

TITLE

Parenthood and gene expression of oxytocin receptors and vasopressin receptors in sensory cortices of the male California mouse (*Peromyscus californicus*)

AUTHORS

Kerianne M. Wilson^{a,1}, Tjien Dwyer^b, Alison V. Ramirez^b, April M. Arquilla^a Adele M. H. Seelke^b, Brian C. Trainor^{b*}, Wendy Saltzman^{a, c}

a. Department of Evolution, Ecology, and Organismal Biology, University of California
Riverside, Riverside, CA USA

b. Department of Psychology and Center for Neuroscience, University of California, Davis, CA,
USA

c. Neuroscience Graduate Program, University of California Riverside, Riverside, CA USA

1. Department of Biology, Pomona College, Claremont, CA, USA

* Corresponding Author: bctrainor@ucdavis.edu

ACKNOWLEDGEMENTS

We thank Melina Acosta, Catherine Nguyen, Manal Hussein, Brandon Dang, Natalie Dennis, Alisa Gadkari, Phyu Htet, Nishat Imteaz, Ilisa Patel, Kelsey Rosales-Torres, Nabeel Shaikh, and the UCR vivarium staff for assistance with colony maintenance. We are also grateful to 3 anonymous reviewers who provided constructive comments on the manuscript. This research was funded by NSF grants DBI-1907268 to K.M.W. and IOS-2118607 to W.S. and B.C.T.

1 ABSTRACT

2 The onset of parental care is associated with shifts in parents' perception of sensory stimuli from
3 infants, mediated by neural plasticity in sensory systems. In new mothers, changes in auditory
4 and olfactory processing have been linked to plasticity at several points along both sensory
5 pathways, including cortical changes that are modulated, at least in part, by oxytocin. In males of
6 biparental species, vasopressin, in addition to oxytocin, is important for modulating parental
7 behavior; however, little is known about sensory plasticity in new fathers. We examined
8 variation in the mRNA expression of oxytocin and vasopressin receptors (*Oxtr* and *Avpr1a*) in
9 sensory cortices of virgin males, paired nonbreeding males, and new fathers in the biparental
10 California mouse (*Peromyscus californicus*), and variation among cortices using the visual
11 cortex for comparison. Reproductive status did not affect gene expression for either receptor, but
12 compared to the visual cortex, expression of both receptors was higher in the left auditory cortex
13 and lower in the anterior olfactory nucleus. Additionally, expression for both receptors was
14 higher in the left auditory cortex compared to the right auditory cortex. While oxytocin and
15 vasopressin receptor expression may remain stable across reproductive stages in male California
16 mice, our findings provide support for auditory cortex lateralization, with the left auditory cortex
17 possibly displaying higher sensitivity to both oxytocin and vasopressin compared to the right.

18

19 KEY WORDS

20 Oxytocin, vasopressin, parenthood, olfactory plasticity, auditory plasticity, cortex, California
21 mouse

22

23

24 INTRODUCTION

25 Mammals that exhibit parental care experience dramatic shifts in their detection, perception, and
26 responses to infant-related stimuli during the transition to parenthood (Horrell et al. 2019;
27 Numan 2020; Wilson et al. 2023). The valence of infant stimuli, such as odors and vocalizations,
28 changes from being aversive to attractive around the time of parturition (Fleming et al. 1993;
29 Fleming et al. 2002; González-Mariscal and Poindron 2002; Lévy et al. 2004). For example,
30 CBA/CaJ and NMRI house mouse (*Mus musculus*) mothers are more sensitive to and better able
31 to discriminate pup vocalizations than virgin females (Galindo-Leon et al. 2009; Liu et al. 2006;
32 Rothschild et al. 2013; Shepard et al. 2013), and NMRI males with paternal experience prefer
33 tones that are a similar frequency to pup calls, compared to lower-frequency tones, while males
34 without paternal experience show no preference (Ehret 2005; Ehret and Koch 1989). Similarly,
35 in both Sprague-Dawley rats (*Rattus norvegicus*) and house mice, new mothers are more
36 attracted to pup-related odors than are virgin females (Kinsley and Bridges 1990; Lévy et al.
37 2004; Lévy and Keller 2009), and regardless of mating status, male prairie voles (*Microtus*
38 *ochrogaster*) that exhibit paternal behavior prefer pup odors to control odors (Yamoah et al.
39 2008). Some of this sensory plasticity is associated with changes in neuroendocrine signaling in
40 the brain (Fleming et al. 1989; Ziegler and Sosa 2016), specifically, along sensory pathways
41 (Miranda and Liu 2009; Wilson et al. 2023).

42 The neuropeptides oxytocin (OXT) and arginine vasopressin (AVP) facilitate the onset of
43 parental behavior, largely through actions in integrative forebrain regions (Bales and Saltzman
44 2016; Horrell et al. 2019; Numan 2020; Saltzman and Ziegler 2014). For example, soon after the
45 birth of their first litter, female rats have higher OXT receptor (*Oxtr*) mRNA expression in
46 integrative regions important for parental care (medial preoptic area [MPOA] and bed nucleus of

47 the stria terminalis [BNST]) compared to virgin females (Meddle et al. 2007), and injections of
48 either an AVP or OXT antagonist into the MPOA of female rats soon after parturition reduce
49 parental care (Pedersen et al. 1994). Similar findings have been reported for males in species in
50 which new fathers spontaneously care for offspring. In mandarin voles (*Microtus mandarinus*),
51 injecting an OXT antagonist into the MPOA reduces paternal behavior in new fathers (Yuan et
52 al. 2019). Additionally, in biparental California mice (*Peromyscus californicus*), fathers have
53 lower mRNA expression for *Oxtr* and AVP 1a receptor (*Avpr1a*) in the BNST compared to
54 virgin males (Perea-Rodriguez et al. 2015), and fathers display increased responsiveness to
55 newborns following intranasal administration of OXT (Guoynes and Marler 2022). Similarly, in
56 the facultatively biparental meadow (*Microtus pennsylvanicus*), AVP injection to the lateral
57 ventricles increases parenting behavior in virgin males (Parker and Lee 2001).

