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Cramér-Rao Bounds and Resolution Benefits of

Sparse Arrays in Measurement-Dependent
SNR Regimes

Sina Shahsavari

Abstract—This paper derives new non-asymptotic characteriza-
tion of the Cramér-Rao Bound (CRB) of any sparse array as a
function of the angular separation between two far-field narrow-
band sources in certain regimes characterized by a low Signal-
to-Noise Ratio (SNR). The primary contribution is the derivation
of matching upper and lower bounds on the CRB in a certain
measurement-dependent SNR (MD-SNR) regime, where one can
zoom into progressively lower SNR as the number of sensors in-
creases. This tight characterization helps to establish that sparse
arrays such as nested and coprime arrays provably exhibit lower
CRB compared to Uniform Linear Arrays (ULAs) in the specified
SNR regime.

Index Terms—Cramér-Rao bound, measurement-dependent
SNR, non-asymptotic guarantees, sparse arrays, super-resolution.

1. INTRODUCTION

CHIEVING high resolution is crucial in many imaging

problems including optical imaging, microscopy, radar,
astronomy, and medical imaging. Sparse arrays such as nested
and coprime arrays are capable of achieving superior resolution
over a uniform array with the same number of physical sensors,
due to their large aperture and lack of spatial ambiguity [1],
[2], [31, [41, [5], [6], [7], [8], [9], [10]. Therefore, sparse array
geometries have gained significant attention in recent times,
especially for emerging applications in autonomous sensing,
millimeter-wave communication, and joint sensing and com-
munication [11], [12], [13], [14], [15].

While there exists a significant body of work on theoretical
analysis of sparse arrays and coarray-based algorithms [10],
[16], [17], existing results do not offer sharp non-asymptotic
comparisons between sparse arrays and Uniform Linear Arrays
(ULAs) for resolving closely-spaced sources in certain low
SNR regimes. Existing analytical results on the performance
of coarray-based methods can be broadly classified into two
categories. The first category focuses on the performance of
specific algorithms, such as (coarray) MUSIC and (coarray)
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ESPRIT [16], [18], [19]. In [19], a non-asymptotic performance
analysis of the Coarray ESPRIT algorithm was presented, where
the authors characterized the number of temporal snapshots
required to bound the matching distance error by a specified
parameter. Papers in the second category study fundamental
performance limits, such as those established by the Cramér-
Rao Bound (CRB). In CRB computations, two main types
of array signal models are typically considered: the condi-
tional model (CM) and the unconditional (or stochastic) model
(UM) [20]. In [16], [21], [22], the authors demonstrated that
the CM cannot be used to compute the CRB when the num-
ber of sources, K, exceeds the number of sensors, M, as the
associated Fisher Information Matrix (FIM) becomes singular
in such cases. In contrast, for UM, if the source signals are
statistically uncorrelated, the FIM remains nonsingular even
in underdetermined scenarios. In a follow-up study [23], the
authors analyzed the behavior of the CRB for coprime and
nested arrays when there are fewer sources than sensors under
certain asymptotic assumptions. They demonstrated that if the
number of sensors goes to infinity (M — oo) and if the SNR
is significantly larger than the number of sensors (SNR > M),
the CRB decreases at a rate of O(M?). This result suggests
that coprime and nested arrays can achieve better asymp-
totic (in M) performance than ULAs in relatively high SNR
regimes.

While the above findings offer a valuable understanding of the
asymptotic behavior of the CRB for sparse arrays as a function
of SNR and the number of sensors in high SNR scenarios, their
simplified expressions do not shed any light into the behavior of
CRB in non-asymptotic settings when M is not very large, or
the SNR is low. Specifically, there is a lack of analysis regarding
the behavior of the CRB as a function of the angular separation
between two closely spaced sources when the SNR is allowed
to change (inversely) with the number of sensors, M. This
emulates a “Measurement-dependent SNR” or MD-SNR regime
which can be relevant for practical applications such as massive
MIMO communication with a total power constraint over all
antennas. In such cases, the per-antenna SNR can decrease with
the number of sensors M, i.e., SNR o 1/M, in order to maintain
a constant total SNR [24], [25]. This parameterization enables
investigating the robustness of sparse arrays relative to ULASs in
“low” SNR regimes, where the definition of “low” depends on
M (i.e. a SNR which is low for small M may not be low for
large M).

