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1 | INTRODUCTION

Daniel Lokshtanov® |
Saket Saurabh*’ I

Meirav Zehavi'

Abstract

A class of graphs F admits the Erd6s-Pdsa property if
for any graph G, either G has k vertex-disjoint “copies”
of the graphs in F, or there is a set S C V(G) of f (k)
vertices that intersects all copies of the graphs in F.
For any graph class G, it is natural to ask whether
the family of obstructions to G has the Erdds-Poésa
property. In this paper, we prove that the family of
obstructions to interval graphs—namely, the family of
chordless cycles and asteroidal witnesses (AWs)—
admits the Erdés-Pésa property. In turn, this yields
an algorithm to decide whether a given graph G has
k vertex-disjoint AWs and chordless cycles, or there
exists a set of O(k? logk) vertices in G that hits all AWs
and chordless cycles.

KEYWORDS
asteroidal witness, Erd6s-P6sa property, interval graphs

Packing and covering problems are ubiquitous in both graph theory and computer science. The
duality between packing and covering problems lies at the heart of not only fundamental
combinatorial proofs, but also well-known algorithmic methods such as the primal-dual
method for approximation and win/win-approach for parameterized analysis. The very essence
of this duality is encompassed by a well-known property called the Erd6s-Pdsa property. This
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property, being both simple and powerful, has been extensively studied for over five decades
(see below). In the context of any graph class G, the most natural question that arises in this
regard is as follows—do obstructions to G have the Erd6s—-Pésa property?

Having this view in mind, we focus on the class of interval graphs. Arguably, this is the
most basic class of graphs that can be viewed as geometric inputs—indeed, an interval graph is
the intersection graph of a family of intervals on real lines. In general, interval graphs are
among the most well-studied classes of graphs in the literature. In particular, the usage of
interval graphs as models is relevant to a wide variety of applications, ranging from resource
allocation in operations research and scheduling theory to assembling contiguous sub-
sequences in DNA mapping. From an algorithmic point of view, the structural properties of
interval graphs are also intensively studied as they allow to design polynomial-time algorithms
for well-known problems in computer science, such as Independent Set and Hamiltonian Path,
that are NP-hard on general graphs. Our main contribution is the first proof that obstructions to
interval graphs admit the Erdés-Pdsa property.

Before we turn to consider our contribution in more detail, we present a gentle introduction to
the rich realm of studies of Erdés-Pdsa properties. For this purpose, we first define packing and
covering problems. Let < be a containment relation (of a graph into another graph), and let 7 be a
family of graphs. For example, we can define the containment relationship < as follows: for graphs G
and H, HXG if and only if H is an induced subgraph/subgraph/minor/topological minor of G. In
this setting, (F, <)-Packing is the problem whose input consists of a graph G and an integer k, and
the objective is to decide if G has k vertex-disjoint subsets, Si, Sy, ..., Sy € V (G), where for each
i € [k], there exists F € F such that FXG[S;]. For example, if 7 = {F} and the relation refers to
induced subgraphs, then we simply ask whether G has k vertex-disjoint “exact copies” of F. The
(F, <)-Covering problem has the same input, but its objective is to decide if there isa set S C V (G)
of size at most k such that there does not exist F € F that satisfies FXG — S. Some well-known
examples of packing problems (and their corresponding covering problems) are Maximum Matching
(Vertex Cover), Vertex-Disjoint s-tPaths (s-t-Separator), Cycle Packing (Feedback Vertex Set),
Ps-Packing (Cluster Vertex Deletion), and Triangle Packing (Triangle Free Deletion). Kénig's and
Menger's theorems are cornerstones of Graph Theory in general, and of the study of packing and
covering problems in particular, which have also found a wide variety of applications in computer
science. For example, Menger's theorem is particularly relevant to survivable network design (see,
e.g., [5, 49]) and combinatorial optimization (see, e.g., [20, 46]). Formally, K6nig's theorem states
that in bipartite graphs, the maximum size of matching equals the minimum size of a vertex cover
[14, 32]. Menger's theorem also exhibits equality—it states that for a given graph G and a pair of
vertices s and ¢, either G has k vertex-disjoint paths between s and ¢ or thereisasetS C V (G) \ {s, t}
of size k such that G — S has no path between s and ¢ [14, 36]. Both theorems relate a packing
problem to a covering problem," by exhibiting equality between the size of a maximum packing and
the size of a minimum covering. However, most natural packing and covering problems are not
known to exhibit such an equality; in fact, frequently such an equality is proven not to exist. By
simply relaxing the notion of equality, we enter the rich realm of the Erdds-Posa properties.

For example, Kénig's theorem addresses the class F = {F} such that F is the graph on a single edge, where < refers to
induced subgraphs/subgraphs.
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1.1 | The Erdés-Pésa property

A celebrated theorem by Erd6és and Pdésa [15] states that for any graph G, either there is a set of
k vertex-disjoint cycles in G, or there is a set S C V(G) of f(k) = O(klogk) vertices that
intersects (covers) all cycles of G.> Notably, Erdds and Pésa [15] also showed that there exists a
constant ¢ and infinitely many pairs (G, k) such that G has neither k vertex-disjoint cycles nor a
set S C V(G) of ck logk vertices that covers all cycles of G. That is, not only equality cannot be
expected, but also any function f(k) = o(klogk). We remark that later, Simonovits [48]
provided concrete examples which realize the lower bound. The result of Erd6s and Pdsa [15]
initiated a flurry of extensive study of the so called “Erd6s-Pdsa property” for various families
of graphs as well as containment relationships. Formally, a family of graphs F and a
containment relation < are said to admit the Erd6s-Pésa property if there exists a function f(-)
such that given a graph G and an integer k, either there are k vertex-disjoint subsets
Sy, ...Sx € V(G) so that for each i € [k], there is F € F satisfying F<XG[S;], or there is a set
S C V(G) of size at most f (k) so that there is no F € F satisfying FXG — S. Here, the first
question that comes to mind is—do all natural families of graphs F and containment
relationships < exhibit the Erd6s-Pdsa property?

The answer to this question is negative. For example, consider a fixed graph H, and let 7(H) be
the family of graphs that contain H as a minor. Robertson and Seymour [44] showed that F(H)
with the containment relation referring to subgraphs admits the Erdds-Po6sa property if and only if
H is a planar graph. This result generalizes the result in [15]. However, the function f (-) given by
[44] is exponential—can it be made polynomial? A few years ago, the bound was improved to
O(k log® k) by Chekuri and Chuzhoy [12] following a more general approach that is applicable to
other families as well. A well-known example of a different flavor concerns odd cycles. Specifically,
for F being the family of odd-length cycles, Dejter and Neumann-Lara [13] showed that F (for
subgraphs and induced subgraphs) does not admit the Erd6s-Po6sa property.

Since the emergence of the result of Erdds and Pésa [15], a multitude of studies on the
Erdds—Posa property have appeared in the literature for several combinatorial objects beyond
graphs. This includes extensions to digraphs [21, 23, 35, 42, 47], rooted graphs [9, 26, 28, 38],
labeled graphs [25], signed graphs [3, 24], hypergraphs [1, 6, 7], matroids [17], helly-type
theorems [22], H-minors [45], H-immersions [18, 34], and H-butterfly directed minors [2] (also
see [43]). This list is not comprehensive but rather illustrative. We refer to surveys such as [40]
for more information. Even for subfamilies of cycles alone, there is a vast literature devoted to
the Erd6s-Pdsa property. Studies of the Erdés—Pdsa property for subfamilies of cycles include,
for example, long cycles (subgraphs) [4, 37], directed cycles (subgraphs and induced subgraphs)
[21, 42], holes® (induced subgraphs) [31] and cycles intersecting a prescribed vertex set [29, 38].
Not all subfamiles of cycles admit the Erd6s—P6sa property. For example, recall the result stated
earlier regarding the family of odd cycles [13]. For this subfamily of cycles alone, there has been
a sequence of research about finding classes of graphs for which the family of odd cycles
(subgraphs and induced subgraphs) admits the Erdds-Posa property. This includes planar
graphs [16], graphs with certain connectivity constraints [27, 30, 39, 51], and more [41]. Not
only the subfamily of odd cycles does not admit the Erd6s—Posa property, but also subfamilies
such as the family of all holes of length at least 5 [31].

