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AN ANTICYCLOTOMIC EULER SYSTEM FOR

ADJOINT MODULAR GALOIS REPRESENTATIONS

by Raúl ALONSO, Francesc CASTELLA & Óscar RIVERO (*)

Abstract. 4 Let K be an imaginary quadratic field and p a prime split in K. In
this paper we construct an anticyclotomic Euler system for the adjoint representa-
tion attached to elliptic modular forms base changed to K. We also relate our Euler
system to a p-adic L-function deduced from the construction by Eischen–Wan and
Eischen–Harris–Li–Skinner of p-adic L-functions for unitary groups. This allows us
to derive new cases of the Bloch–Kato conjecture in rank zero, and a divisibility
towards an Iwasawa main conjecture.

Résumé. 4 Soit K un corps quadratique imaginaire et p un nombre premier
décomposé dans K. Dans cet article, on construit un système d’Euler anticyclo-
tomique pour le changement de base à K de la représentation adjointe associée
aux formes modulaires elliptiques. On relie ce système d’Euler à une fonction L

p-adique obtenue à partir de la construction par Eischen–Wan et Eischen–Harris–
Li–Skinner des fonctions L p-adiques pour les groupes unitaires. Ceci nous permet
de déduire des nouveaux cas de la conjecture de Bloch–Kato en rang zéro, ainsi
qu’une divisibilité vers une conjecture principale d’Iwasawa.

1. Introduction

The goal of this paper is to study the Bloch–Kato conjecture and the

anticyclotomic Iwasawa theory of certain twists of the adjoint Galois repre-

sentation attached to elliptic modular forms base changed to an imaginary

quadratic field.

Our main result is the construction of an anticyclotomic Euler system

in this setting, which we relate to an analogue of the Hida–Schmidt p-adic
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L-function for the symmetric square. By Kolyvagin’s method for anticyclo-

tomic split Euler systems, as developed by Jetchev–Nekovář–Skinner, our

results yield new cases of the Bloch–Kato conjecture in rank zero and a

divisibility towards an Iwasawa main conjecture.

1.1. The set-up

Let g ∈ Sl(Ng, Çg) be an newform of weight l ⩾ 2, level Ng, and neben-

typus Çg. Let K/Q be an imaginary quadratic field, and let È be a Hecke

character of K of infinity type (1 − k, 0) for some even integer k ⩾ 2. We

assume that the associated theta series ¹È ∈ Sk(NÈ) has trivial nebenty-

pus. Fix an odd prime p ∤ 2NgNÈ and an embedding ºp : Q ↪→ Qp, and

for simplicity in this Introduction assume that the Hecke field of g and the

values of È are contained in a number field L with a prime P above p such

that LP = Qp. We assume that p splits in K and is a prime of ordinary

reduction for g and, again for simplicity, that p ∤ hK , the class number of

K. We will also assume that g is not of CM-type.

Let Vg be the (dual to Deligne’s) p-adic Galois representation attached

to g, and denote by ad0(Vg) ¢ EndQp
(Vg) the adjoint representation on

the trace-zero endomorphisms of Vg. We consider the conjugate self-dual

GK-representation

V := ad0(Vg)(È
−1)(1− k/2),

where (È−1) denotes the twist by the inverse of È and (1−k/2) is the twist

by the (1− k/2)-th power of the p-adic cyclotomic character.

1.2. Euler systems and p-adic L-functions

In this paper we construct an anticyclotomic Euler system for V and

relate it to an associated anticyclotomic p-adic L-function.

For a positive integerm we writeK[m] for the maximal p-extension inside

the ring class field of K of conductor m. Denote by S ′ the set of all square-

free products of primes q in the positive density set P ′ of Definition 5.2; in

particular, these primes split in K. For any p-adic GK-representation W

and a prime q of K, put

Pq(W ;X) = det(1− Fr−1
q X |W((1)),

where Frq denotes an arithmetic Frobenius element for the prime q and W(

denotes the contragredient representation of W . A natural lattice Tg ¢ Vg
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described in Section 2.1 defines a lattice in V denoted by T . Finally, let

H1
Iw(K[mp∞], T ) = lim←−rH

1(K[mpr], T ).

Theorem A (Theorem 5.4). 4 Assume that H1(K[mps], T ) is torsion-

free for all m ∈ S ′ and s ⩾ 0. There exists a collection of classes
{
»È,ad0(g),m,∞ ∈ H1

Iw(K[mp∞], T ) : m ∈ S ′
}

such that whenever m,mq ∈ S ′ with q a prime, we have

corK[mq]/K[m](»È,ad0(g),mq,∞) = Pq(V ; Fr−1
q )»È,ad0(g),m,∞,

where q is any of the primes of K above q.

We obtain the Euler system classes »È,ad0(g),m,∞ from a suitable modi-

fication of the diagonal Euler system classes »È,g,g∗,m,∞ for

V Èad(g) := Vg ¹ Vg∗(È−1)(1− c)

constructed in [2], where g∗ = g ¹ Ç−1
g is the twist of g by the inverse of

its nebentypus, and c = (k + 2l − 2)/2. It follows from our construction

(and the results of [5] that it builds upon) that »È,ad0(g),m,∞ lands in the

balanced Selmer groups Selbal(K[mp∞], T ) introduced in Section 2.3.

Next we are interested in the non-triviality of our Euler system in terms of

L-values. To this end, in Section 4 we use some basic instances of Langlands

functoriality to deduce from the work of Eischen–Harris–Li–Skinner [11] the

construction of a p-adic L-function

Lp(ad0(gK)¹ È) ∈ Frac Λac

interpolating the central L-value L(V, 0) and its twists by a p-adic family

of anticyclotomic Hecke characters. Here Λac is the Iwasawa algebra of the

Galois group Γac of the anticyclotomic Zp-extension K∞/K. Denoting by

»È,ad0(g),∞ the image of »È,ad0(g),1,∞ in Selunb(K∞, T ), we can then prove

the following.

Write (p) = pp, with p the prime of K above p induced by ºp. For the

following result, let K∞,p be the Zp-extension of K unramified outside p,

and let F bal
p

(TÈad(g)) denote the subspace of TÈad(g) defined in Section 2.3.

Theorem B (Corollary 5.7). 4 Under some technical hypotheses on È,

there is a Perrin-Riou big logarithm map Log :H1
Iw(K∞,p,F

bal
p

(TÈad(g)))−→
Zur
p JΓacK such that

Log(resp(»È,ad0(g),∞))2 = Lp(ad0(gK)¹ È) ·L Katz
p (È)−,º

up to multiplication by an element in Q×
p , where L Katz

p (È)−,º is an anti-

cyclotomic projection of Katz’s p-adic L-function.

TOME 75 (2025), FASCICULE 1
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The proof of this result builds on the explicit reciprocity law of [5] and

a factorization formula for Hsieh’s triple product p-adic L-function (see

Theorem 4.9). This factorization is a p-adic manifestation of the Artin

formalism arising from the decomposition

(1.1) V Èad(g) ≃ V · V
′,

where V ′ = Qp(È
−1)(1 − k/2), and may be seen as an anticyclotomic

analogue of Dasgupta’s factorization [9]. However, the proof in our case

is largely simplified by the fact that the p-adic L-functions involved have

overlapping ranges of p-adic interpolation.

The technical hypotheses on È are used to ensure that the congruence

ideal of a Hida family attached to È is generated by a second anticyclotomic

projection of Katz’s p-adic L-function, which in turn interpolates the ratio

between two different types of periods.

1.3. Applications

Using Kolyvagin’s methods, as developed by Jetchev–Nekovář–Skinner

[23] in the split anticyclotomic setting, we can deduce bounds on Selmer

groups from the non-triviality of our Euler system. Our main result in this

direction is the proof of new cases of the Bloch–Kato conjecture [7] in rank

zero.

For the statement, we denote by εℓ the epsilon factor attached to the

Weil–Deligne representation associated with the restriction of IndQ
K(V Èad(g))

to GQℓ
. It is then known that the sign ε(V Èad(g)) in the functional equation

for L(V Èad(g), s) is given by

ε
(
V Èad(g)

)
=

∏

ℓ⩽∞

εℓ,

where ε∞ = +1 if k ⩾ 2l and −1 if 2 ⩽ k < 2l. On the other hand,

here we say that V has “big image” if it safisfies the explicit conditions in

Proposition 6.3.

Theorem C (Theorem 7.4). 4 In addition to the above hypotheses,

assume that:

(1) εℓ = +1 for all primes ℓ | NgNÈ,

(2) gcd(Ng, NÈ) is squarefree,

(3) g is non-Eisenstein mod p,

(4) V has big image,

(5) L(¹È, k/2) ̸= 0.

ANNALES DE L’INSTITUT FOURIER
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If k ⩾ 2l then the following implication holds:

L(V, 0) ̸= 0 =⇒ Sel(K,V ) = 0,

where Sel(K,V ) is the Bloch–Kato Selmer group.

Note that the hypotheses in Theorem C imply that L(V, s) has sign +1

in its functional equation, and so the nonvanishing of L(V, 0) is expected

to hold generically.

We can also deduce applications to the Iwasawa main conjecture for V .

More precisely, under certain hypotheses, Greenberg’s general formulation

of the Iwasawa main conjecture for motives [16] leads to the prediction

that the unbalanced Selmer group Selunb(K∞, A) defined in Section 2,

where A = V/T , is Λac-cotorsion, with characteristic ideal generated by

Lp(ad0(gK) ¹ È). In the direction of this conjecture we can prove the fol-

lowing, where we let Zur
p denote the completion of the ring of integers of

the maximal unramified extension of Qp.

Theorem D (Theorem 7.6). 4 In addition to the above hypotheses,

assume that:

(1) εℓ = +1 for all primes ℓ | NgNÈ,

(2) gcd(Ng, NÈ) is squarefree,

(3) g is non-Eisenstein mod p,

(4) V has big image,

(5) ¹È has global root number ε(¹È) = +1.

If the p-adic L-function Lp(ad0(gK) ¹ È) is nonzero, then the Pontryagin

dual of Selunb(K∞, A) is Λac-torsion, with

CharΛac

(
Selunb(K∞, A)(

)
£

(
Lp(ad0(gK)¹ È) ·L Katz

p (È)−,º
)

in Zur
p

⊗̂
Zp

Λac[1/p].

Note that the presence of L Katz
p (È)−,º in the divisibility of Theorem D

is analogous to the appearance of the Kubota–Leopoldt p-adic L-function

in the divisibility towards the Iwasawa main conjecture for the Galois rep-

resentation attached to the symmetric square of a modular form in [27,

Theorem B].

In fact, the present work originated from an attempt to develop anticy-

clotomic analogues of the results in [27]. In particular, the idea of modifying

the diagonal Euler system classes of [2] to obtain the correct norm relations

(see Section 5.1) was adopted from their work.

TOME 75 (2025), FASCICULE 1
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1.4. Outline of the paper

We begin by introducing in Section 2 our set-up and Galois representa-

tion of interest, and various Selmer groups associated with it. In Section 3

we describe in detail the construction of the diagonal cycle class giving

rise to the bottom class of our Euler system, and study its behaviour ac-

cording to a certain sign (given by ε(¹È) in the notations of Theorem D).

