Downloaded 06/20/25 to 169.231.186.167 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Odd Cycle Transversal on Ps-free Graphs in Quasi-polynomial Time*

Akanksha Agrawalf Paloma T. Limat Daniel Lokshtanov® Saket Saurabh?

Roohani Sharmal

Abstract

An independent set in a graph G is a set of pairwise non-adjacent vertices. A graph G is bipartite
if its vertex set can be partitioned into two independent sets. In the OpD CYCLE TRANSVERSAL
problem, the input is a graph G along with a weight function w associating a rational weight with
each vertex, and the task is to find a smallest weight vertex subset S in GG such that G— S is bipartite;
the weight of S, w(S) =, g w(v). We show that Obp CycLE TRANSVERSAL admits an algorithm

with running time nOUeg”n) o graphs excluding Ps (a path on five vertices) as an induced subgraph.

The problem was previously known to be polynomial time solvable on P;-free graphs and NP-hard
on Pgs-free graphs [Dabrowski, Feghali, Johnson, Paesani, Paulusma and Rzazewski, Algorithmica
2020]. Bonamy, Dabrowski, Feghali, Johnson and Paulusma [Algorithmica 2019] posed the existence
of a polynomial time algorithm on Ps-free graphs as an open problem, this was later re-stated by
Rzazewski [Dagstuhl Reports, 9(6): 2019] and by Chudnovsky, King, Pilipczuk, Rzazewski, and

Spirkl [SIDMA 2021], who gave an algorithm with running time n®Y™. While our nP0°s" ") time
algorithm falls short of completely resolving the complexity status of Obp CYCLE TRANSVERSAL on
Ps-free graphs it shows that the problem is not NP-hard unless every problem in NP is solvable in
quasi-polynomial time.

1 Introduction

In a vertex deletion problem, the input is a graph G along with a weight function w : V(G) — Q, and
the task is to find a smallest weight vertex subset S such that removing S from G results in a graph that
belongs to a certain target class of graphs; the weight of S being defined as w(S) =}, g w(v). By varying
the target graph class we can obtain many classic graph problems, such as deletion to edge-less graphs
(VERTEX COVER), deletion to acyclic graphs (FEEDBACK VERTEX SET), deletion to bipartite graphs
(Opp CYCLE TRANSVERSAL), or deletion to planar graphs (PLANARIZATION). With the exception of
the class of all graphs, for every target class that contains an infinite set of graphs and is closed under
vertex deletion, the vertex deletion problem to that graph class is NP-hard [28]. For this reason a
substantial research effort has been dedicated to understanding the computational complexity of various
vertex deletion problems when the input graph G is required to belong to a restricted graph class as well
(see [5] and the companion website [11]).

In this paper, we consider the ObDD CYCLE TRANSVERSAL (OCT) problem, that is the vertex
deletion problem to bipartite graphs. A vertex set S is independent if no edge has both its endpoints
in S and a graph G is bipartite if its vertex set can be partitioned into two independent sets. A graph
is bipartite if and only if it has no odd cycles [12]. The OCT problem is very well studied, and has
been considered from the perspective of approximation [17, 13, 26], heuristics [19, 1], exact exponential
time [35, 37, 24] and parameterized algorithms [27, 29, 36, 30, 31, 22, 25, 21, 20, 23].

From the viewpoint of restricting the input to specific classes of graphs, OCT is known to be
polynomial time solvable on permutation graphs [4] and more generally on graphs of bounded mim-
width [6]. More recently, H-free graphs, that is, graph classes defined by one forbidden induced subgraph,
received particular attention. Chiarelli et al. [7] showed that OCT is NP-complete on graphs of small

" *Funding acknowledgements: Agrawal is supported by SERB Startup Research Grant, no. SRG/2022/000962; Lima is
supported by the Independent Research Fund Denmark grant agreement number 2098-00012B; Lokshtanov is supported
by NSF grant CCF-2008838; Saurabh is supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme grant agreement number 819416, and by a Swarnajayanti Fellowship (No.
DST/SJF/MSA01/2017-18).

TIndian Institute of Technology Madras, Chennai, India, akanksha@cse.iitm.ac.in.

IT University of Copenhagen, Copenhagen, Denmark, palt@itu.dk.

$University of Califormia, Santa Barbara, USA daniello@ucsb.edu.

YInstitute of Mathematical Sciences, Chennai, India and University of Bergen, Norway, saket@imsc.res.in.

IMax Planck Institute for Informatics, Saarland Informatics Campus, Saarbriicken, Germany, rsharma@mpi-inf.mpg.de.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

5276

Downloaded 06/20/25 to 169.231.186.167 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

fixed girth and line graphs. This implies that if H contains a cycle or a claw, then OCT is NP-hard
on H-free graphs. Hence, we can restrict ourselves to the case in which H is a linear forest (i.e., each
connected component of H is a path). For Ps-free graphs a polynomial time algorithm follows directly
from the algorithm of Brandstiadt and Kratsch [4] for permutation graphs. Bonamy et al. [3] posed the
question of the existence of a polynomial time algorithm for OCT on Py-free graphs, for all k& > 5.
Subsequently, Okrasa and Rzazewski [33] showed that OCT is NP-hard on P;3-free graphs, and shortly
thereafter Dabrowski et al. [10] proved that the problem remains NP-hard even on (P, + Ps, Pg)-free
graphs. On the other hand, OCT is known to be polynomial time solvable on sP»-free graphs [7] and
on (sP; + Ps3)-free graphs [10], for every constant s > 1. Thus, prior to our work, the only connected
graph H such that the complexity status of OCT on H-free graphs remained unknown was the Ps. For
this reason, resolving the complexity status of OCT on Ps-free graphs was posed as an open problem
by Rzazewski [9], and by Chudnovsky et al. [8], who gave an algorithm for OCT on Ps-free graphs with
running time n©(V™_ In this paper, we come quite close to resolving the computational complexity of
OCT on Ps-free graphs by showing that the problem is unlikely to be NP-hard. Specifically, we prove
the following theorem.

THEOREM 1.1. There is an n°(1°8" ™) _time algorithm for OCT on Ps-free graphs, where n is the number
of vertices in the input graph.

We now discuss the main ideas of the algorithm of Theorem 1.1. The algorithm follows the framework
introduced by Gartland and Lokshtanov [15] for the INDEPENDENT SET problem on Pj-free graphs, or
rather the substantially simplified version presented by Pilipczuk et al. [34]. We now briefly review the
algorithms in [34] for INDEPENDENT SET. In the INDEPENDENT SET problem the input is a graph G
along with a weight function w : V(G) — Q, and the task is to find a largest possible weight independent
set S. We assume that all the vertex weights are positive, as otherwise, we can remove the respective
vertices. Clearly, if the graph G is disconnected we can consider each of the connected components
independently. If the graph is connected, we select a vertex v and branch on v. In particular, we find the
largest independent set in G not containing v by running the algorithm recursively on G —v (this is called
the fail branch), and the largest independent set in G containing v by running the algorithm recursively
on G — NJv] (this is called the success branch). Here N[v] is the closed neighborhood of v, namely the
set of all vertices with an edge to v and v itself. The algorithm terminates when the input graph has
at most one vertex, in which case the vertex set V(G) of the graph is a maximum weight independent
set in G. The key point of the algorithm in [34] is that, in Pg-free graphs it is always possible to find a
vertex v to branch on such that every root-leaf path in the recursion tree of the algorithm has at most
O(log® n) success branches for some fixed constant ¢. From here a simple counting argument bounds the
size of the recursion tree by n®1°8"™) Since we spend polynomial time in each node of the recursion
tree, we get a quasi-polynomial running time bound for the algorithm.

