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Abstract—This paper addresses an adaptive active sensing
problem of nonstationary sparse multi-target detection, by
dynamically shaping the transmit beampattern of a MIMO
radar. In order to strike a better balance between exploration
and exploitation (two key ideas in any online decision making
problem), a dynamic power allocation algorithm called DynaPA
is developed that can redirect exploration energy for exploitation
(and vice versa) depending on the environment. Numerical results
demonstrate superior performance of DynaPA over existing
algorithms with varying target numbers.

Index Terms—Active Sensing, Sequential decision making,
MIMO Radar, Transmit Beamforming, Reinforcement Learning.

I. INTRODUCTION

Active and adaptive sensing using antenna arrays is a key

enabler of many modern technologies ranging from autonomous

systems to joint communication and sensing in massive

multiple-input multiple-output (MIMO) wireless systems [1]–

[4]. A main challenge in MIMO radar in a nonstationary

environment with sparse number of targets is to detect new

targets (exploration) while not losing the currently detected

targets (exploitation). There is an inherent trade-off between

these exploration and exploitation tasks since the total transmit

power is limited [5]–[7].

Earlier works on multi-target detection and tracking [8], [9]

typically assume the target motion model and environment

dynamics are known in order to predict the future state of

the targets and the environment. When such prior information

is absent, online learning approaches based on reinforcement

learning (RL) are recently being investigated as model-free

approaches for sensing. In [10] RL was used for multi-target

detection by extending the robust Wald-type statistic developed

in [11] for single target. Building on [10], an improved RL-

based method for MIMO radar was proposed in [12] to enhance

the detection of targets with large dynamic ranges. However,

[12] only focuses the transmit power on a limited number of

directions with the largest test statistics based on the previous

measurements at each pulse. To search for more targets, at each

pulse the algorithm employs an /-greedy policy. Specifically,

with probablity /, it chooses to focus the transmit power in

directions with lower test statistics, and with probability 1� /,

it illuminates targets already detected. On the other hand, [13]

divides the total power into two components for exploration

and exploitation. The exploration power is fixed and utilized to

create an omnidirectional beam, while the exploitation power
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is focused towards certain directions. The exploitation power

is further divided based on the classification of targets as

weak or strong in a fixed ratio between the two classes. This

fixed ratio, and the fixed power dedicated to omnidirectional

beams, make the algorithm less flexible and harder to adapt to

dynamic scenarios where targets can appear and disappear in

an unknown manner. Other works extend these methods to a

joint sensing and communication framework [14], [15].

Contributions: We introduce a new dynamic power allocation

scheme, named DynaPA, for transmit beamforming in MIMO

radar with sparsely located targets. Our algorithm does not

assume any environmental dynamics or target motion models.

DynaPA utilizes the robust Wald-type statistics developed in

[11] along with a novel “state transition-based" power allocation

strategy which keeps track of the past state in addition to the

current state. Our state-space also contains an “uncertainty

state" which helps us decide when to explore and exploit

in response to a dynamic target scene. As a result, DynaPA

allocates adequate power to keep track of previously detected

targets and utilizes the remaining power to search for new

targets. It dynamically distributes the exploration power (as

opposed to allocating a fixed budget, or maintain a fixed ratio of

powers between strong and weak targets) based on the acquired

target statistics. Further, DynaPA uses relatively less power

for target tracking at first and only increases the allocated

power when necessary to improve robustness of detection.

Our numerical results demonstrate that DynaPA outperforms

previous RL algorithms under a scenario with varying number

of targets and SNRs.

II. PROBLEM FORMULATION AND BACKGROUND

A. Measurement Model

We consider an active sensing model with a colocated1

massive MIMO radar consisting of NT transmit (Tx) antennas

and NR receive (Rx) antennas. The transmit and receive

antennas are placed in a uniform linear array (ULA) with

spacing equal to half the wavelength of the carrier frequency.

