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AN ANTICYCLOTOMIC EULER SYSTEM FOR
ADJOINT MODULAR GALOIS REPRESENTATIONS

by Raul ALONSO, Francesc CASTELLA & Oscar RIVERO (*)

ABSTRACT. — Let K be an imaginary quadratic field and p a prime split in K. In
this paper we construct an anticyclotomic Euler system for the adjoint representa-
tion attached to elliptic modular forms base changed to K. We also relate our Euler
system to a p-adic L-function deduced from the construction by Eischen—Wan and
Eischen-Harris-Li—Skinner of p-adic L-functions for unitary groups. This allows us
to derive new cases of the Bloch—Kato conjecture in rank zero, and a divisibility
towards an Iwasawa main conjecture.

RESUME. — Soit K un corps quadratique imaginaire et p un nombre premier
décomposé dans K. Dans cet article, on construit un systéme d’Euler anticyclo-
tomique pour le changement de base a K de la représentation adjointe associée
aux formes modulaires elliptiques. On relie ce systéme d’Euler & une fonction L
p-adique obtenue a partir de la construction par Eischen—Wan et Eischen—Harris—
Li—Skinner des fonctions L p-adiques pour les groupes unitaires. Ceci nous permet
de déduire des nouveaux cas de la conjecture de Bloch—Kato en rang zéro, ainsi
qu’une divisibilité vers une conjecture principale d’Iwasawa.

1. Introduction

The goal of this paper is to study the Bloch—Kato conjecture and the
anticyclotomic Iwasawa theory of certain twists of the adjoint Galois repre-
sentation attached to elliptic modular forms base changed to an imaginary
quadratic field.

Our main result is the construction of an anticyclotomic Euler system
in this setting, which we relate to an analogue of the Hida—Schmidt p-adic
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L-function for the symmetric square. By Kolyvagin’s method for anticyclo-
tomic split Euler systems, as developed by Jetchev-Nekovai—Skinner, our
results yield new cases of the Bloch—-Kato conjecture in rank zero and a
divisibility towards an Iwasawa main conjecture.

1.1. The set-up

Let g € S;(Ng, x4) be an newform of weight [ > 2, level N, and neben-
typus x4. Let K/Q be an imaginary quadratic field, and let ¢ be a Hecke
character of K of infinity type (1 — k,0) for some even integer k > 2. We
assume that the associated theta series 6y, € Si(Ny) has trivial nebenty-
pus. Fix an odd prime p { 2N;Ny, and an embedding ¢, : Q = Q,, and
for simplicity in this Introduction assume that the Hecke field of g and the
values of 1 are contained in a number field L with a prime 3 above p such
that Ly = Q,. We assume that p splits in K and is a prime of ordinary
reduction for ¢ and, again for simplicity, that p { hx, the class number of
K. We will also assume that g is not of CM-type.

Let Vj, be the (dual to Deligne’s) p-adic Galois representation attached
to g, and denote by ad’(V,) C Endg, (V,) the adjoint representation on
the trace-zero endomorphisms of V,. We consider the conjugate self-dual
G g -representation

Vi=ad’ (V) (v ")(1 - k/2),

where (1)~1) denotes the twist by the inverse of 1) and (1 —k/2) is the twist
by the (1 — k/2)-th power of the p-adic cyclotomic character.

1.2. Euler systems and p-adic L-functions

In this paper we construct an anticyclotomic Euler system for V' and
relate it to an associated anticyclotomic p-adic L-function.

For a positive integer m we write K [m] for the maximal p-extension inside
the ring class field of K of conductor m. Denote by S’ the set of all square-
free products of primes ¢ in the positive density set P’ of Definition 5.2; in
particular, these primes split in K. For any p-adic Gi-representation W
and a prime q of K, put

Pa(W; X) =det(1 — Fr, ' X | WY(1)),

where Fry denotes an arithmetic Frobenius element for the prime q and W
denotes the contragredient representation of W. A natural lattice T, C V,
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described in Section 2.1 deﬁnes a lattice in V denoted by T. Finally, let
H} (K[m ]L HY( T).

THEOREM A (Theorem 5.4). — Assume that H'(K[mp*],T) is torsion-
free for all m € S’ and s > 0. There exists a collection of classes

{Hw,ado(g),m,oc € HIIW(K[mpOO]aT) T me S/}
such that whenever m,mq € S8’ with q a prime, we have

COTK[mq]/K[m] (Hw,ado(g),mq,oo) = PCI (V7 Fr;l) Hw,ado(g);m,ooy

where q is any of the primes of K above q.

We obtain the Euler system classes iy, 4q0(g),m,00 from a suitable modi-
fication of the diagonal Euler system classes Ky g g+ m,00 fOT

Vi = Ve ® V() (1 = ¢)

constructed in [2], where ¢* = g ® X;l is the twist of ¢ by the inverse of
its nebentypus, and ¢ = (k + 2] — 2)/2. It follows from our construction
(and the results of [5] that it builds upon) that y .40 (g),m,c lands in the
balanced Selmer groups Selyq (K [mp™],T) introduced in Section 2.3.

Next we are interested in the non-triviality of our Euler system in terms of
L-values. To this end, in Section 4 we use some basic instances of Langlands
functoriality to deduce from the work of Eischen—Harris—Li—Skinner [11] the
construction of a p-adic L-function

Lp(ado(gK) ® 1) € Frac A*°

interpolating the central L-value L(V,0) and its twists by a p-adic family
of anticyclotomic Hecke characters. Here A®¢ is the Iwasawa algebra of the
Galois group I'*® of the anticyclotomic Z,-extension K. /K. Denoting by
Kb ,adO(g),00 the image of Ky, ,qo0 in Selynp (Ko, T'), we can then prove
the following.

Write (p) = pp, with p the prime of K above p induced by ¢,. For the
following result, let K, 5 be the Z)-extension of K unramified outside p,

o‘bal w
and let & (Tad(g)

(9),1,00

) denote the subspace of T ad(g) defined in Section 2.3.

THEOREM B (Corollary 5.7). — Under some technical hypotheses on 1),
there is a Perrin-Riou big logarithm map Log : H} (K 5, ﬂbal(ng(g))) —
Z,"[*°] such that

£og(res ("Ew ad®(g), oo))2 = Lp(ado(gK) ®1)) 'ngatZ(l/’)i’

up to multiplication by an element in @;j, where pratZ ()" is an anti-
cyclotomic projection of Katz’s p-adic L-function.

TOME 75 (2025), FASCICULE 1
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The proof of this result builds on the explicit reciprocity law of [5] and
a factorization formula for Hsieh’s triple product p-adic L-function (see
Theorem 4.9). This factorization is a p-adic manifestation of the Artin
formalism arising from the decomposition

!/
(1.1) Vi =Vev,

where V' = Q,(1»1)(1 — k/2), and may be seen as an anticyclotomic
analogue of Dasgupta’s factorization [9]. However, the proof in our case
is largely simplified by the fact that the p-adic L-functions involved have
overlapping ranges of p-adic interpolation.

The technical hypotheses on ) are used to ensure that the congruence
ideal of a Hida family attached to v is generated by a second anticyclotomic
projection of Katz’s p-adic L-function, which in turn interpolates the ratio
between two different types of periods.

1.3. Applications

Using Kolyvagin’s methods, as developed by Jetchev—Nekovar—Skinner
[23] in the split anticyclotomic setting, we can deduce bounds on Selmer
groups from the non-triviality of our Euler system. Our main result in this
direction is the proof of new cases of the Bloch-Kato conjecture [7] in rank
Zero.

For the statement, we denote by e, the epsilon factor attached to the
Weil-Deligne representation associated with the restriction of Ind%(V;fl(g))

to Gg,. It is then known that the sign 5(Vw

. d(g)) in the functional equation

for L(V;ﬁ’i(g), s) is given by

( ad(g)) H 4

where e = +1 if & > 2] and —1 if 2 < k < 2I. On the other hand,
here we say that V has “big image” if it safisfies the explicit conditions in
Proposition 6.3.

THEOREM C (Theorem 7.4). — In addition to the above hypotheses,
assume that:
(1) e = +1 for all primes € | NyNy,
(2) gcd( ,Ny) is squarefree,
(3) g is non-Eisenstein mod p,
(4) V has big image,
(5) L(by, k/2) # 0.
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If k > 2l then the following implication holds:
L(V,0) #£ 0 = Sel(K, V) =0,
where Sel(K, V') is the Bloch-Kato Selmer group.

Note that the hypotheses in Theorem C imply that L(V,s) has sign +1
in its functional equation, and so the nonvanishing of L(V,0) is expected
to hold generically.

We can also deduce applications to the Iwasawa main conjecture for V.
More precisely, under certain hypotheses, Greenberg’s general formulation
of the Iwasawa main conjecture for motives [16] leads to the prediction
that the unbalanced Selmer group Selynp(Koo, A) defined in Section 2,
where A = V/T, is A*“-cotorsion, with characteristic ideal generated by
L,(ad’(gr) ® ). In the direction of this conjecture we can prove the fol-
lowing, where we let Z)" denote the completion of the ring of integers of
the maximal unramified extension of Q.

THEOREM D (Theorem 7.6). — In addition to the above hypotheses,
assume that:

(1) e, = +1 for all primes ¢ | NyNy,

(2) ged(Ng, Ny) is squarefree,

(3) g is non-Eisenstein mod p,

(4) V has big image,

(5) 8y has global root number (6y) = +1.

