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Abstract—This paper addresses an adaptive active sensing
problem of nonstationary sparse multi-target detection, by
dynamically shaping the transmit beampattern of a MIMO
radar. In order to strike a better balance between exploration
and exploitation (two key ideas in any online decision making
problem), a dynamic power allocation algorithm called DynaPA
is developed that can redirect exploration energy for exploitation
(and vice versa) depending on the environment. Numerical results
demonstrate superior performance of DynaPA over existing
algorithms with varying target numbers.

Index Terms—Active Sensing, Sequential decision making,
MIMO Radar, Transmit Beamforming, Reinforcement Learning.

I. INTRODUCTION

Active and adaptive sensing using antenna arrays is a key
enabler of many modern technologies ranging from autonomous
systems to joint communication and sensing in massive
multiple-input multiple-output (MIMO) wireless systems [1]—
[4]. A main challenge in MIMO radar in a nonstationary
environment with sparse number of targets is to detect new
targets (exploration) while not losing the currently detected
targets (exploitation). There is an inherent trade-off between
these exploration and exploitation tasks since the total transmit
power is limited [S]-[7].

Earlier works on multi-target detection and tracking [8], [9]
typically assume the target motion model and environment
dynamics are known in order to predict the future state of
the targets and the environment. When such prior information
is absent, online learning approaches based on reinforcement
learning (RL) are recently being investigated as model-free
approaches for sensing. In [10] RL was used for multi-target
detection by extending the robust Wald-type statistic developed
in [11] for single target. Building on [10], an improved RL-
based method for MIMO radar was proposed in [12] to enhance
the detection of targets with large dynamic ranges. However,
[12] only focuses the transmit power on a limited number of
directions with the largest test statistics based on the previous
measurements at each pulse. To search for more targets, at each
pulse the algorithm employs an e-greedy policy. Specifically,
with probablity e, it chooses to focus the transmit power in
directions with lower test statistics, and with probability 1 — e,
it illuminates targets already detected. On the other hand, [13]
divides the total power into two components for exploration
and exploitation. The exploration power is fixed and utilized to
create an omnidirectional beam, while the exploitation power
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is focused towards certain directions. The exploitation power
is further divided based on the classification of targets as
weak or strong in a fixed ratio between the two classes. This
fixed ratio, and the fixed power dedicated to omnidirectional
beams, make the algorithm less flexible and harder to adapt to
dynamic scenarios where targets can appear and disappear in
an unknown manner. Other works extend these methods to a
joint sensing and communication framework [14], [15].
Contributions: We introduce a new dynamic power allocation
scheme, named DynaPA, for transmit beamforming in MIMO
radar with sparsely located targets. Our algorithm does not
assume any environmental dynamics or target motion models.
DynaPA utilizes the robust Wald-type statistics developed in
[11] along with a novel “state transition-based" power allocation
strategy which keeps track of the past state in addition to the
current state. Our state-space also contains an “uncertainty
state" which helps us decide when to explore and exploit
in response to a dynamic target scene. As a result, DynaPA
allocates adequate power to keep track of previously detected
targets and utilizes the remaining power to search for new
targets. It dynamically distributes the exploration power (as
opposed to allocating a fixed budget, or maintain a fixed ratio of
powers between strong and weak targets) based on the acquired
target statistics. Further, DynaPA uses relatively less power
for target tracking at first and only increases the allocated
power when necessary to improve robustness of detection.
Our numerical results demonstrate that DynaPA outperforms
previous RL algorithms under a scenario with varying number
of targets and SNRs.

II. PROBLEM FORMULATION AND BACKGROUND
A. Measurement Model

We consider an active sensing model with a colocated!
massive MIMO radar consisting of Np transmit (Tx) antennas
and Npg receive (Rx) antennas. The transmit and receive
antennas are placed in a uniform linear array (ULA) with
spacing equal to half the wavelength of the carrier frequency.

The transmitted signal at the n** pulse n = 1,..., M with
pulse width T is represented by s(t + (n — 1)T) € CNt
where t € [0,T] is the inter-pulse time (fast time) [18]. The
transmitted signal is generated as a linear combination of

IColocated (or monostatic) MIMO radar assumes phase coherence between
the transmitters and receivers, as well as equal target directions of departure
and arrival [16], [17].
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orthonormal signals sy (t) € CNT (i.e., fOT so(t)s{l(t)dt = 1)
given by

s(t+ (n—1)T) = WM, (1)
where W (™) = [wgn),wgn),...,w%;)]T € CNTXN7 s the

transmit beamforming weight matrix used at the n'” pulse.
The vector w,(cn) represents k" row of W(™) and corresponds
to the weight vector of the k" antenna. The per-antenna

power at pulse m is constrained to ||w,(€n)|@ = Pr, k =
1,. NT Thus, the total transmit power Pp is given as
Pr 2 N wi? 3 = tr(W) (W00)#) = PrNy.

