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ABSTRACT

Surface-based data are prevalent across diverse practical applica-
tions in various fields. This paper introduces a novel nonparametric
method to discover the underlying signals from data distributed on
complex surface-based domains. The proposed approach involves
a penalised spline estimator defined on a triangulation of surface
patches, enabling effective signal extraction and recovery. The pro-
posed method offers superior handling of ‘leakage’ or ‘boundary
effects’ over complex domains, enhanced computational efficiency,
and capabilities for analyzing sparse and irregularly distributed data
on complex objects. We provide rigorous theoretical guarantees,

ARTICLE HISTORY
Received 7 May 2024
Accepted 29 December 2024

KEYWORDS

Complex domain;
nonparametric smoothing;
sphere-like surface; spherical
splines; triangulation

AMS SUBJECT
CLASSIFICATIONS
62G05; 62G08; 62G20

including convergence rates and asymptotic normality of the estima-
tors. We demonstrate that the convergence rates are optimal within
the framework of nonparametric estimation. A bootstrap method is
introduced to quantify the uncertainty in the proposed estimators
and to provide pointwise confidence intervals. The advantages of
the proposed method are demonstrated through simulations and
data applications on cortical surface neuroimaging data and oceanic
near-surface atmospheric data.

1. Introduction

Surface-based data are widely observed in various fields, and extracting useful informa-
tion from data distributed on surfaces is of great significance. For example, in planetary
science, scientists are interested in the movement of tectonic plates (Chang et al. 2000;
Marzio et al. 2019) observed on the surfaces of celestial bodies. In cosmology, completing
the missing data and correcting the noisy observations for cosmic microwave background
radiation are problems of interest (Abrial et al. 2008). In meteorology, hourly surface-
based data are the most used and requested type of climatology data, and efforts have been
made to integrate data from different stations in various repositories (Smith et al. 2011).
Additional examples include the recovery of high-resolution time series of aerosol optical
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Figure 1. Workflow of the TSSS estimation method for brain surface data.

depth (Zhang, Zhou, Zhao, et al. 2022) and total electron content (Sun et al. 2022) from
surface-based measurements.

Furthermore, in biomedical research, efforts have been made to explore the func-
tional properties of proteins using molecular surface data (Kinoshita and Nakamura 2003).
Another active area of investigation is cortical and cortical surface functional magnetic
resonance imaging (fMRI) in neuroimaging. This technique offers the advantage of recov-
ering anatomical structures with higher precision compared to volumetric fMRI methods
(Brodoehl et al. 2020; Lila and Aston 2020; Mejia et al. 2020; Cole et al. 2021; Zhang, Wu,
et al. 2023). To analyze data distributed on general surfaces, it is common to employ map-
pings that project the data onto a unit sphere (Fischl et al. 1999; Gu et al. 2004), as depicted
in Figure 1.

Spherical harmonics (SH) (Seeley 1966; Abrial et al. 2008) are widely used to model
and denoise spherical data, interpolating functions on the whole sphere. Thin plate splines
on the sphere (TPSOS) (Wahba 1981) were later proposed as a special case of SH while
accounting for the smoothness of functions. However, SH and TPSOS may lack the flexibil-
ity to capture complex signals. SH relies on a fixed set of basis functions that span the entire
sphere, requiring many functions for highly localised or rapidly changing signals, which
increases computational complexity. Similarly, TPSOS, while incorporating smoothness,
faces difficulties with complex functions due to its reliance on polynomial functions of
trigonometric terms, limiting its flexibility.

Another popular method is the kernel-based approach (Cao et al. 2013); however, it
becomes computationally intensive for large datasets primarily due to the computation
and storage requirements of kernel matrices and the need to solve optimisation problems
involving these matrices. The size of the kernel matrix is proportional to the number of
data points, which makes the computation and storage requirements overgrow with the
size of the dataset. The limitations of existing methods motivate the need for alternative
methods that can offer enhanced flexibility in capturing the complexity of the underlying
signal for spherical data.
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Figure 2. lllustrations of (a) colatitude & and longitude ¢, (b)-(d) spherical triangulations with varying
levels of refinements, and (e) triangulation of the ocean surface. The triangulation refinement is achieved
by connecting the centre of each edge with the spherical edge with the shortest geodesic length.

In addition, data are commonly collected on complex patches/regions of surfaces with
irregular boundaries or holes, such as the ocean domain shown in Figure 2(e). Con-
ventional tools mentioned above for analyzing spherical data suffer from the problem
of ‘leakage’ across irregular-shaped domains due to inappropriate linking of parts of the
domain (Ramsay 2002; Wood et al. 2008). Motivated by recent works, such as Lai and
Wang (2013) and Wang, Wang, et al. (2020), Bernstein-Bézier polynomials defined on tri-
angles are useful tools over planar domains with irregular shapes. Given the similarity and
common properties between classical polynomial splines over planar triangulation and
the spherical setting, spherical Bernstein-Bézier splines (Alfeld et al. 1996a, 1996b) could
be well suited for spherical data interpolation and approximation problems for complex
sphere-like surfaces. Their efficacy in geopotential reconstruction has been demonstrated
in Baramidze and Lai (2004), Baramidze et al. (2006), Lai et al. (2008), and Baramidze and
Lai (2011). In this paper, we introduce a novel application of spherical splines specifically
tailored to analyze data distributed on complex surface-based domains, such as surface
patches with complex boundaries. This triangulated spherical spline smoothing (TSSS)
approach enables the extraction of underlying signals from intricate data structures on
surface patches in the presence of noise, providing a robust and computationally efficient
method for accurately estimating and modelling complex surface patterns.

Importantly, we investigate the statistical properties of the proposed TSSS method.
Specifically, we establish the convergence rate of the TSSS estimator, which is governed
by the fineness of the triangle mesh, the degree and smoothness of the spherical spline,
the penalty parameter, and the smoothness of the mean function. We further provide the
conditions to achieve the optimal nonparametric convergence rate (Stone 1982). We also
derive the asymptotic normality for the TSSS estimator. However, due to the complexity
of the spline basis functions, obtaining the exact form of the standard error can be chal-
lenging. Therefore, we propose a wild-bootstrap-based method to estimate the standard
error.

In addition to theoretical contributions, the proposed TSSS method overcomes the limi-
tations of existing methods and offers several advantages. Firstly, TSSS effectively addresses
the problem of ‘leakage’ across complex domains by utilising information from neighbour-
ing triangles to accurately denoise or deblur data while preserving geometric features and
spatial structures. This makes it ideal for analyzing data on complex patches or regions
of surfaces with irregular boundaries or holes. Secondly, TSSS employs compactly sup-
ported basis functions and a sparse or roughness penalty, similar to P-splines (Eilers and
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Marx 2021) and bivariate penalised splines on triangulation (BST; Lai and Wang 2013;
Yu et al. 2020; Wang et al. 2023). This enables the model to capture intricate patterns in
the data without becoming overly complex, mitigate boundary effects, and facilitate robust
smoothing of unevenly distributed data, such as sparse and irregular data on surface-based
complex domains. In addition, TSSS offers computational efficiency as a global estimation
method with an explicit model expression. Its efficiency stems from the need to solve only
a single linear system, which reduces the computational complexity and makes it suitable
for handling large datasets.

The remainder of this paper is organised as follows. Section 2 introduces the trian-
gulation of a sphere and the spline space defined on the triangulation. In Section 3,
we present the asymptotic properties of the proposed TSSS estimator, including con-
vergence rates and asymptotic normality. In addition, we introduce a bootstrap method
to effectively quantify the uncertainty associated with the TSSS estimators and to pro-
vide pointwise confidence intervals (PCIs). Section 4 outlines the implementation details
of the TSSS method, including the selection of triangulation, spline basis, and penalty
parameters. In Section 5, we present simulation studies to evaluate the finite sample per-
formance of the TSSS estimator for functions observed on the grid of the whole sphere
and functions observed on a complex spherical domain, and the uncertainty quantifica-
tion of the TSSS estimators. In Section 6, TSSS is applied to cortical surface fMRI data
and near-surface ocean-atmospheric data. Section 7 summarises the main contributions
of this paper and concludes with some remarks. Technical details are provided in the
Supplementary Materials.

2. Penalised spline estimators on triangulated spheres

Consider a set of observations {(6;, ¢;, Y;)}7_,, where Y; € R represents the response vari-
able, 8; € [0,z ] and ¢; € [0,27) denote the corresponding colatitude and longitude as
illustrated in Figure 2(a). It is worth pointing out that a sphere S? is a 2-dimensional
(2D) object, which, for convenience of analysis, is embedded in a 3-dimensional (3D)
Euclidean space R>. Consequently, it is equivalent to considering any point on S? in the
following form X; = (X1, Xj, Xi3) " € R, where ||X,-||§ = Xfl +X1.22 +Xi23 = 1. Suppose
{(X;, Y;), X; € Q) is an i.i.d. sample of size n observed on a domain Q. Here, Q can be
the entire unit spherical domain S? or a specific spherical patch or region within S2. We

assume the sample is drawn from the distribution of (X, Y), X € Q, through
Y= m(X,-) +J(Xf)€f, i=1,2,...,n, (1)

where m(-) and o (-) are the conditional mean and standard deviation functions, ¢;’s are
i.i.d random errors with mean E(¢;) = 0, and variance Var(¢;) = 1. In addition, we assume
that ¢; and X are independent for all i. The problem of interest is to estimate the unknown
mean function m(x) given observations {(X;, Y;),X; € Q}! ;.

