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Abstract

This article proposes a new kriging that has a rational form. It is shown that the
generalized least squares estimator of the mean from rational kriging is much more
well behaved than that of ordinary kriging. Parameter estimation and uncertainty
quantification for rational kriging are proposed using a Gaussian process framework.
A generalized version of rational kriging is also proposed, which includes ordinary and
rational kriging as special cases. Extensive simulations carried out over a wide class
of functions show that the generalized rational kriging performs on par or better than
both ordinary and rational kriging in terms of prediction and uncertainty quantification.
The only extra step needed for generalized rational kriging over ordinary kriging is
the computation of Perron eigenvector of an augmented correlation matrix which can
be computed in near linear time and therefore, its overall computational complexity is
no more than that of ordinary kriging. The potential applications of the new kriging
methods in the emulation of computationally expensive models and model calibration
problems are illustrated with real and simulated examples.

Keywords: Calibration; Computer experiments; Gaussian process; Rational radial basis
functions; Surrogate model; Uncertainty quantification.

1 Introduction

Kriging is a technique for multivariate interpolation of arbitrarily scattered data. It is

originated from some mining-related applications, which is developed into the field of

geostatistics by the pioneering work of Matheron (1963). Kriging/Gaussian process has now

become a prominent technique for computer experiments (Santner et al., 2003). Examples

include calibration of ion channel models in cardiac cells (Plumlee et al., 2016), emulation of

large eddy simulations in a rocket engine design (Mak et al., 2018), and optimization of 3D
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printed aortic valves using finite element models (Chen et al., 2021), to name a few. Kriging

is also widely used in spatial statistics (Cressie, 2015) and machine learning (Rasmussen

and Williams, 2006), but computer experiments will be the main focus of this article.

Kriging can be briefly explained as follows. Suppose we have observed the data

{(xi, yi)}ni=1, where x ∈ Rp is the p-dimensional input and y the output. The aim is to predict

y for a future x. To do this, construct a linear predictor ŷ(x) = a(x)′y =
∑︁n

i=1 ai(x)yi. Krig-

ing gives the best linear unbiased predictor (BLUP) under some assumptions of the data gen-

erating process. Specifically, if the data are generated from a second-order stationary stochas-

tic process with mean µ, variance τ 2, and correlation function cor{Y (u), Y (v)} = R(u−v),

then the kriging predictor can be obtained by minimizing the mean squared prediction error

(Santner et al., 2003)

E {Y (x)− ŷ(x)}2

with respect to a(x) subject to the condition that E{ŷ(x)} = µ for all x. The optimal

solution is given by

a(x)′ = {1− r(x)′R−11} 1′R−1

1′R−11
+ r(x)′R−1,

where R = {R(xi − xj)}n×n is the correlation matrix, r(x) = (R(x− x1), . . . , R(x− xn))
′,

and 1 is a vector of n 1’s. Substituting the solution in the linear predictor and simplifying,

we obtain the (ordinary) kriging predictor as

ŷOK(x) = µ̂OK + r(x)′R−1(y − µ̂OK1), (1)

where

µ̂OK =
1′R−1y

1′R−11
. (2)

The expression in (2) shows that µ̂OK is the well-known Generalized Least Squares (GLS)

estimate of µ.

Joseph (2006) noticed that the ordinary kriging predictor sometimes has a “mean
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reversion” issue (Zhang and Apley, 2014) and proposed a modified predictor

ŷ(x) =
r(x)′R−1y

r(x)′R−11
, (3)

whose predictions tend towards the nearest neighbor value when the correlations go to zero

and thus, avoids the mean reversion issue. This predictor can be obtained as the limiting

case of a simple kriging predictor with a recursive estimation of µ and hence it is called

limit kriging. It is a linear predictor in y, but it can also be viewed as a rational predictor

in x because (3) can be written as

ŷ(x) =

∑︁n
i=1 biR(x− xi)∑︁n
i=1 ciR(x− xi)

,

where b = R−1y and c = R−11. The purpose of this article is to examine optimal rational

predictors in x.

Although rational polynomials have a long history in interpolation, its extension to

radial basis functions (RBFs) is very recent. Jakobsson et al. (2009) proposed to use rational

RBFs for modeling resonance phenomena. Sarra and Bai (2018) also found that rational

RBFs perform exceptionally well for modeling functions with discontinuities and steep

gradients. In a more recent work, Buhmann et al. (2020) showed that rational RBFs have

comparable approximation accuracy to the classical RBFs, but have more robust prediction

performance. However, RBFs cannot provide any uncertainty quantification. In contrast,

owing to its probabilistic formulation, kriging can automatically provide prediction intervals

and can easily be integrated into Bayesian methods and non-normal data settings.