We would like to use these ideas for OCT on Ps free graphs. To make the problem formulation
closer to INDEPENDENT SET we will work with the MAXIMUM BIPARTITE SUBGRAPH (MAX-BIP-SUB)
problem instead. That is, we wish to find a largest possible set S such that G[S] is bipartite. (Notice that
OCT is equivalent to MAX-BIP-SUB from the viewpoint of classical complexity.) There is immediately
a difficulty that pops up: how can we branch on a vertex? In INDEPENDENT SET, when v is included
in S we can immediately discard all of N(v), making a lot of progress towards disconnecting G. In
MAX-BIP-SUB, however, when v is in S, many of its neighbors might also be in S, and we do not know
which ones.

This is where our main combinatorial insight comes in: we prove that given a P5 free graph G and
a vertex v in G, we can compute in polynomial time a polynomial number of sets C1,...,C;. Each of
these sets contains v and induces a connected bipartite graph in G. Furthermore, out of all vertex sets S
containing v such that G[S] is bipartite, there exists a maximum weight such set S such that the (vertex
set of the) connected component of G[S] that contains v is contained in Cj, for some ¢ < ¢ (and C; C 5).
The proof of this lemma heavily relies on the structure of Ps-free graphs, including the classical result
that every connected Ps-free graph has a dominating Ps or dominating clique [2], as well as a somewhat
surprising application of the concept of modules [14] (a module in a graph G is a set M of vertices such
that every vertex outside of M either is adjacent to all of M or to none of M.)

Armed with the main structural lemma we can now carry out our initial plan: we select a vertex v
to branch on using the exact same strategy as Pilipczuk et al. [34]. When we branch on a vertex v, we
first need to find the maximum weight set S not containing v such that G[S] is bipartite. We do this
by running the algorithm recursively on G — v, just as for INDEPENDENT SET. We also need to find

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

5277

Downloaded 06/20/25 to 169.231.186.167 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

the maximum weight set S containing v such that G[S] is bipartite. By the key lemma, we may assume
that the vertex set of the connected component of G[S] that contains v is contained in C; and C; C S,
for some 7 < t. For each choice of i < ¢, we try adding C; to S and call the algorithm recursively on
G — N[C,] (here N[C] is the closed neighborhood of C;, namely all vertices in C; plus all vertices with a
neighbor in C;). We consider each one of these recursive calls a success branch.

Since every success branch works with an induced subgraph of G — N|[v], the analysis of Pilipczuk
et al. [34] showing that every root to leaf path of the recursion tree has at most O(log”n) success
branches works out in our setting as well. To translate this to an nOog”n) running time bound for the
algorithm we need to verify that the counting argument showing that the size of the recursion tree is
upper bounded by nOUos®n) still works out even when every node of the recursion tree can have n?®)
success branches instead of just one. This was already done by Gartland et al [16] in their algorithm for
FEEDBACK VERTEX SET on graphs with no short induced cycles, however since the argument is short
and instructive we repeat (a variant of) it below.

It is not too difficult to convince oneself that every root-leaf path of the recursion tree is uniquely
identified by the following.

1. Aset D C{1,...,n} of size at most O(log” n): this is the set of depths at which the path goes to
a success branch or graphs with substantially reduced number of vertices.

2. A |D|-tuple iy, 1z, ...,4p| of integers between 1 and n®W). For each j < |D| the integer i; points
to which success branch to follow the j’th time the root-leaf path goes along a success branch, if
the graph before the success branch is connected.

3. Every time the root-leaf path of the recursion tree visits a disconnected graph G the corresponding
ij, for j < |D|, points to the direction where the number of vertices in the instance is reduced at
least by half.

There are at most n®1°8” ™) choices for D and at most n®(°8” ™) choices for i1,12,-..,1|p|, leading to the

nOlog”n) upper bound on the size of the recursion tree, and therefore also on the running time.

Outline of the Paper. In Section 2 we introduce the necessary notation and review some useful facts
about Ps-free graphs. In Section 3 we prove Theorem 1.1 assuming the main combinatorial lemma, while
in Section 3.1 we prove the lemma. Finally, we conclude with some open problems in Section 4.

2 Preliminaries

We denote the set of natural numbers and the set of rational numbers by N = {0,1,2,---} and Q,
respectively, and let Q> = {x € Q | z > 0}. For ¢ € N, [¢] denotes the set {1,---,¢c}. Unless stated
otherwise, the base of log will be e. For a set X, we denote by 2% the collection of all subsets of X, by
()f) the collection of all i-sized subsets of X, by (fl) all subsets of X of size at most i, and by (j1 <)f<j2)
the collection of all i-sized subsets of X where j; < i < jo.

Consider a graph G. For v € V(G), Ng(v) denotes the set of neighbours of v in G, and
N¢glv] = Ng(v) U {v}. For X C V(G), Ng(X) = (UzexNg(z)) \ X and Ng[X] = Ng(X) U X.
For a subgraph H of G, we sometimes write Ng(H) (resp. Ng[H]) as a shorthand for Ng(V(H))
(resp. Ng[V(H)]). For any X, Y C V(G), Eg(X,Y) denotes the set of edges of G with one endpoint in
X and the other in Y. Whenever the graph G is clear from the context, we drop the subscript G from
the above notations. For any X C V(G), G[X] denotes the graph induced by X, i.e., V(G[X]) = X and
E(G[X]) ={(u,v) € E(G) | u,v € X}. Moreover, by G — X we denote the graph G[V(G) \ X]. For any
v € V(G), we use G — v as a shorthand for G — {v}. For two graphs G; and G4 by G1 U G2 we denote
the graph with vertex set V(G1) UV (G2) and edge set E(G1) U E(G2).

For any ¢ € N, P; is a path on i vertices and a P;-free graph is a graph that has no induced subgraph
isomorphic to P;. A dominating set in a graph G is a set of vertices D C V(G) such that N[D] = V(G).

PROPOSITION 2.1. (THEOREM 8, [2]) Every connected Ps-free graph G has a dominating set D such
that G[D] is either a Ps or a clique.

3 Algorithm For MAX-BIP-SUB on Ps-free Graphs
The MAXIMUM BIPARTITE SUBGRAPH problem is formally defined below.

MAXIMUM BIPARTITE SUBGRAPH (MAX-BIP-SUB)
Input: An undirected graph G on n vertices and a weight function w: V(G) — Q.

Output: Find S C V(G), such that G[S] is bipartite and w(S) =), g w(v) is maximized.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

5278

Downloaded 06/20/25 to 169.231.186.167 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

A set S C V(G) such that G[S] is bipartite, is called a solution of G. If w(S) is maximum then
we call it an optimal solution of (G,w). We will assume that the weight of each vertex is positive, as
otherwise, we can remove the vertices with non-positive weight without changing the optimal solution.
Recall our main result is Theorem 1.1, restated below.

THEOREM 3.1. There is an n°(°8" ™) _time algorithm for OCT on Ps-free graphs, where n is the number
of vertices in the input graph.

As stated earlier, the key ingredient in the proof of Theorem 1.1 is a structural lemma (to be stated
in Lemma 3.1). Roughly speaking, for a given graph G and a vertex v, this result gives a way to construct
a polynomial sized family (in polynomial time) of vertex subsets inducing bipartite subgraphs, so that
among the solutions containing a vertex v, there is a maximum weight solution S containing v such
that the connected component in G[S] containing v is contained in a set C' in the computed family, and
moreover, C' C S. Before moving further, we state our result on the construction of such a family, the
proof of which is relegated to Section 3.1.

