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High-bandwidth applications, from multi-gigabit communication!™® and high-
performance computing*® to radar signal processing®”, demand ever-increasing
processing speeds. However, they face limitations in signal sampling and com-
putation due to hardware and power constraints®'°. In the microwave regime,
where operating frequencies exceed the fastest clock rates!!, direct sampling
becomes difficult, prompting interest in neuromorphic analog computing sys-
tems'?13, We present the first demonstration of direct broadband frequency-
domain computing using an integrated circuit that replaces traditional analog
and digital interfaces. This features a Microwave Neural Network (MNN) that
operates on signals spanning tens of gigahertz, yet reprogrammed with slow, 150
MBit /sec control bitstreams. By leveraging significant nonlinearity in coupled
microwave oscillators, features learned from a wide bandwidth are encoded in a
comb-like spectrum spanning only a few gigahertz, enabling easy inference. We
find that the MINN can search for bit sequences in arbitrary, ultra-broadband
10 GBit/sec digital data, demonstrating suitability for high-speed wireline com-
munication. Notably, it can emulate high-level digital functions without cus-
tom on-chip circuits, potentially replacing power-hungry sequential logic archi-
tectures. Its ability to track frequency changes over long capture times also
allows for determining flight trajectories from radar returns. Furthermore, it
serves as an accelerator for radio-frequency machine learning!'?, capable of accu-
rately classifying various encoding schemes used in wireless communication. The
MNN achieves true, reconfigurable broadband computation, which has not yet
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been demonstrated by classical analog modalities'?'%, quantum reservoir com-

puters using superconducting circuits'®, or photonic tensor cores'”, and avoids
the inefficiencies of electro-optic transduction'®!?. Its sub-wavelength footprint
in a Complementary Metal-Oxide-Semiconductor process and sub-200 milliwatt
power consumption enable seamless integration as a general-purpose analog neu-
ral processor in microwave and digital signal processing chips.

Managing communication and computation at hundreds of gigabits per second'™ for
high-performance computing®® is increasingly computationally expensive. It requires sam-
pling and processing at clock speeds constrained by semiconductor physics and power limi-
tations® !, where higher speeds lead to increased power consumption and heat dissipation.

Consider, for example, the typical chain of electronic signal processing used by data
centers, as shown in Fig. 1la. The first data center transmits high-speed data over an electrical
or fiber-optic cable. During transmission, the bits are distorted and must be restored to their
original integrity. This is done by boosting the signal and using complex synchronization
circuits to reconstruct the transmission?’. The deciphered bits are then sent to compute
and memory blocks. Subsequently, newly computed bits are serialized and transmitted to
the second data center. A key concern in this process is ensuring that signals are accurately
timed and sampled after passing through lossy media, which requires power-hungry parallel
processing.

We propose addressing the simultaneous challenges of data relay and computation from
a new perspective. We recognize that fast digital data at tens of gigabits per second consists
of microwave signals with an ultra-broadband spectrum. This realization enables us to
operate directly in the frequency domain, without concern for how the bits were distorted
in the time domain. We achieve this using an integrated circuit called a Microwave Neural
Network (MNN). As shown in Fig. 1a, the MNN processes spectral components by capturing
input data features that are informationally sparse but span a broad bandwidth. The key
advantage lies in its ability to programmatically manipulate gigahertz-speed signals using
only megahertz-speed controls. Its output encodes computations in a comb-like spectrum
covering only a few gigahertz, enabling easy electronic readout. This can then be mapped
to a binary output using a cheap linear regression model in post-processing.

One might also consider the potential impact of the MNN on wireless communication and
sensing. As shown in Fig. 1b, a typical wideband radar receiver consists of multiple signal
chains, each handling a narrow frequency band. Each chain includes a filter, a mixer to down-
convert the microwave signal to a low-frequency baseband, and an analog-to-digital converter.
The targets’ positions and speeds are inferred with a backend digital computer. However,
scaling such an architecture to cover tens of gigahertz of bandwidth for imaging complex
target environments is hardware-intensive. We propose replacing this conventional system
with the MNN, which monitors targets” movement over long capture periods as changes in
carrier frequency, and manifests these inflections within a narrower output spectrum. A
trained backend model then directly maps the spectral features to the targets’ trajectories.



Notably, prior efforts to combine analog computing modalities with deep learning have
not demonstrated the ability to perform fast, reconfigurable computations on wide band-
width signals. These include systems like memristor crossbar arrays?!', photodiode arrays?
and photonic tensor cores'”. Machine-learning tasks have been of the low-bandwidth variety
like image, speech, or gesture recognition'?'31%. Recent attempts to operate at radio frequen-
cies, using quantum superconducting circuits'®, surface plasmon resonance structures* and
spintronics with magnetic tunnel junctions®!, only process a few megahertz of bandwidth.
Some even involve bulky printed circuit boards* to form multi-level perceptrons. Also, re-
cent microwave photonics chips'®, while capable of broadband computation, are limited to
a few, immutable math functions and are bulky and power-inefficient (peak electro-optic
transduction efficiencies reach a few percent?®). Similarly, Ising machines based on networks
of coupled oscillators for combinatorial optimization problems have so far only been used in
the megahertz range®”?®.

In contrast, the MNN distinguishes itself as a high-speed, reconfigurable general-purpose
analog computer. It is fabricated with standard Complementary Metal-Oxide-Semiconductor
(CMOS) technology and as shown in Fig. 1c, occupies a compact, sub-wavelength footprint of
only 0.088 mm? on chip. This would support seamless integration in microwave transceivers
and Neural Processing Units®.

Mechanism of the Microwave Neural Network

The integrated MNN we have designed is a nonlinear system that produces a comb-like,
input-sensitive spectrum for computation. Fig. 2a illustrates the electromagnetic structure
that generates this. It consists of one nonlinear waveguide (A) and three linear waveguides
(B, C and D). The nonlinear waveguide’s frequency modes are strongly influenced by the
incoming microwave drive signals’ amplitude and phase, while the linear waveguides’ modes
are largely unaffected by them. Ground-Signal-Ground-Signal-Ground (GSGSG) waveguides
inject gigahertz-speed signals into the system. Miniature quadrature hybrid couplers, built
on two overlapping metal layers, divide the power from these incoming signals and direct
them to the waveguides. These smaller portions of drive signals then bounce off of the
waveguides and add up at the couplers’ output ports, to be extracted through another set
of GSGSG waveguides.

The main source of input-sensitivity is a cascade of coupled nonlinear resonators within
waveguide A (Fig 2b.i).These resonators comprise combinations of inductive segments paired
with nonlinear capacitors. We utilize anti-parallel diodes® (Fig. 2c.i) that can generate
a capacitance with polynomial linearity, where the degree of nonlinearity depends on the
bias voltage applied to them and strength of the microwave signal. See Extended Data
Fig 1 for the pretzel-shaped layout of the nonlinear waveguide. This contrasts with the
structure of the linear waveguides, which are adjustable-length transmission lines (Fig. 2b.ii).
Switches, installed periodically along their length, provide options to lengthen or shorten the
return path®' of the microwave signal to a DC power supply, without introducing distortion.
Extended Data Fig. 2 shows the implementation details of this waveguide, including the



metal stack used.

More importantly, parametric (time-varying) coupling is established by turning on and off
a pair of switches (Sp,,) connected between pairs of waveguides. These switches are N-type
Metal-Oxide-Semiconductor (NMOS) transistors (Fig. 2c.ii) that are driven by a low-speed
150 MBit/sec bitstream fed through a third Ground-Signal-Ground (GSG) waveguide. The
sequence of on-off parametric coupling is key to programming the neural network for various
computing tasks. Lastly, to sustain the nonlinearity induced by high-amplitude microwave
transmission in the circuit at tens of gigahertz, despite the attenuation from cables and
probes used in the experiment, regenerative gain is provided by cross-coupled transistor
pairs®? of thin-gate-oxide power-amplifier-class NMOS transistors (Fig. 2c.iii). The shape of
the MNN’s inherent spectral response, even without drives or parasitic switching, is highly
dependent on factors such as the oscillators’ core supply voltage and the biases applied to
the nonlinear capacitors. A couple of these measured spectra are shown in Fig 2d.i and
characterized in more detail in Extended Data Figs. 7 and 8. This is, to our knowledge, the
first demonstration of a microwave comb generated by actively coupled nonlinear resonances
in integrated CMOS circuits.

