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ABSTRACT

Causal effect estimation from observational data is one of the essential problems in causal inference.
However, most estimation methods rely on the strong assumption that all confounders are observed, which
is impractical and untestable in the real world. We develop a mediation analysis framework inferring the
latent confounder for debiasing both direct and indirect causal effects. Specifically, we introduce generalized
structural equation modeling that incorporates structured latent factors to improve the goodness-of-fit
of the model to observed data, and deconfound the mediators and outcome simultaneously. One major
advantage of the proposed framework is that it uses the causal pathway structure from cause to outcome via
multiple mediators to debias the causal effect without requiring external information on latent confounders.
In addition, the proposed framework is flexible in terms of integrating powerful nonparametric prediction
algorithms while retaining interpretable mediation effects. In theory, we establish the identification of both
causal and mediation effects based on the proposed deconfounding method. Numerical experiments on
both simulation settings and a normative aging study indicate that the proposed approach reduces the
estimation bias of both causal and mediation effects. Supplementary materials for this article are available
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1. Introduction

Causal inference is one of the most essential tasks for much
scientific research to infer whether certain predictors, that is,
treatments have causal effects on outcomes. For complex stud-
ies, it is more critical to further identify the mechanism that
explains how the treatment affects the outcome. One important
direction is to investigate how the treatment and outcome rela-
tion is transmitted through intermediate variables. Specifically,
causal mediation analysis identifies the causal mechanism by
delineating pathways from treatment to outcome via mediators
(Imai, Keele, and Tingley 2010). The basic paradigm of a classic
mediation analysis is illustrated in Figure 1, which is widely used
in psychological, sociological, epidemiological and biological
studies (Hicks and Tingley 2011).

In various domain applications, the treatment-outcome
mechanism is often complicated and might not be fully captured
by a single-mediator model. For example, in study of educational
of prevention strategies reducing students’ drug addiction, the
causal effect of education is explained by various mediators
such as resistance skills, social norms, attitudes about drugs,
and communication skills (MacKinnon 2012). Therefore, the
multiple-mediator analysis is often more useful as the causal
effects can be decomposed to a number of different mediation
pathways, and provides a more accurate assessment and more
meaningful interpretation of mediation effects (Shi and Li 2021;
Cai, Song, and Lu 2020).

The main challenges in both causal inference and mediation
analysis are the rise of confounders which could be intervene
between treatments and outcomes. Specifically, confounders
introduce noncausal associations between treatments and
outcomes, therefore potentially inducing bias in causal-related
inference. To solve the confounding issue, most of the existing
causal inference methods assume that all confounders are
observed. Under this assumption of unconfoundedness (Imbens
and Rubin 2015), both the causal and mediation effects can
be estimated unbiasedly via adjusting the observed data on
confounders. For example, adjustment can be achieved via linear
regression (Baron and Kenny 1986; Zhang et al. 2016a), random
forest (Wager and Athey 2018), or other supervised learning
methods (Kiinzel et al. 2019). However, the assumption of
unconfoundedness might not be satisfied in practice, and could
also be difficult to verify.

To relax the unconfoundedness assumption, extensive meth-
ods have been developed to allow causal identification given the
existence of latent confounders. For example, Spirtes, Meek, and
Richardson (2013), Wang, Franks, and Oh (2021), and Ogarrio,
Spirtes, and Ramsey (2016) study conditions where the exis-
tence of causal paths from one variable to another can be iden-
tified without adjusting the latent confounding effects. How-
ever, these methods cannot remove estimation bias on causal
effects (Spirtes, Meek, and Richardson 2013; Ogarrio, Spirtes,
and Ramsey 2016), and further require the confounding effect
is either significantly stronger or weaker than the causal effect
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Figure 1. The causal mediation pathway with a single mediator and observed
confounder X.

(Wang, Franks, and Oh 2021). Dukes, Shpitser, and Tchetgen
(2021), Miao, Geng, and Tchetgen Tchetgen (2018), Louizos
et al. (2017), and Tan (2006) focus on a series of proximal
causal inference methods assuming that proxies of the underly-
ing confounders are observed, and the proxy variables are used
to reduce confounding bias in observational studies.

Recently, a new direction of deconfounding methodology
has been developed to adjust the latent confounders via utiliz-
ing structural information from specific causal pathways and
confounding effects. Specifically, Ranganath and Perotte (2018),
Wang and Blei (2019) establish a two-stage deconfounding algo-
rithm using the structure of multiple treatments sharing the
same confounder. Similarly, Zhou, Kong, and Wang (2020) pro-
poses to leverage the structure of multiple outcomes for iden-
tification and estimation of causal effects regardless of latent
confounders. In addition, Witty et al. (2020) proposes to reduce
the estimation bias of causal effects via incorporating the hier-
archical structure of confounding effects where confounders
are shared across subjects from the same subgroup. On the
other hand, although mediation analysis is important and widely
used in real applications, few papers discuss adjusting the latent
confounding to reduce estimation bias.

To address this issue, we develop a mediation analysis
framework which allows the identification of causal effects and
mediation effects through the latent confounders. Compared
with the treatment-outcome pathway considered in Ranganath
and Perotte (2018), Wang and Blei (2019), and Zhou, Kong, and
Wang (2020), adjusting latent confounders within causal medi-
ation pathways could be more complex and challenging due to
that the confounder-mediator relations introduce an additional
layer of confounding between treatments and outcomes. On
the other hand, the mediators themselves contain the latent
confounders’ information, and can be used in a principled way
to reduce the biases in estimating causal effects and mediation
effects. This motivates us to develop a new deconfounding
framework. Specifically, we develop a confounder-sharing
structure among multi-mediators, and use latent variables to
aggregate the information of latent confounders from the shared
variations in multiple mediators and outcomes. In addition,
the confounder-sharing structure also allows the conditional
independence among multiple mediators, which enables us to
further estimate the confounder-relevant latent variable through
a series of latent modelings. One key innovation is that the
proposed method identifies causal and mediation effects without
recovering true latent confounders. Instead, the deconfounding
latent variables capture the confounder information, and
also serve as surrogate confounders to adjust confounding
effects.

One advantage of the proposed framework is that it does not
require external proxies for latent confounders as in Louizos
et al. (2017), Miao, Geng, and Tchetgen Tchetgen (2018), and
Dukes, Shpitser, and Tchetgen (2021). In addition, our method
is not restricted to any specific structure in latent confounders
themselves, such as the hierarchical structure in Witty et al.
(2020), and does not impose assumptions on the distribution
of latent confounders. Furthermore, the proposed deconfound-
ing algorithm can integrates various nonparametric estimators
to infer underlying complex confounding effects on multiple
mediators and outcomes, while still retaining the interpretability
of the mediation effects. In theory, we show that the causal
effects estimation is unbiased using the proposed surrogate con-
founders. We also establish the causality identification con-
ditions for our method under different confounder-mediator
structures of causal mediation pathways. Numerically, both sim-
ulations and the real data application indicate the effectiveness
of the proposed method in reducing estimation biases of both
causal effects and mediation effects.

This article is organized as follows: Section 2 introduces the
background of the causal mediation analysis. Section 3 intro-
duces the proposed deconfounding method. Section 4 provides
an algorithm and implementation strategies. Section 5 estab-
lishes the theoretical properties of causal identification in the
proposed method. Section 6 demonstrates simulation studies.
Section 7 presents an application to a NIH normative aging
study. The last section provides conclusions and some further
discussion.