If the p-adic L-function L]f,(audO (9x) ® v) is nonzero, then the Pontryagin
dual of Selyny (Koo, A) is A?°-torsion, with

Charpne (Selynb (Koo, A)Y) D (Ly(ad’(gx) @ ¥) - L5 (4) ")

in ZP @, A[1/p).

Note that the presence of pratZ(z/J)*’L in the divisibility of Theorem D
is analogous to the appearance of the Kubota—Leopoldt p-adic L-function
in the divisibility towards the Iwasawa main conjecture for the Galois rep-
resentation attached to the symmetric square of a modular form in [27,
Theorem B].

In fact, the present work originated from an attempt to develop anticy-
clotomic analogues of the results in [27]. In particular, the idea of modifying
the diagonal Euler system classes of [2] to obtain the correct norm relations
(see Section 5.1) was adopted from their work.

TOME 75 (2025), FASCICULE 1



296 Ratl ALONSO, Francesc CASTELLA & Oscar RIVERO

1.4. Outline of the paper

We begin by introducing in Section 2 our set-up and Galois representa-
tion of interest, and various Selmer groups associated with it. In Section 3
we describe in detail the construction of the diagonal cycle class giving
rise to the bottom class of our Euler system, and study its behaviour ac-
cording to a certain sign (given by () in the notations of Theorem D).
The results of this section, which are developed in a slightly more general
setting than the rest of the paper, are unnecessary for the proof of our
main results, but they are included here for completeness (in particular,
Proposition 3.2 might be of independent interest). In Section 4 we intro-
duce the different p-adic L-functions that appear in our picture, including
an analogue of the Hida—Schmidt p-adic L-function deduced from the work
of Eischen et.al. on p-adic L-functions for unitary groups, and prove the
aforementioned analogue of Dasgupta’s factorization. Finally, in Section 5
we give the construction of our Euler system by suitably modifying the
diagonal cycle Euler system classes constructed in our previous work [2],
and in Section 6 and Section 7 we apply this to deduce the arithmetic
applications highlighted in the Introduction.

1.5. Acknowledgements

It is a pleasure to thank David Loeffler and Chris Skinner for their very
valuable advice in connection with this work. We are also grateful to Ellen
FEischen and Xin Wan for correspondence regarding the subject of this note,
and to Shilin Lai and Sam Mundy for several helpful conversations. Finally,
we thank the anonymous referees for a careful reading of the text, whose
comments notably contributed to improve the exposition of the article.

2. Galois representations and Selmer groups
In this section we introduce our Galois representations of interest and
the Selmer groups associated with them that we shall be studying.
2.1. Galois representations
Let g = >0 1 an(9)g"™ € Si(Ng, x4) be an newform of weight I > 2, level

Ny, and nebentypus xg4. Let p > 2 be a prime and let £ = Ly be a finite
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extension of @, with ring of integers O arising as the completion of the
Hecke field L of g at a prime 3 of L above p. By work of Eichler-Shimura
and Deligne, there is a two-dimensional representation

unramified outside pN, and characterized by the property

trace pg(Frq) = aq(9)

for all primes g { pN,y, where Fr, denotes an arithmetic Frobenius element
at ¢. Let Y71(Ny) be the open modular curve over Q parameterizing pairs
(A, P) consisting of an elliptic curve A and a point P € A of order Ny. Let
Z—2 be the sheaf introduced in [5, Section 2.3]. As in [2], we shall work
with the geometric realization of V; arising as the maximal quotient of

Hey(Y1(Ng)g, Zi-2(1)) ®z, B

on which the dual Hecke operators Té and (d)’ act as multiplication by
aq(g) and x,4(d) for all primes ¢ { N, and all d € (Z/N,Z)*. We also let
T, C Vg4 be the O-lattice defined by the natural image of

He (Y1(Ng)gs Zi-2(1)) @z, O

under the quotient map H} (Y1 (N, 05 Z1—2(1)) ®z, E — Vg,
Throughout the following, we shall assume that g is not of CM-type.

2.2. The adjoint representation

Let K be an imaginary quadratic field of discriminant —Dg < 0. Let
be a Hecke character of K of infinity type (1 — k&, 0) for some even integer
k > 2 and central character equal to ex, the quadratic character attached
to K/Q (thus the associated theta series 6, has trivial nebentypus). We
assume that ¢ has conductor ¢ C Ok prime to p and, upon enlarging O if
necessary, that its p-adic avatar iy takes values in O.

DEFINITION 2.1. — Let V' be the E-valued G i-representation given by
V= ad® (V) (i) (1 K/2),

where ad’(V,) C Endg(V,) denotes the adjoint representation on the trace-
zero endomorphisms of V.

TOME 75 (2025), FASCICULE 1
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Let g =g ® X;l be the twist of g by the inverse of its nebentypus. We
shall study the arithmetic of V' by exploiting the decomposition

(2.1) Vi = Ve @ Ve (g1 =) = VeV,
where ¢ = (k420 —2)/2 and V' = E(yg;')(1 — k/2).

2.3. Selmer groups

From now on, we assume that p is a prime of good ordinary reduction
for g such that

(2.2) (p) = pp splits in K,

with p the prime of K above p determined by our fixed embedding ¢, :
Q = Q.

By p-ordinarity, the Galois representation V; is equipped with a Gg,-
stable filtration

0—V,f—V,—V, —0

with Vgi one-dimensional and the Gg,-action on V;~ given by the unram-
ified character sending an arithmetic Frobenius Fr, to ag4, the p-adic unit
root of 22 —a,(g)z + x4(p)p' 1. Of course, twisting these by Xg_l we obtain
ViE=VEox

Let F/K be any finite extension and, for v | p any prime of F above p,
define

(23)  FMVY,) = (VF @ Vge + V@ Vo) (g (L —¢) if v p,
’ v ad(g)/ *

Vih @ Vil ()1 = ¢) if v p,
and
VY oo ifu | p,
(24) AT E R v
{oy ifulp,

and, for ? € {bal,unb}, put F (V) = yj(vaﬁ(g)
FL (Vi) NV

Fix ¥ any finite set of places of K containing oo and the primes dividing
pNyNy. With a slight abuse of notation, for any finite extension F/K we
also denote by X the set of places of F' lying over the places in X, and

)NV and FL(V') =

denote by G 5 the Galois group of the maximal extension of F' unramified
outside X. Further, for any non-archimedean field F,, we write F,"" for the
maximal unramified extension of F,.

ANNALES DE L’INSTITUT FOURIER
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DEFINITION 2.2. — Let F/K be a finite extension, and for
M e {Vd’ ,V,V'} and ? € {bal, unb} define the Selmer group Sel,(F, M) by

E,,M
Sels(F, M) =ker | H'(Gpx, M —>||H (. M) || HY(FM™, M)|,
‘7 v

vEX,vipoo

where
o

HY(Fy, M) = im(H(F,, Z2(M)) — H'(F,, M)).

We call Selpa1 (F, M) (resp. Selyns(F, M)) the balanced (resp. unbalanced )
Selmer group.

Remark 2.3. — Let f = 0, be the weight k eigenform associated with ),
and denote by Vygg« 1= Vy ® V; @ Vg« (1 — ¢) the Kummer self-dual twist of
the Galois representation attached to (f, g, g*). Since Vy = Ind% wil, one
can easily check that the isomorphism given by Shapiro’s lemma

HYQ,Vygg+) =~ H'(K, Va’l/:i(g))

identifies the Selmer groups Selpai(Q, Vige+) and Sel(Q, Vigqy+) considered
in [2, Definition 7.5] with the above Selp, (K, Vad(g ) and Selyny (K, Vad(g))
respectively.

Put T;{’i(g) =T,0T,- (wigl)(l —c). Then the decomposition (2.1) induces
a decomposition
p
Taao)
where T and T" are lattices in V and V', respectively. We also set

P _ v W
Aad - Vad / Tad

~TeT,

(9)" A=V/T, A =V'/T".

Then, for ? € {bal,unb} and M € { ad(g ),T T A;/’d(g),A,A’}, we de-
fine the local conditions H}(F,, M) from the local conditions above by
propagation, and use them to define the Selmer groups Selv (K, M) using
the same recipe as in Definition 2.2. Finally, for M; € { ad(g): 1> T’} and

M, € {Aad(g),A,A }, we put

Sely (Koo, M7) := lim Selz (K, M), Sely (Koo, Ma) := &}nSel?(Kn,Mg),
n n
where the limits are with respect to corestriction and restriction, respec-
tively.
To help orient the reader, we note the following simple relation between
the different Selmer groups introduced above.

TOME 75 (2025), FASCICULE 1
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PROPOSITION 2.4. — The decomposition V¥ =V &V induces iso-

ad(g) —
morphisms
Selbal(K Tad( )) ~ Selbal(Koo,T) EBSG](]:(OO,T/)7
Selynb (Koo, Tad(g)) ~ Selunb (Koo, T) @ Sel(K oo, T),

where Sel(K,,T") is the Bloch-Kato Selmer group for T".

