
  

  

Abstract— Using binarized neural network (BNN) as an 

alternative to the conventional convolutional neural network 

is a promising candidate to answer the demand of using 

human brain-inspired in applications with limited hardware 

and power resources, such as biomedical devices, IoT edge 

sensors, and other battery-operated devices. Using nonvolatile 

memory elements like MTJ devices in a LiM-based 

architecture can eliminate the need to access and use external 

memory which can significantly reduce the power 

consumption and area overhead. In addition, by using 

adiabatic-based designs, a significant part of the consumed 

power can be recovered to the power source which leads to a 

huge reduction in power consumption which is vital in 

applications with limited power and hardware resources. In 

this paper by using nonvolatile MTJ devices in a LiM 

architecture and using adiabatic-based circuits, an 

XNOR/XOR synapse and neuron is proposed. The proposed 

design offers 97% improvement in comparison with its state-

of-the-art counterparts in case of power consumption. Also, it 

achieves at least 7% lower area compared to other 

counterparts which makes the proposed design a promising 

candidate for hardware implementation of BNNs. 

I. INTRODUCTION 

Hardware-implemented neural networks have higher 
performance in comparison with software implementations 
[1].  However, hardware-implemented neural networks have 
significant area and power overhead. This makes it very 
difficult to use these hardware-implemented neural 
networks in battery-operated devices such as mobile and IoT 
edge devices [2]. Therefore, an investigation into energy-
efficient designs of hardware-implemented networks is 
needed to satisfy the power and energy budget. 

Further, efficient design in every abstraction level of 
design is needed due to (i) the huge number of weights in the 
structure of neural networks, (ii) the need to consistently 
access these stored weights, and (iii) the huge number of 
required operations. Nonvolatile memory devices, like 
magnetic tunnel junctions (MTJs) [3] can be used to 
implement novel logic-in-memory (LiM) [4-7] to reduce the 
power and area overhead of hardware-implemented neural 
networks. Also using hardware-aware approaches and 
algorithms in the definition of networks (using binarized 
neural networks instead of convolutional neural 
networks)[1], and exploiting energy-efficient approaches 
like using adiabatic-based circuits [2] will reduce power and 
area overhead of hardware-implemented neural networks. 
Accordingly, it can be beneficial for efficient hardware 
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implementation of human-brain-inspired networks in 
battery-operated devices. 

Accessing the numerous stored weights of neural 
networks can be the bottleneck of every design [3]. In the 
existing literature, by using nonvolatile memory elements 
like MTJ in the structure of the LiM architecture, promising 
candidates have been designed, but the dynamic power 
consumption is still relatively high in these designs. The 
adiabatic-based circuits can reduce dynamic power by 
recycling the power to the voltage source. In this paper, an 
adiabatic-based nonvolatile LiM XNOR/XOR synapse and 
neuron has been proposed to address the high dynamic 
power consumption issue of the hardware-implemented 
binarized neural network. This novel approach can be a new 
direction in the hardware implementation of neural 
networks. The main contribution of this paper can be listed 
as: 

• A low-power hardware efficient LiM 

adiabatic/spintronic-based XNOR/XOR synapse 

and neuron. 

• Investigating the power and area of a binarized 

neural network, utilized by the proposed neuron 

and comparing these factors with other state-of-

the-art counterparts. 

• Investigating the use of adiabatic-based circuits in 

hardware implementation of neural networks. 

The rest of this paper is organized as: A brief review of 
the fundamental backgrounds of the study is presented in 
Section II. In Section III other state-of-the-art counterparts 
are reviewed followed by the description of the proposed 
design in detail in Section IV. In Section V the result of the 
simulation of the proposed design is investigated and its 
functionality has been studied. Furthermore, the result of the 
hardware implementation of the BNN using the proposed 
design and other counterparts is also investigated in this 
Section. Finally, Section VI concludes the paper. 

