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SUMMARY

Mobile health has emerged as a major success for tracking individual health status, due
to the popularity and power of smartphones and wearable devices. This has also brought
great challenges in handling heterogeneous, multi-resolution data that arise ubiquitously
in mobile health due to irregular multivariate measurements collected from individuals. In
this paper, we propose an individualized dynamic latent factor model for irregular multi-
resolution time series data to interpolate unsampled measurements of time series with low
resolution. One major advantage of the proposed method is the capability to integrate
multiple irregular time series and multiple subjects by mapping the multi-resolution data
to the latent space. In addition, the proposed individualized dynamic latent factor model
is applicable to capturing heterogeneous longitudinal information through individualized
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dynamic latent factors. Our theory provides a bound on the integrated interpolation error
and the convergence rate for B-spline approximation methods. Both the simulation stud-
ies and the application to smartwatch data demonstrate the superior performance of the
proposed method compared to existing methods.

Some key words: Data integration; Interpolation; Mobile health; Nonparametric approximation; Wearable
device data.

1. INTRODUCTION

With recent developments in technology, mobile health has begun to play an important
role in personalized treatment and intervention due to the wide usage of smartphones and
wearable devices. A wealth of longitudinal data from wearable devices track people’s phys-
ical activities and health status, which enables us to deliver noninvasive interventions in
real time. To address the unique challenges presented by these data, including their high
heterogeneity, multi-resolution and nonlinearity, we need to develop statistical methods,
theories and computational tools. The data often include both dense observations over a
long period of time and also sparse observations due to a large proportion of missing data.
Figure 1 illustrates an example of mobile health data for monitoring the heart rate, stress
and daily wellness, where the heart rate is measured much more frequently than stress and
daily wellness.

In this paper, we are particularly interested in irregular multi-resolution time series as
the data present three aspects of irregularity (Sun et al., 2020): irregular intra-series due to
irregular time intervals within each time series, irregular inter-series due to varying sam-
pling rates among multivariate time series from the same subject and irregular inter-subject
measurement variations due to different time stamps across different subjects. In addition to
irregular and multi-resolution data features, subjects can be highly heterogeneous in terms
of demographics, genetic characteristics, medical history, lifestyle and many unobserved
attributes (Conway et al., 2011). Thus, each subject is expected to have a unique trajectory
on measurements of interest. Traditional homogeneous models are no longer suitable for
this type of data (Petris et al., 2009; Wang et al., 2016; Hamilton, 2020), so individualized
modelling and learning for heterogeneous data are in great demand.

In particular, we are motivated by a stress management study for caregivers of dementia
patients that uses mobile health data to intervene with subjects experiencing high stress
(Lee & Gibbs, 2021). To administer intervention for subjects experiencing high stress, we
need to capture the trajectories of the subject’s physiological information such as the heart
rate, heart rate variability, physical activities and daily wellness. Some measurements are
low-resolution time series, and therefore interpolating unobserved data from irregular multi-
resolution time series could play an important role in performing downstream analyses in
prediction, classification or clustering (Jensen et al., 2012).

Traditional polynomial and spline methods can provide interpolation (De Boor, 1978) for
a single time series. However, they are not effective for incorporating correlations among
time series, which may lead to information loss shared by multivariate time series from
the same subject. Multivariate time series (Hamilton, 2020) and the dynamic linear model
(Petris et al., 2009) are capable of handling multiple time series with missing values (Gomez
et al., 1999). However, the high missing rate of low-resolution time series makes it diffi-
cult to infer and predict trajectories of longitudinal data (Jones, 1980), especially when the
occurrence of ultra-sparse time series could lead to degenerated interpolation of missing
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Fig. 1. Intra-series and inter-series irregularities of irregular multi-resolution time series in wearable device data.

values due to a large gap from prior observations. In addition, existing approaches require
the stationarity assumption that might be difficult to satisfy or verify.

Functional data methods such as functional principal component analysis (Hall &
Hosseini-Nasab, 2006; Yao & Lee, 2006; Wang et al., 2016) and functional regression (James
& Hastie, 2001; Yao et al., 2005) are useful when analysing longitudinal data. Among these
works in functional data analysis, to address the classification of new curves and account for
subject heterogeneity, James & Hastie (2001) extended linear discriminant analysis to func-
tional data. They modelled each predictor as a smooth curve and transformed the curve to a
vector of coefficients through basis functions. James (2002) further applied a similar idea to
generalized linear models with functional predictors. Additionally, James et al. (2000) pro-
posed a principal component method for irregular and sparse data. These existing methods
are designed for a single outcome. For instance, James (2002) modelled each time series
separately when dealing with multiple time series in prediction models, which ignored the
potential correlations among multivariate time series.

To the best of our knowledge, only a limited literature addresses multivariate functional
data analysis (Berrendero et al., 2011; Chiou & Miiller, 2014, 2016; Jacques & Preda, 2014),
and even fewer consider the case of irregular observed data (Happ & Greven, 2018). Specifi-
cally, Happ & Greven (2018) introduced a functional principal component analysis tailored
for multivariate functional data with varying dimensions. Although the covariance between
time series are considered in multivariate functional data analyses, they generally do not
address heterogeneity from different subjects. Volkmann et al. (2023) proposed an addi-
tive mixed-effect model for multivariate functional data, where random effects incorporate
subject heterogeneity for each subgroup. However, when subject trajectories do not exhibit
grouping structures, the mixed-effect model has a limitation.