2. Background and Notation

Let Y = { Yi}fi | denote the set of observed outcomes from
N subjects, where Y; is a one-dimensional outcome from
the ith subject. Denote T = {Ti}fi | as the set of treatment
assignments. We observe multiple mediators for each subject
M = {MQ)}, i = 1,...,N,j = 1,...,k, and covariates
X = {Xi};., where X; € RP, and k, p are the number of
mediators and covariates, respectively. To formulate the causal
mediation inference mathematically, we adopt the potential

outcomes framework (Rubin 2005). Specifically, let Mi(’)(t)
denote the potential value of the jth mediator for the ith subject
when the subject takes treatment t+ € {0,1}. Similarly, we
use Y;(t,m) to represent the potential outcome for the ith
subject given that the subject takes treatment T; = ¢ with
mediators M; = (Ml.(l),...,Mi(k)) are (my,...,mg). Notice
that observed data can be denoted as {M;(T;), Y;(T;, M;(T)))}.
Under the potential outcomes framework with binary treatment,
the average total treatment effect can be defined as v =
E{Y; (1, M;(1)) — Y; (0, M;(0))}. Based on the total effect, we
can specify the portion of the treatment effect through medi-
ators, which is referred to as the average treatment mediation
effect (ACME); that is, 6(t) = E{Y; (t, M;(1)) — Y; (t, M;(0))}.
Accordingly, the direct treatment effects are defined as {(t) =
E{Y; (1, M;(t)) — Y; (0, M;(t))}. It can be shown that the
average total treatment effect t = §(t) + (1 — 1), for t =0, 1.

One essential problem of the mediation analysis in Fig-
ure 1 is to directly estimate the total treatment effect and
mediation effect from the observed data. One well-established



sufficient condition is to require that joint distribution of
(Y(t,m), MV (1),..., MO (t)} be independent from the dis-
tribution of T conditioning on covariates X, and the distri-
bution of Y(f,m) be independent with the distribution of
{M(l)(t), oM (k)(t)} conditioning on (X, T) (Imai, Keele, and
Yamamoto 2010). In other words, the above assumptions require
that all the confounders of both direct and indirect associations
between T and Y are observed, which can be stringent in real
applications of mediation analysis. Therefore, the unmeasured
confounder would introduce noncausal association among
treatment, mediators, and outcome, leading to biased estimation
for the causal treatment effect and mediation effect.

3. Methodology

In this section, we develop a de-confounder method for a broad
class of mediation analysis featuring multiple mediators given
the existence of latent confounders. Specifically, we consider
the mediation causal pathway where the treatment can have
both direct effect and indirect effects via the path of multiple
mediators on the outcome, and latent confounders simultane-
ously affect treatment, outcome, and multiple mediators. The
key structure is that the multiple mediators might not be causally
dependent on each other. The causal mediation pathway is illus-
trated in Figure 2.

3.1. Joint Debiasing on Multiple-Mediator Pathway

In the following, we formulate the causal mediation pathway
in Figure 2 via the potential outcome framework omitting the
covariates X for ease of notation. The formulation can be gen-
eralized with covariates X. We assume that the pretreatment
confounder U within the causal mediation pathway satisfies the
following condition.

Sequential ignorability for multiple mediators:

{Y({,m),M()} LT |U=u, (1)

Y(t,m) LM®) | T=1tU=u, (2)

(parallel mediators) : MD 1 M- |T=tU=u,
iel{l,...,k}, t€{0,1}, (3)

where M~ denotes the set of mediators excluding the ith
mediator. The conditions (1) and (2), referred to as sequential

x
v
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v \
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Figure 2. The causal mediation pathway with latent confounder U affecting both
treatment T, outcome Y, and multiple mediators Mo }’;1 . The multiple mediators

are not causally dependent on each other. The observed data is colored in blue, and
the latent confounder is colored in gray.
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ignorability, are standard assumptions in causal identification for
mediation analysis (Imai, Keele, and Yamamoto 2010; Forastiere,
Mattei, and Ding 2018). These two conditions guarantee the
identification of mediation effects and direct effects (Imai, Keele,
and Yamamoto 2010) via requiring that the joint distribution
of mediators and outcome is conditional independent from
the treatment assignment, and the distribution of outcomes
is conditional independent from the distribution of mediators
given the latent confounder U. The conditions (1)-(2) together
imply that U is the source of unobserved confounding between
multiple mediators and outcomes.

The condition (3) indicates a parallel-mediator structure in
Figure 2 such that the mediators are independent to each other
given the latent confounder U. The corresponding causal medi-
ation pathway generalizes a broad class of causal inference on
observational data in many fields, especially biological and social
sciences. For example, it is desirable to uncover how alcohol
consumption affects blood pressure via mediators such as body
mass index and various enzymes, where certain underlying
genes might influence alcohol consumption, blood pressure,
and mediators simultaneously (MacKinnon 2012). Additionally,
it is also of scientific and social interest to investigate how
primary prevention programs can reduce drug use via affecting
socioeconomic mediators such as resistance skills and social
norms. Confounders, such as students’ personality, might also
influence the causal mediation pathway.

Since U is not directly observed, the conditions (1)-(3) are
not directly applicable for the identification of mediation effects
and direct effects. However, the parallel mediator structure
allows us to search a surrogate confounder U = {U; €
Rr}fi , where 7 is a dimension of the latent vector. With the
surrogate confounder, the sequential ignorability of (1)-(2) can
be approximately established conditioning on U instead of the
unobserved U.

In the following, we introduce a latent factor model based on
the surrogate confounder U to fit the observed data. We denote
M =MD, ..., M®) and the latent factor model as follows:

Ui € R ~ P(O), Ti ~ P(T0p), M ~ PMO|T;, Uy,

Y ~ P(Y|Ti, My, Uy), (4)
fori = 1,...,Nandj = 1,...,k The individual latent
factors {f]i}fi | introduce the underlying confoundness across
(T,M,Y), which cannot be adjusted from observed data.

Assume the latent factor model captures the joint distribution
of observed data P(T, M, Y) in that

k
P(T,M,Y|0) = P(T|0) [ [ PMP|T, OYP(Y|T, M, U). (5)
j=1

Given that the true confounder U affects multiple mediators
MDY, ..., M®, the decomposition in (5) implies the sequential
ignorability of (1) and (2) based on U:

{Y(t’,m),M(j)(t)} LT|U=u
Y(t,m) LMO(t) | T=1,U=u,

indicating that U can serve as a surrogate confounder. The
argument is based on a contradiction from the existence
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of confoundness when (5) holds and sequential ignorability
is conditioning on U in (1)-(3). Specifically, if there still
exists a latent confounder U that simultaneously affects
(T,MD(#),...,M® (t), Y(t,m)) and is not captured by U, then
the multiple mediators remain dependent even conditioning on
U and T due to the parallel mediator structure (3). Therefore, the
decomposition fails in that P(M|T, U) # 1, PMP|T, U),
and leads to a contradiction in that (5) does not hold. In other
words, if the latent factor model fits the observed data well and
(5) holds, then we can use U as the surrogate confounder that
contains the information of true confounder U.

Accordingly, we propose a deconfounding strategy through
fitting the observed data of the causal mediation pathway (5).
We first adopt the additive model to formulate the compo-
nents P(T|U), P(MY|T, U), and P(Y|T, M, U) incorporating
covariate X as follows:

Yi = (T MO, MP, X)) + gy (U) + ey
M,-(]) = fuo (Ti, Xi) + gy (Ui + 61(\2),,-,
Ti=frX) +grUp +eri,i=1,....,N; j=1,...,k, (6)

where fr(:) : RP — R, fy(") RktPH1 5 R and
fuo () : RFYL — R are the output functions explaining the
treatment assignment T, outcome Y and multiple mediators
(MW}, respectively. We concatenate the confounding functions
GG) = {gr(-), g (). ..sguw(-),gy(-)}, which model
the effects of individual confounder U; on each element in
(T,-,Mi(l), . ,Mi(k), Y;), and therefore G(-) : R* — RKf2
encodes the confoundness patterns among the causal mediation
pathway through the shared confounder U. In addition,
we assume that the permutations (ey, e](\,}), ... ,61(\51(), €r) are
random variables with zero-mean and unknown constant vari-
ances. Notice that the functional forms of {fr(-), fy (), fy;5 ()
gy (), gy (), gr(+)} are not specified. In other words, we do not
need to specify explicitly how the underlying true confounder U
acts on treatment, mediators, and outcome via G(-). Our method
works when the model (6) provides a good approximation to the
population distribution of observed data.