58 Oxytocin can also modulate sensory plasticity during the transition to motherhood
59 (Bester-Meredith et al. 2015; Numan 2020; Valtcheva and Froemke 2019; Wilson et al. 2023).
60 Oxytocin receptors have been identified in the auditory (AC), piriform (Pir), visual (VC) and
61 somatosensory cortices as well as in the anterior olfactory nucleus (AON) of mouse mothers,
62 virgin females and virgin males (Mitre et al. 2016) and in sensory association areas of virgin
63 male and female prairie voles (Duchemin et al. 2017). Primiparous female rats have higher *Oxtr*
64 mRNA expression in the olfactory bulbs compared to virgin females (Meddle et al. 2007), and
65 elevated OXT enhances maternal behavior in response to pup calls in mice (Banerjee and Lui
66 2013; Marlin et al. 2015; Yoshihara et al. 2018). Interestingly, Marlin et al. (2015) found that
67 OXT infusion into the left auditory cortex (L-AC), but not the right (R-AC), reduced latency to
68 retrieve pups in primiparous mouse mothers. AVP may also modulate sensory plasticity, since
69 AVP 1a receptors have been identified in cortical regions of rats of both sexes including the

70 AON and Pir (Wacker and Ludwig 2019). However, it remains unclear whether expression of
71 *Oxtr* and *Avpr1a* in sensory cortical regions changes during the transition to parenthood.

72 The distribution of *Oxtr* and *Avpr1a* in the sensory cortices of fathers relative to
73 reproductively inexperienced males is, to our knowledge, unknown. However, evidence suggests
74 that OXT and AVP can act in sensory pathways of males. Male C57BL/6 house mice have
75 receptors for OXT and AVP in their vomeronasal organs (VNOs), and i.p. injection of OXT
76 reduces VNO activity and pup-directed aggression (Nakahara et al. 2020). Additionally, i.p.
77 injection of AVP raises auditory brainstem response thresholds in virgin male Wistar rats,
78 indicating reduced ability to detect auditory stimuli (Naganuma et al. 2014).

79 In the present study, we examined the effects of fatherhood on *Oxtr* and *Avpr1a* mRNA
80 expression in the auditory and olfactory cortices of male California mice, a monogamous,
81 biparental rodent in which fathers provide extensive care for their offspring (Gubernick and
82 Alberts 1987). The onset of parenthood in this species alters males' behavioral and neural (as
83 measured by expression of Fos, the product of the immediate early gene *c-fos*) responses to pups
84 as well as to isolated pup odors and vocalizations (Arquilla et al. 2023; de Jong et al. 2009;
85 Wilson et al. 2022). Preliminary findings indicate that electrophysiological responses of the
86 auditory cortex to pup vocalizations differ between fathers and virgin males (Deane, K.E.,
87 Saltzman, W., Razak, K.A., unpub). In addition, preliminary data suggest that treatment with an
88 OXTR antagonist mildly inhibits parental care in California mouse fathers (Hussein, M., Unal,
89 A., Saltzman, W., unpub. data), and fathers have lower levels of both *Oxtr* and *Avpr1a* in the
90 BNST than virgin males (Perea-Rodriguez et al. 2015). However, effects of fatherhood on *Oxtr*
91 and *Avpr1a* in brain regions associated with sensory processing have not been evaluated.
92 Therefore, we quantified mRNA expression for both *Oxtr* and *Avpr1a* in four cortical regions

93 involved in acoustic (L-AC, R-AC) or olfactory (Pir and AON) processing, and as a control, in
94 the visual cortex (VC). The VC was used as a control because rodents rely more heavily on
95 olfactory and acoustic pathways for processing social cues, compared to visual pathways (Chen
96 and Hong 2018), and previous work by Mitre et al. (2016) showed that the percent of VC cells
97 containing *Oxtr* does not differ between mothers and virgins in C57BL/6 house mice. Because
98 AVP and OXT impact the saliency of a range of social cues (Rigney et al 2022), two control
99 groups (males paired with another male and males paired with a tubally ligated female) were
100 employed in order to address potential effects not only of fatherhood but also of cohabitation
101 with a female.

102

103 METHODS

104 Animal housing and care

105 California mice were bred at the University of California, Riverside (UCR) and were
106 descendants of mice purchased from the Peromyscus Genetic Stock Center (University of South
107 Carolina, Columbia, USA). All animals were housed in 44 × 24 × 20 cm polycarbonate cages
108 with aspen shavings for bedding, cotton for nesting material, and ad libitum access to food
109 (Purina 5001 Rodent Chow) and water. The lights were on a 14:10 h cycle with lights on at 2300
110 h. Ambient temperature was maintained at approximately 23° C, and humidity was around 65%.
111 All procedures were approved by UCR's Institutional Animal Care and Use Committee and were
112 conducted in accordance with the recommendations of the *Guide for the Care and Use of*
113 *Laboratory Animals*. UCR is accredited by the Association for Assessment and Accreditation of
114 Laboratory Animal Care.

115 Mice were housed with both parents until weaned at 27-31 days of age. They were then
116 housed in single-sex groups with 1-3 other age-matched mice until they were used for this study.
117 Male mice were assigned to three groups, each with 8 males: fathers, paired nonbreeders, and
118 virgins. Fathers and paired nonbreeders were housed with an unrelated (less closely related than
119 first cousins), age-matched female, and virgins were housed with a male from their original
120 group of juveniles to reduce the potential of aggressive interactions between cage mates (Trainor
121 and Marler 2001).

122 Prior to pair formation, females to be paired with fathers underwent sham tubal ligation
123 (see below), and females to be paired with nonbreeding males underwent tubal ligation (see
124 below). No surgeries were performed on males. In total, male subjects were from 16 different
125 families, with no more than 3 males used from the same family. When siblings were used, they
126 were assigned to different groups.

127

128 **Surgeries and Pairing**

129 Before being paired with a male, females were housed in same-sex groups of 2-4 mice until 75 -
130 91 days of age ($X \pm SD = 82.5 \pm 6.0$), at which time they underwent tubal ligation or sham tubal
131 ligation following previously established protocols (Zhao et al. 2018). Briefly, females were
132 anesthetized with 2.5% isoflurane vapor, a midline incision (approximately 1 cm) was made
133 across the lower abdomen, and the fallopian tubes were located. For tubal ligation surgeries, each
134 fallopian tube was tied in two places using absorbable sutures and cut between the ties. For sham
135 tubal ligations, the fallopian tubes were left intact. The abdominal muscle layer was closed using
136 absorbable sutures, and the skin was sealed using tissue glue. Lidocaine was applied topically at
137 the site of the incision, and females were given s.c. buprenorphine (Hospira Inc., Lake Forest, IL,

138 USA) every 7-10 hours for 48 hours and Carprofen (Carprieve [Norbrook Laboratories;
139 Overland Park, KS, USA]) every 24 hours for 48 hours, with the first dose of both given
140 immediately before surgery.