II. BACKGROUNDS 

A. Magnetic Tunnel Junction 
MTJ is one of the most important and used devices in 

magnetic-based designs. It is a magnetic memory element 
that benefits from nonvolatility which has two ferromagnetic 
layers, separated by an oxide layer. The magnetic direction 
of these ferromagnetic layers specifies the mode of the MTJ. 
If the magnetic direction of these two layers is the same, the 
MTJ is in parallel mode and the electrical resistance of the 
device is relatively low (Rp). If the magnetic direction of 
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these layers is not the same, the device is in anti-parallel 
mode the electrical resistance of the device is relatively high 
(Rap). Accordingly, this device can store two values which 
can be considered as logical ‘1’ and ‘0’. Due to the fact that 
the magnetic direction of one of these two layers can be 
changed (free layer) and the magnetic direction of the other 
layer is always the same (fixed layer), the write operation is 
changing the magnetic direction of the free layer.  

One of the most important parameters of the MTJs is 
tunnel magnetoresistance which is calculated using Eq. 1. 

𝑇𝑀𝑅 =
𝑅𝑎𝑝 − 𝑅𝑝

𝑅𝑝
 (1) 

TMR ratios of 604% and 249% are reported for in-plane 
MTJ and perpendicular MTJ, respectively [4].  

Another important criterion of MTJs is the retention time 
which is of double importance in mobile devices. The 
retention time can be calculated by Eq. 2. 

𝜏 = 𝜏0exp⁡(
𝐻𝑘𝑀𝑠𝐴𝑟𝑡

2𝑘𝐵𝑇
) (2) 

in which 𝜏0  is equal to 1 nanosecond, 𝐻𝑘  is uni-axial 

anisotropy, 𝑀𝑠 is saturation magnetization, 𝐴𝑟 is the area of 

the MTJ, and 𝑘𝐵  is Boltzmann constant. 
𝐻𝑘𝑀𝑠𝐴𝑟𝑡

2𝑘𝐵𝑇
 is called 

thermal stability and is shown by Δ and it must be more than 

75 for a storage class memory [5]. 
The nonvolatility of MTJ makes them a promising 

candidate for hardware implementation of BNN, especially 
in battery-operated and mobile devices. In addition, the 
compatibility of the manufacturing process of this device 
with CMOS technology, high density, intrinsic immunity to 
soft errors, and low power consumption, attract much 
attention in recent research for LiM-based architecture. 

B. Adiabatic Logic 

Adiabatic logic reduces the dynamic power by using 
power clocks and recycling the stored charges to the power 
supply by using adiabatic switching. Ideal adiabatic 
switching is performed using a constant current source [6]. 
In this case, the dissipated energy is calculated by Eq. 3. 

𝐸𝑑𝑖𝑠𝑠 =
𝑅𝐶

𝑇
𝐶𝑉𝑑𝑑

2  (3) 

in which T is the time in which the load capacitance is 

charged/discharged, R is the electrical resistance of the 

charging/discharging path, C is the load Capacitance and 

Vdd is the full swing of the power clock. The dissipated 

energy in adiabatic logic depends on the T and it is less than 

the dissipated energy in conventional CMOS logic if T is 

much bigger than the time constant (RC). 

C. Binarized Neural Network 

The binarized neural network is a promising candidate to 
overcome the challenges of the efficient hardware 
implementation of the convolutional neural network (CNN) 
in power/hardware-limited resources. In binarized neural 
networks, floating-point operations are replaced by binary 
operations. In the case of binarizing weights, the 
convolution, which consists of floating-point multiplications 
and additions, is replaced by a signed add operation. In the 
case of binarizing both weights and inputs, the convolution 
operation is replaced by a binary XNOR-bitcounting 
operation. The second approach is used in XNOR-network 

[1]. In this network, a filter W can be estimated by a binary 
filter B and a scaling factor α. The filter B and the scaling 
factor α can be calculated using Eq. 5. and Eq. 6. 
𝑊 = 𝐵 × 𝛼 (4) 
𝐵 = 𝑠𝑖𝑔𝑛{𝑊} (5) 

𝛼 =
1

𝑘
‖𝑊‖𝑛𝑚 (6) 

In Eq. 6. k is the total number of weights in the mth filter in 
the nth layer. For binarizing the inputs, a similar approach is 

used in which the input matrix of X is estimated by a binary 
matrix of H and a scaling factor of β. The matrix H and scaling 
factor β can be calculated using Eq. 8. and Eq. 9. respectively. 