Based on (6), we can evaluate the fitness of the latent factor
model (5) for the observed (T, M, Y) as follows:

N

> AT - fr(x) — gr (U},

1

(M7~ fu0 (T X0 — gy (U},

M=

1

{Yi = fr (T, M;, Xi) _gY(Ui)}z- (7)

M=

1

Due to the additive modeling for P(T|U), {P(MD|T, U)}Jlle,
and P(Y|T, M, U) in (6), the multiplicity in latent factor model

(5) requires the independence as follows:

er Ley, er L {61\(11)}]‘{:1’ €y L {61(\7,1)}]]-‘:1, 61(\? 1 61(\],1), i#j.
(8)

In the following, we denote Enx (+2) = (€T, 61(\/})’ ces el(wk), €y)

and F = {fr,fyim)>- . .>fy®,fr}. Combining the observations

(7) and (8), the proposed framework via the surrogate con-
founder can be formulated as follows:

(U,F,G) = argmin | T — fr(X) — G (U)|]?
UFEG

k
+ Y IMY — f6/(T, X) —Gi (D))
j=1

+ 1Y —fy (T, X, M) = Gy ()1,
x 8.t. cort(E) k42)x (k+2) = Ik+2)x k42> (9)

where corr(E) = (corr(E.,-,E.j)) is the correlation matrix of E.
Notice that the residuals E can be represented via (U, F, G) as

er=T—fr(X) —gr(U), ey =Y — fy (T, X, M) — Gy2(U),
el = MO — f,,0(T,X) — Gi(U), j=1,...,k.

Therefore, the loss function in (9) is optimized jointly over
(U, F, G) for the surrogate confounder, output functions, and
confounding effect, respectively. The proposed deconfounding
strategy (9) enables us to construct a surrogate confounder U
and identify the confounding effect G(U) simultaneously. The
former can correct the bias in estimating the causal mediation
effect and direct treatment effect, and the latter captures the het-
erogeneity of mediators and outcomes across different subjects
which might not be fully explained by the observed treatments
and covariates.

One advantage of the proposed framework is the flexibility
in customizing the functional relations of observed data and
latent confounder within outputs to accommodate with different
application scenarios. For example, for the parts involving
observed data, we can restrict (fr,f,,, fy) as parametric model
or nonparametric models. After identifying and separating the
confounding effects G(U) from mediators and outcome, the
average treatment mediation effect and direct effect can be

estimated as §(¢) = % Zfil [ y{t,M(l)(l), ... ,M(k)(l),X,-} -

N
DIl
L MO0, MBP@,x) — frfoMO),.. MO,

fy{t,M(l)(O),...,M(k)(O),X,-}], and then £(f) =

X,-}]. Notice that the formation of §(¢) and ¢ (t) can be further

simplified based on specific functional forms of {fj\%)} and fy. In
the following, we provide detailed discussion on the modeling
of latent confounding effects G(U).

3.2. Latent Confounding Effect Modeling

One key step in the proposed deconfounding strategy is to infer
the surrogate confounder U from the fitted confounding effects
G(U), which does not require the underlying true confounding
pattern G(-) = (gT('),gM<1>(~), e ,gM(k)(-),gy(~)). In general,
we can constrain G(-) within a class of multivariable functions
such that the function class is sufficiently large to approximate
G(U). In practice, utilizing the structure in G(U) allows us to
determine an appropriate modeling of G.

Notice that G(U) can be formulated as a N x (k + 2) matrix
with U = {Ui}fi 1~ If the relation among components in G(-) =
(gT(-),gMu) (O - ) (-),gy(-)) is governed by linearity, then



the G(U) has a low-rank structure in that G;(U) can be approx-

imated by a linear combination of several {G;(U), j # i}.

Therefore, the G(U) can be simplified to a latent factor model:
G(U) ~ GU) =

i]erArx(kJrz), (10)

where A is the loading matrix to be estimated, and r < k + 2
denotes the rank of the latent confounding matrix. Given that
UA captures the subject-wise heterogeneity originating from
the variation within U, then U would contain the information
on the distribution of U, therefore, serving as a confounder
surrogate. Here the low-rank structure in G(U) can be verified
from the observed data. We fit the mediator and outcome models
(fapfr) on the observed data, and then perform the PCA on
the residuals (MY — f{P(T,x),...,M® — F®O (1, %),y —
Fr(T.X, M), (k1) If only several leading principle compo-
nents dominate the variation of residuals, we can choose the
latent factor modeling (10) for G(-). Accordingly, the rank of sur-
rogate confounder r can be determined via the largest eigengap
between two successive eigenvalues.

In many applications, the underlying confounding pattern
G(-) might be more complex than the linear relations, as the con-
founding effects {gT(U),gI(V})(U), e ,gM)(U) gv(U)} on treat-
ment, mediators and outcome could be nonlinear to each other.
For example, in the causal effect of alcohol consumption on
blood pressure, the various enzymes are treated as mediators,
and the expression levels of specific genes might confound with
the concentration of enzymes while the gene-enzyme relations
could be significantly different across different enzymes. In this
case, the latent factor model likely fails as the confounding
matrix G(U) is full-rank, and the low-rank structure only pre-
serves the latent space expanded by columns of the nonlinear-
transformed G(U).

Alternatively, we adopt the autoencoder (Ballard 1987) which
serves as a nonlinear generalization of PCA to infer the infor-
mation of U from G(U). An autoencoder consists of an encoder
Dencoder (+) and a decoder P gecoder (-) where the former performs
transformation on the input to extract important features from
the observed data and the latter reconstructs the input data
based on the extracted features. We estimate the autoencoder via

(&)encoder, qsdecoder) = H G(U)

arg min
Dencoder>Pdecoder

- cI>decoder|:¢)encoder{G(U)}il H2 (11)

Both ®epcoder and Pgecoder can be a class of composition func-
tion {¢(L) ° ..¢(1) ° ..¢(1) . qb(l)(x) — (p(W(l)x + b(l))},
where ¢ is a nonlinear activation function, W® is a weight-
ing matrix, b® is a bias vector, and L is the number of lay-
ers. With the trained autoencoder (Pencoders Pdecoder), We are
able to extract the confounding information within U from the
encoder U = (i)encoder{G(U)} Note that a good fitting of

G(U) from (11) indicates G(U) ~ ®gecoder(U), which leads
toU ~ @ delco 4ertG(U)}. Here the cardinality of the function
space of Pgecoder increases rapidly as the number of layers L
in composition increases. Therefore, ®gecoder(-) is capable of
reconstructing G with a higher resolution, in that @ gecoder (B) C

G(B) for any measurable set B in the input space. Consequently,
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the o -field o (f]) is larger than the true confounder o (U), imply-
ing that U can serve as a surrogate confounder to correct all
the confounding among treatment assignments, mediators and
outcomes to satisfy conditions (1) and (2).

4. Algorithm and Implementation

In this section, we develop a deconfounding algorithm for
inferring the surrogate confounder via optimizing the proposed
objective function (9) In general, we sequentially update the
output functions (fT, f e fy) confounding function estimator G
and surrogate confounder U at each iteration. Different models
for the latent confounding effect G(U) lead to the different
optimization strategies for estimating Gand U.

For the simplification of presentation, we introduce the Lgsg
to denote the residuals of observed data at the sth step as

LY = (T —f2c0,.MY - j9 (1,%),...,

— fO0 (1, X), Y — {7 (T, X, M))

M(k)
Nx(k+2).

To incorporate orthogonality across the residuals in (9), we use
the method of Lagrange multipliers and transform the con-

straints into a penalty function as llcorr(E®) — I ||%, where

the re51duals at the sth step are formulated as E®¥ = L(S) —

G(s) (U ) Therefore, the loss function at the sth step is

(s)

Loss® = ||T — f(s)(X) Gl (U )||2
()
+Z||M<'> FO(T.X) =G )1
(s)
1Y O, X, M) — GO, (012

2
+ Allcorr(E¥) — 1|3,

where A is the Lagrange multiplier. We first illustrate the
deconfounding algorithm given that confounding effect G(U)
is approximated by the latent factor model, that is, we replace
G(U) = UnxrArx(k+2) in (9). Notice that with the latent factor
modeling, both gradients of the loss function (9) in terms of A
and U have explicit forms.