LEMMA 3.1. Given a Ps-free graph G on n wvertices, a vertex v € V(G) and a weight function
w: V(G) = Qxo, there exists a polynomial-time algorithm that outputs a collection § # C C 2V(G)
of vertex subsets of G such that:
1. [¢] = O(®),
2. for each C € C, G[C] is bipartite, and
3. for every S C V(G) where v € S, G[S] is bipartite and C is a connected component of G[S] that
contains v, there exists C' € C such that the following holds for 8" = (S\ V(C))UC': a) G[S] is
bipartite, b) N(C')NS" =0, and ¢) w(S") > w(S).

Equipped with the above lemma, we will devise a branching step similar to the one presented in [34].
Roughly speaking, our algorithm for Theorem 1.1 branches on a carefully chosen vertex v as follows: i)
either v does not belong to any optimal solution, in which case we delete v from the graph and recurse; or
ii) v belongs to an optimal solution, and now using Lemma 3.1 we compute a polynomial-sized family of
bipartite vertex subsets of GG, such that the connected component of any optimal solution that contains v
can be replaced with one of the sets in this family to yield another optimal solution. In the later branch,
the algorithm branches and recursively solves the instances (G'— N[C],w),! for every C in the family
outputted by the lemma. We remark that the vertex v will be chosen so that it intersects a fraction of
paths for a fraction of pairs of vertices, and this will help us bound the size of the recursion tree.

In the remaining, we give the proof of Lemma 3.1 in Section 3.1 and give the proof of Theorem 1.1
using Lemma 3.1 in Section 3.2.

3.1 Proof of Lemma 3.1 In this section we prove our key lemma restated below.

LEMMA 3.1. Given a Ps-free graph G on n vertices, a vertex v € V(G) and a weight function
w: V(G) = Qxo, there exists a polynomial-time algorithm that outputs a collection § # C C 2V(G)
of vertex subsets of G such that:
1. || =0(n®),
2. for each C € C, G[C] is bipartite, and
3. for every S C V(G) where v € S, G[S] is bipartite and C is a connected component of G[S] that
contains v, there exists C' € C such that the following holds for S" = (S\ V(C))UC’: a) G|S] is
bipartite, b) N(C')NS" =0, and ¢) w(S") > w(S).

At the heart of our proof for the above lemma, lies a property that we prove: for any S C V(G)
where G[5] is a bipartite graph and C' is the connected component of G[S] containing v, there is a small
set D C V(G), so that (after doing some appropriate cleaning operation of the graph), N [5] = N[C].
Once we have the above property, we will be able to find an appropriate replacement for C' to obtain C”
with the desired property, by exploiting the known algorithm for computing independent sets on Ps-free
graphs. We will now intuitively explain the steps of our algorithm, and we give a concrete pseudo code
for it in Algorithm 1.

TFor simplicity, with a slight abuse of notation here—instead of correctly writing w|g_nNic), we will simply write w. This

convention will be followed in this as well as the next section.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

5279

Downloaded 06/20/25 to 169.231.186.167 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Figure 1: Illustration of various sets and connected components used in the algorithm. The striped ovals
denote removal of the corresponding vertices by the algorithm.

In the following, we denote the input graph by G’ (instead of G). Consider a set S C V(G’) where
v € S and G'[S] is bipartite, and let C' be the connected component of G’[S] that contains v. Our goal
is to compute a family C of vertex subsets, that either contains C itself or a replacement for C' which is
as good as C' in terms of weight. Since we would like to do our computations in polynomial time and we
require the family to contain polynomially many sets, we cannot store all such potential Cs, and thus in
certain cases we would like to work with a replacement for C' from the family C, which does the job as
good as C' itself.

To cover the trivial case when C' has exactly one vertex, we add {v} to the set C in Line 1. Hereafter,
we will worry about the case when C has at least 2 vertices. As C' is a connected, Ps-free and bipartite
graph, from Proposition 2.1, there must exist a dominating induced Ps or a dominating P, for C; let
one such P53 or P» be D. Note that V(C) C N[D]. The loop at Line 2 of Algorithm 1 will precisely be
iterating over such potential Ds. We will next explain our operations for this fixed D, and since we will
delete some vertices from our graph, we initialize G = G’ at Line 3. We remark that, at all point of time
we will implicitly maintain that S C V(G), and thus maintain that C is the connected component of
G[S], containing v.

We let C, W Cr be the bipartition of C and Dy W Dg be the bipartition of D such that Dy C Cp,
and Dg C Cg (see Figure 1).2 Recall that C is the connected component of G[S] containing v. Notice
that any vertex u € N(Dp) N N(Dg) must lie outside of S.3 Thus, Line 5-7 removes such vertices from
G.

A set of vertices A C V(G) is a module in G, if for every pair u,v € A, N(u) \ A= N(v) \ A. Note
that checking whether a set A C V(G) is a module can be done in polynomial time.

We let X be the neighbors of C outside N (D), i.e., X = N(C)\ N(D). Also, we let Y be the vertices
outside of C and its neighborhood, i.e., Y = V(G) \ N[C]. We will establish the following statements:

(In Claim 3.1) There are no edges between a vertex in X and a vertex in Y, i.e., E(X,Y) = (.

(In Claim 3.2) Each connected component of G[Y] is a module in G.

(In Claim 3.3, stated roughly here) the graph G[X U V(C)] has a dominating set D such that: D C D
and |[D\ D| < 3.

Recall our assumption that V(C) C N[D]. Using the first property that we establish, we can obtain
that for any connected component Z of G — N[D], either V(Z) C X or V(Z) C Y. Now using the
second property stated above, we can obtain that the vertices in a non-module connected component of
G — N[D] must belong to X, and thus it cannot contain a vertex from S. This leads us to Line 8-10
of our algorithm, where we remove vertices from all such non-module connected components. We let

2Note that both C and D are connected bipartite graphs. Thus, upto switching parts, there are exactly one valid
bipartitions of these graphs.

3Unless stated explicitly, inside the loop starting at Line 2, we will only be concerned with the graph G, and thus, we
omit the graph subscripts from the notations like N(Dp,).

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

5280

Downloaded 06/20/25 to 169.231.186.167 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Algorithm 1 Isolating a connected Component
Input: An undirected graph G’, a vertex v € V(G’) and a weight function w: V(G') = Qx¢
Output: C C 2V(G) gatisfying the properties of Lemma 3.1

1: Initialize C = {{v}}.

2: for all D C (4. <(ZG<g), where G'[D] is connected and bipartite do

3: Initialize G = G'.

4: Fix a bipartition D = Dy W Dg.

5. while there exists u € N(Dy) N N(Dg) do

6: Delete u from G. That is, G = G — u.

7. end while

8: while there exists a connected component Z of G — N[D] such that V(Z) is not a module in G
do

9: Delete Z from G. That is, G = G — V(Z).

10: end while
1: for all D' C (V9) do

12: Let C}, p, = N[DUD'].

13: while there exists u € C}, p, such that Ng/(u) \ Cp, p/ # 0 do

14: Delete w from G. That is, G = G — u.

15: end while

16: Let I1, be a maximum weight independent set obtained by running the algorithm of Proposi-
tion 3.1 on input (G[N(Dg)],w).

17: Let Ir be a maximum weight independent set obtained by running the algorithm of Proposi-
tion 3.1 on input (G[N(Dy)],w).

18: Let CD,D’ =1, UlIRg.

19: Update C =CU{Cp p'}.
20: end for
21: end for

R C X be the vertices remaining after the above stated deletion of vertices from X.

The third property will be used to completely identify the vertices of N[C], however, we may not
be able to precisely distinguish which vertices from N[C] belong to C. To this end, we will iterate over
the potential choices of D’ of size at most 3, so that D = D U D’ is a dominating set for G[R U V(C)],

at Line 11. We will argue that for such a correct D, we must have N[D] = N[C]. Thus, knowing D

precisely gives us N[C], and at Line 12 we denote the respective set by Cp, p, = N[D] = NI[C].