2.1. Triangulation and spherical Bernstein-Bézier polynomials

Triangulation has been widely used for irregular 3D, spherical and planar domains due to
its ability to effectively approximate complex geometries and simplify computational tasks
(Lai and Schumaker 2007; Mark et al. 2008; De Loera et al. 2010). For domain Q C S?, a
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Figure 3. lllustrations of (a) a spherical triangle v, (b) tetrahedrons related to v, (c) a spherical cap Dy 14,
and (d) an inscribed cap of spherical triangle .

triangulation A is defined as a collection of N spherical triangles A = {ty,..., 1y}, such
that Q = Ljéiltf (Lai and Schumaker 2007). Each spherical triangle 1 := (v, v, v3) com-
prises the set of points in Q that lie within the region bounded by three circular arcs
(vi,vig1),i = 1,2,3. Here, v1, v, v3 are the three vertices of t, and v, is identified as v;.
These spherical triangles either share an edge (circular arc), share a vertex, or do not
intersect each other. Figure 2 provides an illustration of spherical triangulations.

Further, we define the spherical barycentric coordinates b;(v), b;(v), b3(v) for any
point v € S? relative to a nondegenerate spherical triangle T = (v{, vy, v3), such that v =
by (V)vy + by(v)vy + b3(v)v;. Note that b, (v) = vol(t,)/vol(T) is unique, where T, is
tetrahedron (0, v, vk+1, Vk+2), and T is tetrahedron (0, v}, v2,v3). Here, 0 represents the
centre of a sphere; see Figure 3. This holds for k = 1, 2,3, where vy = vs.

For integers d > r> 0, let C"(Q) denote the space of rth continuously differentiable
functions, and H 4 represent the space of homogeneous trivariate polynomials of degree
d given in Alfeld et al. (1996a). Following Baramidze et al. (2006) and Lai et al. (2008),
we define space of homogeneous spherical splines as Sj(A) = {s € C'(Q),s|x € Hg, T € A},
where s| refers to the polynomial piece of spline s restricted on triangle t. Using spherical
barycentric coordinates, we can construct a basis for H g, called spherical Bernstein-Bézier
(SBB) polynomials: B}jk(x) = ﬁ!ﬁbl (x)'bay(xYb3(x)X, i+ j+k = d, T € A. Consequently,
anys € Hjcanbeexpressedass(x) = > _, > +itk=d 7 i;kB;,k(x), where yi;k’s are referred
to as B-coefficients. Since y i;k’s are linearly independent, the dimension of H(t) is (d +
2)(d + 1)/2, as seen in Definition 13.17 of Lai and Schumaker (2007). Moreover, a stable
local basis B¢, ¢ € M can be constructed for S3(A), with M being the index set of the
SBB bases. We refer to the Supplementary Material Section S2.3 for detailed illustrations.

To describe the local properties of a domain on the sphere, we refer to the concept of
‘spherical cap’ as introduced in Neamtu and Schumaker (2004). A spherical cap of radius
rad associated with a point v € S? is defined as the set of all points that have a geodesic
distance to v at most rad. For a spherical triangle T € A, the inscribed cap the largest
spherical cap contained within 1, with its centre v; referred to as the incenter of t, and
its radius p, denoted as the inradius of t. The longest spherical edge of 1 is represented by
| t]; see Figure 3. Denote by |A| = maxycp || the triangulation size corresponding to the
longest spherical edge of all triangles in A. Let p, denote the smallest inradius in A, i.e.
and p, = mingcp p;. In addition, we define A as the area of the spherical triangle t. To
ensure that all triangles in A have comparable sizes, we assume A satisfies Assumption (C2)
described in Section 3 below.
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2.2. Penalised spline estimators

In this section, we present a penalised spline estimator of the regression function m(-) in
the model (1). To construct the penalised spline estimator, we first quantify the roughness
off : Q —» R.Let D*f := DilDLEDﬁsf be a partial derivative of degree || = i + j + kforf.
The homogeneous extension of f : Q — R of degree p, denoted as f, : R* — R, is defined
as

S = IxIPf(x/lIxl)),  x € R*\{0} (2

for any integer p, where || x|| is the Euclidean norm of x. We define energy functional of f
as

=3 /ﬂ D%, 2dp, 3)

Jee]=2

where z is Lebesgue measure on S? and the extended function Jp is restricted to spherical
domain € for integration. It is worth noting that any fixed value of p can be chosen as the
degree of extension. In our implementation, following Lai et al. (2008), we set p = 1 for
odd d and p = 0 for even d.

We propose the following Triangulated Spherical Spline Smoothing (TSSS) estimator for
m, defined as the minimiser of the following objective function:

n
) = argmingegr(a) D (Vi = sX)Y + AE(s), (4)
i=1

where S}(A) is the space of homogeneous spherical splines defined in Section 2.1. The
parameter A is a nonnegative tuning parameter that controls the trade-off between fit
and smoothness. Penalising the energy functional with A€ (s) for some 4 > 0 reduces the
roughness of the estimator, since higher values of £(s) indicate less smoothness.

Note that every function s € S} (A) defined on a spherical triangle T can be expressed as
a linear combination of the SBB basis functions B*(x) = (B;(x),¢ € M)T using the coef-
ficients y* = (y;,{ € M)T. Specifically, for any point x € T, we have s(x) = y*" B*(x).
Then, the energy functional £(s) in (3) can be rewritten as

c0=3 [{ooTrm@} =3 [rToE @)y ©

Teh Teh

where Of := (D%, la| = 2) is the second order derivative vector of f € S given in (2),
x®2 = xx'.

Since the spline coefficients of s € C"(/A\) need to satisfy some smoothness conditions
across each interior face of A, a smoothness constraint matrix M can be used to impose
the required smoothness. Specifically, My = 0 is imposed as a smoothness condition to
ensure that the estimated function is rth differentiable at all edges of A. In doing so, the
smoothness of the TSSS estimator can be controlled and achieved for different values of
r. For the spline function B(x) "y we have £(BTy) = y TPy, where Pisa {N(d + 1)(d +
2)/2} x {N(d + 1)(d + 2)/2} block diagonal penalty matrix and can be obtained from (5).
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Thus, one can estimate the spline coefficients via minimising

n
Yy = arg min,, Z{Yi — B(X;)"y}? + Ay TPy, subject to My = 0.

i=1

Then, we can obtain the TSSS estimator by 7i;(x) = BT (x)7.

3. Theoretical results

To discuss the asymptotics of the TSSS estimator, we first introduce some techni-
cal notation. Let X,, n > 1, be a sequence of random variables. We denote X, =
Op(an) if lim¢ oo limsup,,_, . P(IXx| > can) = 0. Similarly, we write X, = op(a,) if
limy_y 0 P(|X,| > can) = 0 holds for any positive constant c. In addition, we denote a, <
b, if there exist two positive constants ¢ and C such that c|a,| < |by| < Clay|- These nota-
tion are useful for discussing the rate of convergence and consistency of the TSSS estimator
below.

For any measurable functions f,fi,f, defined over the closure of Q C S?, we define
the theoretical and empirical inner products: {fi,f2)o = E{i(X)LX)}, {(fi.f2)na =
n~ 13 | fi(Xi)f2(Xi), respectively, with induced norms [|f o = {{f,f)a}/? and ||f [ no=
{{f.f)na}/%. We define the supremum norm ||f[|cc,0 = sup, .o |f(x)| and the LI-norm
Iflzs@ = {Jo f ®)19x} /4. Furthermore, denote (fi.fo)e = D rep [o(Ofip) T Of2pdat
where Of = (D%fp, |a] = 2)T refers to the second-order partial derivatives of f.

Lemmas 3.1-3.2 presented below provide the relationships between the inner products
and norms defined above. We first make some technical assumptions.

(C1) The density function of X, fx(-), is bounded away from zero and infinity over Q.

(C2) For any spherical triangle t within A, it is contained in a spherical cap of radius
1/6. The minimal determining set has a constant A = 3; see Supplementary Material
Section S2.5. Assume that triangulation A is g-quasi-uniform, that is, there exists a
positive constant g such that |A|/p; < p, forall T € A.

(C3) The number of triangles N and sample size n satisfy N =< n® for some C> 0 and
w € (0,1).

Assumptions (C1)-(C3) are standard in the nonparametric literature (Huang 2003; Lai and
Wang 2013; Yu et al. 2020). Assumption (C2) suggests the use of more uniform triangula-
tions with smaller shape parameters (Baramidze and Lai 2011). Assumption (C3) can be
handled via triangulation adjustment. Taking into account the fixed area of domain Q, we
can interchange N and |A|~2 in all results.

Lemma 3.1: Let {Bglgcpm be the basis for Sy(A). Let p1 =2 o }'E(l}Bg, 2=
ZéeM yf)Bg. Under Assumptions (C1) and (C3), we have

R, = sup (plspl)n,ﬂ - (Plst)n _ Op [(Nlog n)uzn_l/z}.

P1.02SH(D) lpillalp2lle
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Lemma 3.2: Under Assumptions (C1)-(C3), we have

V, = "p"wﬂ, IPllne # 0] = Op(vN),
pesi(2) Ipling

o £

V= sup | 1pla # 0] = 0,0)
pesi(a) LIPlng

3.1. Convergence rate of TSSS estimator

Before presenting the convergence results of the TSSS estimator, it is important to discuss
the construction of the spherical Sobolev space and its related norms. The convergence rate
of the estimator depends on the smoothness of the underlying regression function, and
understanding the properties of the spherical Sobolev space is essential for understanding
this relationship.

For an open set Q C R?, let Wg (Q) denote the classical Sobolev space as in Section 1.6
of Lai and Schumaker (2007), and ||f]| Wi (@) = SUPjaj—e [ID*f| L&) denote the classical

Sobolev norm. To work on an appropriate space for functions defined on Q C S?, we con-
sider the following Sobolev space on the sphere Wg Q) :={f:(ajf) o ; le Wg (f_lj), Vil
£ > 0, where f : Q — R is a spherical function; qéj_l :R? — §? is a smooth mapping;
Qj C R? is an open set and the support of qij_]; and a j* : §? - R is a mapping to indicate
the partition of S%. Thus, (ajf) and ¢; ! bridge R? and R, and induce spherical Sobolev
norm |[flleg0 = Zj I (aj*f) o qu_lllwg(ﬂ;} for £ > 0. In addition, spherical Sobolev semi-
norm is defined as |f|¢ 40 = Zm:{ |1 D*fe—1llza(), where || D*f¢—1]lLa(q) is the L9-norm
of the extended trivariate function f;— restricted to . When £ = 0, the seminorm |[flo,q.0

reduces to the L7-norm ||f || 14(q).
We introduce two additional assumptions.