The interactive fixed-effect models also incorporate subject heterogeneity in longitudinal
data/time series data through interactions between individual effect factors and time-effect
factors (Bai, 2009; Bonhomme & Manresa, 2015; Athey et al., 2021). Interactive fixed-effect
models are mainly applied as an extension to linear functional regression models, whereas
our goal is to interpolate missing values utilizing multiple time series. Furthermore, their
approaches account for the interaction between individual effects and time effects for each
time series. In contrast, we map multivariate time series onto a shared latent space and
directly estimate individualized dynamic latent factors without additional decomposition
steps.

State-of-the-art deep learning methods are widely used for supervised and unsupervised
learning for performing both interpolation and prediction tasks (Sun et al., 2020). For
example, recurrent neural networks (Hochreiter & Schmidhuber, 1997) are powerful for
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sequential data. However, due to their complex architecture and the large number of param-
eters involved, recurrent neural networks require massive training data to guarantee good
performance. Furthermore, recurrent neural networks require a homogeneous assump-
tion for subjects, making them unsuitable for individualized predictions on trajectories,
especially when the sample size of the training data is limited.

We propose an individualized dynamic latent factor model to integrate multivariate data
from heterogeneous subjects. The proposed method incorporates irregular multi-resolution
time series from each subject utilizing individual-wise dynamic latent factors, in addition to
integrating population-wise information via shared latent factors across different subjects.
Specifically, we estimate the dynamic latent factors through a nonparametric model such as
B-spline approximation and establish the corresponding algorithm based on the alternating
gradient descent (Tseng & Yun, 2009). In addition, we extend the dynamic latent factor
model to a more general nonparametric framework beyond the B-spline approximation and
establish consistency of the proposed interpolation model.

The proposed method has the following advantages. First, through mapping observed
irregular time series to the unobserved latent space, the dynamic latent factor model allows
us to effectively utilize the multi-resolution time series since the trajectories of corre-
lated multiple time series information can be borrowed from each other through shared
latent space. Consequently, the proposed interpolation for the missing data is more precise
compared to interpolation from a single time series.

Second, our method integrates data, not only from multivariate time series, but also across
multiple subjects. Through characterizing a population-wise association between dynamic
latent factors and observed time series, the latent factors shared across subjects allow us to
capture homogeneous features in addition to heterogeneous features. Thus, the proposed
individualized dynamic latent factor model aggregates time series from all subjects to inter-
polate missing data, which can make a significant improvement in interpolation, especially
when the resolution of a time series of interest is sparse.

Third, the proposed individualized dynamic latent factor model is applicable for time
series with a complex trajectory. In particular, in contrast to stationary or Markov chain
assumptions required by multivariate time series (Hamilton, 2020) and the dynamic linear
model (Petris et al., 2009), we only require a smoothness assumption (Claeskens et al., 2009)
if the B-spline approximation is implemented in the dynamic latent factor modelling. There-
fore, the proposed method can model nonstationary processes or time series with abrupt
changes, which is particularly useful in practice as abrupt changes in time series data can
often occur.

2. THE PROPOSED METHOD
2.1. General methodology

In this subsection, we propose an individualized dynamic latent factor model to cap-
ture the trajectory of multi-resolution time series while preserving time-invariant shared
information across subjects for each time series.

We consider a J-dimensional multivariate time series for subjecti, i = 1, ..., I

Yi(t) = {Yn (@), Y@, ..., Yy}

with Y;;(7) the jth time series for 7 € [0, T, a finite interval. For each time series Y;;(?), there
are Kj; observations at time-points in T;; = {t; | k = 1,..., Ky, t;3 € [0, T'1}. We illustrate
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Fig. 2. Irregular multi-resolution time series with multi-resolution and irregular time intervals. The left plot
provides two time series obtained from the smartwatch data where different colours represent different caregivers.
The right plot shows two subjects from these two time series.

observations of the J = 2 time series in Fig. 2, where different colours represent different
subjects.

The irregularity of multivariate time series imposes great challenges in that the number
of observations Kj; could be different for different subjects and time series due to the multi-
resolution nature. Specifically, for any pair of time series Y;;(¢) and Yy (?), the time interval
tijk — tij(k—1) could be different from #;7 — #;7(x—1), as illustrated in interval 1 and interval 2 of
Fig. 2. Similarly, within a single time series Y;;(7), time intervals ¢; —t;;—1) and . — ;0 —1)
could also be different, as shown in interval 2 and interval 3 of Fig. 2. Furthermore, the sets
of time-points T;; may also differ between subjects. That is, even if the resolution or sample
rate for each time series j is the same for all subjects, the time-points 7;; and #; may not be
the same.

One of our goals is to interpolate unsampled points for a low-resolution time series. With-
out loss of generality, let the Jth time series Y;;(¢) be the time series of interest. Because of
the low resolution of the time series, values of the time series Y;j;(¢) at some time-points
{teT;|j=1,...,J — 1} might not be observed. For illustration, on the right-hand side of
Fig. 2, there are observations in the blue box for time series Y11 (#), while time series Y3(¢)
is not observed. In addition, on the left-hand side of Fig. 2, we observe that time series with
one particular lower resolution Y;>(#) have far fewer observed time-points than other time
series, yet contain observed time-points the other series Y;1(#) do not have.

In the following, we propose to model each time series Y;;(¢) fori=1,....1,j=1,...,J,
t € [0, T] by

Yi(t) = £ 6:(0) + €5 (D), (1)

where f; € RR is a vector of population-wise latent factors corresponding to the jth
time series, R is the dimension of the latent space, the dynamic latent factor 6;(1) =
{0:1(0), ...,0;r(1)}" is a vector of continuous functions of 7 for subject i capturing individual-
specific features and the random noises €;;() are independent and identically distributed. We
let F = (fi,....f1)" € R”*R denote the latent factor matrix.