The results of this section, which are developed in a slightly more general

setting than the rest of the paper, are unnecessary for the proof of our

main results, but they are included here for completeness (in particular,

Proposition 3.2 might be of independent interest). In Section 4 we intro-

duce the different p-adic L-functions that appear in our picture, including

an analogue of the Hida–Schmidt p-adic L-function deduced from the work

of Eischen et. al. on p-adic L-functions for unitary groups, and prove the

aforementioned analogue of Dasgupta’s factorization. Finally, in Section 5

we give the construction of our Euler system by suitably modifying the

diagonal cycle Euler system classes constructed in our previous work [2],

and in Section 6 and Section 7 we apply this to deduce the arithmetic

applications highlighted in the Introduction.
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Eischen and Xin Wan for correspondence regarding the subject of this note,

and to Shilin Lai and Sam Mundy for several helpful conversations. Finally,

we thank the anonymous referees for a careful reading of the text, whose
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2. Galois representations and Selmer groups

In this section we introduce our Galois representations of interest and

the Selmer groups associated with them that we shall be studying.

2.1. Galois representations

Let g =
∑∞
n=1 an(g)qn ∈ Sl(Ng, Çg) be an newform of weight l ⩾ 2, level

Ng, and nebentypus Çg. Let p > 2 be a prime and let E = LP be a finite

ANNALES DE L’INSTITUT FOURIER
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extension of Qp with ring of integers O arising as the completion of the

Hecke field L of g at a prime P of L above p. By work of Eichler–Shimura

and Deligne, there is a two-dimensional representation

Äg : GQ −→ GLE(Vg) ≃ GL2(E)

unramified outside pNg and characterized by the property

trace Äg(Frq) = aq(g)

for all primes q ∤ pNg, where Frq denotes an arithmetic Frobenius element

at q. Let Y1(Ng) be the open modular curve over Q parameterizing pairs

(A,P ) consisting of an elliptic curve A and a point P ∈ A of order Ng. Let

Ll−2 be the sheaf introduced in [5, Section 2.3]. As in [2], we shall work

with the geometric realization of Vg arising as the maximal quotient of

H1
et(Y1(Ng)Q,Ll−2(1))¹Zp

E

on which the dual Hecke operators T ′
q and ïdð′ act as multiplication by

aq(g) and Çg(d) for all primes q ∤ Ng and all d ∈ (Z/NgZ)×. We also let

Tg ¢ Vg be the O-lattice defined by the natural image of

H1
et(Y1(Ng)Q,Ll−2(1))¹Zp

O

under the quotient map H1
et(Y1(Ng)Q,Ll−2(1))¹Zp

E ↠ Vg.

Throughout the following, we shall assume that g is not of CM-type.

2.2. The adjoint representation

Let K be an imaginary quadratic field of discriminant −DK < 0. Let È

be a Hecke character of K of infinity type (1− k, 0) for some even integer

k ⩾ 2 and central character equal to εK , the quadratic character attached

to K/Q (thus the associated theta series ¹È has trivial nebentypus). We

assume that È has conductor c ¢ OK prime to p and, upon enlarging O if

necessary, that its p-adic avatar ÈP takes values in O.

Definition 2.1. 4 Let V be the E-valued GK-representation given by

V := ad0(Vg)(È
−1
P )(1− k/2),

where ad0(Vg) ¢ EndE(Vg) denotes the adjoint representation on the trace-

zero endomorphisms of Vg.

TOME 75 (2025), FASCICULE 1
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Let g∗ = g ¹ Ç−1
g be the twist of g by the inverse of its nebentypus. We

shall study the arithmetic of V by exploiting the decomposition

(2.1) V Èad(g) := Vg ¹ Vg∗(È−1
P )(1− c) ≃ V · V ′,

where c = (k + 2l − 2)/2 and V ′ = E(È−1
P )(1− k/2).

2.3. Selmer groups

From now on, we assume that p is a prime of good ordinary reduction

for g such that

(2.2) (p) = pp splits in K,

with p the prime of K above p determined by our fixed embedding ºp :

Q ↪→ Qp.

By p-ordinarity, the Galois representation Vg is equipped with a GQp
-

stable filtration

0 −→ V +
g −→ Vg −→ V −

g −→ 0

with V ±
g one-dimensional and the GQp

-action on V −
g given by the unram-

ified character sending an arithmetic Frobenius Frp to ³g, the p-adic unit

root of x2−ap(g)x+Çg(p)p
l−1. Of course, twisting these by Ç−1

g we obtain

V ±
g∗ = V ±

g ¹ Ç−1
g .

Let F/K be any finite extension and, for v | p any prime of F above p,

define

(2.3) F
bal
v (V Èad(g)) :=





(V +
g ¹ Vg∗ + Vg ¹ V +

g∗)(È−1
P )(1− c) if v | p,

V +
g ¹ V +

g∗(È−1
P )(1− c) if v | p,

and

(2.4) F
unb
v (V Èad(g)) :=




V Èad(g) if v | p,

{0} if v | p,

and, for ? ∈ {bal,unb}, put F ?
v (V ) = F ?

v (V Èad(g)) ∩ V and F ?
v (V ′) =

F ?
v (V Èad(g)) ∩ V ′.

Fix Σ any finite set of places of K containing∞ and the primes dividing

pNgNÈ. With a slight abuse of notation, for any finite extension F/K we

also denote by Σ the set of places of F lying over the places in Σ, and

denote by GF,Σ the Galois group of the maximal extension of F unramified

outside Σ. Further, for any non-archimedean field Fv, we write F nr
v for the

maximal unramified extension of Fv.

ANNALES DE L’INSTITUT FOURIER
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Definition 2.2. 4 Let F/K be a finite extension, and for

M ∈{V Èad(g),V ,V
′} and ?∈{bal,unb} define the Selmer group Sel?(F,M) by

Sel?(F,M) = ker


H1(GF,Σ,M)−→

∏

v|p

H1(Fv,M)

H1
? (Fv,M)

×
∏

v∈Σ,v∤p∞

H1(F nr
v ,M)


,

where

H1
? (Fv,M) = im(H1(Fv,F

?
v (M)) −→ H1(Fv,M)).

We call Selbal(F,M) (resp. Selunb(F,M)) the balanced (resp. unbalanced)

Selmer group.

Remark 2.3. — Let f = ¹È be the weight k eigenform associated with È,

and denote by Vfgg∗ := Vf ¹Vg ¹Vg∗(1− c) the Kummer self-dual twist of

the Galois representation attached to (f, g, g∗). Since Vf = IndQ
K È

−1
P , one

can easily check that the isomorphism given by Shapiro’s lemma

H1(Q, Vfgg∗) ≃ H1(K,V Èad(g))

identifies the Selmer groups Selbal(Q, Vfgg∗) and Self (Q, Vfgg∗) considered

in [2, Definition 7.5] with the above Selbal(K,V
È

ad(g)) and Selunb(K,V Èad(g)),

respectively.

Put TÈad(g) = Tg¹Tg∗(È−1
P )(1−c). Then the decomposition (2.1) induces

a decomposition

TÈad(g) ≃ T · T
′,

where T and T ′ are lattices in V and V ′, respectively. We also set

AÈad(g) = V Èad(g)/T
È
ad(g), A = V/T, A′ = V ′/T ′.

Then, for ? ∈ {bal,unb} and M ∈ {TÈad(g), T, T
′, AÈad(g), A,A

′}, we de-

fine the local conditions H1
? (Fv,M) from the local conditions above by

propagation, and use them to define the Selmer groups Sel?(K,M) using

the same recipe as in Definition 2.2. Finally, for M1 ∈ {TÈad(g), T, T
′} and

M2 ∈ {AÈad(g), A,A
′}, we put

Sel?(K∞,M1) := lim←−
n

Sel?(Kn,M1), Sel?(K∞,M2) := lim−→
n

Sel?(Kn,M2),

where the limits are with respect to corestriction and restriction, respec-

tively.

To help orient the reader, we note the following simple relation between

the different Selmer groups introduced above.

TOME 75 (2025), FASCICULE 1
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Proposition 2.4. 4 The decomposition V Èad(g) = V · V ′ induces iso-

morphisms

Selbal(K∞, T
È
ad(g)) ≃ Selbal(K∞, T )· Sel(K∞, T

′),

Selunb(K∞, T
È
ad(g)) ≃ Selunb(K∞, T )· Sel(K∞, T

′),

where Sel(K∞, T
′) is the Bloch–Kato Selmer group for T ′.

Proof. — It suffices to show that for any finite extension F/K we have

Selbal(F, V
′) ≃ Selunb(F, V ′) ≃ Sel(F, V ′),

where Sel(F, V ′) is the Bloch–Kato Selmer group of V ′ = E(È−1
P ), which

is given by

Sel(F, V ′) = ker


H1(GF,Σ, V

′)−→
∏

v|p

H1(Fv, V
′)×

∏

v∈Σ,v∤p

H1(F nr
v , V

′)




(see [1, Section 1.1] or [3, Section 1.2]). For Selunb(F, V ′) this is clear

from (2.4); for Selbal(F, V
′) it follows by noting that the subspace

F bal
v (V Èad(g)) ¢ V Èad(g) in (2.3) contains V ′ for v | p and intersects triv-

ially with it for v | p. □

3. Construction of the bottom class

In this section, we recall the construction of a Λ-adic cohomology class

associated with the triple product of three modular forms as explained

in [5]. We follow the exposition in [5] with slight modifications and special-

izing the discussion to the case of interest in this paper. At the end of this

section we analyze the behaviour of this cohomology class depending on

the sign of one of the modular forms.

This section is independent of the rest of the paper, and the reader solely

interested in the results stated in the Introduction can proceed to Section 4.

Let f and g be newforms of weight k = r1 + 2 and l = r2 + 2, level

Nf and Ng and character Çf = 1 and Çg, respectively. We assume that

p ∤ 2NfNg and that both f and g are ordinary at p. We denote by h = g∗

the newform obtained by conjugating the Fourier coefficients of g. Let L

be a finite extension of Q containing the Fourier coefficients of f and g and

let E = LP be its completion at a prime P above p, with ring of integers

O. Define N = lcm(Nf , Ng).

Consider the Iwasawa algebra Λ = ZpJ1 + pZpK. There exist finite flat

Λ-modules Λf and Λg and primitive Hida families f ∈ Λf JqK and g ∈

ANNALES DE L’INSTITUT FOURIER
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ΛgJqK passing through the ordinary p-stabilizations f³ and g³ of f and g,

respectively. Let h = g∗ be the Hida family g¹Ç−1
g , which passes through

the ordinary p-stabilization g∗³ of g∗. Our conventions for Hida families are

those described in [2, Section 5.1].

Let µp−1 denote the group of roots of unity in Z×
p and consider the

decomposition Z×
p
∼= µp−1 × (1 + pZp). Let É : Z×

p → µp−1 ¢ Z×
p be the

map defined by projection onto the first factor, according to the previous

decomposition. Also, for an element z ∈ Z×
p , we denote by ïzð its projection

onto the second factor (alternatively, ïzð = z/É(z)).