(C4) The spherical mean function m € WEH(Q) for some integer 0 < £ < d,{ =
d(mod2).

(C4) The noise € satisfies lim,_; o, E{€?I(¢ > a)} = 0, and E|.€I.2 < vy, for some con-
stant 7 € (0,00), where v, € (0,00) is a constant depending on #. The standard
deviation function o (x) is continuous, and 0 < ¢, < infycg 0(X) < sup, g0 (x) <
C, < 00.

(C3’) The number of triangles N and sample size n satisfy N < n® for some C> 0 and
0 < w < n/(n + 2), where 5 is a positive and finite constant that is required to bound
the higher order moments of noise ¢ as in (C5).

Assumption (C4) specifies the degree of smoothness required for m (Baramidze and
Lai 2004, 2011). By characterising the smoothness of the function using the Sobolev space
and its norms, we can obtain the convergence rate of the estimator for different smooth-
ness levels of the regression function. It is worth noting that one of the challenges of using
homogeneous spherical splines is that spline spaces of even and odd degrees share only
the zero function due to the homogeneity of the basis. To address this limitation, our pro-
posed method employs a simultaneous use of two spaces, S}(A) and Sj;_ | (A), with one
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degree even and the other odd. This approach ensures that, regardless of the parity of the
unknown ¢, the assumption can be satisfied. Assumption (C5) places constraints on the
behaviour of the noise and the standard deviation function, which helps to establish the
asymptotic normality of the TSSS estimator (Huang 2003; Lai and Wang 2013).

Define s;,, and s;. as penalised spline estimators based on {m(X;)}!, and
{o (Xj)e:}L,, respectively. Let B = 37 | B(X;)B(X;) ", then

sim(®) =BE) Y ¥ i = B+ P) T D BX)m(Xi), (6)
i=1

52,60 =B®) 707, = B+ 2P)7 D BX)o (Xje;. ()

i=1

To evaluate the bias and variance of the proposed estimator, we decompose the estimation
error as follows: 7, (x) — m(x) = {s3m(x) — m(x)} + s, (x), where the first term repre-
sents the size of bias and the second term represents the size of variance in the estimation.
The following propositions provide bounds for the order of the bias and variance terms.

Proposition 3.1: Under Assumptions (C1)-(C4), if d > 3r+ 2 and A is a spherical tri-
angulation such that |A| < 1/6, then we have the following uniform convergence rate:
lIst;m = mllcoa = Op{an™'N*2|mly 0,0 + (1 + An~'NYH)N"ED2mle, o o).

Proposition 3.2: Under Assumptions (C1), (C2), (C3’) and (C5), Isiellzq) =
Op(n~12N2) and |Isj¢ |l = Opin~Y/?(Nlog n)/2 + An=3/2N3}.

Combining Propositions 3.1 and 3.2, we can obtain the following convergence rates
of the TSSS estimator in terms of both the L? and supremum norms in Theorem 3.1.
These convergence rates are important for assessing the performance of the TSSS estima-
tor under different smoothness assumptions and for guiding the choice of the triangulation
and spline basis functions.

Theorem 3.1: Under Assumptions (C1), (C2), (C3’), (C4) and (C5), we have

. AN3/2 AN?/2\ N
llm; —mlp2) = Op { Iml2000 + (1 + T) N~ mp 00 + o

n

IN3/2 5/2

AN _
" |m|2,oo)ﬂ + (]. + T) N (f+1}/2|m|£+1,w,n

Nlogn AN?
+y/ " +_n3/2'

According to Theorem 3.1, the convergence rate of the TSSS estimators depends on
the sample size, the triangulation size and the roughness penalty parameter, as well as the
characteristics of the estimated underlying signal. The first and third terms in the order of
m; — ml|2 (@) and ||/, — m||c,q show the bias brought by the roughness penalty. When
the tuning parameter is small enough, the second term in the order of ||; — m||;2(q)

Im; — mlloco = O, I
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and ||, — m|«q represent the bias when approximating an arbitrary function m by a
spherical spline. The last two terms are the estimation variance generated from random
noise.

Theorem 3.1 also provides a guideline on how to choose triangulation. As the sample
size increases, a finer triangulation can be considered for a more accurate estimation of the
mean function. In addition, a finer triangulation is needed when there are rapid changes
in the mean function or when the domain is highly curved or complex. A more detailed
discussion of triangulation selection is given in Section 4.

It can be demonstrated that the TSSS estimator achieves the optimal convergence rate
under certain regularity conditions. As indicated in Stone (1982), the optimal global
approximation rate for a nonparametric estimator can be expressed as follows: for the L1-
norm (0 < g < 00) of the approximation error, therateis n™"" , where r* = p*/(2p* + d*),
for a p*-times differentiable function of a 4*-dimensional measurement variable; for g =
00, the optimal convergence rate becomes (n~! logn)"". In the case of our problem, where
x € Q C S?%, we have d* = 2. Furthermore, the mean function m € Wg“(zi\) implies that
itis p* = (£ + 1)-times differentiable. Therefore, the optimal global approximation rate is
n~(E+D/Q6+4) when 0 < g < 00, and (n/log n)~¢+1D/(24+4) when g = 0o. When 4 = 0,
the TSSS achieves the optimal convergence rate in the L?-norm when the number of tri-
angles satisfies condition N =< n'/(*+2) and achieves the optimal convergence rate in the
supremum norm when N = (n/ log n)'/+2, When 4 > 0, the optimal convergence rate
in the L?-norm is achieved under the conditions 1 = O{n/?*9} and N < n'/(+2)_ Fur-
thermore, when A = o{n®/?*4} and N < (n/log n)"/¢+2), the TSSS estimator achieves
the optimal convergence rate in the supremum norm.

3.2. Asymptotic normality

To derive the asymptotic distribution of the TSSS estimator, we further assume the
following:

(C3”) The number of triangles N and sample size n satisfy N =< n® for some C > 0 and
1/(£ +2) < w < n/(n + 2), where 5 is a positive and finite constant that is required
to bound the higher order moments of noise ¢, see details in (C5).

(C6) The roughness parameter satisfies 1 = o(n'/2N~! A nN~2).

Assumption (C3”) extends Assumption (C3’) in Section 3.1 by imposing a lower bound
on the number of spherical triangles, which depends on the order of differentiation
of the underlying mean function. This extension aligns with similar assumptions dis-
cussed in the literature for univariate and bivariate cases (Li and Ruppert 2008; Lai and
Wang 2013). Meanwhile, Assumption (C6) requires a smaller smoothing parameter 1,
effectively reducing bias by undersmoothing.

Theorem 3.2 below states the asymptotic normality of the proposed TSSS estimator.

Theorem 3.2: Under Assumptions (C1), (C2), (C3”), (C4), (C5) and (C6), as n — 00, for

each x € Q, [Var{mi, (x)|X}]~ V{71, (x) — m(x)} 4 N(0, 1), where X is the collection of
observed Xy, ..., X,.
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Theoretically, the above asymptotic distribution result can be used to construct asymp-
totic confidence intervals. However, it is challenging to obtain the exact form of the
standard error for general TSSS estimators due to the characteristics of the trivariate spline
basis functions. To address this issue, we propose using a wild bootstrap method (Mam-
men 1993; Hall and Horowitz 2013) to estimate standard errors and provide PClIs, as
outlined in Algorithm 1. In this algorithm, ; has a mean zero and enforces ¢/ to have
a mean zero. In addition, d; introduces a controlled degree of randomness to the bootstrap
residuals, thereby enhancing the convergence rate as demonstrated by Mammen (1993) in
their Table 1.

Furthermore, based on the bootstrap method, we construct PCIs for the mean function
m(x). In particular, an asymptotic 100(1 — a)% PCI is given by

my(x) £ z1—a/258(X), (8)

where z1—/7 is the (1 — a/2)th quantile of the standard normal distribution, 53(x) is the
estimated sample standard error of the mean estimator computed from the B bootstrap
estimators of the mean function m(x); see Step 5a of Algorithm 1. Alternatively, we can
also compute the PClIs for m(x) based on bootstrap percentiles:

(La/2(x), Ugy2(x)), 9

where L¢4/2(x) and Uzg/2(x) are the {100 x (a/2)}th and {100 x (1 —a/2)}th per-
centiles of the bootstrap estimators of m(x); see Step 5b of Algorithm 1.

In Algorithm 1, since the bias of 71, (x) is not adjusted, the proposed PCI formulas (8)
and (9) generally do not produce adequate confidence intervals for for m(x) unless the bias
of m (x) is negligible relative to its variance. In practice, one can make the bias negligible by
selecting a finer triangulation or larger polynomial degree d during the spline approxima-
tion, which helps reduce the bias to a negligible level. The average coverage percentage of
the bootstrap PCls is evaluated and reported in the simulation studies detailed in Section 5.

4. Implementation details

The selection of triangulation, spline basis, and penalty parameters is a critical step in
the proposed TSSS method. In this section, we discuss the strategies for selecting these
parameters systematically and effectively.

4.1. Selection of triangulation

Triangulation, which constructs a mesh that accurately captures the shape of the domain, is
a critical step of the proposed TSSS method. Several factors influence the goodness level of
triangulation required to accurately estimate the regression function. First, the complexity
of the domain plays a significant role in determining the fineness of triangulation. Highly
curved or complex domains typically require finer triangulation to capture the underly-
ing pattern of the function accurately. However, constructing a suitable triangulation for a
complex domain can be challenging and generating a fine triangulation can be computa-
tionally complicated and time-consuming. Usually, triangulation algorithms automatically
generate the interior vertices of the triangulation. Our triangulation algorithm is able to
take any given vertices (both interior and boundary vertices) to form a good triangulation.
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Algorithm 1: Bootstrap estimation of TSSS estimator’s standard error and PCls
for m(x).