Our Contributions: In a previous work [26], we explored
the super-resolution advantages of sparse arrays over ULAS by
focusing on such a MD-SNR regime, where both SNR and
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M vary jointly. We derived certain bounds on the CRB in
this regime and obtained partial results for comparing nested
array and ULA. Building on this foundation, this paper seeks
to significantly generalize the findings in [26] and addresses a
more fundamental question: Is it possible to derive matching
lower and upper bounds on the CRB as a function of M for any
sparse array geometries under a total power constraint? Such
matching bounds will enable exact non-asymptotic comparisons
between the CRBs of any sparse array and ULA. This paper
provides an affirmative answer to this question. We rigorously
establish that certain sparse arrays can provably offer lower CRB
than ULA in the MD-SNR regimes, and the gap between their
performance increases with the number of sensors. This result
is particularly significant as existing research on CRB of source
separation has not adequately shed light on such a low SNR
regime. Our analysis is non-asymptotic and provides an exact
rate for any M.

II. PROBLEM FORMULATION AND REVIEW OF PAST WORK

A. Measurement Model

Consider L i.i.d temporal snapshots received at a linear
(sparse) array of M antennas, from K = 2 narrowband far-
field sources (with wavelength 1) whose direction- of-arrivals
(DOAs) are given by 8 = {0y, 0y + A}

vi=A@)s;+n;, 1<I<L

Here, A(0) € CM*2 is the array manifold matrix given by

A<6)m,1 _ ej7rdm sin«%’JA(e)m’2 _ ejﬂ'dm sin(Og—i-A),
with MT’" denoting the location of the my, antenna for d,, €
D ={di,ds,...,dp}. The (time-varying) source amplitudes
are given by the vector s; € C2. We make the following sta-
tistical assumptions which are used to derive the stochastic or
unconditional Cramér-Rao bound for sparse arrays [16], [21],
[22], [23], [27]
® (Al) The L snapshots of source amplitudes s; are i.i.d
random vectors distributed as s; ~ CN(0, pIs), where p
is the power of the sources (assumed to be equal in this
paper).
® (A2) The noise n; is assumed to be a spatially and tempo-
rally white Gaussian process, uncorrelated from the source
signals, i.e., n; ~ CN(0,021) and E(nysf?) = 0.
We introduce the following notations

w = 7sin(fy)
{5 = 7 (sin(fy + A) — sin(6p)) (D

where 0 represents the separation in spatial frequencies between
the sources. Under (A1-A2), the measurements {y; }ZL: areiid
random vectors distributed as

yi ~CN(0,R(5)), R(6) =pA(B)A"(6) + 071 (2)

Since our goal in this paper is to understand the resolution
benefits of sparse arrays, we focus on the CRB of the sep-
aration parameter J. In order to derive exact non-asymptotic
and tractable CRB expressions which can help us gain a clear
understanding of the behavior of CRB(¢), we make the following
additional assumption
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® (A3) The parameters p, 0y, 0y are assumed to be known,
and the separation J is the only unknown parameter of
interest.

As we will show, indeed it is possible to derive novel and
insightful conclusions about CRB(6) even if we assume p, o, 0
to be known. Moreover, our results can serve as a benchmark
for comparing CRB expressions (and how they may increase)
when p, 0,,, 0y are unknown.

B. Review CRB of Nested and ULA in
Measurement-Dependent SNR Regimes

In [26], we aimed to understand the super-resolution benefits
of nested arrays over ULA by zooming into certain “low SNR
regimes”, by analytically comparing their CRB under assump-
tions (A1)-(A3). This was achieved by letting p/ (7721 (SNR per
antenna) vary with the number of sensors M:

ﬂxM“:c

= (MD-SNR), 3)

where c and « are given positive constants. The setting o = 1
denotes the practical scenario (such as massive MIMO systems),
where the total power across all antennas is constant [24],
[25]. Notice that with this parameterization, as M increases,
we are able to zoom into progressively smaller SNR regimes.
In particular, under the MD-SNR regime, SNR = ¢/M®, for
settings where c is a constant, the SNR remains below 0 dB. This
formulation therefore enables us to analyze system performance
in very low SNR settings, controlled by M.

We considered the following specific arrays

e ULA: Dyia = {172,,M}

® (Generalized) Nested array:

Drest={1,2,..., N1, Ny +1,2(N1+1),..., No(N;+1)}

where N1 = pinest M for some 0 < pnest < 1 and Np +
Ny = M.
For ¢ = 1, we demonstrated that for sufficiently large M, there
exist constants ¢y and ¢y such that

CRBNest(a) < 01M72aa
CRBULA((S)\ CQM72,

O<ax<l
a>1

We aim to generalize this result by addressing the following
question: Is it possible to obtain “matching” lower and up-
per bounds on CRB (§) as a function of M, for an arbitrary
sparse array in the aforementioned low SNR regime? Such
matching bounds (if available) will enable us to compare any
two (arbitrary) sparse geometries and accurately characterize
their performance gaps. In the following section, we derive new
results that answer the above question in the affirmative.