Let Cont(Zp,Λ) be the Λ-module of continuous functions on Zp with

values in Λ. To make notation less cumbersome, we denote by [z] the group-

like element [ïzð] in Λ. For each integer i, let »i : Z×
p → Λ× be the character

defined by z 7→ Éi(z)[z]. We also define the sets T = Z×
p × Zp and T

′ =

pZp × Z×
p . Then, we can define the Λ-modules

Ai =

{
f : T→ Λ

∣∣∣∣
f(1, z) ∈ Cont(Zp,Λ) and f(a · t) = »i(a) · f(t)

for all a ∈ Z×
p , t ∈ T

}
,

A′
i =

{
f : T

′ → Λ

∣∣∣∣
f(pz, 1) ∈ Cont(Zp,Λ) and f(a · t) = »i(a) · f(t)

for all a ∈ Z×
p , µ ∈ T

′

}
,

Di = Homcont,Λ(Ai,Λ), D′
i = Homcont,Λ(A′

i,Λ).

We define in addition characters »∗f , »
∗
g, »

∗
g∗ , »∗ : Z×

p → Λ ¹̂ Λ ¹̂ Λ by

»∗f (z) = Ér2−r1/2(z)[z]−1/2 ¹ [z]1/2 ¹ [z]1/2

»∗g(z) = Ér1/2(z)[z]1/2 ¹ [z]−1/2 ¹ [z]1/2

»∗h(z) = Ér1/2(z)[z]1/2 ¹ [z]1/2 ¹ [z]−1/2

»∗(z) = Ér1/2+r2(z)[z]1/2 ¹ [z]1/2 ¹ [z]1/2.

We denote by κ
∗ the character of the Galois group GQ defined by κ

∗ =

»∗ ◦ ϵcyc, and similarly for the other characters introduced above.

Let Y = Y1(N, p) denote the same modular curve as in [5, Section 8.1]

and let Γ = Γ1(N, p) be the corresponding modular group. The function

Det : T
′ × T× T −→ Λ ¹̂ Λ ¹̂ Λ,

defined as in [5], yields an element in the group

H0
et(Y,A

′
r1
¹Ar2

¹Ar2
(−»∗)).

Here A
′
r1

and Ar2
denote the étale sheaves associated with A′

r1
and Ar2

,

respectively, as explained in [5, Section 4.2]. Then, with essentially the same
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notations as in [5, Section 8.1], we define the class

»(1) =
1

ap(f)
sfgh ◦ (eord ¹ eord ¹ eord) ◦ (wp ¹ 1¹ 1) ◦ K ◦ HS ◦ d∗(Det)

inside the group

H1
(
Q, H1(Γ,D′

r1
)ord ¹̂H1(Γ,D′

r2
)ord ¹̂H1(Γ,D′

r2
)ord(2− κ

∗)
)
.

For a Zp-algebra A, let Lr2
(A) be defined as in [5, p. 17]. We will

sometimes denote Lr2
(Zp) simply by Lr2

. Let »
1/2
f : Z×

p → Λ×
f denote

the map z 7→ Ér1/2(z)[z]1/2 and let κ
1/2
f = »

1/2
f ◦ ϵcyc. According to [5,

Equation (90)], the Λ-module H1(Γ,D′
r2

)ord specializes to H1(Γ, Lr2
)ord at

weight l = r2 + 2. Therefore, the class »(1) yields a class

»(2) ∈ H1
(
Q, H1(Γ,D′

r1
)ord¹H1(Γ, Lr2

)ord¹H1(Γ, Lr2
)ord(2−r2−κ

1/2
f )

)
.

We define Hecke operators T ′
q, [d]′N acting on group cohomology as in [2,

Section 5.3]. Let Vf (N) be the maximal quotient of H1(Γ,D′
r1

)ord(1)¹Λ Λf

on which the Hecke operators T ′
q for primes q ∤ N act as multiplication

by aq(f) and the diamond operators [d]′N act as multiplication by Çf (d)

(actually, the character Çf is trivial in our case). We define Tg(N) and

Tg∗(N) in a similar way as quotients of H1(Γ, Lr2
(O))ord(1). Also, let Vf be

the maximal quotient of H1(Γ1(Nf , p),D′
r1

)ord(1)¹ΛΛf on which the Hecke

operators T ′
q act as multiplication by aq(f) and the diamond operators [d]′N

act as multiplication by Çf (d) and define Tg and Tg∗ in a similar way as

quotients of H1(Γ1(Ng, p), Lr2
(O))ord(1).

To shorten notation, we define

V(f , g, g∗) = Vf ¹ Tg ¹ Tg∗(−1− r2 − κ
1/2
f ),

V(f , g, g∗)(N) = Vf (N)¹ Tg(N)¹ Tg∗(N)(−1− r2 − κ
1/2
f ),

V(f , g, g∗)f = V−
f ¹ T+

g ¹ T+
g∗(−1− r2 − κ

1/2
f ),

V(f , g, g∗)f (N) = V−
f (N)¹ T+

g (N)¹ T+
g∗(N)(−1− r2 − κ

1/2
f ).

We also introduce

M(f , g, g∗)f = V−
f ¹̂ T+

g ¹̂ T+
g∗(−2− 2r2) ¹̂ Λ(κ−1)[1/p],

M(f , g, g∗)f (N) = V−
f (N) ¹̂ T+

g (N) ¹̂ T+
g∗(N)(−2− 2r2) ¹̂ Λ(κ−1)[1/p],

where κ : GQ → Λ× is defined by κ(Ã) = Ér1/2−r2−1(ϵcyc(Ã))[ϵcyc(Ã)].

The class »(2) yields a class

»(2)(f , g, g∗) ∈ H1 (Q,V(f , g, g∗)(N)) .
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This is the class defined in [5, Equation 155] specialized to weight l in

the second and third factors. It follows from [5, Corollary 8.2] that the

restriction at p of this class belongs to the group

H1
bal (Qp,V(f , g, g∗)(N)) .

Let Sord
Λf

(N,Ér1) denote the space of Hida families of tame level N , char-

acter Ér1 and with coefficients in Λf . We denote by Sord
Λf

(N,Ér1)[f ] the

subspace of Sord
Λf

(N,Ér1) on which the Hecke operators Up and Tℓ for ℓ ∤ N

act with the same eigenvalues as on f . Let Sl(Γ1(N, p), Çg)[g³] denote the

space of modular forms of weight l, level Γ1(N, p) and nebentypus Çg which

are eigenforms for the Hecke operators Up and Tℓ for ℓ ∤ N with the same

eigenvalues as g³. We similarly define Sl(Γ1(N, p), Ç−1
g )[g∗³]. Then, a choice

of level-N test vectors f̆ , ğ and h̆ for f , g³ and g∗³, respectively, is a choice

of elements

f̆ ∈ Sord
Λ (N,Ér1)[f ], ğ ∈ Sl(Γ1(N, p), Çg)[g³], h̆ ∈ Sl(Γ1(N, p), Ç−1

g )[g∗³],

each of which can be written, in terms of their q-expansions, as

f̆(q) =
∑

0<d|N/Nf

rf̆
d · f(qd),

ğ(q) =
∑

0<d|N/Ng

rğd · g³(qd),

h̆(q) =
∑

0<d|N/Ng

rh̆d · g∗³(qd),

with rf̆
d ∈ Λf and rğd, r

h̆
d ∈ O. Let

ϖ∗
f̆

: Sord
Λf

(Nf , É
r1) −→ Sord

Λf
(N,Ér1)

denote the map defined by

Φ(q) 7−→
∑

0<d|N/Nf

rf̆
d · Φ(qd).

Similarly, we define

ϖ∗
ğ : Sl(Γ1(Ng, p), Çg) −→ Sl(Γ1(N, p), Çg),

ϖ∗
h̆

: Sl(Γ1(Ng, p), Ç
−1
g ) −→ Sl(Γ1(N, p), Ç−1

g ).

Therefore, we can write f̆ = ϖ∗
f̆
(f), ğ = ϖ∗

ğ(g³) and h̆ = ϖ∗
h̆
(g∗³). At

the same time, for each d | N/Nf , the map vd : Y1(N, p) → Y1(Nf , p),

corresponding to multiplication by d on the complex upper half-plane under

the standard complex uniformizations, yields a pushforward map

vd∗ : H1(Γ1(N, p),D′
r1

) −→ H1(Γ1(Nf , p),D′
r1

)
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which induces a map

vd∗ : Vf (N) −→ Vf .

Let ϖ
f̆∗ =

∑
0<d|N/Nf

rf̆
dvd∗. Let ¸

f̆
and ¸f denote the differentials attached

to f̆ and f , respectively, in [5, Equation (122)]. Then,

ïx, ¸
f̆
ð = ïϖ

f̆∗(x), ¸f ð for all x ∈ V−
f (N).

Similarly, we can define maps

ϖğ∗, ϖh̆∗ : H1(Γ1(N, p), Lr2
) −→ H1(Γ(Ng, p), Lr2

),

which induce maps

ϖğ∗ : Tg(N) −→ Tg, ϖh̆∗ : Tg∗(N) −→ Tg∗ .

Let Éğ, Ég³
, Éh̆ and Ég∗

³
denote the differentials attached to ğ, g³, h̆ and

g∗³, respectively, in [5, Equation (30)]. Then,

ïx, Éğð = ïϖğ∗(x), Ég³
ð for all x ∈ T+

g (N),

ïx, Éh̆ð = ïϖğ∗(x), Ég∗

³
ð for all x ∈ T+

g∗(N)

For a choice of level-N test vectors f̆ = ϖ∗
f̆
(f), ğ = ϖ∗

ğ(g³), h̆ = ϖ∗
h̆
(g∗³),

we have a map

Log(f̆ , ğ, h̆) : H1
bal (Qp,V(f , g, g∗)(N)) −→ Λf [1/p]

obtained from the map defined in [5, Proposition 7.3] by specializing to

weight l the second and third variables. It follows from [5, Theorem A]

that the image of resp(»
(2)(f , g, h)) under the map above is an element

Lp(f̆ , ğ, h̆) ∈ Λf [1/p] such that, for all k′ ⩾ 2l satisfying

k′ ≡ k (mod 2(p− 1)),

Lp(f̆ , ğ, h̆)(k′) =
ïf̆wk′ , ¶tğ × h̆ðNp
ïf̆wk′ , f̆wk′ðNp

.

Let L
f̆ ğh̆ be the map defined in [5, Proposition 7.1] specialized to weight

l in the second and third variables. Then, we obtain a map

ïL
f̆ ğh̆(−), ¸

f̆
ÉğÉh̆ð : H1 (Qp,M(f , g, g∗)f (N)) −→ Λf ¹̂ Λ[1/p].

The map Log(f̆ , ğ, h̆) is obtained by composing the natural projection

H1
bal (Qp,V(f , g, g∗)(N)) −→ H1 (Qp,V(f , g, g∗)f (N))

with a suitable specialization of the map above.