By modelling each time series through the inner product of latent factors f; and 6;(¢) in
(1), we are able to integrate data from multi-resolution time series and different subjects. In
addition, mapping multivariate time series to a latent space via the dynamic latent factor
0;(t) allows us to utilize information from multi-resolution time series. On the other hand,
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we require the latent factor F to be shared among subjects so information across subjects
can be borrowed. The data integration can help us to improve the estimation accuracy of F
and 6;(¢), and thus accurate interpolation of the target time series Y;y(¢) can be achieved.
Specifically, we utilize the latent factor f; to capture time-invariant features of the jth time
series, while using the dynamic latent factor 0;(¢) for time-varying features.

In contrast to F, the dynamic latent factor 6;(¢) represents an individualized time trajec-
tory that can be heterogeneous for different individuals. In most longitudinal data, such as
our mobile health study, different time series could be correlated for the same subject; there-
fore, we can use a few latent factors to represent time-varying individual features. Thus, using
the existing homogeneous models (Petris et al., 2009; Goodfellow et al., 2016), including the
recurrent neural network model, may lead to high interpolation error, as these models are
not suitable for learning individualized trajectories.

Additionally, the dynamic latent factor 6;(¢) for the ith subject allows for incorporation
of the multi-resolution time series Y;; for j = 1,...,J, whereas traditional interpolation
methods, such as polynomial interpolation and spline interpolation (De Boor, 1978), only
use data from a single time series Y;s(¢). As we mentioned earlier, one of the interests in
the time series study is to provide interpolation of low-resolution time series, which may
be necessary due to budget or technical limitations in obtaining high-resolution data. Bor-
rowing information from other time series of the same subject is robust for interpolation,
especially in the case of low-resolution time series in multi-resolution data. This is because
certain variations in the time series may not be captured by low-resolution observations.
For example, in Fig. 2, the time series Y;»(¢) is of interest. As highlighted in blue boxes, the
observations of time series Y71 (7) suggest that time series Y7 (z) changes abruptly and man-
ages to return back to the previous trend. However, the trajectory of time series Y15 (7) might
miss the abrupt change due to its low resolution, leading to high interpolation errors based
only on observed data of Y1,(¢). In contrast to traditional interpolation methods, the pro-
posed method is able to preserve the abrupt change through estimating 0; (¢) using additional
time series Y11(?) and therefore provides more precise interpolation for Y1>(#). Our method
can be broadly applicable to time series with more complex trajectories, such as nonsta-
tionary processes or sparse time series. This is particularly useful when prior knowledge of
time series is unknown, or when the data patterns indicate that stationary or non-stationary
model assumptions (Petris et al., 2009; Hamilton, 2020) are not satisfied with the data. In
practice, the stationary assumption could be too restrictive (Hamilton, 2020). The non-
stationary random process assumption (Petris et al., 2009) could also be restrictive, as it
typically requires that the state process be a Markov chain.

2.2. Latent factor estimation

In this subsection, we propose to estimate the dynamic latent factors 6;(¢) using B-spline
functions to capture nonlinear function patterns. Specifically, we estimate the latent factors
F and parameters associated with the B-spline by minimizing a regularized square loss on
Yii(0).

We assume that each dynamic latent factor element 6;.(¢) is a function in the Sobolev
space W0, T'] equipped with a finite L, norm, where « is a smooth parameter such that
0;(1) and its weak derivatives up to order « have a finite L, norm. We approximate 6;(¢) by
a linear combination of B-spline basis functions of order « + 1, that is,

M
0r() ~ Y WimBu(D)  (r=1,....R),

m=1
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where B,,, (im = 1,2, ..., M) are basis functions of smoothing degree « and W = {wjs;,,} €
RI*RxM consists of weights for each basis function B,,. Specifically, on the time interval
[0, T'], we use a sequence of a interior knots 0 < k| < kp < --- < Kk, < T, and therefore the
number of basis functions M =a+ « + 1.

In the context of time series or longitudinal data, the spline method is effective in mod-
elling nonlinear trends over time (Welham, 2009) and is also flexible for modelling correlated
longitudinal data (De Boor, 1978). To model irregular multi-resolution time series data with
correlations among time-points and multiple time series within the same subject, we esti-
mate the parameters F and W by minimizing the following square loss on Y;;(#) with an L,
penalty (Salakhutdinov et al., 2007; Agarwal & Chen, 2009; Bi et al., 2017):

I J
LIF, W)=Y > {0 = [FWiBOY + AFIE + I WIE). )

i=1 j=1 1Ty

Here, W; = {Wjmn} € R®*M and B(f) = {B,,(¢)} € RM, X is the tuning parameter and | - ||
denotes the Frobenius norm. We estimate /' and W through

(F, W) = argmin L(F, W).
F.W

We use the Frobenius-norm penalty to control the nonsmoothness of the fitted curve by
filtering out spurious coefficients of the latent factor matrix F and spline tensor W. The
regularization of W enables us to use a relatively large number of interior knots with-
out knowing the number of knots, while shrinking some spline coefficients towards zero.
Allowing more interior knots leads to more flexibility in modelling the nonlinear trajectory
(Claeskens et al., 2009).

We can also choose other approximation methods for dynamic latent factors 6;(¢), such
as the kernel approach (Wenzel et al., 2021) or deep learning methods (Goodfellow et al.,
2016). However, the interpolation accuracy is influenced by the approximation error of the
dynamic latent factors, which is determined by the choice of approximation methods.

Once the estimators F and W are obtained, the proposed interpolation at any time ¢ €
[0, T'] is calculated by

Yy(t) = T WiB (). 3)

Equation (3) provides a general formula for all time series at any time-point in the range
[0, T']. However, in practice, we might only be interested in interpolating a single time series
Yis(¢) for {t € Tif lj=1,...,J —1}.