Proof. — It suffices to show that for any finite extension F/K we have
Selpal (F, V') ~ Selyn, (F, V') =~ Sel(F, V'),

where Sel(F, V') is the Bloch-Kato Selmer group of V' = E(quil), which
is given by

Sel(F,V')=ker | H'(Gps, V') — [[H' (P, V) x [ E'(FF V')
v|p vEX,vip

(see [1, Section 1.1] or [3, Section 1.2]). For Selyn,(F,V’) this is clear

from (2.4); for Selpa(F, V') it follows by noting that the subspace

ﬁbal(nﬁ(g)) C V;z(g) in (2.3) contains V' for v | p and intersects triv-
ially with it for v | p. O

3. Construction of the bottom class

In this section, we recall the construction of a A-adic cohomology class
associated with the triple product of three modular forms as explained
in [5]. We follow the exposition in [5] with slight modifications and special-
izing the discussion to the case of interest in this paper. At the end of this
section we analyze the behaviour of this cohomology class depending on
the sign of one of the modular forms.

This section is independent of the rest of the paper, and the reader solely
interested in the results stated in the Introduction can proceed to Section 4.

Let f and g be newforms of weight k = r1 +2 and [ = ro + 2, level
Ny and Ny and character xy = 1 and x4, respectively. We assume that
pt 2Ny Ny and that both f and g are ordinary at p. We denote by h = g*
the newform obtained by conjugating the Fourier coeflicients of g. Let L
be a finite extension of Q containing the Fourier coefficients of f and g and
let E = Ly be its completion at a prime 5 above p, with ring of integers
O. Define N = lem(Ny, Ny).

Consider the Iwasawa algebra A = Z,[1 + pZ,]. There exist finite flat
A-modules A¢ and Ag and primitive Hida families f € A¢[g] and g €
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Ag[q] passing through the ordinary p-stabilizations f, and g, of f and g,
respectively. Let h = g* be the Hida family g ® Xgl, which passes through
the ordinary p-stabilization g, of g*. Our conventions for Hida families are
those described in [2, Section 5.1].

Let p1,—1 denote the group of roots of unity in Z; and consider the
decomposition Z, = p,—1 X (1 + pZy). Let w : Zy — pp—1 C Z;; be the
map defined by projection onto the first factor, according to the previous
decomposition. Also, for an element z € Z, we denote by (z) its projection
onto the second factor (alternatively, (z) = z/w(z)).

Let Cont(Zy,A) be the A-module of continuous functions on Z, with
values in A. To make notation less cumbersome, we denote by [z] the group-
like element [(z)] in A. For each integer i, let #; : Z — A* be the character
defined by 2z — w'(2)[z]. We also define the sets T = Z,f x Z, and T' =
pZyp % Z, . Then, we can define the A-modules

_ ) f(1,2) € Cont(Z,,A) and f(a-t) = ki(a) - f(¢)
'Ai_{f'T_HX forallan;,tpeT }’

;o o f(pz,1) € Cont(Zy, A) and f(a-t) = Ki(a) - f(¢)
Ai{f'T%A forall a € ZX, v € T’ }

Di = Homcont,A (-A'u A); Dé = Homcont,A(-A;‘z A)

We define in addition characters £}, K7, kg, K% 1 Zy — A ®A® A by

9’9’

K7 (2) =W )] @ ]2 @ )2
K (2) =W PR @ [V @ [
Ri(2) = )Y @ [V @ [ 72

R (2) = w2 () ]2 @ [2]'V2 @ 2] V2.

We denote by «* the character of the Galois group Gg defined by k* =
K* 0 €cyc, and similarly for the other characters introduced above.

Let Y = Y1(N,p) denote the same modular curve as in [5, Section 8.1]
and let T' = T'1 (N, p) be the corresponding modular group. The function

Det :T'xTxT—ARARA,
defined as in [5], yields an element in the group
Hf?t (Y7 A:'I Y ‘A’fz ® A"z(_"{*))'

Here A, and \A,, denote the étale sheaves associated with A, and A,,,
respectively, as explained in [5, Section 4.2]. Then, with essentially the same

TOME 75 (2025), FASCICULE 1
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notations as in [5, Section 8.1], we define the class

1
® = ——Sfgh © (€ord @ €ord ® €ord) © (Wp ® 1 ® 1) 0K 0 HS o d, (Det)

ap(f)
inside the group
1 1 rd S 1 rd S 1 rd *
H ((@,H (r,D, )" @ H(L, D, )" @ H(I',D,,)" (2 -k ))

For a Z,-algebra A, let L,,(A) be defined as in [5, p. 17]. We will

sometimes denote L,,(Z,) simply by L,,. Let Iijc/ 2 Zy — Af denote
the map z — w/?(2)[2]'/? and let r@}/z = n;/Z 0 €cyc. According to [5,

Equation (90)], the A-module H*(T', D, )°*® specializes to H*(T', L,,)°"" at
weight [ = ry + 2. Therefore, the class (1) yields a class

K(Q) c H! (Q, ot (F, D;l)ord ®H1(F, er)ord ®H1(F, er)ord(2_r2 _ '{}/2))

We define Hecke operators T, [d]y acting on group cohomology as in [2,
Section 5.3]. Let V¢(N) be the maximal quotient of H*(T', D, )°™(1) @4 Ag
on which the Hecke operators Té for primes ¢ t+ N act as multiplication
by aq(f) and the diamond operators [d]’y act as multiplication by x¢(d)
(actually, the character xs is trivial in our case). We define T43(N) and
T,+(N) in a similar way as quotients of H*(T', L, (0))°*4(1). Also, let V¢ be
the maximal quotient of H'(I'y (N, p), D, )°"4(1)®4 A¢ on which the Hecke
operators T, act as multiplication by a,(f) and the diamond operators [d]y
act as multiplication by x7(d) and define Ty and Ty in a similar way as
quotients of HY(T'1(Ny, p), Ly, (0))°"4(1).

To shorten notation, we define

V(fagvg*) =V ® Tg & Tg*(_l — T2 — K}/z)a
V(f7g>g*)(N) = Vf(N) ® TQ(N) ® Tg* (N)(_l — T2 - K’}/Q)7
V(f,9,9%)=V; ® T; ® Tgt(—l — Ty — ’@}/2)7
V(E,9,97)(N) = Vi (N) @ T (N) @ TE(N) (=1 =5 = %),
We also introduce
M(fa 979*)f = V; @) T; @ T‘gt (_2 - 2’/“2) @ A(K’_1>[1/p]a
M(f,9,9")(N) = Vg (N) @ T,/ (N) @ TL(N)(=2 — 2r2) ® Ak~ 1)[1/p),

where K : Gg — A* is defined by k(0) = w™/2 2" eeye (7)) [cye ()]

The class £ yields a class

5(2)(f,g,g*) € H' (Q,V(f,g,9")(N)).
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This is the class defined in [5, Equation 155] specialized to weight [ in
the second and third factors. It follows from [5, Corollary 8.2] that the
restriction at p of this class belongs to the group

Hiyy (Qp, V(£,9.97)(N)).

Let SXid(N ,w™) denote the space of Hida families of tame level N, char-
acter w™ and with coefficients in Af. We denote by Sgrfd(N, w™)[f] the
subspace of S{™4(N,w"™) on which the Hecke operators U, and T for £ N
act with the same eigenvalues as on f. Let S;(I'1 (N, p), X4)[9a] denote the
space of modular forms of weight [, level I'; (V, p) and nebentypus x, which
are eigenforms for the Hecke operators U, and Ty for ¢ { N with the same
eigenvalues as g,. We similarly define S;(I'y (N, p), x;*)[g:]. Then, a choice
of level- N test vectors f , g and h for £ , go and g}, respectively, is a choice
of elements

feSTUN,wME], g€ SiT1N,p), Xo)lgal, € SITLN,p), x; gal,

each of which can be written, in terms of their g-expansions, as

flg)= Y rh-fd,

0<d|N/N;
g =Y. ri-gale”),
0<d|N/N,
hag)= > rh-gila”),
0<d|N/N,

with 7"2 € Af and rg,r(’} € O. Let
@}« SR (Ng,w™) — SZY(N,w™)

denote the map defined by

O(q)— > rh-o(gh).

0<d|N/N;
Similarly, we define
w; 51T (Ng. p)s xg) — Si(T1(N, p), Xg),
@) Si(T1(Ng,p), xy ') — SiT1(N,p),x,; ).
Therefore, we can write f = @i (f), § = w;(g9a) and h = @} (9a) At
the same time, for each d | N/Ny, the map vy : Y1(N,p) — Y1(Ny,p),

corresponding to multiplication by d on the complex upper half-plane under
the standard complex uniformizations, yields a pushforward map

var : HY(T1(N, p), Dl ) — H'(T'1(Ny,p), D)
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which induces a map
Vdx - Vf(N) — Vs.
Let wg, = > o< dIN/N; rflvd*. Let 7z and ns denote the differentials attached
to f and f, respectively, in [5, Equation (122)]. Then,
(x,mz) = (wg, (x),ne) forall x € Vg (N).
Similarly, we can define maps
@y, @y, H'(T1(N,p), Lr,) — H' (T(Ny,p), L),
which induce maps

Wys : Ty(N) — Ty, wy, : Ty-(N) — Tye.

