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SUMMARY

Mobile health has emerged as a major success for tracking individual health status, due

to the popularity and power of smartphones and wearable devices. This has also brought

great challenges in handling heterogeneous, multi-resolution data that arise ubiquitously

in mobile health due to irregular multivariate measurements collected from individuals. In

this paper, we propose an individualized dynamic latent factor model for irregular multi-

resolution time series data to interpolate unsampled measurements of time series with low

resolution. One major advantage of the proposed method is the capability to integrate

multiple irregular time series and multiple subjects by mapping the multi-resolution data

to the latent space. In addition, the proposed individualized dynamic latent factor model

is applicable to capturing heterogeneous longitudinal information through individualized
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dynamic latent factors. Our theory provides a bound on the integrated interpolation error

and the convergence rate for B-spline approximation methods. Both the simulation stud-

ies and the application to smartwatch data demonstrate the superior performance of the

proposed method compared to existing methods.

Some key words: Data integration; Interpolation; Mobile health; Nonparametric approximation; Wearable

device data.

1. Introduction

With recent developments in technology, mobile health has begun to play an important

role in personalized treatment and intervention due to the wide usage of smartphones and

wearable devices. A wealth of longitudinal data from wearable devices track people’s phys-

ical activities and health status, which enables us to deliver noninvasive interventions in

real time. To address the unique challenges presented by these data, including their high

heterogeneity, multi-resolution and nonlinearity, we need to develop statistical methods,

theories and computational tools. The data often include both dense observations over a

long period of time and also sparse observations due to a large proportion of missing data.

Figure 1 illustrates an example of mobile health data for monitoring the heart rate, stress

and daily wellness, where the heart rate is measured much more frequently than stress and

daily wellness.

In this paper, we are particularly interested in irregular multi-resolution time series as

the data present three aspects of irregularity (Sun et al., 2020): irregular intra-series due to

irregular time intervals within each time series, irregular inter-series due to varying sam-

pling rates among multivariate time series from the same subject and irregular inter-subject

measurement variations due to different time stamps across different subjects. In addition to

irregular and multi-resolution data features, subjects can be highly heterogeneous in terms

of demographics, genetic characteristics, medical history, lifestyle and many unobserved

attributes (Conway et al., 2011). Thus, each subject is expected to have a unique trajectory

on measurements of interest. Traditional homogeneous models are no longer suitable for

this type of data (Petris et al., 2009; Wang et al., 2016; Hamilton, 2020), so individualized

modelling and learning for heterogeneous data are in great demand.

In particular, we are motivated by a stress management study for caregivers of dementia

patients that uses mobile health data to intervene with subjects experiencing high stress

(Lee & Gibbs, 2021). To administer intervention for subjects experiencing high stress, we

need to capture the trajectories of the subject’s physiological information such as the heart

rate, heart rate variability, physical activities and daily wellness. Some measurements are

low-resolution time series, and therefore interpolating unobserved data from irregularmulti-

resolution time series could play an important role in performing downstream analyses in

prediction, classiocation or clustering (Jensen et al., 2012).

Traditional polynomial and splinemethods can provide interpolation (De Boor, 1978) for

a single time series. However, they are not effective for incorporating correlations among

time series, which may lead to information loss shared by multivariate time series from

the same subject. Multivariate time series (Hamilton, 2020) and the dynamic linear model

(Petris et al., 2009) are capable of handling multiple time series with missing values (Gómez

et al., 1999). However, the high missing rate of low-resolution time series makes it difo-

cult to infer and predict trajectories of longitudinal data (Jones, 1980), especially when the

occurrence of ultra-sparse time series could lead to degenerated interpolation of missing
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Fig. 1. Intra-series and inter-series irregularities of irregularmulti-resolution time series in wearable device data.

values due to a large gap from prior observations. In addition, existing approaches require

the stationarity assumption that might be difocult to satisfy or verify.

Functional data methods such as functional principal component analysis (Hall &

Hosseini-Nasab, 2006; Yao&Lee, 2006;Wang et al., 2016) and functional regression (James

& Hastie, 2001; Yao et al., 2005) are useful when analysing longitudinal data. Among these

works in functional data analysis, to address the classiocation of new curves and account for

subject heterogeneity, James & Hastie (2001) extended linear discriminant analysis to func-

tional data. They modelled each predictor as a smooth curve and transformed the curve to a

vector of coefocients through basis functions. James (2002) further applied a similar idea to

generalized linear models with functional predictors. Additionally, James et al. (2000) pro-

posed a principal component method for irregular and sparse data. These existing methods

are designed for a single outcome. For instance, James (2002) modelled each time series

separately when dealing with multiple time series in prediction models, which ignored the

potential correlations among multivariate time series.

To the best of our knowledge, only a limited literature addresses multivariate functional

data analysis (Berrendero et al., 2011; Chiou &Müller, 2014, 2016; Jacques & Preda, 2014),

and even fewer consider the case of irregular observed data (Happ &Greven, 2018). Specio-

cally, Happ &Greven (2018) introduced a functional principal component analysis tailored

for multivariate functional data with varying dimensions. Although the covariance between

time series are considered in multivariate functional data analyses, they generally do not

address heterogeneity from different subjects. Volkmann et al. (2023) proposed an addi-

tive mixed-effect model for multivariate functional data, where random effects incorporate

subject heterogeneity for each subgroup. However, when subject trajectories do not exhibit

grouping structures, the mixed-effect model has a limitation.

The interactive oxed-effect models also incorporate subject heterogeneity in longitudinal

data/time series data through interactions between individual effect factors and time-effect

factors (Bai, 2009; Bonhomme &Manresa, 2015; Athey et al., 2021). Interactive oxed-effect

models are mainly applied as an extension to linear functional regression models, whereas

our goal is to interpolate missing values utilizing multiple time series. Furthermore, their

approaches account for the interaction between individual effects and time effects for each

time series. In contrast, we map multivariate time series onto a shared latent space and

directly estimate individualized dynamic latent factors without additional decomposition

steps.