Input: {(X;, Y;)},, significance level a. Output: The standard deviationsp(x) of
TSSS estimator 7 (x); and 100(1 — a)% PCI for m(x).

Step 1: Generate TSSS estimator 7, and calculate residuals {&; = Y; — 7, (X;)}L,.

Step 2: Generate bootstrap samples of residuals {¢} = di€;}}_, where

0 = { 1_2ﬁ amp; w'P'SJqoﬁ
—1+2 2 amp; w.p.—s_m 2,
and define Y} = ?,v +¢€;.
Step 3: Estimate TSSS estimator #* from {(X;, Y;}L,.
Step 4: Repeat Step 2 and Step 3 for B times, and denote the TSSS estimators using

bootstrap samples as {ﬁ;}gzl. Calculate the standard deviation of 7i at x € Q as

B 12
?B(X) = [Z E{QZ(X) —m* (X)}Z] i

b=1

where 7% (x) = B~1 37} _, m* ().

Step 5a: Generate 100(1 — a)% PCI for m(x) by #i; (x) % z1—q/258(x).

Step 5b: Generate 100(1 — a)% PCI for m(x) by (L, 2(x), Ug/2(x)), where L, /5 (x)
and U, /;(x) are the 100(a/2)th and the 100(1 — a/2)th percentiles among
{my}3_,, respectively.

Second, the characteristic of the underlying function is an essential consideration when
selecting the goodness level of triangulation. A function with rapid changes or highly
localised features may require a finer triangulation to capture these features accurately.
However, to establish a function-dependent triangulation, it is often necessary to have
knowledge of the true signal at a substantial number of locations across the domain of
interest, which may not be readily available in practical applications.

Finally, the sample size n can also influence the appropriate goodness level of triangu-
lation. As n increases, more data points become available and practitioners can consider
finer triangulation and/or increase the degree of spline space to obtain a more accurate
estimation of the mean function. A practical rule of thumb we suggest is to ensure that, on
average, each triangle contains at least {(d + 2)(d + 1)/2} data points to support reliable
estimation.

Ultimately, the selection of triangulation should balance accuracy with computational
efficiency. Although it is essential to construct a suitable triangulation for surface-based
data analysis, practitioners can have some flexibility without sacrificing estimation per-
formance. Assumption (C3) in Section 3 indicates that the choice of triangulation has a
minimal effect on the performance of the TSSS estimator as long as the triangulation is fine
enough to capture the underlying pattern. The TSSS estimator can accurately estimate the
regression function even with relatively coarse triangulations, provided that the regression
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function does not oscillate much, e.g. a linear polynomial. More complicated regression
functions require more complicated triangulation to approximate them well. Therefore,
practitioners need to choose an appropriate level of triangulation that accurately captures
the underlying pattern of the function without being too computationally expensive if the
regression to be estimated is not very complicated.

In practice, practitioners can make use R packages “Triangulation’ (Wang and Lai 2019)
and INLA’ (Lindgren and Rue 2015), and MATLAB algorithm ‘DistMesh’ (Persson and
Strang 2004) for 2D planar patches treating the boundary of a spherical domain as the
boundary of a planar domain C [0,7 ] x [0,2x7), while ensuring boundary points that
wrap around the sphere are identical, see triangulation examples constructed using “Tri-
angulation’ in Simulation Study 2 in Section 5.2. Practitioners can also utilise the Python
package ‘Differentiable Surface Triangulation’ developed in Rakotosaona et al. (2021) for
surface-based domains. Another simple approach is to create a uniform triangulation
throughout the sphere and select only the spherical triangles that contain observations
while ensuring that the collection of triangles forms a triangulation that satisfies the
definition of triangulation in Lai and Schumaker (2007). Examples of such triangulations
are illustrated in Section 6.

4.2. Selection of spline basis functions and the roughness penalty parameter

Compared to the selection of triangulation, choosing the spline basis is generally easier. The
parameters for the spline space S}(A), namely d and r, can be predetermined or selected
by the user. As demonstrated in Simulation Study 1 in Section 5.1, a higher degree of spline
basis d leads to a more flexible estimator, but may also result in overfitting. On the other
hand, a lower degree of spline basis may lead to underfitting. In practice, the choice of d
and r is closely tied to the intended interpretation of the estimated function. If the goal
is to enhance the signal-to-noise ratio for visualisation or to suggest a simple parametric
model, then a slightly oversmoothed function with a subjectively chosen parameter may be
appropriate. However, if the focus is on accurately estimating the regression function and
preserving local structures, then a slightly under-smoothed function may be more suitable.

In practice, we select the degree of spline basis d and the smoothing penalty parameter
A based on cross-validation (CV), such as K-fold CV (Lai and Wang 2013; Mu et al. 2018),
which is a widely used technique for model selection. In K-fold CV, the data is randomly
partitioned into K folds, with each fold used once for validation while the remaining folds
train the model. The CV score is then computed as CV(d, 1) = > {Y; — ﬁ;k[i] X)),
where k[i] is the index of the fold that contains the ith observation and ﬁ;k[i] is the estimate
of m given A and the data without the k[i]th fold. The value of d and A that minimises
CV(d, 1) is then selected. We adopt the 5-fold CV approach throughout our numerical
studies.

5. Simulation studies

This section presents an empirical evaluation of the proposed TSSS method and com-
pares its performance with three alternative methods: ridge kernel regression (Kernel) (Cao
et al. 2013), thin plate splines on the ordinary sphere (TPSOS) (Wahba 1981, 1982), and
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tensor product splines (Lyche and Schumaker 2000; Wood 2006) using spherical coor-
dinates as input (Tensor-Sphere) through three simulation studies. Simulation Study 1
investigates the performance of the TSSS for functions defined on the whole sphere and
explores the effects of different triangulations and smoothing parameters. Simulation Study
2 examines the performance of the TSSS in addressing the ‘leakage’ problem and han-
dling complex domains. Simulation Study 3 focuses on the performance of the proposed
bootstrap variance estimator for the TSSS estimator.

We assess the performance of our simulation under various signal-to-noise ratios (SNR).
When considering a fixed standard deviation, we define SNR as the ratio of the sample vari-
ance of {m(x}-)};igl to 02 (Ruppert 2002), where {x),-};fl are grid points defined on domain
Q. For the varying standard deviation function o (x), we define the SNR as follows:

Jo Var(m)dx _ AgVar(m) Ny Var(m)
fﬂ o(x)2dx fn o (x)2dx Ng_l Z;El o (x))? ’

where \‘J";r(m) represents the sample variance of {m(x;) };E], and Ag denotes the area
of Q. In general, the SNRs in the simulation studies vary from 2 to 8; see Table S.1 in
Supplementary Material for the specific SNRs in each simulation setting.

Throughout all numerical experiments, the TSSS method is implemented in MATLAB,
and the smoothness parameter r is fixed to be one while the penalty parameter 1 is selected
by K-fold CV introduced in Section 4.2. The Kernel, TPSOS, and Tensor-Sphere are con-
ducted using the R package ‘mgcv’ (Wood 2003, 2017) based on the functions magic (),
s () and te (), respectively, along with gam (), and 1 is selected by generalised cross-
validation (GCV) for the competing methods. In addition, for TPSOS, we choose m = 2
to penalise the second derivative smoothness. For both TPSOS and Tensor-Sphere, we fix
the dimension for the smooth term as k = 100 and k = 64, respectively. These dimensions
are selected to align closely with the dimension utilised in the TSSS method to ensure a fair
comparison.

5.1. Simulation study 1: functions on whole sphere

In this simulation, we generate n design points X; = (Xn,Xiz,st)T e S? with |Xi|| = 1,
fori=1,...,n. We generate the response variable Y; according to the following model:

Yi = m(X;) + 01(Xj)¢i, € i"{;dN(O, 1), i=1,...,n (10)

where m(x):S? — R represents the mean function, and we consider two mean
functions: (i) m;(x) = -2+ 1/2{x§ + exp(ng) + exp(ng) + 10x1200x3}; (ii) my(x) =
2.5{(x; — 1)(x; — l)xg} — 3. The illustration of m; and m; is presented in Figure 4(a,b).
We generate X;’s on n = 400, 900, and 2500 random locations, i.e. irregularly spaced loca-
tions, on a unit sphere for training and evaluate the performance of the estimators at
N, = 10,201 grid points {x; ;El on the sphere for each simulation setting, which is fixed
across all 100 replications. We consider both the constant standard deviation o;(x) = o
(6 = 0.50,0.75), and the heterogeneous standard deviation function o (x), which varies
in different spatial locations. Specifically, we define o (x) = ¢, {1 — (x% + x% + 1.5x§) /10},
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Figure 4. Plots of the true mean and standard deviation functions in simulation studies, shown from two
viewpoints for each: (a) m;|S? with triangulation (N = 32); (b) m>|S? with triangulation (N = 32); (c) m;
evaluated on sparse training locations {x;}}_, that are constrained to observable region x;; + xi < 1.2;
(d) o1|S? with ¢, = 1; and (e) m3|Q with triangulation (N = 58); and (f) 02| Q with ¢, = 1.

where ¢, takes values of 0.50 and 0.75. A visual representation of the standard devia-
tion function oy (x) can be found in Figure 4(c). In addition, we consider a case where
sparse training locations {x;}}_, are constrained to the region x;; + x;; < 1.2 on the sphere,
denoted as Sfpam = {(xi1,Xi2, X;3) € S? : xj; + x;3 < 1.2}. The mean function is given by
m3(x), and we refer to this scenario as m; |S§Pme; see Figure 4(c) for a sample set of sparse
training locations {x;}}._;.

