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ABSTRACT

We show that the MaxiMmum WEIGHT INDEPENDENT SET problem
(MWIS) can be solved in quasi-polynomial time on H-free graphs
(graphs excluding a fixed graph H as an induced subgraph) for every
H whose every connected component is a path or a subdivided claw
(i.e., a tree with at most three leaves). This completes the dichotomy
of the complexity of MWIS in 7 -free graphs for any finite set 7 of
graphs into NP-hard cases and cases solvable in quasi-polynomial
time, and corroborates the conjecture that the cases not known to
be NP-hard are actually polynomial-time solvable.

The key graph-theoretic ingredient in our result is as follows.
Fix an integer t > 1. Let Sy ¢+ be the graph created from three paths
on t edges by identifying one endpoint of each path into a single
vertex. We show that, given a graph G, one can in polynomial time
find either an induced S; 4 in G, or a balanced separator consisting
of O(log |V (G)|) vertex neighborhoods in G, or an extended strip
decomposition of G (a decomposition almost as useful for recursion
for MWIS as a partition into connected components) with each par-
ticle of weight multiplicatively smaller than the weight of G. This is
a strengthening of a result of Majewski, Masafik, Novotna, Okrasa,
Pilipczuk, Rzazewski, and Sokotowski [Transactions on Computa-
tion Theory 2024] which provided such an extended strip decom-
position only after the deletion of O(log |V (G)|) vertex neighbor-
hoods. To reach the final result, we employ an involved branching
strategy that relies on the structural lemma presented above.
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1 INTRODUCTION

The MAaxiMUM WEIGHT INDEPENDENT SET (MWIS) problem takes
as input a graph G with vertex weights w : V(G) — Zx( and asks
for aset X C V(G) of maximum possible weight that is independent
(sometimes also called stable): no two vertices of X are adjacent.
This classic combinatorial problem plays an important role as a
central hard problem in several areas of computational complexity:
it appears as one of the NP-hard problems on the celebrated list of
Karp [28], it is the archetypical W[1]-hard problem in parameter-
ized complexity [14], and is one of the classic problems difficult to
approximate [27].

In the light of the hardness of MWIS within multiple paradigms,
one may ask what assumptions on the input make the problem
easier. More formally, we can ask for which graph classes G, the as-
sumption that the input graph comes from G allows for faster
algorithms for MWIS. For example, if G is the class of planar
graphs, MWIS remains NP-hard, but the classic layering approach of
Baker [6] yields a polynomial-time approximation scheme and sim-
ple kernelization arguments give a parameterized algorithm [13].

This motivates a more methodological study of the complexity
of MWIS depending on the graph class G the input comes from.
As the space of all graph classes is too wide and admits strange
artificial examples, the arguably simplest regularization assumption
is to restrict the attention to hereditary graph classes, i.e., graph
classes closed under vertex deletion. Every hereditary graph class
G can be characterized by minimal forbidden induced subgraphs: the
(possibly infinite) set # of minimal (under vertex deletion) graphs
that are not members of G. Then, we have G € G if and only if
no member of ¥ is an induced subgraph of G; when we want to
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emphasize the set ¥, we refer to the graph class G as the class of
F -free graphs and shorten it to H-free graphs if ¥ = {H}.

If a problem turns out to be easier in a class of ¥ -free graphs, in
many cases it is a single forbidden induced subgraph H € ¥ that is
responsible for tractability, and the problem at hand is already easier
in H-free graphs. A prime example of this phenomenon are the
classes of line graphs and claw-free graphs. Recall that a line graph
of a graph H is a graph G with V(G) = E(H) where two vertices
of G are adjacent if their corresponding edges in H are incident to
the same vertex. Observe that MWIS in a line graph G of a graph
H becomes the MAxIMUM WEIGHT MATCHING problem in the pre-
image graph H; a problem solvable in polynomial time by deep
combinatorial techniques [15]. It turns out that the tractability of
MWIS in line graphs can be explained solely by one of the minimal
forbidden induced subgraphs for the class of line graphs, namely
the claw Sy1,1. (For integers a,b,c > 1, by S, ;, . we denote the tree
with exactly three leaves, within distance a, b, and c from the unique
vertex of degree 3.) As proven in 1980, MWIS is polynomial-time
solvable already in the class of Sy,1,1-free graphs [39, 48], called also
the class of claw-free graphs (for recent fast algorithms, see [16, 46]).

Together with the vastness of the space of all hereditary graph
classes, this motivates us to focus on ¥ -free graphs for finite sets
¥, in particular on the case |#| = 1. This turned out to be partic-
ularly interesting for MWIS. As observed by Alekseev [3], for the
“overwhelming majority” of finite sets 7, MWIS remains NP-hard
on F-free graphs. More precisely Alekseev observed that MWIS
remains NP-hard on 7 -free graphs unless, for at least one graph
in ¥, every connected component is a path or an S, j, . for some
integers a,b,c. Since the original NP-hardness proof of Alekseev [3]
in 1982, no new finite sets ¥ have been discovered such that MWIS
remains NP-hard on 7 -free graphs. We conjecture that this is be-
cause all of the remaining cases are actually solvable in polynomial
time.