141 Following surgery, females were allowed to recover in isolation for 7 days, reunited with
142 their original female cage mates for an additional 7 days, and then paired with a male mate. At
143 the time of pairing, males were between 88 and 138 days old and age did not differ between
144 groups (t-test $P > 0.35$; $X \pm SD$: fathers = 106 ± 6.4 ; nonbreeding = 114.4 ± 5.8).

145

146 **Brain collection**

147 Brains were collected from breeding males 2-3 days after the birth of their first litter and from
148 nonbreeders and virgins on the same day in an age-matched manner. The length of time mice
149 were paired prior to brain collection did not differ between breeding and nonbreeding pairs (t-test
150 $P < 0.67$, X and SD : breeding = 51.4 ± 7.2 ; nonbreeding = 55 ± 4.4). Brain collection from virgin
151 males occurred at a younger age than males paired with a female (ANOVA, model $P = 0.007$, F
152 = 6.5, post-hoc P 's < 0.04 . X and SD : virgin = 135.75 ± 6.7 ; fathers = 157.4 ± 7.1 ; nonbreeding
153 = 169.4 ± 6.7).

154 Each mouse was removed from its home cage between 0900 and 1000 h, placed into a
155 DecapiCone (Braintree Scientific; Braintree, MA, USA), and immediately decapitated using a
156 guillotine. The brain was then rapidly dissected from the skull. Following a previously described
157 protocol (Duchemin et al. 2017), the two cortical hemispheres were separated, flattened and
158 placed on dry ice. Cortical punches (1 mm diameter) were collected and pooled from the left and
159 right VC, Pir and AON. Punches were also collected from the right and left ACs but were kept

160 separate based on the possibility of lateralization (Marlin et al. 2015). All samples were stored at
161 -80° C.

162

163 **qPCR**

164 Quantitative PCR was performed following previously established procedures (Laredo et al.
165 2014). In brief, we extracted RNA from each punch sample using Trizol (Fisher Scientific) and
166 assessed RNA quality using spectrographic analyses on a Nanodrop. For each sample, 1 µg of
167 RNA was used for reverse transcription using iScript (BioRad). We performed duplicate real-
168 time PCR reactions for *Oxtr* (Genbank accession: MN265350.1, FisherSci Catalog number 43-
169 320-78) and *Avpr1a* (Genbank accession: XM_052753487.1, FisherSci Catalog number 43-320-
170 78), and 18s ribosomal RNA (FisherSci Catalog number: 43-108-93E) was used for a reference
171 transcript. All samples were run using Taqman chemistry (FisherSci catalog number: 44-49-63)
172 on an Applied Biosystems 7500 detection system (Applied Biosystems). For each plate, relative
173 expression levels were calculated for each sample using the $\Delta\Delta CT$ method. To compare samples
174 across plates, we made a pool of cDNA from each brain region. Samples of this pool was run for
175 each transcript on every plate. For each sample, the expression value for each transcript was
176 divided by the expression value from the pool.

177

178 **Statistical Analyses**

179 Linear mixed-effect models were used to determine whether receptor mRNA expression varied
180 with male reproductive status (virgin, nonbreeding and father). All models included reproductive
181 status as the main effect and male age as a covariate. Age was removed from models when it did
182 not predict mRNA expression ($\alpha \leq 0.05$). Since not all variables could be transformed effectively

183 using the same method of transformation (see below), non-parametric Kruskal-Wallis tests were
184 used to evaluate whether mRNA expression differed among cortices. . Significant results were
185 further evaluated using Dunn's tests.

186 STATA 17 (StataCorp LP, College Station, TX, USA) was used for all analyses.

187 Assumptions of normality were assessed using Shapiro-Wilk analyses and quantile-quantile
188 plots. Data were either log-transformed (VC, Pir, L-AC and R-AC) or inverse square-root-
189 transformed (AON) to meet assumptions of normality for LMMs. Within each receptor type for
190 each brain region, transformed mRNA expression data were analyzed for outliers, which were
191 considered to be values that were ≥ 1.5 interquartile ranges above or below the 75th and 25th
192 quartiles, respectively. Across all data, 12 outlier values were identified and removed prior to
193 analyses (VC *Oxtr*: n = 3; VC *Avpr1a*: n = 1; AON *Oxtr*: n = 5; AON *Avpr1a*: n = 3). For all
194 tests, the critical P-value was set at 0.05 (two-tailed).

195

196 RESULTS

197 Expression of *Oxtr* and *Avpr1a* mRNA varied widely among individual mice within each cortical
198 region, but this variation was not explained by male reproductive status. We found no differences
199 in mRNA expression of *Oxtr* or *Avpr1a* among male California mice housed with a male
200 (virgins), a tubally ligated female (nonbreeding males), or a sham-tubally ligated female and
201 their first little of pups (fathers) in any of the cortical regions examined (LMM, model P's >
202 0.18; Table 1). The covariate of male age was non-significant and, thus, was removed from all
203 models except for *Oxtr* expression in the AON (LMM, model P = 0.17, male reproductive status
204 P = 0.18, male age P = 0.03; Table 1).

205 Expression of both *Oxtr* and *Avpr1a* mRNA differed significantly among cortical regions.
206 Specifically, *Oxtr* mRNA expression was significantly lower in the AON compared to the Pir,
207 VC and L-AC, and significantly higher in the L-AC compared to all other regions (Kruskal-
208 Wallis test and Dunn's post-hoc test, Table 2, Fig. 1A). Similarly, expression of *Avpr1a* mRNA
209 was significantly lower in the AON compared to all other regions, and significantly higher in the
210 L-AC compared to all other regions (Kruskal-Wallis test and Dunn's post-hoc test, Table 2, Fig.
211 1B). Notably, both *Oxtr* and *Avpr1a* mRNA levels were significantly higher in the L-AC
212 compared to the R-AC (paired t-tests, *Oxtr*: $P = 0.004$, *Avpr1a*: $P = 0.0007$, Fig. 1).