%In the terminology of packing and covering, we address the class  of all cycles, where < refers to induced subgraphs/

subgraphs.
*Throughout this paper, we use the term hole to refer to a chordless cycle of length at least 4.
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A large number of the results above can be viewed as the question of packing or covering
obstructions to a class of graphs. In some of these papers, this view is explicitly stated as the
motivation behind the conducted studies. For example, the classic result by Erdds and Poésa [15]
regards the question of packing and covering obstructions to forests. The results concerning
odd cycles address obstructions to bipartite graphs. The setting of the work about packing and
covering holes, as presented by [31], addresses obstructions to chordal graphs. Furthermore,
Kénig's theorem relates to obstructions to edgeless graphs, and the work by Robertson and
Seymour [44] relates to obstructions to subfamilies of minor free graphs. We remark that other
results can also be interpreted in this manner. Given that the class of interval graphs is among
the most basic, well-studied families of graphs, we find it important to study the Erdés-Pdsa
[15] property with respect to it. Let F be the family of holes and asteroidal witnesses (AWs); see
Section 2. It is well known that the class of interval graphs is precisely the class of graphs that
exclude every graph in F as an induced subgraph [8, 19]. Given this clean characterization, the
following question naturally arises:

Does the family of holes and AWs—that is, obstructions to interval graphs—admit
the Erd6s-Pdsa property?

1.2 | Our contribution

We provide an affirmative answer to the question above. Moreover, the dependency of the size
of the covering set on k in our result is only O(k?logk).* Specifically, we obtain the following
theorem, where obstructions refer to AWs and holes.

Theorem 1. Let G be a graph, and let k € N. At least one of the following conditions
holds: (i) G has k vertex-disjoint obstructions; (ii) there exists a subset D C V (G) of size
O(k?logk) such that G — D is an interval graph.

In other words, we show that there exists a constant ¢ such that, for any graph G and k € N,
either G has k vertex-disjoint obstructions, or there exists a subset of V (G) of size at most
¢ - k?logk that intersects all obstructions of G. As a consequence of our main theorem, we also
derive an algorithm to decide whether an input graph G has k vertex-disjoint obstructions (to
interval graphs), or there exists a set of O(k? logk) vertices in G that hits all such obstructions.
It remains an interesting open question to “shave” the logarithmic factor to achieve a bound of
O(k?); we remark that this logarithmic factor appears due to our use of the work by [31] in a
black box manner.

We conclude the introduction with a high-level (informal) overview of our proof. We begin
by easily “getting rid” of all holes due to the work by [31], as well as all small AWs. Now, the
heart of our proof consists of two main components. First, we exhibit the Erd6s-Pdsa property
of the family of AWs on graphs that have a clique caterpillar (i.e., a tree decomposition i.e., a
caterpillar, where every bag is a clique). Second, we show how this result can be utilized to

“In fact, all of our arguments achieve the dependency O(k?), but we gain an extra logk factor due to an invocation of
the above-mentioned result by Kwon and Kim [31]. Shaving off the logk factor in the result by [31] will automatically
also shave it off from our result.
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derive our main theorem by analyzing conflict-free sets with respect to a modular tree
decomposition of the graph. Let us now elaborate on each component.

To analyze the case of a clique caterpillar, we present a procedure that at each iteration,
finds an AW O with specific properties, inserts a set S of O(k) new vertices into a set S*
initialized to be empty, and removes the vertices in S from the graph (only for the sake of the
execution of the procedure). Specifically, the set S consists of the terminals, centers and a few
base vertices of O, as well as all of the vertices of a “small” separator between the non-shallow
terminals of O that we push as much as possible to the right of the caterpillar. The procedure
terminates once the graph becomes an interval graph. Hence, it is clear that if at most O(k)
iterations take place, then S* is a set of size O(k?) that intersects all AWs, which implies that
our job is done. Otherwise, we require an intricate analysis to establish the existence of k
vertex-disjoint AWs. This analysis consists of showing the following two items:

1. Consider the AWs found by the above procedure, and order them in a sequence based on the
iteration where they where found (from small to large). Based this sequence, we construct
another sequence of AWs of the same length (of possibly different AWs) where each AW has
the following property: the subpath of its base that lies after the separator is vertex-disjoint
from any AW positioned after it in the sequence.

2. From the new sequence obtained in the first item, we extract a subsequence of AWs where
each AW has a stronger property: the entire subpath of its base is vertex-disjoint from any
AW positioned after it in the sequence.

Towards the proof of the second item, we first show the following. Consider any sequence
“resembling” the one found by our procedure, and any pair of AWs O and O’ in that sequence
such that O’ appears before O. Then, only the leftmost terminal and base vertex of O can belong
to the part of the base path of O’ that lies before the separator associated with O’, and even that
is only possible under certain conditions. This result then allows us to further argue about the
relation between every three AWs in the sequence with respect to the “left sides of separators.”
Having established this relation, the argument about a complete sequence is derived.

Towards the proof of the first item, we first show that for any AW O in the sequence, we can
find a path between a vertex in the separator associated with O and the right terminal of O that
avoids all AWs that appear after O in the sequence. Then, by relying on structural results by
Cao and Marx [11], we argue that this path can be used to replace part of O so that the result is
yet another AW.

Let us now turn to our analysis of the general case—specifically, we explain how it is
reduced to instances of the case of a clique caterpillar. We define “problematic” nodes in the
modular tree decomposition of the input graph as the nodes associated with subgraphs that
contain at least one AW that is not present in any of the subgraphs associated with their
children. This definition also immediately gives rise to an association between nodes and AWs,
so that each AW is associated with exactly one node. We observe that maximal modules of
problematic nodes are vertex-disjoint, and that each problematic node has “many” children. It
is also easily shown that the set of all problematic nodes can be partitioned into two sets that
have no “conflict”—that is, on the unique path between every two nodes of one set, there exists
a node of the other set. The point in analyzing each conflict-free set P separately is that for each
problematic node in such a set, we prove that there exist at least k vertices in the subgraph
associated with that node that do not belong to any subgraph associated with its problematic
descendants from P. In particular, this allows us to examine each problematic node
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individually, and associate an instance of the clique caterpillar case with it (the construction of
the caterpillar decomposition itself partially follows from structural results by Cao and Marx
[11]). Specifically, we are able to collect the sets of AWs found in each instance, and argue that
(after some modification) all of these AWSs across all the sets are in fact vertex-disjoint. This
result then allows us to handle the “packing perspective” of the proof. We remark that although
we can create O(k) instances of the clique caterpillar case, and each individual instance can
create a gap of O(k?), we eventually get a gap of only O(k?) rather than O(k?) as we argue that
the sum of the contributions to the gap of all individual instances is O(k?).

2 | PRELIMINARIES

For n € N, we use [n] as a shorthand for {1, 2, ..., n}. Given a function f: A — B and a subset
A C A, we use fly to denote the restriction of f to A'.

2.1 | Basic graph theory

Let us remind some terminology required for this paper. We refer to the book of Diestel [14] for
a comprehensive introduction. Given a graph G, we denote its vertex set and its edge set by
V (G) and E (G), respectively. Given a set C of subgraphs of G, denote V (C) = UcecV (C). The
disjoint union of (vertex-disjoint) graphs Hi, H,, ..., H, is the graph of the vertex set
V(H)UV(H,) U---UV(H;) and edge set E(H;) U E(H,) U ---UE(H;). Moreover, when
graph G is clear from context, denote n =1V (G)l and m = IE(G)l. Given a subset
U C V(G), G[U] denotes the subgraph of G induced by U. Moreover, a graph H is an induced
subgraph of G if there exists U C V(G) such that G[U] = H. For a set of vertices
X C V(G),G — X denotes the induced subgraph G[V (G)\X], that is, the graph obtained by
deleting the vertices in X from G. We say that X is a clique if for all distinct vertices u, v € X,
we have that {u, v} € E(G), and that X is an independent set if for all distinct verticesu,v € X,
we have that {u, v} € E(G). Given a vertex v € V (G), N5 (v) denotes the neighborhood of v in
G. We say that v is simplicial if Ng(v) is a clique.

Apath P = x; — %3 —--— X, in G is a subgraph of G, where V (P) = {x, %, ..., X,} C V(G) and
E®P)={{xi,xin}lie[¢ —-1]} CE(G), where ¢ € [n]. Awalk W=x, — % —-—x,inG is a
sequence of (not necessarily distinct) vertices of G such that for alli € [¢ — 1], {x;, x;11} € E(G). A
cycleC = x — X —+--— Xy, — X in G is a subgraph of G where V (C) = {x, %, ..., Xx,} C V(G) and

E(C) = {{x;, xiz1}li € [€ — 11} U {{xq, x0}} C E(G). We say that {u, v} € E(G) is a chord of P if
u,v € V(P) but {u, v} ¢ E(P). Similarly, we say that {u, v} € E(G) is a chord of C ifu,v € V(C)
but {u, v} ¢ E(C). A path P or cycle C is said to be induced (or, alternatively, chordless) if it has no
chords. We use the term hole to refer to a chordless cycle on at least four vertices. A caterpillar is a
tree T for which there exists a subpath P of T, called a central path, such that the removal of the
vertices of P from T results in an edgeless graph. (We remark that a caterpillar can have multiple
central paths). Given a rooted tree T and a vertex v € V (T), we use Tl, to denote the subtree of T
rooted at v. Moreover, child (v) denotes the set of children of v in T, and desc(v) denotes the set of
descendants of v in T (we do not treat a node as a descendant of itself). A chordal graph is a graph
that has no hole.
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FIGURE 1 The set of obstructions for an interval graph

2.2 | Interval graphs

An interval graph is a graph G that does not contain any of the following graphs, called
obstructions, as an induced subgraph (see Figure 1).