Conjecture 1.1. For every H that is a forest whose every component
has at most three leaves, MAXIMUM WEIGHT INDEPENDENT SET is
polynomial-time solvable when restricted to H-free graphs.

To the best of our knowledge, the first place Conjecture 1.1
appeared explicitly is [31]. Let us remark that Conjecture 1.1, if
true, would yield a dichotomy for the computational complexity
of MWIS on F -free graphs for all finite sets 7. Consider any #
such that NP-hardness of MWIS on 7 -free graphs does not follow
from Alekseev’s proof. It follows that the class of ¥ -free graphs
is contained in the class of H-free graphs for some graph H for
which polynomial time solvability of MWIS is conjectured in Con-
jecture 1.1.

From the positive side, as already mentioned, we know that
MWIS is polynomial-time solvable in S; 1,1-free graphs since 1980.
Around the same time, it was shown that the class of P4-free graphs
(by P; we denote the path on ¢ vertices) coincides with the class of
cographs and has very strong structural properties (in modern terms,
has bounded cliquewidth) thus allowing efficient algorithms for
MWIS and many other combinatorial problems. Over the years, we
have witnessed a few scattered results for some special cases of H-
free graphs, such as Sy, 1,2-free graphs [4, 32], 2K3-free graphs [17],
tKy-free graphs [18], £P3-free graphs [31], £51,1,1-free graphs [9],
tKy + P5-free or tKy + S1,1,2-free graphs [45], as well as progress
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limited to various subclasses (see [8, 8, 22, 26, 29, 33-37, 40-44] for
older and newer results of this kind).

The research in the area got significant momentum in the last
decade. The progress can be partitioned into two main threads. The
first one focuses on the framework of potential maximal cliques,
introduced by Bouchitté and Todinca [7], and focuses on provid-
ing polynomial-time algorithms for P;-free graphs for small values
of ¢t. A landmark result here is due to Lokshtanov, Vatshelle, and
Villanger [30] who were the first to show the usability of the frame-
work in the context of P;-free graphs by providing a polynomial-
time algorithm for MWIS in Ps-free graphs. This has been later
extended to Pg-free graphs [23] and related graph classes [2]. A
notable property of this framework is that in most cases it not only
provides algorithms for MWIS, but for a wide range of problems
asking for large induced subgraph of small treewidth, for example
FEEDBACK VERTEX SET.

The second thread attempts at treating P;-free or S;;;-free
graphs in full generality, but relaxing the requirements on either the
running time (by providing subexponential or quasi-polynomial-
time algorithms) or the accuracy (by providing approximation al-
gorithms, such as approximation schemes). Here, the starting point
is the theorem of Gyarfas [24, 25] (see also [5]).

Theorem 1.2. Every vertex-weighted graph G contains an induced
path Q such that every connected component of G — N[V (Q)] has
weight at most half of the weight of G.

As an induced path in a P;-free graph has less than ¢ vertices,
a Py-free graph admits a balanced separator (in the sense of The-
orem 1.2) consisting of neighborhood of at most ¢ — 1 vertices. In
other words, P;-free graphs admit a balanced separator dominated
by t — 1 vertices. Chudnovsky, Pilipczuk, Pilipczuk, and Thomassé
[10] observed that this easily gives a quasi-polynomial-time ap-
proximation scheme (QPTAS) for MWIS in P;-free graphs, and they
designed an elaborate argument involving the celebrated three-in-
a-tree theorem of Chudnovsky and Seymour [12] to extend the
result to the S; ;;-free case and H-free case where H is a forest
of trees with at most three leaves each. Abrishami, Chudnovsky,
Dibek, and Rzazewski[1] used also the three-in-a-tree theorem
to obtain a polynomial-time algorithm for MWIS for S; ; ;-free
graphs of bounded degree. Gartland and Lokshtanov showed how
to use the theorem of Gyarfas to design exact quasi-polynomial-
time algorithm for MWIS in P;-free graphs [19], for every fixed
t. This algorithm was later simplified by Pilipczuk, Pilipczuk, and
Rzgzewski [47] and the union of the authors of these two papers
showed that the approach works for a much wider class of prob-
lems and a slightly wider graph class [21]. Last year, Majewski,
Masafik, Novotna, Okrasa, Pilipczuk, Rzazewski, and Sokotowski
[38] gave a cleaner argument for an existence of a QPTAS for MWIS
in St ¢ ¢-free graphs.