Different from the RBF literature, we will motivate the benefit of rational predictors

using parameter estimation accuracy. As an example, consider the deflection of a simply

supported beam with uniform load shown as an inset in the left panel of Figure 1. The
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deflection at a distance x from the left end of the beam is given by

y = − P

24EI
x(x3 − 2Lx2 + L3),

where P is the uniform load density, E is the elastic modulus, I is the area moment of

inertia, L is the length of the beam, and x ∈ [0, L]. Let P/(24EI) = 1 and L = 1. The

function is plotted in the left panel of Figure 1 along with 11 equi-spaced xi’s from [0, 1]. An

ordinary kriging was fitted to this data with a Gaussian correlation function R(h) = e−(h/θ)2 ,

where the unknown correlation parameter θ is estimated from the data using maximum

likelihood. We used the R package DiceKriging (Roustant et al., 2012) for estimation,

where a small nugget of 10−6 is applied for numerical stability. The predictions in [0, 1]

are plotted in the left panel of Figure 1, which are almost indistinguishable with the true

function values showing excellent prediction performance. The GLS estimate of µ from (2)

is obtained as µ̂OK = 0.224. Interestingly, this value is outside the range of the observed

function values, which are from [−0.3125, 0].
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Figure 1: (left) Plot of the beam deflection curve (dashed-green), data (blue-pluses), and ordinary
kriging predictor (dotted-red). A simply supported beam with uniform load is shown as an inset of
this plot. (middle) Boxplot of µ̂’s from 50 simulations using three correlation functions where the
xi’s are randomly sampled in [0, 1]. (right) Root mean squared errors from the 50 simulations.

We repeated this exercise 50 times by uniformly sampling xi’s from [0, 1] and using
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two more correlation functions: exponential and Matérn 3/2 (Rasmussen and Williams,

2006, p.84). We can see from the middle panel of Figure 1 that the estimates of µ using

exponential correlation function are around −0.1, which are in the range of the observed

values, but the estimates of µ from the Matérn 3/2 correlation function are generally higher

than those obtained from the Gaussian correlation function. For each simulation, the root

mean squared error (RMSE) is calculated over a grid of 1,001 values and is shown in the

right panel of Figure 1. We can see that the Gaussian correlation function gives the best

prediction in this example. The prediction from the exponential correlation function is the

worst in spite of having the mean in the observed range of yi’s.

Although better prediction is obtained when µ̂ is outside the observed range of function

values, the interpretation of those estimates becomes questionable. One could argue that µ is

the mean of a stochastic process in which the beam deflection curve is just a realization and

thus a value around 0.2 is an admissible estimate. However, if µ has a physical interpretation,

then this estimate is meaningless. For example, a positive value of mean would imply that

the beam will deflect in the opposite direction of the force, which is against the law of

nature! This is a common dilemma in model calibration problems (Kennedy and O’Hagan,

2001). We will show that the use of rational kriging can surprisingly avoid this issue without

sacrificing the prediction performance.

A quick fix to the foregoing issue is to estimate the mean using ordinary least squares

(Pronzato and Zhigljavsky, 2023). However, it leads to inconsistencies in the modeling

framework– an uncorrelated process for estimation and a correlated process for prediction.

Plumlee and Joseph (2018) argued that the estimation problems are caused by identifiability

issues between the stochastic process and the mean function (a constant function in the

case of ordinary kriging). They proposed to overcome the identifiability issue by making

the stochastic process orthogonal to the mean function. Although their approach is very

general, it leads to a nonstationary correlation function that involves high-dimensional

integrals making the estimation computationally challenging and numerically unstable. In

contrast, rational kriging requires only a rescaling of the original predictor, which is very
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easy to implement in practice.

The article is organized as follows. Section 2 develops the rational kriging and a

Gaussian process framework for parameter estimation and uncertainty quantification. A

generalization of the rational kriging is also proposed in which ordinary and rational kriging

are special cases. Simulations with several test functions are provided in Section 3. Potential

applications of rational and generalized rational kriging in emulation and calibration of

computer models are illustrated with some examples in Section 4. Some concluding remarks

are given in Section 5.

2 Methodology

We will first derive the optimal rational predictor by minimizing the mean squared prediction

error and then investigate its estimation properties by assuming Gaussianity for the stochastic

process. A generalization of the rational predictor will also be discussed.

2.1 Rational Kriging

Let X be the input region for data collection. Most of the time, it can be scaled in [0, 1]p.

Notice that this region does not come into the formulation or derivation of the ordinary

kriging predictor because we assume the stationary stochastic process has a constant mean

µ and variance τ 2 for all x ∈ Rp. This could be the reason why the estimate of µ went

outside the observed range of y values in the example that we saw earlier. So, we can

possibly overcome the issue by assuming a nonstationary variance τ 2(x), where it should

increase as x goes outside of X .

