Automated Generation of Dual Rail Adiabatic Gates
from Binary Decision Diagrams

Joseph Clark

, Elijah Raffel, and Himanshu Thapliyal

Department of Electrical Engineering and Computer Science
University of Tennessee, Knoxville, TN, United States
jelar168 @vols.utk.edu, eraffel @vols.utk.edu, hthapliyal @utk.edu

Abstract—Dual rail adiabatic circuit design offers hardware-
level protection against side-channel power analysis attacks such
as Differential Power Analysis (DPA) and Correlation Power
Analysis (CPA) attacks. While considerable attention has been
given to synthesizing logic tree-based adiabatic circuits, com-
paratively little attention has been given to generating truly
secure circuit variants. This paper presents preliminary results
for a secure dual rail adiabatic synthesis tool based on Binary
Decision Diagrams (BDDs). The tool demonstrates encouraging
performance in matching known optimal transistor counts for
several basic logic gates, in addition to providing improvement
over existing works on established benchmarks.

Index Terms—Adiabatic logic, binary decision diagram, dual-
rail pre-charge logic, logic gates.

I. INTRODUCTION

Dual rail adiabatic circuitry is a circuit design paradigm
which offers significant power savings and increased resilience
against side-channel attacks compared with traditional CMOS
circuitry. Many works have been published concerning the
design automation of these circuits, generally focusing either
on generation of gate or multiplexer based logic [1], [2], or on
generation of logic trees which may be placed into the gate
template for any of several adiabatic logic families [3]-[5].

We are interested in the synthesis of logic tree-based circuits
due to their more compact nature, and we are specifically
interested in using Binary Decision Diagrams (BDDs) due to
the direct mapping between BDDs and dual-rail logic trees.
Due to this direct mapping and the efficiency of the BDD
representation, BDD-based synthesis algorithms are a very
common method of synthesizing dual rail adiabatic logic.
However, comparatively little work has been done to improve
the security of the circuits produced by this approach. Indeed,
although many works use BDD-based synthesis methods under
the assumption that they are secure, producing a balanced, and
therefore secure, circuit is deceptively difficult. Any asym-
metry present in the circuit structure (such as varying circuit
path lengths) can produce different power usage between input
combinations, which renders the circuit vulnerable to side-
channel attacks such as Correlation Power Analysis (CPA)
attacks. One solution which addresses this shortcoming [6]
modifies the BDD by inserting "dummy nodes" to equalize
the path length over all branches. We have thus chosen this
approach as a baseline, and have made some alterations to
produce our preliminary results, namely adapting the method

y y
‘ll!ll’ and

nand

\
\
\

]
Fig. 1: BDD synthesis flow for an AND logic tree. The left
hand side shows the initial BDD, to which dummy nodes are
then added. The BDD with dummy nodes is then transformed
into a logic tree by replacing each node with a differential
pair of NMOS transistors (also understood as transforming
each BDD graph edge into a transistor).

majority
|

'

majority
'

majority
]

Fig. 2: Generation of dummy transistors for LGSynth91 ma-
jority circuit. The leftmost BDD is the initial ROBDD for the
MALJ gate. The middle shows the suboptimal BDD structure
which does not take advantage of dummy node reuse, while the
BDD on the right shows the optimal structure which accounts
for reuse.

from producing Pass Transistor Logic (PTL) to static logic and
improving the efficiency and transistor usage of the method.

II. METHODS AND RESULTS

We implemented the BDD-based synthesis with path-
balancing method in Python using the BDD package DD [7],
which includes Cython bindings to well-known BDD packages
such as CUDD [8]. Although our current implementation

T
s 5
X
y ﬂ a b a b
q. mux mux

(a) AND gate. (b) 2:1 multiplexer logic.

ol
o
[
ol

S
o
o
S

(c) Full adder carry logic.

(d) Full adder sum logic.

Fig. 3: Generated preliminary benchmark results as PFAL circuits.

requires input to be given in the form of a boolean logic ex-
pression in order to produce a BDD, we plan to integrate future
versions directly with a Hardware Description Language such
as Verilog or VHDL. The resulting BDD is then minimized
into a Reduced Ordered Binary Decision Diagram (ROBDD)
using Rudell’s shifting algorithm [9]. After the ROBDD is cre-
ated, is then transformed into a secure implementation of the
original logic function by following the synthesis procedure
outlined in [6] which balances the number of transistors along
each circuit path. This process is shown in Figure 1.