State-of-the-art deep learning methods are widely used for supervised and unsupervised

learning for performing both interpolation and prediction tasks (Sun et al., 2020). For

example, recurrent neural networks (Hochreiter & Schmidhuber, 1997) are powerful for
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sequential data. However, due to their complex architecture and the large number of param-

eters involved, recurrent neural networks require massive training data to guarantee good

performance. Furthermore, recurrent neural networks require a homogeneous assump-

tion for subjects, making them unsuitable for individualized predictions on trajectories,

especially when the sample size of the training data is limited.

We propose an individualized dynamic latent factor model to integrate multivariate data

from heterogeneous subjects. The proposed method incorporates irregular multi-resolution

time series from each subject utilizing individual-wise dynamic latent factors, in addition to

integrating population-wise information via shared latent factors across different subjects.

Speciocally, we estimate the dynamic latent factors through a nonparametric model such as

B-spline approximation and establish the corresponding algorithm based on the alternating

gradient descent (Tseng & Yun, 2009). In addition, we extend the dynamic latent factor

model to a more general nonparametric framework beyond the B-spline approximation and

establish consistency of the proposed interpolation model.

The proposed method has the following advantages. First, through mapping observed

irregular time series to the unobserved latent space, the dynamic latent factor model allows

us to effectively utilize the multi-resolution time series since the trajectories of corre-

lated multiple time series information can be borrowed from each other through shared

latent space. Consequently, the proposed interpolation for the missing data is more precise

compared to interpolation from a single time series.

Second, ourmethod integrates data, not only frommultivariate time series, but also across

multiple subjects. Through characterizing a population-wise association between dynamic

latent factors and observed time series, the latent factors shared across subjects allow us to

capture homogeneous features in addition to heterogeneous features. Thus, the proposed

individualized dynamic latent factor model aggregates time series from all subjects to inter-

polate missing data, which can make a signiocant improvement in interpolation, especially

when the resolution of a time series of interest is sparse.

Third, the proposed individualized dynamic latent factor model is applicable for time

series with a complex trajectory. In particular, in contrast to stationary or Markov chain

assumptions required by multivariate time series (Hamilton, 2020) and the dynamic linear

model (Petris et al., 2009), we only require a smoothness assumption (Claeskens et al., 2009)

if theB-spline approximation is implemented in the dynamic latent factor modelling. There-

fore, the proposed method can model nonstationary processes or time series with abrupt

changes, which is particularly useful in practice as abrupt changes in time series data can

often occur.

2. The proposed method

2.1. General methodology

In this subsection, we propose an individualized dynamic latent factor model to cap-

ture the trajectory of multi-resolution time series while preserving time-invariant shared

information across subjects for each time series.

We consider a J-dimensional multivariate time series for subject i, i = 1,…, I :

Yi(t) = {Yi1(t),Yi2(t),…,YiJ(t)}
T

with Yij(t) the jth time series for t ∈ [0,T], a onite interval. For each time series Yij(t), there

are Kij observations at time-points in Tij = {tijk | k = 1,…,Kij, tijk ∈ [0,T]}. We illustrate
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Fig. 2. Irregular multi-resolution time series with multi-resolution and irregular time intervals. The left plot
provides two time series obtained from the smartwatch datawhere different colours represent different caregivers.

The right plot shows two subjects from these two time series.

observations of the J = 2 time series in Fig. 2, where different colours represent different

subjects.

The irregularity of multivariate time series imposes great challenges in that the number

of observations Kij could be different for different subjects and time series due to the multi-

resolution nature. Speciocally, for any pair of time series Yij(t) and Yij′(t), the time interval

tijk−tij(k−1) could be different from tij′k−tij′(k−1), as illustrated in interval 1 and interval 2 of

Fig. 2. Similarly, within a single time seriesYij(t), time intervals tijk−tij(k−1) and tijk′−tij(k′−1)

could also be different, as shown in interval 2 and interval 3 of Fig. 2. Furthermore, the sets

of time-points Tij may also differ between subjects. That is, even if the resolution or sample

rate for each time series j is the same for all subjects, the time-points tijk and ti′jk may not be

the same.

One of our goals is to interpolate unsampled points for a low-resolution time series.With-

out loss of generality, let the Jth time series YiJ(t) be the time series of interest. Because of

the low resolution of the time series, values of the time series YiJ(t) at some time-points

{t ∈ Tij | j = 1,…, J − 1} might not be observed. For illustration, on the right-hand side of

Fig. 2, there are observations in the blue box for time series Y11(t), while time series Y12(t)

is not observed. In addition, on the left-hand side of Fig. 2, we observe that time series with

one particular lower resolution Yi2(t) have far fewer observed time-points than other time

series, yet contain observed time-points the other series Yi1(t) do not have.

In the following, we propose to model each time series Yij(t) for i = 1,…, I , j = 1,…, J,

t ∈ [0,T] by

Yij(t) = f Tj θi(t) + εij(t), (1)

where fj ∈ R
R is a vector of population-wise latent factors corresponding to the jth

time series, R is the dimension of the latent space, the dynamic latent factor θi(t) =

{θi1(t),…, θiR(t)}T is a vector of continuous functions of t for subject i capturing individual-

specioc features and the randomnoises εij(t) are independent and identically distributed.We

let F = (f1,…, fJ)
T ∈ R

J×R denote the latent factor matrix.

By modelling each time series through the inner product of latent factors fj and θi(t) in

(1), we are able to integrate data from multi-resolution time series and different subjects. In

addition, mapping multivariate time series to a latent space via the dynamic latent factor

θi(t) allows us to utilize information from multi-resolution time series. On the other hand,
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we require the latent factor F to be shared among subjects so information across subjects

can be borrowed. The data integration can help us to improve the estimation accuracy of F

and θi(t), and thus accurate interpolation of the target time series YiJ(t) can be achieved.

