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ABSTRACT

We show that theMaximum Weight Independent Set problem

(MWIS) can be solved in quasi-polynomial time on � -free graphs

(graphs excluding a �xed graph� as an induced subgraph) for every

� whose every connected component is a path or a subdivided claw

(i.e., a tree with at most three leaves). This completes the dichotomy

of the complexity of MWIS in F -free graphs for any �nite set F of

graphs into NP-hard cases and cases solvable in quasi-polynomial

time, and corroborates the conjecture that the cases not known to

be NP-hard are actually polynomial-time solvable.

The key graph-theoretic ingredient in our result is as follows.

Fix an integer C ~ 1. Let (C,C,C be the graph created from three paths

on C edges by identifying one endpoint of each path into a single

vertex. We show that, given a graph� , one can in polynomial time

�nd either an induced (C,C,C in� , or a balanced separator consisting

of O(log |+ (�) |) vertex neighborhoods in � , or an extended strip

decomposition of� (a decomposition almost as useful for recursion

forMWIS as a partition into connected components) with each par-

ticle of weight multiplicatively smaller than the weight of� . This is

a strengthening of a result of Majewski, Masařík, Novotná, Okrasa,

Pilipczuk, Rzążewski, and Sokołowski [Transactions on Computa-

tion Theory 2024] which provided such an extended strip decom-

position only after the deletion of O(log |+ (�) |) vertex neighbor-
hoods. To reach the �nal result, we employ an involved branching

strategy that relies on the structural lemma presented above.
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1 INTRODUCTION

The Maximum Weight Independent Set (MWIS) problem takes

as input a graph � with vertex weights w : + (�) ³ Z~0 and asks

for a set- ¦ + (�) of maximum possible weight that is independent

(sometimes also called stable): no two vertices of - are adjacent.

This classic combinatorial problem plays an important role as a

central hard problem in several areas of computational complexity:

it appears as one of the NP-hard problems on the celebrated list of

Karp [28], it is the archetypical W[1]-hard problem in parameter-

ized complexity [14], and is one of the classic problems di�cult to

approximate [27].

In the light of the hardness of MWIS within multiple paradigms,

one may ask what assumptions on the input make the problem

easier. More formally, we can ask for which graph classes G, the as-

sumption that the input graph comes from G allows for faster

algorithms for MWIS. For example, if G is the class of planar

graphs,MWIS remains NP-hard, but the classic layering approach of

Baker [6] yields a polynomial-time approximation scheme and sim-

ple kernelization arguments give a parameterized algorithm [13].

This motivates a more methodological study of the complexity

of MWIS depending on the graph class G the input comes from.

As the space of all graph classes is too wide and admits strange

arti�cial examples, the arguably simplest regularization assumption

is to restrict the attention to hereditary graph classes, i.e., graph

classes closed under vertex deletion. Every hereditary graph class

G can be characterized byminimal forbidden induced subgraphs: the

(possibly in�nite) set F of minimal (under vertex deletion) graphs

that are not members of G. Then, we have � * G if and only if

no member of F is an induced subgraph of � ; when we want to

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0

International License.
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emphasize the set F , we refer to the graph class G as the class of

F -free graphs and shorten it to � -free graphs if F = {� }.
If a problem turns out to be easier in a class of F -free graphs, in

many cases it is a single forbidden induced subgraph � * F that is

responsible for tractability, and the problem at hand is already easier

in � -free graphs. A prime example of this phenomenon are the

classes of line graphs and claw-free graphs. Recall that a line graph

of a graph � is a graph � with + (�) = � (� ) where two vertices

of � are adjacent if their corresponding edges in � are incident to

the same vertex. Observe thatMWIS in a line graph � of a graph

� becomes theMaximum Weight Matching problem in the pre-

image graph � ; a problem solvable in polynomial time by deep

combinatorial techniques [15]. It turns out that the tractability of

MWIS in line graphs can be explained solely by one of the minimal

forbidden induced subgraphs for the class of line graphs, namely

the claw (1,1,1. (For integers 0, 1, 2 ~ 1, by (0,1,2 we denote the tree

with exactly three leaves, within distance 0,1, and 2 from the unique

vertex of degree 3.) As proven in 1980,MWIS is polynomial-time

solvable already in the class of (1,1,1-free graphs [39, 48], called also

the class of claw-free graphs (for recent fast algorithms, see [16, 46]).

Together with the vastness of the space of all hereditary graph

classes, this motivates us to focus on F -free graphs for �nite sets

F , in particular on the case |F | = 1. This turned out to be partic-

ularly interesting forMWIS. As observed by Alekseev [3], for the

“overwhelming majority” of �nite sets F ,MWIS remains NP-hard

on F -free graphs. More precisely Alekseev observed that MWIS

remains NP-hard on F -free graphs unless, for at least one graph

in F , every connected component is a path or an (0,1,2 for some

integers 0,1,2 . Since the original NP-hardness proof of Alekseev [3]

in 1982, no new �nite sets F have been discovered such thatMWIS

remains NP-hard on F -free graphs. We conjecture that this is be-

cause all of the remaining cases are actually solvable in polynomial

time.