This work provides the pinnacle of the second thread by showing
that MWIS is quasi-polynomial-time solvable in all cases treated
by Conjecture 1.1.

Theorem 1.3. For every H that is a forest whose every component
has at most three leaves, there is an algorithm for MAxiMmum WEIGHT
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Here Op denotes constants depending on |H| being repressed.
Theorem 1.3 provides strong evidence in favor of Conjecture 1.1,
as it refutes the existence of an NP-hardness proof for MWIS for
H-free graphs as in Conjecture 1.1, unless all problems in NP can
be solved in quasi-polynomial time.

2 OUR TECHNIQUES

As discussed in [19] (in particular Theorem 2), to show Theorem 1.3
it suffices to focus on the case H = S;;; for a fixed integer t > 1.
Together with a simple self-reducibility argument, it is enough to
prove the following.

Theorem 2.1. For every integert > 1, the maximum possible weight
of an independent set in a given n-vertex S ; ¢ -free graph can be found
in nOt (108" (m) time,

Here O; denotes constants depending on ¢ being repressed.

2.1 The Key Structural Result

While Theorem 1.2 provides a balanced separator consisting of
a few neighborhoods in a P;-free graph, it does not seem to be
directly usable for S; ; ;-free graphs. The example of G being a line
graph of a clique (which is Sy,1,1-free) shows that we cannot hope
for merely a balanced separator consisting of a few neighborhoods
in Sy,1,1-free graphs.

However, if G is a line graph, MWIS is solvable in polynomial-
time by a very different reason than Theorem 1.2: because it cor-
responds to a matching problem in the preimage graph. Luckily,
there is a known formalism capturing decompositions of a graph
that are “like a line graph”: extended strip decompositions.

For a graph G, a strip decomposition consists of a graph H (called
the host) and a function 7 that assigns to every edge e € E(H) a
subset n(e) € V(G) such that {n(e) | e € E(H)} is a partition of
V(G) and a subset n(e,x) C n(e) for every endpoint x € e such
that the following holds: for every v1,v2 € V(G) with v1 € n(e1),
vz € n(ez) and e # ey we have vju; € E(G) if and only if
there is a common endpoint x € e; N ez with v; € (e, x) and
v2 € n(ez, x). Note that if G is the line graph of H, then G has a
strip decomposition with host H and n(e,x) = n(e,y) = {e} for
every xy = e € E(H) = V(G). The crucial observation is that if one
provides a strip decomposition (H, ) of a graph G together with,
for every xy € E(H), the maximum possible weight of an indepen-
dent set in G[n(xy)], G[n(xy) \ n(xy, x)], G[n(xy) \ n(xy,y)], and
Gn(xy) \ (n(xy, x) Un(xy,y)] (these graphs are henceforth called
particles), then we can reduce computing the maximum weight of
an independent set in G to the maximum weight matching problem
in the graph H with some gadgets attached [10].

An extended strip decomposition also allows vertex sets n(x) for
x € V(H) and triangle sets (xyz) for triangles xyz in H; a precise
definition can be found in preliminaries, but is irrelevant for this
overview. Importantly, the notion of a particle generalizes and the
property that one can solve MWIS in G knowing the answers to
MWIS in the particles is still true. Extended strip decompositions
come from the celebrated solution to the three-in-a-tree problem
by Chudnovsky and Seymour. The task is to determine if a graph
contains an induced subgraph which is a tree connecting three

685

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

given vertices. The following theorem says that The three-in-a-tree
problem can be solved in polynomial time:

Theorem 2.2 ([12, Section 6], simplified version). Let G be an n-
vertex graph and Z be a subset of vertices with |Z| > 2. There is an
algorithm that runs in time O(n°) and returns one of the following:

o an induced subtree of G containing at least three elements of
Z,

e an extended strip decomposition (H,n) of G where for every
z € Z there exists a distinct degree-1 vertex x; € V(H) with
the unique incident edge e, € E(H) and n(ez, xz) = {z}.

In a sense, an extended strip decomposition as in Theorem 2.2
is a certificate that no three vertices of Z can be connected by an
induced tree in G.

[10] combined Theorem 1.2 with Theorem 2.2 in a convoluted
way to show a QPTAS for MWIS in S; ; ;-free graphs; Thereom 2.2
is used here to construct an induced Sz in the argumentation.
[38] provided a simpler argument for the existence of a QPTAS:
they derived from Theorem 2.2 the following structural result.

Theorem 2.3 ([38, Theorem 2] in a weighted setting). For every
fixed integer t, there exists a polynomial-time algorithm that, given
an n-vertex graph G with nonnegative vertex weights, either:

o outputs an induced copy of St 1+ in G, or

o outputs a set P consisting of at most 111og n+ 6 induced paths
in G, each of length at most t + 1, and a rigid extended strip
decomposition of G — N[|U P] with every particle of weight
at most half of the total weight of V(G).