III. MAIN RESULT: EXACT SCALING OF CRB IN Low SNR
REGIMES FOR SPARSE ARRAYS

Under assumptions (A1-A3), the unconditional Fisher Infor-
mation F(9) is given by [28], [29]

F(0) = L [VeCH (afa‘ff)) W (6)vec (‘%@)} L@

where  W(§) = (R(é)’l)T @ R(§)"!. Denoting vp =
vec(OR/00), the CRB of ¢ for a given array D is given
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by [21], [26]
1 1
F(5)  LvEW(@)vp

We also consider a coprime array with elements given by Dcp:

CRBp(5) = 5)

Dep = {N1,2N1, ..., 2N N1} {N2, 2Ny, ..., N1 N}

where Ny = pic, M forsome 0 < pep < land Ny + 2Np — 1 =
M, (N1, N3) are coprime integers. The following theorem
provides an exact characterization of CRB(4) in the MD-SNR
regime.

Theorem 1: Consider an (arbitrary) array geometry D with
M antennas, and two narrowband far-field sources with angular
separation 0. Under assumptions (A1-A3), the unconditional
CRB for estimating ¢ scales in the following manner in the
MD-SNR regime defined in (3) for every constant ¢ > 0, and
azl,

CRBp(8) = O (L "o [voll5?) ©)

Specifically, the CRBs for ULA, nested and coprime arrays
satisfy

CRByis = @(LlMQ(al)(MQ - 1)1>
CRBNesl =0 (L1M2QGNCSt(MNest7 M)1>

CRBcp = @(LlM%‘GCp(ucp, M)l) (7)

where

GNCS[(HNCSU M)
= 1 MS 4 4y MP 4 3 M* + vy M3 — M?/6

1= 7#’1%85[/2 + 4:“‘15\Iest/3 - H’I%Iesl + PJI%Iesl/G
Y2 = _/L?Iesl + 8N§Iest/3 - 2M§Iesl + :uNeSt/?’
V3= _Mﬁesl/2 + 5lu’lzilcst/3 - 7/1’12\Iest/6 + 1/6
V4 = N’IQ\Iest/3 - ,uNest/3

()

and
Gep(pcp, M)
=y MO+ ag M® + as M* + oy M> + a5 M?
oy = —8udp + 16pdp — Bty + Suép + s1dp
ap = —8ulp + Fucp — Fudp + 2udp

a3 = Bpudp — %U%P - %“(Q?P + %”CP
oy = Ay — L;U%P + %#CP
as = —2pgp + 5 puce

€))

Proof: We consider the following lower and upper bounds
for the CRB,

1 1 1
< <
[VDl30max(W(8)) =~ vEW(©)vp — [[VvDl[30min(W(9))

(10)

Here 01ax (W (0)) and opin (W (J)) are the largest and smallest
eigenvalue of W (0) respectively.! Letoys < opr1 < -+ < 0y
denote the eigenvalues of the covariance matrix R(¢). It is
straightforward to show that

UMZUM71="'=U3=UZ7
01 = 0% +po1,09 = 0p + poo (11)
where
52 = M_¢D(57M)751 = M+¢’D(57M)
M .
¢p(0, M) = | /|, d; €D
i=1

Due to the properties of the Kronecker product we have,
Tmax (W (0)) = 0 (R(6) ™), Tmin(W(8)) = 07 (R(8) ™)
Thus, we have
Tmax (W (8)) = 0,
Tmin(W(0)) = (07 +p51) >

Note that for any arbitrary array geometry, D, we have

12)

M

i=1

NN =M, §+#0

Thus M < o1 < 2 M. By replacing eigenvalues from (12) in
(10), we get the following bounds on CRBp(6)

L7 ||vpllz%05 < CRBp(6) < (13)
(1+2pM/o7)* L™ oy |volly? (14)

In the MD-SNR regimes, pM® /o2 = c is assumed to be con-
stant, which implies pM /o2 < ¢, for a > 1. Thus,

L ayllvollz® < CRBp(8) < CL oy |lvoll,*  (15)
where C' = (1 + 2¢)? is a constant. Hence
CRBp(6) = O (L oy ||lvoll?) (16)

Now, we derive ||vp||2 for ULA, nested, and coprime array. For
a ULA, it is straightforward to show that [26],