Recall that C is a connected biparitite induced subgraph of G[S], and any vertex from G[N[D]] =
G[N[C]] that has a neighbor from V(G’)\ N[D] cannot belong to S (and thus C). Thus, at Line 13-15
we do the cleaning operation by removing such vertices from G.

After this (in the graph resulting after the previous deletions), we obtain that N|[C] is a connected
component of G (not necessarily bipartite) and S C V(G). Now instead of finding V(C) inside N|[C]
exactly, we will find some C” which will be as good as V(C) as follows. We recall that D is a connected
bipartite dominating set for C' and thus (upto switching parts), D has a unique bipartition Dy W Dg,
which we have fixed at Line 4, and we have assumed that Dy C Cp and D C Cgi. Due to the cleaning
operation of G at Line 5-7, Dy, and Dg have no common neighbors, i.e., N[Dy]NN[Dg] = 0. Moreover,
as D is a dominating set for the bipartite connected graph C, it must be the case that C, C N[Dg] and
Cr C N[Dg]. Also, recall due to the operations at Line 13-15 we will be able to conclude that N[C]
is a connected component in G and S is an induced subgraph of G. Now instead of finding Cj, and
Cr precisely, we find maximum weight independent sets I, and I on graphs G[N[Dg]] and G[N[DL]],
respectively. Notice that due to our discussions above, I, and Ir must be disjoint. We then show that
Cp,p = I, W I serves as a replacement for V(C'), and thus we add Cp ps to C at Line 19.

We next state a known result regarding computation of independent sets on Ps-free graphs.

PROPOSITION 3.1. ([32], INDEPENDENT SET ON P5-FREE) Given a graph G and a weight function
v : V(G) — Qxo, there is a polynomial-time algorithm that outputs a set I C V(G) such that I is
an independent set in G and w(I) =", . w(u) is the mazimum.

We remark that for our algorithm we need the algorithm of Proposition 3.1 to return a maximum

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

5281

Downloaded 06/20/25 to 169.231.186.167 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Figure 2: Illustration of various elements in the proof of Claim 3.1.

weight independent set and not just the weight such a set. The arguments in [32] suffice to output such
a set. The following observation is immediate from the description of the algorithm and Proposition 3.1.

OBSERVATION 3.1. Algorithm 1 runs in polynomial time.
We prove the correctness of our algorithm in the next lemma.

LEMMA 3.2. Given a Ps-free graph G', vertex v € V(G') and a weight function w : V(G') — N,
Algorithm 1 outputs a family C such that:
o [C]= 0(®),
e for each C € C, G'[5] is bipartite, and
o for every S C V(G') where v € S, G'[S] is bipartite and C is the connected component of G'[S] that
contains v, there exists C' € C such that the graph G' induced by S" = (S\V(C))UC’ is bipartite,
N(CYNS' =0 and w(S") > w(S9).

Proof. To bound the size of the family C, observe that C is initialized in Line 1 and updated only in
Line 19. At Line 1 the size of C is 1 and Line 19 is executed at most O(n®) times: inside the for-loop at
Line 2 which contains the for-loop at Line 11.

It is also easy to see that the sets of C induce bipartite subgraphs of G. Indeed, at Line 1 there is a
singleton set and, at Line 19 the set C'p ps added to the family is the disjoint union of two independent
sets Iy, and Ir (Line 18), therefore G[Cp, p/] is bipartite.

We will now show the third property of the lemma. Let S C V(G’) such that v € S and G'[S]
is bipartite. Let C be the connected component of G’[S] that contains v. If C' has exactly one vertex
(namely, v), then C' € C from Line 1, and thus the property trivially holds. Therefore assume that
[V(C)| > 2. As C is a connected, Ps-free and bipartite graph on at least 2 vertices (therefore K3-free*),
from Proposition 2.1 there exists a dominating set D of C' which either induces a P53 or a P,. We consider
the execution of the for-loop at Line 2 for this D, and let Dy W Dy be the bipartition of D considered
at Line 4 of Algorithm 1. Furthermore, let C, W Cr be the bipartition of C' such that Dy C Cp and
DR - CR.

[Lines 5-7] Note that any vertex u € N(Dy) N N(Dg) is not in C. Furthermore, such a vertex u ¢ S
because u € N(C) (since D C V(C)). Thus, S is an induced bipartite subgraph of G.

[Lines 8-10] We will now show that any connected component of G — N[D] which is not a module, is
a subset of N(C'). Once this is proved, S also induces a bipartite subgraph in G — V(Z), where Z is a
connected component of G— N[D] that is not a module. Let X = N(C)\N(D) and let Y = V(G)\ N[C].

CrLam 3.1. E(X,Y) = 0.

1K is a clique on three vertices.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

5282

Downloaded 06/20/25 to 169.231.186.167 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Figure 3: Illustration of various elements in the proof of Claim 3.2.

Proof. Suppose for the sake of contradiction that there exists y € Y and x € X such that (y,z) € E(G)
(see Figure 2). Since x € X and X = N(C) \ N(D), there exists ¢ € C such that (z,c) € F(G). Also
¢ & D, as otherwise € N(D). Without loss of generality, say ¢ € Cp, \ D (the other case is symmetric).
Since D is a dominating set of C, there exists d € Dp, such that (¢,d) € E(G). Let d € Dy, and note
that (d,d') € E(G).

Consider the path P* = (y,z,¢,d,d"). We claim P* is an induced Ps. First observe that all the
vertices of P* except y,x are in C. Also E(Y,C) =) because Y N N(C') =) by the definition of Y. In
particular, (y,c), (y,d), (y,d") € E(G). Since x € X and X N N(D) = 0, (z,d), (z,d’) ¢ E(G). Finally,
since ¢,d’ € Cr, and O, is an independent set (because it is one of the parts of the bipartition of C'),

(¢,d") & E(G). a
From Claim 3.1, for any connected component Z of G — N[D], either V(Z) C X, or V(Z) C Y.
CLAM 3.2. Let Y’ be a connected component of G[Y]. Then V(Y') is a module in G.

Proof. First note that, from Claim 3.1, Ng(Y) € N(D)\ V(C). For the sake of contradiction, say V(Y”)
is not a module, and thus there exists y1,y2 € V(Y”’) and v € N(D)\ V(C) such that (y1,u) € E(G) and
(y1,92), (y2,u) € E(G) (see Figure 3). Since u € N(D)\ V(C) and D C V(C), there exists d € D such
that (u,d) € E(G). Without loss of generality let d € Dy,. Let d’ € Dg (and note that (d,d’) € E(G)).
Then (u,d") € E(G) as otherwise u € N(Dp) N N(Dg), which is a contradiction as such vertices do not
exist (from Line 5-7). Then P* = (y1,y2,u,d,d’) is an induced Ps in G, which is a contradiction. O

From Claim 3.2 if a connected component Z of G — N[D] is not a module, then V(Z) C X. Since
X C N(C), S is also an induced subgraph of G after the execution of Line 8-10.

[Line 11] Let R = N(C)\ N(D), i.e., R are the remaining vertices of N(C) that are not in N(D) (note
that R are precisely the vertices of X from the previous discussion that are not deleted at Line 8-10).
We now show that there exists a small dominating set of GIRU V(C)].

CLAIM 3.3. GIRUV(C)] has a dominating set D of size at most 6 such that D C D and |D\ D| < 3.

Proof. Since G[RUV (C')] is a connected and Ps-free graph, from Proposition 2.1, there exists a dominating
set of GIRUV (C')] which is either a clique or an induced Ps. If D itself is a dominating set of GIRUV (C)],
then the claim trivially follows. Otherwise, we consider a dominating clique or a dominating induced
P;, D' of GIRU V(C)] of minimum possible size. If D’ induces a P3 then, D = D’ U D satisfies the
requirement of the claim. Now we consider the case when D’ is a clique. Using D’ we will construct
a dominating set of G[R U V(C)] with at most 6 vertices, containing the vertices from D. Intuitively
speaking, apart from D (whose size is at most 3) we will add vertices from D’ N V(C) and at most one
more vertex. We remark that as D’ is a clique and C is a bipartite graph, |[D' N V(C)| < 2.