Conjecture 1.1. For every � that is a forest whose every component

has at most three leaves, Maximum Weight Independent Set is

polynomial-time solvable when restricted to � -free graphs.

To the best of our knowledge, the �rst place Conjecture 1.1

appeared explicitly is [31]. Let us remark that Conjecture 1.1, if

true, would yield a dichotomy for the computational complexity

of MWIS on F -free graphs for all �nite sets F . Consider any F
such that NP-hardness of MWIS on F -free graphs does not follow

from Alekseev’s proof. It follows that the class of F -free graphs

is contained in the class of � -free graphs for some graph � for

which polynomial time solvability of MWIS is conjectured in Con-

jecture 1.1.

From the positive side, as already mentioned, we know that

MWIS is polynomial-time solvable in (1,1,1-free graphs since 1980.

Around the same time, it was shown that the class of %4-free graphs

(by %C we denote the path on C vertices) coincides with the class of

cographs and has very strong structural properties (inmodern terms,

has bounded cliquewidth) thus allowing e�cient algorithms for

MWIS and many other combinatorial problems. Over the years, we

have witnessed a few scattered results for some special cases of � -

free graphs, such as (1,1,2-free graphs [4, 32], 2 2-free graphs [17],

C 2-free graphs [18], ℓ%3-free graphs [31], ℓ(1,1,1-free graphs [9],

C 2 + %5-free or C 2 + (1,1,2-free graphs [45], as well as progress

limited to various subclasses (see [8, 8, 22, 26, 29, 33–37, 40–44] for

older and newer results of this kind).

The research in the area got signi�cant momentum in the last

decade. The progress can be partitioned into two main threads. The

�rst one focuses on the framework of potential maximal cliques,

introduced by Bouchitté and Todinca [7], and focuses on provid-

ing polynomial-time algorithms for %C -free graphs for small values

of C . A landmark result here is due to Lokshtanov, Vatshelle, and

Villanger [30] who were the �rst to show the usability of the frame-

work in the context of %C -free graphs by providing a polynomial-

time algorithm for MWIS in %5-free graphs. This has been later

extended to %6-free graphs [23] and related graph classes [2]. A

notable property of this framework is that in most cases it not only

provides algorithms for MWIS, but for a wide range of problems

asking for large induced subgraph of small treewidth, for example

Feedback Vertex Set.

The second thread attempts at treating %C -free or (C,C,C -free

graphs in full generality, but relaxing the requirements on either the

running time (by providing subexponential or quasi-polynomial-

time algorithms) or the accuracy (by providing approximation al-

gorithms, such as approximation schemes). Here, the starting point

is the theorem of Gyárfás [24, 25] (see also [5]).

Theorem 1.2. Every vertex-weighted graph � contains an induced

path & such that every connected component of � 2 # [+ (&)] has
weight at most half of the weight of � .

As an induced path in a %C -free graph has less than C vertices,

a %C -free graph admits a balanced separator (in the sense of The-

orem 1.2) consisting of neighborhood of at most C 2 1 vertices. In

other words, %C -free graphs admit a balanced separator dominated

by C 2 1 vertices. Chudnovsky, Pilipczuk, Pilipczuk, and Thomassé

[10] observed that this easily gives a quasi-polynomial-time ap-

proximation scheme (QPTAS) forMWIS in %C -free graphs, and they

designed an elaborate argument involving the celebrated three-in-

a-tree theorem of Chudnovsky and Seymour [12] to extend the

result to the (C,C,C -free case and � -free case where � is a forest

of trees with at most three leaves each. Abrishami, Chudnovsky,

Dibek, and Rzążewski[1] used also the three-in-a-tree theorem

to obtain a polynomial-time algorithm for MWIS for (C,C,C -free

graphs of bounded degree. Gartland and Lokshtanov showed how

to use the theorem of Gyárfás to design exact quasi-polynomial-

time algorithm for MWIS in %C -free graphs [19], for every �xed

C . This algorithm was later simpli�ed by Pilipczuk, Pilipczuk, and

Rzążewski [47] and the union of the authors of these two papers

showed that the approach works for a much wider class of prob-

lems and a slightly wider graph class [21]. Last year, Majewski,

Masařík, Novotná, Okrasa, Pilipczuk, Rzążewski, and Sokołowski

[38] gave a cleaner argument for an existence of a QPTAS forMWIS

in (C,C,C -free graphs.

This work provides the pinnacle of the second thread by showing

that MWIS is quasi-polynomial-time solvable in all cases treated

by Conjecture 1.1.