(Here, rigid means that the extended strip decomposition does
not have some unnecessary empty sets; in a rigid decomposition the
size of H is bounded linearly in the size of G. The formal statement
of Theorem 2.3 in [38] is only for uniform weights in G, but as
observed in the conclusions of [38], the proof works for arbitrary
vertex weights.)

[38] showed that Theorem 2.3 easily gives a QPTAS for MWIS
in S; ; +-free graphs, along the same lines as how [10] showed that
Theorem 1.2 easily gives a QPTAS for MWIS in P;-free graphs.

However, it seems that the outcome of Theorem 2.3 is not very
useful if one aims for an exact algorithm faster than a subexponen-
tial one. Our main graph-theoretic contribution is a strengthening
of Theorem 2.3 to the following.

Theorem 2.4. For every fixed integer t, there exists an integer c; and
a polynomial-time algorithm that, given an n-vertex graph G and a
weight function w : V(G) — [0,+00), returns one of the following
outcomes:
(1) an induced copy of St 1+ in G;
(2) asubset X € V(G) of size at most c; - log(n) such that every
component of G — N[X| has weight at most 0.99w(G);
(3) a rigid extended strip decomposition of G where no particle is
of weight larger than 0.5w(G).

That is, we either provide an extended strip decomposition of
the whole graph (not only after deleting a neighborhood of a small
number of vertices as in Theorem 2.3) or a small number of vertices
such that deletion of their neighborhood breaks the graph into
multiplicatively smaller (in terms of weight) components.
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The proof of Theorem 2.4 is provided in the full version of pa-
per [20, Section 3]. Let us briefly sketch it. We start by applying
Theorem 2.3 to G; we are either already done or we have a set
Z = Upep V(P) of size O(logn) and an extended strip decom-
position (H, 1) of G — N[Z] with small particles. Our goal is now
to add the vertices of N[Z] one by one back to (H,n), possibly
exhibiting one of the other outcomes of Theorem 2.4 along the way.
That is, we want to prove the following lemma:

Lemma 2.5. For every fixed integert there exists an integer c; and a
polynomial-time algorithm that, given an n-vertex graph G, a weight
functionw : V(G) — [0,+00), a real T > w(G), a vertexv € V(G),
and a rigid extended strip decomposition (H,n) of G — v with every
particle of weight at most 0.5, returns one of the following:
(1) an induced copy of St,1+ in G;
(2) asetZ C V(G) of size at most ¢; such that every connected
component of G — N[Z] has weight at most 0.997;
(3) a rigid extended strip decomposition of G where no particle is
of weight larger than 0.57.

A simple yet important observation for Lemma 2.5 is that for
x € V(H) of degree at least two, the set UyeNn (x) n(xy, x) can
be dominated by at most two vertices, as the sets n(xy, x) fory €
Np (x) are complete to each other. Consequently, if (A, B) is a
separation in H of small order, then the part of G that is placed
by n in H[A] and the part of G that is placed by n in H[B] can be
separated by deleting at most 2|A N B| vertex neighborhoods in G.
Hence, if there is a separation (A, B) in H of constant order where
both sides of this separation have substantial weight (at least 0.017),
we can provide the second outcome of Lemma 2.5.

As N|v] is just one neighborhood, the same observation holds if,
instead of looking at (H, 17), we look at the inherited extended strip
decomposition (H’, ") of G- N[v]. Here, (H’, ') is obtained from
(H, n) by first deleting vertices of N(v) from sets 5(-) and then
performing a cleanup operation that trims unnecessary empty sets
and ensures that for every xy € E(H’) there is a path in G[n’ (xy)]
between 1’ (xy, x) and n’ (xy, y). Hence, we can take all separations
(A, B) in H’ of order bounded by a large constant (depending on t)
and orient them from the side that contains less than 0.017 weight
to the side containing almost all the weight of G. This orientation
defines a tangle in H'. By classic results from the theory of graph
minors, this tangle implies the existence of a large wall W in H’
which is always mostly on the “large weight” side of any separation
(A, B) of constant order. The cleaning operation ensures that the
wall W is also present in (H, 7).

An important observation now is that, because (H’, n’) is cleaned
as described below, any family of vertex-disjoint paths in H’ projects
down to a family of induced, vertex-disjoint, and anti-adjacent paths
in G of roughly the same length (or longer): for a path P in H, just
follow paths from n(xy, x) to n(xy, y) in G[n(xy)] for consecutive
edges xy on P. Furthermore, a wall W is an excellent and robust
source of long vertex-disjoint paths.