The transmitted signal at the nth pulse n = 1, . . . ,M with

pulse width T is represented by s(t + (n � 1)T ) 2 CNT

where t 2 [0, T ] is the inter-pulse time (fast time) [18]. The

transmitted signal is generated as a linear combination of

1Colocated (or monostatic) MIMO radar assumes phase coherence between
the transmitters and receivers, as well as equal target directions of departure
and arrival [16], [17].
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orthonormal signals s0(t) 2 CNT (i.e.,
R T

0
s0(t)s

H
0 (t)dt = I)

given by

s(t+ (n� 1)T ) = W(n)so(t)

where W(n) = [w
(n)
1 ,w

(n)
2 , . . . ,w

(n)
NT

]T 2 CNT×NT is the

transmit beamforming weight matrix used at the nth pulse.

The vector w
(n)
k represents kth row of W(n) and corresponds

to the weight vector of the kth antenna. The per-antenna

power at pulse n is constrained to kw
(n)
k k22 = PT , k =

1, . . . , NT . Thus, the total transmit power PT is given as

PT ,
PNT

k=1 kw
(n)
k k22 = tr(W(n)(W(n))H) = PTNT .

We consider a nonstationary setting where at pulse index n,

there are K(n) targets in the directions {7
(n)
k }K

(n)

k=1 2 [�π
2 ,

π
2 ).

The received signal at each Rx antenna is processed by a bank

of NT matched filters tuned to a specific range-Doppler bin.

Following [13], [19], we assume that all K(n) targets are in

this same range-Doppler bin. In this case, using the fact thatR T

0
s0(t)s

H
0 (t)dt = I, the measurements at the output of the

matched filters, arranged in the form of a NR åNT matrix, is

given by

Y(n) =

K(n)X

k=1

µ
(n)
k aR(f

(n)
k )aTT (f

(n)
k )W(n) +C(n). (1)

Here µ
(n)
k is an unknown time-varying coefficient associated

with the kth target that incorporates both the Radar Cross

Section (RCS) and the two-way path loss. The vectors

aT (f) = [1, ejπf , ejπ2f , . . . , ejπ(NT−1)f ]T and aR(f) =
[1, ejπf , ejπ2f , . . . , ejπ(NR−1)f ]T represent the steering vec-

tors of the transmit and receive arrays respectively, correspond-

ing to the spatial frequency f
(n)
k = sin(7

(n)
k ) 2 [�1, 1). Finally,

C(n) denotes the combined effect of noise and other additive

disturbances after matched filtering. By vectorizing Y(n), we

obtain y(n) 2 CNTNR as follows:

y(n) , vec(Y(n)) =

K(n)X

k=1

µ
(n)
k h(n)(f

(n)
k ) + c(n) (2)

where c(n) = vec(C(n)) is the disturbance vector and,

h(n)(f
(n)
k ) ,

�
(W(n))TaT (f

(n)
k )

�
' aR(f

(n)
k ) (3)

where ' denotes the Kronecker product. The exact char-

acterization of the disturbance vector c(n) poses a difficult

challenge. Thus, following [11], we only make the following

mild assumption on c(n):

[A1] Let {c
(n)
i } 8n be a stationary and circular complex-

valued random process whose autocorrelation function satisfies

|E[c
(n)
i (c

(n)
i−j)

∗]| < cj−ρ for j 2 Z for some constants c > 0
and ã > 1.

In other words, the autocorrelation values exhibit polynomial

decay. It is important to highlight that this assumption is

sufficiently flexible to encompass a wide range of practical

disturbance models [11].

B. Robust Target Detection

We review the robust target detection framework from [11]

which utilizes the aforementioned mild statistical assumption

on the disturbance c(n) without having to know its exact

distribution. The range of spatial frequency [�1, 1) is divided

into a uniform grid G =
n
�1 + 2(l−1)

L , l = 1, . . . , L
o

of

size L. We assume there are sparse number of targets, i.e.

K(n) ' L located on the grid G. It is further assumed that the

measurements (2) are processed by a bank of L spatial filters,

each of which tuned to a specific spatial frequency bin from G

[10], [13] 2. The measurement y
(n)
l 2 CNTNR at the output of

the lth spatial filter (corresponding to angle bin l) is given by

y
(n)
l =

(
µ
(n)
l h

(n)
l + c

(n)
l (�1 + 2(l−1)

L ) 2 {f
(n)
k }K

(n)

k=1

c
(n)
l otherwise

(4)

where we denote h
(n)
l , h(n)(�1 + 2(l−1)

L ) for simplicity. In

order to perform target detection at each angle bin, a robust

Wald-type statistic Λ(y
(n)
l ) is compared against a threshold �

selected according to a desired probability of false alarm Pf

Λ(y
(n)
l )?�, Λ(y

(n)
l ) ,

2|(h
(n)
l )Hy

(n)
l |2

(h
(n)
l )H bΓl,nh

(n)
l

. (5)

Here bΓl,n is an estimate of the unknown covariance of

disturbance c
(n)
l and calculated according to eq. (23) in [11].