Theorem 1.3. For every � that is a forest whose every component

has at most three leaves, there is an algorithm for Maximum Weight

Independent Set in � -free graphs running in time =O� (log19 =) .
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Here O� denotes constants depending on |� | being repressed.
Theorem 1.3 provides strong evidence in favor of Conjecture 1.1,

as it refutes the existence of an NP-hardness proof for MWIS for

� -free graphs as in Conjecture 1.1, unless all problems in NP can

be solved in quasi-polynomial time.

2 OUR TECHNIQUES

As discussed in [19] (in particular Theorem 2), to show Theorem 1.3

it su�ces to focus on the case � = (C,C,C for a �xed integer C ~ 1.

Together with a simple self-reducibility argument, it is enough to

prove the following.

Theorem 2.1. For every integer C ~ 1, the maximum possible weight

of an independent set in a given =-vertex (C,C,C -free graph can be found

in =OC (log16 (=) ) time.

Here OC denotes constants depending on C being repressed.

2.1 The Key Structural Result

While Theorem 1.2 provides a balanced separator consisting of

a few neighborhoods in a %C -free graph, it does not seem to be

directly usable for (C,C,C -free graphs. The example of � being a line

graph of a clique (which is (1,1,1-free) shows that we cannot hope

for merely a balanced separator consisting of a few neighborhoods

in (1,1,1-free graphs.

However, if � is a line graph,MWIS is solvable in polynomial-

time by a very di�erent reason than Theorem 1.2: because it cor-

responds to a matching problem in the preimage graph. Luckily,

there is a known formalism capturing decompositions of a graph

that are “like a line graph”: extended strip decompositions.

For a graph� , a strip decomposition consists of a graph � (called

the host) and a function [ that assigns to every edge 4 * � (� ) a
subset [ (4) ¦ + (�) such that {[ (4) | 4 * � (� )} is a partition of

+ (�) and a subset [ (4, G) ¦ [ (4) for every endpoint G * 4 such
that the following holds: for every E1, E2 * + (�) with E1 * [ (41),
E2 * [ (42) and 41 ≠ 42 we have E1E2 * � (�) if and only if

there is a common endpoint G * 41 + 42 with E1 * [ (41, G) and
E2 * [ (42, G). Note that if � is the line graph of � , then � has a

strip decomposition with host � and [ (4, G) = [ (4,~) = {4} for
every G~ = 4 * � (� ) = + (�). The crucial observation is that if one

provides a strip decomposition (�,[) of a graph � together with,

for every G~ * � (� ), the maximum possible weight of an indepen-

dent set in� [[ (G~)],� [[ (G~) \[ (G~, G)],� [[ (G~) \[ (G~,~)], and
� [[ (G~) \ ([ (G~, G) *[ (G~,~)] (these graphs are henceforth called

particles), then we can reduce computing the maximum weight of

an independent set in� to the maximum weight matching problem

in the graph � with some gadgets attached [10].

An extended strip decomposition also allows vertex sets [ (G) for
G * + (� ) and triangle sets [ (G~I) for triangles G~I in � ; a precise

de�nition can be found in preliminaries, but is irrelevant for this

overview. Importantly, the notion of a particle generalizes and the

property that one can solve MWIS in � knowing the answers to

MWIS in the particles is still true. Extended strip decompositions

come from the celebrated solution to the three-in-a-tree problem

by Chudnovsky and Seymour. The task is to determine if a graph

contains an induced subgraph which is a tree connecting three

given vertices. The following theorem says that The three-in-a-tree

problem can be solved in polynomial time:

Theorem 2.2 ([12, Section 6], simpli�ed version). Let � be an =-

vertex graph and / be a subset of vertices with |/ | ~ 2. There is an

algorithm that runs in time O(=5) and returns one of the following:
" an induced subtree of � containing at least three elements of

/ ,

" an extended strip decomposition (�,[) of � where for every

I * / there exists a distinct degree-1 vertex GI * + (� ) with
the unique incident edge 4I * � (� ) and [ (4I , GI) = {I}.

In a sense, an extended strip decomposition as in Theorem 2.2

is a certi�cate that no three vertices of / can be connected by an

induced tree in � .

[10] combined Theorem 1.2 with Theorem 2.2 in a convoluted

way to show a QPTAS for MWIS in (C,C,C -free graphs; Thereom 2.2

is used here to construct an induced (C,C,C in the argumentation.

[38] provided a simpler argument for the existence of a QPTAS:

they derived from Theorem 2.2 the following structural result.

Theorem 2.3 ([38, Theorem 2] in a weighted setting). For every

�xed integer C , there exists a polynomial-time algorithm that, given

an =-vertex graph � with nonnegative vertex weights, either:

" outputs an induced copy of (C,C,C in � , or

" outputs a set P consisting of at most 11 log= + 6 induced paths
in � , each of length at most C + 1, and a rigid extended strip

decomposition of � 2 # [⋃P] with every particle of weight

at most half of the total weight of + (�).