We cons1der a nonstauonary setting where at ?ulse index n,
there are K () targets in the directions {9(" v =5, 5)
The received signal at each Rx antenna is processed by a bank
of Np matched filters tuned to a specific range-Doppler bin.
Following [13], [19], we assume that all K (n) targets are in
this same range-Doppler bin. In this case, using the fact that
fOT so(t)st! (t)dt = I, the measurements at the output of the
matched filters, arranged in the form of a N X Np matrix, is
given by

K™

Y™ = Zak ag

al(fiYywW®™ ¢, (1)

Here a,gn) is an unknown time-varying coefficient associated

with the k' target that incorporates both the Radar Cross
Section (RCS) and the two-way path loss. The vectors
ar(f) = [1,e7™, 72 ed"(Nt=DAT and ag(f) =
[1,el™f eim2f . ™ (Nr=DT represent the steering vec-
tors of the transmit and receive arrays respectively, correspond-
ing to the spatial frequency f,gn) = sin(@,&”)) € [~1,1). Finally,
C(") denotes the combined effect of noise and other additive
disturbances after matched filtering. By vectorizing Y ("), we
obtain y() € CN7Nr a5 follows:

K
y™ & vee(YM) = "R (M) 4™ ()
k=1
where c(™) = vec(C(™) is the disturbance vector and,
O (f) & (W) Tar () @ an(£”) @)

where ® denotes the Kronecker product. The exact char-
acterization of the disturbance vector c(™ poses a difficult
challenge. Thus, following [11], we only make the following
mild assumption on c(™):

[A1] Let {CETL)} Vn be a stationary and circular complex-
valued random process whose autocorrelation function satisfies
IE[™ (c (n)) || < ¢j=F for j € Z for some constants ¢ > 0
and p > 1.

In other words, the autocorrelation values exhibit polynomial
decay. It is important to highlight that this assumption is
sufficiently flexible to encompass a wide range of practical
disturbance models [11].

B. Robust Target Detection

We review the robust target detection framework from [11]
which utilizes the aforementioned mild statistical assumption
on the disturbance c¢(™ without having to know its exact
distribution. The range of spatial frequency [—1,1) is divided
into a uniform grid G = {—-1+ 2” 1) l= 1,...7L} of
size L. We assume there are sparse number of targets, i.e.
K™ « [ located on the grid G. It is further assumed that the
measurements (2) are processed by a bank of L spatial filters,
each of which tuned to a specific s%t)atlal frequency bin from G
[10], [13] 2. The measurement y € CNTNE at the output of
the I*" spatial filter (corresponding to angle bin [) is given by

n n (n)

m _ Joi"h{ + i (—1+ 20 e (VY

Yi =93 .(n
C 0therw1se

“

where we denote hl(”) 2 h (-1 + 20 1)) for simplicity. In
order to perform target detection at each angle bin, a robust
Wald-type statistic A(yl(")) is compared against a threshold A
selected according to a desired probability of false alarm Py

N 2|(h(n))H (n)|2

i T C)
(b)) AT ;"

Ay™za A
Here flm is an estimate of the unknown covariance of

disturbance cl(”) and calculated according to eq. (23) in [11].
= Ayi™).

III. A NOVEL EXPLORATION-EXPLOITATION STRATEGY
FOR DYNAMIC POWER ALLOCATION

For ease of notation, we will henceforth use Al(

Since the dynamical model for targets is unknown, the
authors in [10] propose to employ Reinforcement Learning
(RL) to select a set of (possible) target angles at every pulse
n, and solve a beamforming problem which aims to maximize
the minimum gain over this set. Assuming that the angles are
on a uniform grid of appropriate size, it can be shown that the
optimum beamformers are of the following form

wr) = iA*diaug ((r("))l/Q) AT, (6)

Np

Here A = [ar(f1),ar(f2),...,ar(fr)] € CNT*L is the
manifold matrix corresponding to the directions f; = —1 +
@ € G and A* is its complex conjugate. Note that
Pr = trace(WM (WO HY = 5™ [x ()], for N7 divisible
by L.> The vector r® € R’ denotes how much transmit
power will be allocated to each angle bin at pulse n. Indeed,
the goal of RL-based approaches is to ultimately choose the
power allocation dynamically and adaptively. Our contribution
is to propose a novel power allocation scheme (called DynaPA),
which is significantly different from recent RL-based methods.
We briefly review the main idea behind existing RL-based

2Such spatial filters can be constructed under suitable assumptions on the
grid size.

