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Abstract— Using binarized neural network (BNN) as an
alternative to the conventional convolutional neural network
is a promising candidate to answer the demand of using
human brain-inspired in applications with limited hardware
and power resources, such as biomedical devices, IoT edge
sensors, and other battery-operated devices. Using nonvolatile
memory elements like MTJ devices in a LiM-based
architecture can eliminate the need to access and use external
memory which can significantly reduce the power
consumption and area overhead. In addition, by using
adiabatic-based designs, a significant part of the consumed
power can be recovered to the power source which leads to a
huge reduction in power consumption which is vital in
applications with limited power and hardware resources. In
this paper by using nonvolatile MTJ devices in a LiM
architecture and using adiabatic-based circuits, an
XNOR/XOR synapse and neuron is proposed. The proposed
design offers 97% improvement in comparison with its state-
of-the-art counterparts in case of power consumption. Also, it
achieves at least 7% lower area compared to other
counterparts which makes the proposed design a promising
candidate for hardware implementation of BNNs.

1. INTRODUCTION

Hardware-implemented neural networks have higher
performance in comparison with software implementations
[1]. However, hardware-implemented neural networks have
significant area and power overhead. This makes it very
difficult to wuse these hardware-implemented neural
networks in battery-operated devices such as mobile and [oT
edge devices [2]. Therefore, an investigation into energy-
efficient designs of hardware-implemented networks is
needed to satisfy the power and energy budget.

Further, efficient design in every abstraction level of
design is needed due to (i) the huge number of weights in the
structure of neural networks, (ii) the need to consistently
access these stored weights, and (iii) the huge number of
required operations. Nonvolatile memory devices, like
magnetic tunnel junctions (MTJs) [3] can be used to
implement novel logic-in-memory (LiM) [4-7] to reduce the
power and area overhead of hardware-implemented neural
networks. Also using hardware-aware approaches and
algorithms in the definition of networks (using binarized
neural networks instead of convolutional neural
networks)[1], and exploiting energy-efficient approaches
like using adiabatic-based circuits [2] will reduce power and
area overhead of hardware-implemented neural networks.
Accordingly, it can be beneficial for efficient hardware
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implementation of human-brain-inspired networks in
battery-operated devices.

Accessing the numerous stored weights of neural
networks can be the bottleneck of every design [3]. In the
existing literature, by using nonvolatile memory elements
like MTJ in the structure of the LiM architecture, promising
candidates have been designed, but the dynamic power
consumption is still relatively high in these designs. The
adiabatic-based circuits can reduce dynamic power by
recycling the power to the voltage source. In this paper, an
adiabatic-based nonvolatile LiM XNOR/XOR synapse and
neuron has been proposed to address the high dynamic
power consumption issue of the hardware-implemented
binarized neural network. This novel approach can be a new
direction in the hardware implementation of neural
networks. The main contribution of this paper can be listed
as:

e A low-power hardware efficient LiM
adiabatic/spintronic-based XNOR/XOR synapse
and neuron.

e Investigating the power and area of a binarized
neural network, utilized by the proposed neuron
and comparing these factors with other state-of-
the-art counterparts.

e Investigating the use of adiabatic-based circuits in
hardware implementation of neural networks.

The rest of this paper is organized as: A brief review of
the fundamental backgrounds of the study is presented in
Section II. In Section III other state-of-the-art counterparts
are reviewed followed by the description of the proposed
design in detail in Section I'V. In Section V the result of the
simulation of the proposed design is investigated and its
functionality has been studied. Furthermore, the result of the
hardware implementation of the BNN using the proposed
design and other counterparts is also investigated in this
Section. Finally, Section VI concludes the paper.

II. BACKGROUNDS

A. Magnetic Tunnel Junction

MT]J is one of the most important and used devices in
magnetic-based designs. It is a magnetic memory element
that benefits from nonvolatility which has two ferromagnetic
layers, separated by an oxide layer. The magnetic direction
of these ferromagnetic layers specifies the mode of the MTJ.
If the magnetic direction of these two layers is the same, the
MT]J is in parallel mode and the electrical resistance of the
device is relatively low (Rp). If the magnetic direction of
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these layers is not the same, the device is in anti-parallel
mode the electrical resistance of the device is relatively high
(Rap). Accordingly, this device can store two values which
can be considered as logical ‘1’ and ‘0’. Due to the fact that
the magnetic direction of one of these two layers can be
changed (free layer) and the magnetic direction of the other
layer is always the same (fixed layer), the write operation is
changing the magnetic direction of the free layer.