Now consider a predictor of the form

ŷ(x) =
a(x)′y

b(x)
, (4)

where a(x) = (a1(x), . . . , an(x))
′ and b(x) are functions of the input variables x =
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(x1, . . . , xp)
′. Assume that the data y is a realization from a second-order stationary

stochastic process with mean µ, variance τ 2(x), and correlation function R(·). Then, the

predictor in (4) will be unbiased if

E{ŷ(x)} =
a(x)′E{y}

b(x)
= µ

a(x)′1

b(x)
= µ

for all x, which implies b(x) = a(x)′1. Now we can find the best unbiased predictor by

minimizing

MSPE = E

{︃
Y (x)− a(x)′y

a(x)′1

}︃2

with respect to a(x). Note that unlike ordinary kriging, we do not need to impose any

constraints on a(x). It is easy to show that cov(Y (x),y) = τ(x)diag(τ )r(x) and var{y} =

diag(τ )Rdiag(τ ), where τ = (τ(x1), . . . , τ(xn))
′ and diag(τ ) is a diagonal matrix with

diagonal elements τ . Thus,

MSPE = τ 2(x)− 2
a(x)′

a(x)′1
τ(x)diag(τ )r(x) +

a(x)′

a(x)′1
diag(τ )Rdiag(τ )

a(x)

a(x)′1
.

Differentiating with respect to a(x) and equating to zero, we obtain

diag(τ )

{︃
−2τ(x)r(x) + 2Rdiag(τ )

a(x)

a(x)′1

}︃
∂

∂a(x)

(︃
a(x)

a(x)′1

)︃
= 0.

Thus,
a(x)

a(x)′1
= τ(x)diag(τ−1)R−1r(x)

is a solution, provided τ(x)r(x)′R−1diag(τ−1)1 = 1. Therefore, we can let

τ(x) =
1

r(x)′R−1(1/τ )
, (5)

where 1/τ = (1/τ1, . . . , 1/τn)
′ and τi = τ(xi) for i = 1, . . . , n. Since r(xi)

′R−1 =

(0, . . . , 1, . . . , 0)′ with 1 at the ith position, (5) holds for i = 1, . . . , n. However, (5) is
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meaningful only if r(x)′R−1(1/τ ) > 0 for all x. This can be ensured by putting a constraint

on τ ≥ 0 such that R−1(1/τ ) ≥ 0 and choosing a correlation function that does not vanish.

Interestingly, τ(x) → ∞ as ||x− xi|| → ∞ for all i, which agrees with our intuition.

Thus, we obtain the optimal rational kriging predictor as

ŷ(x) =
r(x)′R−1(y/τ )

r(x)′R−1(1/τ )
. (6)

We can see that the limit kriging predictor in (3) is a special case of this predictor with

τ = 1. However, limit kriging is not an admissible predictor in the new formulation because

R−11 is not guaranteed to be nonnegative. The new predictor has n additional unknown

parameters τ = (τ1, . . . , τn)
′, which can be chosen to ensure that R−1(1/τ ) ≥ 0 and τ ≥ 0.

Let R−1(1/τ ) = c/ν, where c ≥ 0, ∥c∥2 = 1, and ν is a positive constant. Since R is a

positive matrix, c ≥ 0 implies 1/τ = Rc/ν ≥ 0. Thus, the rational kriging predictor can

be written as

ŷ(x) =
r(x)′R−1diag(Rc)y

r(x)′c
, (7)

where c ≥ 0. This is the same predictor obtained by Kang and Joseph (2016) as the limiting

case of an iterated kernel regression. The choice of c will be discussed in the next section.

The derivation of rational kriging predictor does not give any estimate of µ. However,

since y is a random vector with mean µ1 and variance diag(τ )Rdiag(τ ), we can use the

GLS estimate for µ:

µ̂ =
1′diag(τ−1)R−1diag(τ−1)y

1′diag(τ−1)R−1diag(τ−1)1

=
c′diag(Rc)y

c′Rc
. (8)

Since c ≥ 0, we have the following result, which is in stark contrast to the GLS estimate of

µ in ordinary kriging, where it can go outside the range of the data as we have observed in

an example in the introduction.
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Theorem 1. In rational kriging, the GLS estimate of µ is a convex combination of {yi}ni=1

and therefore, it will always be in the range [mini yi,maxi yi] for any positive definite

correlation function.

In order to understand if the GLS estimate from rational kriging is good or not, we need

to define the notion of a “true value” for µ. Define the true value as the L2-projection of

the underlying function as in Tuo and Wu (2015):

µ∗ = argmin
µ

∫︂
X
{y(x)− µ}2dF (x) =

∫︂
X
y(x)dF (x),

where F (·) is the distribution function of x with support X from which the input points

are generated. Since µ∗ is a convex combination of the y(x) for all x ∈ X , we can expect

the rational kriging estimate µ̂ to be closer to µ∗ than µ̂OK to µ∗. We will investigate this

more in Section 3 using simulations.