(n )ﬂQ NT

3Note that per antenna power ||w;
for every r(") satistying ||r("™)||; = Py

Pr=Pp/NpVi=1,.
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methods in order to elucidate the key difference(s) from our
technique.

A. Reinforcement-learning based power allocation

Previous works [10], [12], [13] typically used RL to
determine a number (say a,) of angular bins to be sensed and
then use an e—greedy approach to strike a balance between
exploiting selected bins and (randomly) exploring bins believed
to be unoccupied. In order to further improve the detection
of weak targets, [13] proposed to divide the total power Pr
into an omnidirectional beam with power P; and focus the
rest of the power Py — P; towards the angle bins selected by
the RL algorithm. The selected angle bins are further divided
into “weak" and “strong" based on Wald statistic, and the
power is allocated by maintaining a fixed ratio between the
minimum gains of beamformer for weak and strong targets.
The “exploration power" P is typically kept fixed and not
redirected dynamically for exploitation as needed. The ratio of
power allocated for weak and strong targets is also kept fixed
and it does not adapt to the changing scenario.

In order to address the above issues and further improve
the performance of RL-based methods, we present a dynamic
power allocation strategy named DynaPA, that aims to dy-
namically modify the transmit power available for “exploring"
new/undetected targets, while also allocating sufficient power
for tracking (or “exploiting") previously detected targets.

B. DynaPA: A new way to explore and exploit via Beamform-
ing with Dynamic Power Allocation

We begin by introducing state variables C(n) €{0,1,2}, I =
1,..., L for each angle bin [ and pulse index n. The state
¢ l(") = 0 indicates that the [*" angle bin is believed to be empty
while Cl(") = 1 indicates that it is believed to be occupied.
A novel contribution is to augment the state space with
an “uncertainty state" Cl(") = 2, which indicates uncertainty
about the occupancy state of bin /. State transition (l("fl) —
¢, 1=1,...,L is determined by d\™ £ 1{A{™ > \}, as
illustrated in Figure 1.*

A key idea of DynaPA is that the power allocation rule is
not just based on the current state Cl of bin [, but also on its
past state Cz b (in particular, the transition). To this end, we
define sets that comprise of all angle bins undergoing same
state transition

n n—1 n .
A eV =i =)
where i, j € {0, 1,2} and i — j is a valid state transition.
We initialize all states with Cl(o) =0 and rl(l) = %,l =
1,..., L. First, we consider an intermediate power allocation
for each bin

77"1("_1) le S(n)
A = L) le sg'” s s ()
0 resisi

4Note that we do not have transition 0 — 2 as the robust detection rule
ensures probability of false alarm is low when choosing the threshold A [11].

where v > 1 is a fixed scaling factor (y = 1.3 was used
in simulations). Let P("H) = lL 1 “f"H) For angle bins
transitioning 0 — 1 or 1 — 1, we allocate same power as the
previous pulse since the allocated power is adequate for target
detection. However, for angle bin [ € Sé?i) the transition 2 — 1
implies a transition 1 — 2 occurred in the previous <pulse (ie.,
l e S’£"2 )) This suggests the allocated power 7, was
insufficient for reliable target trackmg and hence we increase
the allocated power to fyrl( o prevent false negatives in
the future. In order to determine the final power allocation, we
consider two cases:

Case I: If ]5}"4_1) > Py then our final power allocation is

7ﬂ(n+1)

Pr D),
) — D=1, L

ﬁ(n+1> "

®)

and this meets the total power constraint. In this case, we do
not allocate any extra power for exploration of unoccupied
bins corresponding to Cl(n) =0.

Case II: If ﬁ:(/”rl) < P, define the exploration power

P}EJ"'H) available in (n + 1) pulse as

Pty 2P Sy )
1es{™) st 85
=Py — P 4 > Fty,
1es\)

The strategy for the allocation of exploration power depends on
whether or not the “uncertainty set" SYQ is empty, as follows

Case II a: If Sﬁ? = (), then the power allocation rules for
the remaining bins [ € Sé%), 5570) is given by:

(n+1) A (n) q(n)
(n+1) E > ! A le 5070 , SQ,O
m = X iesfn) sk i (10)
?‘f"+ ) otherwise

Our exploration strategy is dynamic (not based on a fixed om-
nidirectional power allocation). The power allocation strategy
from [10], [12] does not consider that targets with different
reflectivity would require different amount of illumination to
detect reliably. Our dynamic power allocation scheme assigns
power based on the Wald statistic which is an indicator of the
SNR level of each target.