𝑋𝑇 = 𝐻𝑇 × 𝛽 (7) 
𝐻 = 𝑠𝑖𝑔𝑛{𝑋} (8) 

𝛽 =
1

𝑘
‖𝑋‖𝑛𝑚 (9) 

Consequently, a convolution operation can be estimated 
by Eq. 10. 
𝑋 ∗𝑊 ≅ (𝑠𝑖𝑔𝑛{𝑋}⊛ 𝑠𝑖𝑔𝑛{𝑊})⊙ 𝛼𝛽 

(10) 
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= (𝐻 ⊛ 𝐵)⊙ 𝛼𝛽 

In Eq. 10., ⊛  is XNOR-bitcounting operation and ⊙  is 

element-wise multiplication. 
By using the XNOR network instead of conventional 

CNN, the required hardware and power for hardware 
implementation is reduced which is of double importance in 
mobile and battery-operated devices. In addition, the 
complexity of the hardware will be decreased, too.  

III. PREVIOUS WORK 

In the literature, much research has been conducted and 
several designs have been proposed [7-14]. The following 
state-of-the-art designs are considered for comparison with 
the proposed design. 

In [13] an XNOR neuron for implementing BNN has 
been proposed. In this design, by using two MTJ devices to 
store each binary weight, a sense amplifier, and a current 
source the neuron has been designed. According to the use 
of a current source, the power consumption of this design is 
high which is not desirable in battery-operated devices. 

In [10] an XNOR/XOR gate for implementing BNNs is 
proposed. This design is based on the voltage division 
between two MTJs which are used to store one-bit weight. 
Due to the structure of this design, it has a high power and 
energy consumption. 

Another design for XNOR/XOR neurons is proposed in 
[9]. This design benefits lower energy power consumption 
in comparison with the other two counterparts, but due to the 
daily-increasing need for using human brain-inspired 
technologies in devices with limited power resources, the 
need for more efficient design is always needed. 

 In [14] an XNOR/XOR neuron based on two 1-
transistor 1-RRAM has been proposed. Due to using a 
constant current source in the structure of the design as a 
reference, the power consumption of this design is relatively 
high which undesirable in battery-operated devices. 

Although using novel architecture like LiM alongside 
nonvolatile memory devices, like MTJ, can reduce the 
power and energy consumption, using low-power 
approaches like using adiabatic circuits alongside this 
architecture and devices can significantly reduce the power 
and energy consumption which is desirable in power-limited 
applications.
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Fig. 1. Proposed MTJ-based Adiabatic XNOR/XOR synapse and neuron 

IV. PROPOSED DESIGN 
In this paper, an energy-efficient nonvolatile adiabatic 

XNOR/XOR neuron and synapses based on LiM 
architecture and MTJ device is proposed. The proposed 
design is shown in Fig. 1. Due to the structure of this design, 
its functionality is independent of the type of MTJ used to 
implement the circuit. Also, different writing methods can 
be used to write on MTJs. Furthermore, it is noteworthy that 
in hardware implementation of the BNNs, due to the 
nonvolatility of MTJ, the weights need to be written only 
one time which makes the MTJs a promising candidate for 
implementing BNNs.  