Now, from the previous discussion, we have that

ïL
f̆ ğh̆(−), ¸

f̆
ÉğÉh̆ð = ïLfg³g∗

³
((ϖ

f̆ ,∗ ¹ϖğ,∗ ¹ϖh̆,∗)(−)), ¸fÉg³
Ég∗

³
ð,
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where the map Lfg³g∗

³
is defined in a way analogous to the way in which

the map L
f̆ ğh̆ is defined in [5, Proposition 7.1]. Therefore, as before, the

composition of the natural projection

H1
bal (Qp,V(f , g, g∗)) −→ H1 (Qp,V(f , g, g∗)f )

with a suitable specialization of the map
〈
Lfg³g∗

³
(−), ¸fÉg³

Ég∗

³

〉
: H1 (Qp,M(f , g, g∗)f ) −→ Λf ¹̂ Λ[1/p]

yields a map

Log(f , g³, g
∗
³) : H1

bal (Qp,V(f , g, g∗)) −→ Λf [1/p].

Moreover, for any choice of test vectors f̆ , ğ, h̆ as above, we have

Log(f , g³, g
∗
³)

(
resp

(
(ϖ

f̆ ,∗ ¹ϖğ,∗ ¹ϖh̆,∗)(»(2)(f , g, g∗))
))

= Lp(f̆ , ğ, h̆).

It follows from [22, Sections 3.5-6 and Theorem 7.1] that there exist

level-N test vectors f̆ , ğ, h̆ for which, under some technical assumptions, we

have a precise formula for the specializations of Lp(f̆ , ğ, h̆) at even weights

k′ ⩾ 2l. We fix such test vectors. Then, we define

»(3) = (ϖ
f̆ ,∗ ¹ϖğ,∗ ¹ϖh̆,∗)»(2)

in the group

H1
(
Q, H1(Γ1(Nf , p),D′

r1
)ord ¹̂H1(Γ1(Ng, p), Lr2

)ord

¹̂H1(Γ1(Ng, p), Lr2
)ord(2− r2 − κ

1/2
f )

)

and let

»(3)(f , g, g∗) ∈ H1
(
Q,Vf (−κ

1/2
f ) ¹̂ ad(Tg)

)

be the class obtained from »(3) by projection to the isotypic quotients for

f , g and g∗. Then

Log(f , g³, g
∗
³)

(
resp

(
»(3)(f , g, g∗)

))
= Lp(f̆ , ğ, h̆).

Observe that the map

wNg
: H1(Γ1(Ng, p), Lr2

(O))ord → H1(Γ1(Ng, p), Lr2
(O))ord

defined in [5, Section 4.1.2] descends to a map wNg
: Tg → Tg∗ . Taking the

Galois action into account, this is actually a map Tg → Tg∗(Çg). Similarly,

we have a map wNg
: Tg∗ → Tg(Ç

−1
g ). (We are denoting all these maps in

the same way in the hope that this will not cause any confusion.)

Let s : Tg ¹ Tg∗ → Tg∗ ¹ Tg be the map which interchanges the two

factors. Then, the composition s̃ = (−Ng)−r2 s ◦ (wNg
, wNg

) defines an

TOME 75 (2025), FASCICULE 1



306 Raúl ALONSO, Francesc CASTELLA & Óscar RIVERO

endomorphism of ad(Tg) = Tg ¹ Tg∗(−1 − r2). This endomorphism is in

fact an involution.

Lemma 3.1. 4 Consider the direct sum decomposition

ad(Tg) = ad0(Tg)· 1.

Then:

(1) ad0(Tg) is the 1-eigenspace for s̃;

(2) 1 is the −1-eigenspace for s̃.

Proof. — As in [5, p. 19], there is a bilinear form Lr2
(O)¹Lr2

(O)→ O¹
det−r2 . Via cup-product and the isomorphism H2

par(Γ1(Ng, p),O) ≃ O(1),

we obtain a pairing

H1
par(Γ1(Ng, p), Lr2

(O))ord ×H1
par(Γ1(Ng, p), Lr2

(O))ord −→ O(r2 + 1),

where H1
par stands for parabolic cohomology as defined in [17, p. 427]. Since

cup-product is anti-commutative in degree 1, the pairing above satisfies

ï³, ´ð = (−1)r2+1ï´, ³ð for any ³, ´ in H1
par(Γ1(Ng, p), Lr2

(O))ord. On the

other hand, the operator wNg
acting on H1

par(Γ1(Ng, p), Lr2
(O))ord satisfies

w2
Ng

= (−Ng)r2 and ïwNg
³,wNg

´ð = Nr2

g ï³, ´ð for any elements ³, ´ ∈
H1

par(Γ1(Ng, p), Lr2
(O))ord. Therefore we have

ï³,wNg
´ð =

1

Nr2

g
ïwNg

³,w2
Ng
´ð = (−1)r2ïwNg

³, ´ð = −ï´,wNg
³ð.

In particular, we deduce that ï³,wNg
³ð = 0.

We can realize Tg (resp. Tg∗) as the maximal quotient of

H1
par(Γ1(Ng, p), Lr2

(O))ord

on which the Hecke operators T ′
q act as multiplication by aq(g) (resp.

aq(g
∗)) and the diamond operators [d]′Ng

act as multiplication by Çg(d)

(resp. Çg(d)−1). Thus we obtain a commutative diagram

H1
par(Γ1(Ng, p), Lr2

(O))ord ×H1
par(Γ1(Ng, p), Lr2

(O))ord O(r2 + 1)

Tg × Tg∗ O(r2 + 1).

Therefore, for any elements ³, ´ ∈ Tg, we have ï³,wNg
´ð = −ï´,wNg

³ð.
The lemma follows easily from this. □

We will assume in the remaining of this section that Ng | Nf , so that

N = Nf . Under this assumption, our test vectors are f̆ = f , ğ(q) = Ã∗1(g³)

and h̆ = Ã∗2(g∗³), up to multiplication by some constants in Frac Λf which

do not affect the discussion that follows.
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Let sNg
denote the operator which acts on the group

H1
(
Q, H1(Γ,D′

r1
)ord ¹̂H1(Γ1(Ng, p), Lr2

)ord

¹̂H1(Γ1(Ng, p), Lr2
)ord(2− r2 − κ

1/2
f )

)

by interchanging the second and third factors and define

s̃Ng
= (−Ng)−r2sNg

◦ (1¹ wNg
¹ wNg

).

Proposition 3.2. 4 The class »(3)(f , g, g∗) satisfies

s̃Ng

(
»(3)(f , g, g∗)

)
= −[N ]−1/2(wN ¹ 1¹ 1)»(3)(f , g, g∗).

In particular, when we consider the direct sum decomposition

H1
(
Q,Vf (−κ

1/2
f ) ¹̂ ad(Tg)

)

= H1
(
Q,Vf (−κ

1/2
f ) ¹̂ ad0(Tg)

)
·H1

(
Q,Vf (−κ

1/2
f )

)
,

the class »(3)(f , g, g∗) lies in the summand

(1) H1(Q,Vf (−κ
1/2
f ) ¹̂ ad0(Tg)), if ε(f) = 1;

(2) H1(Q,Vf (−κ
1/2
f )), if ε(f) = −1.

Proof. — We have the following commutative diagram

H0
et(Y ,A

′
r1
¹Ar2

¹Ar2
(−»∗)) H4

et(Y
3,A′

r1
⊠Ar2

⊠Ar2
(−»∗)¹Zp(2))

H0
et(Y ,A

′
r1
¹Ar2

¹Ar2
(−»∗)) H4

et(Y
3,A′

r1
⊠Ar2

⊠Ar2
(−»∗)¹Zp(2)),

d∗

wN (wN ,wN ,wN )

d∗

where wN stands here for the operator defined in [5, Section 2.3.1] and

(wN , wN , wN ) is defined in a similar way for the cohomology of Y 3. It

follows from the definition of Det that wN (Det) = Det. Since wpwN =

[p]NwNwp and sfgh ◦ ([p]NwN ¹wN ¹wN ) = [p]′N (wN ¹wN ¹wN ) ◦ sfgh,

it follows that

(wN ¹ wN ¹ wN )»(1) = »∗fgh(N)([p]N ¹ 1¹ 1)»(1).

Since (w2
N ¹ 1¹ 1) acts as multiplication by [−N ]¹ 1¹ 1, we deduce that

(1¹ wN ¹ wN )»(1) = »∗f (N)([p]′NwN ¹ 1¹ 1)»(1)

and therefore that

N−r2(1¹ wN ¹ wN )»(2) = »
−1/2
f (N)([p]′NwN ¹ 1¹ 1)»(2).

Let sN denote the operator which acts on the group

H1
(
Q, H1(Γ,D′

r1
)ord ¹̂H1(Γ, Lr2

)ord ¹̂H1(Γ, Lr2
)ord(2− r2 − κ

1/2
f )

)
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by interchanging the second and third factors. Then, we have that

sN ◦ (1¹ wN ¹ wN ) = (1¹ wN ¹ wN ) ◦ sN ,

and, taking into account the definition of Det and the fact that the Kün-

neth isomorphism

H3
et(Y

3
Q
,A′

r1
⊠ Ar2

⊠ Ar2
) ∼= H1

et(YQ,A
′
r1

)¹H1
et(YQ,Ar2

)¹H1
et(YQ,Ar2

)

is given by cup-product, which is anti-commutative in degree 1 (cf. the proof

of [27, Proposition 4.1.2]), we deduce that sN (»(2)) = (−1)r1/2+r2+1»(2).

Define s̃N = (−N)−r2sN ◦ (1¹ wN ¹ wN ). Then, we have that

s̃N (»(2)) = (−1)r1/2+1»
−1/2
f (N)([p]′NwN ¹ 1¹ 1)»(2).

Since (1¹ Ã1∗ ¹ Ã2∗) ◦ s̃N = s̃Ng
◦ (1¹ Ã1∗ ¹ Ã2∗), it follows that

s̃Ng
(»(3)) = −[N ]−1/2([p]′NwN ¹ 1¹ 1)»(3)

and therefore that

s̃Ng

(
»(3)(f , g, g∗)

)
= −[N ]−1/2(wN ¹ 1¹ 1)»(3)(f , g, g∗).

Finally, it follows from [21, Proposition 2.3.6] that −[N ]−1/2wN acts on Vf

as multiplication by ε(f), so the last part of the proposition follows from

the previous lemma. □

Remark 3.3. — From the definition of the map

Log(f , g³, g
∗
³) : H1

bal (Qp,V(f , g, g∗)) −→ Λf [1/p],

one can see that it factors through the cohomology of V(f , g, g∗)f , and

therefore that it factors through

H1
bal (Qp,V(f , g, g∗)) −→ H1

(
Qp,Vf (−κ

1/2
f )¹ ad0(Tg)

)

−→ H1 (Qp,V(f , g, g∗)f ) .

Therefore, without the need to appeal to the reciprocity law, it follows from

Proposition 3.2 that when ε(f) = −1 we have

Log(f , g³, g
∗
³)resp(»

(3)(f , g, g∗)) = 0.