To balance the BDD paths, we must ensure that each route
from the top of the BDD to the bottom passes through the same
number of nodes. This is accomplished by inserting "dummy"
nodes, which have both of their branches connected to the
same node along the original path. This has the additional
effect of ensuring the number of transistors connected to the
high and low rails of each variable is balanced. The BDD
is then converted into an NMOS logic tree by converting
each BDD variable node into a differential pair of NMOS
transistors, the starting node into the source voltage rail, and
the true and false outputs into the high and low rails of
the output, respectively. This logic tree can then be inserted
into the circuit template for most adiabatic logic families to
produce an adiabatic logic circuit. It should be noted that we
are currently focusing on synthesis of static logic rather than
Pass Transistor Logic (PTL) due to the reduction in transistor
counts derived from combining the high and low logic trees;
as a result, we connect our circuit in the opposite direction of
[6], with the source at the top rather than the output.

To improve the efficiency of the path balancing algorithm,
we have made two major changes. First, we have restructured
the algorithm into two major steps: finding the path length for
each node (longest path) and then performing a graph traversal
to insert the required dummy nodes. The longest path from a
set of nodes to all other nodes in a Directed Acyclic Graph
(DAG) can be calculated in linear time by performing a post-
order traversal of the BDD and keeping the maximum of the
child node distances as the node distance when visiting a node.
Next, we traverse the graph and insert dummy nodes to balance
each pair of children (for example, if one child has distance 5,
and the other has distance 3, 2 dummy nodes are inserted in the
second path). Second, we have optimized the count of dummy
nodes by keeping track of inserted dummy nodes and reusing
them when possible, an example of which is shown in Figure

TABLE I: Comparison of transistor counts between the syn-
thesis tool and the best known dual rail implementation of
various logic function trees.

#in Number of Transistors
Function Existing This Work w/Balance
AND 2 4 4 6
OR 2 4 6
XOR 2 6 6 6
MUX 2 6 6 6
FA Carry 3 8 8 12
FA Sum 3 10 10 10

TABLE II: Performance comparison of balanced dual rail
adiabiatic logic trees for the PRESENT substitution box.
Existing transistor counts are referenced from [6].

Number of Transistors
Function Existing This Work
So 18 18
S1 24 22
Sa2 22 22
Ss3 22 22

2. This is accomplished using a hash table which is keyed
on the desired endpoint node and the number of remaining
dummy transistors to be inserted along the path, and which
stores a reference to the dummy node inserted at that location.

Transistor counts of the logic trees produced for several
basic logic functions by this synthesis method are shown in
Table I. As expected, if the dummy connections are ignored,
the tool matches the optimal number of transistors for the
static dual rail implementation of each logic function: 4 for
AND/OR, 6 for XOR, 6 for 2:1 multiplexer, 8 for Full Adder

TABLE II: Performance of synthesis tool on various small
benchmark circuits. Benchmark name, number of inputs and

outputs, and logic tree transistor count with and without
balancing and with and without dummy node reuse are shown.
in # out Number of Transistors

Function Base Balanced w/Reuse
bl 3 4 20 24 22
CM82 5 3 40 52 52
CMB85 11 3 78 298 180
CM151 12 2 64 80 80
CM152 11 1 30 30 30
majority 5 1 14 26 22
z4ml 7 4 86 162 122

(FA) Carry, and 10 for FA Sum (3-input XOR). Additionally,
as expected, the tool does not insert dummy transistors for
the 2 and 3-input XOR circuits or the 2:1 multiplexer circuit,
as these circuits are already balanced. The AND/OR circuits
have 2 transistors added, which is the minimum that can be
added to balance the circuit, as transistors must be added in
pairs and only one path in each circuit is too short. However,
the FA carry circuit has four transistors added, which could
be improved.

Circuits for three of the benchmark functions are shown
in Figure 3, implemented as PFAL [10] logic. Although the
AND gate does not use the standard PFAL structure, it is
more easily balanced than the standard version, as only one
path is out of balance (compared with two in the original).
The carry circuit has 12 transistors, which does produce a
balanced circuit, but could have been reduced to only 10 while
still balancing the transistor counts, as the a transistors along
of the each outside paths could simply have been duplicated
to balance the paths. The multiplexer and sum circuits are
identical to the known optimal 2:1 multiplexer and 3-input
XOR circuits, respectively. We have also compared the quality
of the balanced PRESENT substitution box circuits generated
by our tool and those presented in [6]. The results are shown
in Table II. As expected, our results match the existing ones,
with our tool even achieving a slight savings on bit 1 of the
output.

