 2 and õ∩ ∩ ≠ ∅ By Conditions 1, 2,

and 3 in Lemma 4.3 with respect to 2, we have that either (a) ∩∩2 2 ℓ , or (b) ∩ ∩2 2 and ∉ ∈ ´ℓ .

Furthermore, by Conditions 1, 2, and 3 in Lemma 4.3 with respect to , we have that

either (c) õ∩ ∩ ℓ , or (d) õ∩ ∩ and∉ ∈ ´ℓ .

Observe that (a) and (d) cannot happen simultaneously, as well as (b) and (c) cannot
happen simultaneously. This means that either ∈ ∩ ∩ ∩2 2ℓ

õ∩ ∩ or õ∈ ∩ ∩ ∩ ∩ ∩2 2
. Let denote the vertex in ℓ such that ∈ ∩ ∩2 2
õ∩ ∩ ∩ . In particular, õ∈ ∩ ∩2 . By

Condition 1 in Lemma 4.3, we have that ∈ 2 2ℓ . This means that ∩ ≠ ∅2 2ℓ .

However, this is a contradiction since is ‐relevant and 2 is 2‐relevant where 2 . This

completes the proof. □
As a corollary to this lemma, we have the following.

Corollary 4.1. Let õ õ õ be a relevant tuple. There exist indices,⋯ , so that for every two indices ∈ where õ ∩
õ ∩ ∅.
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Proof. For all ∈ , Lemma 4.4 implies that there exists at most one index ∈ −
such that ∩ ∩ ∅. If such an index exists, denote it by , and else

define . Let us initialize and ∅. For − (in this order): If∈ , then insert into and remove and from . Notice that at the end, the indices in

satisfy that for every two indices ∈ , where õ õ∩ ∩ ∅.

Moreover, at each iteration, we disallow at most one new index in from being inserted in

while we also insert one index into . Thus,   is at least half of , which completes the

proof. □
Towards the statement of the second lemma that lies at the heart of our proof, let us first

state an immediate observation and one additional lemma.

Observation 4.4. The vertex set of an AW in can contain at most four vertices of a

clique in .

Lemma 4.5. Let õ õ õ be a relevant tuple. For all ∈ − , there exists a

path in ö− from a vertex in ∪ to η− that does not contain any of the

vertices of the AWs õ õ õ .

Proof. Arbitrarily select ∈ − . Denote õ . Moreover, denote

if ≠µ and otherwise. Let be some vertex in . To prove the

lemma, it suffices to show that there exists a path in from to η− that does not

contain any vertex from . In addition, if ≠µ then denote μ µ , and otherwise

let μ denote − where is the index such that . Moreover, let ³ denote

the index such that η − . By the definition of μ, we know that for all

ö∈ ∩ ⧹ g ¶ μ μ ³ ´ ´− ¶ ¶ . Notice that for all∈ ∩¶ μ μ ³ ´ ´− ¶ ¶ is a clique. Therefore, by Observation

4.4, we have that for all ö∈ ∩ ⧹ ⧹ ¶ μ μ ³ ´ ´− ¶ ¶g g− − .

We have thus shown that for all ∈¶ μ μ ³ − , there exists at least one

vertex, which we denote by ¶, that belongs to ö∩ ⧹ ⧹´ ´¶ ¶ . Observe

that ⋯− − − − −¶ ¶ ³ η− − is a walk in ö− from to η− that does

not contain any vertex from . Clearly, if ¶ ¶ ³ η− − contains a walk

from to η − , then it also contains a path from to η − . This completes the proof. □
We are now ready to prove the second statement central to the proof of Lemma 4.2.

Lemma 4.6. Let õ õ õ be a relevant tuple. For all ∈ − such that is
a highly ‐relevant good AW in , there exists an ‐relevant AW 2 such that the following

condition holds: the base path of 2 has a subpath from a vertex in ∪ to η that

does not contain any of the vertices of the AWs õ õ õ .
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Proof. Arbitrarily select ∈ − . Due to Observation 4.3, if (a) η η η− − −∩ ≠ ∅ or (b) f  , the claim is true: We can simply choose 2 to

be , and the path as the subpath of the base of from ∩η η η− − −

(in case (a)) or from (in case (b)) to η. Hence, we next assume this is not the case.