« Long Claw. A graph O such that V(0)={t,t,t,c, by, by,bs} and E(D)=
{{te, b1}, {t, b3}, {t, b}, {c, b}, {c, b2}, {c, bs}}.

« Whipping Top. A graph O such that V(O)={t,t,t,c, by, by, b3} and E(D) =
{{te, b1}, {tr, ba}, {c, t}, {c, bi}, {c, b2}, {bs, e}, {bs3, b1}, {bs, ¢}, {bs, ba}, {bs, 1} }.

+ T-AW. A graph O such that V(0) = {ts, t, t;, ¢} U {by, b, ..., b;}, where t, = by and t, =
bz+1, E(O) = {{ts, ¢}, {te, bu}, {tr, b3} U {{c, bi}li € [z]} U {{by, bit1}li € [z — 1]}, and 22> 2. A
T-AW where z = 2 is called a net.

« 1-AW. A graph O such that V(0) = {t, t, t;, c1, C2} U {by, b, ..., b;}, where t, = by and
tr = bzy1, E(O) = {{ts, &1}, {Ls, 2}, {c1, €2}, {te, ba}s (B, bed, {te, c1}s {6, e23} U {{c, bi}li € [z]}u
{{bi, bis1}li € [z — 1]}, and z > 1. A $-AW where z = 1 is called a tent.

« Hole. A chordless cycle on at least four vertices.

We remark that interval graphs have other equivalent definitions in the literature,
and that the one we present above is based on [33]. Notice that each of the obstructions
O above is inclusion-wise minimal, that is, there does not exist an obstruction O’ such that
V(0")CV (0).

An asteroidal triple (AT) in a graph G is a triple u, v, w of vertices such that for each pair of
these vertices, there is a path in G that does not contain any vertex from the closed
neighborhood of the third vertex of the triple. An AW is inclusion-wise minimal induced
subgraph containing an AT. Observe that long claws, whipping tops, -AWs and {-AWs are
all AWs, but we shall reserve this name for {-AWs and #-AWs. In each of the first four
obstructions, the vertices t,, t., and t; are called terminals, the vertices c, ¢;, and ¢, are called
centers, and the other vertices are called base vertices. To simplify notation, when we consider a
T-AW, we use ¢; and c, to refer to ¢ (this allows us to refer to a 1-AW and a $-AW in a unified
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manner). Furthermore, the vertex ¢ is called the shallow terminal. In the case of an AW O, the
induced path on the set of base vertices is called the base of the AW, and it is denoted by
base(O). Moreover, we say that the induced path on the set of base vertices, t, and ¢, is the
extended base of the AW, and it is denoted by P(O). Given a graph G, a vertex v is shallow in G
if G has at least one AW where v is the shallow terminal.

2.3 | Tree decomposition

A tree decomposition of a graph G is a pair (T, 8) where T is a tree, and 8 : V(T) —» 2@ is a
function that satisfies the following properties:

(1) UxevnBx) =V (G),
(ii) for any edge {u, v} € E(G) there is a node x € V(T) such that u,v € 5(x), and
(iii) for anyv € V(G), the collection of nodes T, = {x € V(T)lv € B(x)} induces a subtree of T.

For v € V(T), we call B(v) the bag of v. In case T is a path, then (T, ) is also called a path
decomposition, and in case T is a caterpillar then (T, §) is also called a caterpillar decomposition.
We refer to the vertices in V' (T) as nodes. A clique path (clique caterpillar) of a graph G is a path
decomposition (resp. caterpillar decomposition) of G where every bag is a distinct maximal
clique. We remark that not every graph admits a clique caterpillar.

2.4 | Modules

Let G be a graph. A subset M C V' (G) is a module if for allu,w € M and v € V (G)\M, either
both u and w are adjacent to v or both u and w are not adjacent to v. A module is nontrivial if
neither V(M) = @ nor V(M) = V (G).

The following simple proposition asserts that a “large” obstruction cannot intersect a
module in more than one vertex unless it is contained in that module.

Proposition 2.1 (Proposition 4.4 [11]). Let M be a module in G and O be an obstruction.
IfIV (D)l > 4, then either V(0) C V(M) orIlV(©) n V(M) < 1.

Intuitively, a modular tree decomposition of a graph G = (V,E) is a linear-size
representation of all its modules [50]. Formally, it consists of a rooted tree T, a function
f:V(T) - 2@\ {@} and a function g : V (T) — {0, 1}, which satisfy the following properties:

1. M is a nonempty module of G if and only if there is a node v € V(T) for which, either
M = f(v), or both g(v) =1 and there is a subset U of the set of children of v such that
M= UuEUf(u)-

2. Every v, u € V(T) that have the same parent in T satisfy f(v) n f(u) = @. Further, for a
node v € V (T) with child nodes vy, vs, ..., v» € V(T), we have f(v) = UL ,f ().

3. If r € V(T) is the root node of T, then f(r) = V(G). And if v € V(T) is a leaf node, then
If W)l = 1.

4. 1V(T)l < 2n — 1.
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Furthermore, no node in T has exactly one child.

We remark that g above is meant to indicate (by assigning 1) every vertex that has the
property that, for every subset of its children, the union of the sets assigned by f to the children
in the subset yields a module. In particular, it follows from the first condition that if a vertex
does not have this property, it should be assigned 0. Further, if a vertex is assigned 0, then it
does not have any subset of children such that the union of the sets assigned to them by f yields
a module.

Every graph G admits a modular tree decomposition. In fact, such a decomposition can be
constructed in O (n?) time and O(n) space:

Proposition 2.2 (Tedder et al. [50]). Given a graph G, a modular tree decomposition exists
and it can be constructed in O(n?) time and O(n) space.

3 | HITTING CHORDLESS CYCLES AND SMALL
OBSTRUCTIONS

We start by stating the following proposition, which already handles holes.

Proposition 3.1 (Kim and Kwon [31]). Let G be a graph, and let k € N. At least one of the
following conditions holds: (i) G has k vertex-disjoint holes; (ii) there exists a subset
D C V (G) of size O(k*logk) such that G — D is a chordal graph.

We proceed with the following simple lemma to deal with small ATs.

Lemma 3.1. Let G be a graph, and let k € N. At least one of the following conditions
holds: (i) G has k vertex-disjoint obstructions on at most max{2k, 10} vertices; (ii) there
exists a subset D C V(G) of size O(k?) such that G — D has no obstruction on at most
max{2k, 10} vertices.

Proof. If the first condition holds, then we are done. Thus, suppose that it does not hold,
which means that G has no k vertex-disjoint obstructions on at most max{2k, 10} vertices.
Let O be a set of maximum size of vertex-disjoint obstructions in G on at most max{2k, 10}
vertices. Then, |0l < k — 1, which implies that IV (O)I < (k — 1) - max{2k, 10} = O(k?).
By the maximality of O, we have that G — V (O) has no obstruction on at most max{2k, 10}
vertices. Thus, the second condition holds. O

As a corollary of Proposition 3.1 and Lemma 3.1, we have the following.

Corollary 3.1. Let G be a graph, and let k € N. At least one of the following conditions
holds: (i) G has k vertex-disjoint obstructions; (ii) there exists a subset D C V (G) of size
O(k?logk) such that G — D is a chordal graph that has no obstruction on at most
max{2k, 10} vertices.
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4 | THE CASE OF A CLIQUE CATERPILLAR

This section analyzes the Erd6s—Pdsa Property of AWs on graphs with a clique caterpillar. Let
us begin with a definition.

Definition 4.1. Let G be a graph. A clique caterpillar (T, 8) of G is nice if every shallow
vertex belongs to the bag of only one node of T and that node is a leaf.

The objective of this section is to prove the following lemma.

Lemma 4.1. Let k € N, and let G be a graph with a nice clique caterpillar (T, f3), such
that G is chordal and has no obstruction on at most 10 vertices.” Then, at least one of the
following conditions holds: (i) G has k vertex-disjoint AWs; (ii) there exists a subset
D C V(G) of size O(k?) such that G — D is an interval graph.