(Here, rigid means that the extended strip decomposition does

not have some unnecessary empty sets; in a rigid decomposition the

size of � is bounded linearly in the size of� . The formal statement

of Theorem 2.3 in [38] is only for uniform weights in � , but as

observed in the conclusions of [38], the proof works for arbitrary

vertex weights.)

[38] showed that Theorem 2.3 easily gives a QPTAS forMWIS

in (C,C,C -free graphs, along the same lines as how [10] showed that

Theorem 1.2 easily gives a QPTAS forMWIS in %C -free graphs.

However, it seems that the outcome of Theorem 2.3 is not very

useful if one aims for an exact algorithm faster than a subexponen-

tial one. Our main graph-theoretic contribution is a strengthening

of Theorem 2.3 to the following.

Theorem 2.4. For every �xed integer C , there exists an integer 2C and

a polynomial-time algorithm that, given an =-vertex graph � and a

weight function w : + (�) ³ [0, +>), returns one of the following
outcomes:

(1) an induced copy of (C,C,C in � ;

(2) a subset - ¦ + (�) of size at most 2C · log(=) such that every

component of � 2 # [- ] has weight at most 0.99w(�);
(3) a rigid extended strip decomposition of � where no particle is

of weight larger than 0.5w(�).

That is, we either provide an extended strip decomposition of

the whole graph (not only after deleting a neighborhood of a small

number of vertices as in Theorem 2.3) or a small number of vertices

such that deletion of their neighborhood breaks the graph into

multiplicatively smaller (in terms of weight) components.
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The proof of Theorem 2.4 is provided in the full version of pa-

per [20, Section 3]. Let us brie�y sketch it. We start by applying

Theorem 2.3 to � ; we are either already done or we have a set

/ v
⋃
%*P + (%) of size O(log=) and an extended strip decom-

position (�,[) of � 2 # [/ ] with small particles. Our goal is now

to add the vertices of # [/ ] one by one back to (�,[), possibly
exhibiting one of the other outcomes of Theorem 2.4 along the way.

That is, we want to prove the following lemma:

Lemma 2.5. For every �xed integer C there exists an integer 2C and a

polynomial-time algorithm that, given an =-vertex graph� , a weight

function w : + (�) ³ [0, +>), a real g ~ w(�), a vertex E * + (�),
and a rigid extended strip decomposition (�,[) of � 2 E with every

particle of weight at most 0.5g , returns one of the following:

(1) an induced copy of (C,C,C in � ;

(2) a set / ¦ + (�) of size at most 2C such that every connected

component of � 2 # [/ ] has weight at most 0.99g ;

(3) a rigid extended strip decomposition of � where no particle is

of weight larger than 0.5g .

A simple yet important observation for Lemma 2.5 is that for

G * + (� ) of degree at least two, the set ⋃~*#� (G ) [ (G~, G) can
be dominated by at most two vertices, as the sets [ (G~, G) for ~ *
#� (G) are complete to each other. Consequently, if (�, �) is a

separation in � of small order, then the part of � that is placed

by [ in � [�] and the part of � that is placed by [ in � [�] can be

separated by deleting at most 2|� + � | vertex neighborhoods in � .
Hence, if there is a separation (�, �) in � of constant order where

both sides of this separation have substantial weight (at least 0.01g ),

we can provide the second outcome of Lemma 2.5.

As # [E] is just one neighborhood, the same observation holds if,

instead of looking at (�,[), we look at the inherited extended strip

decomposition (� 2, [2) of� 2# [E]. Here, (� 2, [2) is obtained from
(�,[) by �rst deleting vertices of # (E) from sets [ (·) and then

performing a cleanup operation that trims unnecessary empty sets

and ensures that for every G~ * � (� 2) there is a path in� [[2 (G~)]
between [2 (G~, G) and [2 (G~,~). Hence, we can take all separations

(�, �) in � 2 of order bounded by a large constant (depending on C )

and orient them from the side that contains less than 0.01g weight

to the side containing almost all the weight of � . This orientation

de�nes a tangle in � 2. By classic results from the theory of graph

minors, this tangle implies the existence of a large wall, in � 2

which is always mostly on the “large weight” side of any separation

(�, �) of constant order. The cleaning operation ensures that the

wall, is also present in (�,[).
An important observation now is that, because (� 2, [2) is cleaned

as described below, any family of vertex-disjoint paths in� 2 projects
down to a family of induced, vertex-disjoint, and anti-adjacent paths

in � of roughly the same length (or longer): for a path % in � , just

follow paths from [ (G~, G) to [ (G~,~) in � [[ (G~)] for consecutive
edges G~ on % . Furthermore, a wall, is an excellent and robust

source of long vertex-disjoint paths.