Denote  . For simplicity of notation, denote . Note that∩ ∅η η η ηℓ − − − . Now, notice that to prove the

lemma, it suffices to show that there exists an induced path from to η in − (a)

whose second vertex is and two before last vertices are η− and η− , (b) whose

internal vertices are all adjacent to and and are all neither equal nor adjacent to

ℓ and , and (c) has a subpath è from a vertex in ∪ to η with no vertex from

. Indeed, together with the centers and terminals of , we will thus get the desired
AW 2.

Let be an arbitrary induced path from to η− in ö−
(as g  η − ). Since is induced, every vertex on must belong

to ö∪ ∪ ⋯ ⧹´ ´ ´³ ³ µ , where ³ and µ η− .

Because is a good AW in , by Proposition 4.2, for any vertex
ö∈ ∪ ∪ ⋯ ⧹´ ´ ´ µ , it holds that is not adjacent to any vertex

that is shallow in and in particular not to . Thus, no vertex on is adjacent to .

Moreover, since and are adjacent to all vertices on , they are adjacent to all

vertices in ∪ ∪ ⋯´ ´ ´³ ³ µ , and in particular to all vertices on .

Let be any internal vertex on . On the one hand, because is an induced path,

. This means that if was adjacent to any vertex in ℓ , then we could

have replaced − by in and obtain a walk (which contains a path) shorter than

between ℓ and in ö∪ ∪ ∪ ⋯∪´ ´ ´ −³ ³ µ , which is

a contradiction as is good and hence it is in particular short. Thus, is not adjacent to any

vertex in ℓ . On the other hand, because is an induced path, η− .

Symmetrically to the former case, we deduce that is not adjacent to any vertex in

η η− .

Up until now, our arguments imply that to prove the lemma, it is sufficient to show

that there exists an induced path from to η− in ö− having a subpath è from

a vertex in ∪ to η− with no vertex from . Indeed, by appending − to the

beginning of such a path and − −η η η− − to the end of such a path, while removing

( η− ) if the first (last) internal vertex of the path is adjacent to ( η− ), we derive an

induced path satisfying properties (a), (b) and (c) as required.

By Lemma 4.5, there exists a path 2 in ö ∪− from a vertex è in∪ to η− . Notice that ∈ ´η η− − and that for every vertex∈ ∪ η− . This means that 2 has at least one vertex adjacent

to η− . Moreover, if è , then because f 2η− has at

least one vertex adjacent to . Also recall that ∩ ≠ ∅η η η− − − . We thus derive

that there exists a path, and hence also an induced one, in ö ∪− from a

vertex ∈ ∪è , such that either è or è , to η− . Let us denote

such a path by . Note that if ∈è , then the proof is already complete.

Suppose now that ∈è and è . Let be the first vertex on

that belongs to (note that such a vertex must exist). Then, ∪2
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has an induced path from to η− having a subpath from a vertex in (which may or may

not be è) to η− . Indeed, we derive such a path by taking any shortest path from to η−
in 2—such a path necessarily contains a subpath from some vertex ∈ (where does

not belong to as ∩ ∅) to ´η− whose internal vertices all belong to . This

completes the proof. □
As a corollary to Lemma 4.6, we have the following.

Corollary 4.2. There exists a relevant tuple õ õ õ such that for all ∈ , the

following condition holds: the base path of õ has a subpath from a vertex in ∪ to

η that does not contain any of the vertices of the AWs õ õ õ .

Proof. To apply induction, we claim that for all ∈ , we have a relevant tuple

õ õ õ such that for all ∈ ⧹ − , the following conditions hold: (i)

the base path of õ has a subpath from a vertex in ∪ to η that does not

contain any of the vertices of the AWs õ õ õ , and (ii) for all õ∈ −
is a highly ‐relevant good AW in . The proof is by induction on , and it is clear that

if it is correct for , then we will derive the lemma. In the base case, where ,

the claim is true since , as computed by SeparateProcedure, is a

relevant tuple where every AW is highly relevant and good as required (the

disjointness condition holds trivially).