The mean squared prediction error for the optimal rational kriging predictor is given by

MSPE =
ν2

{r(x)′c}2
{1− r(x)′R−1r(x)}, (9)

which can be used for uncertainty quantification. It can be computed only after specifying

the parameter ν and the coefficients c. Moreover, there are unknown parameters in the

correlation function that need to be specified. We will develop their estimation procedure

after introducing Gaussian Process (GP) in the next section.

2.2 Rational Gaussian Process

It is well known that the ordinary kriging predictor can be obtained as the posterior mean

if we assume a GP prior for the true function that generated the data (Currin et al., 1991;

Rasmussen and Williams, 2006). A similar framework can be developed for rational kriging.
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Following Kang and Joseph (2016), assume

y(x) = µ+
ν

r(x)′c
Z(x), Z(x) ∼ GP (0, R(·)). (10)

It is easy to show that

y(x)|y ∼ N

(︃
ŷ(x),

ν2

{r(x)′c}2
{1− r(x)′R−1r(x)}

)︃
, (11)

where ŷ(x) is the rational kriging predictor given in (7) and the posterior variance is the same

as the MSPE in (9). As alluded to in the introduction, (11) can be used for constructing

the prediction intervals, which is a major advantage of GPs over RBFs.

There are several unknown parameters in (11): µ, ν, and c. The correlation function

also has unknown parameters; denote them by θ. Among all these parameters, we will

give a fully Bayesian treatment only for µ. All the other parameters will be estimated or

specified as follows.

The likelihood is given by

y|µ, ν, c,θ ∼ N(µ1, ν2diag(1/Rc) R diag(1/Rc)).

Assuming a non-informative prior for µ: p(µ) ∝ 1, we obtain

µ|y, ν, c,θ ∼ N

(︃
µ̂,

ν2

c′Rc

)︃
,

where µ̂ is the GLS estimate of µ given in (8). Looking at the posterior variance of µ,

it is tempting to choose a c ≥ 0 to maximize c′Rc. In fact, an elegant solution to this

optimization problem exists. Under the constraint ∥c∥2 = 1, the quadratic form c′Rc is

maximized by the eigenvector corresponding to the largest eigenvalue of R. Since R is

a symmetric positive matrix, this eigenvector can be chosen to be positive by Perron’s

theorem (Perron, 1907). This unique eigenvector is also known as Perron eigenvector. Thus,
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we have the following result.

Theorem 2. In rational kriging, the posterior variance of µ can be minimized by taking c

to be the Perron eigenvector of R.

Buhmann et al. (2020) also suggests using this estimate for c. Their suggestion is based

on minimizing the native space norm of functions with kernel K(u,v) = R(u−v). With this

choice of c, r(x)′c can be viewed as the Nyström approximation of the first eigenfunction of

R(·) (Rasmussen and Williams, 2006, Sec. 4.3.2). In our trials, we found this estimate of c

to work well when the functions are smooth, but poorly when the functions are non-smooth.

This is because r(x)′c can become very small for some value of x, which can inflate the

variance term in (11).

Another possibility is to let c = R−11 as in limit kriging (Joseph, 2006), but this does

not ensure nonnegativity of c. We can overcome the nonnegativity issue as follows. Let γ̂ be

the smallest γ ∈ [0, 1] such that [(1− γ)R+ γI]−11 ≥ ∆1 component-wise, where ∆ ∈ [0, 1].

Such a γ̂ always exists because γ = 1 trivially satisfies the inequality. Therefore, let

ĉ = [(1− γ̂)R+ γ̂I]−11. (12)

Empirically, we found that ∆ = λ1/n works well, where λ1 is the largest eigenvalue of R.

When correlations are high, R ≈ λ1E1E
′
1, where E1 is the eigenvector corresponding to

λ1. Then,

Rĉ ≈ λ1

(1− γ̂)λ1 + γ̂
E1E

′
11 ∝ λ1E1 = RE1.

That is, the solution given in (12) behaves exactly like the eigenvector solution of Buhmann

et al. (2020) when correlations are high (smooth functions). On the other hand, when

correlations are small (non-smooth functions), ĉ ≈ [(1− γ̂)I+ γ̂I]−11 ∝ 1, whereas E1 will

be approximately the unit vector (1, 0, . . . , 0)′. When this happens, the eigenvector solution

will make r(x)′c ≈ 0 for a large portion of X , whereas r(x)′ĉ ≈ 1 for x in the neighborhood

of the observed data points. Thus, the solution given in (12) will be better behaved in all
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correlations regimes and therefore, will be adopted in this article. We also note that this

solution is quite different from that of Kang and Joseph (2016), where they estimate c by

maximizing the unnormalized posterior, which is computationally prohibitive.