For ease of notation, we will henceforth use Λ
(n)
l = Λ(y

(n)
l ).

III. A NOVEL EXPLORATION-EXPLOITATION STRATEGY

FOR DYNAMIC POWER ALLOCATION

Since the dynamical model for targets is unknown, the

authors in [10] propose to employ Reinforcement Learning

(RL) to select a set of (possible) target angles at every pulse

n, and solve a beamforming problem which aims to maximize

the minimum gain over this set. Assuming that the angles are

on a uniform grid of appropriate size, it can be shown that the

optimum beamformers are of the following form

W(n) =
1

NT
A∗diag

ã
(r(n))1/2

;
AT . (6)

Here A = [aT (f1),aT (f2), . . . ,aT (fL)] 2 CNT×L is the

manifold matrix corresponding to the directions fl = �1 +
2(l−1)

L 2 G and A∗ is its complex conjugate. Note that

PT = trace(W(n)(W(n))H) =
P

i[r
(n)]i for NT divisible

by L.3 The vector r(n) 2 RL denotes how much transmit

power will be allocated to each angle bin at pulse n. Indeed,

the goal of RL-based approaches is to ultimately choose the

power allocation dynamically and adaptively. Our contribution

is to propose a novel power allocation scheme (called DynaPA),

which is significantly different from recent RL-based methods.

We briefly review the main idea behind existing RL-based

2Such spatial filters can be constructed under suitable assumptions on the
grid size.

3Note that per antenna power kw
(n)
i

k22 = PT = PT /NT 8i = 1, . . . , NT

for every r
(n) satisfying kr(n)k1 = PT
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methods in order to elucidate the key difference(s) from our

technique.

A. Reinforcement-learning based power allocation

Previous works [10], [12], [13] typically used RL to

determine a number (say an) of angular bins to be sensed and

then use an /�greedy approach to strike a balance between

exploiting selected bins and (randomly) exploring bins believed

to be unoccupied. In order to further improve the detection

of weak targets, [13] proposed to divide the total power PT

into an omnidirectional beam with power P1 and focus the

rest of the power PT � P1 towards the angle bins selected by

the RL algorithm. The selected angle bins are further divided

into “weak" and “strong" based on Wald statistic, and the

power is allocated by maintaining a fixed ratio between the

minimum gains of beamformer for weak and strong targets.

The “exploration power" P1 is typically kept fixed and not

redirected dynamically for exploitation as needed. The ratio of

power allocated for weak and strong targets is also kept fixed

and it does not adapt to the changing scenario.

In order to address the above issues and further improve

the performance of RL-based methods, we present a dynamic

power allocation strategy named DynaPA, that aims to dy-

namically modify the transmit power available for “exploring"

new/undetected targets, while also allocating sufficient power

for tracking (or “exploiting") previously detected targets.

B. DynaPA: A new way to explore and exploit via Beamform-

ing with Dynamic Power Allocation

We begin by introducing state variables ã
(n)
l 2 {0, 1, 2}, l =

1, . . . , L for each angle bin l and pulse index n. The state

ã
(n)
l = 0 indicates that the lth angle bin is believed to be empty

while ã
(n)
l = 1 indicates that it is believed to be occupied.

A novel contribution is to augment the state space with

an “uncertainty state" ã
(n)
l = 2, which indicates uncertainty

about the occupancy state of bin l. State transition ã
(n−1)
l !

ã
(n)
l , l = 1, . . . , L is determined by d

(n)
l , 1{Λ

(n)
l > �}, as

illustrated in Figure 1.4

A key idea of DynaPA is that the power allocation rule is

not just based on the current state ã
(n)
l of bin l, but also on its

past state ã
(n−1)
l (in particular, the transition). To this end, we

define sets that comprise of all angle bins undergoing same

state transition

S
(n)
i,j , {l 2 [L]|ã

(n−1)
l = i, ã

(n)
l = j}

where i, j 2 {0, 1, 2} and i ! j is a valid state transition.