Upon receiving the 12 Gbit/sec drive, which is inherently ultra-broadband, the spectral
response becomes complex, as shown in Fig. 2e.i. The nonlinearities in the MNN translate
features of the full input spectrum to the range where its response is most prominent. Ap-
plying low-frequency parametric modulation further distorts the MNN’s response, as Fig.
2e.ii shows. This reprogrammable, feature-rich spectrum is well-suited for machine learning
inference tasks.

This design stands apart from traditional CMOS oscillators®, which rely on symmetry
for stable, single-tone oscillation. It also differs from complex pulse-sharpening circuits used
to generate weak harmonic combs* for spectroscopy, as well as from narrowband combs
created by passively coupling linear and nonlinear resonators with high quality factors (over
2000), which are limited to simple tasks like low-frequency range finding®. Since we aim
to implement this analog computer using a commercial CMOS process, designing electro-
magnetic structures with quality factors exceeding 40 is impractical. Furthermore, unlike
stable optical frequency sources such as Kerr-combs®® and electro-optic frequency combs®’,
which are well isolated from messy external drive signals, our design intentionally exposes
the coupled waveguides to incoming microwaves. It is this intentional exposure to broadband
inputs that enables near instantaneous computations facilitated by the resonators’ internal
nonlinearities and asymmetry.

It may be helpful to reduce the circuit to its most essential components, as shown in
Extended Data Fig. 3. In the experiment, we reduced the number of physical circuit
parameters by keeping the linear waveguides (B, C and D) highly detuned from the nominal
oscillation frequency of waveguide A. By applying generalized Coupled-Mode Theory®® as
formulated in Note 3 of the Methods Section, the system can be described as a group of
connected nonlinear modes, with the first nonlinear mode linked to a linear mode through
slow parametric coupling and a fixed phase delay. The system is powered by saturable
gain, and the parametric oscillations are modulated by fast microwave drive signals, which
dynamically reconfigure the impedances of the resonators and shape the steady-state spectral



response of the system.

Extended Fig. 4 shows how the system’s dynamics are influenced by the initial condi-
tions of the individual nonlinear modes without parametric coupling, while Extended Fig.
5 illustrates its dynamics under the influence of the parametric bitstream. Interestingly,
the MNN’s dynamics bear similarities to neural network models of memory formation, par-
ticularly through “attractor networks”®”. In neural systems, memories are stored in stable,
repeating patterns of information exchange, forming within interconnected nodes, or neurons.
These attractor networks emerge in response to external inputs, evolving weights between
nodes and producing persistent patterns. Over time, however, these patterns shift from sta-
ble, structured behavior to more chaotic states, allowing multiple networks to coexist within
the system. As the networks transition from fixed-point attractors to chaotic attractors, the
system becomes increasingly random, leading to memory decay and eventual loss. Extended
Figs. 4 and 5 reveal that in this circuit, similar transitions from structured to more chaotic
states occur. The slightly-chaotic states, as shown by the Poincaré maps®’ (as in Extended
Data Fig. 5 b.iv and c.iii), could evolve into highly chaotic patterns (Extended Data Fig.
5 c.iv) and fully-chaotic states (Extended Fig 4 c.iv). This evolution reflects the presence
and degradation of memory in the system, arising from specific interactions between the
microwave drive signals and the frequency-modulated microwave parametric oscillations.

Emulating high-speed digital functions with a microwave
circuit

Recognizing that gigabit-speed digital signals, composed of square-wave signals, are actually
analog signals with spectral content spanning tens of gigahertz (as seen in Fig. 2e.i), suggests
that the MNN can perform computations directly in the frequency domain using microwave-
circuit behavior. This is in contrast to traditional digital hardware, which operates in the
time domain. The MNN manipulates signals and expresses its output more prominently
as oscillatory modes within a narrower band of a few gigahertz, centered around its comb-
like spectrum. This approach bypasses the need for strict signal integrity in bit-level, time-
domain calculations. It resembles compressed spectrum sensing, as features from an incoming
signal’s ultra-wide bandwidth are captured and strongly manifested in the MNN’s narrower
nominal frequency range. Consequently, fewer ”compressed” features can be used to train
a single-layer digital neural network in post-processing. See Methods Section 5 for training
details.

Figure 3 presents the first attempt to emulate ultra-high-speed digital operations without
relying on fixed-functionality digital CMOS circuits. 32-bit bitstreams are fed in slowly and
repeatedly at a 150 MBit/sec rate. The nonlinear resonances react instantaneously and the
MNN’s output is recorded over several cycles, which the spectrum analyzer averages to ensure
a reliable Fourier Transform. The experimental setup for feeding multi-gigahertz digital and
RF data into the MNN, along with slow parametric bits, is detailed in Methods section
1 and in Extended Data Fig. 6. During inference, the effects of different combinations
of parametric bits are observed. By reprogramming these MBit/sec parameters, various



GBit/sec digital operations can be emulated, and the system’s accuracy can be optimized
for specific tasks. Here, we focus on the computed features observed within the 10 to 14
gigahertz range, corresponding to the X-band and Ku-band frequencies used in satellite
communications.

First, Fig. 3b.i shows the measured accuracy in emulating primitive digital gate behav-
ior at 10 GBit/sec, without error correction. For example, a representative bitstream could
be [01000110000111110111110101010000]. Our focus is to evaluate the MNN’s accuracy in
predicting the bitwise NAND of the inner eight bits of the first sixteen bits, A = [00011111],
and the inner eight bits of the second sixteen bits, B = [01111101]. The correct result is
A NAND B = [11100010]. We found that by adjusting the content of the 150 MBit/sec
32-bit parametric bitstream and extracting features within only 4 GHz of the output spec-
trum, there exists a set that produces the correct NAND operation (and similarly for NOR),
irrespective of the incoming fast 32-bit ultra-broadband digital signal. In other words, a
“golden” parametric bitstream can frequency-modulate the parametric oscillations to per-
form computations that, in the abstract spectral domain, effectively emulate the behavior of
an 8-bit NAND operation. Also, we must emphasize that, to demonstrate the MNN’s behav-
ior as a deep, nonlinear neural network, we implemented the digital backend using a simple
linear regression model to map the output spectra to the predicted bits. This ensures that
the accuracy in emulating gate operations is entirely due to the MNN’s inherent nonlinear
behavior. After validating the output on 20% of a dataset derived from 10,000 sample inputs
and upon action of 200 parametric bitstreams, with the linear layer trained for mapping in
each case, the best measured accuracy was around 85%, while the worst was 81%.

One might expect that if mimicking a low-level gate operation yields less than 100%
accuracy, emulating a more complex digital operation involving many cascaded gates would
be significantly worse. However, our method achieves accuracy independent of the circuit
hardware required for a specific operation on a digital computer, regardless of the number of
gates involved. To investigate this, we considered an architecture with multiple hierarchical
layers of binary adders, consisting of hundreds of gates that form a population counter— a
circuit that counts the number of 1’s in an input bitstream (shown in Fig. 3b.ii). For the
input bitstream in the example above, the correct result would be 16. Despite the apparent
increased complexity, our approach to emulating this behavior with a parametric bitstream,
with outputs mapped with a linear layer, achieves an accuracy of 81% on the validation
dataset. This could potentially remove the need for large application-specific circuits to be
physically present on-chip. Curiously, we observe that the accuracy of predicting the cor-
rect final output is significantly different for various parametric bitstreams (a variation of
65%), for this high-level hardware operation. This highlights that only certain 150 MBit/sec
parameter sequences can properly harness the nonlinearity from frequency-modulated para-
metric oscillations to enable clockless emulation of otherwise time-consuming, sequential
bitwise digital functions on multi-gigabit/sec data.