For the output functions (fr, fm, fr), we can choose various
models such as linear regression, spline, and random forest
according to a specific application. For example, when dealing
with binary treatment, we adopt the logistic regression model for
fr, and change the square loss in (9) to a negative log-likelihood
loss. In addition, we can initialize (fr,fm,fy) via fitting each
of them on the observed data (X, T), (T, X, {MP}L ), and

(T,X,M,Y), respectively. Similarly, G and U can be initialized
via performing the PCA on (M, Y). Notice that Algorithm 1 can
be generalized to the other confounding-effect models where the
gradients of the latent confounding effect have explicit forms.
In addition, Algorithm 1 can be modified to capture the non-
linear confounding patterns via autoencoder as Section 3.2. The
detailed autoencoder-based algorithm is provided in the Section
5 in supplementary materials.
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Algorithm 1 Blockwise backfitting for latent factor confounding
modeling

1. (Initialization) Input the initialization of (f(o) FO0 f(o)

ff(o), Lagrange multiplier X, learning rate n, and stopping
threshold y.
2. (Backfitting updates) At the sth iteration (s > 1).

1 -1
(i) Given (f(s D f(s 1) f(s Dy A67D o )

residuals of observed data L((Jsbsl). Then update the sur-
rogate confounder via:

update the

~ A (s—1 =1 A(s=D\ A (s=DT
U(S):U(s ) {(L(s 1) U(S )A(s ))A(s )

obs

—III%:}

(ii) Given fl(s), update the output models (fr, far, fr):

. d||corr(EC—D)
U

A . ()
Y argmmEﬁ(g{IlT—fT(X)||2|US 3
Jr

(
79, < argmin E o {IM9 — fy 0 (T, 30110,
Fu
i=1.. .k

2 . ()
9 argmmEﬁ(s){llY ~ Hr(T.X, M| }-
fr

(iii) Given (f;”, ;O 7O Sy #), and ﬁ(s), update the loading matrix
A via:

A(i) < argmin||T — f(s) X — ff(s)v||2,

Vrx1

AQ,,) < argmin M9 — 1) (1,30 — 0Vv|?,
Vrx1

i=1,...k

2
|-

AY., < argmin||Y — £ (1, %, M) — 0

Vrx1

3. (Stopping  Criterion)  Stop  backfitting updates if

|Loss® —Loss¢~D)| 7 7(s) _ 7
W<ySeth— fM— fY— Yy »

A= A(S), and U = IAJ(S). Otherwise set s <— s + 1 and iterate
Step 2.

5. Theoretical Results

This section establishes the theoretical properties for the pro-
posed deconfouding method. Specifically, we show that the sur-
rogate confounder plays a deconfounding role on treatment
assignment, mediators and outcome. In addition, we show that
both the causal and mediation effect can be identified by incor-
porating the surrogate confounders. We also discuss identifia-
bility under different causal pathway structures. The proposed
deconfounding method relies on the structure of confounder-
sharing among mediators as follows:

Assumption 1 (Mediator-sharing confounder). There exits a pre-
treatment random variable U satisfying the following require-
ments:

1. Together with X and T, U generates the smallest o -algebra
such that individual distributions of mediators are indepen-
dent from each other

MY L MED T, U, X. (12)

2. Together with X and T, U is the o -algebra to satisfy sequential

ignorability

{y (¢,

m), M)} L T | (U,X), and

Y (¢,m) L M) | (T, U,X). (13)
The mediator-sharing confounder assumption paraphrases
the causal mediation pathway in Figure 2. Due to the condi-
tional independence among mediators, U has to contain the
information of all the multi-mediator confounders that only
affect a subset of mediators {M? Yier» T C {L,..., k)
|JI < k. On the other hand, the concept of smallest o -algebra
guarantees that U only includes confounders affecting multiple
mediators and excludes the latent confounders that only affect
a single mediator. The structure of parallel mediators (12) is
common in many scientific and social studies where the multiple
mediators are conditionally independent given the treatment
and confounders. For instance, in the study of causal relations
between mindfulness and emotional distress, the negative cog-
nitive bias and perceived stress are identified as independent
mediators (Ford and Shook 2019). In addition, it is shown that
interpersonal and intrapersonal factors are parallel independent
mediators in the causal effect of HIV stigma on therapy adher-
ence (Seghatol-Eslami et al. 2017). Sequential ignorability (13)
is a standard condition in causal mediation inference (Imai,
Keele, and Yamamoto 2010). The first part assumes that the
treatment assignment is ignorable given the confounders, which
can be satisfied when the treatments are randomly assigned. The
second part assumes the ignorability of mediators condition-
ing on pre-treatment covariates, which is not directly testable
from observed data in general (Manski 2009). However, a set of
sensitivity analyses exists to quantify the robustness of causal
effect estimation to the potential violation of the ignorability
assumption (Imai, Keele, and Tingley 2010).

Assumption 2 (Overlap). P(T = t|U,X) > 0,
m|U,X) > 0 forall t and m.

and P(M =

The overlap is a standard condition in the causal inference
literature (Imai, Keele, and Tingley 2010; Imai, Keele, and
Yamamoto 2010), which allows each treatment assignment
and mediators’ value to have a certain probability to be
observed when controlling the confounders. This ensures that
the potential outcomes {Y(t,m)} can be identifiable. In the
following, we establish the causal identification results based
on the surrogate confounder U. Recall that estimating U via the
objective function (9) is equivalent to fitting the latent factor
model (4) to the observed data. Specifically, the surrogate U
satisfies

k
P(T,M|X) = / [ [P\ 1,0,x)P(T10, X)P(U)dU,
j=1

(14)



k
P(T,M,Y|X) = / PYIT,M, 0,5 [ [PMPIT,0,%)
=1

P(T|U, X)P(0)dU, (15)
where P (T, M|X) and P(T, M, Y|X) are the distributions of the
observed data while the distributions involving U under the
integrations are inferred from the proposed mediation pathway
modeling (6). Intuitively, with the surrogate U, we can decom-
pose the joint distribution of mediators into multiple condition-
ally independent components to satisfy (12). Note that there
exist different U compatible with P(T, M|X) and P(T, M, Y|X)
on the observed data, while the causal identification requires
the removal of uncertainty in estimating the latent factor model.
Therefore, we allow that U can be determined by the observed
data.

Assumption 3 (Consistent surrogate confounder). All latent vari-
ables U satisfying (12), that is, M® 1 M | (T, U), can be
consistently identified by the observed treatment and mediators
(T, M) in that for any ¢ > 0,

lingoP(|l7—f(T,M)| >¢e) =0, or

lim P(|U - f(T,M)| > &) =0, (16)
k—o00

where f(-) is a deterministic function dependent on the factor
models in (10), n and k are the sample size and number of
mediators.

Notice that this assumption does not require U to coincide
with the true latent confounder U. Instead, U only needs to be
consistently identified by the observed data. This assumption
gives us flexibility in that many choices of low-rank latent models
can be used for modeling G(f]) in Section 3.2. For instance,
PCA, matrix factorization have the identification property of
latent factors when the number of mediators k and the number
of samples N are large (Fu et al. 2019; Chen, Li, and Zhang 2020;
Gresele et al. 2020). In addition, many practical applications
involve a large number of mediators, especially epigenomic stud-
ies such as studying the relation between smoking and the risk
of lung cancer via high-dimensional DNA methylation markers.