A. Retention time and MTJ sizing 
An important parameter which is needed to be handled 

carefully in designing LiM architecture-based circuits is the 
retention time. Since in the hardware implementation of 
BNNs, the weights are needed to be written one time, the 
absence of external memory in the design (due to the 
hardware resources limitation in IoT devices, mobile 
devices, and other battery-operated devices), and also  the 
lack of access to the device in many applications, the 
retention time of MTJ must be high and in storage class 
memory. Consequently, the size of MTJs must be designed 
carefully. By increasing the size of MTJs, their retention 
time will increase significantly and their electrical resistance 
will reduce. Consequently, a bigger size of MTJ leads to 
higher retention time. But, the power and energy 
consumption of the proposed design is proportional to the 
resistance of MTJs and lower resistance will lead to higher 
power and energy consumption. Another parameter that 
affects the retention time is the thickness of the barrier layer 
of the MTJs. Higher thickness of the barrier layer leads to 
higher retention time and increases the resistance of the MTJ 
exponentially, but also increases the needed voltage for a 
write operation on the MTJ. Accordingly, the selected values 

for the size of MTJs and their barrier layer thickness must be 
in a way that they provide a reasonable retention time, and 
power consumption, and also be in a way that write 
operation can be done using the circuit’s VDD. 

B. Functionality 
The proposed energy-efficient nonvolatile adiabatic 

XNOR/XOR neuron and synapses based on LiM 
architecture and MTJ device is shown in Fig. 1. Due to the 
function of the proposed design that acts as a neuron, there 
is no need to use auxiliary circuits to perform activation 
function which leads to more efficiency in case of area and 
power over overhead. Also, due to the use of MTJs and their 
nonvolatility feature, the need to store the weights in an 
external memory and restore them at the first of each use will 
be eliminated which leads to lower area and power overhead 
in the system level. Furthermore, using LiM architecture 
leads to the elimination of the need to access external 
memory which in turn reduce the power and area overhead 
at the system level. In addition, by using an adiabatic-based 
sense amplifier (SA) in the structure of the proposed design, 
the energy and power consumption will be significantly 
reduced. Also, the proposed design is scalable and can be 
used to implement filters with different sizes. 

Each weight is stored on two MTJs with different states. 
To store ‘1’ (‘-1’), MTJ1 must be in antiparallel (parallel) 
mode and MTJ2 must be in parallel (antiparallel) mode. This 
difference between the state of the MTJs will lead to 
different path resistance of node XNOR and XOR to the 
ground. Consequently, during the read operation, the outputs 
will be determined based on the difference between the path 
resistances. 

In the adiabatic circuits, a signal named power-clock 
signal Vpc is used as a clock signal and voltage supplier. This 
signal can be trapezoidal or sinusoidal. Generating a 
sinusoidal signal has less complexity than generating a 
trapezoidal signal. Accordingly, a sinusoidal power-clock 



  

signal has been used in this paper. Based on this signal the 
operation of the proposed design can be determined. From 
the aspect of the power-clock signal, the read operation has 
two phases, the evaluation and recovery phase. The power-
clock signal rises from 0 to VDD in the evaluation phase and 
the recovery phase is operated while the power-clock signal 
falls from VDD to 0.  

In the evaluation phase, the signal Read Enable must be 
‘1’, so the output can have an activated path to the ground. 
The signal SENSE rises from ‘0’ to ‘1’ for a small period of 
time, so the residual charge of the output of the previous 
input can be discharged to the ground and the adiabatic SA 
can sense the resistance of paths and produce the proper 
output. The signal SENSE must be activated when the 
power-clock signal is zero, so the discharge operation can be 
done before sensing (since the power-clock signal is ‘0’, the 
SA is not activated). After the discharging operation, while 
the signal SENSE and Read Enable are both ‘1’, the power-
clock signal starts to rise and the voltage of XNOR and XOR 
will start to rise, but since they have different paths to the 
ground with different resistances, they will have different 
voltage. In the next step, the signal SENSE fall from ‘1’ to 
‘0’. Consequently, the SA will sense the voltage of the node 
XNOR and XOR both and produce the proper output based 
on the difference in voltage between XNOR and XOR 
nodes. Consequently, one of the nodes XNOR or XOR will 
be discharged to the ground and the other one will rise, 
following the power-clock signal. When the power clock 
signal reaches the VDD, the evaluation phase is over. 