One of the most important parameters of the MTJs is
tunnel magnetoresistance which is calculated using Eq. 1.

Rap — Ry
TMR = —/——+ M
Ry

TMR ratios of 604% and 249% are reported for in-plane
MT]J and perpendicular MT]J, respectively [4].

Another important criterion of MTJs is the retention time
which is of double importance in mobile devices. The
retention time can be calculated by Eq. 2.

H, M A, t

kT (2)
B

in which 7, is equal to 1 nanosecond, H, is uni-axial

anisotropy, M is saturation magnetization, A, is the area of

the MTJ, and kg is Boltzmann constant. % is called
B

thermal stability and is shown by A and it must be more than
75 for a storage class memory [5].

The nonvolatility of MTJ makes them a promising
candidate for hardware implementation of BNN, especially
in battery-operated and mobile devices. In addition, the
compatibility of the manufacturing process of this device
with CMOS technology, high density, intrinsic immunity to
soft errors, and low power consumption, attract much
attention in recent research for LiM-based architecture.

B. Adiabatic Logic

Adiabatic logic reduces the dynamic power by using
power clocks and recycling the stored charges to the power
supply by using adiabatic switching. Ideal adiabatic
switching is performed using a constant current source [6].
In this case, the dissipated energy is calculated by Eq. 3.

RC
Egiss = TCVdZd 3)

in which T is the time in which the load capacitance is
charged/discharged, R is the electrical resistance of the
charging/discharging path, C is the load Capacitance and
Vdd is the full swing of the power clock. The dissipated
energy in adiabatic logic depends on the T and it is less than
the dissipated energy in conventional CMOS logic if T is
much bigger than the time constant (RC).

T = 19exp (

C. Binarized Neural Network

The binarized neural network is a promising candidate to
overcome the challenges of the efficient hardware
implementation of the convolutional neural network (CNN)
in power/hardware-limited resources. In binarized neural
networks, floating-point operations are replaced by binary
operations. In the case of binarizing weights, the
convolution, which consists of floating-point multiplications
and additions, is replaced by a signed add operation. In the
case of binarizing both weights and inputs, the convolution
operation is replaced by a binary XNOR-bitcounting
operation. The second approach is used in XNOR-network

[1]. In this network, a filter W can be estimated by a binary
filter B and a scaling factor a. The filter B and the scaling
factor a can be calculated using Eq. 5. and Eq. 6.

W=Bxa 4)
B = iign{W} Q)
a=ZIWl,, ©)

In Eq. 6. k is the total number of weights in the m™ filter in
the n layer. For binarizing the inputs, a similar approach is
used in which the input matrix of X is estimated by a binary
matrix of H and a scaling factor of . The matrix H and scaling
factor B can be calculated using Eq. 8. and Eq. 9. respectively.

XT=HT x %)

H = sign{X} (8)
1

B =7 Xl ©)

Consequently, a convolution operation can be estimated
by Eq. 10.

X« W = (sign{X} ® sign{W}) © af (10)
=H®B)Oap

In Eq. 10., ® is XNOR-bitcounting operation and © is
element-wise multiplication.

By using the XNOR network instead of conventional
CNN, the required hardware and power for hardware
implementation is reduced which is of double importance in
mobile and battery-operated devices. In addition, the
complexity of the hardware will be decreased, too.

[II. PREVIOUS WORK

In the literature, much research has been conducted and
several designs have been proposed [7-14]. The following
state-of-the-art designs are considered for comparison with
the proposed design.

In [13] an XNOR neuron for implementing BNN has
been proposed. In this design, by using two MTJ devices to
store each binary weight, a sense amplifier, and a current
source the neuron has been designed. According to the use
of a current source, the power consumption of this design is
high which is not desirable in battery-operated devices.

In [10] an XNOR/XOR gate for implementing BNNs is
proposed. This design is based on the voltage division
between two MTJs which are used to store one-bit weight.
Due to the structure of this design, it has a high power and
energy consumption.

Another design for XNOR/XOR neurons is proposed in
[9]. This design benefits lower energy power consumption
in comparison with the other two counterparts, but due to the
daily-increasing need for using human brain-inspired
technologies in devices with limited power resources, the
need for more efficient design is always needed.