Importantly, we find that our approach to emulating high-level operations is well-suited
for application in high-speed wireline communication. Traditional modems rely on com-
plex clock-and-data recovery circuits to decipher which bits were transmitted through a
cable between data centers. They help compensate the clock frequency mismatches be-



tween a transmitter and a receiver. To handle frequency-dependent losses in interconnects
and inter-symbol interference, gain-restoring circuits like continuous-time linear equalizers*!
are required at both ends of a channel (as Fig la indicates). At speeds greater than 10
GBit/second, inter-symbol interference becomes more challenging, and a technique called
Maximum Likelihood Sequence Detection®? is necessary to infer which bit patterns were
transmitted. This technique involves several time-interleaved, high-resolution and power-
hungry analog-to-digital converters. We take a different approach by treating this problem
as a “linear search” for bit sequences in the incoming data, aware that a single bit flip can
significantly alter the MNN’s spectral response. Once again, we toggle low-frequency 150
MBIt /sec parametric bits, in conjunction with a simple linear backend. In this instance, the
system classifies if the output spectra contains features of the queried bits. This process was
validated for both 10 GBit/sec (Fig. 3c.i) and 5 GBit/sec (Fig. 3c.ii) input data and for
numerous parametric bitstreams to find the slowly fed MBit/sec parameters that optimize
performance.

The measured search accuracy, with no error correction applied, for queried bitstreams
ranging from three to eight bits in length within the incoming 32-bit data, is shown in
Fig. 3c. Our hypothesis is that shorter queried words (for 3 or 4 bits long) might generate
more identifiable features in the spectrum, leading to a high search accuracy of 90%, as
their bits appear more frequently. Conversely, longer words (8 bits or more) have distinct
features that appear less frequently, but they are still easily identifiable and found with
high accuracy. For intermediate-length sequences (5 or 6 bits), we observe a slightly higher
error rate, likely due to imperfect memory in the system, i.e., this method recognizes that
such sequences exhibit higher entropy. This makes their outcomes less predictable and
requires extracting more information from the spectrum to achieve higher search accuracy.
This scheme could provide a cost-effective alternative to the Maximum Likelihood Sequence
Detection technique for enhancing the signal-to-noise ratio. Unlike that method, which
requires recovering the time-domain signal with high resolution and large bandwidth to
accurately match a distorted waveform to a reference bit sequence, our scheme uses only a
small fraction of the input signals’ bandwidth. Supplementary Fig. 3a shows the MNN’s
advantage in detecting bitstreams compared to using a linear layer alone.

Finally, to demonstrate the MNN’s ability to perform complex conditional logic, we
test its capability to emulate both bit sequence detection and population counting within a
single block, as Fig. 3d shows. This would mimic a simple data-center-link-plus-compute
operation. Specifically, the algorithm searches for a particular bit sequence if the count of 1’s
falls below a threshold and searches for an alternative bitstream if it exceeds that threshold.
For example, using the [01000110000111110111110101010000] bitstream mentioned above,
since there are 16 ones, the system searches for [10101] (not [11100]). As [10101] is present,
the result is “yes”. Achieving such bit-counting and detection at 10 GBit/sec is typically
infeasible without clocked operations on Application-Specific Integrated Circuits or Field-
Programmable Gate Arrays with RF transceivers operating over 20 GHz, which consume
multiple watts of power. In contrast, our method manipulates only the slow 150 MBit/sec
parametric bitstream. Even without optimizing the physical circuit parameters, the MNN
combined with a single linear layer achieves 75% accuracy in predicting the algorithm’s final
output on the first attempt. Importantly, the system consumes no more than the nominal



160 mW required by the coupled microwave oscillators.

Detecting radar targets and classifying wireless signal
encoding schemes

The MNN’s ability to detect subtle frequency changes indicates that it is well-suited for
broadband radar*® applications. We are particularly interested in observing its response
to variations in the distances of flying targets from a radar tower, which are reflected in
the time-varying frequency of the carrier wave. Fig. 4a shows a simulated airspace we
created (see Methods section 1 for details), featuring multiple aircrafts following distinct
polygonal trajectories. These trajectories vary in orientation, radius, and origin. The targets
move through waypoints along these paths at unique velocities. Their flight patterns cause
instantaneous changes in the radar signal reflected off of them, which, when downconverted
to low baseband frequencies, alter the analog voltage waveforms received by the radar tower.
These waveforms are recorded over a 100 us time base (“fast-time”) as shown in Fig 4b.i
and once every sixty milliseconds (“slow-time”). We then modulate the center frequency
of a square wave based on the instantaneous analog voltage, ranging from 100 MHz to 2.1
GHz, as illustrated in Fig. 4b.ii. This frequency-modulated signal is fed to the MNN, from
which we extract the output response averaged across many cycles in the spectral range of
8 to 10 GHz. Aspects of the flight trajectories are then inferred by a digital neural network
backend (see Methods section 6 for its architecture).

After simulating five hundred flight scenarios, each with one thousand fast-time captures,
we characterize the targets’ flight patterns using the truncated output spectra from the MNN.
Typically, this task would require multiple smaller-band RF receivers, including mixers and
ADCs, along with digital inference through CPUs or GPUs. However, we find these may be
unnecessary, as the MNN can learn flight patterns by forming distinct responses to frequency
changes over long capture times. Supplementary Notes 1 and 2 discuss how this analog
processing scheme could be integrated in wideband radar receivers.

Figure 4a.v demonstrates the MNN’s ability to predict the number of dynamic targets in
simulated flight scenarios. Supplementary Fig. 3b highlights its advantage, showing lower
classification accuracy when using only the backend neural network with identical training
parameters. Notably, the MNN can isolate specific targets’ movements in the airspace. For
example, in Fig. 4a.vi, the MNN-plus-digital-backend combination accurately estimates the
speeds of the fastest targets in the validation set. Additionally, as shown in Fig. 4a.vii, the
system detects various polygonal flight trajectories—such as triangular, square, or pentag-
onal—and achieves high Fl-scores (harmonic mean of precision and recall) across different
numbers of aircraft. These insights help infer whether unidentified aircraft are potential
adversaries or allies.

While processing very high-frequency signals is crucial, testing the lowest frequency the
MNN can handle is equally valuable. This enables the expansion of data from smaller
bandwidths to larger ones while adding features based on its learned patterns. To explore this



capability, we investigated whether the MNN can identify the encoding schemes for wireless
communication, which inherently utilizes narrowband techniques. For this, we used the
RadioML2016.10a** 45 dataset, a standard training set used in RF machine learning studies.
It includes eleven modulation classes—nine digital and two analog. In our experiment (Fig.
4b.i), various baseband signals modulate a 50 MHz carrier wave, which is fed to the MNN
with a signal-to-noise ratio of 18 dB. The MNN's sensitivity enables it to transform transient
changes in the low-frequency drive signal into observable features across several gigahertz,
even when significantly detuned from the nominal operating range around 12 GHz. These
features were then only extracted between 8 and 8.5 GHz to train the backend linear layer.

Fig. 4b.ii shows that some parameters lead to very high modulation classification accu-
racy, while others perform poorly (Fig. 4b.i). This reinforces the importance of stimulating
the coupled waveguides’ modes with the appropriate time sequence of coupling. Again, the
simple linear backend is used solely to prove that the accuracy of the MNN’s nonlinear map-
ping, of around 88%, can match that of digital neural networks** 4. Moreover, this accuracy
suggests that the MNN could serve as a deep learning accelerator, potentially replacing a
full ResNet*” neural network while significantly reducing model size, as the comparison in
Supplementary Table 1 shows. This capability is ideal for edge computing, demonstrating
its role beyond merely acting as a smart-sensing front end.

Discussion and outlook

The integrated MNN, unlike digital processors and RF transceivers, is able to perform broad-
band computations using a slow control mechanism, without the need for application-specific
circuits on chip. Its low power consumption across a broad range of frequencies and miniature
footprint in a standard CMOS process allow for integration into production-scale microwave
electronics and data conversion systems.