5.1.1. Comparative analysis of TSSS with competing methods

In this section, we conduct a comparative analysis between the proposed TSSS method and
the Kernel and TPSOS methods. To evaluate the performance of different estimators, we
use two metrics: the predicted mean squared error (PMSE) and the training mean squared

error (TMSE). The PMSE is calculated on a set of grid points {x}'};\gl on the sphere, and

is defined as N 1 Z;El{m(x}') — 7i(xj)}?, where m and 7 are the true and generic esti-
mated functions. TMSE is calculated at the training data locations {X;}}._; and is defined
asn~ 1> {m(X;) — m(X;)}2. In addition, we report the dimension of the design param-
eters (‘Dim’) and the average computation time per replication (‘Time’), measured in
seconds.

Due to similar results, we only report the results in the heterogeneous standard devia-
tion setting in Table 1 and defer the results in the constant standard deviation setting to
the Supplementary Material. Table 1 reports the estimation results for m;|S?, m,|S? and
mﬂSfpme when the errors are heterogeneous with varying standard deviation function:
o1(x) = ¢, {1 — (xf + x% + 1.5x§)/10}. For TSSS, we utilise the triangulation mesh with
N = 32 triangles, illustrated in Figure 4, along the spherical spline basis based on either a
fixed degree (d = 3) or a degree selected via CV (dcy), as described in Section 4.2.

In Table 1, it is evident that at a lower noise level (¢ = 0.5), TSSS with degree d = 3
outperforms others with the smallest PMSE and TMSE across all sample sizes, suggesting
its precision robustness. For a higher noise level (¢ = 0.75), the TSSS with CV-selected



Table 1. Simulation Study 1 results for different estimation methods on mean functions m;|S?, m;|S? and mﬂSfPam with varying standard deviation function
o1(x): the average (and standard deviations) of predicted mean squared error (PMSE), training mean squared error (TMSE), dimension of the design parameters

(Dim), and computation time per iteration in seconds (Time).

my |52
n = 400 n = 900 n = 2500
Cox Method PMSE TMSE Dim Time(s) PMSE TMSE Dim Time(s) PMSE TMSE Dim Time(s)
0.5 Kernel 22,61 (4.6) 19.71 (3.9) 400 4901 10.29 (21) 9,95 (2.1) 900 8325 5.28 (0.8) 517 (0.7) 2500 23207
TPSOS 25.59 (47) 23.11 (4.2) 100 2 13.33 (2.2) 12.72 (2.1) 100 4 626 (1.0) 6.12 (0.9) 100 8
Tensor-Sphere 50.41 (11.4) 38.64 (6.7) 64 0 39,18 (4.5) 33.70 (4.0) 64 0 3597 (1.9) 32.20 (2.3) 64 0
TS8S,d = 3 21.78 (45) 19.43 (3.9) 57 3 12.97 (2.0) 12.15 (1.9) 57 3 7.85 (0.9) 7.58 (0.8) 57 3
TSSS, dey 23.07 (6.0) 20.44 (4.8) 102 19 1119 (2.4) 10.58 (23) 129 24 456 (0.9) 448 (0.8) 151 41
0.75 Kernel 4727 (9.9) 4151 (8.4) 400 4893 20.04 (4.7) 19.52 (4.6) 900 8252 B.89 (L.8) 8.74 (1.7) 2500 23583
TPSOS 45.72 (8.9) 4257 (8.5) 100 2 2455 (4.4) 23.75 (42) 100 3 11.50 (1.9) 1132 (1.9) 100 8
Tensor-Sphere 7420 (13.1) 6024 (10.0) 64 0 52,10 (6.7) 45,51 (5.7) 64 0 4124 @7 37.08 (2.9) 64 0
TS8S,d = 3 39.82 9.3) 36.23 (8.1) 57 3 2272 (4.3) 21.50 (4.1) 57 3 11.94 (2.0) 11.63 (1.9) 57 3
TSSS, dev 39.66 (10.4) 36.08 (8.8) 110 19 2119 (4.8) 20.32 (4.7) 115 23 9.92 (1.9) 9.74 (1.8) 132 41
m3|5?
n = 400 n = 900 n = 2500
Method PMSE TMSE Dim Time(s) PMSE TMSE Dim Time(s) PMSE TMSE Dim Time(s)
0.5 Kernel 21.26 (5.1) 18.72 (4.3) 400 4356 8.60 (2.3) B33 (2.3) 900 9771 311 (0.8) 3.07 (0.8) 2500 26619
TPSOS 22.18 (47) 20.82 (4.3) 100 9 11.57 (2.4) 1112 (22) 100 19 5.42 (0.9) 529 (0.9) 100 39
Tensor-Sphere 25.68 (6.9) 19.94 (4.5) 64 0 12.81 (3.4) 10.40 (2.3) 64 0 5.48 (1.0) 472 (0.8) 64 0
TS8S,d = 3 16.73 (4.2) 15.37 3.7) 57 3 8.61 (2.0) B27 (1.9) 57 3 3.59 (0.9) 3.55 (0.3) 57 4
TSSS, dey 1819 (5.6) 16.69 (4.9) 86 21 891 (2.1) 857 (2.0) 71 29 3.42 (0.9) 3.39 (0.8) 60 49
0.75 Kernel 46.94 (109) 4154 (9.3) 400 4355 19.30 (5.3) 18.70 (5.3) 900 9763 6.99 (1.9) 6.90 (1.8) 2500 26642
TPSOS 4041 (9.4) 38.67 (8.8) 100 8 21.39 (4.7) 20.74 (4.5) 100 18 9.94 (L.8) 9.76 (1.8) 100 40
Tensor-Sphere 4797 (12.6) 38.93 (9.1) 64 0 2451 (6.4) 2041 (4.7) 64 0 10.42 (21) 9.04 (1.8) 64 0
TS8S,d = 3 36.40 (9.3) 33.58 (8.2) 57 3 19.04 (4.5) 18.30 (43) 57 3 7.96 (2.0) 7.88 (2.0) 57 4
TSSS, dey 3477 (10.1) 3251 (8.9) 80 21 16.47 (4.7) 1592 (4.5) 64 28 6.76 (1.8) 6.71 (1.8) 61 48
m2|8parse
n = 400 n = 900 n = 2500
a Method PMSE TMSE Dim Time(s) PMSE TMSE Dim Time(s) PMSE TMSE Dim Time(s)
0.5 Kernel 26.04 (4.6) 17.71 (3.3) 400 2390 10.99 (3.6) 7.92 (1.8) 900 5468 4.04 (1.9) 299 (0.8) 2500 15984
TPSOS 21.05 (5.1) 20.17 (4.7) 100 1 10.67 (2.2) 10.47 (1.9) 100 4 474 (0.9) 471 (0.9) 100 6
Tensor-Ssphere 26.79 (7.5) 19.80 (4.5) 64 0 12.37 (2.9) 10.04 (2.0) 64 0 5.49 (1.2) 467 (0.9) 64 0
TS8S,d = 3 17.73 (4.7) 14.88 (3.6) 57 2 9.55 (2.9) 7.84 (1.8) 57 2 433 (1.3) 3.50 (0.8) 57 2
TSSS, dey 18.49 (5.0) 15.80 (4.3) 80 13 9.59 (2.6) B.18 (1.7) 75 13 3.81 (1.0) 3.37 (0.8) 67 18
0.75 Kernel 50.40 (9.8) 38.54 (7.3) 400 2390 2351 (6.1) 17.63 (4.1) 900 5542 B.93 (3.4) 6.70 (1.7) 2500 16198
TPSOS 38.49 (10.1) 37.48 (9.5) 100 2 19.84 (4.4) 19.61 (3.9) 100 4 B.98 (L.8) 898 (1.8) 100 6
Tensor-Sphere 48.83 (13.1) 38.58 (9.4) 64 0 2339 (5.6) 19.65 (4.1) 64 0 10.36 (2.3) 897 (1.8) 64 0
TS8S,d = 3 38.44 (102) 32.41 (7.9) 57 2 21.17 (6.6) 17.36 (4.0) 57 2 9.61 (2.8) 7.75 (1.8) 57 2
TSSS, dey 36.87 (10.1) 3244 (8.8) 87 13 16.70 (5.2) 1492 (4.0) 66 12 7.21 (1.9) 6.49 (1.6) 61 17

The results for TSSS are based on a triangulation with N = 32 triangles and spline basis functions with either a fixed degree d = 3 ora CV-selected degree d-y . TPSOS and Tensor-Sphere have dimensions k = 100 and k = 64, respectively. Kernel

method results have only 30 iterations instead of 100 due to computation inefficiency. A factor of 107 scales the reported average (and standard deviations) of PMSEs and TMSEs. Results for my IS2 and m3 IS2 with constant standard deviations can
be found in Table 5.2 in Supplementary Material.
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degree dcy consistently exhibits strong performance, often achieving or competing for
the lowest errors, reflecting its effective handling of increased variability. Conversely, the
Tensor-Sphere shows relatively poor performance, with the highest PMSE and TMSE val-
ues under both noise conditions, marking it as the least accurate. The kernel and TPSOS
generally achieve moderate error rates, neither excelling nor performing the poorest across
the different scenarios. These patterns remain consistent as the sample size increases from
400 to 2500, indicating that the relative performance of these methods is stable across
different amounts of data.

Regarding computational efficiency, as indicated in Table 1, the Kernel method is the
most time consuming among the methods considered. Comparatively, the Tensor-Sphere
stands out due to its minimal computational time. The TSSS with a fixed degree d and
the TPSOS exhibit similar computational performance. The TSSS with a CV-selected
degree d exhibits a slightly slower computational pace, as anticipated, but remains signifi-
cantly faster, by hundreds or thousands of times, than the Kernel method. Therefore, TSSS
achieves a favourable balance between estimation accuracy and computational efficiency
for functions defined in the entire sphere.