Now, suppose that . By the inductive hypothesis, there exists a relevant tuple

õ õ õ such that for all ∈ ⧹ , the following conditions hold: (i) the base

path of õ has a subpath from a vertex in ∪ to η that does not contain any of the

vertices of the AWs õ õ õ , and (ii) for all õ∈ is a highly ‐relevant

good AW in . Apply Lemma 4.6 with to obtain a ‐relevant AW 2 such that the

following condition holds: the base path of 2 has a subpath from a vertex in ∪
to η that does not contain any of the vertices of the AWs õ õ õ . Thus,

we replace õ by 2 in õ õ õ to obtain a tuple as required to prove the

claim. □
We are now ready to prove Lemma 4.2. As noted earlier, together with Observation 4.1, this

proof also concludes the proof of Lemma 4.1.

Proof of Lemma 4.2. By Corollary 4.2, there exists a relevant tuple õ õ õ such

that for all ∈ , the following condition holds: the base path of õ has a subpath

from a vertex in ∪ to η that does not contain any of the vertices of the AWs

õ õ õ . By Corollary 4.1, there exist indices, ⋯ , such that for

every two indices ∈ , where õ õ∩ ∩ ∅.

Without loss of generality, suppose that (the arguments to follow

hold for any ⋯ ).
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We claim that õ õ õ are vertex‐disjoint, which would complete the proof. To

prove this claim, we arbitrarily choose ∈ such that . First note that as õ and

õ are ‐relevant and ‐relevant, we have that the terminals and centers of õ do not

belong to õ . Moreover, the base path of õ has a subpath from a vertex è in ∪
to η that has no vertex of õ . Let denote the subpath of the base path of õ from toè. Hence, to conclude that õ and õ are vertex‐disjoint, it remains to show that no

vertex of belongs to õ . Notice that õ⊆ ∩ . By our choice of

õ õ õ , it holds that õ ∩ does not have any vertex of õ . Thus, the

proof is complete. □
5 | DECOMPOSITION OF MODULES

Let us begin with the following simple observation, on which we rely implicitly in our arguments,

and which follows immediately from the definition of a modular tree decomposition. For

simplicity, we use the abbreviations    and    .
Observation 5.1. Let be a graph with a modular tree decomposition , and let∈ . Then,    is a modular tree decomposition of .

We proceed by introducing the definition of a problematic set and a problematic node:

Definition 5.1. Let be a graph with a modular tree decomposition . The set of
problematic obstructions of a node ∈ , denoted by , is the set of all

obstructions in such that for every child of in is not an obstruction in

, that is, ⧹ ≠ ∅. When is clear from context, it is omitted.

Definition 5.2. Let be a graph with a modular tree decomposition . A node∈ is problematic if ≠ ∅. The set of problematic nodes is denoted by

. When is clear from context, it is omitted.

We have the following simple observation, which follows directly from the definition of a

problematic set of obstructions.

Observation 5.2. Let be a graph with a modular tree decomposition . The sets∈ , define a partition of the set of obstructions of . That is, for all∈ ∩ ∅, and the set of obstructions of is precisely∈ .

We proceed to argue that nodes assigned 1 by are nonproblematic.

Lemma 5.1. Let be a graph that has no obstruction on at most vertices. Let
be a modular tree decomposition of , and let ∈ such that . Then,

is not a problematic node.
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Proof. Suppose, by way of contradiction, that the lemma is false. Note that the leaves ℓ of a

modular tree decomposition satisfy  ℓ . So, is not a leaf. Let g , be

the children of . Then, has an obstruction on more than 10 vertices such that for

all ∈ is not an obstruction in . Let ∈ be the smallest index such

that ⊆ ∪ ∪ ⋯∪ . Since does not contain g .

Moreover, by the choice of and since does not contain ∩ ≠ ∅
and ⧹ ≠ ∅. Since ∪ ∪ ⋯∪ − and are both modules

(because ), by Proposition 2.1, ∩ ∪ ∪ ⋯∪ − and∩  . However, this means that   , which is a contradiction as no

obstruction consists of only two vertices. □
We further observe that a problematic node should have <many= children.