On the other hand, the Assumption 3 can also be satisfied
when the number of mediators is finite or small. In this case,
we can consistently estimate the surrogate confounder via using
prior knowledge about the distribution of confounder U. For
example, when there exist underlying K subgroups among sub-
jects, we can assume U; = ailyicgroup}» k € {1,2,...,K}.
Or when mediators change smoothly across similar subjects,
one can impose smoothness on the surrogate confounders. The
distributional information of U can be incorporated via adding
regularizations on the surrogate confounders to encourage a
piece-wise constant structure (Tang, Xue, and Qu 2021), or
control the variations among U from similar subjects (Hong and
Lian 2013; Wang and Huang 2017). Under these constraints, the
surrogate confounders can be consistently identified as the num-
ber of subjects increases with only limited available mediators or
a few of mediators simultaneously affected by U. For nonlinear
latent factor models, recent developments in identifiability for
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autoencoder and nonlinear ICA models implies that a surrogate
confounder U can be consistently estimated by the autoencoder
method via good data fitting. Specifically, when the underlying
clustering structure exists in U, then U can be consistently
identifiable up to the affine transformation (Hyvarinen, Sasaki,
and Turner 2019; Khemakhem et al. 2020; Willetts and Paige
2021). We perform a theoretical sensitivity analysis for the effects
of estimation consistency of the surrogate confounder on causal
estimation. See the detailed theorem and discussion of results’
in Section 16 of the supplemental materials.

Lemma 5.1. Under Assumptions 1-3, the treatment T, medi-
ators M, and outcome Y are sequential deconfounded given
covariate X and surrogate U satisfying (14) and (15):

Y (¢,m),M(®} LT|UX, Y(t,m) LM®|T=t0U,X,

if the distribution of (T, M, Y) can be represented as a latent
factor model (4).

The above Lemma 5.1 provides a theoretical justification
of the proposed deconfounding scheme in that the surrogate
confounder U contains all the confounding information if the
proposed latent modeling captures the distribution of (T, M, Y).
Based on the Lemma 5.1, we establish identification of the
average causal effect and mediation effect.

Theorem 5.1. Given that Assumptions 1-3, and the following
two conditions holds: (a) the response has additive forms as
E(Yt,m)|X = x,U = u) = fi(t,m,x) + fo(u) and E(Y|T =
tM=mX=x,U=u = f3(t,m, x) + fa(u), where f1, f3 are
continuous functions and f,, f4 are piecewise functions; (b) the
mediators follow the generalized additive model in (6). Then the
average mediation effect § (t) and average direct treatment effect

£(t) can be identified through the surrogate confounder U

5(t)=//{fﬂ<:<¥|T:t,M:m,X:x,fJ:u)

dr} (m)

—/E(Y|T=t,M=m,X=x,fJ=u>

dryy (m)}dFX(x)de,(u), (17)
{(t)://{/E(Y| T= 1,M=m,X=x,fI=u)
dFyy (m)
—/E(Y| T:O,M:m,X:x,f]:u)
dFZ(‘f[)(m)}dFX(x)dFﬁ(u), (18)

where FI(V? = M|T=t,X=x,fJ=u(')’ Fw(-) and Fyjw(-) represent
the distribution function of a random variable W and the con-
ditional distribution function of V given W. Then the average

causal effect can be identifiedas t = §(#) +¢(1 —¢), t =0, 1.

Theorem 5.1 shows that the surrogate confounder enables
the average mediation effect and direct effect to be unbiasedly
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estimated from the observed data. The result requires additional
technical conditions to solve the violation of overlap in that
PM = m|T,X, ﬁ) might be zero for some m due to the
deterministic assumption U in (16). However, we show that
the identification of the average mediation effect for subsets
of the mediators can be achieved under fewer constraints on
the distribution of (T, M, Y). Notice that the proposed method
also applies to the causal pathway where latent confounder
only affects multiple mediators, but not affects treatment and
outcome. In this case, the surrogate confounder U is consistently
independent from T and Y(t,m) since U can be consistently
captured by the distribution of M(t), which is independent
to {T, Y(t,m)}. Then there does not exist confounding among
observed data (T, M, Y) conditioning on U.

Corollary 5.1. Given Assumptions 1-3, the average mediation
effect for subsets of mediators MV = {(M® Yier, ] C
{1,...,k}, ]| < kdenotedass? () = E{Y(t, MV (1), M)} -
E{Y(t, MY (0), M)} can be identifiable as

a<f>(t)=//{/]E(Y|T=t,M=m,X=x,iJ=u)

1)
dFM(,> (m)

—/]E(Y|T:t,M:m,X:x,f]:u)
dFi, (m)}deu)de,(u),

where M=) = (M)} ieje denotes the complement set of media-
tors and the conditional distribution FI(‘;)( n = Fyo Tt X, U HO»

The identification holds when JV{U) satisfies the overlap
condition in that P(MY) = m|T, X, U) > 0 for any m.

Corollary 5.1 shows that we can estimate the average media-
tion effect of a subset of mediators unbiasedly using surrogate
confounder U based on observed data. Specifically, it enables
us to estimate the mediation effect for each individual medi-
ator. Compared with Theorem 5.1, the identification can be
established under weaker assumptions such that the regularity
assumptions on the outcome model and mediators are replaced
by the overlap condition on subsets of mediators. Notice that the
overlap condition on the subset of mediators is compatible with
Assumption 3 of the deterministic surrogate confounder in (16),
since the consistency P(U|T, M, Y) = 8¢(r.M(1)) only imposes
constraint on the nonzero support of P(M|T, X, U) while the
nonzero support of a subset M) can still be unconstrained.

The above identification results are established under
Assumption 3 of the deterministic surrogate confounder, which
might not be satisfied when the number of mediators is not
large enough to exclude the uncertainty in inferring U from
observed data. In the following, we allow an alternative pathway
structure for identifying causal mediation and direct effects
without Assumption 3. We first introduce the concept of null
mediator which indicates a mediator M that does not affect
the outcome such that Y 1 M|T, U, X. Null mediators are
widespread in many scientific studies of delineating sparse
causal pathways through high-dimensional mediators, such as

genes and brain neuroimaging (Zhao and Luo 2016; Huang
2019; Zhao, Lindquist, and Caffo 2020). Given a large set
of mediators, only a small subset has nonzero mediation
effects between treatments and outcomes. In the following, we
introduce the alternative identification condition:

Assumption 4 (Null mediator). There exists more than one null
mediator which do not have causal effect on outcome Y, denoted
as M = (M? .Y 1L MY T, U, X} and [M™)] > 2. And
the null mediators are conditional independent to other non-
null mediators {M (i)}le as

MO LM | TUX, =1, k=1, MM,

The null mediators M*~ and M® are observable descen-
dants of the latent confounder, and therefore can serve as the
proxy variables for U. Notice that the null mediator condition
does not require the information as to which mediators are
null. Given the existence of null mediators, we can establish
the identification of average causal effect as follows. Notice that
we do not require the proportion of null mediators for the
whole mediator set. To validate the conditional independence
among mediators in Assumptions 3 and 4, we can first obtain
the surrogate confounder U and then adopt the conditional
independent test as in (Su and White 2008; Huang 2010; Zhang
et al. 2012; Cai, Li, and Zhang 2022).

Theorem 5.2. Given Assumptions 1, 2, and 4 and weak regularity
conditions, the surrogate confounder U satistying (14) and (15)
identifies the average mediation effect §(t) as (17) and average
direct treatment effect ¢ (¢) as (18). And the causal effect can be
identifiedast =6(t) +¢(1 —t), t =0, 1.

Compared with Theorem 5.1, Theorem 5.2 shows that with
null mediators, identifying causal mediation and direct effect is
still possible even when the surrogate confounder U is a random
variable of the observed data. In another words, it is unnecessary
for U to be completely identified by the observed data to play the
deconfounding role. The identification in Theorem 5.2 leverages
the proxy variable strategy for direct causal effect (Kuroki and
Pearl 2014; Miao, Geng, and Tchetgen Tchetgen 2018) where
the distribution of debiased causal effect is identifiable when
two proxies of the latent confounder are observed. In the case
of multiple mediators, the null mediators can serve as proxies
for the shared latent confounder U to identify other causal
mediation pathways. Therefore, unlike the case of no mediator
or a single mediator, we do not need to observe external proxy
variables for U. Notice that Theorem 5.2 still holds when the
null mediators are correlated to each other conditioning on
unobserved confounder U and treatment T in Assumption 4.