3. THEORY

In this section, we develop the theoretical properties of the proposed method based on a
sample estimator from a Sobolev space in addition to providing the theoretical properties
of the estimation with the B-spline approximation. Specifically, we establish the asymptotic
property of the integrated interpolation error and provide the rate of convergence for the
proposed estimator when the parameter space is a Sobolev space. Finally, we provide a
concrete convergence analysis for B-spline approximation to demonstrate the theoretical
properties of our implemented model in §2.
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We first consider a general result for 6;(¢) € W;‘[O, T]fora > 1 and ¢ > 2, where
W10, T]is a Sobolev space with a finite L, norm. The parameter « is a smooth parameter
such that 6;-() and its weak derivatives up to order o have a finite L, norm. Additionally,
we assume that Kj; ~ K for some K, where a ~ b when a and b have the same order.

Since our primary goal is the interpolation of Y (7), we focus on the convergence property
of the interpolation values instead of the latent factor recovery. Consider the time series

Yii(0) = i () + €;5(0),

where (1) = Zlej},eir(t), V() = {y;(D)} is a vector of (1) for i = 1,...,I and
Jj = 1,...,J, and the random noises ¢;(#) are independently and identically distributed
with mean 0 and variance o 2. For simplicity, we write W (¢) as W in this paper. As 6;.(f) €
W10, T, we have ¥;;(1) € W0, T] by construction. For time series Y;;(¢) of Y (7), we
define the L,-loss function as [{W, Y;;(1)} = {Y;;(?) — 1//;;(1)}2.

Let Q be the set of observations, || = sz K;; be the number of obseryations and J (W)
be a nonnegative penalty function. For example, we have J(¥) = Zij{ fOT |wl§“)(z)|q deyla
since (1) € W(‘;’ [0, T1]. Then the overall object function is '

1

L(V|Y) =
(W[Y) 5]

> HELyi(0) + Mo (),
(ij,0)e2

where 4|q) is a tuning parameter for the penalization. To establish the convergence rate, we
introduce the following assumption.

Assumption 1. For the empirical distribution Qj;,, of #;1, ..., tiik;>
1
Oijn(t) = Fy I; Lij<t,

where 14 is the indicator function of event A, there exists a distribution function Q;;(7) with
positive continuous density such that

sup 1Qija(1) — Q)| = o(K;; ).
tel0,T1]

Assumption 1 assumes that the empirical distributions of observed time-points converge
to a distribution of 7 with positive continuous density, which is typically the uniform dis-
tribution for random samples. Such an assumption is common in spline approximation.
Similarly, in kernel approximation, the observed points are assumed to be asymptotically
uniformly distributed (Wenzel et al., 2021). When the observed time-points #;; are random
and sampled from the true distribution Q;;(¢), Assumption 1 is satisfied naturally by the
Glivenko—Cantelli theorem (Sharipov, 2011).

Let Wy be the true parameters and S = {W: (1) = >, [i0ir(1), | Flloo < co, 0ir(f) €
W(‘[" [0,T]fori=1,....,1,j = 1,...,J} be the parameter space that depends on a positive
constant c¢y. We denote by W|q| the sample estimator of W, satisfying

LW Y) < inf L(¥|Y) + 71, 4)
veS
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where limg| . o 7jg| = 0. This condition implies that W is close to the global minimizer
of L(W|Y) when |2|] — oo. This necessity arises because, in practice, obtaining the exact
global minimum is often impractical due to the nonconvex nature of function L.

In addition to the above assumptions, Assumptions S1 and S2 in the Supplemen-
tary Material are standard assumptions for nonparametric approximations on the basis
functions, observation distribution and random noises.

We establish the convergence of \il|g| in the following theorem.

THEOREM 1. Suppose that \il|g| is a sample estimator satisfying (4). Then, for K;; ~ K
for some order K, and under Assumption 1 and Assumptions S1 and S2 in the Supplementary
Material, we have

1 I J T R 1/2
(EZZ /O {wi,-a)—wo,ij(z)}deij(z)) = Op{(TK)~ PV} 4 0,(K™1/%), (5)

i=1 j=I
when 11q| = 0{(1JK)72°‘/(2°‘+1)} and Aq| ~ (1]K)*2a/(20+1)_

Theorem 1 indicates that the average interpolation error in terms of integrated squared
loss with respect to time converges to zero when K and IJ go to infinity. The first term of
the error bound in (5) is due to the approximation bias of the dynamic latent factor that is
determined by the smoothness of 6;.(r). This approximation bias becomes negligible when
the total number of observations goes to infinity. The second term of the error bound is
determined by the difference between the empirical distribution and the reference distribu-
tion Q;;(#), which converges to zero when the number of observations of each time series
K;j goes to infinity, according to Assumption 1.

Theorem 1 demonstrates the benefits of integrating information across subjects and time
series. The interpolation Wg converges faster to the true value Wy if the number of observed
subjects I or the number of observed time series J is larger. That is, when we integrate more
time series and more subjects, we obtain better interpolation.

Next, we extend Theorem 1 to the case when the B-spline approximation is applied, that is,
the parameter space becomes Sy = {P: ¢;(1) = Zr,mﬁ,.w,-rmBm(Z), 1Flloo, I W lloo < col,
where F = (f;;), W = (Wjy) and M is the number of basis functions. Similar to the previous
notation, we define the L;-loss function as /{®, Y;;(1)} = {Y;;(1) — q&,‘j(t)}2 and the overall
object function as L(¥ | Y) = Z(izi,t)eg W, yii(0}/12] + )\,|Q£J(‘~IJ). Additionally, we let
the penalty be the L, penalty defined in § 2, that is, J(®) = ||F||5 + || Wllg.