Let Ryq,--- , R, be the connected components of G[R]. Since D’ is a clique, D’ intersects at most
one R;, i.e., there exists an ¢ € [p], such that D' NV (R;) = 0, for all j € [p] \ {¢}. Therefore the

5283

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 06/20/25 to 169.231.186.167 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

vertices of Ujcpp i3V (R;) are dominated by the vertices of D' N V/(C). If D' N V(R;) = 0, then notice

that D’ C V(C), where |D'| < 2, and thus D = D’ U D satisfies the requirement of the claim. Now
suppose that D' N V(R;) # 0, and consider a vertex z € D' NV (R;). Recall that 2 € N(C) and R; is
a module in G. Thus, there exists a vertex v’ € V(C) N N(z), and moreover, we have V(R;) C N(v').
Note that D dominates each vertex in C, v’ dominates each vertex in R;, and D' NV (C) dominates each
vertex in Ujepp (i3 V (R;). Thus, D =DuU{v'}U(D'NV(C)) dominates each vertex in GIRUV(C)] and
| D’ NV (C)| < 2. This concludes the proof. 0

Now consider the execution of the for-loop at Line 11 when D = D' U D is a dominating set for
GIRUC(].
[Line 12] Our objective is to argue that the set C}, p, at Line 12 is equal to N[C]. To obtain the above,

it is enough to show that N[D] = N[C]. To this end, we first obtain that N[C] C N[D]. Recall that,
after removing the vertices from X at Line 8, N[C] = RUV(C)UN(D). As D = DUD’ is a dominating

set for G[R U V(C)], we have RU V(C) C N[D]. Moreover, as D C D, we have N(D) € N[D]. Thus
we can conclude that N[C] € N[D]. We will next argue that N[D] C N[C]. Recall that from Claim 3.1,
E(R,Y) = (. Thus, for any vertex v € D'\ V(C), N(v) C N|C]. In the above, when v € D'\ V(C),
without loss of generality we can suppose that v € R C N(C), as D=DUD is a dominating set for
GIRUV(C)]. Thus, for each v € D'\ V(C), N[v] C N[C]. Also, D C V(C), and thus, N[D] C N[C].
Hence it follows that N[D] C N[C]. Thus we obtain our claim that, N[D] = N|C].
[Lines 13-15] Since C, p,, = N[C1, if there exists u € C, p, such that u has a neighbour outside C7, 1,
then u € N(C) and hence u ¢ S. Thus S induces a bipartite subgraph even in the graph obtained by
deleting such vertices. Notice that after execution of these steps, N[C] is a connected component of G,
as removing a vertex from N(C) cannot disconnect the graph N[C].
[Lines 16-18] Recall that D is a dominating set of C' and C,WC is a bipartition of C', where C, C N(Dg)
and Cr C N(Dp). Also, from Line 5-7, N(Dr) N N(Dg) = 0. Let Iy, (resp. Ig) be the maximum
weight independent set in G[N[Dg]] (resp. G[N[DL]]) computed at these steps. Then w(I) > w(CL)
(resp. w(Ig) > w(CRr)) because Cy, (resp. Cr) is an independent set in G[N[Dg]] (resp. G[N[D_]]). Thus,
W(CD7DI) Z W(V(C))

Let 8" = (S\V(C))UCp,pr. Then w(S’) > w(S). Also G[9’] is bipartite because G[Cp, p] is
bipartite and E(S \ V(C),Cp p/) = 0 because N[C] is a connected component of (the reduced graph)
G. This concludes the proof. O

The proof of Lemma 3.1 follows from Observation 3.1 and Lemma 3.2.

3.2 Proof of Theorem 1.1 Before giving the formal description of the algorithm for Theorem 1.1,
we introduce some notations.

Notations. Consider a Ps-free graph G. For a pair of vertices x,y € V(QG), let Bgﬁ)y} be the set of
induced paths between x and y in G; we will call B{Gx, i buckets. We will skip the superscript G from the
above notation when the context is clear. We say that (z,y) is an active pair if By, 3 # 0. A vertex v
hits an active pair (z,y) € V(G) x V(G), if N[v] intersects at least |By, ,|/10 many paths from By, .y,
i.e., there is B C By, ,y of size at least |By, ,3|/10, such that for each P € B, V/(P) N N[v] # 0. We will
use the below result to choose a vertex for branching.

PROPOSITION 3.2. (LEMMA 2.1, [34]) Consider any fized t € N. Any connected P;-free graph G has a
vertex that hits at least 1/2t"" fraction of the total number of active pairs in G.

The Algorithm. The formal description of the algorithm of Theorem 1.1 is given in Algorithm 2.
It takes as input a graph G on n vertices and a vertex weight function w, and the goal is to output a
set S of vertices of G of maximum weight that induces a bipartite graph. Recall our assumption that
for each u € V(G), w(u) > 0, as otherwise, we can remove such vertices. If G is bipartite then the
algorithm outputs the entire vertex set in Line 2. Now consider the case when G is disconnected, and let
G1,Gs, - -+, Gy be the connected components of G such that |V(G1)| > |[V(G2)| > --- > |V(Gy)|, and
let i € [k] be the smallest index such that »,_,; [V(G;)| > 0.5[V(G)]. We remark that the operation
in Line 5 is only to simplify some of our later arguments, otherwise, we could even directly recurse on
each of the connected components. We create the graph H; by taking the union of the first ¢ connected
components of G, i.e., Hi = G1 UGy U - -G;. Also at this line we let Hy to be the graph obtained
by taking the union of the remaining components, i.e., Hy = G;11 U G412 U - Gg. Note that as G is

5284

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 06/20/25 to 169.231.186.167 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Algorithm 2 MAX-BIp-SuB

Input: An undirected graph G and a weight function w: V(G) — Qx¢
Output: S C V(G) such that G[S] is bipartite and w(S) is maximized

1: if G is bipartite then

2: return V(G).

3: end if

4: if G is disconnected then

5. Let G1, -+, G, be the connected components of G, where |V (G1)| > |[V(G2)| > ---|V(G,)|. Also,
let i € [r] be the smallest index such that }>, ., [V(G;)| = [V(G)[/2, and H1 = G1UG2 U -+ G;
and Hy = Gi4y1 UGj4a U --- G,

6: return MAaX-Bip-SuB(Hy,w) U MaAX-BipP-SUB(Ha, w).

7. end if

8: Let v be a vertex that hits the maximum number of active pairs in G.

9: Let C be the family obtained from Lemma 3.1 on input (G, v,w) (and remove duplicate copies of sets

in C, if any).
10: Let Sy = MAX-BIP-SUB(G — v, w), and for each C' € C, let S¢v = C' UMAX-B1p-SUB(G — N[C'], w).
11: return arg max{w(Sp), maxcrec w(Scr)}-

disconnected and |V(G1)| > |V(G2)| > -+ > |V(Gy)]|, it must be the case that V(H;),V(Hz) # 0. As
an optimal solution to G is simply a disjoint union of the optimal solutions for H; and Hs, the algorithm
returns an optimal solution at Line 6.
If none of the above holds, then G is connected and non-bipartite, and the algorithm picks a vertex
v that hits the most number of active pairs in G in Line 8. Note that, from Proposition 3.2, such a
vertex hits at least 1/ 10" of the active pairs. Moreover, such a vertex can be computed in polynomial
time, as the number of induced paths between any pair of vertices in a Ps-free graph is at most n*. The
algorithm now invokes Lemma 3.1 for the graph G, vertex v, and weight function w, and computes the
family C using the lemma, in Line 9. Now it then executes the following branching rule in Line 10.
(v is not in our optimal solution.) The algorithm recursively solves the instance (G — v, w). We call
this the failure branch.
(v is in our optimal solution.) For each C’ € C, (recursively) solve the instance (G — N[C'],w). We
call these the successful branches.
Finally in Line 11, it returns the best among the above solutions.
Note that, at each recursive call, the number of vertices in the graph strictly reduces, thus the
algorithm necessarily terminates. In the next lemma, we prove the correctness of our algorithm.