Speciocally, we utilize the latent factor fj to capture time-invariant features of the jth time

series, while using the dynamic latent factor θi(t) for time-varying features.

In contrast to F , the dynamic latent factor θi(t) represents an individualized time trajec-

tory that can be heterogeneous for different individuals. In most longitudinal data, such as

our mobile health study, different time series could be correlated for the same subject; there-

fore, we can use a few latent factors to represent time-varying individual features. Thus, using

the existing homogeneous models (Petris et al., 2009; Goodfellow et al., 2016), including the

recurrent neural network model, may lead to high interpolation error, as these models are

not suitable for learning individualized trajectories.

Additionally, the dynamic latent factor θi(t) for the ith subject allows for incorporation

of the multi-resolution time series Yij for j = 1,…, J, whereas traditional interpolation

methods, such as polynomial interpolation and spline interpolation (De Boor, 1978), only

use data from a single time series YiJ(t). As we mentioned earlier, one of the interests in

the time series study is to provide interpolation of low-resolution time series, which may

be necessary due to budget or technical limitations in obtaining high-resolution data. Bor-

rowing information from other time series of the same subject is robust for interpolation,

especially in the case of low-resolution time series in multi-resolution data. This is because

certain variations in the time series may not be captured by low-resolution observations.

For example, in Fig. 2, the time series Yi2(t) is of interest. As highlighted in blue boxes, the

observations of time series Y11(t) suggest that time series Y1(t) changes abruptly and man-

ages to return back to the previous trend. However, the trajectory of time seriesY12(t)might

miss the abrupt change due to its low resolution, leading to high interpolation errors based

only on observed data of Y12(t). In contrast to traditional interpolation methods, the pro-

posedmethod is able to preserve the abrupt change through estimating θ1(t) using additional

time series Y11(t) and therefore provides more precise interpolation for Y12(t). Our method

can be broadly applicable to time series with more complex trajectories, such as nonsta-

tionary processes or sparse time series. This is particularly useful when prior knowledge of

time series is unknown, or when the data patterns indicate that stationary or non-stationary

model assumptions (Petris et al., 2009; Hamilton, 2020) are not satisoed with the data. In

practice, the stationary assumption could be too restrictive (Hamilton, 2020). The non-

stationary random process assumption (Petris et al., 2009) could also be restrictive, as it

typically requires that the state process be a Markov chain.

2.2. Latent factor estimation

In this subsection, we propose to estimate the dynamic latent factors θi(t) using B-spline

functions to capture nonlinear function patterns. Speciocally, we estimate the latent factors

F and parameters associated with the B-spline by minimizing a regularized square loss on

Yij(t).

We assume that each dynamic latent factor element θir(t) is a function in the Sobolev

space Wα
q [0,T] equipped with a onite Lq norm, where α is a smooth parameter such that

θir(t) and its weak derivatives up to order α have a onite Lq norm. We approximate θir(t) by

a linear combination of B-spline basis functions of order α + 1, that is,

θir(t) ≈

M
∑

m=1

wirmBm(t) (r = 1,…,R),
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where Bm (m = 1, 2,…,M) are basis functions of smoothing degree α and W = {wirm} ∈

R
I×R×M consists of weights for each basis function Bm. Speciocally, on the time interval

[0,T], we use a sequence of a interior knots 0 < »1 < »2 < · · · < »a < T , and therefore the

number of basis functionsM = a+ α + 1.

In the context of time series or longitudinal data, the spline method is effective in mod-

elling nonlinear trends over time (Welham, 2009) and is also nexible formodelling correlated

longitudinal data (De Boor, 1978). Tomodel irregular multi-resolution time series data with

correlations among time-points and multiple time series within the same subject, we esti-

mate the parameters F andW by minimizing the following square loss on Yij(t) with an L2

penalty (Salakhutdinov et al., 2007; Agarwal & Chen, 2009; Bi et al., 2017):

L(F ,W) =

I
∑

i=1

J
∑

j=1

∑

t∈Tij

{Yij(t) − f Tj WiB(t)}2 + ¼(‖F‖2F + ‖W‖2F). (2)

Here,Wi = {wirm} ∈ R
R×M and B(t) = {Bm(t)} ∈ R

M , ¼ is the tuning parameter and ‖ · ‖F
denotes the Frobenius norm. We estimate F andW through

(F̂ , Ŵ) = argmin
F ,W

L(F ,W).

We use the Frobenius-norm penalty to control the nonsmoothness of the otted curve by

oltering out spurious coefocients of the latent factor matrix F and spline tensor W . The

regularization of W enables us to use a relatively large number of interior knots with-

out knowing the number of knots, while shrinking some spline coefocients towards zero.

Allowing more interior knots leads to more nexibility in modelling the nonlinear trajectory

(Claeskens et al., 2009).

We can also choose other approximation methods for dynamic latent factors θi(t), such

as the kernel approach (Wenzel et al., 2021) or deep learning methods (Goodfellow et al.,

2016). However, the interpolation accuracy is innuenced by the approximation error of the

dynamic latent factors, which is determined by the choice of approximation methods.

Once the estimators F̂ and Ŵ are obtained, the proposed interpolation at any time t ∈

[0,T] is calculated by

Ŷij(t) = f̂ Tj ŴiB(t). (3)

Equation (3) provides a general formula for all time series at any time-point in the range

[0,T]. However, in practice, we might only be interested in interpolating a single time series

ŶiJ(t) for {t ∈ Tij | j = 1,…, J − 1}.