6. Numerical Study

In this section, we conduct simulations to investigate the
performance of the proposed deconfounding algorithm on
debiasing treatment effect estimation, and perform numerical
comparisons with existing causal inference and mediation
analysis methods. Specifically, our method is compared with
existing mediation analysis and causal inference methods:



linear structural equation modeling (LSEM), high-dimensional
mediation analysis (HIMA), random-forests based causal
effect inference (Causal Forest), and meta-learning method
(XLearner). These four methods are popular and widely used in
many applications. We investigate the debias performance under
the settings of linear and nonlinear confounding effects, which
are two representative situations of how the latent confounders
affect mediators and outcomes.

6.1. Linear Confounding Effect

In this section, we investigate the performance of causal effect
estimation based on different methods when the confounding
effects on multiple mediators and outcomes are linear represen-
tations of each other. Specifically, we assume the subject-wise
latent confounders U = {U,-}gi | are randomly generated from a
mixture of Guassian distributions as U; ~ » * N(—2,1.5) +
(1 — w) * N(2,1.5) where @ ~ Bern(1,0.5). The covariates
Xnxp = {X,'}?L1 are generated from N(01xp,Ipxp). With the
latent confounders U and X, the observations of (T, M, Y) are
generated via a series of additive models as follows:

Y =T+ Xy 4 Mp® + gy (U) + €y,
MY = Tﬂj(M) +XF§M> + g0 (U) + €,
T; ~ Bern(0 (0.4 % Up),j = 1,...,k (19)

where o (-) is the logistic link function, (gy (U), gy (U),.. .,
guwU)) = (noU,...,nU) imposes linear confounding
effects on mediators and outcome. In addition, {Ol(Y) €
R, M = (g™, gM™) € R¥), [y e R\, T ¢
RPXk}, BY) e Rk and n = (no,...,m) € RKT! denotes
the coefficients of treatment, covariates, mediators, and latent
confounders, respectively. Accordingly, the direct causal effect,
causal mediation effect and total causal effect can be formulated
as oM, (BMHT M) “and V) + (BM)T D) In the following
simulations, we set the sample size N = 200, 800, 2000, and the
number of mediators k = 2,5. We set coefficients «¥) = 1,
,B(M) = 1ixk and ,B(Y) =0.5x llxk-
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Given that the proposed method, LSEM, and HIMA directly
estimate the coefficients oY), M and BY), their estima-
tions of causal effect and mediation effect are represented as
@™ 4+ (BMHTBMY) and (BM)T BN For nonparametric meth-
ods such as Causal Forest and XLearner, we obtain the esti-
mation of causal effect via averaging the estimated individual
treatment effects. Given that the Causal Forest and XLearner
are not designed to directly utilize information of mediators,
we combine the mediators M with X such that (X, M) serve as
new covariates for model training. In this way, Causal Forest and
XLearner include the same amount of information from input
as other competing methods for the causal effect estimation
to make a fair comparison. The performance is evaluated by
the estimation bias of causal effect (Biasiy,) and mediation
effect (Biaspeq). Besides the causal effect estimation, we also
investigate the performance of predictions of outcomes based
on different methods. See Section 7 in supplemental materials
for detailed implementation for prediction procedure.

The performances of causal effect estimations from different
methods are illustrated in Figure 3 and Table 1, where the
proposed method utilizing factor modeling (10) and the autoen-
coder (11) are denoted as Prop FM and Prop AE, respectively.
Figure 3 and Table 1 illustrate that the proposed method can
consistently achieve a lower estimation bias of causal effect com-
pared with competing methods. As the number of mediators
and sample size increase, the proposed method achieves a more
significant debias in estimation compared to other methods.
In particular, in comparison with the best competing method
LSEM, our algorithm reduces the causal effect estimation bias
by 36% when k = 2 and by 50% when k = 5. In addition,
the proposed method reduces the estimation bias by 50% to
89% compared to LSEM when the sample size increases from
N = 200 to N = 2000. Although other methods incorporate
information of multiple mediators into causal effect estimation
procedure, they do not use the confounder-sharing structure
among mediators and outcomes. As a consequence, the esti-
mation bias accumulates as the number of mediators and sam-
ple size increase. However, the proposed method incorporates

Prop AE —® Causal Forest ** XlLeaner * LSEM —* HIMA
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Figure 3. The bias of causal effect estimation from different methods under the setting of linear confounding effects on multiple mediators and outcomes.
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Table 1. The performance of causal effect estimation and outcome prediction from different methods under the setting in Section 6.1.

Sample size Method Number of mediators k
k=2 k=5
Biastotal Biasmed MSE Biastotal Biasmed MSE
N =200 Prop AE 0.53(0.18) 0.33(0.21) 0.89(0.11) 1.10(0.27) 0.80(0.62) 0.99(0.10)
Prop FM 0.35(0.21) 0.26(0.18) 0.89(0.10) 0.54(0.48) 0.68(0.60) 1.00(0.10)
Causal Forest 1.41(0.28) - 1.13(0.15) 3.77(0.49) - 1.46(0.12)
XLearner 1.36(0.26) - 1.11(0.13) 3.33(0.37) - 1.49(0.19)
LSEM 0.64(0.13) 1.14(0.13) 0.96(0.10) 1.19(0.23) 2.76(0.27) 1.09(0.11)
HIMA 1.29(0.24) 1.44(0.21) 1.06(0.13) 2.42(0.52) 3.59(0.47) 1.21(0.11)
N = 800 Prop AE 0.51(0.12) 0.14(0.13) 0.86(0.04) 0.81(0.20) 0.32(0.19) 0.96(0.03)
Prop FM 0.18(0.15) 0.12(0.08) 0.86(0.04) 0.21(0.17) 0.26(0.19) 0.95(0.03)
Causal Forest 1.48(0.11) - 1.00(0.05) 4.09(0.17) - 1.22(0.06)
XLearner 1.44(0.12) - 0.99(0.04) 3.71(0.14) - 1.24(0.06)
LSEM 0.66(0.05) 1.15(0.06) 0.93(0.04) 1.18(0.14) 2.73(0.13) 1.06(0.03)
HIMA 1.26(0.12) 1.38(0.09) 1.04(0.07) 2.31(0.19) 3.49(0.19) 1.15(0.05)
N = 2000 Prop AE 0.43(0.10) 0.13(0.08) 0.87(0.02) 0.75(0.20) 0.21(0.16) 0.94(0.04)
Prop FM 0.09(0.09) 0.12(0.10) 0.87(0.03) 0.12(0.09) 0.24(0.18) 0.96(0.04)
Causal Forest 1.46(0.08) - 0.96(0.03) 4.16(0.11) - 1.15(0.04)
XLearner 1.45(0.07) - 0.96(0.03) 3.76(0.07) - 1.17(0.05)
LSEM 0.64(0.04) 1.13(0.04) 0.93(0.03) 1.17(0.06) 2.73(0.07) 1.04(0.03)
HIMA 1.27(0.07) 1.42(0.06) 1.04(0.04) 2.34(0.12) 3.51(0.10) 1.15(0.04)

NOTE: The number of mediators are k = 2 and k = 5, and the sample size varies from N = 200 to N = 2000.

the inferred confounder to disentangle the confounding among
mediators and outcome, and leads to a lower estimation bias.
Notice that for the proposed approach, the debias performance
based on factor model is better than autoencoder. This is because
the factor model can better capture the linear structure of con-
founding effects on mediators with a lower model complexity
than the autoencoder under the current setting. Given that
Causal Forest and XLeaner do not provide the decomposition
of causal effect, we compare the proposed method with HIMA
and LSEM regarding the mediation effect estimation. The results
are illustrated in Table 1. Similar to the performance in causal
effect estimation, the estimation bias of mediation effect from
HIMA and LSEM arises significantly as the number of mediators
increases while the proposed method retains a low estimation
bias. In addition, our method benefits from increasing sample
size in terms of reducing bias. Our simulations show the advan-
tage of incorporating a surrogate confounder, which can sig-
nificantly reduce the confoundness among multiple mediation
pathways. In Table 1, the estimation bias of the treatment effect
increases as the number of mediators increases is due to the
estimation bias of each individual mediator’s effect accumulating
when estimating the total treatment effect. However, the aver-
age estimation bias #K& —a) + Zle(BI.MﬁiY - /31.(M),3i(y))|
decreases as the number of mediators increases.