M 2
‘ LD
[voLall2 = 2p? ;1 i2(M — i) = T M?(M? 1)  (17)

For the nested array, we have

No—2
Iviesll3 = 297 | (N1 + 1) 3 (N —i — 1)

i=1

N2(Ni+1)-1

LD

Ny
i+ i (Ny — )
i=1 1=1

'Note that W (8) is full-rank.
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Fig. 1. CRB(J) as a function of Number of sensors for ULA and nested,

coprime array, Random array, overlaid with bounds on CRB(9) derived in The-
orem 1 for each array geometry. M = {19,28,37,...,100},6 = n/10,w =
/3, piNest = 0.5, ficp = 0.34, Location of M sensors in the random array are
drawn from a uniform distribution: ¢/ [1, max (max (Dcp) , max (Dnest))]-

By replacing N1 = pinest M , No = (1 — tinest) M, in the above
expression can be written as follows,

(18)

where Gey is defined in (8). Similarly, for the coprime array,
we have

||VNestH§ = p2GNest(,uNesta M)

Ivepll3 = p*Gep(picp, M) (19)

where Gcp is defined in (9). By using (17)-(19), (3) in (6) we
obtain (7). [ |

Remark In the MD-SNR regime, when o« = 1, CRBypa de-
cays as M 2, whereas CRByes and CRBcp decay as M —4 since
both Gcp, Gnes grows as MO, Thus the ratio of CRBs of ULA
and nested array is given by

CRBNest o ( MQ(M2 — 1) )
CRByA GNest(MNeslv M)

In [26], we only derived an upper bound on this ratio. The above
result shows that the upper bound is indeed tight in the MD-SNR
regime. Our results provide an exact non-asymptotic characteri-
zation of CRB as a function of M and establish that sparse arrays
can offer enhanced super-resolution error compared to a uniform
array as we zoom into low SNR regimes characterized by
MD-SNR.

- oM

IV. NUMERICAL EXPERIMENTS

We empirically validate our theoretical bounds by compar-
ing CRB(0) for the three aforementioned array geometries in
the MD-SNR regime. In addition, we show the tightness of
the derived bound in Theorem 1 for different sensor array
geometries.

Fig. 1 shows the CRB(J) of a ULA, nested array, coprime
array, and Random array (See Fig. 1 for details) overlaid with
the theoretical scaling given by (7) in the MD-SNR regime
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Fig. 2. DOA estimation using MUSIC algorithm on a ULA (second-row), a

coprime array (third-row), and nested array (forth-row). SNR varies column-
wise with values {10 dB,0dB, -7 dB}. § = w/50, M = 32, L = 10, ucp =
0.28, pnest = 0.5. In all plots, z-axis shows source powers and y-axis shows
source locations {w, w + d}.

with o = 1.5, ¢ = 0.2. In this regime, we vary the number of
sensors from M = 19 to M = 100, thus the SNR decreases
from —26.5 dB to —35 dB. As can be seen, the bound is tight
for every array pattern. Moreover, the nested array consistently
demonstrates the lowest CRB across all values of M, and the
gap between the CRB of the ULA and those of the sparse arrays,
such as the nested and coprime arrays, widens as the number of
sensors increases. This trend can be attributed to the significantly
larger total aperture as well as geometry of nested and coprime
arrays compared to that of ULA. As M increases, the disparity
in the total aperture size between the sparse arrays and the ULA
becomes larger, further enhancing the advantage of the sparse
arrays.

We also compare the performance of MUSIC algorithm
for DOA estimation applied on ULA, nested, and coprime
arrays at different values of the SNR. In Fig. 2, we plot
the MUSIC spectrum for K = 2 closely spaced sources with
0 = /50 using a total of M = 32 physical sensors, ucp =
0.28, inest = 0.5, and L = 10 snapshots, for different SNR
regimes: {10 dB,0 dB, —7 dB}. In high SNR regimes, all three
arrays can resolve the two sources. However, the performance
of ULA degrades earlier than nested and coprime arrays as SNR
decreases.

V. CONCLUSION

We derived an exact characterization for the CRB of source
separation in a measurement-dependent SNR regime that allows
us to progressively zoom into low SNR regimes as a function
of the number of sensors. Our analysis demonstrates that in the
MD-SNR regime, sparse arrays can provably achieve lower CRB
than ULAs, with the performance gap expanding as the number
of sensors increases. Moreover, the derived error bound offers
valuable insights into the behavior of sparse arrays in resource-
starved scenarios (such as low SNR regimes) that are relevant
for many emerging applications.
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