Of course, this can also be seen from the reciprocity law: Since ε(f) = −1

forces the vanishing of L(fk′ , k′/2) for all k′ ≡ k (mod 2(p − 1)), and this

is a factor of L(fk′ ¹ g ¹ g∗, c′), it follows form the interpolation formula

that Lp(f̆ , ğ, h̆) is identically zero.
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Remark 3.4. — As noted above, the discussion in this section is unnec-

essary for the applications that we will discuss. Indeed, as observed in the

previous remark, the reciprocity law factors through

H1
(
Qp,Vf (−κ

1/2
f )¹ ad0(Tg)

)
.

Therefore, the nonvanishing of the triple product p-adic L-function at some

point (necessarily when ε(f) = +1) implies that the image of »(3) in this

group is nontrivial, which is what we will actually need. However, it is

interesting that we can already see from the geometric construction that

the class lies where it is expected.

Remark 3.5. — Let us discuss the sign in a little bit more detail. In order

to construct the p-adic L-function attached to (f, g, g∗), it is required in [22]

that the local signs at finite primes of the arithmetic specializations of the

representation V(f ,g,g∗) = Vf ¹̂Vg ¹̂Vg∗(−1− κ
∗) are all equal to 1. In

particular, in our case, this imposes the condition that εℓ(fk′) = εℓ(fk′ ¹
ad0(g)) for all ℓ | N and for all k′ ≡ k (mod 2(p− 1)). The corresponding

signs at infinity can be computed from the Hodge types {(p, q), (q, p)} as

in [10, Section 5.3]. For the representation Vfk′
¹ ad0(Vg), the Hodge types

are as follows:

(1) {(k′/2 + l − 2,−k′/2− l + 1), (−k′/2− l + 1, k′/2 + l − 2)};
(2) {(k′/2− 1,−k′/2), (−k′/2, k′/2− 1)};
(3) {(k′/2− l,−k′/2 + l − 1), (−k′/2 + l − 1, k′/2− l)}.

After that, and following the results of [10, point 5.3], we get that the

sign ε∞(f ¹ ad0(g)) is (−1)k
′/2 if k′ ⩾ 2l and (−1)1+k′/2 if k′ < 2l. The

sign of ε∞(fk′), however, is always equal to (−1)k
′/2. Therefore, in the

balanced region (i.e. for k′ < 2l), the motives attached to fk′ and fk′¹ad0(g)

have opposite global signs. Since it is in this region that the corresponding

specializations of the class »(3)(f , g, g∗) belong to the Bloch-Kato Selmer

group, we expect the behaviour that was shown in Proposition 3.2.

4. The p-adic L-function

In this section, we keep the assumption that (p) = pp splits in K. In

addition, from now on, for simplicity we assume that p ∤ hK , where hK is

the class number of K.

Let g ∈ Sl(Ng, Çg) be an newform not of CM-type. Let c be an ideal of

OK coprime to p, and fix a Hecke character È0 of infinity type (−1, 0) and
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conductor cpe with e ∈ {0, 1}. We assume that the central character εÈ0
of

È0 is of the form

(H0) εÈ0
= εKÉ

r1 for some even integer r1,

where É is the Teichmüller character.

4.1. Lifting of automorphic representations

Let Ã be the cuspidal automorphic representation of GL2(AQ) attached

to g. The central character of Ã is the adelic character Ég defined by the

condition that for any prime q ∤ Ng and any uniformizer ϖq we have

Ég,p(ϖq) = Çg(q). Since p ∤ Ng, the local component Ãp is a spherical

representation, and it follows from [8, Theorem 4.6.4] and its proof that Ãp
is isomorphic to the principal series Ã(Ç, Ç−1Ég), where Ç is the unramified

character of Q×
p defined by Ç(p) = ³p(g)p(1−l)/2, being ³p(g) the p-unit

root of the p-th Hecke polynomial of g.

Since we are assuming that g is not of CM-type, and in particular it

does not have CM by K, it follows from [14, Proposition 2.3.3] that Ã

admits, adopting the terminology of [14], a base change lifting to a cuspidal

automorphic representation ÃK of GL2(AK). We fix such a lifting. Observe

that if p, p are the places of K above p, then ÃK,p ≃ ÃK,p ≃ Ãp.
From the assumption that g is not of CM-type we deduce that there

is no non-trivial character ¸ of K×\A×
K such that ÃK ≃ ÃK ¹ ¸. Indeed,

the existence of such a character would imply that there exists a quadratic

extension L of K such that, for all prime ℓ, the restriction to GK of the

ℓ-adic Galois representation attached to g is induced from a character of

GL, which is not possible by [28, Theorem 2.1]. Now, it follows from [14,

Theorem 9.3] that ÃK admits an adjoint lifting to a cuspidal automorphic

representation ΠAd0(g) of GL3(AK). Fix such a lifting and define

Π := ΠAd0(g) ¹ È0| · |1/2.

Observe that Πp ≃ Πp ≃ Ã(Ç2É−1
g,p, 1, Ç

−2Ég,p) ¹ È0| · |1/2 and it fol-

lows from the definition of Ç that Ç2É−1
g,p ̸= | · |±1/2 and therefore that

Ã(Ç2É−1
g,p, 1, Ç

−2Ég,p) = IndGL3

B (Ç2É−1
g,p, 1, Ç

−2Ég,p), where B denotes the

Borel subgroup of GL3(Qp).

4.2. Descent to unitary groups

Let U(2, 1) be the quasi-split unitary group corresponding to the qua-

dratic extension K/Q. Let Φ ∈ GL3(K) be the matrix whose entries are
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Φij = (−1)i−1¶i,4−j . Then we can describe U(2, 1) by specifying its functor

of points:

U(2, 1)(R) =
{
g ∈ GL3(R¹Q K) : gΦ tg = Φ

}

for any Q-algebra R.

Let U(3) be the definite unitary group whose functor of points is given by

U(3)(R) =
{
g ∈ GL3(R¹Q K) : g tg = I3

}
.

Given a representation Ä of GL3(AK), let Ä̃ be the representation defined

on the same space by Ä̃(x) = Ä(tx−1). Then, the representation Π defined

above satisfies Π ≃ Π̃, and so it follows from [29, Theorem 13.3.3] that there

exists a cuspidal automorphic representation Ã′ of U(2, 1)(AQ) whose base

change to K is isomorphic to Π. Fix such a representation Ã′. Observe that

Ã′p ≃ Ã(Ç2É−1
g , 1, Ç−2Ég)¹È0| · |1/2 under the identification U(2, 1)(Qp) =

GL3(Qp). Also, from [28, Proposition 13.2.2], the local representation Ã′∞
is square-integrable, so, applying [28, Proposition 14.6.2], we can transfer

Ã′ to a representation Ã of U(3). The local components of Ã at finite primes

agree with those of Ã′, so in particular we have that Ãp ≃ Ã′p.

Remark 4.1. — Let GU(3) be the definite unitary similitude group whose

functor of points is given by

GU(3)(R) =
{
g ∈ GL3(R¹Q K) : g tg = ¿(g)I3 for some ¿(g) ∈ R×

}
.

As explained in [6, Section 1.8], one can extend Ã to an irreducible auto-

morphic representation of GU(3) by choosing an extension of the central

character of Ã to the center of GU(3).

4.3. p-adic L-functions for unitary groups

A construction of p-adic L-functions for unitary groups is given in [13],

and, in great generality in [11]. Here we deduce from these works the ex-

istence of an anticyclotomic p-adic L-function for the conjugate self-dual

representation V in Section 2.2.

Let O be the ring of integers of a finite extension of Qp containing the

values of È0, and write

Λac = OJΓacK

for the anticyclotomic Iwasawa algebra, where Γac is the Galois group of

the anticyclotomic Zp-extension of K.
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We will need to consider the following CM periods, as they are introduced

in [4]:

• Ω∞ ∈ C× is the complex period attached to K defined in [4, Equa-

tion (2-15)];

• Ωp ∈ C×
p is the p-adic period attached to K defined in [4, Equa-

tion (2-17)].

Theorem 4.2. 4 There exists an element

Lp(ad0(gK)¹ È0) ∈ Frac Λac

such that for all characters À of Γac crystalline at both p and p and cor-

responding to a Hecke character of infinity type (−n, n) with n ≡ r1/2

(mod p− 1) and n ⩾ l − 1, we have

Lp(ad0(gK)¹ È0)(À)

=

(
Ωp
Ω∞

)6n+3

·Ã3n · Γ(n, l) ·Ep(ad0(g), È0À)
2 ·L(ad0(gK)¹È−1

0 À−1Én, 0),

where:

• Γ(n, l) = (n+ l − 1)! · n! · (n− l + 1)!,

• Ep(ad0(g), È0À) = (1 − ³g(È0ÀÉ
−n)(p)

´gp
) · (1 − (È0ÀÉ

−n)(p)
p ) ·

(1− ´g(È0ÀÉ
−n)(p)

³gp
).

Proof. — Let Ã be the irreducible automorphic representation of U(3)

introduced in the previous subsection. Let Σ be the set of places of Q

consisting of p, infinity, the primes dividing DK , and the primes at which

Ã ramifies. On account of Remark 4.1, the main result of [13] yields an

element L Σ
p ∈ Λac[1/p] such that, for all À as in the statement, satisfies

L
Σ
p (À) =

(
ÃΩp
Ω∞

)6n+3

· Ep(À) · E∞(À) · LΣ(Ã̃, À−1Én, 0),

where Ã̃ is the contragredient of Ã, and Ep(À) and E∞(À) are certain modified

Euler factors at p and ∞, respectively. Since Σ contains p, infinity, and all

the ramified primes, we have that

LΣ(Ã̃, À−1Én, 0) = LΣ(ad0(gK)¹ È−1
0 À−1Én, 0).

Since we are assuming that p splits in K, the form of the modified Euler

factor at p can be extracted from [11, Equation (86)]. Up to a nonzero

rational factor independent of À, it is given by

Ep(À) =
Ep(ad0(g), È0À)

2

Lp(ad0(gK)¹ È−1
0 À−1Én, 0)

.

ANNALES DE L’INSTITUT FOURIER



ANTICYCLOTOMIC EULER SYSTEM 313

The form of the modified Euler factor at infinity can be extracted

from [12, Equation (2.3.1)]. This formula, with a = 3, b = 0, Ä = (l, 0,−l),
r = 2n + 2 and s = 0, yields, up to a nonzero rational factor independent

of À,

E∞(À) = (2Ãi)−3n−3 · Γ(n, l).