Lemma 5.2. Let be a graph that has no obstruction on at most vertices. Let
be a modular tree decomposition of , and let ∈ be a problematic node.

Then, has at least children in .

Proof. Since ∈ is a problematic node, has an obstruction such that

for every child of in is not an obstruction in . Moreover, since has no

obstruction on at most vertices, we have that g  . By

Proposition 2.1, ∩ f  for every child of . Since ∈ ,

this means that has at least children in . □
To proceed, we need the following definition and notation.

Definition 5.3. Let be a graph with a modular tree decomposition . A subset⊆ has a conflict if there exist ∈ such that is a descendant of in and

on the (unique) path between and in no vertex belongs to ⧹ .

Definition 5.4. Let be a graph with a modular tree decomposition . For a

node ∈ is the maximum number of vertex‐disjoint obstructions in

. When is clear from context, it is omitted.

Note that a problematic node is precisely a node such that g . We proceed with

our analysis of problematic nodes using the following two lemmata.

Lemma 5.3. Let be a graph that has no obstruction on at most vertices,
and which does not have vertex‐disjoint obstructions. Let be a modular tree

decomposition of . Let ⊆ with no conflicts. Then, for each ∈ and each child
of in such that has a problematic descendant, there exist at least vertices in

that do not belong to ∈ ∩ .

Proof. We arbitrarily select ∈ and a child of in such that has a problematic

descendant. Note that ∉ , otherwise, as ∈ is the parent of , we have a conflict in

. Since has no conflicts and has a problematic descendant, there exists a problematic

node ∉ that is either or a descendant of such that the path between and in
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contains no vertices in . Indeed, for any descendant 2 of such that ∈2 , as has no

conflicts, the path between and 2 must contain some problematic vertex ∉3 . We

first claim that among the children of , there are less than children that are each

problematic or has a problematic descendant. To see this, note that for each child of

that is problematic or has a problematic descendant, the subgraph has an

obstruction, and that for distinct children 2 of , it holds that ∩ ∅2 . Thus,

since does not have vertex‐disjoint obstructions, the claim follows.

By Lemma 5.2, we further have that has at least children. To conclude the

proof, note that for every child of that is not problematic and has no problematic

descendant, we have at least one vertex in ⊆ that does not belong to∈ ∩ . As we have shown that has less than children that are problematic

or have problematic descendants, and has at least children, we know that has

at least non‐problematic children with no problematic descendant. Thus, we derive that

there exist at least vertices in that do not belong to ∈ ∩ . □
Lemma 5.4. Let be a graph that has no obstruction on at most vertices. Let

be a modular tree decomposition of . Let ⊆ with no conflicts. Then,
has ∈ vertex‐disjoint obstructions.

Proof. Suppose that does not have vertex‐disjoint obstructions, else the proof is

complete. For the proof, we strengthen the statement of the lemma as follows. We claim that

has ∈ vertex‐disjoint obstructions that belong to ∈ . We prove the

claim by induction on  . In the basis, where f  , the claim is trivially true.

Now, suppose that g  , and let denote the root of . Let be the

children of in . For all ∈ , let us denote   and . Note that is a modular tree decomposition of . Moreover, denote∩ . By the inductive hypothesis, has ∈ vertex‐disjoint

obstructions that belong to ∈ , and let us denote a set of such vertex‐disjoint

obstructions by  . As the subtrees ∈ , are vertex‐disjoint, we have that

 ∈ is a set of ∈ ⧹ vertex‐disjoint obstructions. If ∉ , the

proof is complete, and therefore we next suppose that ∈ .

Let denote a set of vertex‐disjoint obstructions in , such that among

all such sets, it minimizes  ∩ . We claim that  ∩ ∅, which

would complete the proof, as then ∪ would be a set of ∈ vertex‐disjoint

obstructions. Suppose, by way of contradiction, that this claim is false. Since then

 ∩ ≠ ∅, there exists ∈ that contains at least one vertex in for a

descendant ∈ of in . Suppose, without loss of generality, that is the child of

such that is a descendant of . Then, as has no obstruction on at most 10 vertices, we
have that for all ∈ ∩ f 2 2 . In particular, ∩  and

since  f  − (because does not have vertex‐disjoint obstructions),

 ∩ f  − . By Lemma 5.3, there exist at least vertices in that do

not belong to ∈ ∩ . Thus, there exists a vertex ∈ that does not belong

to any obstruction in  ∪ . Because is a module and ∩  , by

replacing the vertex in ∩ by in , we obtain another obstruction
õ ∈ . However, then õ ⧹ ∪ is a set of vertex‐disjoint
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obstructions in that uses less vertices from  than  . This contradicts the

choice of  , and hence the proof is complete. □
We also show that can be divided into two sets with no conflicts.