This allows us to prove that if the neighbors of E are well-

connected to the wall, in (�,[) — either they are spread around

the wall itself, or one can connect them to , via three vertex-

disjoint paths in � — then � contains an induced (C,C,C . Otherwise,

we show that there is a separation (�, �) in � with the neighbors

of E essentially all contained in the sets of � [�], while, lies on

A

B

v

Figure 1: Extending a subdivided claw in�� to an (C,C,C using

the large wall, in �.

the �-side of the separation. (Here, a large number of technical

details are hidden in the phrase “essentially contained”.) We con-

struct a graph �� being the subgraph of � induced by the vertices

contained in the [ sets of� [�], augmented with a set / of arti�cial

vertices attached to
⋃
~*#� (G )+� [ (G~, G) for G * � + �; vertices

of / signify possible “escape paths” to the wall, . These “escape

paths” allow us to show that any induced tree in �� that contains

at least three vertices of / lifts to an induced (C,C,C in� , see Figure 1.

Hence, the algorithm of Theorem 2.2 applied to �� and / can be

used to rebuild � [�] to accommodate E there as well, or to expose

an induced (C,C,C . This �nishes the sketch of the proof of Lemma 2.5

and of Theorem 2.4.

We would like to highlight a signi�cant di�erence between pre-

vious works [1, 10, 38] and our use of the three-in-a-tree theorem

to exhibit an (C,C,C in a graph or obtain an extended strip decom-

position. All aforementioned previous works essentially picked

three anti-adjacent paths %1, %2, %3 of length C each, with end-

points say G8 and ~8 for 8 = 1, 2, 3, removed their neighborhood

except for the neighbors of ~8s, and called three-in-a-tree for the set

/ = {G1, G2, G3}; note that any induced tree in the obtained graph

that contains / contains also an induced (C,C,C . This method inher-

ently produced extended strip decompositions not for the entire

graph, but only for after removal of a number of neighborhoods.

Furthermore, it used the assumption of being (C,C,C -free only in

a very local sense: there is no (C,C,C with paths extendable to the

given three vertices of / . In this work, in contrast, we apply the

three-in-a-tree theorem to a potentially much bigger set / , and use

a subdivided wall in the host graph of the extended strip decompo-

sition to extend any induced tree found to an induced (C,C,C . In this

way, we used the assumption of being (C,C,C -free in a more global

way than just merely asking for three particular leaves.

2.2 Branching

We now proceed with a sketch of our recursive branching algo-

rithm. On a very high level, it is based on techniques used in the

quasi-polynomial time algorithm for independent set on %: -free

graphs found in [19], though multiple new ideas are required to
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make the reasoning work in the setting of (C,C,C -free graphs, making

both the algorithm and its running time analysis quite a bit more

technical. We will soon sketch the algorithm found in [19] and

describe how to extend it to (C,C,C -free graphs, but �rst we must

address a major barrier. The fact that %: -free graphs have balanced

separators dominated by : vertices, as discussed after Theorem 1.2,

is a crucial fact used in the algorithm of [19]. But, as mentioned pre-

viously, (C,C,C -free graphs have no such property (take for instance

the line graph of a clique). This is where Theorem 2.4 comes to the

rescue.

When applying Theorem 2.4 to� (the input graph of the current

call of the algorithm), since we assume that � is (C,C,C -free, we are

guaranteed that outcome (1) will not occur. If outcome (3) occurs
then we get an extended strip decomposition (�,[) and, as previ-
ously mentioned, we can reduce �nding a maximum independent

set of � to �nding a maximum independent set in each particle

of (�,[). That is great news, as each particle has at most half of the

weight of � , and we can easily employ a divide-and-conquer strat-

egy by recursively calling the algorithm on each particle of (�,[).
So, since outcome (1) never happens and outcome (3) gives us an
easy algorithm, we can always assume that outcome (2) happens,
that is, that Theorem 2.4 gives us a balanced separator of � that

is dominated by O(log=) vertices, and now we can try to extend

the techniques found in [19] to work for (C,C,C -free graphs. There-

fore, for the rest of this subsection we will focus on sketching an

algorithm for independent set on an (C,C,C -free graph � such that

all induced subgraphs of � have a balanced separator dominated

by some constant number of vertices (the stronger assumption of a

constant number of vertices versus log= vertices does not change

the algorithm very much and simpli�es the discussion).

Before sketching the algorithm let us give a few short de�nitions

around balanced separators for an (C,C,C -free graph � . For =
2
> 0,

we say that a set ( ¦ + (�) is a =2-balanced separator for � if no

component of � 2 ( has more than =2 vertices. If � ¦ + (�) and
no component of � 2 ( contains over =2 vertices of �, we say that

( is a =2-balanced separator for (�,�). The outcome (2) of Theo-
rem 2.4 gives us a 0.99|�|-balanced separator for (�,�) dominated

by O(log=) vertices (again here for simplicity we will assume that

these balanced separators are in fact dominated by a constant num-

ber of vertices). However, by picking a constant number of balanced

separators as provided by Theorem 2.4 and taking their union, we

can obtain 2 |�|-balanced separators for (�,�) dominated by a con-

stant number of vertices for any �xed 2 * (0, 1), so we will assume

we have access to such strengthened balanced separators.