Let wy, wy,,, wy, and w,: denote the differentials attached to g, ga, h and
g2, respectively, in [5, Equation (30)]. Then,

(z,wy) = (@ye(2),wy,) forall z € T, (N),

(z,wy) = (wy=(2),wy2) forallz e TJr (N)

For a choice of level-N test vectors f = @i (f), § = @w3(9a), h =@} (9a),
we have a map

Log(f, 5,h) : Hya (@, V(E,9,9°)(N)) — Ae[1/p)

obtained from the map defined in [5, Proposition 7.3] by specializing to
weight [ the second and third variables. It follows from [5, Theorem A]
that the image of res,(k(®(f, g,h)) under the map above is an element
Z,(f,3,h) € Ag[l/p] such that, for all k' > 2 satisfying
k' =k (mod 2(p — 1)),
(fk,,é g % h>Np

R

Let Z%gh be the map defined in [5, Proposition 7.1] specialized to weight
[ in the second and third variables. Then, we obtain a map

(Lggn(=)smgogwy) - H (Qp, M (£, 9,9%) ;(N)) — A @ A[1/p].
The map Sog(f' , G, lvz) is obtained by composing the natural projection
Hpyy (Qp, V(£,9.9%)(N)) — H' (Qp, V(£,9,97) (N))

with a suitable specialization of the map above.

Now, from the previous discussion, we have that

(Lo (=) pwywy) = (Legags (@, © Ty ® @y, ) (=), Wy gz )
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where the map Efga g: is defined in a way analogous to the way in which
the map /j?gﬁ is defined in [5, Proposition 7.1]. Therefore, as before, the
composition of the natural projection

Hpyy (Qp, V(£,9.9%)) — H' (Qp, V(f,9.97)5)
with a suitable specialization of the map
(Legogs (—)smwgawgs )+ H (Qp, M(£,9,9%)5) — A & A[1/p]
yields a map

Log(f, ga, g5)  Hb (Qp, V(E, 9,9%)) — Ag[1/p].

Moreover, for any choice of test vectors f,

v

g, h as above, we have
Log(f, ga, 9 (res, (w5, © @y« @ w5, ) (6P (£, 9,97)))) = L (F, 6, 1)

It follows from [22, Sections 3.5-6 and Theorem 7.1] that there exist
level-N test vectors f, g, h for which, under some technical assumptions, we
have a precise formula for the specializations of %, (£, g, h) at even weights

k' > 21. We fix such test vectors. Then, we define
k3 = (¢, ® g4 @ w;%*)/s@)

in the group
Hl <(@7 Hl(Fl(Nf7p)’ 'D;l)ord @ Hl(Fl(Ngap)v Lr2)0rd
& H' (T (Ny,p), L) (2 = 72 — k%))
and let
s (E,9,9") € H'(Q, Ve(—r}/%) ® ad(T,))

be the class obtained from x(®) by projection to the isotypic quotients for
f, g and g*. Then

£0g(f, ga g5) (res, (v (F,9,9%))) = L (£, 4, 7).
Observe that the map
WN, : H' (Fl(]vgvp)7 er (O))Ord — H' (Fl(]vgvp)7 LT2 (O))Ord

defined in [5, Section 4.1.2] descends to a map wy, : Tg — Tg-. Taking the
Galois action into account, this is actually a map Ty — Tg-(x,). Similarly,
we have a map wy, : Tg- — T (xg_l). (We are denoting all these maps in
the same way in the hope that this will not cause any confusion.)

Let s : Ty ® Ty« — Ty« ® Ty be the map which interchanges the two
factors. Then, the composition 5 = (—=Ny)™" s o (wn,,wn,) defines an
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endomorphism of ad(7,) = Ty ® Ty«(—1 — r2). This endomorphism is in
fact an involution.

LeEMMA 3.1. — Consider the direct sum decomposition
ad(T,) = ad"(T,) @ 1.
Then:
(1) ad’(Ty) is the 1-eigenspace for 3;
(2) 1 is the —1-eigenspace for s.

Proof. — As in [5, p. 19], there is a bilinear form L,,(O)Q L,
det"2. Via cup-product and the isomorphism HZ, (I'1(Ng,p),
we obtain a pairing

Hyo (D1 (Ng, ), Ly (0))7 % Hyoo(T1(Ny, p), Liy (0)° — Oz + 1),

par ( par

.(0) = 0®
0) = O(1),

where H], stands for parabolic cohomology as defined in [17, p. 427]. Since
cup-product is anti-commutative in degree 1, the pairing above satisfies
(o, B) = (=1)"2 1B, a) for any «, B in HL, (T'1(Ng,p), Ly, (0))°". On the

par

other hand, the operator wy, acting on HY, .(I'1(Ny, p), Ly, (0))°" satisfies

wJQ\, = (=Ny)™ and (wy,a, wn,B) = Ng2(a, B) for any elements o, 3 €

Hpar(Fl(N p), L, (0))°*4. Therefore we have

(o, wn, B) = wN, wN B) = (—=1)*(wn,a, B) = —(B,wN, ).

1
N’I"Q <
In particular, we deduce that (o, wy,a) = 0.

We can realize Ty (resp. Ty+) as the maximal quotient of

Hyor(D1(Ng, ), L, (0))

par(

on which the Hecke operators Ty act as multiplication by a,(g) (resp.
aq(g*)) and the diamond operators [dM\/g act as multiplication by x,(d)
(resp. xg(d)™!). Thus we obtain a commutative diagram

Hp, (T1(Ng, p), Ly, (0))"¢ x Hy, (T1(Ng, p), Liy (0) — O(r2 + 1)

par par
1 |
Ty x Ty~ O(ra + 1).
Therefore, for any elements «, 3 € T,, we have (o, wn, ) = — (B, wn, ).
The lemma follows easily from this. O

We will assume in the remaining of this section that Ny | Ny, so that
N = Ny. Under this assumption, our test vectors are f=r, 3(q) = 77 (ga)
and h = 75 (%), up to multiplication by some constants in Frac A¢ which
do not affect the discussion that follows.
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Let sy, denote the operator which acts on the group
H'(Q H'(T,D},)™ & H'(T1(Ny,p), Ly,)™
2 or 1/2
& H'(T1(Ny,p), L) (2 = 72 — k%))
by interchanging the second and third factors and define
gN_q = (—Ng)irzsNg o (1 ®’ZUNg ® ng).
PROPOSITION 3.2. — The class ) (f, g, g*) satisfies
sn, (O£, 9,97) = =[N] 7wy © 1@ DO (£, g, 7).
In particular, when we consider the direct sum decomposition
H' (Q, Ve(—r*) & ad(T,))
= HY(Q,Ve(—r}?) & ad’(T)) ® H'(Q, Ve(—k}?)),
the class k) (f, g, g*) lies in the summand
(1) H'(Q.Ve(—ry*) & ad(Ty), if () = 1;
(2) HY(QVe(—ry?)), if e(f) = —1.
Proof. — We have the following commutative diagram
d *
HY(Y, AL @A, @A, (—17)) = H (Y2, AL KA, KA, (—K") @ Zp(2))
J,wN J{(’wNﬂUN;wN)
dx *
Hgt(ya A;l ®A7'2 ®A"'2(_H*)) — H:}t (YS’ A:"l &A’/‘z ‘ZA"?(_K‘ ) ®Zp(2))7

where wy stands here for the operator defined in [5, Section 2.3.1] and
(wy,wn,wy) is defined in a similar way for the cohomology of Y3. It
follows from the definition of Det that wy(Det) = Det. Since wywy =

[plywnwy, and sggh © ([plvwy @ wy @ wn) = [ply(WN @ Wy ® WN) © Stgh,
it follows that

(wn @ wy ® wy)rY = k(N ([Ply @ 1© 1M,
Since (w3 ® 1 ® 1) acts as multiplication by [-N]® 1 ® 1, we deduce that
(10 wy © wn)s® = w5 (V) ([ply oy © 1@ 1s)
and therefore that
N (1@ wy @ wy)s® = &, (N (plywy ©1© 1),
Let sy denote the operator which acts on the group

Hl (Q,Hl(lﬂ,p;l)ord @ HI(F, LT2)ord @ ]-7[1(1-\7 LT2)ord(2 — iy — R;/Z))
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by interchanging the second and third factors. Then, we have that
syo(l®wy @uwy) =(1®wy @wy) o SN,

and, taking into account the definition of Det and the fact that the Kiin-
neth isomorphism

HeBt(Yg’ A;j X A’l“z X ‘A‘Tz) = H;t(Y@, A:Al) ® Helt(Y@vAm) ® Helt(y@vA’l"Q)

is given by cup-product, which is anti-commutative in degree 1 (cf. the proof
of [27, Proposition 4.1.2]), we deduce that sy (k(?)) = (—1)m1/2+r2+1,(2),
Define sy = (—N) sy o (1 ® wy ® wy). Then, we have that

Sn(r®) = (1) (N ([plyvwn © 1@ DR®.
Since (1 ® M1« ® T24) 058 = 5N, © (1 ® M1« ® T24), it follows that
n, (K9) = =[N ([plywy @ 1@ 1))
and therefore that
sn, (RV(F,9,97)) = —[N]72(wy @ 1@ Dr® (£, g, 7).