Finally, the Euler factors at primes ℓ ∈ Σ \ {p,∞} can be p-adically in-

terpolated by certain elements Pℓ ∈ Λac, and, multiplying by their inverses,

we obtain the p-adic L-function in the statement. □

4.4. CM Hida family

Let ΓK be the Galois group of the Z2
p-extension K∞/K and put

Γp = Gal (Kp∞/K) ≃ Zp,

where Kp∞ is the maximal subfield of K∞ unramified outside of p, so that

Kp∞ is the Zp-extension of K inside the ray class field K(p∞). Since we

are assuming that p ∤ hK , viewing 1 + pZp as a subgroup of O×
K,p, the

restriction of the (geometrically normalized) Artin map to K×
p induces an

isomorphism artp : 1 + pZp ≃ Γp. Let µp ∈ Γp be the topological generator

corresponding to 1 + p under this isomorphism and, for the variable S, let

ΨS : ΓK → ZpJSK× be the character given by

ΨS(Ã) = (1 + S)l(Ã),

where l(Ã) ∈ Zp is defined by Ã|Kp∞ = µ
l(Ã)
p . Consider the formal q-

expansion

(4.1) θÈ0
(S)(q) :=

∑

(a,pc)=1

È0(Ãa)Ψ−1
S (Ãa)qN(a) ∈ OJSKJqK,

where Ãa ∈ Gal (K(cp∞)/K) is the Artin symbol of a. Then, for every

k ⩾ 2, the specialization of θÈ0
at S = (1 + p)k−2 − 1 is given by the theta

series

fk =
∑

(a,pc)=1

È0(a)¼k−2(a)qN(a) ∈ Sk(DKN(c)p, É2+r1−k),

where ¼ is the unique (since p ∤ hK) Hecke character of infinity type (−1, 0)

and conductor p whose p-adic avatar factors through Γp. In particular, f2

is the ordinary p-stabilization of ¹È0
.
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Remark 4.3. — If È is a Hecke character of infinity type (1− k, 0) as in

Section 2.2, then È0 := È¼2−k is a Hecke character as above (in particular,

satisfying (H0) with e.g. r1 = k − 2), and so the resulting fk recovers the

p-stabilization of ¹È. From now on we shall always assume that È and È0

are related in this manner, and refer to f = θÈ0
as the CM Hida family

attached to È (or È0).

4.5. A factorization formula

In this section we prove a factorization formula relating the p-adic L-

function attached to V in Theorem 4.2 to anticyclotomic p-adic L-functions

attached to the other two representations in the decomposition (2.1).

PutN = lcm(Ng, NÈ), whereNÈ := DKN(c). In addition to the previous

hypotheses, from now on we shall also assume that:

(a) εℓ(Vfgg∗) = +1 for all primes ℓ | N ,

(b) gcd(Ng, NÈ) is squarefree.

With notations as in Remark 2.3, here εℓ(Vfgg∗) denotes the epsilon-factor

of the Weil–Deligne representation attached to the restriction of Vfgg∗

to GQℓ
.

Note that it follows from (H0) that the Galois representation of the Hida

family f = θÈ0
attached to È is residually irreducible and p-distinguished

(see also [25, Remark 5.1.3]). For the following result, we adopt the defini-

tion of congruence ideal in [22, Section 3.3].

Theorem 4.4. 4 Under the above hypotheses, there exists an element

Lp(ad(gK)¹ È0) ∈ Frac Λac

such that for all characters À of Γac crystalline at both p and p and cor-

responding to a Hecke character of infinity type (−n, n) with n ≡ r1/2

(mod p− 1) and n ⩾ l − 1, we have

Lp(ad(gK)¹ È0)(À)2

= Γ(n, l, l) · Ep(ad(g), È0À)
2

E0(È0À)2 · E1(È0À)2
·
∏

ℓ|N

Äℓ ·
L(ad(gK)¹ È−1

0 À−1Én, 0)

(2Ãi)4n+4 · ï¹È0Àn
, ¹È0Àn

ð2 ,

where:

• Γ(n, l, l) = (n+ l − 1)! · (n!)2 · (n− l + 1)!,

• Ep(ad(g), È0À) =
(

1− ³g(È0ÀÉ
−n)(p)

´gp

)
·

(
1− (È0ÀÉ

−n)(p)
p

)2

·
(

1− ´g(È0ÀÉ
−n)(p)

³gp

)
,
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• E0(È0À) =
(

1− (È0ÀÉ
−n)(p)

(È0ÀÉ−n)(p)

)
, E1(È0À) =

(
1− (È0ÀÉ

−n)(p)
p(È0ÀÉ−n)(p)

)
,

• Äℓ is an explicit nonzero rational number independent of n,

• ¹È0Àn
is the theta series of weight 2n + 2 attached to È0Àn :=

È0ÀÉ
−n| · |−n.

Moreover, if H is any generator of the congruence ideal of θÈ0
, then H ·

Lp(ad(gK)¹ È0) belongs to Λac.

Proof. — This is essentially a reformulation of [22, Theorem A] special-

ized to our setting. Let f = θÈ0
be the Hida family attached to the Hecke

character È0 as in (4.1), with associated big Galois representation Vf , and

denote by V(f , g, g∗) the Kummer self-dual twist of the triple tensor prod-

uct Vf ¹̂OTg¹O Tg∗ introduced in [2, Section 7.1] (and recalled in Section 3

above). Since Vf ≃ IndQ
K(È−1

0 ΨS), we immediately find that

V(f , g, g∗) ≃ ad(Tg)¹ IndQ
K(È−1

0 Ér1/2Ψ
(1−Ä)/2
S ),

where for a character Ç of GK we denote by ÇÄ the composition of Ç with

the action of the non-trivial automorphism Ä of K/Q, and put Ç1−Ä :=

Ç(ÇÄ )−1.

By [22, Theorem A], attached to (f , g, g∗) (and a specific choice of level-

N test vectors for this triple), there is an “unbalanced” triple product p-

adic L-function Lp(f , g, g
∗) ∈ FracOJΓpK interpolating, for all k′ ≡ r1 + 2

(mod 2(p − 1)) with k′ ⩾ 2l, the (central) values at s = 0 of the triple

product L-function

L(V(fk, g, g
∗), s) = L(ad(gK)¹ È−1

0 À−1Ér1/2, s),

where we put À to denote the specialization of Ψ
(Ä−1)/2
S at S= (1+p)k

′−2−1,

so À−1 is a character of Γac crystalline at both p and p corresponding to a

Hecke character of infinity type (−(k′/2−1), k′/2−1). Taking Lp(ad(gK)¹
È0) to be the image of Lp(f , g, g

∗) under the map FracOJΓpK → Frac Λac

determined by µp 7→ µÄ−1
p , we thus see that the result follows from [22,

Theorem A]. □

We next discuss an anticyclotomic p-adic L-function associated with V ′,

arising from a suitable restriction of Katz’s p-adic L-function.

Denote by Σ the set of algebraic Hecke characters À of K for which s = 0

is a critical point for L(À, s) in the sense of Deligne. This set can be written

as the disjoint union Σ = Σp ∪ Σp, where

Σp = {À ∈ Σ of infinity type (a, b), with a ⩾ 1, b ⩽ 0},
Σp = {À ∈ Σ of infinity type (a, b), with a ⩽ 0, b ⩾ 1}.

TOME 75 (2025), FASCICULE 1



316 Raúl ALONSO, Francesc CASTELLA & Óscar RIVERO

Note that the involution À 7→ ÀÄ takes characters in Σp to characters in Σp,

and vice versa.

Let Gc = Gal (K(cp∞)/K) be the Galois group of the ray class field

of K of conductor cp∞, and denote by Zur
p the completion of the ring of

integers of the maximal unramified extension of Qp. The following result is

originally due to Katz.

Theorem 4.5. 4 There exists an element L Katz
p,c (K)∈Zur

p JGcK uniquely

characterized by the property that for every character of Γc corresponding

to a Hecke character À ∈ Σp of infinity type (k1, k2) and conductor dividing

c we have

L
Katz
p,c (K)(À) =

(
Ωp
Ω∞

)k1−k2

(k1 − 1)! ·
(√

DK

2Ã

)k2

· (1− p−1À−1(p)p−1)(1− À(p)) · Lc(À, 0),

where Lc(À, s) is the L-function of À with the Euler factors at the primes

l|c removed. Moreover, we have the functional equation

L
Katz
p,c (K)(À) = L

Katz
p,c (K)(À−ÄN−1),

where the equality is up to a p-adic unit.

Proof. — See [30, Theorem II.4.14] for a construction of L Katz
p,c (K) (cor-

responding to the measure on Gc denoted by µ(cp∞) in [30]), and [30,

Theorem II.6.4] for the functional equation. □

Assume that c is fixed under complex conjugation, i.e., c = c. Denote

by ∆c the torsion subgroup of Gc, and put ΓK := Gc/∆c ≃ Z2
p, which is

identified with the Galois group of the unique Z2
p-extension K∞/K. We fix

a decomposition

(4.2) Gc ≃ ∆c × ΓK .

Put È0 = È0|∆c
and È−

0 = ÈÄ−1
0 , and note that the latter defines a finite

order anticyclotomic Hecke character of conductor dividing cps for some

s ⩾ 0. Denote by L Katz
p,È0

(K)− the image of L Katz
p,c (K) under the composite

map

Zur
p JGcK→ Zur

p JΓKK→ Zur
p JΓacK,

where the first arrow is the projection defined by È−
0 and the second arrow

is given by µ 7→ µÄ−1 for µ ∈ ΓK .

From now on we shall assume that the above c and È0 satisfy the condi-

tions (H1)–(H4) in the following result.
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Proposition 4.6. 4 In addition to (H0), assume that:

(H1) c is only divisible by primes that are split in K;

(H2) È−
0 has order prime-to-p and the prime-to-p part of its conductor

is exactly c;

(H3) È−
0 |GKv

̸= 1 for all primes v | p in K;

(H4) È−
0 has order at least 3.

Then, as an ideal of Zur
p JΓacK, the congruence ideal C(θÈ0

) is generated by

hK ·L Katz
p,È0

(K)−

where hK is the class number of K.

Proof. — A generator of C(θÈ0
) is given by a congruence power series

H(θÈ0
) attached to θÈ0

as in [18]. By our assumptions, this H(θÈ0
) cor-

responds to a branch character satisfying the hypotheses (1)–(4) in [18,

p. 466], so as noted in p. 469 of [18], the result follows from the proof of

the anticyclotomic Iwasawa main conjecture by Hida–Tilouine [19, 20] and

Hida [18]. □

Definition 4.7. 4 Put

Lp(ad(gK)¹ È0) :=
(
Lp(ad(gK)¹ È0) · hK ·L Katz

p,È0
(K)−

)2
,

which by Theorem 4.4 and Proposition 4.6 defines an element in Zur
p JΓacK.

We can now derive an anticyclotomic analogue of Dasgupta’s factoriza-

tion [9, Theorem 1], relating the p-adic L-function of Theorem 4.4 to the

product of the p-adic L-functions in Theorem 4.2 and Theorem 4.5. Simi-

larly as in [9], our result is a p-adic analogue of the factorization of complex

L-functions

L(ad(gK)¹ Ç, s) = L(ad0(gK)¹ Ç, s) · L(Ç, s)

arising from the decomposition of GK-representations

ad(Vg)¹ Ç ≃ (ad0(Vg)¹ Ç)· Ç.

However, our proof is largely simplified by the fact that the three p-adic

L-functions involved have a Zariski dense overlapping set of characters in

the range of interpolation.