Thus,

p(ν,θ|y, ĉ) ∝
∫︂

p(y|µ, ν, ĉ,θ) dµ

∝ |diag(Rĉ)|
νn−1|R|1/2(ĉRĉ)1/2

exp

{︃
− 1

2ν2
(y − µ̂1)′diag(Rĉ)R−1diag(Rĉ)(y − µ̂1)

}︃
,

where ĉ is given in (12). Maximizing this with respect to ν and θ, we obtain

ν̂2 =
1

n− 1
(y − µ̂1)′diag(Rĉ)R−1diag(Rĉ)(y − µ̂1), (13)

θ̂ = argmin
θ

{︄
(n− 1) log ν̂2 + log |R| − 2

n∑︂
i=1

log(Riĉ) + log(ĉ′Rĉ)

}︄
, (14)

where Ri is the ith row of R.

Rational kriging/GP can be used with any positive definite correlation function. One of

the most commonly used correlation function in computer experiments is the Gaussian cor-

relation function given by R(h) = exp{−
∑︁p

i=1(hi/θi)
2}. Let θ2i = θ2/wi, where

∑︁p
i=1 wi = 1

and wi ≥ 0 for i = 1, . . . , n. Then the Gaussian correlation function can be written as

R(h) = exp
{︁
−∥h∥2w/θ2

}︁
, (15)

where ∥h∥2w =
∑︁p

i=1 wih
2
i . It is interesting to study the properties of the rational kriging

predictor when the length-scale parameter (θ) becomes small. Using a result in Kang and

Joseph (2016), it is easy to show that the rational kriging tends to the nearest neighbor

predictor defined by the norm ∥·∥w as θ → 0. This property helps rational kriging to

overcome the “mean reversion” problem commonly observed with ordinary kriging.

There is another correlation function that makes the foregoing limiting case even more
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interesting. Consider the rational quadratic function (Rasmussen and Williams, 2006) (also

known as Cauchy function) given by

R(h) =
(︁
1 + ∥h∥2w/θ2

)︁−1
. (16)

When the length-scale parameter θ → 0, we have R → I and therefore ĉ → 1. Moreover,

R(x− xi)/r(x)
′ĉ → ∥x− xi∥−2

w /
∑︁n

j=1∥x− xj∥−2
w . The predictor

ŷIDW (x) =

∑︁n
i=1∥x− xi∥−2

w yi∑︁n
j=1∥x− xj∥−2

w

is the well-known inverse distance weighting (IDW) predictor (Shepard, 1968; Joseph and

Kang, 2011). Thus, we have the following result.

Theorem 3. Under rational quadratic correlation function in (16), the rational kriging

predictor converges to the inverse distance weighting predictor as the length-scale parameter

goes to 0.

2.3 Generalized Rational Kriging

The mean squared prediction error of rational kriging (9) can go to ∞ as r(x)′c → 0.

Therefore, the confidence intervals can blow up when predicting in data sparse regions of

X , especially with non-smooth functions. To see this, consider a non-smooth function from

Gramacy and Lee (2012):

y =
sin 10πx

2x
+ (x− 1)4, x ∈ [0.5, 2.5].

The predictions and 95% confidence intervals from ordinary and rational using a rational

quadratic correlation function are shown in Figure 2. The predictions from the two methods

are quite similar, but confidence intervals differ a lot. We can see that the confidence

intervals from rational kriging are unnecessarily wide in at least two regions.
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Figure 2: Ordinary (left), rational (middle), and the generalized rational (right) kriging fitted on
n = 30 data points (blue crosses). The 95% confidence intervals for the predictions are shown as a
shaded region.

We can avoid the foregoing issue by adding a positive constant to the denominator term

r(x)′c. Therefore, consider a new Gaussian process model

y(x) = µ+
ν

c0 + r(x)′c
Z(x), Z(x) ∼ GP (0, R(·)), (17)

where c0 ≥ 0,c ≥ 0, and c20 + ∥c∥22 = 1. We can see that rational kriging and ordinary

kriging can be obtained as special cases of this general model by setting c0 = 0 and c0 = 1,

respectively. Furthermore, for c0 > 0, the variance of y(x) in (17) is bounded by ν2/c20.