To simplify statements in this section, let us fix k € N and a chordal graph G with a nice
clique caterpillar (T, 8), which has no obstruction on at most ten vertices. Thus, whenever we
discuss an obstruction in G, that obstruction is necessarily an AW on more than ten vertices.
Moreover, let us fix a central path of T, and call it P. We denote P = p; — p, —---— p, for
d = IV (P)l. We think of P as a path oriented from p, to p;. For a vertexv € V (G), we let first(v)
be the first node p on P such thatv € 8(p) (if such a vertex does not exist, define first(v) =nil),
and we let last(v) be the last node p on P such that v € §(p) (if such a vertex does not exist,
define last(v) =nil). The notation p; < p; means thati < j (similarly, we define <). Note that as
nonterminal vertices of an AW have nonadjacent neighbors, we have the following observation.

Observation 4.1. Let O be an AW in G. For every nonterminal vertex v of O, there exists
p € V(P) such that v € S(p).

Observation 4.1 implies that the notation presented next is well-defined. In what follows, when
we consider an AW O, we index the base vertices b?, b?, ..., bé% such that first(b?) < ﬁrst(b;?o).

When O is clear from context, we simplify the notation, also in the context of terminal and center
vertices.® Note that 7 > 5, as G does not have AWs on at most 10 vertices (we use this observation
implicitly throughout our arguments, for example, to assume that by, by, b,_», b,_;, and b, are
distinct vertices). We remark that clearly, for all i € {2, 3, ...,n — 1}, first(b;) < last(b;_1)<
first(b;, 1) (this is also stated as Proposition 8.4 in [11]).

Our analysis relies on a notion of a special type of obstruction, defined by Cao and Marx
[11], to exploit the “almost linear nature” of a caterpillar. To this end, we have the following
notation. Given an AW O, N (O) denotes the set of vertices v € V (G) such that v is adjacent to
every vertex in base(0). We also need to give three definitions.

SWe remark that the existence of the clique caterpillar already implies that G is chordal [8, 19].
®For example, if we consider an AW denoted by O, O’ and O, then we use b; (b,), b} (by,), b{ (b;i) to refer to the first
(last) base vertex of O, O’ and O, respectively.

:sdny) SUONIPUOY) puE SWIAT, A 99 “[SZ0T/90/0T) U0 AIeIqrT SUIUQ Ko[IA EIRGIES TIUES BIWIOJI[ED JO ANSIOAY £q S68ZZII/Z00101/10p w00 Koy AIeqnauruoy/:sdny woxy papropusod ‘b *€20¢ ‘8110L601

Kopm:

2sULOIT suowrwo)) aanear) ajqeardde oy £q pausoAod are sa[anIe YO 2SN JO SA[NI 10§ KIeIqI] AUI[UQ AJ[IAY UO (SUOTIP



712 AGRAWAL ET AL.
—I—Wl LEY

Definition 4.2 (Definition 8.5 in [11]). An AW O in G is minimal if there does not exist
an AW O’ such that last(b;) < last(b;) < first(by,) < first(b,), and last(b,) < last(b) or

first(b,,) < first(by).

We stress that in the definition above we do not compare the base paths of O and O’ in the
sense that one should be a subpath of the other—we make the comparison based only on two
particular vertices on each of these base paths and the nodes in P that correspond to them.

Definition 4.3 (Definition 8.7 in [11]). An AW O in G is short if P(O) is the shortest path
between t, and ¢, in G [B(p) U B(p;;;) U ---U B(p) v {t,, t.})] — N (O), where p; = last(by)
and p = first(by).

Definition 4.4 (Based on Lemma 8.9 in [11]). An AW O in G is first if there does not
exist an AW O’ such that first(b,,) < first(by).

We say that an AW is good if it is first, minimal and short. The following proposition asserts
that a good AW exists. In this context, recall that we implicitly assume that G is not an arbitrary
graph, but in particular it is a graph that has a nice clique caterpillar.

Proposition 4.1 (Lemma 8.8 and Proof of Theorem 2.4 (Page 31) [11]). If G is not an
interval graph, then it has a good AW.

Before we proceed with our analysis, we state one more proposition by [11] that is used
later.

Proposition 4.2 (Claim 5 [11]). Let O be a good AW. For any vertex v € (B(p,)U
B(p,) U ---ﬁ(pi))\]/\f\((D), where p, = first(b,_,), it holds that v is not adjacent to any
vertex that is shallow in G.

41 | Procedure SeparateProcedure

Now, we present a procedure called SeparateProcedure. Initialize G' = G and i = 1. Now, as
long as G' is not an interval graph, we execute the following instructions:

1. Let O' be a good AW in G!, whose existence is guaranteed by Proposition 4.1.
2. Denote p; = ﬁrst(b;}i_z) and p, = last(by). For all § € [d], denote Bi(ps) = B(ps) N V(GY).
Let ' = y be the index in {q, ¢ + 1, ...,j — 1} such that
o there does not exist an index dde{y+1,y+2,..,j—1} such that
1(8'(ps) N B (P541))\N (O))] < 8k, and
« 1B(p,) N Bi(p,,.))\N (0D < 8k.

If such an index y does not exist, define y = nil. Intuitively, y is the largest index of a “small”
separator in G'\N (D) between b; and b}_,.
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3. Denote S' = (ﬁ’(p )N Bip +1))\N (0) if y #nil, and S' = @ otherwise
4. Define G*! = G' — ((V (0! )\V(base((D ")) U {bi, bi, b, b77 3 b,;i_z, i bl } U SH.

5. Increment i by 1.

Let i* denote the last index i considered by SeparateProcedure. In particular, GI* is an interval
graph. Let us denote S* = V (G) \V(G"*). Then, G — S* is an interval graph. Furthermore, note
that IS*l = O(@* - k).

To analyze this procedure, we first have the following immediate observation.

Observation 4.2. Ifi* < 2k, then S* C V (G) is a set of size O(k?) such that G — S* is an
interval graph.

Thus, to prove Lemma 4.1, it is sufficient to prove the following claim, which will be the
focus of the rest of this section.

Lemma 4.2. Ifi* > 2k, then G has k vertex-disjoint obstructions.

In what follows, we suppose that i* > 2k. To prove this lemma, we first need to introduce
the following definitions.

Definition 4.5. Leti € [2k]. We say that an AW O in G is i-relevant if it is an AW in
Gty =tity=tp t = ti,c1=c¢f,¢2 = C3, b1 = bl, by = by, byp = bl ), b,y = bl , and
b, = b;i.7 If in addition b; = b} and b,_3 = b]_s, then we say that O is hlghly i-relevant.

Due to Step 4 of SeparateProcedure, the following observation follows directly from
Definition 4.5.
Observation 4.3. Leti, i’ € [2k] wherei > i’, and let O’ be an i’ relevant AW Then, G does not

contain any vertex from (V' (0")\V (base(D")) U {by, b,, b3, by, 3, b,, 5, by’ _1, by} U St

Definition 4.6. We say that a tuple (@1, 0’ .., 62k) is relevant if for all i € [2k], 0'is
i-relevant.

We further need the following notation. For every i€ [2k], before(i) = 8(p,) U
B(py) U U /E(pyi) if y'#nil and before(i) = @ otherwise. The heart of the proof of

Lemma 4.2 is given by two statements (Lemmas 4.4 and 4.6 in this section). Towards the
first one, let us first prove the following claim.

Lemma 4.3. Foralli,i’ € [2k], wherei > i’, i-relevant AW O and i’-relevant AW O’, it
holds that

1. V(0O) n V(0" n before(i’) C {t,, b1},

"That is, O and the AW O considered in the ith iteration of SeparateProcedure have the same terminals, centers and
two first and three last base vertices.
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FIGURE 2 [Illustration for the proof of Lemma 4.3