Lastly, we observe that the performance of TSSS under the sparse scenario, m; |S§Pme,
are very similar to those of the non-sparse scenario, demonstrating the stability of the TSSS
estimators against sparsity of observed locations. The advantages of estimation accuracy
and computational efficiency of TSSS still hold with sparse training locations, as long as
the trend of mean functions are relatively smooth in the unobserved sub-domains.

5.1.2. Impactofdand A, and CV for d and A on TSSS estimation

This section investigates the effect of degree d and triangulation A on the estimation per-
formance of the TSSS. We also investigate the behaviour of CV-selected d, 4, and their
impact on TSSS. Specifically, we first investigate the impact of d and A on TSSS under dif-
ferent o and # settings. In addition, we fix A and select the optimal combination of d and
the penalty parameter A through the CV method and study the behaviour of CV-selected
dcv compared to fixed d’s.

The results in Figure 5 reveal that different combinations of d and triangulation can lead
to varied TSSS performance. Firstly, when d is small, a finer triangulation improves PMSE;
see d = 2. In contrast, for larger d, a finer triangulation may not necessarily improve the
PMSE, as observed in the cases of d = 3, 4, 5. This is because a larger degree d and the
number of triangles N can lead to over-parameterisation of the mean function. Secondly,
when d is too small for a fixed triangulation, the mean functions may not be fully rep-
resented, leading to underfitting. Thirdly, as the sample size n increases, both d and the
fineness of the triangulation may need to be adjusted to achieve optimal estimation per-
formance. When noise is small, the estimated mean function can better approximate the
true mean function, allowing a higher degree of spline basis d and a finer triangulation to
be used without overfitting. However, the choice of d and N should still be balanced with
computational efficiency, as a very high d and a very large N can lead to high computational
costs. In general, a careful trade-off between accuracy and computational efficiency must
be considered when choosing the appropriate d and N for a given sample size and noise
level. The reader is referred to Section 4 for a detailed discussion.

Next, we assess the performance of the TSSS estimator employing spline basis func-
tions with the selected degree dcy. As before, we consider simulation settings with various
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combinations of parameters: n = 400, 900, 2500;d = 2, 3,4, 5;¢; = 0.50,0.75;and N = 8,
32, 128, applied to m;|S?, m;|S? and mﬂSfpm. For each setting, we simulate {(Xj, Y;)}1_,
and compute the TSSS estimator using dcy. This procedure is repeated 100 times for each
setting. The bar graphs in Figure 5 and columns f;.,” in Table 2 illustrate the empirical
frequency of dcy in various settings. Table 2 also presents the PMSE of the TSSS estima-
tors ford = 2, 3,4, 5and dcy. From the table and bar graphs, for fixed n, &, as N increases,
smaller dcy’s are selected. This is consistent with our previous discussion on the balance
between d and N. In addition, when n and N are fixed, as ¢ increases, a smaller dcy tends
to be selected. This trend is reasonable because a higher d tends to pick up more noise,
which does not benefit the overall fitting. Furthermore, compared to estimators with fixed
d = 2, 3, 4, 5, the estimator with dcy is among the best in terms of PMSE. Therefore, the
proposed procedure for selecting d and 4 by CV is validated. The results of the sparse sce-
nario, m, |S§pm, closely resembles non-sparse scenarios, demonstrating the stability of the
TSSS estimators against sparsity of training locations.

5.2. Simulation study 2: functions on irregularly shaped spherical patches

In this simulation study, we generate the response variable Y; from the following model:

Y= m3(Xf) =+ O’z(Xf)Gf, € i.i'dN(O, 1), i=1,...,n (11)

with mean function m3 : Q — R and varying standard deviation function g;3(x) = 1 —
(1.5(x1 + 1) 4+ x2 + x2)/30 defined on irregularly shaped spherical patch Q. Specifi-
cally, for x € Q, we define m3(x) = m3(x’), where m3(x) = (0.087 + 0.84 + x)I(x; >
—0.84,x3 > 0) — (0.087 + 0.84 + x1)I(x; > —0.84,x3 < 0)—0.16 arctan{x3/(0.84+x)}

I(x; < —0.84); the spherical coordinates of x, (8, ¢), and the spherical coordinates of ¥/,
(&', "), satisfy 8’ = 6, ¢’ = ¢ + 8/6. This choice of m3 allows us to test the performance of
the methods for functions with complex patterns on non-standard spherical domains. See
Figure 4 for the mean and standard deviation functions. We generate X;’s at n = 400, 900
and 2500 random locations in the complex domains for training. The SNRs of Simulation
Study 2 are reported in Table S.1.

For TSSS, since mj is not wildly oscillating, we select a spline basis based on d = 2 and
a triangulation mesh with 56 triangles. The triangulation is constructed by mapping the
spherical domain to the planar domain, triangulating the planar domain using TriMesh
from R package “Triangulation’ (Wang and Lai 2019), and mapping the planar triangulation
back to spherical coordinates. This procedure would require the user to provide boundary
points and interior holes’ boundary points and adjust the identical boundary points that
wrap around the longitude or co-latitude. This practice is suitable and recommended for
simple domains due to the nice properties of TriMesh function. Refer to Figure 4(d) for
the triangulation.

Then, we calculate the PMSE by evaluating the performance on 11,986 grid points
for m3|€2, with results shown in Table 3. The table shows that TSSS, both with a fixed
degree (d = 2) and a cross-validation-selected degree (dcy), outperforms TPSOS, Ker-
nel and Tensor-Sphere in terms of both PMSE and TMSE across all settings. TSSS also
demonstrates significant computational benefits over the Kernel approach. It achieves a
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Table 2. Performance comparison of TSSS Estimators for m;[S2 and m;,|S? in Simulation Study 1: dcy
vs. fixed degreed = 2,3,4,5.

my |82
N=28 N=32 N =128
n = 400 n=90 n=2500 n=400 n=90 n=2500 =n=400 n = 900 n = 2500
¢ d PMSE fi., PMSE fi., PMSE fy., PMSE fy., PMSE fy, PMSE fy., PMSE fi., PMSE fi, PMSE fi.,
05 2 33335 0 32290 O 31850 O 13450 0 12903 0 12559 0 3084 20 2463 0 2080 O

(7.82) (2.73) (1.29) (4.93) (2.21) (0.88) (4.45) (1.55) (0.66)
3 2048 55 1243 30 820 0 2178 54 1297 24 785 1 2144 65 1221 90 596 99
(3.78) (1.81) (0.60) (4.48) (1.99) (0.89) (4.33) (1.99) (0.93)
4 2095 39 1124 63 521 62 2405 45 1311 76 601 99 3136 11 1862 10 962 1
(5.50) (2.18) 0.93) (5.18) (2.15) (0.94) (5.37) (2.31) (1.13)

5 2674 6 1257 7 515 38 3922 1 2074 0 928 0 4833 4 3009 0 1537 0
(5.59) (2.31) (0.95) (7.09) (2.91) (1.28) (7.18) (3.23) (1.52)
dey 2179 - 1204 - 529 - 2307 - 1119 - 456 - 2395 - 1134 - 479 -
(4.95) (2.36) (0.96) (6.02) (2.44) (0.85) (5.83) (2.16) (0.89)
0752 33935 0 32640 0 31974 0 14269 0 13300 0 12703 0 4230 46 3063 10 2320 0

(9.91) (4.08) (1.72) (8.59) (3.82) (1.44) (8.87) (3.19) (1.29)

3 3493 74 2003 56 11.10 22 39.82 44 2272 40 1194 21 4579 35 2661 87 13.11 100
(7.84) (3.72) (1.29) (9.25) (4.32) (2.04) (9.54) (4.45) (2.06)

4 4056 23 2079 41 963 70 5258 56 2905 59 1339 79 6878 17 4131 3 2146 0
(11.16) (4.75) (1.95) (11.34) (4.80) (2.10) (11.94) (5.18) (2.55)

5 5564 3 2637 3 1076 8 8611 0 4600 1 2072 0 10621 2 6679 0 3426 0
(12.20) (4.90) (2.08) (15.65) (6.46) (2.87) (16.06) (7.26) (3.41)
dey 3685 - 2078 - 1012 - 3966 - 2119 - 992 - 4101 - 2026 - 899 —
(9.13) (4.19) (1.94) (10.42) (4.76) (1.90) (10.56) (5.06) (1.66)
my|8?

N=38 N =32 N =128

n=400 n=90 n=2500 n=400 n=90 n=250 n=400 n=900 n=2500
d PMSE fi, PMSE fi,, PMSE fy,, PMSE fy., PMSE fi, PMSE fi., PMSE fi, PMSE fi., PMSE fi,
05 2 12016 0 11500 0 11218 0 11835 0 11243 0 10905 0 11451 0 107.31 0 10280 0

(3.87) (1.91) (0.86) (4.72) (2.10) (0.92) (5.25) (2.26) (1.04)

3 1504 70 786 55 370 26 1673 71 861 8 350 9 2177 63 1259 100 619 99
(4.27) (1.89) (0.62) (4.19) (2.02) (0.91) (4.51) (2.25) (0.99)

4 1809 28 852 43 337 74 2522 28 1385 15 639 4 3294 35 1975 0 1027 1
(5.51) (2.12) (0.83) (5.37) (2.35) (1.01) (5.70) (2.64) (1.23)

5 2508 2 1214 2 48 0 4155 1 2204 0 992 0 5097 2 3196 0 1639 0
(5.52) (2.35) (0.99) (7.75) (3.10) (1.38) (7.79) (3.65) (1.65)
dey 1701 - 843 - 347 - 1819 - 891 - 342 - 1883 - 864 - 403 -
(4.80) (231) (0.84) (5.62) (2.07) (0.86) (5.14) (2.03) (0.79)
0752 12822 0 11876 0 11352 0 12673 0 11668 0 11067 0 12475 0 11293 0 10509 0

(8.28) (3.51) (1.49) (8.64) (3.67) (1.58) (9.64) (4.02) (L.77)