We also denote by <f>|g| = {q3l~,~(l)} the sample estimator of W, satisfying

L(®ig) | Y) < inf L(® | Y)+ 19, (6)
deSy

where lim|Q|_>oo Q| = 0. .
We establish the asymptotic property of @ in the following theorem.

THEOREM 2. Let C/I\D‘Q‘ be a sample estimator satisfying (6). Then, for K;; ~ K for some
order K, and under Assumption 1 and Assumptions S1 and S2 in the Supplementary Material,
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we have

1 I J T R 1/2
(ﬁ > fo {ij (1) — wo,l-,-a)}deg(z)) = Op{(ITK)~ /D) 4 0, (K™1/2),

i=1 j=1
when 1jq) = o{(IJK)™2*/*+ D} and g ~ (IJK)~2/Ca+D),

Theorem 2 shows that the convergence rate of the proposed estimator in §2 is
O,{(IJK )~/ Qaty 4 op(K —1/2) To obtain the convergence rate, we require that the penalty
parameter A shrink to zero at a rate of (JJK)2%/QGa+1)

4. COMPUTATION

In this section, we introduce an algorithm and implementation details of the proposed
method. Specifically, we utilize the alternating gradient descent algorithm (Tseng & Yun,
2009) to estimate latent factors F and W.

The alternating gradient descent algorithm provided in Algorithm 1 below is a gener-
alization of the block coordinate gradient descent method (Tseng & Yun, 2009), which is
especially useful in matrix decomposition and tensor decomposition (Zhao et al., 2015; Bi
etal., 2018; Zhang et al., 2022). The main idea of the algorithm is to iteratively update each
Fand W;fori=1,...,1, while keeping the others fixed. The advantage of this algorithm
is that the latent factor matrices naturally provide a block structure of the parameters, and
updating F and W; enables us to transform the nonconvex optimization to a convex opti-
mization. In addition, it can further decrease the number of iterations and lead to faster
convergence compared with the gradient descent algorithm. This is because we can use a
larger step size when updating blocks of parameters instead of entire parameters (Jain et al.,
2013).

Specifically, let F® and Wl.(s) denote the estimated F' and ¥ at the sth iteration, and let
LY = L(FY, W) denote the corresponding loss. We update each F6~1 and W~ along
the direction of the partial derivatives 9 L(F, W(S_l)) /0F and 0 L(F (=1 W;)/0 Wi at each
iteration.

Algorithm 1. Alternating gradient descent.

1. Initialization. Set the stopping error €, rank R, tuning parameter A, step
size «, basis functions B, (m = 1, ..., M), and initial values F© and W ©.
2. Latent factor update. At the sth iteration (s > 1)

(i) update F®: F® « Fe=D _ g L(F, W=D /3F,
(if) update each W : W «— W —qaL(FC=D, w0 Wi,
3. Stop if |[L6TD — LO|/L® < €.

To select rank R, tuning parameter A and step size «, we conduct a grid search by min-
imizing the mean square error on the validation set. Our empirical study shows that the
tuning parameter A is quite robust and would not change the numerical performance much
compared to rank R and step size «. Thus, to save computational cost, we tune the A first,
and conduct a grid search on pairs of rank R and step size « after. The results from cross-
validation simulations, as well as the performance of the proposed method across different
rank values, can be found in the Supplementary Material.
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In addition, selection of basis functions and determining the number of knots are impor-
tant here. Based on the practice of B-spline approximation, we require the number of basis
functions M to be large enough so that there is at least one observation in each interval.
However, in practice, even if this assumption is mildly violated, we can still obtain a rea-
sonable interpolation accuracy due to the penalty term. In our numerical study, we utilize
the evenly spaced a knots that are smaller or equal to the smallest K;; for i = 1,...,1 and
j=1,...,J. This allows us to model the trajectory sufficiently well by utilizing a relatively
large number of knots.

The L, penalty in (2) is selected to avoid overfitting and scale indeterminacy, which bal-
ances computational complexity and model complexity (Acar et al., 2011). We can also
consider penalty functions used in penalized spline functions, e.g., the integrated squared
gth-order derivative used in the spline function (Claeskens et al., 2009) or the total varia-
tion penalty used by Jhong et al. (2017). However, based on our simulation studies, utilizing
these penalty terms results in similar interpolation accuracy as the L, penalty after proper
hyperparameter tuning.

5. SIMULATIONS

5.1. General setting

In this section, we conduct simulations to investigate the empirical performance of the
proposed individualized dynamic latent factor model and compare it with existing methods
under six different settings. Specifically, we compare the proposed method with six com-
peting methods, namely, the smoothing spline (De Boor, 1978), multivariate time series
(Hamilton, 2020), the dynamic linear model (Petris et al., 2009), functional principal com-
ponent analysis (Wang et al., 2016), the recurrent neural network and the deep recurrent
neural network (Hochreiter & Schmidhuber, 1997).

Here, the smoothing spline applies to the Jth time series for each subject sepa-
rately with smoothing degree k = 3, which is implemented in the Python package
scipy.interpolate (De Boor, 1978), where knots are selected by the function Uni -
variateSpline automatically. The multivariate time series and dynamic linear model
implement multivariate time series for each subject. To deal with irregular time intervals,
unobserved points are treated as missing values. The multivariate time series and dynamic
linear model are implemented in the Python packages statsmodels.tsa (Hamilton,
2020) and pyro (Petris et al., 2009). The functional principal component analysis integrates
the Jth time series for all subjects together. To handle irregular time intervals, we apply the
functional principal component analysis through the B-spline functional basis using the
Python package scikit-fda (Wang et al., 2016). We implemented two recurrent neural
network models using the Python package tensorflow (Hochreiter & Schmidhuber, 1997)
using masking layers to handle irregularity, where the recurrent neural network model con-
tains one recurrent neural network layer with 32 units and one dense layer, and the deep
recurrent neural network model contains the same three recurrent neural network layers
with 32 units and one dense layer. Both recurrent neural network models are trained by the
Adam optimizer (Kingma & Ba, 2017) with 20 epochs. For the individualized dynamic latent
factor model, we utilize evenly spaced internal knots with the number of basis functions
M = 300 and the smoothing degree p = 3.