While the current integrated circuit, based on parametrically coupled waveguides, demon-
strates capabilities such as input-signal sensitivity and parametric reprogrammability, the
physical parameters—such as nonlinear capacitor biases, resonator frequencies, and sat-
urable gain—were fixed during the experiment. Dynamically adjusting these parameters
and employing parametric coupling in a more analog fashion, rather than relying solely on
binary-bitstream-driven switches, could enhance classification accuracy. Additionally, the
component count on chip could be reduced by using a single linear waveguide instead of
three. Moreover, a compact form-factor could also enable the creation of arrays of intercon-
nected combs to generate richer output spectra, providing more features within a compressed
bandwidth to enhance training data. This smaller band could be read using on-chip mixers
and baseband circuitry (see Supplementary Note 2 for an example implementation) instead
of spectrum analyzers. Also, it should be noted that this coupled-waveguide structure, with
gain, is only one method for achieving complex input-output relations. Among other al-
ternatives, one could leverage 3D stacking of RF metal layers in CMOS to create compact,
multi-level perceptron-based diffractive-type neural networks which might be suited for spe-
cific tasks requiring optimization for expressivity, power and circuit area.



In the method of inference presented in this article, our system’s low-cost digital backend
maps output spectra to bits (for digital emulation) and RF signal attributes, iterating to find
the most accurate parametric bitstreams. The system’s accuracy during radar target tracking
suggests that further optimization of slow control bitstreams could be achieved by collecting
additional field deployment data. Regardless, this is only a representative approach to MNN
programming. Future work could explore advanced techniques such as improved search
algorithms, gradient-based optimization of time-varying parameters, and end-to-end joint
training of both the MNN and backend network using reinforcement learning. Exhausting the
design space could ultimately lead to a band-agnostic neural processor capable of decoding
complex ultra-high-speed digital data and mm-wave signals spanning hundreds of gigahertz.

Methods

1. Experimental setup and training data generation

Extended Data Fig. 6 illustrates the experimental setup for testing the Microwave Neural Network.
The CMOS chip is wire-bonded to a printed circuit board that connects it to power supplies, which
provide the necessary voltages for the oscillator cores, drivers, and the on-chip Serial-to-Parallel
Interface (SPI). The SPI controls the static voltage drivers that operate the switches on the linear
resonators. Additionally, six bias voltages are supplied to the nonlinear capacitors embedded in
waveguide A, along with a bias voltage to set the center-frequency of the broadband couplers.

Slow 150 MBit/sec bitstreams, which modulate the parametric coupling between pairs of waveg-
uides, are generated by a HP 8133A pulse pattern generator. These bitstreams are delivered to the
gates of the parametric switches via short wirebonds and on-chip Ground-Signal-Ground (GSG)
waveguides. The fast multi-Gigabit-speed input data, used for digital operation emulation and
frequency-modulated radar, is generated by Anritsu MP1758A and MP1763C (optional) pulse
pattern generators. These produce input signals with a maximum speed of 12.5 GBit/s and an
amplitude of 2 V peak-to-peak, which are directly applied to the input ports feeding waveguides
A and B through a PicoProbe GSGSG probe. The output microwave spectra are measured using
Rohde & Schwarz FSU26 and Agilent 8564EC spectrum analyzers, which are connected through a
separate PicoProbe™ GSGSG waveguide and probe. During the emulation of digital operations
shown in Fig 3, each 32-bit, 5 GBit/sec (or 10 GBit/sec) input bitstream and each 32-bit slow, 150
MBit/sec bitstream were continuously cycled. The averaged spectra were recorded over a span of
around 4 GHz, ranging from 10 to 14 GHz.

A similar setup was used for the radar target identification task shown in Fig. 4a. MATLAB’s
built-in radarScenario subroutine from its Radar Toolbox was employed to simulate a 3D envi-
ronment with moving targets and a radar tower, as shown in Fig. 4a.i. The targets’ trajectories
were defined using programmable waypoints. To capture the radar returns, radarDataGenerator
and radarTransceiver subroutines were utilized. These subroutines convert the radar echoes’” RF
waveforms to baseband analog voltages over a ’fast-time’ interval of 0.1 ms, at the radar tower.
Sample returns are collected every few millisecond, resulting in a thousand ’fast-time’ samples per
minute of the simulated scenario. An Anritsu MP1763C pulse pattern generator was then used
to generate the frequency-modulated square wave with 2 GHz of swept bandwidth, following the
scheme depicted in Fig. 4c. This signal was fed to the MNN and the computed spectra are read
out on the spectrum analyzers, as before.

For the signal modulation classification task shown in Fig. 4b, the waveforms from the Ra-
dioML2016.10a dataset, modulating a 50 MHz carrier, were generated using a Tektronix AFG3102C
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Arbitrary Function Generator. This replaced the Anritsu pulse pattern generators, to produce the
analog signals required for the task. Each signal had a peak-to-peak amplitude of 2 V and was
delivered to the input port feeding the nonlinear waveguide A.

All RF data acquisition and parameter sweeps were fully automated using custom code devel-
oped in C++, Python and BASIC, and executed from a single workstation.

3. Modeling the nonlinear dynamics in the Microwave Neural Network

The integrated MNN circuit may be distilled to its core elements, allowing us to simplify its analysis
using generalized Coupled-Mode Theory. Refer to Extended Data Fig. 3 for the steps involved in
reducing the circuit to its coupled-mode model. Extended Fig. 3a illustrates the on-chip imple-
mentation, which consists of three interconnected linear resonators and one nonlinear waveguide.
In each linear resonator, the length of the transmission line comprising a series of sub-segments,
Ly, is adjustable by leaving open one or more switches ([S1, S2,...56]) and shorting all subsequent
switches to ground, i.e., in a thermometer-encoded scheme like [011111] or [011111] to engage only
a chosen length of waveguide to complete the return path of the microwave. The nonlinear waveg-
uide, on the other hand, consists of a transmission line embedded with polynomially nonlinear
capacitors. Incoming ultra-broadband drive signals are delivered to both types of waveguides via
quadrature hybrid couplers. The left coupler directs signals to two linear resonators, while the
right coupler channels them to a linear resonator and the nonlinear waveguide. A pair of capacitor
banks provides slight tunability to the modes supported by the waveguides. Losses incurred by
signals circulating through these passive electromagnetic structures are compensated by saturable
gain elements, implemented as cross-coupled transistor pairs, which connect the waveguides on
opposite sides of the circuit. We define the gain of saturable gain element as a function of the mode
amplitude. For transistors in a common-source configuration, for small signals, the gain is typically
Go= gm-Tout- Here, g,, is the transconductance of the transistor and ry is its output resistance.
For large signals, however, this gain compresses as

Glo) ~ — G0 (1)

2
1 + (vzjat>

Here, v is the amplitude of the signal at the drain of the transistor and vg, represents the
amplitude at which the gain saturates. Importantly, there exists the time-varying coupling between
the circuit’s upper and lower halves, established by a pair of slow-bitstream driven switches.

Extended Fig. 3b shows that the linear resonators, each supporting a single natural frequency,
can be simplified as LC tank circuits. The symmetry in the lower half allows the capacitor banks
to be approximated as two evenly split capacitors (Ccp/2), contributing to the capacitance of the
tank circuits. Therefore, their natural frequencies are wy;, = L . However, due to the

\/Lun(CunJrCCB/Q)
asymmetry in the upper half, this simplification is not possible.

To simplify experimental permutations of physical circuit parameters, we deliberately kept the
linear waveguides (B, C and D) highly detuned from the nominal oscillation frequency of waveguide
A. Therefore, as shown in Extended Fig. 3c, waveguides A and D are sufficient to explain the
dynamics of the parametrically driven comb. These waveguides interact through a passive phase
shift of 7/2 through the coupler’s inductive path (wLcoup) and a short-circuit through the coupler’s
capacitance between overlapping turns, Ceoup. The source of regenerative gain through the cross-
coupled pairs is retained. Also, we represent the parametrically driven switch as a tunable capacitor,
which can be toggled between a very small value (open circuit) and a very large value (short circuit).
While the flow of large amplitude microwave signals between oscillators causes rapid variation of the
switches’ conductivity due to modulation of their gate-source voltages and, subsequently, induces
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harmonic distortion, we will exclude such second-order effects in our analysis.