This allows us to prove that if the neighbors of v are well-
connected to the wall W in (H, n) — either they are spread around
the wall itself, or one can connect them to W via three vertex-
disjoint paths in H — then G contains an induced S; ¢ ;. Otherwise,
we show that there is a separation (A, B) in H with the neighbors
of v essentially all contained in the sets of H[A], while W lies on
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Figure 1: Extending a subdivided claw in G4 to an S; ; ; using
the large wall W in B.

the B-side of the separation. (Here, a large number of technical
details are hidden in the phrase “essentially contained”.) We con-
struct a graph G4 being the subgraph of G induced by the vertices
contained in the 5 sets of H[A], augmented with a set Z of artificial
vertices attached to U eng (x)na 1(xy, x) for x € A N B; vertices
of Z signify possible “escape paths” to the wall W. These “escape
paths” allow us to show that any induced tree in G4 that contains
at least three vertices of Z lifts to an induced S; ;¢ in G, see Figure 1.
Hence, the algorithm of Theorem 2.2 applied to G4 and Z can be
used to rebuild H[A] to accommodate v there as well, or to expose
an induced Sy 4 ;. This finishes the sketch of the proof of Lemma 2.5
and of Theorem 2.4.

We would like to highlight a significant difference between pre-
vious works [1, 10, 38] and our use of the three-in-a-tree theorem
to exhibit an Sy ;¢ in a graph or obtain an extended strip decom-
position. All aforementioned previous works essentially picked
three anti-adjacent paths Py, P2, P3 of length t each, with end-
points say x; and y; for i = 1,2,3, removed their neighborhood
except for the neighbors of y;s, and called three-in-a-tree for the set
Z = {x1, x3, x3}; note that any induced tree in the obtained graph
that contains Z contains also an induced S; ¢ ;. This method inher-
ently produced extended strip decompositions not for the entire
graph, but only for after removal of a number of neighborhoods.
Furthermore, it used the assumption of being S; ;;-free only in
a very local sense: there is no S with paths extendable to the
given three vertices of Z. In this work, in contrast, we apply the
three-in-a-tree theorem to a potentially much bigger set Z, and use
a subdivided wall in the host graph of the extended strip decompo-
sition to extend any induced tree found to an induced S; ;¢ In this
way, we used the assumption of being S; ; ;-free in a more global
way than just merely asking for three particular leaves.

2.2 Branching

We now proceed with a sketch of our recursive branching algo-
rithm. On a very high level, it is based on techniques used in the
quasi-polynomial time algorithm for independent set on Py-free
graphs found in [19], though multiple new ideas are required to
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make the reasoning work in the setting of S; ; ;-free graphs, making
both the algorithm and its running time analysis quite a bit more
technical. We will soon sketch the algorithm found in [19] and
describe how to extend it to S ;-free graphs, but first we must
address a major barrier. The fact that Py-free graphs have balanced
separators dominated by k vertices, as discussed after Theorem 1.2,
is a crucial fact used in the algorithm of [19]. But, as mentioned pre-
viously, St ¢ -free graphs have no such property (take for instance
the line graph of a clique). This is where Theorem 2.4 comes to the
rescue.

When applying Theorem 2.4 to G (the input graph of the current
call of the algorithm), since we assume that G is S; s ;-free, we are
guaranteed that outcome (1) will not occur. If outcome (3) occurs
then we get an extended strip decomposition (H, ) and, as previ-
ously mentioned, we can reduce finding a maximum independent
set of G to finding a maximum independent set in each particle
of (H, n). That is great news, as each particle has at most half of the
weight of G, and we can easily employ a divide-and-conquer strat-
egy by recursively calling the algorithm on each particle of (H, ).
So, since outcome (1) never happens and outcome (3) gives us an
easy algorithm, we can always assume that outcome (2) happens,
that is, that Theorem 2.4 gives us a balanced separator of G that
is dominated by O(log n) vertices, and now we can try to extend
the techniques found in [19] to work for S; ; ;-free graphs. There-
fore, for the rest of this subsection we will focus on sketching an
algorithm for independent set on an S; ; -free graph G such that
all induced subgraphs of G have a balanced separator dominated
by some constant number of vertices (the stronger assumption of a
constant number of vertices versus log n vertices does not change
the algorithm very much and simplifies the discussion).

Before sketching the algorithm let us give a few short definitions
around balanced separators for an S; s s-free graph G. For n’ > 0,
we say that a set S C V(G) is a n’-balanced separator for G if no
component of G — S has more than n’ vertices. If A C V(G) and
no component of G — S contains over n’ vertices of A, we say that
S is a n’-balanced separator for (G, A). The outcome (2) of Theo-
rem 2.4 gives us a 0.99|A|-balanced separator for (G, A) dominated
by O(log n) vertices (again here for simplicity we will assume that
these balanced separators are in fact dominated by a constant num-
ber of vertices). However, by picking a constant number of balanced
separators as provided by Theorem 2.4 and taking their union, we
can obtain c|Al|-balanced separators for (G, A) dominated by a con-
stant number of vertices for any fixed ¢ € (0, 1), so we will assume
we have access to such strengthened balanced separators.