In the recovery phase, the power-clock signal will fall 
gradually from VDD to the ground. By failing the power-
clock signal, one of the nodes XNOR or XOR which has 
followed the power-clock signal in the evaluation phase, will 
have higher voltage in comparison with the voltage of the 
power-clock signal. Consequently, a current will flow to the 
power-clock node from this node and the charges in that 
node will be recovered to the power-clock node. It is 
noteworthy that this node will be discharged to the power-
clock node until its voltage reaches the threshold voltage of 
the PMOS transistor. 

V. SIMULATION 
In this section, various aspects of the performance of the 

proposed design and its counterparts are simulated, 
evaluated, and compared. To have a better comparison, the 
results of implementing a whole BNN have been studied to 
reach a better insight into the performance of the proposed 
design and its counterparts in the hardware implementation 
of BNN. 

A. Functional Simulation 
The proposed design and its counterparts have been 

simulated using HSPICE. For the simulations of the 
proposed design and its counterpart predictive technology 
model for 32nm [15] and the STT-MTJ model [16, 17] have 
been used. The counterparts have been redesigned and 
optimized to have a fairer comparison. The critical 
parameters of the MTJ and transistors are shown in Table I. 
The size of MTJ has been chosen in a way that the retention 
time of the MTJs can be classified in the storage memory 

class (Retention time=1.36e15) and simultaneously has 
relatively high resistance without making the write operation 
have an additional voltage source. 

The results of the functionality simulation of the 
proposed design with 3 weights are illustrated in Fig. 2. 
which is consist of power-clock signal, Read Enable signal, 
SENSE signal, inputs and corresponding weights, and 
XNOR and XOR as outputs. It is noteworthy that the 
proposed neuron is scalable and for simplicity of validating 
the functionality of the proposed design, a neuron with 3 
weights is shown in Fig. 2.  As shown in Fig. 2. during 0 ns 
to 40 ns (160 ns to 200 ns) the circuit is in the evaluation 
phase of read mode. During this period, weight 1, weight 2, 
and weight 3 are ‘-1’, ‘1’, and ‘-1’ respectively, and input 1, 
input 2, and input 3 are ‘0’ (‘1’) and the Read_Enable signal 
is ‘1’. While the SENSE signal is ‘1’, both output XNOR 
and XOR start to rise and follow Vpc, but when the SENSE 
signal falls, the XOR (XNOR) output falls and XNOR 
(XOR) output follows the Vpc signal toward VDD. So, the 
output of a 3-input XNOR/XOR neuron with a hard limit 
activation function is produced. Next, from 40 ns to 80 ns 
(200ns to 240 ns) the circuit is in the recovery phase of the 
read operation. During the time that the Read_Enable signal 
is ‘0’, the circuit is in Idle mode. In these periods, writing 
operations can be done. It is noteworthy that the weights are 
written on the MTJs only one time after the training process. 

Table II shows the consumed energy in each cycle 
(E/cycle) and the average power consumption of the 
proposed design with 1, 3, and 9 weights. Since the power 
and energy consumption depends on the duty cycle of the 
SENSE signal, the results in Table II are obtained by 
applying a SENSE signal with a duty cycle of 25% (the 
SENSE signal is ‘1’ for 20 ns) 

TABLE I.  CRITICAL PARAMETERS OF THE SIMULATIONS 

Description Value 

Transistors 
NMOS gate length 32 nm 

PMOS gate length 32 nm 

NMOS gate width 48 nm 

PMOS gate width 96 nm 

MTJ 
Oxide barrier thickness 0.9 nm 

TMR under zero voltage bias 300% 

Minimum TMR under operational 

voltage 
270% 

Free layer thickness 2 nm 

MTJ surface 60 nm ×60 nm 

Resistance area product (RAP) 10 

MTJ resistance under zero bias voltage 
4.1 KΩ-16.2 

KΩ 

Simulation frequency 12.5 MHz 
TABLE II.  ENERGY AND POWER CONSUMPTION OF THE PROPOSED 