3. Theory

In this section, we develop the theoretical properties of the proposed method based on a

sample estimator from a Sobolev space in addition to providing the theoretical properties

of the estimation with the B-spline approximation. Speciocally, we establish the asymptotic

property of the integrated interpolation error and provide the rate of convergence for the

proposed estimator when the parameter space is a Sobolev space. Finally, we provide a

concrete convergence analysis for B-spline approximation to demonstrate the theoretical

properties of our implemented model in § 2.
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We orst consider a general result for θir(t) ∈ Wα
q [0,T] for α > 1 and q � 2, where

Wα
q [0,T] is a Sobolev space with a onite Lq norm. The parameter α is a smooth parameter

such that θir(t) and its weak derivatives up to order α have a onite Lq norm. Additionally,

we assume that Kij ∼ K for some K, where a ∼ b when a and b have the same order.

Since our primary goal is the interpolation of Y(t), we focus on the convergence property

of the interpolation values instead of the latent factor recovery. Consider the time series

Yij(t) = ψij(t) + εij(t),

where ψij(t) =
∑R

r=1 fjrθir(t), �(t) = {ψij(t)} is a vector of ψij(t) for i = 1,…, I and

j = 1,…, J, and the random noises εij(t) are independently and identically distributed

with mean 0 and variance σ 2. For simplicity, we write �(t) as � in this paper. As θir(t) ∈

Wα
q [0,T], we have ψij(t) ∈ Wα

q [0,T] by construction. For time series Yij(t) of Y(t), we

deone the L2-loss function as l{�,Yij(t)} = {Yij(t) − ψij(t)}
2.

Let 
 be the set of observations, |
| =
∑

ij Kij be the number of observations and J(�)

be a nonnegative penalty function. For example, we have J(�) =
∑

ij{
∫ T
0 |ψ

(α)
ij (t)|q dt}1/q

since ψij(t) ∈ Wα
q [0,T]. Then the overall object function is

L(�|Y) =
1

|
|

∑

(i,j,t)∈


l{�, yij(t)} + ¼|
|J(�),

where ¼|
| is a tuning parameter for the penalization. To establish the convergence rate, we

introduce the following assumption.

Assumption 1. For the empirical distribution Qij,n of tij1,…, tijKij ,

Qij,n(t) =
1

Kij

Kij
∑

k=1

1tijk<t,

where 1A is the indicator function of event A, there exists a distribution functionQij(t) with

positive continuous density such that

sup
t∈[0,T]

|Qij,n(t) −Qij(t)| = o(K−1
ij ).

Assumption 1 assumes that the empirical distributions of observed time-points converge

to a distribution of t with positive continuous density, which is typically the uniform dis-

tribution for random samples. Such an assumption is common in spline approximation.

Similarly, in kernel approximation, the observed points are assumed to be asymptotically

uniformly distributed (Wenzel et al., 2021). When the observed time-points tijk are random

and sampled from the true distribution Qij(t), Assumption 1 is satisoed naturally by the

Glivenko–Cantelli theorem (Sharipov, 2011).

Let �0 be the true parameters and S = {� : ψij(t) =
∑

r fjrθir(t), ‖F‖∞ � c0, θir(t) ∈

Wα
q [0,T] for i = 1,…, I , j = 1,…, J} be the parameter space that depends on a positive

constant c0. We denote by �̂|
| the sample estimator of �0, satisfying

L(�̂|
||Y) � inf
�∈S

L(�|Y) + τ|
|, (4)
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where lim|
|→∞ τ|
| = 0. This condition implies that �̂|
| is close to the global minimizer

of L(�|Y) when |
| → ∞. This necessity arises because, in practice, obtaining the exact

global minimum is often impractical due to the nonconvex nature of function L.

In addition to the above assumptions, Assumptions S1 and S2 in the Supplemen-

tary Material are standard assumptions for nonparametric approximations on the basis

functions, observation distribution and random noises.

We establish the convergence of �̂|
| in the following theorem.

THEOREM 1. Suppose that �̂|
| is a sample estimator satisfying (4). Then, for Kij ∼ K

for some order K, and under Assumption 1 and Assumptions S1 and S2 in the Supplementary

Material, we have

(

1

IJ

I
∑

i=1

J
∑

j=1

∫ T

0

{ψ̂ij(t) − ψ0,ij(t)}
2 dQij(t)

)1/2

= Op{(IJK)−α/(2α+1)} + op(K
−1/2), (5)

when τ|
| = o{(IJK)−2α/(2α+1)} and ¼|
| ∼ (IJK)−2α/(2α+1).

Theorem 1 indicates that the average interpolation error in terms of integrated squared

loss with respect to time converges to zero when K and IJ go to inonity. The orst term of

the error bound in (5) is due to the approximation bias of the dynamic latent factor that is

determined by the smoothness of θir(t). This approximation bias becomes negligible when

the total number of observations goes to inonity. The second term of the error bound is

determined by the difference between the empirical distribution and the reference distribu-

tion Qij(t), which converges to zero when the number of observations of each time series

Kij goes to inonity, according to Assumption 1.

Theorem 1 demonstrates the beneots of integrating information across subjects and time

series. The interpolation �̂|
| converges faster to the true value�0 if the number of observed

subjects I or the number of observed time series J is larger. That is, when we integrate more

time series and more subjects, we obtain better interpolation.

Next, we extendTheorem 1 to the case when theB-spline approximation is applied, that is,

the parameter space becomes SM = {� : φij(t) =
∑

r,m fjrwirmBm(t), ‖F‖∞, ‖W‖∞ � c0},

where F = (fjr),W = (wirm) andM is the number of basis functions. Similar to the previous

notation, we deone the L2-loss function as l{�,Yij(t)} = {Yij(t) − φij(t)}
2 and the overall

object function as L(� | Y) =
∑

(i,j,t)∈
 l{�, yij(t)}/|
| + ¼|
|J(�). Additionally, we let

the penalty be the L2 penalty deoned in § 2, that is, J(�) = ‖F‖22 + ‖W‖22.