2. IV (0) n V(0" n before(i’)l < 1, and
3. if by € V(0O) N V(O') N before(i’) then t, & Uicia1B(p))-

Proof. Arbitrarily select i,i’ € [2k] such that i > i’, an i-relevant AW O and an
i’-relevant AW O’. For simplicity, denote y’ =y" (recall that y” is set in
SeparateProcedure). Suppose that there exists v* € V(0) N V (0’) N before(i’), else we
are done. (Note that this implies that y’#nil, and in particular " # @.) Recall that
before(i’) = f(p,) U B(p,) U ---UB(p,) and p,, < first(b,,_,). Now, we have that
first(b,,—>) < last(b,,_,) < first(b,,). Because O is i-relevant and O’ is i’-relevant where
i’ < i, we have that first(b,;,) < first(b,). Further, since v* € V (0), which is a subset of
V (GY), Observation 4.3 implies that v* is neither a center nor a terminal of O’, and it is
neither b,,_; nor b,,. Thus, v* and b,, are not adjacent (specifically, last(v*) < first(b,,)),
and therefore v* & N (0’). Since v* € before(i’), we have that first(v*) < p,, Since
v* ¢ S” (as §” N V(D) = @), we have that last(v*) < p,,; see Figure 2. From this, we
first derive that last(v*) < first(b,). This means that v* is not a center of ©. Moreover, since
(T, B) is nice, it is not shallow. Therefore, v* belongs to the extended base of O, which
we denoted by P(0). Since last(v*) < P, < first(b,) and P(O) is an induced path,
we have that P(O) must contain at least one vertex from S(p,,) N B(p,,,;) with one
neighbor (on P(0)) from B(p;) U - U ,B(py,) and the other neighbor (on P(0)) from
B(p,,+1) U -+ UB(py). Since O isi-relevant and i > 1, this vertex cannot belong to S". This
means that O contains as a base vertex b* that is adjacent to all the vertices of base(D’).
Since O is i-relevant and i > i, and because v* € V(D) n V (0O’), Observation 4.3
implies that v* must be a base vertex of O’, and it can be neither b; nor b,. In particular,
we derive that b* is a neighbor of v*. Recall that we have argued that v* and b* belong to
P(0D). As P(0) is an induced path, b* cannot be adjacent to the other neighbor of v* on
P(O) (if one exists). Let us suppose that such a neighbor exists, and denote it by n*. We
claim that n* & B(p;) U ---UB(p,). To show this, suppose by way of contradiction that
this claim is false. Because b* is adjacent to all the vertices of base(D’) but not to n* that
is supposed to belong to (p;) U ---U B(p,), this means that either last(n*) < last(b;) or
first(b,;,) < first(n*). However, as we have already argued that last(v*) < first(b,;,), while
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n* and v* are neighbors, it is impossible that first(b,,) < first(n*), so last(n*) < last(by).

Moreover, as v* can be neither b; nor b, but it belongs to base(D’), we have that
last(b]) < first(v*), which means that last(n*) < first(v*). However, this implies that n*
and v* are not adjacent, which is a contradiction. Thus, n* ¢ (p;) U ---UB(py).
Overall, we have shown that v* € V (P(0)), v* is adjacent to b* on P(0), and that either
v* has no other neighbor on P(O) or its other neighbor does not belong to Uic[q1 8 (p;). By
Observation 4.1, this means that either v* = t, or both v* = b; and &, & Uie[q18(p,). To
conclude the proof, it remains to show that IV (0) N V (O’) n before(i’)! < 1. Suppose, by
way of contradiction, that this claim is false, and let u* € V(0) n V(O") N before(i’)
such that u* # v*. Then, as the choice of v* was arbitrary, we again derive that u* = t, or
both u* = by and t, & Uiec(q)8(p;)- Then, without loss of generality, suppose that v* = ¢,
and u* = b;. However, this means that v* & U;e[q8(p;). This is a contradiction because
v* € before(i’). O

We now present the first statement that lies at the heart of the proof.

AN AN
Lemma 4.4. Leti,i’,i € [2k] besuch thati > i’ > i, let O be ani-relevant AW, let O’ be

an i’-relevant AW, and let O be an f\—relevant AW. For at least one index j € {i’, ?}, the
following condition holds: V (0) n V (0/) n before(j) = @.

Proof. Arbitrarily select i, i, ? € [2k] such that i > i’ > f\, an i-relevant AW O, an
i"-relevant AW O’ and an {-relevant AW O. Suppose, by way of contradiction, that
V(0) N V(0 N before(i’) # @ and V(O) n V(O) N before(f\) # @ By Conditions 1, 2,
and 3 in Lemma 4.3 with respect to i’, we have that either (a) V(O)NnV
(0") N before(i’) = {tz}, or (b) V(D) n V(O') n before(i’) = {by} and t, & (Uicia1B(p,))-
Furthermore, by Conditions 1, 2, and 3 in Lemma 4.3 with respect to f\, we have that
either (c) V(0) n V() n before(l) = {t,}, or (d) V(©) n V (®) n before(t) = {b,} and
te & (Uie[d]ﬁ(pi))-

Observe that (a) and (d) cannot happen simultaneously, as well as (b) and (c) cannot
happen simultaneously. This means that either t, € (V(O) n V(0") n before(i’))n

(V(O)NnV(©O)n before(?)) or by € (V(0)n V(0" N before(i’)) n (V(O) n V(O)Nn
before(f\)). Let x denote the vertex in {t,, b;} such that x € (V(0) n V (0O") n before(i’))
AV (0) n V(O) N before(1)). In particular, x € V(0O') N V(O) N before(i). By
Condition 1 in Lemma 4.3, we have that x € {t;, b;}. This means that {t,, b;} N V (0) # @&.
However, this is a contradiction since O is i-relevant and O’ is i’-relevant where i’ < i. This
completes the proof. O

As a corollary to this lemma, we have the following.

Corollary 4.1. Let (61, 62, ...,ﬁzk) be a relevant tuple. There exist k indices, iy < i
<---<lg, So that for every two indices x,y € {ii, I, ..., ik} Wwhere x <Y, vV (©O))n
V(0") n before(x) = @.

WILEY-
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Proof. For all i € [2k], Lemma 4.4 implies that there exists at most one index j € [i — 1]
such that V (0') n V (0/) n before(j) = @. If such an index exists, denote it by j,, and else
define j, = 1. Let us initialize I = [2k] and J = @. Fori = 2k, 2k — 1, ..., 1 (in this order): If
i € I, then insert i into J and remove i and j; from I. Notice that at the end, the indices in J
satisfy that for every two indices x,y € J, where x < y, V(0”) n V(O) N before(x) = @.
Moreover, at each iteration, we disallow at most one new index in [2k] from being inserted in
J while we also insert one index into J. Thus, IJ1 is at least half of 2k, which completes the
proof. O
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Towards the statement of the second lemma that lies at the heart of our proof, let us first
state an immediate observation and one additional lemma.

Observation 4.4. The vertex set of an AW in G can contain at most four vertices of a
clique in G.

Lemma 4.5. Let (61, 62, - 62k) be a relevant tuple. For all i € [2k — 1], there exists a
path in G' — N (O") from a vertex in S' U {b}} to b,_, that does not contain any of the
ikl 2 2k

vertices of the AWsO " ,0 7, ..., 0

Proof. Arbitrarily select i € [2k — 1]. Denote U = U?’;HIV(ﬁj). Moreover, denote
T = S' if y'#nil and T = {b/} otherwise. Let y be some vertex in T. To prove the
lemma, it suffices to show that there exists a path in G from y to b,;_z that does not
contain any vertex from U. In addition, if y#nil then denote u = y!, and otherwise
let 4 denote j — 1 where j is the index such that p;, = last(b)). Moreover, let a denote
the index j such that p; = first(b éi—z)' By the definition of u, we know that for all
Sefu+1lLu+2, .,a—1}LI1B(p) N ,Bi(p5+1))\ﬁ(®i)l > 8k. Notice that for all
Sef{u+1,u+2..,a—1},B(ps) NP (ps,;) is a clique. Therefore, by Observation
4.4, we have that for all § € {u + 1, & + 2, .., — 11 1((BH(ps) N BE(Ps, 1)) \N (O))\UI
>8k — 42k — i) > 1.

We have thus shown that for all § € {u + 1, u + 2, ..., — 1}, there exists at least one
vertex, which we denote by x;, that belongs to ((8(ps) N B (ps H))\ﬁ (0))\U. Observe
that y — X5 — Xs41 —*+*— Xq_1 — bé,-_z is a walk in G' — N (OY) from y to b,;_z that does
not contain any vertex from U. Clearly, if G[{y, Xs, X515 --s Xa—15 b;i_z}] contains a walk
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from y to b};i_z, then it also contains a path from y to bé,-_z. This completes the proof. []

We are now ready to prove the second statement central to the proof of Lemma 4.2.

Lemma 4.6. Let (61, 62, vy 62k) be a relevant tuple. For all i € [2k — 1] such that O' is
a highly i-relevant good AW in G', there exists an i-relevant AW O’ such that the following

condition holds: the base path of O’ has a subpath Q from a vertex in S' U {b{} to b,‘; that

. . ~itl i ~2k
does not contain any of the vertices of the AWs (DLH, (Dl+2, .y 0.
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Proof. Arbitrarily select i € [2k — 1]. Due to Observation 4.3, if (a) {b,_s, by_,, b;_1}
NS # @ or (b) 1V (base(DY))l < 6, the claim is true: We can simply choose O’ to
be O/, and the path Q as the subpath of the base of O' from {b, s, b, ,, b) ;} N S
(in case (a)) or from b (in case (b)) to b,;. Hence, we next assume this is not the case.
Denote U= 3%,V (0/). For simplicity of notation, denote © = O'. Note that
{t,, tp, t., C1, C2, by, by, b3, by_3, by_3, b;_1, b,)} N U = @. Now, notice that to prove the
lemma, it suffices to show that there exists an induced path from b; to b, in G' — U (a)
whose second vertex is b, and two before last vertices are b,_, and b,_;, (b) whose
internal vertices are all adjacent to c; and ¢, and are all neither equal nor adjacent to
ty, t. and t;, and (c) has a subpath Q* from a vertex in S! U {b/} to b,; with no vertex from
U. Indeed, together with the centers and terminals of O, we will thus get the desired
AW 0.