In [14] an XNOR/XOR neuron based on two I-
transistor 1-RRAM has been proposed. Due to using a
constant current source in the structure of the design as a
reference, the power consumption of this design is relatively
high which undesirable in battery-operated devices.

Although using novel architecture like LiM alongside
nonvolatile memory devices, like MTJ, can reduce the
power and energy consumption, using low-power
approaches like using adiabatic circuits alongside this
architecture and devices can significantly reduce the power
and energy consumption which is desirable in power-limited
applications.
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Fig. 1. Proposed MTJ-based Adiabatic XNOR/XOR synapse and neuron

IV. PROPOSED DESIGN

In this paper, an energy-efficient nonvolatile adiabatic
XNOR/XOR neuron and synapses based on LiM
architecture and MTJ device is proposed. The proposed
design is shown in Fig. 1. Due to the structure of this design,
its functionality is independent of the type of MTJ used to
implement the circuit. Also, different writing methods can
be used to write on MTJs. Furthermore, it is noteworthy that
in hardware implementation of the BNNs, due to the
nonvolatility of MTJ, the weights need to be written only
one time which makes the MTJs a promising candidate for
implementing BNNs.

A. Retention time and MTJ sizing

An important parameter which is needed to be handled
carefully in designing LiM architecture-based circuits is the
retention time. Since in the hardware implementation of
BNNSs, the weights are needed to be written one time, the
absence of external memory in the design (due to the
hardware resources limitation in IoT devices, mobile
devices, and other battery-operated devices), and also the
lack of access to the device in many applications, the
retention time of MTJ must be high and in storage class
memory. Consequently, the size of MTJs must be designed
carefully. By increasing the size of MTJs, their retention
time will increase significantly and their electrical resistance
will reduce. Consequently, a bigger size of MTJ leads to
higher retention time. But, the power and energy
consumption of the proposed design is proportional to the
resistance of MTJs and lower resistance will lead to higher
power and energy consumption. Another parameter that
affects the retention time is the thickness of the barrier layer
of the MTJs. Higher thickness of the barrier layer leads to
higher retention time and increases the resistance of the MTJ
exponentially, but also increases the needed voltage for a
write operation on the MTJ. Accordingly, the selected values

for the size of MTJs and their barrier layer thickness must be
in a way that they provide a reasonable retention time, and
power consumption, and also be in a way that write
operation can be done using the circuit’s VDD.

B. Functionality

The proposed energy-efficient nonvolatile adiabatic
XNOR/XOR neuron and synapses based on LiM
architecture and MTJ device is shown in Fig. 1. Due to the
function of the proposed design that acts as a neuron, there
is no need to use auxiliary circuits to perform activation
function which leads to more efficiency in case of area and
power over overhead. Also, due to the use of MTJs and their
nonvolatility feature, the need to store the weights in an
external memory and restore them at the first of each use will
be eliminated which leads to lower area and power overhead
in the system level. Furthermore, using LiM architecture
leads to the elimination of the need to access external
memory which in turn reduce the power and area overhead
at the system level. In addition, by using an adiabatic-based
sense amplifier (SA) in the structure of the proposed design,
the energy and power consumption will be significantly
reduced. Also, the proposed design is scalable and can be
used to implement filters with different sizes.

Each weight is stored on two MTJs with different states.
To store ‘1’ (“-17), MTJ1 must be in antiparallel (parallel)
mode and MTJ2 must be in parallel (antiparallel) mode. This
difference between the state of the MTJs will lead to
different path resistance of node XNOR and XOR to the
ground. Consequently, during the read operation, the outputs
will be determined based on the difference between the path
resistances.

In the adiabatic circuits, a signal named power-clock
signal V¢ is used as a clock signal and voltage supplier. This
signal can be trapezoidal or sinusoidal. Generating a
sinusoidal signal has less complexity than generating a
trapezoidal signal. Accordingly, a sinusoidal power-clock



signal has been used in this paper. Based on this signal the
operation of the proposed design can be determined. From
the aspect of the power-clock signal, the read operation has
two phases, the evaluation and recovery phase. The power-
clock signal rises from 0 to VDD in the evaluation phase and
the recovery phase is operated while the power-clock signal
falls from VDD to 0.