To generalize the operation of this reduced circuit, we represent its nonlinear dynamics through
an ensemble of coupled modes - a cascade of nonlinear resonators (in waveguide A) connected to a
linear resonator (D) through a parametrically varied switched coupling and the fixed phase delay
via the coupler. This is shown in Extended Fig. 3d. The nonlinear modes have amplitudes v; (
j=1,2,...,6 ) while the linear resonator’s mode amplitude is v};,. The nonlinear modes interact
with each other through couplings fn1, and with the linear mode through the parametric-switch
coupling fpar(t) and through the passive phase-shifted coupling, ﬁpassivee%. Internal losses, due

to finite on-chip Quality-Factors are ’yl‘\?{‘ ; and 'ylllnnt

~ ) 2 3 P .
go as Cnr,j = CNLo <1 — K1Uj + KU — K3Uj .. .), their instantaneous resonant frequencies can be

Since the nonlinear resonators’ capacitances

Taylor-expanded to be

1
2

(2)

In particular, the first nonlinear resonance (with a mode amplitude v;) interacts with the
incoming drive (fast gigabit/sec microwave-speed data), B;. The saturable gain, G that re-energizes
the system can be assumed to feed directly to this mode as well. Its dynamics can then be written
as

~ 2
WNL,j =~ WNL,0 (1 — €104 + GQUJ- + )

. . in . ; Go
v1 = iBNLV2 + iBpass€ 2 Viin + Bpar () viin + iwNL(V1)v1 — WL, 101 + mvl + By (3)

Nonlinear modes further down the cascade have amplitudes that vary with time as

vj = i (BNLVj 41+ BNLvj-1) + et (vj) v — W v with (5> 2) (4)

The linear mode has dynamics that, when considering the parametric and reciprocal couplings
with v1, can be described by

Vlin = i/Bpasse_7U1 + iﬁpar (t)vl + Wi V1 — F)/llirgvlin (5)

These nonlinear dynamics are highly influenced by the initial conditions set by the nonlinear bias
voltages (without parametric coupling), as analyzed in Extended Data Fig. 4. When affected by
both microwave drives and slow parametric bitstreams, these oscillations exhibit behaviors ranging
from simple harmonic to quasi-stable, locally chaotic, and fully chaotic, as shown in the Poincaré
maps in Extended Data Fig. 5.

4. Circuit simulation and layout

The CMOS chip, featuring mm-wave and digital interface circuits, was designed and simulated using
the Cadence Virtuoso environment, employing transistor models from the GlobalFoundries 45 nm
RFSOI, process. Parasitic resistances and capacitances were extracted using Siemens’ Calibre tool.
The layout of the waveguides, couplers, and interconnecting transmission lines was simulated with
the 2.5D EMX electromagnetic tool to accurately model high-frequency performance.
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5. Backend training for digital emulation

The MNN outputs spectral data that contains information-rich features from the raw input, rather
than direct digital outputs. For task-specific outcomes, this information must be extracted from
the spectra, aiming to reduce digital computation. We use a linear regression model on the 625
measured frequencies within reduced bandwidths to map these features to final outputs. This linear
model cannot capture the nonlinearity typical of neural networks, ensuring the MNN itself performs
the complex transformations needed for high accuracy on challenging tasks. The following methods
outline task-specific optimizations and evaluations:

e Linear Search and Conditional Algorithm Emulation: Dataset of 500 randomly-
generated 32-bit sequences per parametric bitstream, split 90/10 for training/validation in
10-fold cross-validation. We use a linear Support Vector Machine from the sklearn software
package®® with 5000 max iterations, squared hinge loss, and regularization parameter C' =
0.02, tested on 40 parametric bitstreams.

e Bit Count: Similar to Linear Search but with 10,000 max iterations and a hyperparameter
sweep on C' from 0.02 to 0.22. Formulated as a 32-class classification task, with labels derived
from the Linear Search dataset.

e Primitive Bit Operations (NAND, XOR, NOR): A linear model fit via stochastic
gradient descent (SGD) with logistic loss and 11 regularization strength of 0.3, on a dataset
of 500 randomly-generated 32-bit sequences with 16 fixed tag bits. Using 10-fold cross-
validation, the task is a multi-label classification for each output bit, tested on 120 parametric
bitstreams.

¢ Encoding Classification (RadioML2016.10a): Using a subset of the RadioML2016.10a%*
dataset, we perform an 80/20 training/validation split. A linear model (single layer) is
trained with cross-entropy loss in the PyTorch framework®, optimized over 150 epochs with
AdamW? (learning rate 0.05, weight decay 0.03, minibatch size 128, and decay factor 0.98).
Data is augmented with Gaussian noise (standard deviation 0.01) during training, tested on
13 parametric bitstreams.

6. MNN evaluation for radar tasks

To predict the targets’ flight patterns using the entire set of ”fast-time” captures at the radar tower,
a digital neural network backend was employed. Each capture provides a spectrum with 2 GHz of
bandwidth, resulting in an input shape of (L, S) for each scene, where L=1000 captures (covering
the total time of the scene) and S is the spectrum size. Unlike previous tasks that used only one
spectrum per sample, we utilized a deep ResNet*” architecture with convolutional layers applied to
each frame’s spectrum data, with convolutional kernels sweeping across frames over time. Although
this backend is more computationally demanding than a linear model, it operates directly on the
MNN spectra, allowing the MNN to potentially replace several layers that would otherwise need
to process raw, high-bandwidth signals, which are challenging and costly to digitize. Additionally,
integrating spectra from different fast-time captures is essential to create a larger context for target
movement over time, making a single linear layer insufficient.

The neural network architecture is as follows: the ResNet consists of a stack of blocks, each
containing a 2x downsampling pooling layer and a residual branch with two convolutional layers
(kernel size 3), with batch normalization, ReLU activation, and dropout regularization between
the convolutions. This block structure is repeated 7 times, following an initial input convolution
that expands the spectra to a width of 768. After the final residual block, an average pooling layer
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outputs features, which are then passed to task-specific two-layer MLPs (one MLP ”head” per task,
such as target counting or flight pattern detection). The block widths are 256 for the first four
blocks and 512 for the final three blocks, including the last residual block.

To train the model, we used a method combining bitstream search with training the backend
neural network on experimental outputs to generate the desired classification results. Due to
the time-intensive nature of data collection, we passed FM-modulated square-wave signals (as
discussed in the main article) through the MNN for 50 flight scenarios across 14 randomly selected
parametric bitstreams. The bitstream yielding the highest accuracy on the target counting task
was selected, and experimental data for 500 flight scenarios were collected to train the final model,
whose performance is reported here.

To train the backend, we applied Cross Entropy loss (for multi-class classification) to classify
the number of targets in each scene, binary cross-entropy for flight path detection (as multiple
possibilities exist per scene, necessitating binary cross-entropy for multi-label classification), and
mean-squared error (MSE) loss for predicting the fastest target’s speed. These losses were equally
weighted and summed during training. The neural network was optimized using the AdamW
optimizer for 5000 epochs with a learning rate of 0.0002, weight decay of 0.2, 5; = 0.9, B2 = 0.999,
and dropout regularization probability of 0.3. We used an exponentially decaying learning rate
schedule, reducing the learning rate by a factor of 0.9996 per epoch. Reported predictions and
accuracies reflect the average validation set performance across 10 randomly-sampled 80-20 train-
validation splits of the full dataset.

Due to the small size of the dataset for training a neural network, we employed data augmen-
tation in order to boost generalization performance. We used the following methods to modify the
input spectra during training:

e Random Shift. The input sequence of fast-time captures/spectra is shifted forward by a

random amount between 1 and 256.

e Random Bias. A random amount selected uniformly from [-0.1, -0.075, -0.05, -0.01, 0.001,
0.004, 0.007, 0.008, 0.01, 0.05, 0.075, 0.1, 0.12, 0.15, 0.2] is added to every point on the input
spectrum. This represents multiplicative noise (since the spectrum is logarithmically scaled).

¢ Random Noise. A random, normally distributed sample of noise is added to each spectrum.
The standard deviation of the noise is selected uniformly at random from [0.001, 0.003, 0.005,
0.007, 0.01, 0.015, 0.02, 0.04, 0.05, 0.07, 0.1, 0.11, 0.14, 0.18].

e Random Masking. 1/6th of the input spectra are set to zero. The section is selected at
random, and this is done either once or twice with equal probability.

All augmentations are applied with 20% probability on each sample.