Summary of the Quasi-Polynomial Time Algorithm for MWIS on

%: -free Graphs. The starting point for our algorithm is the algo-

rithm forMWIS on %: -free graphs by Gartland and Lokshtanov [19],

who in turn build on an algorithm of Bacsó, Lokshtanov, Marx,

Pilipczuk, Tuza, and van Leeuwen [5]. We therefore give a brief

summary of these algorithms.

We �rst consider the simple =O(:
:
= log=) time algorithm of [5]

for MWIS on %: -free graphs. We begin with an =-vertex %: -free

graph � and branch on all vertices of degree at least
:
=: we either

exclude such a vertex from the solution (and thus remove it from the

graph), or we include it (and then remove its whole neighborhood

from the graph). After this we may assume that the graph in our

current instance (we will still refer to this graph as � although

some vertices of the original graph� have been removed) now has

maximum degree at most
:
=. We solve this instance by �nding

an =/2-balanced separator, ( , for � that is dominated by at most :

vertices. Since � has maximum degree
:
= and ( is dominated by

at most : vertices, ( can have size at most :
:
=. We then branch

on all :
:
= vertices of ( simultaneously, which then breaks up the

graph into small connected components and we recurse on each

component. A simple analysis shows that this runs in =O(:
:
= log=)

time.

Now, let us try to improve it to an algorithm that runs in time

=O(:=1/3 log=) . We �rst state a modi�ed form of a lemma that ap-

pears in [19].

Lemma 2.6. Let � be an =-vertex %: -free graph and F a multi-set

of subsets of + (�) such that for every ( * F no component of � 2 (
has more than =/2 vertices. Assume that no vertex belongs to more

than 2 sets of F counting multiplicity. Then provided |F | ~ 32: , no

component of � contains more than 3=/4 vertices.

Sketch of proof. Let ( * F and assume for a contradiction

that the largest component of � 2 ( , call it � , has more than 3=/4
vertices. Select vertices 0, 1 uniformly at random from � . As |� | >
3=/4 the probability that 0 and 1 belong to di�erent components of

� 2 ( is at least 1/3. If we let -( be the random variable that is 1 if

0 and 1 are in di�erent components of � 2 ( and 0 otherwise, then

E[-( ] ~ 1
3 . By the linearity of expectation, we have E[∑(*F -( ]

~
1
3 · 32: ~ 2: . It follows that there exists vertices 0, 1 * ( such

that for at least 2: sets, ( 2, in F (counting multiplicity) 0 and 1 are

in di�erent components of � 2 ( 2. Let F 2 be the subset of F that

contains these sets ( 2. It follows that for any induced path % with 0

and 1 as its endpoints, if ( 2 * F 2 then+ (%) + ( 2 ≠ '. Since F 2 has
at least 2: sets and no vertex of % belongs to more than 2 sets in

F 2, % must have at least : vertices, contradicting the assumption

that � is %: -free. ¥

For the =O(:=1/3 log=) algorithm, we again begin by branching

on vertices of high degree, but this time we set the threshold to

vertices with degree at least =2/3. After this we may assume the

graph in our current instance, call it�1, has maximum degree =2/3.
We then �nd a balanced separator, (1, for �1 that is dominated by

: vertices, hence (1 has at most :=2/3 vertices. We then branch on

all vertices with at least =1/3 neighbors in (1. Now we assume the

graph considered in our current instance, call it �2, has maximum

degree =2/3 and a balanced separator (1 such that no vertex of

�2 has more than =1/3 neighbors in (1. We then �nd a balanced

separator, (2, for �2 that is dominated by : vertices, hence (2

has at most :=2/3 vertices and (1 + (2 has size at most :=1/3. We

then branch on all vertices with at least =1/3 vertices in (2 and we

branch on all vertices that belong to (1 + (2, so (1 and (2 “become

disjoint”. We repeat this 3: times until we are in an instance where

we have a graph �3: and 3: pairwise disjoint balanced separators

(1, . . . (3: . By Lemma 2.6, �3: has no component with over 3=/4
vertices and we then recurse on each component. A somewhat

more involved, but still fairly simple analysis shows that this runs

in =O(:=1/3 log=) time.
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In the =O(:=1/3 log=) -time algorithm, we branched on vertices

that: had over =2/3 neighbors, or had =1/3 neighbors in any of

the balanced separators we picked up, or belonged to two of the

balanced separators we picked up. In order to modify this algorithm

to run in quasi-polynomial time all that must be done is change the

branching threshold. In particular, the algorithm collects balanced

separators (each dominated by at most : vertices) and will branch

on any vertex that has over =/28 neighbors that belong to 8 or

more of the collected balanced separators (the algorithm no longer

branches on vertices that only have high degree). Any vertex that

belongs to log= of the collected balanced separators will then be

branched on, so no vertex will ever belong to more than log= of the

collected balanced separators. So, by Lemma 2.6, after collecting

3: log= of these balanced separators, the graph will not have any

large component. A runtime analysis of this algorithm shows that

it runs in quasi-polynomial time. Note that in all three algorithms

discussed here (the =O(:=1/2 log=) -time, =O(:=1/3 log=) -time, and

quasi-polynomial-time algorithm) it is crucial for e�cient runtime

that the balanced separators we use are dominated by few vertices

(they were dominated by : vertices here, but being dominated by

polylog(=) vertices would still be su�cent).