Lemma 5.5. Let be a graph with a modular tree decomposition . There exists a
partition of such that neither has a conflict nor has a conflict.

Proof. To prove this claim, consider the tree 2 constructed from and , where

2 and 2
. Then consider a 2‐coloring of 2, and let and be the two color classes.

Observe that and are conflict‐free. Indeed, and are independent sets in 2, and
for any two vertices ∈ , the path between them in must contain a vertex of

which lies in ; a similar statement holds for . We output as the

required partition of . □
Specific classes of interval graphs, called prereduced graphs and nice interval graphs, were

defined by Cao and Marx as follows.

Definition 5.5 (Cao and Marx [11]). A graph is reduced if it satisfies the following

properties:

1. Every nontrivial module of is a clique.

2. does not have any obstruction on at most 10 vertices.

Definition 5.6 (Cao and Marx [11]). A graph is nice if it satisfies the following

properties:

1. is chordal.

2. does not have any obstruction on at most 10 vertices.

3. Every vertex in that is a shallow terminal of at least one obstruction is simplicial.

These definitions were in particular used to derive the following results.

Proposition 5.1 (Theorem 2.1 [11]). Let be a reduced graph. Every vertex in that is a
shallow terminal of at least one obstruction is simplicial.

Proposition 5.2 (Proposition 8.3 [11]). Any nice graph has a nice clique caterpillar ´ .

As a corollary of these two propositions, we have the following.

Corollary 5.1. Any chordal reduced graph has a nice clique caterpillar ´ .

Let us derive a consequence of Corollary 5.1 with respect to a modular tree

decomposition.
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Lemma 5.6. Let be a chordal graph that has no obstruction on at most
vertices. Let be a modular tree decomposition of , and let ∈ be a
problematic node such that for every child of in is a clique. Then, has a

nice clique caterpillar.

Proof. By Corollary 5.1, it is sufficient to show that every nontrivial module of is a

clique. By Observation 5.1, Lemma 5.1 and since is problematic, we have that .

Thus, by Observation 5.1 and the definition of a modular tree decomposition, every

nontrivial module of is a subset of for a child of in . Since for every child of

in is a clique, the proof is complete. □
Towards the proof of the main result of this section, we need one additional notation.

Definition 5.7. Let be a graph with a modular tree decomposition , and let∈ . Then, denotes the graph obtained from by turning each∈ , into a clique. That is, and∪ ∈∈ .

We first use this definition to prove the following result.

Lemma 5.7. Let be a graph that has no obstruction on at most vertices. Let
be a modular tree decomposition of , and let ∈ . Then, the set of

obstructions in is precisely .

Proof. In one direction, let be an obstruction in . To show that is an

obstruction in , it is sufficient to show that does not contain two vertices

between whom an edge was added. However, as has no obstruction on at most 10

vertices, we have that   . Then, as is not present in for any child

of in , by Proposition 2.1, its has at most one vertex in for any child of in .

This concludes this direction.

In the other direction, let be an obstruction in . Note that the vertex set

of ∈ , is a clique. Thus, is not present in for any

child of in . Thus, to show that is an obstruction in , it is sufficient to

show that is an obstruction in . In turn, this means that it is sufficient to show that

does not contain two vertices between whom an edge was added. Suppose, by way of

contradiction, that it does. Then, there exist ∈ and ∈ such that∈ . Note that is also a module in . Thus, Proposition 2.1

implies that f  , which means that is a hole. However, this is not possible as

are adjacent to each other and have the same neighborhood in . This

concludes the proof. □
The following lemma lies at the heart of the main result of this section.