Data and code availability

Measured training data and code for backend training, baseband radar data generation and coupled-
mode simulations that support the conclusions in this article are available in the Zenodo repository
at https://zenodo.org/records/14188322
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Figure 1. A solution to ultra-wideband computation and communication signal processing problems.

a, High data rate electronics transmit bits that get distorted over long distances due to lossy, dispersive channels, such as those in
data centers. Complex amplifiers (equalizers) and clock/data recovery circuits process and restore signal integrity in the time-
domain. The data is then stored in memory, digitally processed, and serialized for further transmission, through more lossy channels,
to the client. This signal chain has historically been bottlenecked by clock speed and consumes several kilowatts of power. In
contrast, the integrated Microwave Neural Network (MNN) consumes under two hundred milliwatts and processes data at microwave
speed in the frequency domain, disregarding the shape of distorted bits. It computes upon and manifests the features of the input
spectrum in a compressed comb of frequencies spanning a few gigahertz. Its computational functionality over tens of gigahertz can
be dynamically reprogrammed with parameters fed in at only a few Megabits/second, disregarding the equivalent digital circuit's
complexity. b, Broadband radar typically employs several parallel circuits to process narrow bands using filters, local oscillators,
mixers, and analog-to-digital data converters (ADCs). Target positions are deciphered via digital signal processing on graphics
processing units (GPUs). The MNN, on the other hand, learns the features of incoming radar returns through inherent nonlinearities,
drastically reducing complexity. The resulting spectra are fed to a linear layer that predicts flight patterns of the targets. C, The
integrated MNN is fabricated in a 45 nm RF CMOS process, occupying a sub-wavelength footprint of 0.088 mm2. It comprises an
ensemble of linear and nonlinear waveguides, connected by gain elements and power-splitting couplers. The system is sensitive to
ultra-fast incoming bits or radar signals. Its parametric oscillations are reprogrammed through slow control bitstreams in the
megahertz range, which drive switches installed on lower metal layers (not visible in the photograph).
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Figure 2. Distributed microwave oscillators form an ultra-broadband neural network. a, The MNN features CMOS

microwave waveguide resonators, both linear (B,C and D) and non

linear (A), coupled by multiple mechanisms: (i) slow

parametric switching through S, (ii) saturable gain, and (iii) distributed nonlinear capacitances in resonator D. Ultra-
broadband analog signals or digital bitstreams enter through a Ground-Signal-Ground-Signal-Ground (GSGSG) waveguide,
are split by hybrid couplers, and fed to the resonators. The resonators' modes are strengthened by the gain medium. The
nonlinear output, constituting a comb-like spectrum in a small bandwidth, is read through another GSGSG waveguide. b.i,

The nonlinear waveguide has coupled resonances formed of fixed in

ductive segments interspersed with tunable nonlinear

capacitors. b.ii, A linear, tunable transmission line, with a variable-length return path that supports various frequencies is

used for resonators B,C and D. ¢, CMOS Silicon-on-Insulator devices used in the circuit. c.i, Antiparallel diodes effecting
polynomially nonlinear capacitance. c.ii, Parametric switches between pairs of resonators that shape the inherent comb-like
response of the MNN. c.iii, Cross-coupled transistor pairs that provide regenerative, saturable gain. d, The measured comb-
like spectra generated by the MNN for both low and high bias voltages applied to the nonlinear capacitors, in the absence of

external drives or parametric switching. e, The impact of low-speed

switching between the nonlinear and linear resonators

on the MNN's output spectrum. e.i, The Fourier Transform of the cyclically fed 12 GBit/sec digital bitstream (in purple),

sweeping across the microwave spectrum, and the MNN's measured

output spectrum when this bitstream is fed to its ports

(in orange). Here, the input data here is [1110101011000100]. e.ii, The distortion in the MNN's spectrum is a result of
frequency-modulated parametric oscillations which are simultaneously influenced by the incoming high-speed digital data at
12 GBit/sec, and the slow parametric bitstream, cyclically fed at 150 MBit/sec. Here, the parametric bitstream is
[11100010001000100000110010111010].
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Figure 3. CMOS Integrated Microwave Neural Network mimics an ultra-high-speed digital computer without the need for a clock.

a, 32-bit sequences are fed into the MNN at 10 GBit/sec and 5 GBit/sec, cycling to produce a periodic output. The output (shown as a Fourier
Transform), produced by a spectrum analyzer, focuses on a compressed frequency band between 11 and 14 GHz. In post-processing, this compressed
spectrum is used to train a linear layer for classification and validation of the mimicked digital operation. b.i, Simple circuits like primitive gate
operations and b.ii, complex, time-consuming sequential logic, such as population counters for counting 1's in 32-bit data, can be emulated
instantaneously without clock bottlenecks. Both achieve approximately equal accuracy, when using well-chosen parametric bitstreams. ¢, The MNN,
through mode-coupling in the frequency domain, also aids in emulating high-level computational tasks, such as detecting bit patterns in high-speed
data streams at tens of gigahertz. For both 5 GBit/sec (c.i) and 10 GBit/sec data streams (c.ii), it provides high search accuracy regardless of the
length of the queried bit pattern (ranging from 4 to 8 bits) in a 32-bit input data. This scheme offers an alternative to the Maximum Likelihood
Sequence Estimation (MLSE) scheme used in wireline modems. Unlike MLSE, it does not require Serializer-Deserializer receivers or backend analog-to-
digital converters and digital signal processing, which rely on complex time-domain signal processing circuits. d, The emulated bit-search and
population-counting behaviors can be combined to execute larger algorithms. Digital computers would need several clock cycles to process these
sequential portions, store data, and handle conditional statements at a couple of gigahertz with several watts of power consumption. In contrast, the
MNN operates at tens of gigahertz while maintaining sub-200 milliwatt power consumption.
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Predicted Modulation scheme

Figure 4. Simplified radar signal processing and communication decoding through the integrated MNN. a, The MNN is repurposed to
process radar waveforms for detecting the trajectories of dynamic targets. a.i, A simulated 3D environment for target detection, illustrating multiple
aircraft moving along distinct polygonal flight paths. The radar tower scans the airspace and receives reflected RF signals from the targets. a.ii, An
example radar baseband signal at the 40-second mark shows characteristic fluctuations due to targets' reflections. a.iii, The analog voltage is
converted into a frequency modulated square-wave signal, which is processed by the MNN. a.iv, The output spectrum contains several narrower
comb-like spectra resulting from the nonlinear interactions between the frequency-modulated drive and the parameterized oscillations. These complex
features are read out over a 2 GHz bandwidth and utilized by the trained backend neural network to decipher the targets' flight patterns. a.v, The MNN
is able to infer the number of targets in each flight scenario a.vi, The MNN is capable of honing in on a single target, specifically the fastest one. It

closely tracks the speed of this target based solel
system can also identify the presence of polygonal

y on minute changes in carrier frequency, for each flight scenario in the validation set. a.vii, The
trajectories with confidence, using the validation set comprising 450 flight scenarios. Classification

is evaluated using the F1-score, the harmonic mean of precision (true positives divided by the sum of true positives and false positives) and recall

(true positives divided by the sum of true positives

and false negatives).b, Modulation Scheme Classification using the integrated MNN. b.i, Schematic

of modulated in-phase (I) and quadrature (Q) components of a signal being processed through mixers with a 50 MHz carrier, summed together, and

fed to the MNN. b.ii, Confusion Matrix for modulat
using an optimized parametric bitstream. Withi

ion classification, with a suboptimal parametric bitstream. b.iii, Confusion Matrix for classification,
n the RadioML 2016.10A RF signal classification benchmarking dataset, the following are digital

modulation schemes: 8PSK (8-Phase Shift Keying), BPSK (Binary Phase Shift Keying), CPFSK (Continuous Phase Frequency Shift Keying), GFSK
(Gaussian Frequency Shift Keying), PAM4 (Pulse Amplitude Modulation, 4-level), QAM16 (Quadrature Amplitude Modulation, 16-level), QAM64