LEMMA 3.3. Algorithm 2 on input (G,w), returns a set S such that G[S] is bipartite and w(S) is
maximized.

Proof. We will prove the lemma by induction on the number of vertices in the graph. The base case
(Lines 1) is easy to verify: when the graph is bipartite, the optimal solution is the whole vertex set (recall
our positive weight assumption). Note that when |V (G)| < 2, then trivially our base case occurs.

For induction hypothesis we suppose that for each n’ < n = |V(G)|, where n’ > 2, for every graph
G’ on n/ vertices, the algorithm is correct. We will now prove the statement for a graph G on n vertices.
We follow the notations from the description of the algorithm, without defining them again.

If G is disconnected, then notice that an optimal solution can be obtained by taking the union of
optimal solutions for H; and Hs. Thus, the correctness for this case follows from the induction hypothesis
and Line 6.

Now we suppose that G is connected, and we let v be the vertex selected by Algorithm 2 at Line 8.
Let S be an optimal solution for (G,w). Note that by the induction hypothesis, at Line 11 we necessarily
return a set that induces a bipartite graph. If v ¢ S, then notice that S is also an optimal solution for
(G —v,w), and thus at Line 11, the algorithm must have returned an optimal solution.

Now we consider the case when v € S, and let C' be the connected component of G[S] containing v.
Note that N(C)NS = 0. Recall that C is the family obtained from Lemma 3.1 in Line 9. From the lemma
there exists C' € C, such that §' = (S'\ V(C)) U is also an optimal solution of G and N(C")N S’ = ().
Then, S\ C’ is also an optimal solution of G — N[C']. Therefore MaX-B1pP-SUB(G — N[C’],w) outputs
a solution of weight at least w(S’\ C”). Thus, MAX-BIpP-SUB(G — N[C'],w) U C" is a solution of weight

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

5285

Downloaded 06/20/25 to 169.231.186.167 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

at least w((S"\ C") UC") = w(S") > w(S) (from Lemma 3.1). Thus at Line 11 the algorithm returns an
optimal solution for (G, w). 0

We will now move towards the runtime analysis of Algorithm 2. To this end, we will bound the size
of its recursion tree. The crux of the analysis is that whenever we create a new branch, at all but at most
one of the branches we simplify the graph substantially, either in terms of reduction on the number of
vertices by a fraction, or by exploiting Proposition 3.2 as follows. Note the proposition guarantees the
existence of a vertex v such that N[v] intersects at least 1/10*" fraction of the total number of induced
paths of at least 1/10*" fraction of the total number of active pairs of G; roughly speaking, due to the
above, we reduce the total number of paths between pairs of vertices by a fraction.

To avoid confusion, we will refer to the vertices of the recursion tree as nodes. Note that the recursion
tree of the algorithm on input (G, w) is the tree 7 where the root node r is labelled by the input instance
(G, w). For each recursive call that the algorithm makes, in the recursion tree 7, there is a child mode
attached to the node from which the recursive call was made. This child node is labelled with the instance
at the corresponding recursive call. For each node of the recursion tree, except the root node, we call
it a failure node if it is created by a failure branch, and we call it a successful node if it is created by a
successful branch. For the two recursive calls made at Line 6, we call the instance created for the smaller
graph, Hs a light node, and the one created for H; a heavy node.

For simplifying our arguments, we remove those nodes from 7 that are (both) not successful and
where the base case is applicable (we absorb the runtime incurred for such a node at its parent node).
For a node ¢ € V(T), let G, be its input graph (along with the weight function w). Towards analysing
the size of T, we first show in Lemma 3.4 that, in any root-to-leaf path in 7T, there are at most O(log2 n)
successful nodes.

LEMMA 3.4. Any root-to-leaf path in the recursion tree T of Algorithm 2 has at most O(log2 n) successful
nodes.

Proof. For simplicity we assume that the input graph G is connected, i.e., the graph G,, = G, where r is
the root of 7 (as otherwise we can do the same analysis for each of the connected components). Recall
for z,y € V(QG), fo,y} is the set of all induced paths between x and y in G. As G is Ps-free, we have
|B{Gx7y}| < n*. We say that an active pair (x,%) is hit at a successful node, if for some successful node
q € V(T) with parent p € V(T), at the execution for p, we selected a vertex v at Line 8 such that: (z,y)
is an active pair in G, and v hits (z,y) in G,. For an ¢ € N, (z,y) is hit ¢ times on a fixed root-to-leaf

path of the recursion tree, if there exists ¢ successful nodes on this root-to-leaf path, at which (z,y) is
hit.

CrLaM 3.4. There is a (computable) constant «, such that any active pair (x,y) in G is hit at most
alog \ng y}| times on a fized root-to-leaf path T .

Proof. Each time an active pair is hit, the number of paths between them in the graphs associated with
the nodes at the subtrees decreases at least by a factor 1/10"", hence the claim follows. 0

For a graph H on at most n vertices, define the measure u(H) as follows, where « is the constant from

Claim 3.4.
\V(H)|
2

w(H) = Z alog|8g’y}| < (> -4dalogn

(@ye(Vyh)

Note that pu(G) is an upper bound on the total number of times active pairs in G can be hit
on a root-to-leaf path of 7. We will now argue that a root-to-leaf path in 7 can have at most
(40alog [V (G)])? successful nodes. Towards a contraction, suppose the above statement is not true,
and let ¢1,qs, -+ ,qr be the successful nodes at some root-to-leaf path in 7, ordered form root to leaf,
where k > (40alog |V (G)[)? + 1. For each i € [k], let p; be the parent of ¢; in 7 and v; be the vertex
considered at Line 8 during the execution of p; (along with a family computed at Line 9, to create the
node ¢;). To simplify our arguments, we let G_; = Gp = G and for each ¢ € {1,2,--- k}, G; = Gq,.

i
We will first show (by induction) that for each i € {0,1,2,--- ,k}, u(G;) < p(Gi—1) (1 — W\V(G)I) .
Clearly, for i = 0, the required inequality holds.

We now suppose for some 0 < j < k, the inequality is satisfied for all j/, where 0 < 5/ < j, and prove
the statement for i = j + 1.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

5286

Downloaded 06/20/25 to 169.231.186.167 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Since v; hits at least 1/10™ of the active pairs in G, (note G, must be connected), i.e., Ne,, [vi]
intersects at least 1/10 fraction of the paths in the buckets of at least 1/10 active pairs of G,,, and

Gi = Gy, does not contain N, [vi], u(G;) drops by at least = (Iv(gpi)l). That is,

1(Gs) < p(Gy,) — % <|V<§pi>)

< - :)

< w(Gyp,) alog V(G| from the upper bound on p(Gy,)
1

< - : >

< w(Gy,) (1 0a log|V(G)|> because |V (G)| > |V(G,,)|
1

@)> :by induction and the fact that p(Gp,) < p(Gi—1)
0

< 1
< u(Go) (40alog |V

Thus we have established the required inequality by induction. Now, as k > (40alog |V (G)[)? + 1
(recall Gy = G), then

) (40 log |V (G)])?
Gr—1) Sp(G) |1 = ———7~0
w(Gr-1) < p(G) (4Oa10g|V(G)|>
| —z
Su(G)m (1—z) <e @, for any x
_ G
‘V(G)|40a
. 2 .