ADIABATIC-BASED NEURON 

Number of weights 

and input in neuron 

1 weight 

and 

input 

3 weights 

and inputs 

9 weights 

and 

inputs 

Average power 

consumption (nW) 
5.2 6.5 7.1 

Energy consumption in 

each cycle (nJ/cycle) 
416 520 568 
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Fig. 2. Simulation result of the proposed neuron and synapse 

 
Fig. 3. Power consumption of the proposed neuron and synapse with 3 

weights and different activation duration of the SENSE signal 

In order to study the effect of the duty cycle of the 
SENSE signal, simulations with different duty cycles for the 
SENSE signal have been carried out. In this simulation, a 
neuron with three weights has been simulated. The results 
are shown in Fig. 3. 

As it is shown in Fig. 3. the power consumption of the 
proposed design is dependent on the assertion time of the 

SENSE signal. The minimum assertion time of the SENSE 
signal by which the neuron can produce the output correctly 
is 19 ns (with the power-clock signal frequency of 
12.5MHz). By considering 5% and 10% error for the timing 
of the SENSE signal, the minimum time for the SENSE 
signal to be asserted and still the neuron works properly is 
20 ns and 22 ns, respectively. The results in Table II are 
based on a simulation in which the assertion time for the 
SENSE signal is 20 ns. 

B. BNN Implementation 

To have a better comparison with other counterparts and 
better insight into the implementation of BNN, utilized by 
the proposed design in this paper and in other counterparts, 
the power consumption of the whole network has been 
studied. The architecture of the network used for this study 
is 2×(64C3)_MP2-2_2× (128C3)_MP2-2 _2× (256)_MP2-
2_AP4-2_256FC_Softmax. In this notation 64C3 stands for 
a convolutional layer with a kernel size of 3×3 and feature 
size of 64, MP2-2 stands for a max-pooling layer with a 
kernel size of 2×2 and stride of 2, AP4-2 stands for an 
average pooling layer with a kernel size of 4×4 and stride of 
2, and 256FC stands for a fully connected layer with 256 
neurons. The number of required transistors and power 
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consumption of the implemented network are shown in 
Table III. It is noteworthy that the assertion time of the 
SENSE signal is 22 ns for this simulation. 

TABLE III.  RESULTS OF THE HARDWARE IMPLEMENTATION OF BNN 

Design [13] [10] [9] [14] Proposed 

Average 

power (µW) 
41932.8 24837.1 985.6 37094.4 27.7 

Transistor 

number 
50176 64512 49280 49280 45696 

As results in Table III shows, the proposed design in this 
paper offers at least 97% and 7% improvement in 
comparison with its state-of-the-art counterparts in the case 
of power consumption and transistor number, respectively. 
According to the results of Table III, using adiabatic-based 
circuits can reduce the power consumption of the hardware-
implemented BNN significantly which is vital in battery-
operated devices such as biomedical devices, IoT edge 
sensors, and other mobile devices. Also, in terms of area and 
transistors number, the proposed design in this paper 
provides more efficiency which leads to a lower price of 
hardware implementation of BNNs.  

VI. CONCLUSION 

In this paper, a scalable nonvolatile spintronic LiM 
adiabatic-based XNOR/XOR synapse and neuron based on 
MTJ devices has been proposed. Using nonvolatile MTJs in 
a LiM architecture in an adiabatic-based architecture, in 
addition to eliminating the need to external memory and 
accessing this memory, also reduce the power consumption 
significantly. Due to the increasing demand for hardware 
implementation of human brain-inspired technology in 
battery-operated devices, such as biomedical devices and 
IoT edge sensors, the proposed power and area-efficient 
design is a promising candidate to answer this demand. The 
result of the hardware implementation of the implemented 
BNN in this paper utilized by the proposed design in this 
paper offers 97% improvement compared to its state-of-the-
art counterparts in case of power consumption. Also, the 
proposed designs occupy at least 7% lower area compared 
with other counterparts, which makes the proposed design a 
promising candidate for the application of hardware 
implementation of the BNN. 

In the future works, different aspects of scalability of the 
proposed design, regarding functionality and reliability will 
be investigated. 
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