Case II b: If Sinz) # (), we temporarily stop exploration for
le S(()Tlo), Sglo) and instead use PU"™ to resolve/rectify our
uncertainty about occupancy of angle bins which have lost
their target (i.e., transitioned from state 1 to 2). We use the
following update rule

FntD)

P(H-H)ﬁ le SYLQ)
Tl(n+1) = 2, es(ﬂ) i + ’ (11)
ﬁnﬂ) otherwise
Note that P(”H) - Pr p("+1) Y sy T A{n-t-l) >

Zzes(’” 7" hence r( ntl) > 7 "MH) — l(n) for | € S%)
Note that the power allocation strategy from [13] sets aside
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a fixed power budget (P;) for an omnidirectional beam for
exploration, and this power budget cannot be redirected for
other purposes. In contrast, our exploration strategy is dynamic
(Case II a). Furthermore, as in Case II b, DynaPA can redirect
the exploration power for rectifying uncertainty and reducing
the chances of false negatives.

Fig. 1: State transition diagram for Cl("). The transition C;"_l) — (l(n) depends on
the value of d;") = 1{A;") > A} (indicated on the arrows)

IV. SIMULATIONS

We consider a MIMO radar setup with N7 = 100 and N =
100 antennas both arranged as a ULA. The per-antenna power
is constrained to Pp = Pp /Np = 1. Following [10], [12] in
order to ensure fair comparison, the angular region is divided
into L = 20 angle bins and the probability of false alarm is
set to Py = 10~* which results in the detection threshold A =
—2InPy = 18.42 [11]. We simulate a sparse, nonstationary
scenario with a total of 4 radar targets and over 100 pulses, the
details of which are given in Table I. The coefficients of the k"
target are i.i.d 04,(6") ~ CN(0,0%) with SNR = 10log;,(03).
The results of all experiments are averaged over 1000 Monte
Carlo simulations. We consider the noise is distributed as
an SOS AR(6) process as given in [11] whose normalised
power spectral density, shown in Figure 2a, is overlaid with
the direction of each target indicated by red dashed lines.

In Figures 2b to 2d, we plot the average beam power’
allocated to each angle bin at each pulse. For pulses [1,50],
Figure 2b shows that DynaPA transmits most power towards
Target 4 while Target 1 and 2 receive relatively less power.
Figures 2c and 2d show that the approaches from [12] (denoted
by “RL (enhanced)") and [13] (denoted by “RL (weak targets)"
with P, = %) illuminate Target 1 and 2 with more power
than Target 4. For pulses [51,100], Figures 2c and 2d show
that the power allocated by these approaches towards Target 4
increases once Targets 1 and 2 have left the scene. However,
it is still less than the power allocated by DynaPA, as shown
in Figure 2b.

In Figure 3, we plot the dynamic probability of detection of
each target as a function of the pulse number. We compare the
performance of DynaPA against the two RL-based algorithms
and an "Oracle" algorithm which knows the radar target
locations and divides the total power equally towards the targets
present at each pulse. For pulses [1,50], Figures 3a and 3b
show that DynaPA does not sacrifice detection performance of
Targets 1 and 2 even though it allocates less power compared to

5The beam power in bin [ is given by Bl(n) = |(WENTar(f;)||3 where
f=-1+2Aeg

Target | Bin Index | sin(f) | SNR(dB) Pulse interval
1 5 —0.3 —20 [T, 50]
2 10 —0.05 | —15 | [1,50]U[71,100]
3 13 0.1 —20 51, 80]
4 17 0.3 —20 21, 100]

TABLE I: Simulation scenario

[12], [13]. Further, Figure 3d shows that DynaPA detects Target
4 faster than the RL-based approaches. In pulses [51, 100], we
observe a similar trend in Figures 3b and 3c with DynaPA
detecting Targets 2 and 3 much faster than the RL-based
approaches.
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Fig. 3: Time varying probability of detection for all targets as a function of pulse index

V. CONCLUSION

In this work we proposed a Dynamic Power Allocation
(DynaPA) algorithm for transmit beamforming for sparse multi-
target detection in MIMO radar. Our algorithm keeps track of
past and current states (and the corresponding transitions) in or-
der to judiciously allocate power for exploring new/undetected
targets and exploiting the targets currently detected. In the
future, it will be interesting to combine the main ideas behind
DynaPA with other RL-based transmit beamforming methods
and further enhance their performance.
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