Let W be an arbitrary induced path from b; to b,_; in G' — N(0)
(as IV (base(D))l > 7,3 < n — 3). Since W is induced, every vertex on W must belong
to (B'(p) U B (Pyyy) U ---,Bi(py))\ﬁ((l)), where a = last(bs) and p, = first(b,-3).
Because O is a good AW in G', by Proposition 4.2, for any vertex
v e B(p) v pi(p,) U ---ﬁi(py))\]/\f\((D), it holds that v is not adjacent to any vertex
that is shallow in G' and in particular not to . Thus, no vertex on W is adjacent to .
Moreover, since c; and ¢, are adjacent to all vertices on base(0), they are adjacent to all
vertices in '(p,) U B'(p,41) U -+-B'(p,), and in particular to all vertices on W.

Let w be any internal vertex on W. On the one hand, because W is an induced path,
last(bs) < last(w). This means that if w was adjacent to any vertex in {t,, b,}, then we could
have replaced b, — b; by w in P(0) and obtain a walk (which contains a path) shorter than
P(0) betweent, and t, in G[V (P(0)) U B(p,) U B(p,yq) U U [3(py)] — N (0), which is
a contradiction as O is good and hence it is in particular short. Thus, w is not adjacent to any
vertex in {t,, b;}. On the other hand, because W is an induced path, first(w) < first(b,_3).
Symmetrically to the former case, we deduce that w is not adjacent to any vertex in
{by—1, by, 1.

Up until now, our arguments imply that to prove the lemma, it is sufficient to show
that there exists an induced path from b; to b,_3 in G' - N(0) having a subpath Q* from
a vertex in S’ U {bl} to b,_3 with no vertex from U. Indeed, by appending b, — b, to the
beginning of such a path and b,_, — b,_; — b, to the end of such a path, while removing
bs (b,3) if the first (last) internal vertex of the path is adjacent to b, (b,_,), we derive an
induced path satisfying properties (a), (b) and (c) as required.

By Lemma 4.5, there exists a path Q' in G! — (N(0)u U) from a vertex v* in
Stu{by} to by, Notice that b,_; € f(first(b,—,)) and that for every vertex
v e Stu {b}, first(v) < first(b,_,). This means that Q' has at least one vertex adjacent
to b,_3. Moreover, if v* = b;, then because last(b,) < first(b;) < first(b,_3), Q" has at
least one vertex adjacent to bs. Also recall that {b,i]_3, bé_z, b,;_l} N S' # @&. We thus derive
that there exists a path, and hence also an induced one, in G' — (N(0) U U) from a
vertex v* € S U {bs}, such that either v* = b; or last(b;) < last(v*), to b,_s. Let us denote
such a path by Q. Note that if v* € {b}, then the proof is already complete.

Suppose now that v* € S' and last(b;) < last(v*). Let b; be the first vertex on base(O)
that belongs to S’ (note that such a vertex must exist). Then, G’ = G'[{bs, ba, ..., bj} U V(Q)]
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has an induced path from bs to b, _3 having a subpath from a vertex in S* (which may or may
not be v*) to b,,_3. Indeed, we derive such a path by taking any shortest path from bs to b,_3
in G'—such a path necessarily contains a subpath from some vertex u € S (where u does
not belong to U as U N S' = @) to 6,7_3 whose internal vertices all belong to V (Q). This

completes the proof. O

As a corollary to Lemma 4.6, we have the following.

Corollary 4.2. There exists a relevant tuple (61, 62, vy 62k) such that for alli € [2k], the

following condition holds: the base path of 0 hasa subpath Q from a vertex in S' U {b{} to

b,; that does not contain any of the vertices of the AWs 6i+1, 6i+2, .y 62k.

Proof. To apply induction, we claim that for all j € [2k], we have a relevant tuple
=1 =2

(0,07,.., @Zk) such that for all i € [2k]\[j — 1], the following conditions hold: (i)
the base path of O' has a subpath Q from a vertex in S' U {b/} to b,g that does not

contain any of the vertices of the AWs 6i+1, 6i+2, 62k, and (ii) for alli € [j — 1], 0’
is a highly i-relevant good AW in G'. The proof is by induction on j, and it is clear that
if it is correct for j = 1, then we will derive the lemma. In the base case, where j = 2k,
the claim is true since (D!, 02, .., 0%*), as computed by SeparateProcedure, is a
relevant tuple where every AW is highly relevant and good as required (the
disjointness condition holds trivially).

Now, suppose that j < 2k. By the inductive hypothesis, there exists a relevant tuple
=1 =2

(©,0%..,0 2k) such that for all i € [2k]\ [,j], the following conditions hold: (i) the base

path of O 'hasa subpath Q from a vertex in S' U {b/} to b,; that does not contain any of the
N N

vertices of the AWs O ,0 7, ..., 62k, and (ii) for all i € [j], 0'isa highly i-relevant
good AW in G'. Apply Lemma 4.6 with i = j to obtain a j-relevant AW O’ such that the
following condition holds: the base path of O’ has a subpath Q from a vertex in S* U (b}

to b 7;, that does not contain any of the vertices of the AWs 0’ +1, 0’ +2, .y 62k. Thus,

we replace ﬁj by O’ in (61, @2, ey s ey 62k) to obtain a tuple as required to prove the
claim. O

We are now ready to prove Lemma 4.2. As noted earlier, together with Observation 4.1, this
proof also concludes the proof of Lemma 4.1.

Proof of Lemma 4.2. By Corollary 4.2, there exists a relevant tuple (61, 0’ ... 62k) such

that for all i € [2k], the following condition holds: the base path of O' has a subpath
Q from a vertex in S' U {b/} to b,; that does not contain any of the vertices of the AWs
6i+1, @Hz, .y 62k. By Corollary 4.1, there exist k indices, i; < i < ---< iy, such that for
every two indices x,y € {i, b, ..., iy}, Where x <y, V(©0”) n V(O") n before(x) = @.
Without loss of generality, suppose thati; = 1, i, = 2, ..., iy = k (the arguments to follow
hold for any i; < i < -+ < ).
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5

Let us begin with the following simple observation, on which we rely implicitly in our arguments,
and which follows immediately from the definition of a modular tree decomposition. For

We claim that 61, 62, .y 6k are vertex-disjoint, which would complete the proof. To
prove this claim, we arbitrarily choose i, j € [k] such thati < j. First note that as 0' and
O’ are i-relevant and j-relevant, we have that the terminals and centers of 0' do not
belong to 0’. Moreover, the base path of O'hasa subpath Q from a vertex v* in S' U {b{}

tob ;) that has no vertex of O’. Let W denote the subpath of the base path of O " from bi to
v*. Hence, to conclude that O' and O’ are vertex-disjoint, it remains to show that no

vertex of W belongs to O’. Notice that V(W) C V(@i) N before(i). By our choice of

(@1, 62, oy (ﬁk), it holds that V' (6i) N before(i) does not have any vertex of 0. Thus, the
proof is complete. U

| DECOMPOSITION OF MODULES

simplicity, we use the abbreviations fl, = fly(7.) and g, = gly(r1.)-
(Th) (Th)

Observation 5.1. Let G be a graph with a modular tree decomposition (T, f, g), and let
v € V(T). Then, (T, fl,, gl,) is a modular tree decomposition of G[f (v)].

We proceed by introducing the definition of a problematic set and a problematic node:

Definition 5.1. LetG be a graph with a modular tree decomposition (7, f, g). The set of
problematic obstructions of a node v € V(T), denoted by prob,(v), is the set of all
obstructions O in G[f (v)] such that for every child u of v in T, O is not an obstruction in
G[f )], that is, V(0O)\f (u) # @. When G is clear from context, it is omitted.

Definition 5.2. Let G be a graph with a modular tree decomposition (7, f, g). A node
v € V(T) is problematic if prob(v) # @. The set of problematic nodes is denoted by
prob;(T). When G is clear from context, it is omitted.

We have the following simple observation, which follows directly from the definition of a

problematic set of obstructions.