In order to evaluate the impact of dummy node reuse
on generated circuits, we have measured the performance of
the tool on several of the smaller combinational LGSynth91
benchmark circuits. The results are shown in Table III. From
the table, it is clear that while the dummy node reuse has little
or no effect in some cases, it makes a substantial difference in
others. For example, cm82a, cm151a, and ¢cm152a show no
change with resuse, while b1 and majority see a small im-
provement of one or two nodes saved. The two largest circuits,
cm85ba and z4ml, on the other hand, see an improvement of
118 and 40 transistors, respectively, constituting a 40% and
25% reduction in the total number of transistors.

III. DISCUSSION AND CONCLUSION

BDD-based synthesis provides an efficient baseline synthe-
sis method for dual rail adiabatic static logic. Our preliminary
work is shown to match optimal solutions for important
fundamental circuits such as XOR gates and adder logic, while
matching the transistor count for the usual implementation
of other circuits, such as AND/OR gates. Additionally, by
adding a few redundant nodes to the BDD, the number of
transistors along each circuit path can be reliably balanced
to provide secure computation. Our tool is also shown to
match the performance of existing work in this area on the
PRESENT substitution box, and outperform existing methods
for several benchmark circuits due to our improved reuse of
dummy transistors during balancing.

Our future work on this tool will consist of streamlining
and optimizing the existing approach. This includes tight inte-

gration with Verilog, which existing tools generally disregard
in favor of modifying already-synthesized circuits to produce
dual rail variants. We plan to optimize the tool by improv-
ing the existing synthesis and path balancing approaches, in
addition to exploring other synthesis methods and new path
balancing algorithms. We will also implement several security
features, such as the ability to analyze the security of circuits
produced by the tool.

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation CAREER Award under Grant 2232235.

REFERENCES

[1] G. Paul, S. N. Pradhan, A. Pal, and B. B. Bhattacharya,
“Low power bdd-based synthesis using dual rail static
devspg logic,” in APCCAS 2006-2006 IEEE Asia Pa-
cific Conference on Circuits and Systems, IEEE, 2006,
pp. 1504-1507.

[2] S. N. Pradhan, G. Paul, A. Pal, and B. B. Bhattacharya,
“Power aware bdd-based logic synthesis using adia-
batic multiplexers,” in 2006 International Conference
on Electrical and Computer Engineering, IEEE, 2006,
pp. 149-152.

[3] P. De, U. Parampalli, and C. Mandal, “Secure path bal-
anced bdd-based pre-charge logic for masking,” IEEE
Transactions on Circuits and Systems I: Regular Papers,
vol. 67, no. 12, pp. 4747-4760, 2020.

[4] R. Chaudhry, T.-H. Liu, A. Aziz, and J. L. Burns,
“Area-oriented synthesis for pass-transistor logic,” in
Proceedings International Conference on Computer De-
sign. VLSI in Computers and Processors (Cat. No.
98CB36273), IEEE, 1998, pp. 160-167.

[5] T. Karoubalis, G. P. Alexiou, and N. Kanopoulos, “Op-
timal synthesis of differential cascode voltage switch
(dcvs) logic circuits using ordered binary decision di-
agrams (obdds),” in Proceedings of EURO-DAC. Eu-
ropean Design Automation Conference, 1IEEE, 1995,
pp. 282-287.

[6] P. De, C. Mandal, and U. Prampalli, “Path-balanced
logic design to realize block ciphers resistant to power
and timing attacks,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 27, no. 5,
pp- 1080-1092, 2019.

[7] 1. Filippidis, S. Haeseart, S. C. Livingston, and M.
Wenzel, Dd, https://github.com/tulip-control/dd, 2024.

[8] F. Somenzi, “Cudd: Cu decision diagram package
release 2.3. 0,” University of Colorado at Boulder,
vol. 621, 1998.

[9] R. Rudell, “Dynamic variable ordering for ordered

binary decision diagrams,” in Proceedings of 1993

International Conference on Computer Aided Design

(ICCAD), IEEE, 1993, pp. 42-47.

A Vetuli, S. Di Pascoli, L. Reyneri, et al., “Positive

feedback in adiabatic logic,” Electronics Letters, vol. 32,

no. 20, pp. 1867-1868, 1996.

[10]