Finally, it follows from [21, Proposition 2.3.6] that —[N]~'/2wy acts on V¢
as multiplication by &(f), so the last part of the proposition follows from
the previous lemma. (|

Remark 3.3. — From the definition of the map

Eog(f,ga,gZ) : H&al (QZNV(f)gag*)) — Af[l/p]v

one can see that it factors through the cohomology of V(f,g,¢")s, and
therefore that it factors through

Hi o (Qp, V(£,9,9%)) — H(Qp, Ve(—5}%) ® ad(Ty))
— H (Q,, V(£,9,9%)/) -

Therefore, without the need to appeal to the reciprocity law, it follows from
Proposition 3.2 that when e(f) = —1 we have

Log(f, ga, g5 res, (kP (£, g,9%)) = 0.

Of course, this can also be seen from the reciprocity law: Since e(f) = —1
forces the vanishing of L(fy/,k'/2) for all k' = k (mod 2(p — 1)), and this
is a factor of L(fyr ® g ® g*,¢), it follows form the interpolation formula
that %, (f, 3, h) is identically zero.
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Remark 3.4. — As noted above, the discussion in this section is unnec-
essary for the applications that we will discuss. Indeed, as observed in the
previous remark, the reciprocity law factors through

HY(Qp, Ve(—5 %) ® ad(Ty)).

Therefore, the nonvanishing of the triple product p-adic L-function at some
point (necessarily when e(f) = +1) implies that the image of x3) in this
group is nontrivial, which is what we will actually need. However, it is
interesting that we can already see from the geometric construction that
the class lies where it is expected.

Remark 3.5. — Let us discuss the sign in a little bit more detail. In order
to construct the p-adic L-function attached to (f, g, g*), it is required in [22]
that the local signs at finite primes of the arithmetic specializations of the
representation V(f, g, g*) = V¢ ® Vg ® Vg+(—1 — k*) are all equal to 1. In
particular, in our case, this imposes the condition that e;(fy/) = e¢(fiy ®
ad’(g)) for all £ | N and for all ¥ = k (mod 2(p — 1)). The corresponding
signs at infinity can be computed from the Hodge types {(p,q), (¢,p)} as
in [10, Section 5.3]. For the representation V¢, ® ad"(V,), the Hodge types
are as follows:

(1) {(K/2+1—-2,-K/2—-1+1),(-K/2—-1+1,FE/24+1-2)}

(2) {(K/2-1,-K/2),(=K'/2,K' /2 = 1)};

3) {(K/)2—1,-K/241-1),(-K/2+1-1,K/2-1)}.
After that, and following the results of [10, point 5.3], we get that the
sign e.(f ® ad®(g)) is (=1)¥/2 if k' > 21 and (—1)"**/2 if k' < 2I. The
sign of e (fi), however, is always equal to (—1)’“//2. Therefore, in the
balanced region (i.e. for k' < 21), the motives attached to f;, and £y ®ad®(g)
have opposite global signs. Since it is in this region that the corresponding
specializations of the class x®)(f, g, g*) belong to the Bloch-Kato Selmer
group, we expect the behaviour that was shown in Proposition 3.2.

4. The p-adic L-function

In this section, we keep the assumption that (p) = pp splits in K. In
addition, from now on, for simplicity we assume that p { hx, where hx is
the class number of K.

Let g € S;(Ng, x4) be an newform not of CM-type. Let ¢ be an ideal of
Ok coprime to p, and fix a Hecke character v of infinity type (—1,0) and
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conductor ¢p® with e € {0,1}. We assume that the central character e, of
g is of the form

(HO) €y = Exgw'? for some even integer 71,

where w is the Teichmiller character.

4.1. Lifting of automorphic representations

Let m be the cuspidal automorphic representation of GL2(Ag) attached
to g. The central character of 7 is the adelic character w, defined by the
condition that for any prime ¢ { Ny and any uniformizer w, we have
wg.p(wg) = Xg(q). Since p t Ny, the local component 7, is a spherical
representation, and it follows from [8, Theorem 4.6.4] and its proof that m,
is isomorphic to the principal series m(x, x~*wg), where x is the unramified
character of Q defined by x(p) = ap(g)p(l’l)m, being ay,(g) the p-unit
root of the p-th Hecke polynomial of g.

Since we are assuming that ¢ is not of CM-type, and in particular it
does not have CM by K, it follows from [14, Proposition 2.3.3] that =
admits, adopting the terminology of [14], a base change lifting to a cuspidal
automorphic representation mx of GLa(Ag). We fix such a lifting. Observe
that if p,p are the places of K above p, then mp p >~ mp 5 >~ m).

From the assumption that g is not of CM-type we deduce that there
is no non-trivial character n of K X\Aﬁ such that mx ~ 7mx ® 1. Indeed,
the existence of such a character would imply that there exists a quadratic
extension L of K such that, for all prime ¢, the restriction to G of the
{-adic Galois representation attached to g is induced from a character of
G, which is not possible by [28, Theorem 2.1]. Now, it follows from [14,
Theorem 9.3] that 7x admits an adjoint lifting to a cuspidal automorphic
representation ITyqo(4) of GL3(Ak ). Fix such a lifting and define

T := T pqo(g) @ Yol - [V/*,

Observe that II, ~ IIj ~ 7(x%w,}, 1, x 2wy p) ® ol - [/? and it fol-
lows from the definition of y that X2w;11) # | - |*Y/2 and therefore that
(2w, 1,1, x2wy,) = Indg™ (x?w, L, 1, x 2wy,p), where B denotes the
Borel subgroup of GL3(Q,).

4.2. Descent to unitary groups

Let U(2,1) be the quasi-split unitary group corresponding to the qua-
dratic extension K/Q. Let ® € GL3(K) be the matrix whose entries are
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®;; = (—1)"718; 4—;. Then we can describe U(2, 1) by specifying its functor
of points:

U2,1)(R) = {g € GL3(R®q K) : g0'g=o}

for any Q-algebra R.
Let U(3) be the definite unitary group whose functor of points is given by

UB)(R) = {g € GLs(Rag K) : g'g=1s}.

Given a representation p of GL3(Af), let p be the representation defined
on the same space by p(x) = p(Z~1). Then, the representation IT defined
above satisfies II ~ II, and so it follows from [29, Theorem 13.3.3] that there
exists a cuspidal automorphic representation o’ of U(2,1)(Ag) whose base
change to K is isomorphic to II. Fix such a representation ¢’. Observe that
ol ~ m(x?w, 1, 1, X 2wy) ® o - |'/2 under the identification U(2,1)(Q,) =
GL3(Qp). Also, from [28, Proposition 13.2.2], the local representation o’
is square-integrable, so, applying [28, Proposition 14.6.2], we can transfer
o’ to a representation o of U(3). The local components of ¢ at finite primes
agree with those of ¢’, so in particular we have that o, ~ o-;).

Remark 4.1. — Let GU(3) be the definite unitary similitude group whose
functor of points is given by

GU(3)(R) = {g € GL3(R®q K) : g'g=v(g)Is for some v(g) € R*}.

As explained in [6, Section 1.8], one can extend o to an irreducible auto-
morphic representation of GU(3) by choosing an extension of the central
character of o to the center of GU(3).

4.3. p-adic L-functions for unitary groups

A construction of p-adic L-functions for unitary groups is given in [13],
and, in great generality in [11]. Here we deduce from these works the ex-
istence of an anticyclotomic p-adic L-function for the conjugate self-dual
representation V' in Section 2.2.

Let O be the ring of integers of a finite extension of @, containing the
values of g, and write

Aa.C — O[[F&CH

for the anticyclotomic Iwasawa algebra, where I'*¢ is the Galois group of
the anticyclotomic Z,-extension of K.
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We will need to consider the following CM periods, as they are introduced
in [4]:
o Q. € C* is the complex period attached to K defined in [4, Equa-

tion (2-15)];
e ), € C; is the p-adic period attached to K defined in [4, Equa-
tion (2-17)].
THEOREM 4.2. — There exists an element

Lp(ado(gK) ® 1) € Frac A*

such that for all characters & of I'*® crystalline at both p and p and cor-
responding to a Hecke character of infinity type (—n,n) with n = ry/2
(mod p—1) and n > 1 — 1, we have

Ly(ad’(gx) ® v0)(€)

0 6n+3 o
- (Q) 7T (n, 1) £ (ad(g), 10€)* - L(ad® (gx) @955 16w, 0),
where:
e I(n,)=(mn+1-1!nl-(n—1+1),
o &ad’(g), o) = (1 — b D0 g (ot D)
(1 — Balbole 1))y

agp

Proof. — Let o be the irreducible automorphic representation of U(3)
introduced in the previous subsection. Let ¥ be the set of places of Q
consisting of p, infinity, the primes dividing Dg, and the primes at which
o ramifies. On account of Remark 4.1, the main result of [13] yields an
element . € A*[1/p] such that, for all £ as in the statement, satisfies

6n+3
270 (F2) 60 exle) 1766w 0

where ¢ is the contragredient of o, and £, (§) and £ (§) are certain modified
Euler factors at p and oo, respectively. Since ¥ contains p, infinity, and all
the ramified primes, we have that

LE(F, 671w, 0) = L¥(ad’(gr) @ 1 € 'w™, 0).