Observation 5.2. Let G be a graph with a modular tree decomposition (T, f, g). The sets
prob(v), v € prob(T), define a partition of the set of obstructions of G. That is, for all
u,v € V(T), prob(u) N prob(v) = @, and the set of obstructions of G is precisely

Uveprob(T) PrOb(V)-
We proceed to argue that nodes assigned 1 by g are nonproblematic.
Lemma 5.1. Let G be a graph that has no obstruction on at most max{2k, 10} vertices. Let

(T, f, g) be a modular tree decomposition of G, and let v € V (T) such that g(v) = 1. Then,
Vv is not a problematic node.

WILEY-—™
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Proof. Suppose, by way of contradiction, that the lemma is false. Note that the leaves € of a
modular tree decomposition satisfy If (€)| = 1. So, v is not a leaf. Let vy, vy, ..., v, t > 1, be
the children of v. Then, G[f (v)] has an obstruction O on more than 10 vertices such that for
all i € [t], O is not an obstruction in G[f(v;)]. Let i € [t] be the smallest index such
that V(O) Cf(w) Uf(vy) U---Uf(v). Since G[f(v;)] does not contain O,i > 2.
Moreover, by the choice of i and since G[f (v;)] does not contain O, V(0O) N f(v;) # &
and V(0)\f(v) # @. Since f(v) U f(vz) U---Uf(v_1) and f(v) are both modules
(because g(v) = 1), by Proposition 2.1, IV(O) N (f(v) Uf(vy) U ---Uf(v_1))l =1 and
IV (O) N f(v)l = 1. However, this means that |V (O)| = 2, which is a contradiction as no
obstruction consists of only two vertices. O

sdny wouy papeojumoq ‘t ‘€20Z ‘8 110L601

We further observe that a problematic node should have “many” children.

Lemma 5.2. LetG be a graph that has no obstruction on at most max{2k, 10} vertices. Let
(T, f,g) be a modular tree decomposition of G, and let v € V (T) be a problematic node.
Then, v has at least max{2k, 10} + 1 children in T.

Proof. Since v € V(T) is a problematic node, G[f (v)] has an obstruction O such that
for every child u of v in T, O is not an obstruction in G[f (u)]. Moreover, since G has no
obstruction on at most max{2k, 10} vertices, we have that IV (0)| > max{2k, 10} + 1. By
Proposition 2.1, IV(0) n f (u)! < 1 for every child u of v. Since f () = Uyechiiaw) f (1),
this means that v has at least max{2k, 10} + 1 children in T. O

To proceed, we need the following definition and notation.

:sdny) SUONIPUOY) puE SWIAT, A 99 “[SZ0T/90/07) U0 ATeIqrT UIUQ AO[IA EIRQIES EIUES BILION[ED JO ANSIOAN £q S68ZII/Z001°01/10p/wod Kopia A

Definition 5.3. Let G be a graph with a modular tree decomposition (7, f, g). A subset
P C prob(T) has a conflict if there exist v, u € P such that u is a descendant of v in T and
on the (unique) path between u and v in T no vertex belongs to prob(T)\P.

Kopm:

Definition 5.4. Let G be a graph with a modular tree decomposition (T, f, g). For a
node v € V(T), pack,(v) is the maximum number of vertex-disjoint obstructions in
prob(v). When G is clear from context, it is omitted.

Note that a problematic node is precisely a node such that pack(v) > 1. We proceed with
our analysis of problematic nodes using the following two lemmata.

Lemma 5.3. Let G be a graph that has no obstruction on at most max{2k, 10} vertices,
and which does not have k vertex-disjoint obstructions. Let (T, f,g) be a modular tree
decomposition of G. Let P C prob(T) with no conflicts. Then, for each v € P and each child
u of v in T such that u has a problematic descendant, there exist at least k vertices in f (u)
that do not belong to Uwedescuynp f (W).

Proof. We arbitrarily select v € P and a child u of v in T such that u has a problematic
descendant. Note that u ¢ P, otherwise, as v € P is the parent of u, we have a conflict in
P. Since P has no conflicts and u has a problematic descendant, there exists a problematic
node x ¢ P that is either u or a descendant of u such that the path between u and x in T
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contains no vertices in P. Indeed, for any descendant x’ of u such that x’ € P, as P has no
conflicts, the path between v and x’ must contain some problematic vertex x” ¢ P. We
first claim that among the children of x, there are less than k children that are each
problematic or has a problematic descendant. To see this, note that for each child y of x
that is problematic or has a problematic descendant, the subgraph G[f(y)] has an
obstruction, and that for distinct children y, y’ of x, it holds that f (y) n f(y") = @. Thus,
since G does not have k vertex-disjoint obstructions, the claim follows.

By Lemma 5.2, we further have that x has at least 2k + 1 children. To conclude the
proof, note that for every child y of x that is not problematic and has no problematic
descendant, we have at least one vertex in f(y) C f(u) that does not belong to
Uwedescanp f (W). As we have shown that x has less than k children that are problematic
or have problematic descendants, and x has at least 2k + 1 children, we know that x has
at least k non-problematic children with no problematic descendant. Thus, we derive that
there exist at least k vertices in f (1) that do not belong to Uwedescanp f (W). O

Lemma 5.4. LetG be a graph that has no obstruction on at most max{2k, 10} vertices. Let
(T, f, g) be a modular tree decomposition of G. Let P C prob(T) with no conflicts. Then, G
has min{k, 3 .ppack(v)} vertex-disjoint obstructions.

Proof. Suppose that G does not have k vertex-disjoint obstructions, else the proof is
complete. For the proof, we strengthen the statement of the lemma as follows. We claim that
G has ), .ppack(v) vertex-disjoint obstructions that belong to (J,epprob(v). We prove the
claim by induction on [V (T)l. In the basis, where IV (T)! < 1, the claim is trivially true.

Now, suppose that IV (T)! > 2, and let r denote the root of T. Let vy, vs, ..., v; be the
children of r in T. For all i € [t], let us denote G; = G[f ()], T; = T\,,, f; = flv(x) and
g, = glv(p). Note that (T, f;, g;) is a modular tree decomposition of G;. Moreover, denote
B =PnV(L). By the inductive hypothesis, G; has 3 .ppack(v) vertex-disjoint
obstructions that belong to | ,epprob(v), and let us denote a set of such vertex-disjoint
obstructions by ;. As the subtrees T,i € [t], are vertex-disjoint, we have that
O = UieqO; is a set of ZVE(P\ {r})pack(v) vertex-disjoint obstructions. If r ¢ P, the
proof is complete, and therefore we next suppose that r € P.

Let O, denote a set of pack(r) vertex-disjoint obstructions in prob(r), such that among
all such sets, it minimizes |V (O,) N V (O)l. We claim that V(O,) n V(O) = @, which
would complete the proof, as then O, U O would be a set of 3 _,pack(v) vertex-disjoint
obstructions. Suppose, by way of contradiction, that this claim is false. Since then
V(0,) N V(O) # @, there exists O € O, that contains at least one vertex in f(u) for a
descendant u € P of r in T. Suppose, without loss of generality, that v; is the child of r
such that u is a descendant of v;. Then, as G has no obstruction on at most 10 vertices, we
have that for all O’ € O, IV(0O’) n f(v)! < 1. In particular, IV (0O) nf(v))l =1 and
since 10/ <k -1 (because G does not have k vertex-disjoint obstructions),
WV (O)n f(v)l <k — 1. By Lemma 5.3, there exist at least k vertices in f(v;) that do
not belong to Uwedescv)np f (W). Thus, there exists a vertex x € f (v;) that does not belong
to any obstruction in O, U O. Because f(v;) is a module and IV (0) n f(v))l =1, by
replacing the vertex in V(O)nf(v;) by x in O, we obtain another obstruction
0 e prob(r). However, then (O,\{O})U (O} is a set of pack(r) vertex-disjoint
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obstructions in prob(r) that uses less vertices from V (O) than O,. This contradicts the
choice of O,, and hence the proof is complete. O

We also show that prob(T) can be divided into two sets with no conflicts.

Lemma 5.5. Let G be a graph with a modular tree decomposition (T, f, g). There exists a
partition (P, P,) of prob(T) such that neither P, has a conflict nor P, has a conflict.

Proof. To prove this claim, consider the tree T’ constructed from T and prob(T), where
V(T") = prob(T) and E(T’) = {(u, v)| the path from u to v in T contains no other vertex of
,prob(T)}. Then consider a 2-coloring of T’, and let P, and P, be the two color classes.
Observe that P, and P, are conflict-free. Indeed, P, and P, are independent sets in T’, and
for any two vertices u,v € P;, the path between them in T must contain a vertex of
prob(T) which lies in P,; a similar statement holds for P,. We output (P, P,) as the
required partition of prob(T). O

Specific classes of interval graphs, called prereduced graphs and nice interval graphs, were
defined by Cao and Marx as follows.