We initialize all states with ã
(0)
l = 0 and r

(1)
l = PT

L , l =
1, . . . , L. First, we consider an intermediate power allocation

for each bin

er(n+1)
l =

8
><
>:

�r
(n−1)
l l 2 S

(n)
2,1

r
(n)
l l 2 S

(n)
0,1 , S

(n)
1,1 , S

(n)
1,2

0 l 2 S
(n)
0,0 , S

(n)
2,0

(7)

4Note that we do not have transition 0 ! 2 as the robust detection rule
ensures probability of false alarm is low when choosing the threshold λ [11].

where � > 1 is a fixed scaling factor (� = 1.3 was used

in simulations). Let eP (n+1)
T ,

PL
l=1 er

(n+1)
l . For angle bins

transitioning 0 ! 1 or 1 ! 1, we allocate same power as the

previous pulse since the allocated power is adequate for target

detection. However, for angle bin l 2 S
(n)
2,1 the transition 2 ! 1

implies a transition 1 ! 2 occurred in the previous pulse (i.e.,

l 2 S
(n−1)
1,2 ). This suggests the allocated power r

(n−1)
l was

insufficient for reliable target tracking and hence we increase

the allocated power to �r
(n−1)
l to prevent false negatives in

the future. In order to determine the final power allocation, we

consider two cases:

Case I: If eP (n+1)
T > PT then our final power allocation is

r
(n+1)
l =

PT

eP (n+1)
T

er(n+1)
l , l = 1, . . . , L (8)

and this meets the total power constraint. In this case, we do

not allocate any extra power for exploration of unoccupied

bins corresponding to ã
(n)
l = 0.

Case II: If eP (n+1)
T < PT , define the exploration power

P
(n+1)
E available in (n+ 1)th pulse as

P
(n+1)
E , PT �

X

l∈S
(n)
0,1 ,S

(n)
1,1 ,S

(n)
2,1

er(n+1)
l (9)

= PT � eP (n+1)
T +

X

l∈S
(n)
1,2

er(n+1)
l .

The strategy for the allocation of exploration power depends on

whether or not the “uncertainty set" S
(n)
1,2 is empty, as follows

Case II a: If S
(n)
1,2 = ;, then the power allocation rules for

the remaining bins l 2 S
(n)
0,0 , S

(n)
2,0 is given by:

r
(n+1)
l =

8
><
>:

P
(n+1)
E

Λ
(n)
lP

i∈S
(n)
0,0 ,S

(n)
2,0

Λ
(n)
i

l 2 S
(n)
0,0 , S

(n)
2,0

er(n+1)
l otherwise

. (10)

Our exploration strategy is dynamic (not based on a fixed om-

nidirectional power allocation). The power allocation strategy

from [10], [12] does not consider that targets with different

reflectivity would require different amount of illumination to

detect reliably. Our dynamic power allocation scheme assigns

power based on the Wald statistic which is an indicator of the

SNR level of each target.

Case II b: If S
(n)
1,2 6= ;, we temporarily stop exploration for

l 2 S
(n)
0,0 , S

(n)
2,0 and instead use P

(n+1)
E to resolve/rectify our

uncertainty about occupancy of angle bins which have lost

their target (i.e., transitioned from state 1 to 2). We use the

following update rule

r
(n+1)
l =

8
><
>:

P
(n+1)
E

er(n+1)
lP

i∈S
(n)
1,2

er(n+1)
i

l 2 S
(n)
1,2

er(n+1)
l otherwise

. (11)

Note that P
(n+1)
E = PT � eP (n+1)

T +
P

i∈S
(n)
1,2

er(n+1)
i >

P
i∈S

(n)
1,2

er(n+1)
i , hence r

(n+1)
l > er(n+1)

l = r
(n)
l for l 2 S

(n)
1,2 .

Note that the power allocation strategy from [13] sets aside
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a fixed power budget (P1) for an omnidirectional beam for

exploration, and this power budget cannot be redirected for

other purposes. In contrast, our exploration strategy is dynamic

(Case II a). Furthermore, as in Case II b, DynaPA can redirect

the exploration power for rectifying uncertainty and reducing

the chances of false negatives.