Summary of the Quasi-Polynomial Time Algorithm for MWIS on
Pr-free Graphs. The starting point for our algorithm is the algo-
rithm for MWIS on Py -free graphs by Gartland and Lokshtanov [19],
who in turn build on an algorithm of Bacsé, Lokshtanov, Marx,
Pilipczuk, Tuza, and van Leeuwen [5]. We therefore give a brief
summary of these algorithms.

We first consider the simple nO(kvnlogn) time algorithm of [5]
for MWIS on Pj-free graphs. We begin with an n-vertex Pi-free
graph G and branch on all vertices of degree at least y/n: we either
exclude such a vertex from the solution (and thus remove it from the
graph), or we include it (and then remove its whole neighborhood
from the graph). After this we may assume that the graph in our
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current instance (we will still refer to this graph as G although
some vertices of the original graph G have been removed) now has
maximum degree at most y/n. We solve this instance by finding
an n/2-balanced separator, S, for G that is dominated by at most k
vertices. Since G has maximum degree v/ and S is dominated by
at most k vertices, S can have size at most ky/n. We then branch
on all k+/n vertices of S simultaneously, which then breaks up the
graph into small connected components and we recurse on each
component. A simple analysis shows that this runs in nO(kvnlogn)
time.

Now, let us try to improve it to an algorithm that runs in time
nO(kn'logn) e first state a modified form of a lemma that ap-
pears in [19].

Lemma 2.6. Let G be an n-vertex Py.-free graph and ¥ a multi-set
of subsets of V(G) such that for every S € ¥ no component of G — S
has more than n/2 vertices. Assume that no vertex belongs to more
than ¢ sets of ¥ counting multiplicity. Then provided |¥| > 3ck, no
component of G contains more than 3n/4 vertices.

SKETCH OF PROOF. Let S € ¥ and assume for a contradiction
that the largest component of G — S, call it C, has more than 3n/4
vertices. Select vertices a, b uniformly at random from C. As |C| >
3n/4 the probability that a and b belong to different components of
G — Sis at least 1/3. If we let X be the random variable that is 1 if
a and b are in different components of G — S and 0 otherwise, then
E[Xs] = % By the linearity of expectation, we have E[ e 7 Xs]
> % - 3ck > ck. It follows that there exists vertices a,b € S such
that for at least ck sets, §’, in ¥ (counting multiplicity) a and b are
in different components of G — §’. Let ¥ be the subset of  that
contains these sets S’. It follows that for any induced path P with a
and b as its endpoints, if S’ € ¥ then V(P) N S’ # 0. Since ¥ has
at least ck sets and no vertex of P belongs to more than c sets in
¥, P must have at least k vertices, contradicting the assumption
that G is P-free. O

For the nO(kn'/*logn) algorithm, we again begin by branching
on vertices of high degree, but this time we set the threshold to

2/3

vertices with degree at least n“/°. After this we may assume the

graph in our current instance, call it G, has maximum degree n?/3.
We then find a balanced separator, S 1 for G! that is dominated by
k vertices, hence S! has at most kn?/3 vertices. We then branch on
all vertices with at least n!/3 neighbors in S1. Now we assume the
graph considered in our current instance, call it G2, has maximum
degree n?/3 and a balanced separator S! such that no vertex of
G? has more than n!/3 neighbors in S!. We then find a balanced
separator, S2, for G2 that is dominated by k vertices, hence 52
has at most kn®/3 vertices and S! N S has size at most kn!/3. We
then branch on all vertices with at least n!/3 vertices in $? and we
branch on all vertices that belong to S! N S2, so S' and $? “become
disjoint”. We repeat this 3k times until we are in an instance where
we have a graph G3* and 3k pairwise disjoint balanced separators
s!,...5% By Lemma 2.6, G** has no component with over 3n/4
vertices and we then recurse on each component. A somewhat
more involved, but still fairly simple analysis shows that this runs
in nOkn'"*logn) time,
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In the no(knl/3 logn) time algorithm, we branched on vertices
that: had over n?/3 neighbors, or had n!'/? neighbors in any of
the balanced separators we picked up, or belonged to two of the
balanced separators we picked up. In order to modify this algorithm
to run in quasi-polynomial time all that must be done is change the
branching threshold. In particular, the algorithm collects balanced
separators (each dominated by at most k vertices) and will branch
on any vertex that has over n/2! neighbors that belong to i or
more of the collected balanced separators (the algorithm no longer
branches on vertices that only have high degree). Any vertex that
belongs to log n of the collected balanced separators will then be
branched on, so no vertex will ever belong to more than log n of the
collected balanced separators. So, by Lemma 2.6, after collecting
3k log n of these balanced separators, the graph will not have any
large component. A runtime analysis of this algorithm shows that
it runs in quasi-polynomial time. Note that in all three algorithms
discussed here (the nOkn'2logn) e nO(kn'logn) time and
quasi-polynomial-time algorithm) it is crucial for efficient runtime
that the balanced separators we use are dominated by few vertices
(they were dominated by k vertices here, but being dominated by
polylog(n) vertices would still be sufficent).