< fa |VT\C/¥2|G)|}1(;§ V(G) :from the upper bound on u(G)
<0

Since u(Gr—1) < p(Gy), this contradicts that Gy is associated with a successful node. Thus the
number of successful nodes in any root-to-leaf path of 7 is at most (40alog |V (G)|)2. 0

The next simple observation bounds the number of light nodes on a root-to-leaf path in 7.

OBSERVATION 3.2. Any root-to-leaf path in the recursion tree T of Algorithm 2 has at most O(logn)
light nodes.

Proof. The proof follows from the fact that, each time such a call is made, the number of vertices in the
graphs drops by at least a factor of 1/2.]

Finally we now bound the running time of our algorithm.

LEMMA 3.5. The running time of Algorithm 2 is nOog® n)

Proof. We remark that the depth of T is bounded by n, as the number of vertices strictly decreases with
each recursive call. Thus, to bound the running time of algorithm it is enough to bound the number of
leaves in T by nOUos®n),

To analyse the number of leaves in T, let ¢ = O(n®) be the maximum cardinality of the family that
can be obtained from Lemma 3.1. We remark that for each such family that is computed, we can obtain
an ordering of the sets in a family by taking the natural lexicographical ordering (by fixing an arbitrary
ordering of vertices to begin with), and we will be working with such orderings. Recall that r is the root
node of 7. We will now define a labelling function ¢ : V/(T) \ {r} — {0,1,--- ,c} as follows. Consider a
non-leaf node p € V(7).

1. If G, is disconnected, p has exactly two children, say ¢; and ¢o, where |V(G,,)| > [V (Gy,)|. We
set £(g1) =0 and ¢(g2) = 1.

2. Now consider the case when G, is connected. At the run of the algorithm for node p we must have
executed Line 8 and 9, and we let v be the vertex selected and C be the family computed at these
lines for the execution of p, respectively. If G, = G, — v, then we set £(q) = 0. Otherwise, let
i€ {1,---,c} be the index such that G, = G, — Ng, [C;], where C; is the i'" set of C. Note that i
is unique due to duplicate removal operation (see Line 9). We set £(q) = 1.

5287

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 06/20/25 to 169.231.186.167 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Using the above labelling we now construct a string associated with each leaf of T of length exactly
n— 1. Let ¢ be a new symbol. Consider a leaf ¢ of 7, and let P = (r = w1, wa, -+ ,ws = q) be the path
from 7 to ¢ in 7. Note that s —1 < n — 1. We construct the string £7 of length exactly n — 1 as follows.
For i € {1,2,---,s — 1}, we set the i'" character of £9, £ = £(w;;1) (recall we do not have a label for
r). Now we set the remaining character of £9 as ¢, i.e., for each ¢ € {1,2,--- ,;n —1}\ {1,2,--- ,s — 1},
set £ = ¢. In the following claim we prove that strings associates with different leaves are distinct.

CLAIM 3.5. For distinct leaves q1,q2 of T, we have £9+ # £92.

Proof. Let p be the least common ancestor of ¢; and g2 in 7. Furthermore, let ¢] and ¢} be the vertices
immediately following p in the paths from p to ¢; and g2 in T, respectively. Let ¢ be the distance of ¢
from r (counting number of edges in the path) in 7. Note that ¢ is also the distance of ¢ from r. We
will argue that £ # £ by considering the following cases.
1. Consider the case when G, is a disconnected graph. Then, p has exactly two children, namely ¢}
and ¢4, and by construction we have £(¢}) # €(g5). Thus, " # &P,
2. When G, is connected, by construction, £(¢}) and ¢(g5) are distinct indices from {0, 1, - -, c}. Thus
we can conclude that £ # £72.

O

Due to the above result, to bound the number of leaves, it is enough to bound the number of such
strings that can be generated from a recursion tree of the algorithm. For a leaf ¢ € V(T), the number of
entries in &9 that can be different from 0 is bounded by O(log® n) (see Lemma 3.4 and Observation 3.2).

For each string of length exactly n — 1 that could be generated, there are at most n — 1 choices of
the position from which ¢ starts (and continues till the end). There are at most n — 1 choose O(log® n)
choices of positions on which entries from {1,2,---, ¢} can be filled, and Olog” n) ways of filling a fixed
set of such positions with non-zero entries. Recall that ¢ = O(n°®). Thus overall, the number of strings
that can be generated from the recursion tree is bounded by n - Olog®n) ¢ Olog” n)

Finally, apart from the recursive steps, our algorithm only spends polynomial amount of time, and
the number of nodes in the recursion tree can be bounded by nOlog®n) using the bound on the number
of string that we obtained, Claim 3.5, and the fact that the depth of the recursion tree is bounded by n.
This concludes the proof. O

Algorithm 2 together with Lemma 3.3 and 3.5 gives a proof of Theorem 1.1.

4 Conclusion

We gave an nOUog”n) time algorithm for OCT (or MAX-BIP-SUB) on Ps-free graphs. Several interesting
problems in this direction remain open.

1. Does OCT have a polynomial-time algorithm on Ps-free graphs?

2. The algorithms for INDEPENDENT SET on Pj-free graphs [34] also work for counting the number of
independent sets of a given size within the same time bound. Because of the “greedy choice” implicit
in the statement of Lemma 3.1 our algorithm does not work for counting the number of induced
bipartite subgraphs of a given size. Does a polynomial (or quasi-polynomial) time algorithm exist
for this problem in Ps-free graphs?

3. For every fixed positive integer ¢ we can determine whether G is ¢-colorable in polynomial time
on Ps-free graphs [18]. Therefore, in light of Theorem 1.1 it makes sense to ask whether for every
positive integer ¢ there exists a polynomial or quasi-polynomial time algorithm that takes as input
a graph G and outputs a maximum sized set S such that G[S] is ¢-colorable.

4. Our result completes the classification of all connected graphs H into ones such that OCT on H-free
graphs is quasi-polynomial time solvable or NP-complete. Such a classification for all graphs H
(connected or not) remains open. Even more generally one could hope for a complete classification
of the complexity of OCT on F-free graphs for every finite set F.

References

[1] T. AxiBA AND Y. IWATA, Branch-and-reduce exponential/fpt algorithms in practice: A case study of vertex
cover, Theor. Comput. Sci., 609 (2016), pp. 211-225.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

5288

Downloaded 06/20/25 to 169.231.186.167 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

[2] G. Bacsé aAND Z. Tuza, Dominating cliques in Ps-free graphs, Periodica Mathematica Hungarica, 21
(1990), pp. 303-308.

[3] M. Bonamy, K. K. DaBrRowsKI, C. FEGHALI, M. JOHNSON, AND D. PAULUSMA, Independent feedback
vertex set for ps-free graphs, Algorithmica, 81 (2019), pp. 1342-1369.

[4] A. BRANDSTADT AND D. KRATSCH, On the restriction of some NP-complete graph problems to permutation
graphs, in Fundamentals of Computation Theory, L. Budach, ed., Berlin, Heidelberg, 1985, Springer Berlin
Heidelberg, pp. 53-62.

[5] A. BRANDSTADT, J. P. SPINRAD, ET AL., Graph classes: a survey, no. 3, Siam, 1999.

[6] B.-M. Bui-XuaN, J. A. TELLE, AND M. VATSHELLE, Fast dynamic programming for locally checkable
vertex subset and vertex partitioning problems, Theoretical Computer Science, 511 (2013), pp. 66-76. Exact
and Parameterized Computation.