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228 TABLES

229 Table 1. Expression of oxytocin (*Oxtr*) and vasopressin (*Avpr1a*) receptor mRNA in cortical
 230 brain regions of fathers, virgin males and nonbreeding males. Parental status did not impact
 231 mRNA expression in any region, and family identity did not contribute significantly to any
 232 model. Reported means and confidence intervals are for transformed data. LMMs, log-
 233 transformed: visual cortex [VC], piriform cortex Pir], left auditory cortex [L-AC] and right
 234 auditory cortex [R-AC]; inverse square root-transformed: anterior olfactory nucleus [AON].

Brain region	<i>Oxtr</i>					<i>Avpr1a</i>				
	Mean	95% CI	N	χ^2	P	Mean	95% CI	N	χ^2	P
VC			19	0.49	0.783			21	2.98	0.225
Virgin	1.83	1.10 to 2.57	6			3.62	2.31 to 4.93	7		
Nonbreeding	1.50	0.86 to 2.13	8			2.33	1.10 to 3.55	8		
Father	1.73	0.92 to 2.53	5			3.78	2.36 to 5.20	6		
Pir			23	0.76	0.684			23	1.42	0.491
Virgin	2.20	1.01 to 3.38	7			2.98	1.63 to 4.32	7		
Nonbreeding	2.48	1.37 to 3.59	8			3.33	2.07 to 4.59	8		
Father	1.78	0.67 to 2.89	8			2.26	1.01 to 3.52	8		
AON ^a			16	5.11	0.164			18	0.80	0.671
Virgin	0.84	0.70 to 0.99	6			0.54	0.44 to 0.65	7		
Nonbreeding	0.63	0.49 to 0.77	6			0.47	0.36 to 0.59	6		
Father	0.71	0.56 to 0.85	4			0.53	0.40 to 0.66	5		
L-AC			19	0.65	0.724			19	0.97	0.614
Virgin	3.45	2.02 to 4.87	7			5.81	4.27 to 7.34	7		
Nonbreeding	4.31	2.77 to 5.85	6			6.92	5.26 to 8.58	6		
Father	3.79	2.26 to 5.33	6			6.11	4.45 to 7.77	6		
R-AC			18	3.09	0.214			18	2.37	0.306
Virgin	0.72	-0.08 to 1.52	7			1.98	0.91 to 3.06	7		
Nonbreeding	1.52	0.72 to 2.32	7			2.90	1.83 to 3.98	7		
Father	1.78	0.72 to 2.84	4			3.25	1.83 to 4.67	4		

235 ^aMale age varied positively with *Oxtr* receptor mRNA ($z = 2.20$; $P = 0.028$).

236

237

238 Table 2. Comparison of expression of oxytocin (*Oxtr*) and vasopressin (*Avpr1a*) receptor mRNA
 239 among sensory cortical regions of male California mice from all three reproductive groups
 240 combined. Kruskal-Wallis tests (top row of results) followed by post-hoc Dunn's tests. Pir –
 241 piriform cortex, VC – visual cortex, AON – anterior olfactory nucleus, L-AC – left auditory
 242 cortex, R-AC – right auditory cortex. P-values <0.05 are in bold.

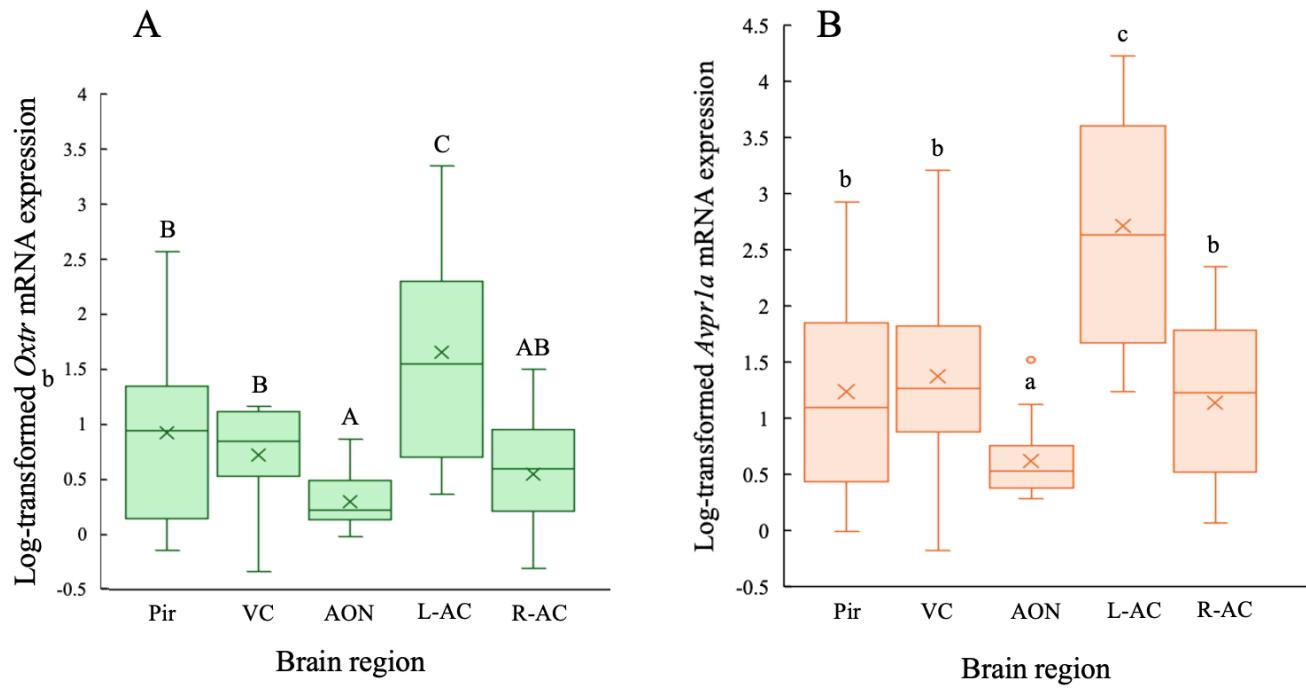
Brain region	<i>Oxtr</i>			<i>Avpr1a</i>		
	N	χ^2	P	N	χ^2	P
		30.26	0.0001		38.35	0.0001
Pir versus:	23			23		
VC	19	0.252		21	0.295	
AON	16	0.001		18	0.008	
L-AC	19	0.007		19	< 0.0001	
R-AC	18	0.056		18	0.414	
VC versus:						
AON		0.009			0.002	
L-AC		0.002			0.0004	
R-AC		0.186			0.236	
AON versus:						
L-AC			< 0.0001		< 0.0001	
R-AC			0.0692		0.019	
L-AC versus:						
R-AC			0.0001		< 0.0001	