Since we are assuming that p splits in K, the form of the modified Euler
factor at p can be extracted from [11, Equation (86)]. Up to a nonzero
rational factor independent of &, it is given by

Ep(ad’(g), $o€)*

() = T (o) @ v e 1w, 0)
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The form of the modified Euler factor at infinity can be extracted
from [12, Equation (2.3.1)]. This formula, with a =3, =0, 7 = (1,0, =),
r=2n+ 2 and s = 0, yields, up to a nonzero rational factor independent

of &,
Eoo(§) = (2m1) "7 T(n, 1).
Finally, the Euler factors at primes £ € ¥\ {p, oo} can be p-adically in-

terpolated by certain elements P, € A**, and, multiplying by their inverses,
we obtain the p-adic L-function in the statement. (I

4.4. CM Hida family

Let 'k be the Galois group of the Zf,—extension K. /K and put
I'y = Gal (Kp= /K) ~7Z

where Ky is the maximal subfield of K., unramified outside of p, so that
Ky is the Zy-extension of K inside the ray class field K (p°°). Since we
are assuming that p { hg, viewing 1 + pZ, as a subgroup of le(’p, the
restriction of the (geometrically normalized) Artin map to K, induces an
isomorphism arty : 1+ pZ, ~I'y. Let v, € I', be the topological generator
corresponding to 1 + p under this isomorphism and, for the variable S, let
Vs : g — Z,[S]* be the character given by

Us(o) = (1+9)",

where I(0) € Z, is defined by o] Kpoo = fy,lj(g). Consider the formal g-
expansion
(4.1) 04,(S)(@) == Y Yoloa)¥s" (ca)g™ ) € O[S][q],

(ape)=1
where o, € Gal (K (cp>)/K) is the Artin symbol of a. Then, for every
k > 2, the specialization of 6, at S = (1+p)*~2 — 1 is given by the theta
series
= > (@M 2(a)gN® € S (D N(c)p, w1 ),
(a,pc)=1
where ) is the unique (since p { hx) Hecke character of infinity type (—1,0)

and conductor p whose p-adic avatar factors through I'y. In particular, fo
is the ordinary p-stabilization of 6y, .

TOME 75 (2025), FASCICULE 1



314 Ratl ALONSO, Francesc CASTELLA & Oscar RIVERO

Remark 4.3. — If ¢ is a Hecke character of infinity type (1 — k,0) as in
Section 2.2, then vy := 1¥A?~* is a Hecke character as above (in particular,
satisfying (HO) with e.g. 71 = k — 2), and so the resulting fj recovers the
p-stabilization of 6y. From now on we shall always assume that ¢ and g
are related in this manner, and refer to f = 6y, as the CM Hida family
attached to ¥ (or vy).

4.5. A factorization formula

In this section we prove a factorization formula relating the p-adic L-
function attached to V' in Theorem 4.2 to anticyclotomic p-adic L-functions
attached to the other two representations in the decomposition (2.1).

Put N = lem(Ny, Ny), where Ny, := DgN(c). In addition to the previous
hypotheses, from now on we shall also assume that:

(a) €¢(Vygg+) = +1 for all primes £ | N,

(b) ged(Ng, Ny) is squarefree.
With notations as in Remark 2.3, here /(V}44+) denotes the epsilon-factor
of the Weil-Deligne representation attached to the restriction of Vjg,-
to GQZ'

Note that it follows from (HO) that the Galois representation of the Hida
family f = 6., attached to 1 is residually irreducible and p-distinguished
(see also [25, Remark 5.1.3]). For the following result, we adopt the defini-
tion of congruence ideal in [22, Section 3.3].

THEOREM 4.4. — Under the above hypotheses, there exists an element
Zy(ad(gx) ® ) € Frac A*

such that for all characters £ of I'*¢ crystalline at both p and p and cor-
responding to a Hecke character of infinity type (—n,n) with n = r1/2
(mod p—1) and n > 1 — 1, we have

Zy(ad(gx) © 0)(€)*
Ep(ad(g), 1o)? 'HT .L(ad(gK)®¢o_lfflwn70)

=I'(n,01)- - J
N NS ERCAE ay @O Oy, Opg, )
where:
o I'(n,l,l)=(n+1—-1!(n)2 - (n—1+1),
n . 2
o &,(ad(g),1h0f) = (1 _ %(woé:}p )(P)) _ (1 _ (ot : )(P))
(1 _ ﬁg(woéuf”)(lﬂ))
agp ’
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o Eo(o) = (1— L) & (yog) = (1 - Lot ) ),
e 74 is an explicit nonzero rational number independent of n,
® Oy.¢, is the theta series of weight 2n + 2 attached to &, =
Pobw |- |7
Moreover, if H is any generator of the congruence ideal of 8, then H -
Z(ad(gk) ® 1o) belongs to A*°.

Proof. — This is essentially a reformulation of [22, Theorem A] special-
ized to our setting. Let f = 8, be the Hida family attached to the Hecke
character 1 as in (4.1), with associated big Galois representation V¢, and
denote by V(f, g, ¢*) the Kummer self-dual twist of the triple tensor prod-
uct Ve®oT, @0 T, introduced in [2, Section 7.1] (and recalled in Section 3
above). Since Vg o~ Ind% (15 ' Ws), we immediately find that

V(£,g,9%) ~ ad(T,) @ Ind2 (g5 '™ /2w 772,

where for a character x of G we denote by x” the composition of y with
the action of the non-trivial automorphism 7 of K/Q, and put x'=7 :=
x(x7)~h

By [22, Theorem A], attached to (£, g, ¢*) (and a specific choice of level-
N test vectors for this triple), there is an “unbalanced” triple product p-
adic L-function .Z,(f, g,¢*) € Frac O[I',] interpolating, for all & = ry + 2
(mod 2(p — 1)) with ¥ > 2I, the (central) values at s = 0 of the triple
product L-function

L(V(fr.9,9%),8) = L(ad(gx) @ ¥y '€ w2, 5),

where we put £ to denote the specialization of \I/(STfl)/2 at S = (1+p)k/_2—1,
so €71 is a character of T'®¢ crystalline at both p and p corresponding to a
Hecke character of infinity type (—(k'/2—1),k'/2—1). Taking .Z,(ad(gx ) ®
o) to be the image of .Z,(f, g, g*) under the map Frac O[T'y] — Frac A*°
determined by v, + vy ~1 we thus see that the result follows from [22,
Theorem A]. O

We next discuss an anticyclotomic p-adic L-function associated with V',
arising from a suitable restriction of Katz’s p-adic L-function.

Denote by ¥ the set of algebraic Hecke characters € of K for which s =0
is a critical point for L(&, s) in the sense of Deligne. This set can be written
as the disjoint union ¥ = ¥, U 35, where

Y, = {£ € ¥ of infinity type (a,b), with a
Y5 = {£ € X of infinity type (a,b), with a
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Note that the involution £ — &7 takes characters in Xy, to characters in X,
and vice versa.

Let G. = Gal (K (cp>)/K) be the Galois group of the ray class field
of K of conductor ¢p>, and denote by Z," the completion of the ring of
integers of the maximal unramified extension of Q,. The following result is
originally due to Katz.

THEOREM 4.5. — There exists an element £F#*(K) € 3 [G.] uniquely
characterized by the property that for every character of I'¢ corresponding
to a Hecke character £ € ¥, of infinity type (k1, k2) and conductor dividing
¢ we have

k1—ko k2
g = (g) k- ()
- (- EB) - Lele,0),

where L(&, s) is the L-function of §& with the Euler factors at the primes
[|c removed. Moreover, we have the functional equation

LK) (€) = LK) (ETTNTY,
where the equality is up to a p-adic unit.

Proof. — See [30, Theorem I1.4.14] for a construction of Zf2*(K) (cor-
responding to the measure on G, denoted by p(cp™) in [30]), and [30,
Theorem I1.6.4] for the functional equation. O

Assume that ¢ is fixed under complex conjugation, i.e., ¢ = ¢. Denote
by A, the torsion subgroup of G, and put I' := G./A, ~ Zz%, which is
identified with the Galois group of the unique Zi—extension K /K. We fix
a decomposition

(4.2) G.~ A, xTg.

Put 19 = vo|a, and 1y = 1§~ ', and note that the latter defines a finite
order anticyclotomic Hecke character of conductor dividing c¢p® for some
s > 0. Denote by ,,iﬂplijzz(K )~ the image of .Z,*2"(K) under the composite
map

Z, 1G] = 2y [Tk] — Z,7 [T,

where the first arrow is the projection defined by zﬁa and the second arrow
is given by v+ 77! for y € I'k.

From now on we shall assume that the above ¢ and g satisfy the condi-
tions (H1)—(H4) in the following result.
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PROPOSITION 4.6. — In addition to (HO), assume that:

(H1) ¢ is only divisible by primes that are split in K;

(H2) @a has order prime-to-p and the prime-to-p part of its conductor
is exactly c¢;

(H3) @(ﬂva # 1 for all primes v | p in K;

(H4) v, has order at least 3.

Then, as an ideal of 7 [[2¢], the congruence ideal C'(0y,) is generated by

huc - L33 (K) ™

where hg is the class number of K.

Proof. — A generator of C(6,) is given by a congruence power series
H(0,,) attached to 6, as in [18]. By our assumptions, this H(6y,) cor-
responds to a branch character satisfying the hypotheses (1)—(4) in [18,
p. 466], so as noted in p. 469 of [18], the result follows from the proof of
the anticyclotomic Iwasawa main conjecture by Hida—Tilouine [19, 20] and
Hida [18]. m

DEFINITION 4.7. — Put
abz /7o —\ 2
Ly(ad(gx) @ o) := (ZLp(ad(gr) ® 1) - hic - Lo (K) ™),
which by Theorem 4.4 and Proposition 4.6 defines an element in Z," [I'*°].