Our factorization formula will in fact involve the following anticyclotomic

projection of the Katz p-adic L-function.
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Definition 4.8. 4 Viewing È0 as a character of Gc, write È0 = È0 ·ÈΓ

according to the factorization (4.2), with È0 (resp. ÈΓ) a character of ∆c

(resp. ΓK). We denote by L Katz
p (È0)−,º ∈ Zur

p JΓacK the image of L Katz
p,c (K)

under the composite map

Zur
p JGcK→ Zur

p JΓKK→ Zur
p JΓKK→ Zur

p JΓacK→ Zur
p JΓacK,

where the first arrow is given by the projection defined by È−1
0 Ér1/2, the

second by twisting by È−1
Γ , the third is the natural projection, and the last

arrow is the involution given by µ 7→ µ−1 for µ ∈ Γac. In other words,

L Katz
p (È0)−,º is the element of Zur

p JΓacK defined by

L
Katz
p (È0)−,º(À) = L

Katz
p,c (K)(È−1

0 À−1Ér1/2)

for all characters À of Γac.

Denote by ÄN the product of constants
∏
ℓ|N Äℓ appearing in Theorem 4.4.

Theorem 4.9. 4 The following equality holds

Lp(ad(gK)¹ È0) = u · Lp(ad0(gK)¹ È0) ·L Katz
p (È0)−,º · ÄN

where u is a unit in (Λac)×.

Proof. — Let À be a character of Γac as in the statement of Theorem 4.2

and Theorem 4.4, hence in particular corresponding to a Hecke character,

still denoted by À, of infinity type (−n, n) with n ⩾ l−1. Noting that ¹È0Àn

has weight 2n + 2, from Hida’s formula for the adjoint L-value (see [19,

Theorem 7.1]) and Dirichlet’s class number formula we obtain (cf. [24,

p. 414])

(4.3) ï¹È0Àn
, ¹È0Àn

ð

= (2n+ 1)! ·D2
K ·

1

24n+4Ã2n+3
· 2ÃhK

wK
√
DK

· L(È1−Ä
0 À1−Ä , 1),

where wK is the number of units in OK . Since L(È1−Ä
0 À1−Ä , 1) corre-

sponds to the value at s = 0 of the L-function for the Hecke character

ÈÄ−1
0 ÀÄ−1N−1 of infinity type (2n + 2,−2n), using (4.3) the interpolation

formula in Theorem 4.5 can be rewritten as

L
Katz
p,c (K)(ÈÄ−1

0 ÀÄ−1N−1)

=

(
Ωp
Ω∞

)4n+2

· 26n+4Ã4n+2

√
DK

2n+1 ·
wK

D2
KhK

×
(

1− (È0ÀÉ
−n)(p)

(È0ÀÉ−n)(p)

) (
1− (È0ÀÉ

−n)(p)

p(È0ÀÉ−n)(p)

)
· ï¹È0Àn

, ¹È0Àn
ð.
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Thus together with Theorem 4.4 we find that

(4.4) Lp(ad(gK)¹ È0)(À)2 ·L Katz
p,c (K)(ÈÄ−1

0 ÀÄ−1N−1)2 · h2
K

=

(
Ωp
Ω∞

)8n+4

· 28n+4Ã4n

√
DK

4n · Γ(n, l, l) · E(ad(g), È0À)
2

· w
2
K

D4
K

· ÄN · L(ad(gK)¹ È−1
0 À−1Én, 0).

On the other hand, we have the factorization

(4.5) L(ad(gK)¹ È−1
0 À−1Én, 0)

= L(ad0(gK)¹ È−1
0 À−1Én, 0) · L(È−1

0 À−1Én, 0).

The character È−1
0 À−1Én has infinity type (n + 1,−n), and so is in the

range of interpolation for L Katz
p,c (K). Thus combining Theorem 4.2 and

Theorem 4.5 and using (4.5) we find

(4.6) Lp(ad0(gK)¹ È0)(À) ·L Katz
p,c (K)(È−1

0 À−1Én)

=

(
Ωp
Ω∞

)6n+3

· Ã3n · Γ(n, l) · E(ad0(g), È0À)
2

×
(

Ωp
Ω∞

)2n+1

· n! ·
(

2Ã√
DK

)n

· (1− p−1È0À(p))2

× L(ad(gK)¹ È−1
0 À−1Én, 0).

Comparing (4.4) and (4.6) we see that their ratio is given by 27n+4 ·√
DK

−3n−8 · ÄN ; since for varying n the first two factors are interpolated

by a unit in (Λac)×, applying the functional equation of Theorem 4.5 this

gives the result. □

5. The Euler system

Let g ∈ Sl(Ng, Çg) be a newform as in Section 2.1, and let È be a Hecke

character of K of infinity type (1 − k, 0) for some even integer k ⩾ 2,

conductor c prime to p, and central character εK . Recall from Section 4

that we assume that (p) = pp splits in K and (for simplicity) that p does

not divide the class number of K.
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5.1. Modified diagonal cycles

Recall that, for a positive integer m, we write K[m] for the maximal

p-extension inside the ring class field of K of conductor m. Recall further

that H1
Iw(K[mp∞], T ) = lim←−rH

1(K[mpr], T ). Then, for a positive integer

m, let

(5.1) »È,ad(g),m,∞ ∈ H1
Iw(K[mp∞], TÈad(g))

be the class »È,g,g∗,m,∞ constructed in [2, Theorem 6.5]. (For m = 1, this is

essentially the class »(3)(f , g, g∗) defined in Section 3, after an application of

Shapiro’s lemma and twisting by the inverse of the anticyclotomic character

À in (5.4) below.) Since we have a direct sum decomposition

H1
Iw(K[mp∞], TÈad(g)) = H1

Iw(K[mp∞], T )·H1
Iw(K[mp∞], T ′),

we can project the class »È,ad(g),m,∞ to each of the summands. We de-

note its projection to the first summand as »È,ad0(g),m,∞. For the following

results, we keep the notations for Selmer groups introduced in Section 2.3.

Theorem 5.1. 4 Let S be the set of all squarefree products of primes

q split in K and coprime to pNgNÈ, and assume that H1(K[mps], T ) is

torsion-free for every m ∈ S and for every s ⩾ 0. There exists a collection

of classes {
»È,ad0(g),m,∞ ∈ Selbal(K[mp∞], T ) : m ∈ S

}

such that whenever m,mq ∈ S with q a prime, we have

corK[mq]/K[m](»È,ad0(g),mq,∞) = Pq(V Èad(g); Fr−1
q )»È,ad0(g),m,∞.

Proof. — This is an immediate consequence of [2, Theorem 6.5] and [2,

Proposition 6.6]. □

The Euler factors appearing in the previous theorem are not the ones

that we want. Indeed, let q = qq be a prime which splits in K. Then

Pq(V Èad(g);X) =

(
1− È(q)X

qk/2

)
Pq(V ;X),

so there is an unwanted extra factor. We now deal with this problem.

Definition 5.2. 4 Let P ′ be the set of primes q ∤ pNgNÈ split in K

such that

• q = 1 modulo p,

• T/(Frq − 1)T is a cyclic Zp-module,

• Frq − 1 is bijective on T ′.
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Here Frq denotes any arithmetic Frobenius element for q. Since T((1) ≃ T c
and (T ′)((1) ≃ (T ′)c, the definition does not depend on this choice.

Remark 5.3. — Under certain conditions, we will show in Proposition 6.3

below that there exists Ã ∈ GK such that if q is a prime such that Frq is

conjugate to Ã in Gal (K(µp, T , T ′)/K), then it belongs to P ′.

Theorem 5.4. 4 Let S ′ be the set of squarefree products of primes in

P ′, and assume that H1(K[mps], T ) is torsion-free for every n ∈ S ′ and for

every s ⩾ 0. There exists a collection of classes

{»m ∈ Selbal(K[mp∞], T ) : m ∈ S ′}
such that »1 = »È,ad0(g),1,∞ and, whenever m,mq ∈ S ′ with q a prime, we

have

corK[mq]/K[m](»mq) = Pq(V ; Fr−1
q )»m,

where q is any of the primes of K above q.

Proof. — We construct the classes »m by modifying the classes

»È,ad0(g),m,∞ in Theorem 5.1 appropriately as done in the proof of [27,

Theorem 5.3.3].

For each m ∈ S ′, let Γm = Gal (K[mp∞]/K). For each prime q | m, let

Fq ∈ S ′ denote the unique element of Γm which acts trivially on K[q] and

maps to Frq in Γm/q. Then, the factor 1 − q−k/2È(q)F−1
q is invertible in

ZpJΓmK. We now take

» =
∏

q|m

(
1− È(q)

qk/2
F−1
q

)−1

»È,ad0(g),m,∞.

These classes clearly satisfy the required properties. □

5.2. The explicit reciprocity law

Let K∞ denote the anticyclotomic Zp-extension of K and let

»È,ad(g),∞ ∈ H1
Iw(K∞, T

È
ad(g))

be the image of the class »È,ad(g),1,∞ in (5.1) under the corestriction map for

K[p∞]/K∞. By [2, Proposition 6.6] we have »È,ad(g),∞ ∈ Selbal(K∞, T
È
ad(g));

in particular, the restriction resp(»È,ad(g),∞) lands in the image of the nat-

ural map

H1
Iw(K∞,p,F

bal
p (TÈad(g))) −→ H1

Iw(K∞,p, T
È
ad(g))
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(see (2.3)). Note that this map is an injection under our hypotheses. On

the other hand, let

(5.2) »È,ad0(g),∞ ∈ Selbal(K∞, T )

be the image of the class »1 = »È,ad0(g),1,∞ of Theorem 5.4 under the

corestriction map. Thus »È,ad0(g),∞ is the projection of »È,ad(g),∞ onto the

first direct summand in the decomposition

Selbal(K∞, T
È
ad(g)) = Selbal(K∞, T )· Selbal(K∞, T

′),

and since F bal
p

(TÈad(g)) is contained in T , it is clear that

(5.3) resp(»È,ad(g),∞) = resp(»È,ad0(g),∞).

Definition 5.5. 4 Put È0 = È¼2−k as in Remark 4.3, and define

(5.4) Lp(ad0(gK)¹ È) := TwÀ

(
Lp(ad0(gK)¹ È0)

)
,

where TwÀ : Λac → Λac is the twisting homomorphism for the char-

acter À := (¼1−Ä )k/2−1. Similarly, define Lp(ad(gK) ¹ È), L Katz
p,È (K)−,

Lp(ad(gK) ¹ È), and L Katz
p (È)−,º by twisting the corresponding p-adic

L-functions defined for È0 in Section 4.5.

For the statement of the next result, note that È0 has the same restriction

to ∆c as È.

Theorem 5.6. 4 There exists an injective Λac-module map with

pseudo-null cokernel

Log : H1
Iw(K∞,p,F

bal
p (TÈad(g))) −→ Zur

p JΓacK

such that

Log(resp(»È,ad0(g),∞)) = hK ·L Katz
p,È (K)− ·Lp(ad(gK)¹ È).

Proof. — Let V(f , g, g∗) and V(f , g, g∗)f be as in Section 3 (correspond-

ing to V 
fgg∗ and Vgg

∗

f , respectively, in the notation of [2, Section 8.2]).

Then, identifying GQp
with GKp̄

via the composition of the embedding

ºp : Q ↪→ Qp fixed in the introduction with complex conjugation, we get an

isomorphism of Λf [GKp̄
]-modules

(5.5)

V(f , g, g∗)f = V−
f ¹̂OT

+
g ¹ T+

g∗(ϵ1−lcyc κ
−1/2
f ) ≃ F

bal
p (TÈ

ad0(g)
)¹ ÀΨ(Ä−1)/2

S .