In the evaluation phase, the signal Read Enable must be
‘1°, so the output can have an activated path to the ground.
The signal SENSE rises from ‘0’ to ‘1’ for a small period of
time, so the residual charge of the output of the previous
input can be discharged to the ground and the adiabatic SA
can sense the resistance of paths and produce the proper
output. The signal SENSE must be activated when the
power-clock signal is zero, so the discharge operation can be
done before sensing (since the power-clock signal is ‘0, the
SA is not activated). After the discharging operation, while
the signal SENSE and Read Enable are both ‘1°, the power-
clock signal starts to rise and the voltage of XNOR and XOR
will start to rise, but since they have different paths to the
ground with different resistances, they will have different
voltage. In the next step, the signal SENSE fall from ‘1’ to
‘0’. Consequently, the SA will sense the voltage of the node
XNOR and XOR both and produce the proper output based
on the difference in voltage between XNOR and XOR
nodes. Consequently, one of the nodes XNOR or XOR will
be discharged to the ground and the other one will rise,
following the power-clock signal. When the power clock
signal reaches the VDD, the evaluation phase is over.

In the recovery phase, the power-clock signal will fall
gradually from VDD to the ground. By failing the power-
clock signal, one of the nodes XNOR or XOR which has
followed the power-clock signal in the evaluation phase, will
have higher voltage in comparison with the voltage of the
power-clock signal. Consequently, a current will flow to the
power-clock node from this node and the charges in that
node will be recovered to the power-clock node. It is
noteworthy that this node will be discharged to the power-
clock node until its voltage reaches the threshold voltage of
the PMOS transistor.

V. SIMULATION

In this section, various aspects of the performance of the
proposed design and its counterparts are simulated,
evaluated, and compared. To have a better comparison, the
results of implementing a whole BNN have been studied to
reach a better insight into the performance of the proposed
design and its counterparts in the hardware implementation
of BNN.

A. Functional Simulation

The proposed design and its counterparts have been
simulated using HSPICE. For the simulations of the
proposed design and its counterpart predictive technology
model for 32nm [15] and the STT-MTJ model [16, 17] have
been used. The counterparts have been redesigned and
optimized to have a fairer comparison. The critical
parameters of the MTJ and transistors are shown in Table I.
The size of MTJ has been chosen in a way that the retention
time of the MTJs can be classified in the storage memory

class (Retention time=1.36el5) and simultaneously has
relatively high resistance without making the write operation
have an additional voltage source.

The results of the functionality simulation of the
proposed design with 3 weights are illustrated in Fig. 2.
which is consist of power-clock signal, Read Enable signal,
SENSE signal, inputs and corresponding weights, and
XNOR and XOR as outputs. It is noteworthy that the
proposed neuron is scalable and for simplicity of validating
the functionality of the proposed design, a neuron with 3
weights is shown in Fig. 2. As shown in Fig. 2. during 0 ns
to 40 ns (160 ns to 200 ns) the circuit is in the evaluation
phase of read mode. During this period, weight 1, weight 2,
and weight 3 are -1°, °1°, and ‘-1’ respectively, and input 1,
input 2, and input 3 are ‘0’ (‘1) and the Read Enable signal
is ‘1°. While the SENSE signal is ‘1°, both output XNOR
and XOR start to rise and follow Vpc, but when the SENSE
signal falls, the XOR (XNOR) output falls and XNOR
(XOR) output follows the Vpc signal toward VDD. So, the
output of a 3-input XNOR/XOR neuron with a hard limit
activation function is produced. Next, from 40 ns to 80 ns
(200ns to 240 ns) the circuit is in the recovery phase of the
read operation. During the time that the Read Enable signal
is ‘0, the circuit is in Idle mode. In these periods, writing
operations can be done. It is noteworthy that the weights are
written on the MTJs only one time after the training process.