Back to Sy -free Graphs. Recall that we wish to get a quasi-
polynomial time algorithm for MWIS on S; ; ;-free graphs for the
case where every induced subgraph of the input graph G has a set S
of at most ¢; vertices such that N [S] is a n/2-balanced separator. Up
to the bound on the set dominating the separator, this is precisely
the case when we keep getting outcome (2) whenever we apply
Theorem 2.4.

We want to mimic the algorithm for Py-free graphs. This algo-
rithm used that the input graph is Pr-free in precisely two places.
The first is to keep getting constant size sets S such that N[S] is an
n/2-balanced separator. This is easily adapted to our new setting
because we keep getting such sets whenever we apply Theorem 2.4.

The second place where Pj-freeness is used is in Lemma 2.6,
which states that a Pr-free graph cannot have a set of 3klogn
balanced separators such that no vertex of G appears in at most
O(log n) of them. If we could strengthen the statement of Lemma 2.6
to St t,¢+-free graphs we would be done! Unfortunately, such a stren-
gthening is false, indeed a path is a counterexample (each vertex
close to the middle of the path is a balanced separator).

Nevertheless, a subtle weakening of Lemma 2.6 does turn out to
be true. In particular, in S; ; ;-free graphs it is not possible to pack
“very strong" balanced separators that are dominated by “very few”
vertices. We will call such balanced separators c-boosted balanced
separators. A somewhat simplified definition of a c-boosted balanced
separator is a set N[S] dominated by a set S of at most ¢ vertices,
such that no component of G — N[S] has more than |V (G)|/16c?
vertices. It turns out that on Sy ; ;-free graphs Lemma 2.6 is true if
“balanced separators” are replaced by “s-boosted balanced separa-
tors” for appropriately chosen integer s.

Lemma 2.7. Let G be an n-vertex Sy -free graph, s an integer,
and F a multi-set of subsets of V(G) such that every set in ¥ is an
s-boosted balanced separator. Assume no vertex belongs to more than
c sets of . Then, provided |F| > 80sct, no component of G contains
over 3n/4 vertices.
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We skip sketching the proof of Lemma 2.7 here (see the full
version [20, Section 4.2.2] for a formal statement and proof of this
lemma), but we will remark that one of the key ingredients of the
proof is a probabilistic argument akin to the proof of Lemma 2.6.

At this point we are one “disconnect” away from being able to
utilize the strategy for Py free graphs: Theorem 2.4 keeps giving us
balanced separators, while Lemma 2.7 tells us that we can’t pack
boosted balanced separators. Indeed, if we assumed our S; ; ;-free
graphs always had, say, c;-boosted balanced separators (where c;
is some constant that depends on t), then by the exact same rea-
soning as before, the strategy of iteratively collecting a c;-boosted
balanced separator and then branching (on all vertices that have
over n/2' neighbors that belong to i or more of the collected c;-
boosted balanced separators) would work. Any vertex that belongs
to log n of the collected c;-boosted balanced separators will then
be branched on, so no vertex will ever belong to over log n of the
collected balanced separators. So, by Lemma 2.7, after collecting
80c;t log n of these c;-boosted balanced separators, the graph will
not have any large component. A running time analysis identical to
the one for Py-free graphs [19] would then show that this algorithm
runs in quasi-polynomial time.

Is it possible to bridge the “disconnect” from the other side and
keep getting boosted balanced separators? This looks difficult, but
we are able to bridge the gap algorithmically, by branching in such
a way that a “normal” balanced separator becomes boosted. We
can then add this boosted balanced separator to our collection of
previously created boosted balanced separators, and then apply
Lemma 2.7 to this collection to conclude that the graph gets suffi-
ciently disconnected before the collection grows too large. We now
sketch how to “boost” a separator.

Boosting Separators. We begin with a balanced separator N [S],
dominated by a set S of at most ¢; vertices, such that no component
of G — N[S] has more than n/2 vertices. (For technical reasons in
the actual algorithm N[S] is not a balanced separator, but rather
a set given by Theorem 2.3 so that G — N[S] has an extended
strip decomposition with no large particles; from the viewpoint
of efficient independent set algorithms this is just as useful.) We
wish to turn N[S] into a c¢;-boosted balanced separator. In order to
do this, we consider all vertices of N[S] that have a neighbor in a
large component of G — N[S]; we call this set relevant(G, S) (see
Figure 2. This is a slight simplification of the actual definition of
relevant(G, S) that we use in the algorithm). By “large component”
we mean any component of G — N[S] that has more than n/lécf
vertices (note that if there are no such components, then N[S]
is a c;-boosted balanced separator). In order to branch in a way
that turns N[S] into a ¢;-boosted balanced separator, we use the
following lemma, similar to Lemmas 2.6 and 2.7.