We can now derive an anticyclotomic analogue of Dasgupta’s factoriza-
tion [9, Theorem 1], relating the p-adic L-function of Theorem 4.4 to the
product of the p-adic L-functions in Theorem 4.2 and Theorem 4.5. Simi-
larly as in [9], our result is a p-adic analogue of the factorization of complex
L-functions

L(ad(gx) ® X, 8) = L(ad’(gx) ® X, 5) - L(x; 9)
arising from the decomposition of G k-representations
ad(Vy) @ x = (ad’(Vy) © x) ® x-

However, our proof is largely simplified by the fact that the three p-adic
L-functions involved have a Zariski dense overlapping set of characters in
the range of interpolation.

Our factorization formula will in fact involve the following anticyclotomic
projection of the Katz p-adic L-function.
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DEFINITION 4.8. — Viewing v as a character of G, write 1y = g -1
according to the factorization (4.2), with 1)y (resp. ¥r) a character of A,
(resp. Uk ). We denote by 2, (¢pg) € Zu"[I*°] the image of £,*#*(K)
under the composite map

Zy' 1G] — Zy [Tk] = Z) [Tk — Z," [T*] — Z, [T,

where the first arrow is given by the projection defined by 1y Ywri/2 | the
second by twisting by ! the third is the natural projection, and the last
arrow is the involution given by v + v~! for v € I'*. In other words,
LY (o)~ is the element of Z1'[*°] defined by

LEN () €) = LK) (51w
for all characters £ of T'?¢.
Denote by 7 the product of constants [ | ¢|N Te appearing in Theorem 4.4.
THEOREM 4.9. — The following equality holds
Ly(ad(gr) ® o) = u- Ly(ad®(gx) @ to) - L (1ho) ™" - 7n

where v is a unit in (A*)*

Proof. — Let £ be a character of I'*° as in the statement of Theorem 4.2
and Theorem 4.4, hence in particular corresponding to a Hecke character,
still denoted by &, of infinity type (—n,n) with n > [ —1. Noting that y,¢,
has weight 2n + 2, from Hida’s formula for the adjoint L-value (see [19,
Theorem 7.1]) and Dirichlet’s class number formula we obtain (cf. [24
p. 414])

(43) <6w0£n’ 0¢0§w>

1 27h
= (2n+ 1) T 1_7-517771)7

DK 9dn+4,2n+3 w}(\/ﬁ L(tg
where wy is the number of units in Q. Since L(z/;é_Tfl‘T,l) corre-
sponds to the value at s = 0 of the L-function for the Hecke character
Yy ¢ INT of infinity type (2n + 2, —2n), using (4.3) the interpolation
formula in Theorem 4.5 can be rewritten as

LK) (g 1TTINTY
Qp >4”+2 26n+4 4n—+2 Wk

Qoo DK 2n+1 D%{ hK

(Yot ™) (») (Yot ™) (9)
’ <1 -~ teem) (1= ) - (CosnsOuse)
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Thus together with Theorem 4.4 we find that

(4.4) Zp(ad(gr) ® vo)(£)? - L (K) (g "¢ "N - b

Qp >8n+4 28n+47.r4n 9
— R 7nlﬂn,l,l5ad9a¢§
(Qm T L 1h0) - £(ad(9), o)

By - L(ad(gx) @ g W™, 0).
On the other hand, we have the factorization

(4.5) L(ad(gx) ® thy '€ 'w"™,0)
= L(ad’(g9x) ® ¥ '€ 1", 0) - LYy "€ w™, 0).

The character 1)y l¢=1w™ has infinity type (n+1,—n), and so is in the
range of interpolation for fp{{ftz(K ). Thus combining Theorem 4.2 and
Theorem 4.5 and using (4.5) we find

(4.6)  Ly(ad’(gx) ©v0)(€) - Ly (K) (g 1€ Hw™)

6n—+3
_ (Qp) -3 D (n, 1) - £(ad’(g), Yof)?

y (&;)W ol (\Z%)n (1= p ok (p)?

x L(ad(gr) ® wal *1w”,0).

Comparing (4.4) and (4.6) we see that their ratio is given by 27+4 .
m—%—s - Tn; since for varying n the first two factors are interpolated
by a unit in (A*¢)*, applying the functional equation of Theorem 4.5 this
gives the result. 0

5. The Euler system

Let g € S;(Ng, x4) be a newform as in Section 2.1, and let ¢ be a Hecke
character of K of infinity type (1 — k,0) for some even integer k > 2,
conductor ¢ prime to p, and central character ex. Recall from Section 4
that we assume that (p) = pp splits in K and (for simplicity) that p does
not divide the class number of K.
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5.1. Modified diagonal cycles

Recall that, for a positive integer m, we write K[m] for the maximal
p-extension inside the ring class field of K of conductor m. Recall further
that H (K[mp>],T) = Hm_ HY(K[mp"],T). Then, for a positive integer
m, let

(5.1) Kip ad(g)moo0 € Hiv (K[mp™], T2 )

be the class Ky, g g ,m,co constructed in [2, Theorem 6.5]. (For m = 1, this is
essentially the class k(®) (f, g, g*) defined in Section 3, after an application of
Shapiro’s lemma and twisting by the inverse of the anticyclotomic character
¢ in (5.4) below.) Since we have a direct sum decomposition

HY (K [mp™], T2 )
we can project the class fy ad(g),m,c0 t0 €ach of the summands. We de-
note its projection to the first summand as Ky, 440 (g),m,0c- For the following
results, we keep the notations for Selmer groups introduced in Section 2.3.

) = Hy, (K[mp™],T) & Hy, (K[mp™],T"),

THEOREM 5.1. — Let S be the set of all squarefree products of primes
q split in K and coprime to pNyNy, and assume that H*(K[mp®],T) is
torsion-free for every m € S and for every s > 0. There exists a collection
of classes

{Kp,ad0(g),m,00 € Selbal(K[mp™],T) : m € S}

such that whenever m, mq € S with q a prime, we have
-1
COT K [mg)/ K ] (Kip, 00 () maoe) = Pa (Vi Fra ) a0 (g).m.o0-

Proof. — This is an immediate consequence of [2, Theorem 6.5] and [2,
Proposition 6.6]. O

The Euler factors appearing in the previous theorem are not the ones
that we want. Indeed, let ¢ = qq be a prime which splits in K. Then

X
PCI(V;ﬁ(gﬁX) = (1 - wq(;?/)g )Pq(VQX)a

so there is an unwanted extra factor. We now deal with this problem.

DEFINITION 5.2. — Let P’ be the set of primes q { pNyN,, split in K
such that

e ¢ = 1 modulo p,
o T/(Fr, — 1)T is a cyclic Z,-module,
e Fr, — 1 is bijective on T".
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Here Fr, denotes any arithmetic Frobenius element for q. Since TV (1) ~ T
and (T")V(1) = (T")¢, the definition does not depend on this choice.

Remark 5.3. — Under certain conditions, we will show in Proposition 6.3
below that there exists ¢ € Gk such that if ¢ is a prime such that Fr, is
conjugate to o in Gal (K (u,,T,T")/K), then it belongs to P’.

THEOREM 5.4. — Let S8’ be the set of squarefree products of primes in
P’, and assume that H*(K|[mp®],T) is torsion-free for every n € 8" and for
every s > 0. There exists a collection of classes

{Km € Selpa(K[mp™>],T) : me S’}

such that 1 = Ky aq0 and, whenever m, mq € 8’ with q a prime, we

have

(9),1,00

COT K [mq]/ K [m] (Kmg) = Pq(V;Frq_l) Ko,

where q is any of the primes of K above q.

Proof. — We construct the classes k,, by modifying the -classes
Kep,ad®(g),m,co i Theorem 5.1 appropriately as done in the proof of [27,
Theorem 5.3.3].

For each m € &', let T, = Gal (K[mp*>]/K). For each prime q | m, let
F, € §' denote the unique element of I',,, which acts trivially on K[q] and
maps to Fry in '), /o Then, the factor 1 — q*k/QdJ(q)Fq’1 is invertible in
Zp[T'y,]. We now take

—1
—1
- H (1 - k}/Q ) Kw,ado(g),m,oo-

qlm

These classes clearly satisfy the required properties. O

5.2. The explicit reciprocity law

Let Ko denote the anticyclotomic Z,-extension of K and let

Kqp,ad(g),00 € HIlW(K Tad(g))

be the image of the class £y ad(q),1,00 i (5.1) under the corestriction map for
K[p>*]/ K. By [2, Proposition 6.6] we have iy, ad(g),00 € Selpal (Koo Tad(g))
in particular, the restriction resg(£y ad(g),00) lands in the image of the nat-
ural map

bal
Hi (Koo . F2NT,

d(g)>) — Hllw(Koo paTw( ))
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(see (2.3)). Note that this map is an injection under our hypotheses. On
the other hand, let

(52) Hd),adn(g),oo S Selbal(Koo7T)

be the image of the class k1 = £y a40(9),1,00 Of Theorem 5.4 under the
corestriction map. Thus k., ,40(4),0 i the projection of Ky ad(g),00 Onto the
first direct summand in the decomposition

Selbal(Kom Tad( )) Selbal(Kom T) D Selbal(Kom T’),

and since .7, bal(T::i( )) is contained in T, it is clear that

(5.3) res (K ad(g),00) = 1655 (Rep,ade (g) 00)-
DEFINITION 5.5. — Put 19 = ¥A\*~* as in Remark 4.3, and define
(5.4) Ly(ad®(gx) © ) := Twe (Ly(ad®(gx) ® o)),

where Twe @ A*© — A® is the twisting homomorphism for the char-
acter & 1= (A77)K/271 Similarly, define .Z,(ad(gx) ® ¥), f;iﬁtz(K)_,
L,(ad(gx) ® 9¥), and XpKatZ(dz)*’L by twisting the corresponding p-adic
L-functions defined for 1y in Section 4.5.