We generate simulated data according to (1) with f; ~ N(0, Ir) and €;(¢) ~ N(0, 0.5%).
In each setting, we let the latent space of dimension, the number of subjects, the number of
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time series and the time range be R = 3, I = 30, J = 5 and 7 = 1000, respectively. In each
setting, we only generate time-points # = 1, ..., T as most of the competing methods cannot
handle continuous time-points ¢ € [0, 7], while the proposed method is able to handle them.

We assess interpolation performance by examining the mean square error over the
training and testing sets based on 50 replications. Specifically, we are interested in the inter-
polation of the Jth time series. Thus, we calculate the mean square error over the training
and testing sets of the Jth time series, that is,

Vit Lier, Y = Yy@P - Ei) Yagr, (Yu®) = V)
STy IT =Y, Tyl

2

where |T;;| denotes the number of observations for the time series Y;;.

5.2. Multi-resolution time series

In this subsection, we investigate interpolation performance for multi-resolution time
series under three settings with observed time-points at Tj; fori=1,...,Jandj=1,...,J.
In each setting, we let the dynamic latent factors be

50 20
On(t) =i x 0.02log(t+ 1),
0;3(t) = cos(0.12mt + 1),

_ _ ~2 _ _ )
0;1(t) = 2exp{ _ w} —|—4exp{ _ w}’

where 6;; represents two pulses at time-points 60 + 10i and 70 + 10i fori = 1,...,1; 0
represents a time trend that varies among subjects and 6;3 represents a seasonal trend.

To evaluate the performance of the proposed method under different observation pro-
cesses, we consider three settings, where the numbers of observations are similar. Specifically,
the three settings of the observation points of training sets are as follows.

Setting 1.1. We let

Yit,.... Yiu: P(t e Ty) =08fort=1,...,1000;j =1, ...,4,
Yis:P(teT;5) =02fore=1,...,1000.

Setting 1.2. We let

Yit,.... Yi3: Ty =1{1,2,3,...,1000} for j = 1,2, 3,
Yig: Tia = {1,3,5,7,...,999},
Y,‘5Z TiS = {1,5,9, 13, ,997}

Setting 1.3. We let
Yio, ... Yi5s: P(teTy) =0.7fort=1,...,1000;j =1, ..., 5.

Setting 1.1 mimics the most complicated situation of multi-resolution data, where the T;;
are different for different subjects and each time series has an irregular time interval. Setting
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Table 1. The mean square error of the proposed method and competing methods under
settings 1.1-1.3. The standard errors are reported in parentheses
MSE Setting 1.1 Setting 1.2 Setting 1.3
Training Testing Training Testing Training Testing
IDLEM 0209 (0.041)  0.415(0.161)  0.212(0.044)  0.341 (0.067)  0.215 (0.023)  0.327 (0.041)
(proposed)
SS 0.602 (0.257)  2.983(10.453)  0.556(0.282)  0.598 (0.346)  0.632 (0.280)  0.749 (0.460)

RNN  4.186(6.180) 4.399(6.226)  0.350 (0.565)  6.786 (6.840)  0.894 (0.894)  1.259 (1.078)
DRNN  1.712(2.504) 5.793(7.878)  0.099 (0.050)  6.610 (6.843) 0.604 (0.552)  3.915 (4.865)

IDLFM, the proposed individualized dynamic latent factor model; SS, smoothing spline; RNN, recurrent neural
network; DRNN, deep recurrent neural network; MSE, mean square error.

1.2 considers the situation where multi-resolution time series have evenly spaced and fixed
time-points. Setting 1.3 considers the same resolution time series with varying time-points
Tjfori =1,...,]andj = 1,...,J. For testing sets of three settings, we use unobserved
time-points.

Table 1 provides the mean square error (MSE) results under settings 1.1-1.3. The pro-
posed method has the best performance on the testing set under all three settings, with
more than 40% improvement in the mean square error compared to other methods. The
competing methods such as the multivariate time series, dynamic linear model and func-
tional principal component analysis cannot be applied to time series with multi-resolution
or different observation time-points for each subject. Thus, only the methods of the smooth-
ing spline, recurrent neural network and deep recurrent neural network are compared. As
one of the most popular interpolation methods, the smoothing spline performs the second
best in most settings, except it performs the worst under setting 1.1 with randomly selected
time-points for low-resolution time series. In contrast, the proposed method is able to bor-
row information from other time series from the same subject, especially that with high
resolution, and therefore attains better interpolation accuracy. For the recurrent neural net-
work and deep recurrent neural network, the performance varies under different settings.
In general, the deep recurrent neural network performs better than the recurrent neural
network on the training set. However, the deep recurrent neural network performs poorly
in interpolation under multi-resolution situations. Overall, the two recurrent neural net-
work models perform the worst as they do not incorporate heterogeneity among subjects.
The proposed individualized dynamic latent factor model performs similarly under the two
multi-resolution settings, settings 1.1 and 1.2. The difterence is that, for randomly generated
observation time-points, the standard deviation of the mean square error is higher on the
testing set.