243

244

245

246


247

248

249

250

251

254 Fig. 1: Expression of (A) oxytocin (*Oxtr*) and (B) vasopressin (*Avpr1a*) receptor mRNA in
 255 sensory cortical brain regions of male California mice from all three reproductive groups
 256 compared to the visual cortex. Box plots show median, 1st and 3rd quartiles. Error bars show
 257 minimum and maximum values. Letters denote significant ($P < 0.05$) differences from post-hoc
 258 Dunn's test following Kruskal-Wallis tests. Pir – piriform cortex, VC – visual cortex, Aon –
 259 anterior olfactory nucleus, L-AC – left auditory cortex, R-AC – right auditory cortex.

266 DISCUSSION

267 The transition to parenthood can induce plasticity in sensory cortical regions in new mothers,
268 which facilitates the expression of maternal care (Valtcheva and Froemke 2019). However,
269 cortical plasticity in new fathers is poorly studied and, for both sexes, it is unclear whether
270 plasticity involves changes in neuropeptide signaling in sensory brain regions. We found that
271 neither *Oxtr* nor *Avpr1a* mRNA expression in the sensory cortices differed between males
272 housed with another male and males housed with a nonbreeding female, or between either of
273 these controls and fathers. Across reproductive groups, however, levels of both *Oxtr* and *Avpr1a*
274 mRNA differed significantly across brain regions, with expression highest in the L-AC and
275 lowest in the AON. These differences across regions may provide further insight into the role of
276 different sensory cortices in modulating behavioral changes observed in new parents.

277 Previous studies have identified receptors for OXT and AVP in sensory cortices and
278 sensory association areas of adult rodents (Duchemin et al. 2017; Mitre et al. 2016; Vaccari et al.
279 1998; Wacker and Ludwig 2019), and expression of OXTR and Avpr1a along sensory pathways
280 can be modulated by early-life experience (Bester-Meredith and Marler 2001; Zeng et al. 2014).
281 Our findings suggest that, unlike early-life events, the transition to parenthood in males does not
282 induce plasticity in sensory cortices through variation in *Oxtr* or *Avpr1a* expression, which aligns
283 with previous findings that OXTR labeling in sensory cortices did not differ between house
284 mouse mothers and virgin females (Mitre et al. 2016).

285 On the other hand, changes in central concentrations of OXT and AVP might provide a
286 mechanism through which sensory processing in the cortex is altered in parents. In some rodents,
287 including the biparental prairie vole and Mandarin vole, the transition to fatherhood can result in
288 increased synthesis of OXT and AVP in the paraventricular nucleus (PVN) and supraoptic

289 nucleus (SON) of the hypothalamus and of AVP in the bed nucleus of the stria terminalis and
290 medial amygdala (Bales and Saltzman 2016; Song et al. 2010; Wang et al. 2000; Zimmermann-
291 Peruzzatto et al. 2015), which facilitates increased central release of OXT and AVP. Although
292 *Avp* mRNA expression in the PVN and number of OXT- and AVP-stained neurons in the PVN
293 and bed nucleus of the stria terminalis do not differ based on reproductive state in male
294 California mice (De Jong et al. 2009, 2013), other potential sources of AVP (such as the SON)
295 have not, to our knowledge, been explored. Thus, even though receptor expression may not
296 change, the effects of OXT and AVP on synaptic activity in sensory cortices might be altered in
297 fathers compared to virgin males.

298 This suggestion is consistent with the role of OXT in maternal cortical plasticity
299 proposed by Valtcheva and Froemke (2019), whereby sensory inputs stimulate synthesis of OXT
300 in, for example, oxytocin neurons in the PVN, which then modulates changes in sensory cortices
301 that alter saliency of sensory stimuli from pups. Studies that demonstrate a connection between
302 elevated levels of OXT and changes in cortical activity in females support the suggestion that
303 cortical plasticity is driven by increased nonapeptide binding, and that the L-AC is specifically
304 important for processing pup acoustic stimuli. Synaptic inhibition in the L-AC and Pir, as
305 measured by whole-cell recordings from brain slices, was reduced for virgin female house mice
306 in the presence of OXT compared to baseline inhibitory post-synaptic potentials (Mitre et al.
307 2016). Additionally, infusion of an OXT antagonist into the L-AC, but not the R-AC, of
308 maternally experienced mice resulted in faster pup retrieval, and topical administration of OXT
309 to virgin female mice resulted in neuronal responses to pup calls that were comparable to new
310 mothers (Marlin et al. 2015). Interestingly, lateralization of *Oxtr* in the AC was observed in
311 female mice, regardless of maternal status, but not males (Mitre et al. 2016). In our study,

312 biparental male California mice, regardless of paternal status, displayed the same lateralization of
313 *Oxtr* and *Avpr1a* in their auditory cortices: males had higher expression of mRNA for both
314 receptors in the L-AC compared to the R-AC. Thus, it is possible that the nonapeptides play a
315 similar role in modulating responses to pup vocalizations for males of a biparental species and
316 females of a uniparental species. Lateralization of *Oxtr* (and *Avpr1a*) in the auditory cortex could
317 reflect increased receptor expression in L-AC within cell types that also express the receptors in
318 R-AC. Alternatively or additionally, it is possible that some cell types express *Oxtr* (or
319 *Avpr1a*) in L-AC but not in R-AC. These possibilities could be evaluated by using single-nucleus
320 RNA sequencing.

321 We found that expression of both *Oxtr* and *Avpr1a* mRNA differed across sensory
322 cortices in male California mice. The highest levels of receptor mRNA were found in the L-AC,
323 while the lowest were found in the AON, which is important for olfactory memory and social
324 behavior (Johnson and Young 2017; Oettl and Kelsch 2018). These findings suggest that the
325 olfactory, auditory, and visual cortices may differ in the extent to which they are modulated by
326 OXT and AVP. However, the functional significance of these differences remains to be
327 determined. To our knowledge, the relative expression of OXT and AVP receptors, or the extent
328 of cortical modulation by OXT and AVP, has not been compared systematically across sensory
329 cortices in other species (but see Duchemin et al. 2017).