Lemma 5.8. Let ∈ , and let be a chordal graph that has no obstruction on at most
vertices. Let be a modular tree decomposition of , and let ∈ .
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Then, at least one of the following conditions holds: (i) g ; (ii) there exists a subset⊆ of size  that intersects the vertex set of every obstruction in .

Proof. Suppose that , else the proof is complete. By Lemma 5.7, the set of

obstructions in is precisely . Therefore, has less than

vertex‐disjoint obstructions. By Lemma 5.6, has a nice clique caterpillar. Thus,

by Lemma 4.1, there exists a subset ⊆ of size such that − is an

interval graph. That is, intersects the vertex set of every obstruction in , which

means that intersects the vertex set of every obstruction in . □
We are now ready to prove the main result of this section.

Lemma 5.9. Let ∈ , and let be a chordal graph that has no obstruction on at most

vertices. Then, at least one of the following conditions holds: (i) has vertex‐
disjoint obstructions; (ii) there exists a subset ⊆ of size such that − is an
interval graph.

Proof. Suppose that does not have vertex‐disjoint obstructions, else we are done. By

Lemma 5.5, there exists a partition of such that neither has a conflict

nor has a conflict. By Lemma 5.4, for each ∈ has ∈ vertex‐disjoint

obstructions. Thus, since does not have vertex‐disjoint obstructions, for each∈ ∈ . This means that ∈ .

By Lemma 5.8, for all ∈ , there exists a subset ⊆ of size

 8 that intersects the vertex set of every obstruction in . Denote∈ . Then,  ∈   . By Observation 5.2, we have

that − is an interval graph. Thus, to conclude the proof, it remains to show that

∈ . Since for all ∈ g , it is sufficient

to show that ∈ . Recall that ∈ . Thus,

f ç ç∈ ∈ ∈   . This

completes the proof. □
6 | PUTTING IT ALL TOGETHER

Finally, we are ready to prove our main theorem.

Proof of Theorem 1. By Corollary 3.1, at least one of the following conditions hold: (i)

has vertex‐disjoint obstructions; (ii) there exists a subset ⊆2 of size
such that − 2 is a chordal graph that has no obstruction on at most

vertices. In the first case, our proof is complete, and thus we next suppose that the second

case applies. Then, by Lemma 5.9, at least one of the following conditions hold: (i) − 2
has vertex‐disjoint obstructions; (ii) there exists a subset õ ⊆ of size such

8By Lemma 5.8, since we cannot have a packing of ℓ obstructions, there is a hitting set of

size ℓ .
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that õ− 2 − is an interval graph. In the first case, our proof is complete. In the

second case, we have that õ∪2 is a set of size such that − is an

interval graph, which again completes the proof. □
Before we turn to prove a corollary of our main theorem, we need one more proposition.

Proposition 6.1 (Cao [10]). There exists an ‐time algorithm that, given a graph ,

outputs an integer 2 such that the following conditions hold:

1. there exists a subset ⊆2 of size at most 2 such that − 2 is an interval graph;

2. f2 for the integer that is the minimum size of a subset ⊆ such that −
is an interval graph.

As a consequence of Theorem 1, we derive the following corollary.

Corollary 6.1. There exist a constant ∈ and an ‐time algorithm that, given a

graph and an integer ∈ , correctly concludes which one of the following conditions
holds:9

1. has vertex‐disjoint obstructions;

2. there exists a subset ⊆ of size at most such that − is an interval
graph.

Proof. Let 2 be the constant in the notation in Theorem 1, and denote 2. Our
algorithm is as follows. Given a graph and an integer ∈ , it calls the algorithm in

Proposition 6.1 to obtain an integer 2. If 2 , then it concludes that the first

condition holds, and otherwise it concludes that the second condition holds. Clearly, the

algorithm runs in time  .

If the algorithm concluded that the second condition holds, then by the correctness of

the algorithm in Proposition 6.1, this conclusion is correct. Otherwise, by Proposition 6.1,

there does not exist a subset ⊆ of size at most 2 such that − is an

interval graph. By Theorem 1, this means that has vertex‐disjoint obstructions. Thus,

the conclusion of the algorithm is again correct. □
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