We also investigate the setting with more time series, where J = 101, for each subject,
where there are 100 time series as covariates and one time series of interest. Our numerical
study shows that the proposed method attains a lower standard deviation when J is higher
as more time series are integrated. The mean square error does not improve much because
the convergence rate of the proposed method is related to the number of observation points
Kj;. Additional simulations also illustrate the robustness of the proposed method under
various missing mechanisms, such as missing completely at random, missing at random and
missing not at random. The detailed simulation results are provided in Tables S1 and S2 in
the Supplementary Material.
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5.3. Multiple time series with heterogeneity and nonstationarity

In this subsection, we focus on time series with the same resolution where all subjects and
all time series are observed at the same time-points T;; = Ty fori=1,...,Jandj=1,...,J.
We investigate how the heterogeneity of subjects and nonstationarity of time series affect
the performance of interpolation in the following three settings. They are the same as the
settings in §5.2, except for T;; and the dynamic latent factors. The sets T;; are the same
within each setting, which we refer to as T. For set T, the observation index ¢ € {1, ..., T} is
selected according to the Bernoulli distribution with a probability 0.7, and the unobserved
points are treated as the testing set. This mimics the time series setting where all subjects
and time series are observed at the same time-points, but at unevenly spaced time intervals.
The dynamic latent factors for each setting are generated as follows, fori =1, 2, ...,30 and
t=1,2,...,1000.

Setting 2.1. We let
(t — 60)? (t —70)?
0i1(t) = Zexp{ 750 +4expy — 0 [’
O0n(t) = 0.2log(t+ 1),
0;3(t) = cos(0.12r¢ + 1).

Setting 2.2. We let

_ — 1072 _ 10102
(t — 60 — 10) }+4exp{—(’ 70 — 10) }

0n(t) = 0.21log(z + 1),
0;3(t) = cos(0.127¢ + 1).

Setting 2.3. We let

50 20
On(t) =i x 0.02log(t+ 1),
0;3(t) = cos(0.12¢t + 1).

— _ 2 _ _ )
eil(t) = 23Xp{ — M} +4exp{ — w},

In setting 2.1, the dynamic latent factors are the same for all subjects. In setting 2.2, we
change the locations of two pulses in 6;; to be different for different subjects and keep 6,»
and 6,3 the same as in setting 2.1. Additionally, in setting 2.3, we keep 6;; and 6;3 the same as
in setting 2.2 and change 6, to a function where the time trend varies across subjects, where
the stationary assumption is highly violated for subjects with large i.

Table 2 provides the results of all methods under settings 2.1-2.3. We observe that the
proposed method has the best performance under all three settings, with more than 50%
improvement in the mean square error compared to other methods. All methods except
the smoothing spline perform best in setting 2.1 and perform worst in setting 2.3. This is
because the subjects are homogeneous in setting 2.1, and are highly heterogeneous in setting
2.3. The proposed method is the most robust compared to other competing methods due to
the advantage of integrating multiple time series and information across subjects. In setting
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Table 2. The mean square error of the proposed method and competing methods under
settings 2.1-2.3. The standard errors are reported in parentheses

MSE Setting 2.1 Setting 2.2 Setting 2.3
Training Testing Training Testing Training Testing
IDLFM 0.201 (0.020)  0.359 (0.046)  0.208 (0.026)  0.334 (0.049)  0.213(0.024)  0.350 (0.046)
(proposed)

SS 0.726 (0.275)  0.876 (0.501)  0.564 (0.278)  0.668 (0.466)  0.608 (0.253)  0.720 (0.457)
MTS 0.652(0.384)  0.761 (0.488) 0.607 (0.414)  0.722(0.523)  0.773(0.919)  0.919 (1.142)
DLM 3.410(3.575) 3.405(3.629) 3.421(3.821) 3.536(4.036) 4.840(8.506)  4.838 (8.340)
FPCA 4.429 (4.415)  4.501 (4.453) 4.516(4.885) 4.546 (4.901) 6.665(6.128)  6.762 (6.127)
RNN 0.869 (0.550)  0.865(0.569) 0.805(0.665) 0.818(0.704) 1.584 (3.416)  1.568 (3.324)

DRNN 0.783 (0.515)  0.784 (0.531)  0.744 (0.581)  0.756 (0.604)  1.350 (2.646)  1.333 (2.589)

IDLFM, the proposed individualized dynamic latent factor model; SS, smoothing spline; M TS, multivariate time
series; DLM, dynamic linear model; FPCA, functional principal component analysis; RNN, recurrent neural
network; DRNN, deep recurrent neural network; MSE, mean square error.

2.3, the multivariate time series and dynamic linear model perform worse than the other two
settings, settings 2.1 and 2.2, since the stationary or Markov chain assumption is violated
when the nonlinear trend dominates the time series. In contrast, the proposed method can
model nonlinear trends with dynamic latent factors and provides better interpolation. In
addition, the functional principal component analysis and two neural network models fail
to deliver accurate interpolation due to heterogeneity for different individuals. The individ-
ualized dynamic latent factor model is capable of integrating time series information from
heterogeneous subjects.

6. REAL DATA APPLICATION

In this section, we apply the proposed method to smartwatch data for caregivers of
dementia patients from the Dementia Family Caregiver Study, which was carried out by
Lee & Gibbs (2021) in California.