Let c̃ = (c0, c
′)′ and R̃ = [1 R]. As before, assuming p(µ) ∝ 1, it can be shown that

y(x)|y ∼ N
(︁
ỹ(x), s2(x)

)︁
,

where

ỹ(x) = µ̃+
r(x)′

c0 + r(x)′c
R−1diag(R̃c̃)(y − µ̃1), (18)

s2(x) =
ν2

{c0 + r(x)′c}2

{︃
1− r(x)′R−1r(x) + c20

(1− r(x)′R−11)2

c̃′R̃
′
R−1R̃c̃

}︃
, (19)
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and

µ̃ =
c̃′R̃

′
R−1diag(R̃c̃)y

c̃′R̃
′
R−1R̃c̃

. (20)

Furthermore, the posterior distribution of µ is given by

µ|y ∼ N

(︃
µ̃,

ν2

c̃′R̃
′
R−1R̃c̃

)︃
.

Since R is a positive definite matrix, 1′R−11 > 0. Thus,

R̃
′
R−1R̃ =

⎡⎣1′R−11 1′

1 R

⎤⎦
is a symmetric positive matrix. Therefore, by Perron’s theorem (Perron, 1907), the eigenvec-

tor of R̃
′
R−1R̃ corresponding to its largest eigenvalue can be chosen to be positive, which

gives the following result.

Theorem 4. For generalized rational kriging, the posterior variance of µ can be minimized

by taking (c0, c
′)′ to be the Perron eigenvector of R̃

′
R−1R̃.

For non-smooth functions, the length-scale parameters in the correlation function will

be small. So let θ → 0 in (15) or (16). It is easy to show that

(c0, c
′) → 1√︁

n(n+ 1)
(n, 1, 1, . . . , 1) as θ → 0.

Therefore, c0 + r(x)′c will not go to 0, which will avoid the inflation of the variance in (19)

in data sparse regions of X . The right panel of Figure 2 shows the generalized rational

kriging predictor and its 95% confidence intervals, which look very reasonable compared to

those of rational and ordinary kriging.

15



3 Simulations

Consider again the beam deflection function used in the introduction: y = −x(1− 2x2 + x3)

for x ∈ [0, 1]. Let xi
iid∼ U(0, 1) for i = 1, . . . , 11. These points are re-scaled such that x1 = 0

and x11 = 1. Ordinary kriging (OK), rational kriging (RK), and generalized rational kriging

(GRK) are fitted to the data using the Gaussian correlation function R(h) = exp{−(h/θ)2}

and Rational Quadratic function R(h) = {1 + (h/θ)2}−1. This simulation is repeated for 50

times. The left panel of Figure 3 shows the Root Mean-Squared Errors (RMSEs) computed

over a grid of 1,001 points in [0, 1]. It shows that, on the average, RK is more accurate than

OK, and GRK is more accurate than RK. Interval Score (Gneiting and Raftery, 2007)

IS =
1

N

N∑︂
i=1

[︃
(u− l) +

2

α
{(l − ti)+ + (ti − u)+}

]︃

is computed for assessing the accuracy of (1− α) confidence intervals [l, u], where (x)+ = x

if x > 0 and 0 otherwise, and {ti}Ni=1 are the N = 1001 testing locations. This is shown

in the middle panel of Figure 3 for 95% confidence intervals. A small IS value indicates

better confidence intervals (small width at prescribed coverage). In this example, IS shows

comparable performance for the three methods. The most striking result is the plot on the

right panel of Figure 3. While OK produces µ̂’s much larger than the maximum value of

yi’s, the estimate from RK is around the true value µ∗ =
∫︁ 1

0
−x(1− 2x2 + x3) dx = −0.20

(shown as a red line in the same figure). Although the result of Theorem 1 does not hold

true for GRK, the estimate of mean from GRK is only slightly worse than that of RK.

For OK, a priori, 95% of the function is believed to lie in µ± 2τ , whereas for RK/GRK

the 95% prior confidence interval is µ± 2ν/(c0 + r(x)′c). They are plotted in Figure 4 by

setting µ = 0, τ = 1, and choosing ν to be the harmonic mean of c0 + r(xi)
′c, i = 1, . . . , n,

where xi = (i− 1)/(n− 1). We can see that they pretty much agree within the input region

[0, 1]. Outside [0, 1], the confidence intervals for OK remain constant, whereas they increase

for RK/GRK. In other words, OK assigns equal “weight” to the whole of R, whereas
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using the beam deflection function. The simulation is done by randomly sampling {xi}11i=1 from
[0, 1]. Outliers are not shown. The true value µ∗ is plotted as a red line in the right plot.
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Figure 4: Scaled 95% prior confidence regions for the function with mean centered at 0 are shown
as shaded regions for OK, RK, and GRK. Eleven equally-spaced points in [0, 1] is used as the
design.

RK/GRK assigns more “weight” in the input region and less “weight” outside the input

region. This could be the reason why the estimates from RK and GRK are well behaved.