We also denote by �̂|
| = {φ̂ij(t)} the sample estimator of �0, satisfying

L(�̂|
| | Y) � inf
�∈SM

L(� | Y) + τ|
|, (6)

where lim|
|→∞ τ|
| = 0.

We establish the asymptotic property of �̂|
| in the following theorem.

THEOREM 2. Let �̂|
| be a sample estimator satisfying (6). Then, for Kij ∼ K for some

order K, and under Assumption 1 and Assumptions S1 and S2 in the Supplementary Material,
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we have

(

1

IJ

I
∑

i=1

J
∑

j=1

∫ T

0

{φ̂ij(t) − ψ0,ij(t)}
2 dQij(t)

)1/2

= Op{(IJK)−α/(2α+1)} + op(K
−1/2),

when τ|
| = o{(IJK)−2α/(2α+1)} and ¼|
| ∼ (IJK)−2α/(2α+1).

Theorem 2 shows that the convergence rate of the proposed estimator in § 2 is

Op{(IJK)−α/(2α+1)} + op(K
−1/2). To obtain the convergence rate, we require that the penalty

parameter ¼ shrink to zero at a rate of (IJK)−2α/(2α+1).

4. Computation

In this section, we introduce an algorithm and implementation details of the proposed

method. Speciocally, we utilize the alternating gradient descent algorithm (Tseng & Yun,

2009) to estimate latent factors F andW .

The alternating gradient descent algorithm provided in Algorithm 1 below is a gener-

alization of the block coordinate gradient descent method (Tseng & Yun, 2009), which is

especially useful in matrix decomposition and tensor decomposition (Zhao et al., 2015; Bi

et al., 2018; Zhang et al., 2022). The main idea of the algorithm is to iteratively update each

F andWi for i = 1, . . . , I , while keeping the others oxed. The advantage of this algorithm

is that the latent factor matrices naturally provide a block structure of the parameters, and

updating F and Wi enables us to transform the nonconvex optimization to a convex opti-

mization. In addition, it can further decrease the number of iterations and lead to faster

convergence compared with the gradient descent algorithm. This is because we can use a

larger step size when updating blocks of parameters instead of entire parameters (Jain et al.,

2013).

Speciocally, let F (s) andW
(s)
i denote the estimated F andWi at the sth iteration, and let

L(s) = L(F (s),W (s)) denote the corresponding loss.We update each F (s−1) andW
(s−1)
i along

the direction of the partial derivatives ∂L(F ,W (s−1))/∂F and ∂L(F (s−1),Wi)/∂Wi at each

iteration.

Algorithm 1. Alternating gradient descent.

1. Initialization. Set the stopping error ε, rank R, tuning parameter ¼, step

size α, basis functions Bm (m = 1,…,M), and initial values F (0) andW (0).

2. Latent factor update. At the sth iteration (s � 1)

(i) update F (s) : F (s) ← F (s−1) − α∂L(F ,W (s−1))/∂F ,

(ii) update eachW
(s)
i : W

(s)
i ← W

(s−1)
i − α∂L(F (s−1),Wi)/∂Wi.

3. Stop if |L(s+1) − L(s)|/L(s) < ε.

To select rank R, tuning parameter ¼ and step size α, we conduct a grid search by min-

imizing the mean square error on the validation set. Our empirical study shows that the

tuning parameter ¼ is quite robust and would not change the numerical performance much

compared to rank R and step size α. Thus, to save computational cost, we tune the ¼ orst,

and conduct a grid search on pairs of rank R and step size α after. The results from cross-

validation simulations, as well as the performance of the proposed method across different

rank values, can be found in the Supplementary Material.
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In addition, selection of basis functions and determining the number of knots are impor-

tant here. Based on the practice of B-spline approximation, we require the number of basis

functions M to be large enough so that there is at least one observation in each interval.

However, in practice, even if this assumption is mildly violated, we can still obtain a rea-

sonable interpolation accuracy due to the penalty term. In our numerical study, we utilize

the evenly spaced a knots that are smaller or equal to the smallest Kij for i = 1,…, I and

j = 1,…, J. This allows us to model the trajectory sufociently well by utilizing a relatively

large number of knots.

The L2 penalty in (2) is selected to avoid overotting and scale indeterminacy, which bal-

ances computational complexity and model complexity (Acar et al., 2011). We can also

consider penalty functions used in penalized spline functions, e.g., the integrated squared

qth-order derivative used in the spline function (Claeskens et al., 2009) or the total varia-

tion penalty used by Jhong et al. (2017). However, based on our simulation studies, utilizing

these penalty terms results in similar interpolation accuracy as the L2 penalty after proper

hyperparameter tuning.

5. Simulations

5.1. General setting

In this section, we conduct simulations to investigate the empirical performance of the

proposed individualized dynamic latent factor model and compare it with existing methods

under six different settings. Speciocally, we compare the proposed method with six com-

peting methods, namely, the smoothing spline (De Boor, 1978), multivariate time series

(Hamilton, 2020), the dynamic linear model (Petris et al., 2009), functional principal com-

ponent analysis (Wang et al., 2016), the recurrent neural network and the deep recurrent

neural network (Hochreiter & Schmidhuber, 1997).

Here, the smoothing spline applies to the Jth time series for each subject sepa-

rately with smoothing degree k = 3, which is implemented in the Python package

scipy.interpolate (De Boor, 1978), where knots are selected by the function Uni-

variateSpline automatically. The multivariate time series and dynamic linear model

implement multivariate time series for each subject. To deal with irregular time intervals,

unobserved points are treated as missing values. The multivariate time series and dynamic

linear model are implemented in the Python packages statsmodels.tsa (Hamilton,

2020) and pyro (Petris et al., 2009). The functional principal component analysis integrates

the Jth time series for all subjects together. To handle irregular time intervals, we apply the

functional principal component analysis through the B-spline functional basis using the

Python package scikit-fda (Wang et al., 2016). We implemented two recurrent neural

network models using the Python package tensorflow (Hochreiter & Schmidhuber, 1997)

using masking layers to handle irregularity, where the recurrent neural network model con-

tains one recurrent neural network layer with 32 units and one dense layer, and the deep

recurrent neural network model contains the same three recurrent neural network layers

with 32 units and one dense layer. Both recurrent neural network models are trained by the

Adamoptimizer (Kingma&Ba, 2017) with 20 epochs. For the individualized dynamic latent

factor model, we utilize evenly spaced internal knots with the number of basis functions

M = 300 and the smoothing degree p = 3.