Lemma 2.8. Let G be an n-vertex Sy 1 +-free graph, let N[S] be a
balanced separator for G dominated by a set S of at most c; vertices,
and let ¥ be a multi-set of |relevant(G, S) |/1000? -balanced separators
for (G, relevant(G, S)). Assume no vertex belongs to over ¢ sets of
F.If|F| > 10ct, either S is a c;-boosted balanced separator or no
component of G contains more than 3n/4 vertices.

The proof of Lemma 2.8 follows a similar “expectation argument”
that Lemma 2.6 uses, although it is a bit more involved. We do not
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N[S]

relevant(G, S)

Large components of G - S

Figure 2: Illustration of how the set relevant(G, S) is obtained
from S.

sketch a proof of Lemma 2.8 here (this lemma statement is more or
less a combination of Observation 4.6 and Lemma 4.9 given in the
full version [20]).

This lemma suggests the following branching strategy. We first
pick up an n/2-balanced separator N[S] dominated by a set S of
c; vertices, and we will try use Lemma 2.8 to turn N[S] into a
ct-boosted balanced separator or break up G into small compo-
nents. We use the same reasoning as before: iteratively collect
|relevant(G, S)I/lOOc?—balanced separators for (G, relevant(G, S))
and branch (on all vertices that have over n/2? neighbors that be-
long to i or more of the collected balanced separators). Any vertex
that belongs to log n of the collected balanced separators will then
be branched on, so no vertex will ever belong to over log(n) of
the collected balanced separators. So, by Lemma 2.8 after collect-
ing 10t logn of these |relevant(G, S)|/lOOc?-balanced separators
for (G, relevant(G, S)), either the graph will have no large compo-
nent (and then we make large progress by calling the algorithm
recursively on the components) or S is now a c;-boosted balanced
separator, which we then add to our collection of c;-boosted bal-
anced separators. By Lemma 2.7 this collection cannot grow larger
than 80c;tlog n before our graph no longer has large connected
components.

The running time analysis of this algorithm essentially looks like
this: if we could assume that boosting a single balanced separator
to become a boosted balanced separator took constant time, then
the analysis would be more or less identical to the analysis of
the algorithm for MWIS on Pi-free graphs. However, now each
individual “boosting” step is instead a branching algorithm whose
analysis again is very similar to the analysis of the algorithm for
MWIS on Pi-free graphs, so each boosting step corresponds to a
recursive algorithm with quasi-polynomially many leaves. Since
quasi-polynomial functions compose the entire running time is still
quasi-polynomial. Finally we need to take into account what would
happen if outcome (3) of Theorem 2.4 does occur, but this can fairly
easily be shown to only be good for the progress of the algorithm.
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3 CONCLUSION

Let us point out some possible directions for future research. First,
on the structural side, we believe that Theorem 2.4 could be im-
proved so that in the second outcome the balanced separator is
dominated by a constant (depending on t) number of vertices. The
only reason why the current statement has the logarithmic bound
is that in Theorem 2.3 the number of deleted neighborhoods is loga-
rithmic. [38] conjectured that Theorem 2.3 can actually be improved
so that the number of deleted neighborhoods is constant. Proving
this conjecture would immediately yield an improved version of our
Theorem 2.4. However, such a stronger version, while being more
elegant, would not give any essentially new algorithmic result: the
running time of our algorithms would still be quasi-polynomial
(though a bit faster).

On the algorithmic side, an obvious natural problem is to provide
a polynomial-time algorithm for MWIS in S; ; ;-free graphs, for all
t. While we believe that extended strip decompositions are the
right tool to use towards this goal, it seems that decompositions
like the ones obtained by Theorem 2.4 would not lead to such a
statement. This is because recursing into a polynomial number
of multiplicatively smaller particles inherently leads to a quasi-
polynomial running time. We believe the ultimate goal would be to
build an extended strip decomposition where each particle induces
a graph from some “simple” class. In particular, so that we can
solve MWIS for each particle in polynomial time without using
recursion. Such decompositions for the simplest case, i.e., claw-free
graphs, are provided by a deep structural result of Chudnovsky and
Seymour [11].

An important milestone on the way towards obtaining a polyno-
mial-time algorithm for MWIS in S; ; ;-free graphs is to solve the
case of P;-free graphs, which is already a very ambitious goal.
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