0ã
(n)
l : 1 2

0

1

1

0

1

0

Fig. 1: State transition diagram for ζ
(n)
l

. The transition ζ
(n−1)
l

→ ζ
(n)
l

depends on

the value of d
(n)
l

= 1{Λ
(n)
l

> λ} (indicated on the arrows)

IV. SIMULATIONS

We consider a MIMO radar setup with NT = 100 and NR =
100 antennas both arranged as a ULA. The per-antenna power

is constrained to PT = PT /NT = 1. Following [10], [12] in

order to ensure fair comparison, the angular region is divided

into L = 20 angle bins and the probability of false alarm is

set to Pf = 10−4 which results in the detection threshold � =
�2 lnPf = 18.42 [11]. We simulate a sparse, nonstationary

scenario with a total of 4 radar targets and over 100 pulses, the

details of which are given in Table I. The coefficients of the kth

target are i.i.d µ
(n)
k á CN(0,�2

k) with SNR = 10 log10(�
2
k).

The results of all experiments are averaged over 1000 Monte

Carlo simulations. We consider the noise is distributed as

an SOS AR(6) process as given in [11] whose normalised

power spectral density, shown in Figure 2a, is overlaid with

the direction of each target indicated by red dashed lines.

In Figures 2b to 2d, we plot the average beam power5

allocated to each angle bin at each pulse. For pulses [1, 50],
Figure 2b shows that DynaPA transmits most power towards

Target 4 while Target 1 and 2 receive relatively less power.

Figures 2c and 2d show that the approaches from [12] (denoted

by “RL (enhanced)") and [13] (denoted by “RL (weak targets)"

with P1 = PT

4 ) illuminate Target 1 and 2 with more power

than Target 4. For pulses [51, 100], Figures 2c and 2d show

that the power allocated by these approaches towards Target 4

increases once Targets 1 and 2 have left the scene. However,

it is still less than the power allocated by DynaPA, as shown

in Figure 2b.

In Figure 3, we plot the dynamic probability of detection of

each target as a function of the pulse number. We compare the

performance of DynaPA against the two RL-based algorithms

and an "Oracle" algorithm which knows the radar target

locations and divides the total power equally towards the targets

present at each pulse. For pulses [1, 50], Figures 3a and 3b

show that DynaPA does not sacrifice detection performance of

Targets 1 and 2 even though it allocates less power compared to

5The beam power in bin l is given by B
(n)
l

= k(W(n))T aT (fl)k
2
2 where

fl = �1 +
2(l−1)

L
2 G.

Target Bin Index sin(θ) SNR(dB) Pulse interval

1 5 �0.3 �20 [1, 50]
2 10 �0.05 �15 [1, 50] [ [71, 100]
3 13 0.1 �20 [51, 80]
4 17 0.3 �20 [21, 100]

TABLE I: Simulation scenario

[12], [13]. Further, Figure 3d shows that DynaPA detects Target

4 faster than the RL-based approaches. In pulses [51, 100], we

observe a similar trend in Figures 3b and 3c with DynaPA

detecting Targets 2 and 3 much faster than the RL-based

approaches.

f

S
c
(f

)
m

a
x
S

c
(f

)

(a) Noise PSD (b) DynaPA

(c) RL (enhaced) (d) RL (weak targets)

Fig. 2: (a) Noise power spectral density and (b)-(d) average beam pattern at each pulse

(a) Target 1 (at bin 5) (b) Target 2 (at bin 10)

(c) Target 3 (at bin 13) (d) Target 4 (at bin 17)

Fig. 3: Time varying probability of detection for all targets as a function of pulse index

V. CONCLUSION

In this work we proposed a Dynamic Power Allocation

(DynaPA) algorithm for transmit beamforming for sparse multi-

target detection in MIMO radar. Our algorithm keeps track of

past and current states (and the corresponding transitions) in or-

der to judiciously allocate power for exploring new/undetected

targets and exploiting the targets currently detected. In the

future, it will be interesting to combine the main ideas behind

DynaPA with other RL-based transmit beamforming methods

and further enhance their performance.
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