We generate simulated data according to (1) with fj ∼ N(0, IR) and εij(t) ∼ N(0, 0.52).

In each setting, we let the latent space of dimension, the number of subjects, the number of
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time series and the time range be R = 3, I = 30, J = 5 and T = 1000, respectively. In each

setting, we only generate time-points t = 1,…,T as most of the competing methods cannot

handle continuous time-points t ∈ [0,T], while the proposedmethod is able to handle them.

We assess interpolation performance by examining the mean square error over the

training and testing sets based on 50 replications. Speciocally, we are interested in the inter-

polation of the Jth time series. Thus, we calculate the mean square error over the training

and testing sets of the Jth time series, that is,

∑I
i=1

∑

t∈TiJ
{YiJ(t) − ŶiJ(t)}

2

∑I
i=1 |TiJ |

and

∑I
i=1

∑

t
∈TiJ
{YiJ(t) − ŶiJ(t)}

2

IT −
∑I

i=1 |TiJ |
,

where |TiJ | denotes the number of observations for the time series YiJ .

5.2. Multi-resolution time series

In this subsection, we investigate interpolation performance for multi-resolution time

series under three settings with observed time-points at Tij for i = 1,…, I and j = 1,…, J.

In each setting, we let the dynamic latent factors be

θi1(t) = 2 exp

{

−
(t− 60 − 10i)2

50

}

+ 4 exp

{

−
(t− 70 − 10i)2

20

}

,

θi2(t) = i × 0.02 log(t+ 1),

θi3(t) = cos(0.12π t+ 1),

where θi1 represents two pulses at time-points 60 + 10i and 70 + 10i for i = 1,…, I ; θi2
represents a time trend that varies among subjects and θi3 represents a seasonal trend.

To evaluate the performance of the proposed method under different observation pro-

cesses, we consider three settings, where the numbers of observations are similar. Speciocally,

the three settings of the observation points of training sets are as follows.

Setting 1.1. We let

Yi1, . . . ,Yi4 : P(t ∈ Tij) = 0.8 for t = 1,…, 1000; j = 1,…, 4,

Yi5 : P(t ∈ Ti5) = 0.2 for t = 1,…, 1000.

Setting 1.2. We let

Yi1,…,Yi3 : Tij = {1, 2, 3,…, 1000} for j = 1, 2, 3,

Yi4 : Ti4 = {1, 3, 5, 7,…, 999},

Yi5 : Ti5 = {1, 5, 9, 13,…, 997}.

Setting 1.3. We let

Yi1,…,Yi5 : P(t ∈ Tij) = 0.7 for t = 1,…, 1000; j = 1,…, 5.

Setting 1.1 mimics the most complicated situation of multi-resolution data, where the Tij
are different for different subjects and each time series has an irregular time interval. Setting
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Table 1. The mean square error of the proposed method and competing methods under

settings 1.1–1.3. The standard errors are reported in parentheses

MSE Setting 1.1 Setting 1.2 Setting 1.3

Training Testing Training Testing Training Testing

IDLFM
(proposed)

0.209 (0.041) 0.415 (0.161) 0.212 (0.044) 0.341 (0.067) 0.215 (0.023) 0.327 (0.041)

SS 0.602 (0.257) 2.983 (10.453) 0.556 (0.282) 0.598 (0.346) 0.632 (0.280) 0.749 (0.460)

RNN 4.186 (6.180) 4.399 (6.226) 0.350 (0.565) 6.786 (6.840) 0.894 (0.894) 1.259 (1.078)

DRNN 1.712 (2.504) 5.793 (7.878) 0.099 (0.050) 6.610 (6.843) 0.604 (0.552) 3.915 (4.865)

IDLFM, the proposed individualized dynamic latent factormodel; SS, smoothing spline; RNN, recurrent neural

network; DRNN, deep recurrent neural network; MSE, mean square error.

1.2 considers the situation where multi-resolution time series have evenly spaced and oxed

time-points. Setting 1.3 considers the same resolution time series with varying time-points

Tij for i = 1,…, I and j = 1,…, J. For testing sets of three settings, we use unobserved

time-points.

Table 1 provides the mean square error (MSE) results under settings 1.1–1.3. The pro-

posed method has the best performance on the testing set under all three settings, with

more than 40% improvement in the mean square error compared to other methods. The

competing methods such as the multivariate time series, dynamic linear model and func-

tional principal component analysis cannot be applied to time series with multi-resolution

or different observation time-points for each subject. Thus, only themethods of the smooth-

ing spline, recurrent neural network and deep recurrent neural network are compared. As

one of the most popular interpolation methods, the smoothing spline performs the second

best in most settings, except it performs the worst under setting 1.1 with randomly selected

time-points for low-resolution time series. In contrast, the proposed method is able to bor-

row information from other time series from the same subject, especially that with high

resolution, and therefore attains better interpolation accuracy. For the recurrent neural net-

work and deep recurrent neural network, the performance varies under different settings.

In general, the deep recurrent neural network performs better than the recurrent neural

network on the training set. However, the deep recurrent neural network performs poorly

in interpolation under multi-resolution situations. Overall, the two recurrent neural net-

work models perform the worst as they do not incorporate heterogeneity among subjects.