330 In conclusion, we found no evidence that either paternal status or cohabitation with a
331 female influences expression of *Oxtr* and *Avpr1a* in sensory cortices of male California mice. It
332 is possible, however, that fatherhood and/or cohabitation with a female alters
333 receptor expression in subcortical regions of sensory pathways, or that *Oxtr* and/or *Avpr1a*
334 expression undergoes transient changes during the onset of fatherhood or pair-bonding that were

335 not apparent at the time points used in our study. Further research into potential changes in OXT
336 and AVP signaling within sensory systems will provide better context for the results reported
337 here and may expand our understanding of the mechanisms by which these neuropeptides
338 influence the onset of paternal care.

339

340 REFERENCES

341 Arquilla, A.M., Wilson, K.M., Razak, K.A., Saltzman, W. 2023. Fatherhood increases attraction
342 to sensory stimuli from unrelated pups in male California mice, *Peromyscus californicus*. Anim.
343 Behav. 198, 131-140. <https://doi.org/10.1016/j.anbehav.2023.02.001>

344

345 Bales, K. L., Saltzman, W. 2016. Fathering in rodents: Neurobiological substrates and
346 consequences for offspring. Horm. Behav. 77, 249–259.

347 <https://doi.org/10.1016/j.yhbeh.2015.05.021>

348

349 Banerjee, S.B., Liu, R.C. 2013. Storing maternal memories: hypothesizing an interaction of
350 experience and estrogen on sensory cortical plasticity to learn infant cues. Front.
351 Neuroendocrinol. 34, 300-314. <https://doi.org/10.1016/j.yfrne.2013.07.008>

352

353 Bester-Meredith, J. K., Marler, C. A. 2001. Vasopressin and aggression in cross-fostered
354 California mice (*Peromyscus californicus*) and white-footed mice (*Peromyscus leucopus*). Horm.
355 Behav. 40, 51–64. <https://doi.org/10.1006/hbeh.2001.1666>

356

357 Bester-Meredith, J. K., Fancher, A. P., Mammarella, G. E. 2015. Vasopressin proves es-sense-
358 tial: Vasopressin and the modulation of sensory processing in mammals. *Frontiers Endocrinol.* 6,
359 5. <https://doi.org/10.3389/fendo.2015.00005>

360

361 Charitidi, K., Meltser, I., Canlon, B. 2012. Estradiol treatment and hormonal fluctuations during
362 the estrous cycle modulate the expression of estrogen receptors in the auditory system and the
363 prepulse inhibition of acoustic startle response. *Endocrinology*. 153, 4412-4421.

364 <https://doi.org/10.1210/en.2012-1416>

365

366 Chen, P., Hong, W. 2018. Neural circuit mechanisms of social behavior. *Neuron*. 98, 16–30.

367 <https://doi.org/10.1016/j.neuron.2018.02.026>

368

369 de Jong, T. R., Chauke, M., Harris, B. N., Saltzman, W. 2009. From here to paternity: Neural
370 correlates of the onset of paternal behavior in California mice (*Peromyscus californicus*). *Horm.*
371 *Behav.* 56, 220–231. <https://doi.org/10.1016/j.yhbeh.2009.05.001>

372

373 de Jong, T. R., Harris, B. N., Perea-Rodriguez, J. P., Saltzman, W. 2013. Physiological and
374 neuroendocrine responses to chronic variable stress in male California mice (*Peromyscus*
375 *californicus*): Influence of social environment and paternal state. *Psychoneuroendocrinology*. 38,
376 2023–2033. <https://doi.org/10.1016/j.psyneuen.2013.03.006>

377

378 Duchemin, A., Seelke, A. M. H., Simmons, T. C., Freeman, S. M., Bales, K. L. 2017.

379 Localization of oxytocin receptors in the prairie vole (*Microtus ochrogaster*) neocortex.

380 Neuroscience. 348, 201–211. <https://doi.org/10.1016/j.neuroscience.2017.02.017>

381

382 Dumais, K. M., Veenema, A. H. 2016. Vasopressin and oxytocin receptor systems in the brain:

383 Sex differences and sex-specific regulation of social behavior. *Front. Neuroendocrinol.* 40, 1–23.

384 <https://doi.org/10.1016/j.yfrne.2015.04.003>

385

386 Ehret, G. 2005. Infant rodent ultrasounds – a gate to the understanding of sound communication.

387 *Behav. Genet.* 3, 19–29. <https://doi.org/10.1007/s10519-004-0853-8>

388

389 Ehret, G., Koch, M. 1989. Ultrasound-induced parental behaviour in house mice is controlled by

390 female sex hormones and parental experience. *Ethology*. 80, 81–93.

391 <https://doi.org/10.1111/j.1439-0310.1989.tb00731.x>

392

393 Fleming, A. S., Cheung, U., Myhal, N., Kessler, Z. 1989. Effects of maternal hormones on

394 ‘timidity’ and attraction to pup-related odors in female rats. *Physiol. Behav.* 46, 449–453.

395 [https://doi.org/10.1016/0031-9384\(89\)90019-X](https://doi.org/10.1016/0031-9384(89)90019-X)

396

397 Fleming, A.S., Corter, C., Franks, P., Surbey, M., Schneider, B., Steiner, M. 1993. Postpartum

398 factors related to mother’s attraction to newborn infant odors. *Dev. Psychobiol.* 26, 115 – 132.

399 <https://doi.org/10.1002/dev.420260204>

400

401 Fleming, A.S., Corder, C., Stallings, J., Steiner, M. 2002. Testosterone and prolactin are
402 associated with emotional responses to infant cries in new fathers. Horm. Behav. 42, 399–413.
403 doi:10.1006/hbeh.2002.1840.

404

405 Galindo-Leon, E.E., Lin, F.G., Liu, R.C. 2009. Inhibitory plasticity in a lateral band improves
406 cortical detection of natural vocalizations. Neuron 62, 705-716.

407 <https://doi.org/10.1016/j.neuron.2009.05.001>

408

409 González-Mariscal, G., Poindron, P., 2002. Parental care in mammals: immediate internal and
410 sensory factors of control, in Hormones, Brain and Behavior. Academic Press. pp. 215-298.