Furthermore, the performance comparison on outcome pre-
diction is presented in Table 1. The proposed method consis-
tently achieves a lower prediction error on the testing dataset,
and its improvement over the best competing method LSEM
increases as the sample size N increases. Table 1 shows that
our deconfounding algorithm can utilize multiple mediators to
recover partial unobserved effects of latent confounders from
outcomes. We conduct simulation studies to investigate robust-
ness of the proposed method when the underlying causal media-
tion pathway in our setting is misspecified. Specifically, we con-
sider the case when multiple mediators are dependent among
each other conditioning on underlying confounder U, and the
case when U does not affect treatment or outcome. The follow-
ing simulation results show that our method can achieve lower

estimation bias compared with competing methods, and is rel-
atively robust to the misspecification of confounding structure
when the sample size is large. The detailed settings and results
are provided in Sections 8 and 12 of supplemental materials.

6.2. Nonlinear Confounding Effect

In this section, we perform numerical comparisons when
the observed data (T,M,Y) are generated following the
sequential models (19) in Section 6.1, and the confound-
ing effects on multiple mediators and outcome G(U) =
{gn (U), ..., g0 (U),gy(U)} are generated as different
nonlinear functions of U. We first consider the low-rank
confounding effect as follows:

Sy (U) = Piecewise(a(k), b(k)),k =123,
gy (U) = sin(U),
gy (U) = gy (U) x cos(U),

gy(U) = gy (U) x exp(—U/6),

where Piecewise(a, b) is denoted as the piece-wise function
|al

on U that is, and Piecewise(a,b) = Zal]]‘{blfu<bl+1}’ with
=1

a, b are the piece-wise function values and cutoffs. We

set a) = (1,2,—1,-2,-3), a® = (=2,05,1,2,3,4),

a® = (=1,2,3); and bV = (—00,-3,-1,1,3,00), b® =

(=00, —4,-2,0,2,4,00), b® = (—o00,—3,3,00) according

to the above data generating process. In addition to the above

settings in (20), we also investigate other settings of nonlinear

confounding effect as follows:

(20)

gy (U) = ]l{T:o}{Piecewise(a(4), b(l))} + Lir=0)
{Piecewise(a®, b))},

gy (U) =(05+T) x Piecewise(a(6), b(z)),

gy (U) =2 x Tir—g)
{Piecewise(a”, )} + 2 x 1(7—¢){Piecewise(@®, b},



gy (U) = 2T x {sin(U) + 0.2}, gy (U) = gy (U)
X { cos(U) + 0.5},gy(U) =exp(—U/8 4+ 0.97), (21)

with a® = (1,2,-2,-1,1), a® = (2,3,0,-1,2), a® =
(=2,0.5,1,2,1,—1), a? = (=1,0,—1), and a® = (-0.5,1 —
0.5). Although both (20) and (21) are highly nonlinear in terms
of U, the former setting leads to a low-rank structure in G(U)
in that the first principle component contributes about 55%
total variation to {G(U,-)}fi 1> while the proportion of the first
component only explains about 38% of the total variation of
{G(U,-)}fi , for the latter setting. In other words, the confounder
U can be captured via a linear combination of mediator-wise
confounding effects for the former setting. In addition, setting
(21) introduces the interaction between treatment and con-
founder in the confounding effects to mimic the post-treatment
effect, where association between treatment and mediators, and
between mediators and response are influenced by the treat-
ment. The sample size varies from N = 200, 800,2000 and
N = 1000, 2000, 3000 for settings (20) and (21), respectively.
The performance of causal effect estimation and mediation
effect estimation are illustrated in Figure 4 and Table 2. Under
the low-rank setting, the proposed method with factor modeling
achieves a lower estimation bias, and its improvement over
the best competing method LSEM increases as the sample size
increases. The improvement patterns are similar to the ones
under linear confounding effects in Section 6.1, showing that
the proposed factor modeling is able to capture the variation
of subject-wise confounders regardless of the functionality of
confounding effects under the low-rank structure of G(U). Due
to the interactions between T and U, the data-generating process
under setting (21) is in fact misspecified for the deconfounding
framework here which is satisfied under a homogeneous treat-
ment effect model (6). Correspondingly, the estimation biases
from Prop FM and Prop AE both increase while these biases
still remain lower than other competing methods. Our simula-
tion results suggest that the proposed method is robust against
model misspecificaiton, and still effective under the heteroge-
neous treatment effect setting to some extent. Different from
the low-rank setting (20), the Prop AE produces smaller bias

method * Prop FM

Low-rank non-linear confounding effect
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than Prop FM under the setting (21) when the relation among
confounding effects of mediators and outcome is more com-
plex, and beyond linearity. Through strong representation power
from the autoencoder, Prop AE extracts more of the confound-
ing information of U shared by {g;,1) (U), . .., gm0 (U), gy (U)}
compared with factor modeling.

In terms of outcome prediction, Table 2 shows that the
nonparemetric methods Causal Forest and XLearner provide
smaller prediction MSE than the two parametric methods
HIMA and LSEM, since the tree-based methods such as
Causal Forest and XLearner can better capture the nonlinear
confounding effects on outcome. However, the proposed
method still outperforms compared to the Causal Forest and
XLearner, as we can incorporate the structural information of
parallel mediators via the surrogate confounders.

7. Real Data Example

In this section, we apply the proposed deconfounding algorithm
to the Normative Aging Study data obtained from the NIH
dbGaP database (https://www.ncbinlm.nih.gov/gap/) under
phs000853.v1.pl. The Normative Aging Study (NAS) is a
longitudinal study conducted by the United States Department
of Veterans Affairs starting from 1963, which collects phenotype
data and genotype data from 657 male participants via regular
physical examinations and laboratory tests. The phenotype
data consists of status of coronary heart disease, diabetes,
hypertension, Apolipoprotein E4 protein, and different types
of white blood cells from individual blood tests. In addition,
the phenotype data include the basic sociodemographic
information of smoking status as a binary variable, age at
death, and years of education. The genotype data contains
the DNA methylation levels at 26,987 individual CpG sites for
each participant, which are measured via the Infinium Human
Methylation450 technique (Dedeurwaerder et al. 2014).

Studies have shown that smoking is hazardous to individual
health regarding adverse effects on the quality of life and effects
on death risk, and deterioration of the individuals’ health status

Prop AE ~® Causal Forest # XlLeaner < LSEM -* HIMA
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Figure 4. The bias of causal effect estimation from different methods under the setting of nonlinear confounding effects on multiple mediators and outcome.
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Table 2. The performance of causal effect estimations and outcome predictions from different methods under the setting in Section 6.2.