By [2, Theorem 7.4], after extending scalars to Zur
p , the composition of the

Λf -linear map

H1(Qp,V(f , g, g∗)f ) −→ Λf
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of [2, Proposition 7.3] with the isomorphism Zur
p ¹̂Λf ≃ Zur

p JΓacK given by

µ 7→ µÄ−1 sends the class »(3)(f , g, g∗) recalled in Section 3 to the product

hK ·L Katz
p,È0

(K)− ·Lp(ad(gK)¹ È0),

noting that by Proposition 4.6 the first two factors generate the congruence

ideal of f . Taking twists by À and using the isomorphism

H1
Iw(K∞,p,F

bal
p (TÈ

ad0(g)
)¹ À) ≃ H1(Qp,V(f , g, g∗)f )

induced by (5.5) and using (5.3), the result follows. □

Corollary 5.7. 4 The map Log of Theorem 5.6 satisfies
(
Log(resp(»È,ad0(g),∞))2

)
=

(
Lp(ad0(gK)¹ È) ·L Katz

p (È)−,º
)

as ideals in Zur
p JΓacK¹Qp.

Proof. — This is clear from Theorem 5.6 and the factorization in Theo-

rem 4.9. □

6. Verifying the hypotheses

Let g and È be as introduced in Section 2.1 and Section 2.2, respectively.

Recall that, given a rational prime p and a sufficiently large finite extension

E/Qp, we define the GK-representation

V = ad0(Vg)(È
−1
P )(1− k/2),

where Äg : GQ → AutE(Vg) ≃ GL2(E) is the p-adic Galois representation

attached to g. The aim of this section is to give conditions under which the

hypotheses in the general results of [23] are satisfied for V . Let K(p∞)◦ de-

note the maximal abelian extension of K unramified at primes not dividing

p. Then, the crucial condition that we need to verify is the existence of an

element Ã ∈ Gal (K/K(p∞)◦) such that T/(Ã − 1)T is a free O-module of

rank one, where O is the ring of integers of E.

As in [26, Section 3.1] we define an open subgroupHg ¦ GQ, a quaternion

algebra Bg and an algebraic group Gg. Let H = Hg∩GK(c)◦ . Then we have

an adelic representation

Ä̃g : H −→ Gg(Q̂)

and representations

Ä̃g,p : H −→ Gg(Qp)

for every rational prime p, and, according to [26, Theorem 2.2.2], for all

but finitely many p we can conjugate Ä̃g,p so that Ä̃g,p(H) = Gg(Zp).
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Let L be a finite extension of K containing the Fourier coefficients of g

and the image of the Hecke character È. Let P be a prime of L above some

rational prime p, and let E = LP.

Definition 6.1. 4 We say that the prime P is good if the following

conditions hold:

• p ⩾ 3;

• p is unramified in Bg;

• p is coprime to c and Ng;

• Ä̃g,p(H) = Gg(Zp);

• E = Qp.

Lemma 6.2. 4 Assume that there is at least one prime which divides

DK but not Ng. Then, if P is a good prime,

Äg,P(H ∩GK(p∞)◦) = SL2(Zp).

Proof. — The proof of this result is very similar to the proof of [2,

Lemma 8.9]. We include it here for the convenience of the reader.

Let Q(Äg) be the Galois extension of Q cut out by the representations

Äg. It is unramified outside pNg. Therefore, the condition on DK implies

that K ∩Q(Äg) = Q. Moreover, since any Galois extension of Q contained

in the anticyclotomic Zp-extension K∞ of K must itself contain K, we also

have K∞ ∩Q(Äg) = Q.

The conditions on P imply that

Äg,P(H ∩GQ(µp∞ )) = SL2(Zp),

and, from the remarks in the previous paragraph, it follows that

Äg,P(H ∩GK∞(µp∞ )) = SL2(Zp).

Finally, since H ∩GK(p∞)◦ is a normal subgroup of H ∩GK∞(µp∞ ) of index

dividing p − 1 and there are no such subgroups in SL2(Zp), the lemma

follows. □

Now fix a good prime P and define Zp[GK ]-modules T = ad0 Tg(È
−1
P )

(1− k/2) and T ′ = Zp(È
−1
P )(1− k/2). Let V = T ¹Qp and V ′ = T ′ ¹Qp.

Proposition 6.3. 4 Assume that there is at least one prime which

divides DK but not Ng. Suppose that there exists ¸ ∈ GK(p∞)◦ such that

Çg(¸)ÈP(¸) is a square modulo p and ÈP(¸)2 ̸= 1 modulo p. Then there

exists Ã ∈ GK(p∞)◦ such that

• T/(Ã − 1)T is free of rank 1 over Zp,

• Ã − 1 acts invertibly on T ′.
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Proof. — We closely follow the proof of [27, Proposition 5.2.1] (see also

the proof of [2, Lemma 5.10] and [26, Proposition 4.2.1]). By the previous

lemma the image of ¸H ∩GK(p∞)◦ under Äg,P contains all the elements of

the form (
x 0

0 x−1Çg(¸)

)
, x ∈ Z×

p .

Choose x such that x2 = Çg(¸)ÈP(¸). Choose Ã ∈ ¸H ∩ GK(p∞)◦ whose

image under Äg,P is given by the element above, with the choice of x which

we have just specified. Then, the eigenvalues of Ã acting on T are 1, È−1
P (¸)

and È−2
P (¸) and the eigenvalue of Ã acting on T ′ is È−1

P (¸). The result

follows from the assumptions on ¸. □

7. Applications

Let g ∈ Sl(Ng, Çg) and È be a Hecke character of K of infinity type

(1−k, 0) for some even integer k ⩾ 2 as introduced in Section 2, and recall

that we consider the E-valued GK-representation V in Definition 2.1. We

begin by collecting a set of hypotheses for our later reference.

Hypotheses 7.1.

(h1) p splits in K,

(h2) p ∤ hK ,

(h3) the conditions in Proposition 4.6 hold,

(h4) g is ordinary at p and non-Eisenstein mod p,

(h5) g is not of CM type,

(h6) P is a good prime in the sense of Definition 6.1,

(h7) the conditions in Proposition 6.3 hold.

7.1. The Bloch–Kato conjecture

We begin with a standard lemma, whose proof follows from the same

argument as in [2, Lemma 9.1].

Lemma 7.2. 4 The Bloch–Kato Selmer group of V is given by

Sel(K,V ) ≃
{

Selbal(K,V ) if 2 ⩽ k < 2l,

Selunb(K,V ) if k ⩾ 2l.
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Let »È,ad0(g),∞ be as in (5.2), and denote by

»È,ad0(g) ∈ Selbal(K,T )

the image of »È,ad0(g),∞ under the corestriction H1
Iw(K∞, T )→ H1(K,T ).

Theorem 7.3. 4 Assume hypotheses (h1)–(h7). Then the following im-

plication holds:

»È,ad0(g) ̸= 0 =⇒ dimE Selbal(K,V ) = 1.

In particular, if 2 ⩽ k < 2l and »È,ad0(g) ̸= 0 then the Bloch–Kato Selmer

group Sel(K,V ) is one-dimensional.

Proof. — This follows from the general theory of anticyclotomic Euler

systems developed in [23] (see [2, Section 8] for a summary) applied to the

Euler system constructed in Theorem 5.4. By Proposition 6.3, Hypothe-

ses 7.1 give sufficient conditions for the general results of [23] to apply

in our case. Note also that for the application of these results it suffices

to have an anticyclotomic Euler system consisting of classes indexed by

squarefree products of primes q in a positive density set P ′ of primes split

in K, as is the case for the anticyclotomic Euler system of Theorem 5.4

(see Remark 5.3). □

Theorem 7.3 can be viewed as a result towards the Bloch–Kato conjecture

for V in rank 1. The next result establishes cases of the same conjecture in

rank 0.

Theorem 7.4. 4 Assume hypotheses (h1)–(h7), and in addition that:

• εℓ(Vfgg∗) = +1 for all primes ℓ | N ,

• gcd(Ng, NÈ) is squarefree,

• L(¹È, k/2) ̸= 0.

If k ⩾ 2l then the following implication holds:

L(V, 0) ̸= 0 =⇒ Sel(K,V ) = 0.

Proof. — By Theorem 4.2 and Definition 5.5 we see that

L(V, 0) ̸= 0 =⇒ Lp(ad0(gK)¹ È)(Àtriv) ̸= 0,

where Àtriv is the trivial character of Γac. Similarly, from Theorem 4.5 and

Definition 5.5 we see that

L(¹È, k/2) ̸= 0 =⇒ L
Katz
p (È)−,º(Àtriv) ̸= 0.
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Therefore by the factorization in Theorem 4.9 we thus see that

Lp(ad(gK)¹ È)(Àtriv) ̸= 0, and so »È,ad0(g) ̸= 0 by the explicit reciprocity

law of Corollary 5.7. The result now follows from Theorem 7.3 and global

duality by the same argument as in [2, Theorem 9.5]. □

Remark 7.5. — The hypotheses in Theorem 7.4 and the decomposi-

tion (2.1) imply that the sign of the functional equation for L(V, s) is +1,

and so the nonvanishing of L(V, 0) is expected to hold generically.

7.2. The Iwasawa main conjecture

Here we deduce our main result towards the anticyclotomic Iwasawa

main conjecture for V .

Since È has central character εK by assumption, its associated theta

series ¹È has trivial nebentypus. In the following we denote by ε(¹È) its

global root number.

Theorem 7.6. 4 Assume hypotheses (h1)–(h7), and in addition that:

• εℓ(Vfgg∗) = +1 for all primes ℓ | N ,

• ε(¹È) = +1,

• gcd(Ng, NÈ) is squarefree.

If the p-adic L-function Lp(ad0(gK) ¹ È) is nonzero, then the Pontryagin

dual of Selunb(K∞, A) is Λac-torsion, with

CharΛac

(
Selunb(K∞, A)(

)
£

(
Lp(ad0(gK)¹ È) ·L Katz

p (È)−,º
)

in Zur
p JΓacK¹Zp

Qp.

Proof. — The assumption that ε(¹È) = +1 implies that the anticyclo-

tomic projection L Katz
p (È)−,º is nonzero by Greenberg’s nonvanishing re-

sults [15]. Since Lp(ad0(gK) ¹ È) ̸= 0 by hypothesis, together with the

factorization in Theorem 4.9 it follows that

Lp(ad(gK)¹ È) ̸= 0.

By Corollary 5.7, this shows that the class »È,ad0(g),∞ is non-torsion. By

the general results of [23] (see also [2, Theorem 8.5]), we thus conclude that

Xbal(K∞, A) and Selbal(K∞, T ) both have Λac-rank one, with

CharΛac(Xbal

(
K∞, A)tors

)
£ CharΛac

(
Selbal(K∞, T )

Λac · »È,ad0(g),∞

)2

.

The result now follows from this by the same argument as in the proof of [2,

Theorem 7.15] based on Poitou–Tate duality and the explicit reciprocity

law of Corollary 5.7. □
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