Studies show that the under-served caregivers of dementia patients frequently experi-
ence physical and emotional distress (Anthony-Bergstone et al., 1988). To better monitor
and manage caregivers’ stress, Lee & Gibbs (2021) conducted home-based, culturally and
language-specific interventions for dementia family caregivers, which included stress self-
management and caregiving education. Community health workers offered stress reduction
techniques, including mindful deep breathing and compassionate listening during up to four
home visits with the caregiver. Additionally, community health workers also provided care-
giving education to improve caregivers’ health, well-being and positive interactions with
dementia patients during a one-month study period. The intervention employed is not in
an online form, as it is preplanned and remains unaffected by the collected data. To moni-
tor the caregiver’s physical activities and physiology, caregivers are equipped with wearable
internet-of-things devices, such as the smartwatch, for a month. These wearable devices are
used to measure the intervention’s impact, offering noticeable changes due to the interven-
tion. There are five time series of measurements from the smartwatch data, which are steps,
heart rate, activity level, movement and stress. Among these five measurements, we are inter-
ested in evaluating and predicting the stress level of caregivers, which are highly associated
with the other four time series variables (Saykrs, 1973). Our goal is to interpolate unobserved
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Table 3. The mean square error of the proposed method and competing methods for smartwatch
data. Standard errors are reported in parentheses

MSE IDLFM (proposed) SS RNN DRNN
Training 0.149 (0.011) 0.149 (0.013) 0.701 (0.296) 0.313 (0.158)
Testing 0.275 (0.009) 0.367 (0.198) 0.713 (0.144) 0.992 (0.666)

IDLFM, the proposed individualized dynamic latent factor model; SS, smoothing spline; RNN, recurrent neural
network; DRNN, deep recurrent neural network; MSE, mean square error.

stress levels, so we can assess the effects of the intervention more accurately through the
investigation. These measurements are observed with multi-resolution. Specifically, activity
level and movement are observed every minute; heart rate is collected every two minutes;
stress is measured every three minutes and steps are counted every 15 minutes. Additionally,
due to the heterogeneous nature of individuals, the observed time also varies for different
caregivers, leading to irregular time series.

In our study, we remove the first four days and last 10 days of data to ensure data qual-
ity, as subjects might not be familiar with the devices and have trouble setting up, or stop
wearing the devices at the end of the study. There are 33 caregivers and more than 23 000
time-points from day 5 to day 20. The average missing rate for the stress variable is 80%,
while missing rates for steps, heart rate, activity level and movement are 97%, 64%, 37%
and 18%, respectively. The varying missing rates among different time series primarily result
from differences in the collection frequency of each variable. Additionally, the measurement
techniques for each time series and caregivers’ charging habits contribute to the missingness.
Since the scales of different time series measurements are different, we standardize each
observed value Y;;(7) by subtracting the mean and dividing by the standard deviation of the
corresponding time series Yj;.

To train the interpolation models and evaluate the performance of the proposed method,
we randomly select 30% of the observations for stress levels as a testing set and assign the
remaining stress observations and observations of the other four time series measurements
as a training set. The interpolation model predictions are evaluated by the mean square error
of stress predictions on the training and testing sets based on 50 replications.

We compare the proposed individualized dynamic latent factor model method with the
three competing methods, including the smoothing spline, recurrent neural network and
deep recurrent neural network, as described in § 5. Table 3 provides the average mean square
error based on both training and testing sets. The proposed individualized dynamic latent
factor model method significantly outperforms the other methods in terms of achieving the
lowest mean square error. Specifically, the proposed method reduces 24%, 61% and 72% of
the mean square errors of the smoothing spline, recurrent neural network and deep recurrent
neural network methods on testing sets, respectively, and achieves the smallest standard
error among all competing methods. This is because the smoothing spline does not fully
utilize the other four time series observations. The recurrent neural network using one layer
neural network cannot accommodate complex time series data. Although the three-layer
deep recurrent neural network model performs better than the recurrent neural network
model, it still produces much larger mean square errors than the proposed individualized
dynamic latent factor model, as the deep recurrent neural network is not capable of handling
low sample-size heterogeneous data.
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Fig. 3. The top plot provides estimated normalized stress for one caregiver by the proposed individualized
dynamic latent factor model (orange line) and four competing methods for both training and testing data. The
bottom plot provides a fitted normalized heart rate for the same caregiver by the proposed method. Observations
of the caregiver in the training set are marked as blue dots, while those in the testing set are marked as red dots.

Figure 3 illustrates that the proposed individualized dynamic latent factor model inter-
polates the stress of caregivers better than competing methods. In particular, estimated
normalized stress for one caregiver by the proposed individualized dynamic latent factor
model and competing methods along with the fitted normalized heart rate for the same
caregiver by the proposed method are provided using the training and testing data. The
outstanding performance of interpolation power by the proposed method is due to the inte-
gration of information across multiple time series measurements with multi-resolution. For
example, the proposed method can identify the high stress in time interval [7560, 7610] based
on borrowing information from the increased heart rate during the same time period, while
the competing methods, such as the deep recurrent neural network, fail to predict such a
trend. In practice, monitoring the stress level and identifying high-stress moments is the
first step in managing the caregiver’s stress level. The proposed method can provide more
precise interpolation for the unobserved stress levels, and is thus able to provide effective
interventions for caregivers and lessen stress levels during dementia caregiving.

7. DISCUSSION

We point out two future research directions. The first one is to establish a general algo-
rithm for different approximation methods, since the proposed algorithm is based on the
B-spline approximation that may not be applicable for kernel methods. Secondly, in clinical
applications, the ultimate goal is to carry out medical tasks such as outcome prediction and
patient subtyping. Interpolating unsampled values and then processing downstream tasks
may lead to suboptimal analyses and predictions (Wells et al., 2013). Thus, a potential direc-
tion is to extend the proposed interpolation model in prediction, clustering and classification
problems and process the downstream tasks directly based on modelling the time series with
missing data.
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SUPPLEMENTARY MATERIAL

The Supplementary Material contains further simulations, additional assumptions and
proofs of the theorems.
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