Table II shows the consumed energy in each cycle
(E/cycle) and the average power consumption of the
proposed design with 1, 3, and 9 weights. Since the power
and energy consumption depends on the duty cycle of the
SENSE signal, the results in Table Il are obtained by
applying a SENSE signal with a duty cycle of 25% (the
SENSE signal is ‘1’ for 20 ns)

TABLE L CRITICAL PARAMETERS OF THE SIMULATIONS
Description Value
Transistors
NMOS gate length 32 nm
PMOS gate length 32 nm
NMOS gate width 48 nm
PMOS gate width 96 nm
MTJ
Oxide barrier thickness 0.9 nm
TMR under zero voltage bias 300%
Minimum TMR under operational 270%
voltage
Free layer thickness 2 nm
MT]J surface 60 nm x60 nm
Resistance area product (RAP) 10
MT]J resistance under zero bias voltage el ];%1 2
Simulation frequency 12.5 MHz

TABLE II. ENERGY AND POWER CONSUMPTION OF THE PROPOSED
ADIABATIC-BASED NEURON
Number of weights Ll e 3 weights OIS
. . and - and
and input in neuron . and inputs | .
input inputs
Average power
consumption (nW) 5 6 vet
Energy consumption in 416 520 568
each cycle (nJ/cycle)
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Fig. 2. Simulation result of the proposed neuron and synapse
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Fig. 3. Power consumption of the proposed neuron and synapse with 3
weights and different activation duration of the SENSE signal

In order to study the effect of the duty cycle of the
SENSE signal, simulations with different duty cycles for the
SENSE signal have been carried out. In this simulation, a
neuron with three weights has been simulated. The results
are shown in Fig. 3.

As it is shown in Fig. 3. the power consumption of the
proposed design is dependent on the assertion time of the

SENSE signal. The minimum assertion time of the SENSE
signal by which the neuron can produce the output correctly
is 19 ns (with the power-clock signal frequency of
12.5MHz). By considering 5% and 10% error for the timing
of the SENSE signal, the minimum time for the SENSE
signal to be asserted and still the neuron works properly is
20 ns and 22 ns, respectively. The results in Table II are
based on a simulation in which the assertion time for the
SENSE signal is 20 ns.

B. BNN Implementation

To have a better comparison with other counterparts and
better insight into the implementation of BNN, utilized by
the proposed design in this paper and in other counterparts,
the power consumption of the whole network has been
studied. The architecture of the network used for this study
is 2x(64C3) MP2-2 2x (128C3) MP2-2 2x (256) MP2-
2 AP4-2 256FC_Softmax. In this notation 64C3 stands for
a convolutional layer with a kernel size of 3%3 and feature
size of 64, MP2-2 stands for a max-pooling layer with a
kernel size of 2x2 and stride of 2, AP4-2 stands for an
average pooling layer with a kernel size of 4x4 and stride of
2, and 256FC stands for a fully connected layer with 256
neurons. The number of required transistors and power



consumption of the implemented network are shown in
Table III. It is noteworthy that the assertion time of the
SENSE signal is 22 ns for this simulation.

TABLE III. RESULTS OF THE HARDWARE IMPLEMENTATION OF BNN
Design [13] [10] [9] [14] | Proposed
Average | 41935 3| 24837.1 | 985.6 |37004.4| 277

power (UW)

Transistor | 56176 1 64512 | 49280 | 49280 | 45696
number

As results in Table I1I shows, the proposed design in this
paper offers at least 97% and 7% improvement in
comparison with its state-of-the-art counterparts in the case
of power consumption and transistor number, respectively.
According to the results of Table III, using adiabatic-based
circuits can reduce the power consumption of the hardware-
implemented BNN significantly which is vital in battery-
operated devices such as biomedical devices, IoT edge
sensors, and other mobile devices. Also, in terms of area and
transistors number, the proposed design in this paper
provides more efficiency which leads to a lower price of
hardware implementation of BNNs.

VI. CONCLUSION

In this paper, a scalable nonvolatile spintronic LiM
adiabatic-based XNOR/XOR synapse and neuron based on
MT]J devices has been proposed. Using nonvolatile MTJs in
a LiM architecture in an adiabatic-based architecture, in
addition to eliminating the need to external memory and
accessing this memory, also reduce the power consumption
significantly. Due to the increasing demand for hardware
implementation of human brain-inspired technology in
battery-operated devices, such as biomedical devices and
IoT edge sensors, the proposed power and area-efficient
design is a promising candidate to answer this demand. The
result of the hardware implementation of the implemented
BNN in this paper utilized by the proposed design in this
paper offers 97% improvement compared to its state-of-the-
art counterparts in case of power consumption. Also, the
proposed designs occupy at least 7% lower area compared
with other counterparts, which makes the proposed design a
promising candidate for the application of hardware
implementation of the BNN.

In the future works, different aspects of scalability of the
proposed design, regarding functionality and reliability will
be investigated.
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