411 <https://doi.org/10.1016/B978-012532104-4/50005-6>

412 Gubernick, D.J., Alberts, J.R. 1987. The biparental care system of the California mouse,
413 *Peromyscus californicus*. J. Comp. Psychol. 101, 169.

414

415 Guoynes, C. D., Marler, C. A. 2022. Intranasal oxytocin reduces pre-courtship aggression and
416 increases paternal response in California mice (*Peromyscus californicus*). Physiol. Behav. 249,
417 113773. <https://doi.org/10.1016/j.physbeh.2022.113773>

418

419 Horrell, N. D., Hickmott, P. W., Saltzman, W. 2019. Neural regulation of paternal behavior in
420 mammals: Sensory, neuroendocrine, and experiential influences on the paternal brain, in:
421 Coolen, L. M., Grattan D. R. (Eds.), Neuroendocrine Regulation of Behavior. Springer, Cham.
422 pp. 111–160. https://doi.org/10.1007/978-3-030-18542-5_5

423

424 Johnson, Z. V., Young, L. J. 2017. Oxytocin and vasopressin neural networks: Implications for
425 social behavioral diversity and translational neuroscience. *Neurosci. Biobehav. Rev.* 76, 87–98.
426 <https://doi.org/10.1016/j.neubiorev.2017.01.034>

427

428 Kinsley, C.H., Bridges, RS. 1990. Morphine treatment and reproductive condition alter olfactory
429 preferences for pup and adult male odors in female rats. *Dev. Psychobiol.* 23, 331-347.
430 doi:10.1002/dev.420230405

431

432 Laredo, S. A., Orr, V. N., McMackin, M. Z., Trainor, B. C. 2014. The effects of exogenous
433 melatonin and melatonin receptor blockade on aggression and estrogen-dependent gene
434 expression in male California mice (*Peromyscus californicus*). *Physiol. Behav.* 128, 86–91.
435 <https://doi.org/10.1016/j.physbeh.2014.01.039>

436

437 Lévy, F., Keller, M. 2009. Olfactory mediation of maternal behavior in selected mammalian
438 species. *Behav. Brain Res.* 200, 336-345. <https://doi.org/10.1016/j.bbr.2008.12.017>

439

440 Lévy, F., Keller, M., Poindron, P. 2004. Olfactory regulation of maternal behavior in mammals.
441 *Horm. Behav.* 46, 284-302. <https://doi.org/10.1016/j.yhbeh.2004.02.005>

442

443 Liu, R.C., Linden, J.F., Schreiner, C.E. 2006. Improved cortical entrainment to infant
444 communication calls in mothers compared with virgin mice. *Eur. J. Neurosci.* 23, 3087-3097.
445 <https://doi.org/10.1111/j.1460-9568.2006.04840.x>

446

447 Marlin, B. J., Mitre, M., D'amour, J. A., Chao, M. V., Froemke, R. C. 2015. Oxytocin enables
448 maternal behaviour by balancing cortical inhibition. *Nature*. 520, 499–504.

449 <https://doi.org/10.1038/nature14402>

450

451 Meddle, S. L., Bishop, V. R., Gkoumassi, E., van Leeuwen, F. W., Douglas, A. J. 2007.
452 Dynamic changes in oxytocin receptor expression and activation at parturition in the rat brain.
453 *Endocrinology*. 148, 5095–5104. <https://doi.org/10.1210/en.2007-0615>

454

455 Miranda, J. A., Liu, R. C. 2009. Dissecting natural sensory plasticity: Hormones and experience
456 in a maternal context. *Hear. Res.* 252, 21–28. <https://doi.org/10.1016/j.heares.2009.04.014>

457

458 Mitre, M., Marlin, B. J., Schiavo, J. K., Morina, E., Norden, S. E., Hackett, T. A., Aoki, C. J.,
459 Chao, M. V., Froemke, R. C. 2016. A distributed network for social cognition enriched for
460 oxytocin receptors. *J. Neurosci.* 36, 2517–2535. <https://doi.org/10.1523/JNEUROSCI.2409-15.2016>

462

463 Naganuma, H., Kawahara, K., Tokumasu, K., Satoh, R., Okamoto, M. 2014. Effects of arginine
464 vasopressin on auditory brainstem response and cochlear morphology in rats. *Auris Nasus*
465 *Larynx*. 41, 249–254. <https://doi.org/10.1016/j.anl.2013.12.004>

466

467 Nakahara, T.S., Camargo, A.P., Magalhães, P.H., Souza, M.A., Ribeiro, P.G., Martins-Netto,
468 P.H., Carvalho, V.M., José, J., Papes, F. 2020. Peripheral oxytocin injection modulates

469 vomeronasal sensory activity and reduces pup-directed aggression in male mice. *Sci. Rep.* 10,
470 19943. <https://doi.org/10.1038/s41598-020-77061-7>

471

472 Numan M. 2020. *The Parental Brain: Mechanisms, Development, and Evolution*. Oxford
473 University Press.

474

475 Oettl, L.-L., Kelsch, W. 2018. Oxytocin and olfaction, in: Hurlemann, R., Grinevich, V. (Eds.),
476 *Behavioral Pharmacology of Neuropeptides: Oxytocin*. *Current Topics in Behavioral*
477 *Neurosciences* 35. Springer, Cham, pp. 55–75.

478

479 Parker, K. J., Lee, T. M. 2001. Central vasopressin administration regulates the onset of
480 facultative paternal behavior in *Microtus pennsylvanicus* (meadow voles). *Horm. Behav.* 39,
481 285–294. <https://doi.org/10.1006/hbeh.2001.1655>

482

483 Pedersen, C. A., Caldwell, J. D., Walker, C., Ayers, G., Mason, G. A. 1994. Oxytocin activates
484 the postpartum onset of rat maternal behavior in the ventral tegmental and medial preoptic areas.
485 *Behav. Neurosci.* 108, 1163–1171. <https://doi.org/10.1037/0735-7044.108.6.1163>

486

487 Perea-Rodriguez, J. P., Takahashi, E. Y., Amador, T. M., Hao, R. C., Saltzman, W., Trainor, B.
488 C. 2015. Effects of reproductive experience on central expression of progesterone, oestrogen α ,
489 oxytocin and vasopressin receptor mRNA in male California mice (*Peromyscus californicus*). *J.*
490 *Neuroendocrinol.* 27, 245–252. <https://doi.org/10.1111/jne.12264>