(Quadrature Amplitude Modulation, 64-level) and QPSK (Quadrature Phase Shift Keying). The following are analog modulation schemes: AM-DSB
(Amplitude Modulation - Double Sideband), AM-SSB (Amplitude Modulation - Single Sideband) and WBFM (Wideband Frequency Modulation).
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Extended Data Fig 1| Structure of the distributed nonlinear waveguide resonator. a, The nonlinear transmission line comprises cascaded
1 sections of fixed inductive waveguide segments and drive-sensitive nonlinear capacitors. Each resonance absorbs part of the incoming
microwave signal and transmits the rest to subsequent segments. The overall nonlinear response results from cumulative reflections
back to RF;, port. b, Top view of the layout of the nonlinear waveguide. Nonlinear capacitors are inserted periodically along the pretzel-
shaped trace. Their nominal bias points are set through analog voltages. ¢, In the Silicon-on-Insulator process used here, a single
polynomial nonlinear capacitor consists of two pairs of antiparallel diodes. c.i, Compact layout of this component. c.ii The schematic,
wherein the diode pairs are biased at their mid-point. c.iii, SPICE / Spectre-model simulated characterization of the nonlinear capacitor
across variation in bias voltages and input RF power shows that by injecting a constant RF input power of -10 dBm, the effective
capacitance decreases with increasing bias voltage. c.iv, The effective capacitance is highly sensitive to the input RF drive's power. The
capacitance reduces with increasing field strength. c.v, The same nonlinearity, when considering its variance for different frequencies.
Here, the capacitance varies with RF voltage as Ce (Vs Vin) =@ - bV, + ¢ Vi,2 - d V,,3 + ... fF which is well-suited to generating

expansive functions for a neural pre-processor.
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Extended Data Fig 2| Structure of the distributed linear waveguide a, Top view of the layout of the tunable
waveguide that produces linear modes B, C and D. Switches S, , ¢ are inserted periodically along the length the
transmission line and makes it tunable in length, with subsegments TLine; , ¢ . Shorting the line through these

switches alters the effective length of the waveguide to support different fundamental frequencies. b, Cross-section of
RF-optimized and digital metal layers in the 45 nm Silicon-on-Insulator CMOS metal stack. Here, the top three layers
are via'ed together for low-loss transmission. The five metal layers below are used for routing control signals from a
Serial-to-Parallel Interface, to the switches, and also via'ed together to form a low-loss return path to the power
supply. ¢, A schematic of the linear waveguide resonators, with options to lengthen or shorten the return path of the
microwave signal. In the experiments, however, for simplicity, only the shortest path (configuration with all switches
turned on) was used for training in the machine learning tasks.
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Extended Data Fig 3. Reduction of the CMOS circuit to a generalized coupled mode model. a, The integrated
microwave neural network consists of interconnected linear and nonlinear resonators. The linear resonator is designed as a
single waveguide with an adjustable length, implemented through a cascade of sub-segments, each referred to as L;,. These
sub-segments can be grounded via switches (5S4, S,,...Sg), which immediately terminate the microwave signal's return path at
the first switch that is shorted to ground. In contrast, the nonlinear resonator features a transmission line loaded with
polynomially nonlinear capacitors. These capacitors form C-L-C /] sections that are coupled by delays. Microwave power from
input pads is distributed to these resonators through symmetrically arranged couplers (whose equivalent circuits are marked in
purple). The left coupler divides power into two linear waveguides, while the right coupler feeds into a linear waveguide and
into a nonlinear waveguide. Saturable gain elements, implemented as cross-coupled transistor pairs, connect the waveguides
on opposite sides of the circuit, compensating for losses within the electromagnetic structures. Additionally, a pair of capacitor
banks provides a small degree of tunability to the modes supported by the waveguides. Critically, there is parametric coupling
between the circuit's upper and lower halves through a pair of slow bitstream-driven switches. b, To simplify the complex
circuit, we recognize that since the linear resonators support only a single natural frequency, they can be represented as tank
circuits composed of L, and C;,. The symmetry in the bottom half of the circuit allows us to approximate the capacitor banks
as two evenly split capacitors, contributing to the overall capacitance of the tank circuits. However, the asymmetry in the
configuration of the resonators in the upper half does not permit such a simplification. ¢, To focus on the primary mechanism
by which the system's sensitivity to incoming signals is enhanced, we can largely ignore the left half of the circuit and
concentrate on the interaction between the nonlinear distributed resonances and the linear resonator on the right half. These
components interact only through the inductive path via a coupler and a coupling capacitor between the turns of the coupler.
The source of regenerative gain through the cross-coupled pair is retained. For ease of analysis, we represent the
parametrically driven switch as a tunable capacitor, which can be toggled between a very small value (open circuit) and a very
large value (short circuit). d, The reduced circuit can be represented as an ensemble of coupled modes—a cascade of
nonlinear resonators connected to a linear resonator via a parametrically varied switched coupling and a fixed phase delay
(through the coupler). These modes interact with the incoming drive (radar or fast Gigabit/sec digital data), with internal
losses being compensated by saturable gain. Here, B, is the coupling coefficient between nonlinear modes, ¥ is the internal
decay rate of these modes, §,.is the parametric coupling rate, 5, is the passive coupling between waveguides, G is the

pass

saturable gain and B; is the external drive (fast digital signals or radar waveforms, for instance).
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Extended Fig. 4 | Effects of initial conditions and drive-detuning on spectral response and
evolution of memory-like dynamics in the Microwave Neural Network, without parametric
switch coupling. Power spectrum and the Poincaré map of modes within the first nonlinear
resonator (vy.,1) are observed. (b) The MNN is driven with an external signal at 0.5wy ;. For a first
set of initial conditions imposed on individual resonators' responses, there exists a regime in which
pure harmonic oscillation is seen (b.i) and for another set of initial conditions, comb-like behavior is
produced (b.ii). These correspond to situations where the Poincaré map shows sparse and organized
points. This suggests a quasi-stable dynamic state (b.iii) and another where the two islands reflect
more unstable, dynamic responses (b.iv), indicating locally chaotic solutions. (c) If, instead, the drive
was fed to the MNN at 0.65wy, ; , different working regimes are triggered by different initial
conditions. True comb-like behavior (c.i) can be produced, as evidenced by isolated, longer-memory,
coherent solutions on the Poincaré map (c.iii). In another instance, divergent chaotic behavior shown
by dense, scattered points (indicative of chaotic dynamics) (c.iv) manifests itself by a less structured
spectrum emitted by the nonlinear resonator(s) (c.ii). For all simulations, nonlinear coupling
coefficients, gain and decay rates are normalized with respect to wy. ;. Here, B;i+1 =0.02 and y;"™
=0.03, with i=1,2...7 and saturable gain, G, equals 0.2. Since parametric coupling is absent, S, = 0.
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Extended Data Fig. 5 | Manipulation of the comb-like spectra emitted by the Microwave Neural Network, with microwave-speed signals and slow parametric bitstreams.
a, In the experiments involving Gigabit/sec data and radar returns, the accessible phase space of the MNN, in terms of the real and imaginary components of the resonators' modes, is
constrained by the configurations of incoming drive signals and the parametric modulation applied on the switch between the first non-linear mode and a linear mode. b and ¢, The output
spectra and Poincaré maps. For Drive 1, the Poincaré map for slow parameter bitstreams 1 and 2 shows clustered points with a few points that are more spread out (b.iv and b.v),
suggesting quasi-periodic dynamics while Bitstream 3 gives tightly clustered points (b.vi), indicating stable, periodic behavior. For Drive 2, under action of all three parametric bitstreams, the
formation of ring-like structures indicates quasi-periodic behavior with non-linear dynamics (c.iv, c.v and c.vi). Finally, under Drive 3, the Poincaré maps, parametric bitstreams 1 and 2
produce a combination of ring-like patterns and clustered points (d.iv and d.v), revealing a tendency towards chaotic behavior, while Bitstream 3 exhibits multiple, structured rings, indicating
quasi-periodic behavior with complex and unstable dynamics (d.vi). For all simulations, nonlinear coupling coefficients, gain and decay rates are normalized with respect to wy,1. Here, B; i1
=0.02. ¥, =0.03, with i=1,2...7 and saturable gain, G, equals 0.2.
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Extended Data Figure 6. Experimental setup to record the MNN's response to microwave drives and
parametric bitstreams. The CMOS MNN chip is wire-bonded to a Printed Circuit Board, which connects it to
external power supplies and bias voltages for the oscillators' core, logic and drivers and nonlinear capacitors'
bias. a, A low-speed parametric bit pattern (at 150 MBit/sec) drives switches that establish parametric coupling
between linear and nonlinear oscillators. A first pair of probes, forming a Ground-Signal-Ground-Signal-Ground
(GSGSG) configuration cyclically transfers high bandwidth 0-12 GBit/sec bitstreams into the chip to interact with
the default comb-like response. The resulting microwave computations are manifested as new comb-like
spectra. These output spectra, from two ports, are read off spectrum analyzers in smaller bands of about two or
three gigahertz, through a second pair of probes and Ground-Signal-Ground-Signal-Ground waveguides. b, The
probe-station assembly consists of the CMOS die attached to a breakout PCB, interfaced with millimeter wave
probes for input and output data and power supplies. It also includes a low-speed BNC cable interface for feeding
in the parametric bitstream.