Simulations with three other one-dimensional test functions under a similar setup are

given in Figure 5 except that we used n = 30. The details of the test functions are given

in the supplementary materials. The first two are non-smooth functions and we can see

that OK does better than RK on prediction (RMSE) and uncertainty quantification (IS),
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whereas the last function is a smooth function in which RK performs better than OK. In all

the three functions GRK’s performance is as good as or even better than both OK and RK.

Clearly, RK does the best in terms of estimating the mean, followed by GRK. Although the

Gaussian correlation function performed better for RK and GRK for the third function, the

performance with rational quadratic correlation function is found to be more stable.

The simulation of the third function is repeated by varying n from 100 to 1000 using

an equally-spaced design and rational quadratic correlation function. Figure 6 shows the

RMSE and the computational time for fitting the three methods. The simulation is done on

a 2.40 GHz desktop with 16.0 GB memory. The RMSE shows that all the three methods

seem to have the same rate of convergence (we used a fixed nugget of 10−6 for numerical

stability). The computational time for RK is high because of the full eigen decomposition

required for computing the c in (12), whereas GRK is as fast as OK because the Perron

eigenvector of R̃
′
R−1R̃ can be computed in nearly linear time. In our implementation, we

have used the R package RSpectra (Qiu et al., 2022) for computing the Perron eigenvector.
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Figure 6: The left plot shows the RMSE of OK, RK, and GRK on the Bhumann et al. function
by varying n from 100 to 1,000, and the right plot shows the corresponding computational time.
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4 Applications

In this section, we use rational kriging and generalized rational kriging in two important

applications of computer experiments: emulation and calibration.

4.1 Emulation

Joseph (2016) reported a case study on the robust parameter design optimization of a solid

end milling process for which an accurate emulator is needed. A 60-run MaxPro design

(Joseph et al., 2015) was generated for the six variables: hardness of the workpiece material

(x1), rake angle (x2), helix angle (x3), relief angle (x4), corner radius (x5), and flute length

(x6) of the cutting tool. The simulations were carried out using the commercially available

Production Module software (Third Wave Systems, Minneapolis, MN). We will use the

force on the tool (averaged over time) as the response.

To evaluate the different kriging methods the dataset is split into training and testing

sets in the ratio 4:1. We used the SPlit method (Joseph and Vakayil, 2022) to get a reliable

result. For a given training set, OK, RK, and GRK were fitted using the Gaussian and

rational quadratic correlation functions and the RMSE, IS, and mean were computed on

the test set. This process is repeated 50 times and the results are summarized in Figure

7. The average of the force values over the 60 runs is used as the “true value” of µ and is

plotted as a red line in the right plot of the figure. We can see that both RK and GRK give

slightly better prediction and uncertainty quantification than those of OK and at the same

time give substantially improved estimates of µ. Thus, in this case study, RK and GRK

are able to provide more accurate emulators than that of OK, which will help in obtaining

more reliable results for the robust settings of the process variables.

For further testing, three test functions that are widely used for emulation in computer

experiments are chosen: 8-dimensional borehole function (Morris et al., 1993), 7-dimensional

piston simulation function (Kenett and Zacks, 2021), and 6-dimensional OTL circuit function

(Ben-Ari and Steinberg, 2007). The details of these functions are given in the supplementary
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Figure 7: Boxplots of RMSE (left), IS (middle), and estimate of µ (right) from the milling
process dataset. The simulation is done by splitting the dataset into training (48 runs) and testing
sets (12 runs) 50 times. The average value of the force from the 60 runs is plotted as a red line in
the right plot.

materials. The simulations are carried out by randomly sampling n = 10p points from

[0, 1]p and the results are evaluated on a test set by randomly sampling 1,001 points from

[0, 1]p. The results are summarized in Figure 8. In all the three test functions, RK’s and

GRK’s prediction and uncertainty quantification performance are found to be superior to

OK along with better and more consistent estimates for the mean.

4.2 Calibration

Consider a physics-based model y = f(x;η), where η = (η1, . . . , ηq)
′ are the unknown

calibration parameters that need to be estimated from the real data {(xi, yi)}ni=1. Since

the physics-based model could be biased, Kennedy and O’Hagan (2001) proposed to use a

Gaussian process model to capture the discrepancy between the physics-based model and

the data. Their model can be written as

y = f(x;η) + τδ(x) + ϵ, δ(x) ∼ GP (0, R(·)) and ϵ
iid∼ N(0, σ2). (21)
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Figure 8: Boxplots of RMSE (left column), IS (middle column), and estimate of µ (right column)
from the simulation using borehole function (top row), piston simulation function (middle row),
and OTL circuit function (bottom row). The simulation is done by randomly sampling n = 10p
points from [0, 1]p. The true value µ∗ is plotted as a red line in the right panels.
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Tuo and Wu (2015, 2016) have shown that this model could produce poor estimates of

η because of the non-identifiability between η and δ(·). Since then, several proposals

have appeared in the literature aimed at tackling the identifiability issue (Wong et al.,

2017; Plumlee, 2017; Gu and Wang, 2018; Tuo, 2019). However, Kennedy-O’Hagan (KOH)

method continue to maintain its popularity among the practitioners, which could be due to

its simplicity and ease of implementation.