The proposed individualized dynamic latent factor model performs similarly under the two

multi-resolution settings, settings 1.1 and 1.2. The difference is that, for randomly generated

observation time-points, the standard deviation of the mean square error is higher on the

testing set.

We also investigate the setting with more time series, where J = 101, for each subject,

where there are 100 time series as covariates and one time series of interest. Our numerical

study shows that the proposed method attains a lower standard deviation when J is higher

as more time series are integrated. The mean square error does not improve much because

the convergence rate of the proposed method is related to the number of observation points

Kij. Additional simulations also illustrate the robustness of the proposed method under

various missing mechanisms, such as missing completely at random, missing at random and

missing not at random. The detailed simulation results are provided in Tables S1 and S2 in

the Supplementary Material.
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5.3. Multiple time series with heterogeneity and nonstationarity

In this subsection, we focus on time series with the same resolution where all subjects and

all time series are observed at the same time-pointsTij = T11 for i = 1,…, I and j = 1,…, J.

We investigate how the heterogeneity of subjects and nonstationarity of time series affect

the performance of interpolation in the following three settings. They are the same as the

settings in § 5.2, except for Tij and the dynamic latent factors. The sets Tij are the same

within each setting, which we refer to as T. For set T, the observation index t ∈ {1,…,T} is

selected according to the Bernoulli distribution with a probability 0.7, and the unobserved

points are treated as the testing set. This mimics the time series setting where all subjects

and time series are observed at the same time-points, but at unevenly spaced time intervals.

The dynamic latent factors for each setting are generated as follows, for i = 1, 2,…, 30 and

t = 1, 2,…, 1000.

Setting 2.1. We let

θi1(t) = 2 exp

{

−
(t− 60)2

50

}

+ 4 exp

{

−
(t− 70)2

20

}

,

θi2(t) = 0.2 log(t+ 1),

θi3(t) = cos(0.12π t+ 1).

Setting 2.2. We let

θi1(t) = 2 exp

{

−
(t− 60 − 10i)2

50

}

+ 4 exp

{

−
(t− 70 − 10i)2

20

}

,

θi2(t) = 0.2 log(t+ 1),

θi3(t) = cos(0.12π t+ 1).

Setting 2.3. We let

θi1(t) = 2 exp

{

−
(t− 60 − 10i)2

50

}

+ 4 exp

{

−
(t− 70 − 10i)2

20

}

,

θi2(t) = i × 0.02 log(t+ 1),

θi3(t) = cos(0.12π t+ 1).

In setting 2.1, the dynamic latent factors are the same for all subjects. In setting 2.2, we

change the locations of two pulses in θi1 to be different for different subjects and keep θi2
and θi3 the same as in setting 2.1. Additionally, in setting 2.3, we keep θi1 and θi3 the same as

in setting 2.2 and change θi2 to a function where the time trend varies across subjects, where

the stationary assumption is highly violated for subjects with large i.

Table 2 provides the results of all methods under settings 2.1–2.3. We observe that the

proposed method has the best performance under all three settings, with more than 50%

improvement in the mean square error compared to other methods. All methods except

the smoothing spline perform best in setting 2.1 and perform worst in setting 2.3. This is

because the subjects are homogeneous in setting 2.1, and are highly heterogeneous in setting

2.3. The proposed method is the most robust compared to other competing methods due to

the advantage of integrating multiple time series and information across subjects. In setting
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Table 2. The mean square error of the proposed method and competing methods under

settings 2.1–2.3. The standard errors are reported in parentheses

MSE Setting 2.1 Setting 2.2 Setting 2.3

Training Testing Training Testing Training Testing

IDLFM
(proposed)

0.201 (0.020) 0.359 (0.046) 0.208 (0.026) 0.334 (0.049) 0.213 (0.024) 0.350 (0.046)

SS 0.726 (0.275) 0.876 (0.501) 0.564 (0.278) 0.668 (0.466) 0.608 (0.253) 0.720 (0.457)

MTS 0.652 (0.384) 0.761 (0.488) 0.607 (0.414) 0.722 (0.523) 0.773 (0.919) 0.919 (1.142)

DLM 3.410 (3.575) 3.405 (3.629) 3.421 (3.821) 3.536 (4.036) 4.840 (8.506) 4.838 (8.340)

FPCA 4.429 (4.415) 4.501 (4.453) 4.516 (4.885) 4.546 (4.901) 6.665 (6.128) 6.762 (6.127)

RNN 0.869 (0.550) 0.865 (0.569) 0.805 (0.665) 0.818 (0.704) 1.584 (3.416) 1.568 (3.324)

DRNN 0.783 (0.515) 0.784 (0.531) 0.744 (0.581) 0.756 (0.604) 1.350 (2.646) 1.333 (2.589)

IDLFM, the proposed individualized dynamic latent factormodel; SS, smoothing spline;MTS,multivariate time

series; DLM, dynamic linear model; FPCA, functional principal component analysis; RNN, recurrent neural

network; DRNN, deep recurrent neural network; MSE, mean square error.

2.3, the multivariate time series and dynamic linear model performworse than the other two

settings, settings 2.1 and 2.2, since the stationary or Markov chain assumption is violated

when the nonlinear trend dominates the time series. In contrast, the proposed method can

model nonlinear trends with dynamic latent factors and provides better interpolation. In

addition, the functional principal component analysis and two neural network models fail

to deliver accurate interpolation due to heterogeneity for different individuals. The individ-

ualized dynamic latent factor model is capable of integrating time series information from

heterogeneous subjects.

6. Real data application

In this section, we apply the proposed method to smartwatch data for caregivers of

dementia patients from the Dementia Family Caregiver Study, which was carried out by

Lee & Gibbs (2021) in California.