491

492 Rigney, N., De Vries, G. J., Petrusis, A., Young, L. J. 2022. Oxytocin, vasopressin, and social
493 behavior: from neural circuits to clinical opportunities. *Endocrinology*. 163, bqac111.
494 <https://doi.org/10.1210/endocr/bqac111>

495

496 Rothschild, G., Cohen, L., Mizrahi, A., Nelken, I. 2013. Elevated correlations in neuronal
497 ensembles of mouse auditory cortex following parturition. *J. Neurosci.* 33, 12851-12861.
498 <https://doi.org/10.1523/JNEUROSCI.4656-12.2013>

499

500 Saltzman, W., Ziegler, T. E. 2014. Functional significance of hormonal changes in mammalian
501 fathers. *J. Neuroendocrinol.* 26, 685–696. <https://doi.org/10.1111/jne.12176>

502

503 Shepard, K.N., Kilgard, M.P., Liu, R.C. 2013. Experience-dependent plasticity and auditory
504 cortex, in: Cohen, Y.E., Popper, A.N., Fay, R.R. (Eds). *Neural Correlates of Auditory Cognition*
505 Springer Handbook of Auditory Research. Springer, Cham. pp. 293-327.

506

507 Song, Z., Tai, F., Yu, C., Wu, R., Zhang, X., Broders, H., He, F., Guo, R. 2010. Sexual or
508 paternal experiences alter alloparental behavior and the central expression of ER α and OT in
509 male mandarin voles (*Microtus mandarinus*). *Behav. Brain Res.* 214, 290–300.
510 <https://doi.org/10.1016/j.bbr.2010.05.045>

511

512 Trainor, B. C., Marler, C. A. 2001. Testosterone, paternal behavior, and aggression in the
513 monogamous California mouse (*Peromyscus californicus*). *Horm. Behav.* 40, 32–42.
514 <https://doi.org/10.1006/hbeh.2001.1652>

515

516 Vaccari, C., Lolait, S. J., Ostrowski, N. L. 1998. Comparative distribution of vasopressin V1b
517 and oxytocin receptor messenger ribonucleic acids in brain. *Endocrinology*. 139, 5015–5033.

518 <https://doi.org/10.1210/endo.139.12.6382>

519

520 Valtcheva, S., Froemke, R. C. 2019. Neuromodulation of maternal circuits by oxytocin. *Cell*
521 *Tissue Res.* 375, 57–68. <https://doi.org/10.1007/s00441-018-2883-1>

522

523 Wacker, D., Ludwig, M. 2019. The role of vasopressin in olfactory and visual processing. *Cell*
524 *Tissue Res.* 375, 201–215. <https://doi.org/10.1007/s00441-018-2867-1>

525

526 Wang, Z. X., Liu, Y., Young, L. J., Insel, T. R. 2000. Hypothalamic vasopressin gene expression
527 increases in both males and females postpartum in a biparental rodent. *J. Neuroendocrinol.* 12,
528 111–120. <https://doi.org/10.1046/j.1365-2826.2000.00435.x>

529

530 Wilson, K. M., Arquilla, A. M., Rosales-Torres, K. M., Hussein, M., Chan, M. G., Razak, K. A.,
531 Saltzman, W. 2022. Neural responses to pup calls and pup odors in California mouse fathers and
532 virgin males. *Behav. Brain Res.* 434, 114024. <https://doi.org/10.1016/j.bbr.2022.114024>

533

534 Wilson, K. M., Arquilla, A. M., Saltzman, W. 2023. The parental umwelt: Effects of parenthood
535 on sensory processing in rodents. *J. Neuroendocrinol.* 35, e13237.

536 <https://doi.org/10.1111/jne.13237>

537

538 Yamoah, D., Williams-Baginski, K., Bamshad, M. 2008. Changes in response to odors during
539 the reproductive period in male and female prairie voles (*Microtus ochrogaster*). *Can. J. Zool.*
540 86, 224–230. <https://doi.org/10.1139/Z07-133>

541

542 Yoshihara, C., Numan, M. and Kuroda, K.O., 2018. Oxytocin and parental behaviors, in
543 Hurlemann, R., Grinevich, V. (Eds.), *Behavioral Pharmacology of Neuropeptides: Oxytocin.*
544 Current Topics in Behavioral Neurosciences 35. Springer, Cham., pp.119-153.
545 https://doi.org/10.1007/7854_2017_11

546 Yuan, W., He, Z., Hou, W., Wang, L., Li, L., Zhang, J., Yang, Y., Jia, R., Qiao, H., Tai, F. 2019.
547 Role of oxytocin in the medial preoptic area (MPOA) in the modulation of paternal behavior in
548 mandarin voles. *Horm. Behav.* 110, 46–55. <https://doi.org/10.1016/j.yhbeh.2019.02.014>

549

550 M. Zhao, T. Garland Jr., M.A. Chappell, J.R. Andrew, B.N. Harris, W. Saltzman. 2018. Effects
551 of a physical and energetic challenge on male California mice (*Peromyscus californicus*):
552 modulation by reproductive condition, *J. Exp. Biol.* 221, jeb168559.
553 [https://doi.org/10.1242/jeb.168559.](https://doi.org/10.1242/jeb.168559)

554

555 Zheng, J.J., Li, S.J., Zhang, X.D., Miao, W.Y., Zhang, D., Yao, H., Yu, X. 2014. Oxytocin
556 mediates early experience-dependent cross-modal plasticity in the sensory cortices. *Nat.*
557 *Neurosci.* 17, 391–399. <https://doi.org/10.1038/nn.3634>

558

559 Ziegler, T.E., Sosa, M.E. 2016. Hormonal stimulation and paternal experience influence
560 responsiveness to infant distress vocalizations by adult male common marmosets, *Callithrix*
561 *jacchus*. Horm. Behav. 78, 13-19. <https://doi.org/10.1016/j.yhbeh.2015.10.004>

562

563 Zimmermann-Peruzatto, J. M., Lazzari, V. M., de Moura, A. C., Almeida, S., Giovenardi, M.
564 2015. Examining the role of vasopressin in the modulation of parental and sexual behaviors.
565 Front. Psychiatry. 6, 130. <https://doi.org/10.3389/fpsyg.2015.00130>

566