[7] N. CuiareLLi, T. R. HARTINGER, M. JOHNSON, M. MILANIC, AND D. PAULUSMA, Minimum connected
transversals in graphs: New hardness results and tractable cases using the price of connectivity, Theoretical
Computer Science, 705 (2018), pp. 75-83

[8] M. CuubnNovsky, J. KiNag, M. Piipczuk, P. RZAZEWSKI, AND S. SPIRKL, Finding large H-colorable
subgraphs in hereditary graph classes, SIAM J. Discret. Math., 35 (2021), pp. 2357-2386.

[9] M. CuuDNOVSKY, D. PAauLusMA, AND O. ScHAUDT, Graph Colouring: from Structure to Algorithms
(Dagstuhl Seminar 19271), Dagstuhl Reports, 9 (2019), pp. 125-142.

[10] K. K. DaBrowski, C. FEGHALI, M. JOHNSON, G. PAESANI, D. PauLusMA, AND P. RzAZEWSKI, On
cycle transversals and their connected variants in the absence of a small linear forest, Algorithmica, 82
(2020), pp. 2841-2866.

[11] H. DE RIDDER ET AL., Information system on graph classes and their inclusions), www.graphclasses.org,
(2016).

[12] R. DIESTEL, Graph Theory, 4th Edition, vol. 173 of Graduate texts in mathematics, Springer, 2012.

[13] S. Fiorini, N. HArDY, B. A. REED, AND A. VETTA, Approzimate min-max relations for odd cycles in
planar graphs, Math. Program., 110 (2007), pp. 71-91.

[14] T. GALLAIL, Transitiv orientierbare graphen, Acta Mathematica Hungarica, 18 (1967), pp. 25-66.

[15] P. GARTLAND AND D. LOKSHTANOV, Independent set on Py-free graphs in quasi-polynomial time, in 2020
IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), 2020, pp. 613-624.

[16] P. GAaRTLAND, D. LoksHTANOV, M. Pinipczuk, M. PILIPCZUK, AND P. RzAZEWSKI, Finding large
induced sparse subgraphs in Csi-free graphs in quasipolynomial time, in Proceedings of the 53rd Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2021, Association for Computing Machinery,
2021, p. 330-341.

[17] M. X. GOoEMANS AND D. P. WILLIAMSON, Primal-dual approximation algorithms for feedback problems in
planar graphs, Comb., 18 (1998), pp. 37-59.

[18] C. T. HoANG, M. KaMINSKI, V. V. LozIN, J. SAWADA, AND X. SHU, Deciding k-colorability of P 5-free
graphs in polynomial time, Algorithmica, 57 (2010), pp. 74-81

[19] F. HUFFNER, Algorithm engineering for optimal graph bipartization, J. Graph Algorithms Appl., 13 (2009),
pp. 77-98.

[20] Y. IwaTa, K. OKA, AND Y. YOSHIDA, Linear-time FPT algorithms via network flow, in Proceedings of
the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon,
USA, January 5-7, 2014, C. Chekuri, ed., STAM, 2014, pp. 1749-1761.

[21] H. JacoB, T. BerLLITTO, O. DEFRAIN, AND M. PILIPCZUK, Close relatives (of feedback vertex set),
revisited, in 16th International Symposium on Parameterized and Exact Computation, IPEC 2021,
September 8-10, 2021, Lisbon, Portugal, vol. 214 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, 2021, pp. 21:1-21:15.

[22] B. M. P. JANSEN AND S. KRATSCH, On polynomial kernels for structural parameterizations of odd
cycle transversal, in Parameterized and Exact Computation - 6th International Symposium, IPEC 2011,
Saarbriicken, Germany, September 6-8, 2011. Revised Selected Papers, D. Marx and P. Rossmanith, eds.,
vol. 7112 of Lecture Notes in Computer Science, Springer, 2011, pp. 132-144.

[23] K. KAwARABAYASHI AND B. A. REED, An (almost) linear time algorithm for odd cyles transversal, in
Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010,
Austin, Texas, USA, January 17-19, 2010, M. Charikar, ed., SIAM, 2010, pp. 365-378.

[24] S. KHOT AND V. RAMAN, Parameterized complexity of finding subgraphs with hereditary properties, Theor.
Comput. Sci., 289 (2002), pp. 997-1008.

[25] S. KoLay, P. Misra, M. S. RAMANUJAN, AND S. SAURABH, Fuaster graph bipartization, J. Comput. Syst.
Sci., 109 (2020), pp. 45-55.

[26] D. KrRAL, J. SERENI, AND L. STACHO, Min-max relations for odd cycles in planar graphs, STAM J. Discret.
Math., 26 (2012), pp. 884-895

[27] S. KrAaTscH AND M. WAHLSTROM, Compression via matroids: A randomized polynomial kernel for odd
cycle transversal, ACM Trans. Algorithms, 10 (2014), pp. 20:1-20:15.

[28] J. M. LEwis AND M. YANNAKAKIS, The node-deletion problem for hereditary properties is NP-complete,

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

5289

Downloaded 06/20/25 to 169.231.186.167 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Journal of Computer and System Sciences, 20 (1980), pp. 219-230.

[29] D. LoksHTANOV, N. S. NARAYANASWAMY, V. RAMAN, M. S. RAMANUJAN, AND S. SAURABH, Fuaster
parameterized algorithms using linear programming, ACM Trans. Algorithms, 11 (2014), pp. 15:1-15:31.

[30] D. LOKSHTANOV, S. SAURABH, AND S. SIKDAR, Simpler parameterized algorithm for OCT, in Combinatorial
Algorithms, 20th International Workshop, IWOCA 2009, Hradec nad Moravici, Czech Republic, June 28-
July 2, 2009, Revised Selected Papers, vol. 5874 of Lecture Notes in Computer Science, Springer, 2009,
pp- 380-384

[31] D. LOKSHTANOV, S. SAURABH, AND M. WAHLSTROM, Subexponential parameterized odd cycle transversal
on planar graphs, in IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2012, December 15-17, 2012, Hyderabad, India, vol. 18 of LIPIcs, Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2012, pp. 424-434.

[32] D. LOKSHTANOV, M. VATSHELLE, AND Y. VILLANGER, Independent set in P 5-free graphs in polynomial
time, in Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2014, Portland, Oregon, USA, January 5-7, 2014, C. Chekuri, ed., STAM, 2014, pp. 570-581.

[33] K. OKrAsA AND P. RzAZEWSKI, Subexponential algorithms for variants of the homomorphism problem in
string graphs, Journal of Computer and System Sciences, 109 (2020), pp. 126-144.

[34] M. Piiprczuk, M. PILIPCZUK, AND P. RZAZEWSKI, Quasi-polynomial-time algorithm for independent set
in Pi-free graphs via shrinking the space of induced paths, in 4th Symposium on Simplicity in Algorithms,
SOSA 2021, Virtual Conference, January 11-12, 2021, H. V. Le and V. King, eds., STAM, 2021, pp. 204—209.

[35] V. RAMAN, S. SAURABH, AND S. SIKDAR, Efficient exact algorithms through enumerating mazimal
independent sets and other techniques, Theory Comput. Syst., 41 (2007), pp. 563-587.

[36] B. A. REep, K. SmITH, AND A. VETTA, Finding odd cycle transversals, Oper. Res. Lett., 32 (2004),
pp- 299-301.

[37] Y. TAKAZAWA AND S. Mi1zUNO, On a reduction of the weighted induced bipartite subgraph problem to the
weighted independent set problem, CoRR, abs/1807.10277 (2018).

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

5290

	Introduction
	Preliminaries
	Algorithm For Max-Bip-Sub on P5-free Graphs
	Proof of Lemma 3.1
	Proof of Theorem 1.1

	Conclusion

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 15
 14
 15

 1

 HistoryList_V1
 qi2base