Back to (C,C,C -free Graphs. Recall that we wish to get a quasi-

polynomial time algorithm for MWIS on (C,C,C -free graphs for the

case where every induced subgraph of the input graph� has a set (

of at most 2C vertices such that # [(] is a =/2-balanced separator. Up
to the bound on the set dominating the separator, this is precisely

the case when we keep getting outcome (2) whenever we apply

Theorem 2.4.

We want to mimic the algorithm for %: -free graphs. This algo-

rithm used that the input graph is %: -free in precisely two places.

The �rst is to keep getting constant size sets ( such that # [(] is an
=/2-balanced separator. This is easily adapted to our new setting

because we keep getting such sets whenever we apply Theorem 2.4.

The second place where %: -freeness is used is in Lemma 2.6,

which states that a %: -free graph cannot have a set of 3: log=

balanced separators such that no vertex of � appears in at most

$ (log=) of them. If we could strengthen the statement of Lemma 2.6

to (C,C,C -free graphs we would be done! Unfortunately, such a stren-

gthening is false, indeed a path is a counterexample (each vertex

close to the middle of the path is a balanced separator).

Nevertheless, a subtle weakening of Lemma 2.6 does turn out to

be true. In particular, in (C,C,C -free graphs it is not possible to pack

“very strong" balanced separators that are dominated by “very few”

vertices. We will call such balanced separators 2-boosted balanced

separators. A somewhat simpli�ed de�nition of a 2-boosted balanced

separator is a set # [(] dominated by a set ( of at most 2 vertices,

such that no component of � 2 # [(] has more than |+ (�) |/1622
vertices. It turns out that on (C,C,C -free graphs Lemma 2.6 is true if

“balanced separators” are replaced by “B-boosted balanced separa-

tors” for appropriately chosen integer B .

Lemma 2.7. Let � be an =-vertex (C,C,C -free graph, B an integer,

and F a multi-set of subsets of + (�) such that every set in F is an

B-boosted balanced separator. Assume no vertex belongs to more than

2 sets of F . Then, provided |F | ~ 80B2C , no component of � contains

over 3=/4 vertices.

We skip sketching the proof of Lemma 2.7 here (see the full

version [20, Section 4.2.2] for a formal statement and proof of this

lemma), but we will remark that one of the key ingredients of the

proof is a probabilistic argument akin to the proof of Lemma 2.6.

At this point we are one “disconnect” away from being able to

utilize the strategy for %: free graphs: Theorem 2.4 keeps giving us

balanced separators, while Lemma 2.7 tells us that we can’t pack

boosted balanced separators. Indeed, if we assumed our (C,C,C -free

graphs always had, say, 2C -boosted balanced separators (where 2C
is some constant that depends on C ), then by the exact same rea-

soning as before, the strategy of iteratively collecting a 2C -boosted

balanced separator and then branching (on all vertices that have

over =/28 neighbors that belong to 8 or more of the collected 2C -

boosted balanced separators) would work. Any vertex that belongs

to log= of the collected 2C -boosted balanced separators will then

be branched on, so no vertex will ever belong to over log= of the

collected balanced separators. So, by Lemma 2.7, after collecting

802C C log= of these 2C -boosted balanced separators, the graph will

not have any large component. A running time analysis identical to

the one for %: -free graphs [19] would then show that this algorithm

runs in quasi-polynomial time.

Is it possible to bridge the “disconnect” from the other side and

keep getting boosted balanced separators? This looks di�cult, but

we are able to bridge the gap algorithmically, by branching in such

a way that a “normal” balanced separator becomes boosted. We

can then add this boosted balanced separator to our collection of

previously created boosted balanced separators, and then apply

Lemma 2.7 to this collection to conclude that the graph gets su�-

ciently disconnected before the collection grows too large. We now

sketch how to “boost” a separator.