Definition 5.5 (Cao and Marx [11]). A graph G is reduced if it satisfies the following
properties:

1. Every nontrivial module of G is a clique.
2. G does not have any obstruction on at most 10 vertices.

Definition 5.6 (Cao and Marx [11]). A graph G is nice if it satisfies the following
properties:

1. G is chordal.
2. G does not have any obstruction on at most 10 vertices.
3. Every vertex in G that is a shallow terminal of at least one obstruction is simplicial.

These definitions were in particular used to derive the following results.

Proposition 5.1 (Theorem 2.1 [11]). Let G be a reduced graph. Every vertex in G that is a
shallow terminal of at least one obstruction is simplicial.

Proposition 5.2 (Proposition 8.3 [11]). Any nice graph has a nice clique caterpillar (T, B).
As a corollary of these two propositions, we have the following.
Corollary 5.1. Any chordal reduced graph has a nice clique caterpillar (T, j).

Let us derive a consequence of Corollary 5.1 with respect to a modular tree
decomposition.
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Lemma 5.6. Let G be a chordal graph that has no obstruction on at most max{2k, 10}
vertices. Let (T,f,g) be a modular tree decomposition of G, and let ve V(T) be a
problematic node such that for every child u of v in T, f (u) is a clique. Then, G[f (v)] has a
nice clique caterpillar.
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Proof. By Corollary 5.1, it is sufficient to show that every nontrivial module of G is a
clique. By Observation 5.1, Lemma 5.1 and since v is problematic, we have that g(v) = 0.
Thus, by Observation 5.1 and the definition of a modular tree decomposition, every
nontrivial module of G is a subset of f (u) for a child u of v in T. Since for every child u of
vin T, f(u) is a clique, the proof is complete. O

Towards the proof of the main result of this section, we need one additional notation.

Definition 5.7. Let G be a graph with a modular tree decomposition (T, f, g), and let
v € V(T). Then, clique(G, v) denotes the graph obtained from G[f (v)] by turning each
f @), u € child(v), into a clique. That is, V (clique(G, v)) = f (v) and E(clique(G,v)) =
EG[fD U (Unechiamyiix, ¥} : x,y € f)}).

We first use this definition to prove the following result.

Lemma 5.7. LetG be a graph that has no obstruction on at most max{2k, 10} vertices. Let
(T,f,g) be a modular tree decomposition of G, and let v € V(T). Then, the set of
obstructions in clique(G, v) is precisely prob.(v).

Proof. In one direction, let O be an obstruction in prob;(v). To show that O is an
obstruction in clique(G, v), it is sufficient to show that O does not contain two vertices
between whom an edge was added. However, as G has no obstruction on at most 10
vertices, we have that [V (0)l > 10. Then, as O is not present in G [f (u)] for any child u
of vin T, by Proposition 2.1, its has at most one vertex in f (u) for any child u of vin T.
This concludes this direction.

In the other direction, let O be an obstruction in clique(G, v). Note that the vertex set
of clique(G, v)[f (u)], u € child(v), is a clique. Thus, O is not present in G[f (u)] for any
child u of v in T. Thus, to show that O is an obstruction in prob,(v), it is sufficient to
show that O is an obstruction in G. In turn, this means that it is sufficient to show that O
does not contain two vertices between whom an edge was added. Suppose, by way of
contradiction, that it does. Then, there exist u € child(v) and x,y € f(u) such that
X,y € V(0). Note that f(u) is also a module in clique(G, v). Thus, Proposition 2.1
implies that IV (0)! < 4, which means that O is a hole. However, this is not possible as
x,y are adjacent to each other and have the same neighborhood in clique(G, v). This
concludes the proof. O
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Kopm:

The following lemma lies at the heart of the main result of this section.

Lemma 5.8. Letk € N, and let G be a chordal graph that has no obstruction on at most
max{2k, 10} vertices. Let (T, f, g) be a modular tree decomposition of G, and letv € V (T).
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Then, at least one of the following conditions holds: (i) pack(v) > k; (ii) there exists a subset
D C V(G) of size O(k?) that intersects the vertex set of every obstruction in prob(v).

Proof. Suppose that pack(v) < k, else the proof is complete. By Lemma 5.7, the set of
obstructions in clique(G, v) is precisely prob;(v). Therefore, clique(G, v) has less than k
vertex-disjoint obstructions. By Lemma 5.6, clique(G, v) has a nice clique caterpillar. Thus,
by Lemma 4.1, there exists a subset D C f (v) of size O(k?) such that clique(G, v) — D is an
interval graph. That is, D intersects the vertex set of every obstruction in clique(G, v), which
means that D intersects the vertex set of every obstruction in probg(v). O

We are now ready to prove the main result of this section.

Lemma 5.9. Letk € N, and let G be a chordal graph that has no obstruction on at most
max{2k, 10} vertices. Then, at least one of the following conditions holds: (i) G has k vertex-
disjoint obstructions; (ii) there exists a subset D C V (G) of size O(k?) such that G — D is an
interval graph.

Proof. Suppose that G does not have k vertex-disjoint obstructions, else we are done. By
Lemma 5.5, there exists a partition (P, P,) of prob(T) such that neither P; has a conflict
nor P, has a conflict. By Lemma 5.4, for each i € [2], G has } ppack(v) vertex-disjoint
obstructions. Thus, since G does not have k vertex-disjoint obstructions, for each
i € [2], X,eppack(v) < k. This means that 3¢ .o Pack(v) < 2k.

By Lemma 5.8, for all v € prob(T), there exists a subset D, C V(G) of size
O((pack(v) + 1)»?® that intersects the vertex set of every obstruction in prob(v). Denote
D = Useprob(r)Dy- Then, IDI = O(Z, ¢ pron(ry (PACK (V) + 1)?). By Observation 5.2, we have
that G — D is an interval graph. Thus, to conclude the proof, it remains to show that
Yveprob(r) (Pack(v) + 1)?2 = O(k?). Since for all v € prob(T), pack(v) > 1, it is sufficient
to show that ¥, oncry(Pack(v))* = O(k?). Recall that 3, onryPack(v) < 2k. Thus,
Zveprob(T)(pack(v))2 < (Zvepmb(T)paCk(v)) . (Zvepmb(T)pack(v)) < 2k - 2k = O(k?). This
completes the proof. O

6 | PUTTING IT ALL TOGETHER
Finally, we are ready to prove our main theorem.

Proof of Theorem 1. By Corollary 3.1, at least one of the following conditions hold: (i) G
has k vertex-disjoint obstructions; (ii) there exists a subset D’ C V (G) of size O(k? logk)
such that G — D’ is a chordal graph that has no obstruction on at most max{2k, 10}
vertices. In the first case, our proof is complete, and thus we next suppose that the second
case applies. Then, by Lemma 5.9, at least one of the following conditions hold: (i) G — D’
has k vertex-disjoint obstructions; (ii) there exists a subset D C V(G) of size O(k?) such
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Kopm:

¥By Lemma 5.8, since we cannot have a packing of ¢ = pack(v) + 1 obstructions, there is a hitting set D of
size O(£?) = O((pack(v) + 1)?).
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that (G — D) — D is an interval graph. In the first case, our proof is complete. In the
second case, we have that D = D’ U D is a set of size O(k?logk) such that G — D is an
interval graph, which again completes the proof. O

Before we turn to prove a corollary of our main theorem, we need one more proposition.

Proposition 6.1 (Cao [10]). There exists an O(nm)-time algorithm that, given a graph G,
outputs an integer d' such that the following conditions hold:

1. there exists a subset D' C V (G) of size at most d’ such that G — D’ is an interval graph;
2. d’' < 8d for the integer d that is the minimum size of a subset D C V (G) such thatG — D
is an interval graph.

As a consequence of Theorem 1, we derive the following corollary.

Corollary 6.1. There exist a constant c € N and an O(nm)-time algorithm that, given a
graph G and an integer k € N, correctly concludes which one of the following conditions
holds:’

1. G has k vertex-disjoint obstructions;
2. there exists a subset D C V (G) of size at most ck?logk such that G — D is an interval
graph.

Proof. Let ¢’ be the constant in the O notation in Theorem 1, and denote ¢ = 8¢’. Our
algorithm is as follows. Given a graph G and an integer k € N, it calls the algorithm in
Proposition 6.1 to obtain an integer d’. If d’ > ck?logk, then it concludes that the first
condition holds, and otherwise it concludes that the second condition holds. Clearly, the
algorithm runs in time O(nm).

If the algorithm concluded that the second condition holds, then by the correctness of
the algorithm in Proposition 6.1, this conclusion is correct. Otherwise, by Proposition 6.1,
there does not exist a subset D C V (G) of size at most ¢’k? logk such that G — D is an
interval graph. By Theorem 1, this means that G has k vertex-disjoint obstructions. Thus,
the conclusion of the algorithm is again correct. O
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