Studies show that the under-served caregivers of dementia patients frequently experi-

ence physical and emotional distress (Anthony-Bergstone et al., 1988). To better monitor

and manage caregivers’ stress, Lee & Gibbs (2021) conducted home-based, culturally and

language-specioc interventions for dementia family caregivers, which included stress self-

management and caregiving education. Community health workers offered stress reduction

techniques, includingmindful deep breathing and compassionate listening during up to four

home visits with the caregiver. Additionally, community health workers also provided care-

giving education to improve caregivers’ health, well-being and positive interactions with

dementia patients during a one-month study period. The intervention employed is not in

an online form, as it is preplanned and remains unaffected by the collected data. To moni-

tor the caregiver’s physical activities and physiology, caregivers are equipped with wearable

internet-of-things devices, such as the smartwatch, for a month. These wearable devices are

used to measure the intervention’s impact, offering noticeable changes due to the interven-

tion. There are ove time series of measurements from the smartwatch data, which are steps,

heart rate, activity level, movement and stress. Among these ovemeasurements, we are inter-

ested in evaluating and predicting the stress level of caregivers, which are highly associated

with the other four time series variables (Saykrs, 1973). Our goal is to interpolate unobserved
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Table 3.Themean square error of the proposedmethod and competingmethods for smartwatch

data. Standard errors are reported in parentheses

MSE IDLFM (proposed) SS RNN DRNN

Training 0.149 (0.011) 0.149 (0.013) 0.701 (0.296) 0.313 (0.158)

Testing 0.275 (0.009) 0.367 (0.198) 0.713 (0.144) 0.992 (0.666)

IDLFM, the proposed individualized dynamic latent factormodel; SS, smoothing spline; RNN, recurrent neural

network; DRNN, deep recurrent neural network; MSE, mean square error.

stress levels, so we can assess the effects of the intervention more accurately through the

investigation. These measurements are observed with multi-resolution. Speciocally, activity

level and movement are observed every minute; heart rate is collected every two minutes;

stress is measured every three minutes and steps are counted every 15 minutes. Additionally,

due to the heterogeneous nature of individuals, the observed time also varies for different

caregivers, leading to irregular time series.

In our study, we remove the orst four days and last 10 days of data to ensure data qual-

ity, as subjects might not be familiar with the devices and have trouble setting up, or stop

wearing the devices at the end of the study. There are 33 caregivers and more than 23 000

time-points from day 5 to day 20. The average missing rate for the stress variable is 80%,

while missing rates for steps, heart rate, activity level and movement are 97%, 64%, 37%

and 18%, respectively. The varying missing rates among different time series primarily result

from differences in the collection frequency of each variable. Additionally, the measurement

techniques for each time series and caregivers’ charging habits contribute to the missingness.

Since the scales of different time series measurements are different, we standardize each

observed valueYij(t) by subtracting the mean and dividing by the standard deviation of the

corresponding time series Yij.

To train the interpolation models and evaluate the performance of the proposed method,

we randomly select 30% of the observations for stress levels as a testing set and assign the

remaining stress observations and observations of the other four time series measurements

as a training set. The interpolationmodel predictions are evaluated by themean square error

of stress predictions on the training and testing sets based on 50 replications.

We compare the proposed individualized dynamic latent factor model method with the

three competing methods, including the smoothing spline, recurrent neural network and

deep recurrent neural network, as described in § 5. Table 3 provides the average mean square

error based on both training and testing sets. The proposed individualized dynamic latent

factor model method signiocantly outperforms the other methods in terms of achieving the

lowest mean square error. Speciocally, the proposed method reduces 24%, 61% and 72% of

themean square errors of the smoothing spline, recurrent neural network and deep recurrent

neural network methods on testing sets, respectively, and achieves the smallest standard

error among all competing methods. This is because the smoothing spline does not fully

utilize the other four time series observations. The recurrent neural network using one layer

neural network cannot accommodate complex time series data. Although the three-layer

deep recurrent neural network model performs better than the recurrent neural network

model, it still produces much larger mean square errors than the proposed individualized

dynamic latent factormodel, as the deep recurrent neural network is not capable of handling

low sample-size heterogeneous data.
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Fig. 3. The top plot provides estimated normalized stress for one caregiver by the proposed individualized
dynamic latent factor model (orange line) and four competing methods for both training and testing data. The
bottom plot provides a otted normalized heart rate for the same caregiver by the proposedmethod. Observations
of the caregiver in the training set are marked as blue dots, while those in the testing set are marked as red dots.

Figure 3 illustrates that the proposed individualized dynamic latent factor model inter-

polates the stress of caregivers better than competing methods. In particular, estimated

normalized stress for one caregiver by the proposed individualized dynamic latent factor

model and competing methods along with the otted normalized heart rate for the same

caregiver by the proposed method are provided using the training and testing data. The

outstanding performance of interpolation power by the proposed method is due to the inte-

gration of information across multiple time series measurements with multi-resolution. For

example, the proposedmethod can identify the high stress in time interval [7560, 7610] based

on borrowing information from the increased heart rate during the same time period, while

the competing methods, such as the deep recurrent neural network, fail to predict such a

trend. In practice, monitoring the stress level and identifying high-stress moments is the

orst step in managing the caregiver’s stress level. The proposed method can provide more

precise interpolation for the unobserved stress levels, and is thus able to provide effective

interventions for caregivers and lessen stress levels during dementia caregiving.

7. Discussion

We point out two future research directions. The orst one is to establish a general algo-

rithm for different approximation methods, since the proposed algorithm is based on the

B-spline approximation that may not be applicable for kernel methods. Secondly, in clinical

applications, the ultimate goal is to carry out medical tasks such as outcome prediction and

patient subtyping. Interpolating unsampled values and then processing downstream tasks

may lead to suboptimal analyses and predictions (Wells et al., 2013). Thus, a potential direc-

tion is to extend the proposed interpolationmodel in prediction, clustering and classiocation

problems and process the downstream tasks directly based onmodelling the time series with

missing data.
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