3 3097 72 1518 67 648 58 3640 77 1004 92 7.06 95 4814 94 2800 100 13.86 100
(9.17) (3.99) (1.34) 9.27) (4.46) (2.04) (10.13) (5.00) (2.22)

4 3077 24 1876 33 741 42 5602 22 3096 8 1431 5 7337 6 4418 0 2300 O
(12.39) (4.70) (1.91) (11.99) (5.25) (2.28) (12.85) (5.89) 2.77)

5 5741 4 2701 0 1092 0 9209 1 4910 o0 2217 0 11351 0 7149 0 3671 0
(12.36) (5.26) (2.22) (17.14) (6.95) (3.10) (17.50) (8.16) 3.71)
dey 3418 - 1617 - 6690 - 3477 - 1647 - 676 - 3207 - 1743 - 860 -
(10.06) (4.61) (1.62) (10.12) (4.71) (1.80) (8.26) (4.13) (1.70)

The frequency of selecting d(y among 100 replications is denoted as fy_.,,. The reported average (and standard deviations) of PMSEs

are scaled by a factor of 10°. Additional results for m; |S* and m,|S? based on the constant standard deviation function setting can be
found in Table 5.3 in Supplementary Material.

reasonable computation efficiency that is comparable to TPSOS, especially for larger sam-
ple sizes. Although the Tensor-Sphere method frequently records minimal computational
times, at times as low as zero seconds, it falls short of TSSS in terms of estimation accuracy.
The success of TSSS is attributed to its ability to address the ‘leakage’ problem by adopting
‘domain-aware’ splines.
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Table 3. Simulation Study 2 results for different estimation methods on mean function m;|Q with
varying standard deviation function ¢,(x): the average (and standard deviations) of predicted mean
squared error (PMSE), training mean squared error (TMSE), dimension of the design parameters (Dim),
and computation time per iteration in seconds (Time).

m3|Q
n = 400 n = 900 n = 2500

Method PMSE TMSE Diime(s) PMSE TMSE Dim Time(s) PMSE TMSE Dim Time(s)
0.5 Kernel 141.48 (31.6) 132.00 (33.7) 400 1928 10822 (44.3) 107.12 (455) 900 4978 5116 (7.0) 52.35 (7.2) 2500 21692

TPSOS 95.68 (12.8) 6473 (7.0) 100 10 5336 (53) 4431 (42) 100 20 3164 (15) 3L16 (L7) 100 43

Tensor-Sphere 58.26 (7.0) 5114 (56) 64 0 4273 (40) 4003 (48) 64 0 30,01 (1.5) 30.64 (1.6) 64 ]

T885,d =2 17.69 (5.3) 1602 (44) 45 25 972 (25) 9.08 (21) 45 25 494 (0.8) 4.8 (0.8) 45 25

TSSS, doy 1808 (6.0) 1625 (43) 100 263 9.88 (2.2) 930 (21) 85 325 469 (0.9) 453 (09) 132 270
0.75 Kernel 167.81 (13.7) 157.96 (18.6) 400 1928 133.84 (35.4) 132.22 (353) 900 4948 B82.62 (41.6) B84.45(433) 2500 21301

TPSOS 139.64 (17.0) 107.79 (12.8) 100 10 7865 (8.6) 6812 (7.7) 100 21 41.77 (2.9) 4115 (2.8) 100 44

Tensor-Sphere  79.56 (12.9) 7157 (103) 64 0 5580 (53) 5442 (55) 64 0 3630 (3.1) 37.01 (3.1) 64 ]

TSS8S,d =2 3227 (10.8) 2972 (92) 45 25 1717 (47) 1630 (44) 45 25 824 (1.8) 8.03 (L8) 45 25

TSSS, diy 30.42 (9.3) 2839 (80) 54 341 1762 (54) 1675 (49) 63 333 8.66 (1.9) 846 (L8) 68 359

TSSS settings: d = 2 or a CV-selected doy, N = 58, r = 1. TPSOS and Tensor-Sphere have dimensions k = 100 and k = 64, respectively. Kernel method
results have only 30 iterations instead of 100 due to computation inefficiency. A factor of 10° scales the reported average (and standard deviations) of PMSEs
and TMSEs. Additional results for mean functions m3|{2 with constant standard deviation function can be found in Table 5.4 in Supplementary Material.

Figure 6. Standard error function plots for m3|€ in Simulation Study 3: from left to right, SEMC, SEBoot

Boot mean’
and SEmedlan.

5.3. Simulation study 3: stability of TSSS estimator

In this simulation study, we verify the stability of the TSSS estimator using a bootstrap
procedure and study the reliability of PCIs of mean functions. We perform a total of R
Monte Carlo (MC) replications. In each replication, we simulate observations {(Xj, Y;)}i;,
using the same data generation settings as those used in Simulation Study 2 in Section 5.2.

Firstly, we study the bootstrap standard errors of TSSS estimators. We fix X;’s on a grid
with n = 3065,d = 3,and ¢, = 0.5. The bootstrap standard errors (SE) of TSSS estimator
are generated through Algorithm 1 using B = 100 wild bootstrap samples {SE?e‘;,Ot }fepz 1
where R = 200 is the number of MC replications. We report the mean and median of
{SE,]?e‘;,Ot}fepzl, denoted as SEBSS! and SEB°% | respectively. The Monte Carlo standard

error SEMC from the R TSSS estimators is calculated from the MC replications and serves
as the ground truth. We then compare SEMC to SEE%! and SE&%%tjan in Figure 6. The simi-
larity between the bootstrap SE estimator and the Monte Carlo SE estimator demonstrates
the stability of the TSSS estimator.

Next, we investigate the coverage rate of the proposed bootstrap-based PCls in
Algorithm 1. We consider randomly sampled locations X;’s with sample sizes n = 900,
2500 and ¢, = 0.5,0.75 with mean function z3|€Q. We report the average coverage proba-
bilities of the proposed PCIs using B = 100 wild bootstrap samples {SErBe;"‘}il,S;Ll through
Algorithm 1 over 11,986 test grid locations. Table 4 reports the average coverage rates and
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Table 4. Empirical coverage rates of 99% PCls with the average widths (in paren-
thesis) in Simulation Study 3.

n o =050 o =075
900 0.974 (0.490) 0.975 (0.734)
2500 0.978 (0.335) 0.980 (0.503)

widths of 99% PClIs defined in (8) under various scenarios. Across different o, the cover-
age rate is stable, with the widths of PClIs increasing with higher o. This demonstrates the
stability of the proposed PCI. As the number of locations n increases, the coverage rates of
PCIs improve, indicating the desired asymptotic properties of accurate uncertainty quan-
tification of underlying mean functions. The mean coverage rate is reasonably close to the
nominal confidence level 99%. The results of PCIs defined in (9) closely resemble that of (8)
and are omitted here.

6. Data applications
6.1. Cortical surface fMRI data

In our first application, we apply the proposed TSSS method to estimate the mean neural
activity of the brain using data from the Human Connectome Project (HCP) (Van Essen
et al. 2013). Specifically, we use the cs-fMRI data from the Motor task study of the HCP
500-subject data release. In this study, participants are asked to tap their left or right fingers,
squeeze their left or right foot, or move their tongue following visual cues. During the
experiment, two runs of task fMRI scans were collected. One run was collected by scanning
the brain from left to right (LR), and the other run was from right to left (RL) (Woolrich
et al. 2001).

In this study, we use the RL scan run of a randomly sampled subject (Subject #100307)
registered to the low-resolution Conte 69 standard mesh, which contains approximately
32,000 vertices per hemisphere (Fischl 2012; Jenkinson et al. 2012; Van Essen et al. 2012;
Glasser et al. 2013). In addition, to evaluate the performance of TSSS in both the resting
and task states, the first frame in the subject’s resting state (f = 0s) and the 20th frame
after left-hand tapping is onset (t ~ 15s) are studied. For each frame, we perform a 10-fold
CV procedure to examine the prediction accuracy. For visualisation, we map the predicted
values from the sphere to the mid-thickness brain surface, using the R package ‘ciftiTools’
(Pham et al. 2022).

For the TSSS method, the triangulation is constructed by first obtaining a uniform tri-
angulation of the whole sphere. Next, we select only the spherical triangles that contain
observations and adjust the boundary points to obtain a smoother domain shape. This step
can be more complex as it requires careful consideration of the underlying data distribution
and geometry of the domain. However, in our experience, the triangulation works well even
without the adjustment step, as long as there are no triangles containing extremely sparse
observations. Two settings are studied for TSSS: (i) r = 1,d = dcy = 5 with a modest fine
triangulation N = 473, as shown in Figure 7; and (ii) r = 1, d = 3 with a fine triangula-
tion N = 1913 for each hemisphere. Here we adopted cross validation to select optimal
degree dcy in (i), where moderate triangulation is utilised. With finer triangulation in (ii),
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(b)

Figure 7. Triangulation for (a) Human Right Hemisphere from two viewpoints (N = 473); and (b) the
ocean surface from two viewpoints (N = 380).

Table 5. The mean (and standard deviation) of CV-RMSPE in the HCP data application based on TPSOS,
Tensor-Sphere and TSSS.

Left Hemisphere Right Hemisphere
Frame Method CV-RMSPE Dim Frame Method CV-RMSPE Dim
1 TPSOS 471 (26) 2000 1 TPSOS 421(11) 2000
1 Tensor-Sphere 528 (26) 2025 1 Tensor-Sphere 468 (15) 2025
1 TSSS (i) 412(11) 2921 1 TSSS (i) 370(8) 2921
1 TSSS {ii) 460 (15) 2003 1 TSSS (i) 409 (10) 2008
20 TPSOS 467 (26) 2000 20 TPSOS 4115(12) 2000
20 Tensor-Sphere 527 (29) 2025 20 Tensor-Sphere 463 (14) 2025
20 TSSS (i) 407 (12) 2921 20 TSSS (i) 365 (9) 2921
20 TSSS {ii) 457 (16) 2003 20 TSSS (i) 411(10) 2008

The number of parameters for TPSOS and Tensor-Sphere is set to 2000 and 2025, respectively. The settings for TSSS are
as follows: (i) r = 1,d = doy = 5,N = 473, yielding a dimensionality (Dim) of 2921; and (i) r = 1,d = 3, N = 1913,
yielding a dimensionality (Dim) of approximately 2000.

we hope to match the dimensions of T'SSS with those of TPSOS and Tensor-Sphere for a
fair comparison. Thus, d = 3 is used under finer triangulation.