Method Low-rank nonlinear confounding effect Full-rank nonlinear confounding effect
Sample size Biastotal  BiaSmed MSE Sample size Biastotal  BiasSmed MSE

Prop AE N = 200 0.86031 094003 1.84p56 N = 1000 1.08p52 097072 228011
Prop FM 031927 1.01978 1.66057 12960 125043 223011
Causal Forest 4.490.91 - 2.23p50 547088 - 2.420 08
XLearner 4.160 86 - 219907 414057 - 2.380.09
LSEM 1.09%.26 3.55044 2.53046 2.03014 3.50023  2.59.10
HIMA 182046 23%s86 253066 4070220 458072 265018
Prop AE N = 800 0.63021 0.799.51 1.640.27 N = 2000 134073 137082 221909
Prop FM 0.140.13 0.79.56 1.64927 1.891 29 1.930 36 2.190.08
Causal Forest 4.810.45 - 192024 513064 - 2.320.09
XLearner 4.67¢57 - 1.880.22 4.25¢35 - 2.300.08
LSEM 111012  3.62018 2.05023 201911 3.62013  2.560,05
HIMA 175020 282030 2.1923 396014 448034  2.62009
Prop AE N = 2000 057914 057040 144017 N = 3000 1.520.91 1.5%.66 221006
Prop FM 0.1 60.1 2 0.470.42 1 .420.1 7 1.944 1 1 ~830.86 2.1 80,07
Causal Forest 5.03053 - 1.750.15 482055 - 2.280.06
XLearner 4.850 45 - 1.720.16 412035 - 2.270.06
LSEM 110006 363013 2.030.13 196008 3.54017 2.56006
HIMA 1.79%.14 277020 227017 407914 456026 263008

NOTE: The number of mediators is k = 5.

through various pathways in lifestyles and diseases (Doll and
Hill 1956; Peto 1994; Carbone, Kverndokk, and Regeberg 2005).
In addition, recent studies discovered that smoking causes
extensive genome-wide changes in DNA methylation (Zeilinger
et al. 2013; Lee and Pausova 2013), which plays a critical role
in the development and progression of cancers, and immune-
system-related complex diseases (Suarez-Alvarez et al. 2012;
Jin and Liu 2018). Motivated by these findings, our goal is to
investigate whether the smoking habit further affects the lifespan
based on the NAS data, and whether there are causal mediation
pathways from smoking to lifespan through DNA methylation.
Specifically, we focus on estimating the effect of smoking status
on reducing the participants’ lifespan, and identify mediation
effects by DNA methylation levels at different CpG sites.

Given that the original DNA methylation data is high-
dimensional and contains methylation levels from CpG sites
which could be irrelevant to the mediation pathway, we first
preprocess data to select significant mediators. Specifically, we
select methylation levels at 22 CpG sites serving as mediators in
the following analysis. The detailed preprocessing are provided
in Section 9 in supplementary materials. We investigate the
smoking effect on lifespan predictions based on the proposed
method and four competing methods: LSEM, HIMA, Causal
Forest, and XLearner, as detailed in Section 6. The prediction
mean square error is evaluated via 5-fold cross-validation. We
provide the implementation of our deconfounding algorithm
and other methods in the supplementary materials. The results
are provided in Table 3 where Treateo,), Treatqyy, and Treatpeq
denote the estimation of total treatment effect, direct effect, and
mediation effect. The prediction error indicates the medians of
lifespan prediction mean square errors from multiple repeated
measurements. Compared with existing methods, the proposed
method detects a significantly stronger adverse effect of smoking
on lifespan via incorporating the latent confounding effects.
Specifically, the proposed method using either latent factor
modeling or autoencoder estimates, shows that the smoking
habit reduces the lifespan by about 8 years for participants in
the NAS study, while estimations from other methods are less
than 2 years. On the other hand, a national study based on the

Table 3. Estimations of total treatment effect, direct effect, mediation effect, and
prediction error of lifespan estimations from different methods for the NAS data
where Prop FM and Prop AE stand for the proposed methods modeling confounding
effect with factor model and autoencoder, respectively.

Treatiotal Treaty, Treatmeq Prediction error
Prop FM —-8.401 01 -1.95¢0.87 -6.450 60 294077
Prop AE -8.301.06 -1.58p.37 -6.721.09 3.15033
Causal Forest -1.60034 - - 321930
XLearner -1.590.22 - - 31 3027
LSEM -1.860.19 -1.690.22 -0.16¢.22 3.03p.29
HIMA -1.970.26 -1.5710.20 -0.450.14 39.5715.58

2004 U.S. Census data concludes that the effect of smoking on
increasing the mortality risk is similar to reducing 5-10 years
in lifespan (Woloshin, Schwartz, and Welch 2008). In addition,
other smoking-cancer association studies show that the average
loss of life for smokers is 8 years in Europe and United States
(Boyle 1997). Therefore, our method produces a treatment
effect of smoking on lifespan, which is more consistent with
existing data. In addition, clinical studies found that smoking
can significantly increase the risk of premature death (Gavin
2004; Jha et al. 2008), which also supported a stronger negative
effect of smoking on lifespan.

In addition to the direct treatment effect, both the proposed
method, LSEM, and HIMA can identify the roles of DNA methy-
lation levels as mediators to transmit the indirect effect of smok-
ing on lifespan, supported by scientific evidence that smoking-
induced DNA methylation also increases the risks of metabolic
disorders, chronic diseases, diabetes, and cancers (Besingi and
Johansson 2014; Tsai et al. 2018; Maas et al. 2020; Jamieson et al.
2020). However, in contrast to the existing LSEM and HIMA,
the proposed method can capture stronger mediation effects
of DNA methylation in that the proportion of total treatment
effect of smoking is almost fully mediated by DNA methylation
levels. The DNA methylation level is found to have a full medi-
ation effect of smoking on epigenetic aging (Lei et al. 2020),
90% on bladder cancer risk (Jordahl et al. 2019), and 55% on
lung functional degradation (De Vries et al. 2018). In addition,
(Zhang et al. 2016b) found that the DNA methylation level is the



most informative biomarker for predicting risks from all causes
and cardiovascular mortality associated with smoking (Zhang
et al. 2016b). These studies indicate a significant and domi-
nant role of DNA methylation levels in conveying the smoking
effect reduction of lifespan, which is also consistent with the
estimation of mediation effects from the proposed method. The
distinct gaps between our deconfounding method and existing
non-deconfounding methods on both total treatment effect and
mediation effects suggest the usefulness of latent confounders
for the NAS study. Furthermore, our deconfounding algorithm
with latent factor modeling also produces a lower prediction
error of lifespan estimation through incorporating partial con-
founding effects on lifespan. We also provide the interpretation
for the latent confounder inferred from the 22 CpG media-
tors, and the sensitivity analysis of the causal estimation on
the choice of factor models in Section 9 of the supplementary
material.

8. Discussion

In this article, we propose a novel deconfounding method and
algorithm to debias causal effect and mediation effect estima-
tion in causal mediation analysis. Specifically, we consider the
causal pathways with parallel mediators such that mediators are
causally independent conditioning on the shared latent con-
founders. Our method generalizes the classic mediation analysis
paradigm, and is applicable for a wide range of applications.
The proposed method uses the confounder-mediator structure
in multi-channel mediation pathways to infer the information
of latent confounders. In addition, we provide flexible modeling
on the confounding mechanism regarding the effects of latent
confounders from treatment, mediators, and outcomes. The
principle idea of our method is to construct surrogate con-
founders incorporating the confounding information instead
of recovering the original confounders. In theory, we establish
sequential ignorability via incorporating surrogate confounders.
Accordingly, we show that both the causal effect and medi-
ation effect can be identified based on the joint distribution
of observed data and surrogate confounders. In particular, we
provide identification conditions for causal effect estimation
under different mediation pathway structures. Our numeric
studies also confirm that the proposed method reduces the
estimation bias of causal effect and mediation effect under vari-
ous confounding mechanisms through the confounder-sharing
structure of multiple mediators. In this article, the surrogate
confounders are jointly estimated. In order to incorporate new
observations, we are required to re-train the model on the entire
dataset to update surrogate confounders for both historical and
new observations. The proposed method can be modified using
an online learning scheme in that deconfounding for new obser-
vations can be computationally independent from historical
data.

Supplementary Materials

The supplementary materials provide proofs of the Lemma 5.1, Theorem
5.1, Corollary 5.1, Theorem 5.2, deconfounding algorithm using autoen-
coder, illustrations of numerical comparisons in Section 6, and data pre-
processing, implementation and interpretation for real data application,
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sensitivity analysis, simulations under misspecified causal pathways, dis-
cussion on examples of real applications, and discussion on relation to
deconfounder for multiple causes.
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