Boosting Separators. We begin with a balanced separator # [(],
dominated by a set ( of at most 2C vertices, such that no component

of � 2 # [(] has more than =/2 vertices. (For technical reasons in
the actual algorithm # [(] is not a balanced separator, but rather

a set given by Theorem 2.3 so that � 2 # [(] has an extended

strip decomposition with no large particles; from the viewpoint

of e�cient independent set algorithms this is just as useful.) We

wish to turn # [(] into a 2C -boosted balanced separator. In order to

do this, we consider all vertices of # [(] that have a neighbor in a

large component of � 2 # [(]; we call this set relevant(�, () (see
Figure 2. This is a slight simpli�cation of the actual de�nition of

relevant(�, () that we use in the algorithm). By “large component”

we mean any component of � 2 # [(] that has more than =/1622C
vertices (note that if there are no such components, then # [(]
is a 2C -boosted balanced separator). In order to branch in a way

that turns # [(] into a 2C -boosted balanced separator, we use the

following lemma, similar to Lemmas 2.6 and 2.7.

Lemma 2.8. Let � be an =-vertex (C,C,C -free graph, let # [(] be a
balanced separator for � dominated by a set ( of at most 2C vertices,

and let F be a multi-set of |relevant(�, () |/10023C -balanced separators
for (�, relevant(�, ()). Assume no vertex belongs to over 2 sets of

F . If |F | ~ 102C , either ( is a 2C -boosted balanced separator or no

component of � contains more than 3=/4 vertices.

The proof of Lemma 2.8 follows a similar “expectation argument”

that Lemma 2.6 uses, although it is a bit more involved. We do not
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Figure 2: Illustration of how the set relevant(�, () is obtained
from ( .

sketch a proof of Lemma 2.8 here (this lemma statement is more or

less a combination of Observation 4.6 and Lemma 4.9 given in the

full version [20]).

This lemma suggests the following branching strategy. We �rst

pick up an =/2-balanced separator # [(] dominated by a set ( of

2C vertices, and we will try use Lemma 2.8 to turn # [(] into a

2C -boosted balanced separator or break up � into small compo-

nents. We use the same reasoning as before: iteratively collect

|relevant(�, () |/10023C -balanced separators for (�, relevant(�, ())
and branch (on all vertices that have over =/28 neighbors that be-
long to 8 or more of the collected balanced separators). Any vertex

that belongs to log= of the collected balanced separators will then

be branched on, so no vertex will ever belong to over log(=) of
the collected balanced separators. So, by Lemma 2.8 after collect-

ing 10C log= of these |relevant(�, () |/10023C -balanced separators

for (�, relevant(�, ()), either the graph will have no large compo-

nent (and then we make large progress by calling the algorithm

recursively on the components) or ( is now a 2C -boosted balanced

separator, which we then add to our collection of 2C -boosted bal-

anced separators. By Lemma 2.7 this collection cannot grow larger

than 802C C log= before our graph no longer has large connected

components.

The running time analysis of this algorithm essentially looks like

this: if we could assume that boosting a single balanced separator

to become a boosted balanced separator took constant time, then

the analysis would be more or less identical to the analysis of

the algorithm for MWIS on %: -free graphs. However, now each

individual “boosting” step is instead a branching algorithm whose

analysis again is very similar to the analysis of the algorithm for

MWIS on %: -free graphs, so each boosting step corresponds to a

recursive algorithm with quasi-polynomially many leaves. Since

quasi-polynomial functions compose the entire running time is still

quasi-polynomial. Finally we need to take into account what would

happen if outcome (3) of Theorem 2.4 does occur, but this can fairly

easily be shown to only be good for the progress of the algorithm.

3 CONCLUSION

Let us point out some possible directions for future research. First,

on the structural side, we believe that Theorem 2.4 could be im-

proved so that in the second outcome the balanced separator is

dominated by a constant (depending on C ) number of vertices. The

only reason why the current statement has the logarithmic bound

is that in Theorem 2.3 the number of deleted neighborhoods is loga-

rithmic. [38] conjectured that Theorem 2.3 can actually be improved

so that the number of deleted neighborhoods is constant. Proving

this conjecture would immediately yield an improved version of our

Theorem 2.4. However, such a stronger version, while being more

elegant, would not give any essentially new algorithmic result: the

running time of our algorithms would still be quasi-polynomial

(though a bit faster).

On the algorithmic side, an obvious natural problem is to provide

a polynomial-time algorithm for MWIS in (C,C,C -free graphs, for all

C . While we believe that extended strip decompositions are the

right tool to use towards this goal, it seems that decompositions

like the ones obtained by Theorem 2.4 would not lead to such a

statement. This is because recursing into a polynomial number

of multiplicatively smaller particles inherently leads to a quasi-

polynomial running time. We believe the ultimate goal would be to

build an extended strip decomposition where each particle induces

a graph from some “simple” class. In particular, so that we can

solve MWIS for each particle in polynomial time without using

recursion. Such decompositions for the simplest case, i.e., claw-free

graphs, are provided by a deep structural result of Chudnovsky and

Seymour [11].

An important milestone on the way towards obtaining a polyno-

mial-time algorithm for MWIS in (C,C,C -free graphs is to solve the

case of %C -free graphs, which is already a very ambitious goal.
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