Table 5 reports the mean and standard deviation of the cross-validated root
mean squared prediction error (CV-RMSPE), [l\J'k_1 > ikqi=kl Vi — mKX)P1V2 k=
1,...,10, for TSSS, TPSOS, and Tensor-Sphere, where the Kernel method is omitted due
to its computation inefficiency. Here, k[i] is the index of the fold that contains the ith
observation, Ni is the cardinality of the kth fold, and m ¥ is the fitted mean function
using data that exclude the kth fold. From Table 5, we observe that when the dimensions
of TPSOS, TSSS and Tensor-Sphere are similar, around 2000, TSSS demonstrates a slight
advantage over TPSOS and a more significant advantage compared to Tensor-Sphere. How-
ever, as the dimension of TPSOS increases to around 2900, the advantage of TSSS over both
TPSOS and Tensor-Sphere becomes more pronounced. These results hold consistently for
both hemispheres and different brain activity periods. Importantly, TSSS offers researchers
greater flexibility in achieving their objectives. Depending on the desired result, researchers
can adjust the parameters accordingly. Higher values of d and N can be employed to recover
detailed signals, while finer triangulation can be used to incorporate prior domain knowl-
edge. Moreover, by tuning the smoothness coefficient r, researchers can control the level
of smoothness in the estimated function, aligning it with their expectations. TSSS thus
provides a versatile tool for researchers with diverse needs and preferences.
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Figure 8. (a) The observed, predicted, lower and upper bound of 99% PCls, residual values, along with
the estimated standard error of the TSSS estimator for the first frame in HCP data application. Rows 1 and
2 depict two different viewpoints for each hemisphere. The TSSS settings used are:r = 1,d = dcy = 5,
and N = 473; (b) & (c): The observed, predicted lower and upper bound of 99% PCls, residual values,
along with the estimated standard error of the TSSS estimator for temperature and humidity in oceanic
atmospheric data application. The TSSS settings used are:r = 1,d = dcy = 5,and N = 380. (a) HCP. (b)
Temp and (c) Humid.

Furthermore, we employ the bootstrap method outlined in Algorithm 1 to estimate the
standard error of the TSSS estimator. To facilitate better visualisation, we present the stan-
dard error normalised by the maximum observed value, denoted as SEB°°!/ max;{Y;}. In
Figure 8, we provide visual representations of the observed, predicted, and residual values
for the first frame of both hemispheres using TSSS with setting (i). The estimated standard
errors are consistently small across the entire domain. In addition, the 99% PClIs for the
mean function are illustrated.



JOURNAL OF NONPARAMETRIC STATISTICS @ 25

Table 6. The mean (and standard deviation) of the CV-RMSPEs in NCEI data application based on TSSS
and TPSOS.

Item Methods CV-RMSPE Dim ltem Methods CV-RMSPE Dim

Temp TPSOS 0.4913 (0.004) 2000 Humid TPSOS 0.3808 (0.004) 2000
Tensor-Sphere 0.5667 (0.008) 2025 Tensor-Sphere 0.4992 (0.011) 2025
TSSS (i) 0.4684 (0.003) 2600 TSSS (i) 0.3522 (0.001) 2600
TSSS (i) 0.5171(0.003) 1947 TSSS (i) 0.3925 (0.001) 1947

The settings for TPSOS and Tensor-Sphere are 2000 and 2025, respectively. The TSSS settings used are: (i) r = 1,d = doy =
5. N = 380, yielding a dimensionality (Dim) of 2600; and (ii)r = 1,d = 3, N = 1513, yielding a dimensionality (Dim) of
1947.

6.2. Oceanic atmospheric data

In this application, we apply our method to the NOAA Ocean Surface Bundle Cli-
mate Data Record (CDR) from the National Centers for Environmental Information
(NCEI) (Clayson et al. 2016). In particular, we consider the dataset SEAFLUX-OSB-
CDR_V02R00_ATMOS_D20210831_C20211223.nc and focus on the specific humidity
(Humid) and air temperature (Temp) on August 31, 2021. There are approximately one
million lattice locations on the surface of Earth, among which approximately 485,000
locations are observed.

Again, we apply a 10-fold CV procedure to evaluate the performance of TSSS, TPSOS,
and Tensor-Sphere. For TSSS, we use the settings (i) d = dcy = 5, r = 1 with a modest
fine triangulation N = 380, as shown in Figure 7; and (ii) d = 3, r = 1 with a fine triangu-
lation N = 1513 for the ocean surface. The triangulation is constructed in the same way as
described in Section 6.1. Results in Table 6 indicate that TSSS outperforms Tensor-Sphere
in both settings and outperforms TPSOS in setting (i). Figure 8 displays the observed,
predicted values, residuals of humidity and temperature, along with the estimated stan-
dard error of TSSS with setting (i). The residuals do not exhibit patterns, and the standard
errors are relatively small with slightly larger values along the domain boundary due to
fewer observations in those areas. In addition, the 99% PClIs for the mean function is also
illustrated.

7. Summary and discussion

Motivated by ubiquitous surface-based data in various fields, we introduce a novel TSSS
estimator for data that reside on complex domains on the sphere or any surface that can
be properly mapped to and back from the sphere. By combining penalised splines with
triangulation techniques on spherical surfaces, TSSS efficiently handles complex spher-
ical domains while offering enhanced computational efficiency. Firstly, TSSS provides
enhanced flexibility in capturing complex spatial patterns, allowing for accurate modelling
of intricate variations in the data. By employing the ‘domain aware’ splines, TSSS avoids
leakage or boundary effects, ensuring accurate estimation. This distinguishes TSSS from
its competitors (e.g. Tensor-Sphere, TPSOS, and kernel-based methods). Secondly, TSSS
offers improved computational efficiency compared to the kernel-based approach, making
it more scalable for large-scale datasets. Kernel-based approaches rely on observed loca-
tions as kernel centers, which may not efficiently approximate localised or rapidly changing
functions. In contrast, TSSS constructs basis functions based on triangulated domains and
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avoids the need for excessive basis functions. By adaptively refining the triangulation and
utilising spline basis functions with a flexible degree and smoothness, TSSS can better
capture the complexity of the underlying signal. Thirdly, we provide rigorous theoretical
guarantees and an implementation algorithm for the uncertainty quantification of TSSS.
Specifically, Theorem 3.2 demonstrates the asymptotic normality of the TSSS estimator,
and Algorithm 1 introduces a wild Bootstrap algorithm to obtain the standard error map
of the TSSS estimator. All of these advantages have been demonstrated through extensive
numerical experiments.

The studies in this paper also open opportunities for further research. TSSS usually
requires well-constructed triangulations that accurately approximate the shape of domains;
however, determining whether to connect isolated subdomains can be challenging and may
need human input. To overcome this challenge, researchers could develop automated tri-
angulation procedures to construct triangulations for TSSS, allowing easy tuning of user
configurations. Moreover, inspired by Basna et al. (2022), there is a potential to explore
function-dependent triangulation methods in functional data settings. In particular, ran-
dom samples of functional data can be used to customise triangulations using data-specific
features.

Another interesting future research direction is to advance TSSS to accommodate
datasets that possess physical constraints, such as non-negativity (Baramidze and Lai 2018;
Kim et al. 2021; Zhang, Zhou, Wang, et al. 2022) and shape constraints (Wang, Xue,
et al. 2020; Fang et al. 2022). Incorporating non-negativity constraints into the TSSS
framework can broaden the method’s applicability to datasets where negative values are
physically infeasible or meaningless. Moreover, integrating constraints (e.g. monotonicity,
convexity, symmetry, or specific geometric patterns) into the TSSS framework can pro-
vide additional regularisation to ensure that the estimated function adheres to predefined
physical constraints. TSSS can also be extended to handle longitudinal or time series data
observed on spherical domains. Allowing researchers to model the dynamics of surface-
based data over time could offer essential insights, such as estimating the temporal change
of Earth’s atmospheric properties. Furthermore, in functional regression where surface-
based imaging serves as functional responses or covariates (Lila and Aston 2020), TSSS
can be used as the first smoothing step.

It is also of immense interest to extend the proposed TSSS method to the hyper-
sphere setting. Hypersphere surface data, or ‘directional data’, are widely observed in
cell cycle data analysis (Schafer 1998), the shape analysis of manifold-valued data (Lin
et al. 2017), compositional household expenditure (Scealy and Welsh 2017), and gene
expression clustering (Ding and Regev 2021). In these studies, hypersphere-valued data
x € S%are considered the response of interest, and their traits carry information. Although
our framework focuses more on the estimation of the mean function with x € S? being the
covariates, we can utilise dimension reduction methods from directional data literature to
address the high-dimension setting.

In addition to the location variable x, datasets frequently incorporate explanatory vari-
ables {zx,k = 1,...,p}, which may also contribute to the model. To account for this,
we can utilise the generalised additive mean structure introduced in Yu et al. (2020),
glu(z,x)} = Zizlfk(zk) + m(x). Here, g can be any link function, and m(-),fx(-) can
be estimated nonparametrically depending on the assumption of the function space of
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m(-), fx(-). Another potential approach is the generalised spatially varying coefficient mod-
els (Kim and Wang 2021). These modelling frameworks offer researchers the opportunity
to explore the relationship between local features and responses of interest that reside on a
surface.
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