a. Spectra formed by variations in saturable gain supply voltage, with a constant nonlinear bias (Vy,) =0.2V
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b. Spectra formed by variations in nonlinear bias (V) with a constant supply voltage = 0.5V
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c. Comb-like spectra reshaped by variations in slow (50 MHz) parametric bits, at V), = 0.56 V and supply = 0.5V
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Extended Data Figure 7. Measured frequency-comb-like spectra generated by the coupled
nonlinear and linear resonators. a, The supply voltage on the saturable gain element alters the
transconductance of the cross-coupled pair's transistors and, thereby, the stability of the comb.

It has a nominal value of 0.5V, below which it collapses. b, The polynomial nonlinearity is
tuned using bias voltages that set the sensitivity of the transmission line's capacitances to
incoming microwaves. ¢, The inherent response can be altered by feeding parameters through
a 32-bit sequence, run cyclically at slow speeds under 150 MHz. In the experiment, this
parameterized comb is exposed to incoming drive signals and performs computation on them.



a Measured power spectrum of undisturbed comb
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Extended Data Figure 8. Characterization of the comb generated by
coupling of nonlinear modes on chip. a, Under nominal biasing conditions
(power supply of 0.6 V and Vy,_ = 0.6 V) and without the influence of parametric
bits and incoming microwave signals, the measured frequency comb is centered
at 12.47 GHz and has a constant line spacing of 80 MHz. b, The phase noise is
measured for various offsets from the central component. While it has slightly
higher close-in noise than conventional CMOS oscillators, microwave neurons
built from this modality are stable and highly sensitive to drive signals.
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These signals should contain compressed features from the MNN's computations on high-
bandwidth data and can replace the off-chip spectrum analyzer previously used for readout. The
remainder of the integrated circuit consisting of coupled oscillators, couplers and gain remains the
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Fig S3. Comparison of MNN-assisted and backend-neural-network-only accuracy. (a) Bit sequence
search accuracy at 10 Gbit/sec for various queried bitstream lengths. The MNN (blue) consistently
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resolve ambiguity.
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1. Proposed application of the Microwave Neural Network in a wideband receiver chain

In radar systems, microwave signals are transmitted to a target, and the reflected signals are captured
by receiving antennas. Supplementary Ref [1] highlights that a wideband receiver using parallelized
signal chains that process smaller frequency bands (e.g., 0-2 GHz, 2-4 GHz, ..., 18-20 GHz) can
provide consistent Effective Isotropic Radiation Efficiency (EIRP) and Noise Figure across the full
spectrum. Fach signal chain consists of dedicated mixers, voltage-controlled oscillators (VCOs) filters,
with each Intermediate Frequency (IF) signals digitized by an Analog-to-Digital Converter. They
would be sent to a GPU for target detection. However, this approach is power-intensive and the
receiver does not add learned features that could ease machine-learning inference for environments
with multiple dynamic targets.

The Microwave Neural Network (MNN) presents a simpler alternative. It can be integrated within a
single receiver, such as that in Supplementary Ref [2]. Supplementary Fig. 1 shows its proposed
position within the signal chain. The MNN, owing to its extreme sensitivity to input signals, adds
learned features through its nonlinear expansion functions, even when paired with a suboptimal radar
front-end. As explained in Fig. 4a.i of the main article, the baseband signal frequency-modulates a
cartier (FM-VCO), and slow parameter bits (150 MBit/sec) enable the MNN to perform computation.
A single down-conversion mixer (see Supplementary Note 2) and sub-50 MHz ADC can then manage
readout. A lightweight neural network then maps compressed features to target trajectories without
the need for power-hungry GPUs.

Target
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Supplementary Fig 1. A single receiver can be used to produce a baseband signal that frequency-
modulates a square wave that is fed to the MNN. Its feature-rich output could be used by a cheap
backend neural network, for inference (instead of a power-hungry Graphics Processing Unit).



2. Proposed readout for compressed spectral features without a spectrum analyzer.

The Microwave Neural Network presented in the main article utilized off-chip digitization with a
spectrum analyzer that read off a narrow band of frequencies. In a fully integrated version we have
fabricated (not discussed in the main article), we have proposed replacing this with an on-chip
solution, whose schematic is shown in Supplementary Fig. 2. Here, incoming microwave drive signals
interact with the MNN’s parametric oscillations to produce distinct comb-like spectra. Instead of
feeding directly to the output pads, processed signals from the couplers' outputs ate directed to two
mixers that down-convert portions of these spectra based on the frequency of a tunable external
differential oscillator. This employs an ‘N-path’ topology (Supplementary Ref [3]), functioning as a
tunable bandpass filter at RF frequencies, translating signals in that band to differential, sub-50 MHz
outputs. The quality factor of these filters determines the bandwidth of the received baseband signal.
This signal can then be digitized with a low-bandwidth, sub-50 MHz analog-to-digital converter, either
on- or off-chip, and the features used to train a linear backend neural network. For even simpler
readout, on-chip peak detectors can instead be used to record the power at the desired frequency.
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Supplementary Fig. 2. The integration of a low-bandwidth receiver on-chip involves using 4-phase
passive mixers to down-convert the outputs of the coupled oscillators to low-frequency baseband signals
(<50 MHz). These signals should contain compressed features from the MNN's computations on high-
bandwidth data and can replace the off-chip spectrum analyzer previously used for readout. The
remainder of the integrated circuit consisting of coupled oscillators, couplers and gain remains the same.



3. Comparison of predicted accuracy with and without the Microwave Neural Network
Supplementary Fig. 3 compares performance with and without the MNN in the path of incoming
signals. Results with the MNN present are repeated from the main article. For the bit-sequence
detection task, for the case of without using MNN, the linear layer is directly trained with on time-
domain sequences. For the radar tracking task, the frequency modulated square waves (as in the main
article) are fed directly to the spectrum analyzer, and the output spectra are truncated to the reduced
frequency ranges used by the MNN. The backend neural networks discussed in Methods Section 5
are reused here for fair comparison. In the representative results shown below, for both digital
emulation and RF communication, tasks, the inclusion of the MNN improves accuracy. For bit
sequence detection, the MNN achieves higher search accuracy than the optimized linear-layer backend
across all queried bit-sequence lengths, exceeding it by 10% in the worst case of 6-bit queries. When
analyzing flight patterns in simulated airspace, the MNN shows a clear improvement in accurately
predicting the number of flying targets, especially in the worst cases with 3 to 6 aircraft.
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Supplementary Fig. 3.: Comparison of MNN-assisted and backend-neural-network-only accuracy. (a) Bit
sequence search accuracy at 10 Gbit/sec for various queried bitstream lengths. The MNN (blue)
consistently achieves higher accuracy than the optimized linear layer (orange) across all queried

bitstream lengths. (b) Using the MNN enhances the accuracy of counting the number of flying targets,
particularly in complex cases with 3 to 6 aircraft, where the backend neural network struggles to resolve
ambiguity.

Supplementary Table 1. Comparison of the accuracy and complexity of state-of-the-art digital
neural networks and the MNN for the standard task of wireless signal encoding classification using
the RadioML2016 dataset.

Model RadioML2016.10a Val. Number of Parameters
Accuracy at 18dB SNR
RMIL-ResNet [S4] 90% 240K
Mod-LRCNN [S5] 91% 100K
CLDNN [S6] 88% 6.5M
MNN + Lin. Backend (ours) 87.4% <7K (linear layer) + 32 bits
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