Encouraged by the results of previous sections, we could consider using rational or

generalized rational GP in the KOH model:

y = f(x;η) +
ν

c0 + r(x)′c
δ(x) + ϵ, δ(x) ∼ GP (0, R(·)) and ϵ

iid∼ N(0, σ2). (22)

We make no claims about overcoming the identifiability issue with this new model. Our

hope is that this model would produce better estimates of η than with the original KOH

model without sacrificing the quality of prediction and uncertainty quantification. Moreover,

this new model requires only a rescaling of the discrepancy term, which is easy to implement

in practice.

Consider a simple example from Plumlee (2017). Suppose f(x; η) = ηx, but the data

is generated from y = 4x+ x sin(5x) + ϵ with ϵ
iid∼ N(0, 0.022). Input values are generated

by taking 17 equally spaced points in [0, 0.8]. We will illustrate the results using rational

kriging, i.e., c0 = 0 in (22). Since f(·) is linear in η, we can use the results of the

rational version of the universal kriging model given in the online supplementary file with

Σ = diag(1/Rĉ)Rdiag(1/Rĉ) + σ2/ν2I, where I is the identity matrix. Figure 9 shows the

plot of η̂ for various values of θ using Gaussian and rational quadratic correlation functions.

The least squares estimate of η is around 4.0 and is plotted in the same figure as a red dotted

line. We can see that the estimates of η from the rational version of the Kennedy-O’Hagan

(RK-KOH) model are much closer to the least squares estimate than those from the original

KOH model for both the correlation functions. Clearly there is bias from the RK-KOH, but

at least the use of rational kriging seems to stabilize the parameter estimates making η̂ more
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robust to the misspecification of the correlation parameters. In fact, the theoretical results

of Tuo and Wu (2015, 2016) show that the dependency of η̂ with the Gaussian process

prior specification is the main drawback of the KOH method. We can see that rational

kriging can at least help in mitigating this dependency, which can be a major step towards

overcoming the identifiability issue.

5 Conclusions

Although ordinary kriging has been widely used in statistics, the generalized least squares

estimate of the mean parameter can sometimes be nonsensical. This issue has been largely

ignored in the literature because prediction and uncertainty quantification can still be good

if the correlation parameters are carefully tuned. Therefore, many practitioners replace the

generalized least squares estimate of the mean with ordinary least squares estimate. However,

this leads to inconsistencies in the modeling framework, especially when Bayesian modeling is

applied. Furthermore, there are situations such as in model calibration problems, where the
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parameters in the mean function have physical interpretation and thus meaningful estimates

of them are desired. The rational kriging proposed in this article seems to overcome these

issues. It gives comparable prediction and uncertainty quantification to those of ordinary

kriging, but with substantially improved estimates for the mean parameters. This is achieved

by simply scaling the stochastic part of the kriging/Gaussian process by a scaling function.

Therefore, the proposed method can be easily implemented in complex statistical models.

The rational kriging predictor is found to be the same as the limiting case of an iterated

kernel regression proposed in Kang and Joseph (2016), but its optimality in terms of

minimum mean squared prediction error was not known earlier. We also proposed an

efficient estimator of the scaling function used in rational kriging which turned out to be

closely related to the first eigenfunction of the correlation function. A similar estimation

procedure was also proposed in Buhmann et al. (2020) for the rational radial basis function

interpolation. However, unlike rational kriging, the rational radial basis function techniques

do not provide any uncertainty quantification. Our simulations discovered some of their

pitfalls with the uncertainty quantification of non-smooth functions. Therefore, we have also

proposed a generalized version of rational kriging in which rational and ordinary kriging are

special cases. We found the performance of generalized rational kriging to be comparable

or better than both ordinary and rational kriging for all types of functions. Moreover, the

computational complexity of fitting a generalized rational kriging is no more than that of

an ordinary kriging.

The rational kriging provides a new perspective for kriging with a nonstationary variance

function. From the inception of the kriging technique, constant variance has been widely

used for the stochastic component of the statistical model. This is under the assumption of

stationarity that the true function is expected to lie within a constant band throughout the

region of interest. This approach works well when the true function is indeed stationary.

However, in practice, we never know if it is stationary or not. Thus, it makes sense to

place a prior that has narrow confidence interval in the region of data collection and that

becomes wider as the prediction point deviates from the input region of data (see Figure 4).
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This introduces a fundamental shift in the way we deal with kriging and Gaussian process

models.
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