For the statement of the next result, note that 1y has the same restriction
to A, as .

THEOREM 5.6. — There exists an injective A*°-module map with
pseudo-null cokernel

Log: Hiy (Koo g, 3 (Tog ) — Zp 1]
such that
Log(resy(y a0 (g).00)) = hic - Lyt (K) ™ - Ly(ad(gr) @ ).

Proof. — Let V(f, g,¢*) and V(f, g, ¢9*)s be as in Section 3 (correspond-
ing to Vlgg* and Vgg*, respectively, in the notation of [2, Section 8.2]).
Then, identifying Gg, with Gk, via the composition of the embedding
tp : Q = Q, fixed in the introduction with complex conjugation, we get an
isomorphism of A¢[Gk, |]-modules
(5.5)

V(fvga )f = V ®OT+ [%4) T+( _1/2) a‘*bal(Tw

T—1 2
/-:f o g))®§g[;( )/

cyc

By [2, Theorem 7.4], after extending scalars to Zy", the composition of the
Ag-linear map

Hl(@pav(fag’g*)f) — Af
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of [2, Proposition 7.3] with the isomorphism Z;r®Af ~ Z,*[I'*°] given by

v+ 771 sends the class n(?’)(f g,9") recalled in Section 3 to the product
hic -+ Lyl (K)™ - Zy(ad(gx) © o),

noting that by Proposition 4.6 the first two factors generate the congruence
ideal of f. Taking twists by £ and using the isomorphism

Hiy (Koo s F2 (T ) © &) = H'(Qy, V(£,9,6)5)
induced by (5.5) and using (5.3), the result follows. O

COROLLARY 5.7. — The map Log of Theorem 5.6 satisfies

(SOQ(reSﬁ(’iw,adO(g),oo))2) = (L,’D(ado(gl() ® '(/}) : pratz(w)_7L)
as ideals in Z'[I'*°] @ Q.

Proof. — This is clear from Theorem 5.6 and the factorization in Theo-
rem 4.9. O

6. Verifying the hypotheses

Let g and ¢ be as introduced in Section 2.1 and Section 2.2, respectively.
Recall that, given a rational prime p and a sufficiently large finite extension
E/Q,, we define the G k-representation

V = ad(Vy) (65 (1 - k/2),

where pg : Gg = Autg(V;) ~ GLy(E) is the p-adic Galois representation
attached to g. The aim of this section is to give conditions under which the
hypotheses in the general results of [23] are satisfied for V. Let K (p™)° de-
note the maximal abelian extension of K unramified at primes not dividing
p. Then, the crucial condition that we need to verify is the existence of an
element o € Gal (K /K (p>)°) such that T/(c — 1)T is a free O-module of
rank one, where O is the ring of integers of E.

As in [26, Section 3.1] we define an open subgroup H, C G, a quaternion
algebra By and an algebraic group G,. Let H = H;NG (). Then we have
an adelic representation

Py H — G4(Q)
and representations

Pgp: H — Gg(Qp)

for every rational prime p, and, according to [26, Theorem 2.2.2], for all
but finitely many p we can conjugate pg, so that py ,(H) = Gy4(Zp).

TOME 75 (2025), FASCICULE 1



324 Ratl ALONSO, Francesc CASTELLA & Oscar RIVERO

Let L be a finite extension of K containing the Fourier coefficients of g
and the image of the Hecke character ¢. Let 3 be a prime of L above some
rational prime p, and let F = Lgp.

DEFINITION 6.1. — We say that the prime *J is good if the following
conditions hold:

°p=3;
e p is unramified in By;
e p is coprime to ¢ and Ng;
o pgp(H) = Gy(Zy);
o =Q,.
LEMMA 6.2. — Assume that there is at least one prime which divides

Dy but not Ng. Then, if B is a good prime,
pg’gp(H N GK(poo)o) = SLQ(ZP).

Proof. — The proof of this result is very similar to the proof of [2,
Lemma 8.9]. We include it here for the convenience of the reader.

Let Q(py) be the Galois extension of Q cut out by the representations
pg- It is unramified outside p/N;. Therefore, the condition on Dy implies
that K N Q(py) = Q. Moreover, since any Galois extension of Q contained
in the anticyclotomic Z,-extension K, of K must itself contain K, we also
have Koo N Q(pg) = Q.

The conditions on P imply that

pgp(HN G@(upoo)) = SLa(Zy),

and, from the remarks in the previous paragraph, it follows that

pgﬁB(H N GKOO(HP‘X‘)) = SLQ(ZP)

Finally, since H NG g (pe<yo is a normal subgroup of H NG (4, ) Of index
dividing p — 1 and there are no such subgroups in SLy(Z,), the lemma
follows. O

Now fix a good prime 9P and define Z,[G x]-modules T = ad’ T}, (1/);31)
(1—k/2) and T = Z, (" ) (1 = k/2). Let V =T @ Qp and V' = T' © Q..

PROPOSITION 6.3. — Assume that there is at least one prime which
divides Dk but not N,. Suppose that there exists n € Gk (p)o such that
Xg(M)g(n) is a square modulo p and g (n)* # 1 modulo p. Then there
exists o € Gk (p)o such that

o T'/(c — 1)T is free of rank 1 over Z,,
e o — 1 acts invertibly on T".
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Proof. — We closely follow the proof of [27, Proposition 5.2.1] (see also
the proof of [2, Lemma 5.10] and [26, Proposition 4.2.1]). By the previous
lemma the image of nH N G g (pe)o under p, g3 contains all the elements of

the form
T 0
, TEZLX.
(0 zlm(n)) b

Choose z such that % = x4(n)ip(n). Choose o € nH N G (p=yo whose
image under pg s is given by the element above, with the choice of 2 which
we have just specified. Then, the eigenvalues of o acting on T are 1, 1/);;31(77)
and wq}Q(n) and the eigenvalue of o acting on T’ is w{gl(n). The result
follows from the assumptions on 7. O

7. Applications

Let g € Si(Ng, x4) and ¢ be a Hecke character of K of infinity type
(1 —k,0) for some even integer k > 2 as introduced in Section 2, and recall
that we consider the E-valued G g-representation V in Definition 2.1. We
begin by collecting a set of hypotheses for our later reference.

HYPOTHESES 7.1.

(hl) p splits in K,

(h2) p1hk,

(h3) the conditions in Proposition 4.6 hold,
(h4) g is ordinary at p and non-Eisenstein mod p,
(h5) g is not of CM type,

(h6) P is a good prime in the sense of Definition 6.1,
(h7)

h7) the conditions in Proposition 6.3 hold.

7.1. The Bloch—Kato conjecture

We begin with a standard lemma, whose proof follows from the same
argument as in [2, Lemma 9.1].

LEMMA 7.2. — The Bloch—Kato Selmer group of V' is given by

Selbal(K, V) if2<k< 21,

Sel(K,V) ~
Selynb (K, V) ifk>2
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Let iy ad0(g),00 b€ as in (5.2), and denote by
Kap,ad(g) S Selbal(K, T)

the image of Ky, 4q0(g),00 under the corestriction Hf, (Koo, T) — H' (K, T).

(9

THEOREM 7.3. — Assume hypotheses (h1)—(h7). Then the following im-
plication holds:

Kap ad(g) 7é 0 = dimg Selbal(K7 V) =1.

In particular, if 2 < k < 21 and ki, aq0(5) # 0 then the Bloch-Kato Selmer
group Sel(K,V) is one-dimensional.

Proof. — This follows from the general theory of anticyclotomic Euler
systems developed in [23] (see [2, Section 8] for a summary) applied to the
Euler system constructed in Theorem 5.4. By Proposition 6.3, Hypothe-
ses 7.1 give sufficient conditions for the general results of [23] to apply
in our case. Note also that for the application of these results it suffices
to have an anticyclotomic Euler system consisting of classes indexed by
squarefree products of primes ¢ in a positive density set P’ of primes split
in K, as is the case for the anticyclotomic Euler system of Theorem 5.4
(see Remark 5.3). O

Theorem 7.3 can be viewed as a result towards the Bloch-Kato conjecture
for V in rank 1. The next result establishes cases of the same conjecture in
rank 0.

THEOREM 7.4. — Assume hypotheses (h1)—(h7), and in addition that:

o c¢(Vigg+) = +1 for all primes £ | N,
o gcd(Ny, Ny) is squarefree,
o L(0y,k/2) #0.
If k > 2l then the following implication holds:

L(V,0)#0 = Sel(K,V)=0.
Proof. — By Theorem 4.2 and Definition 5.5 we see that
LV,0)#0 = Ly(ad’(gx) ® ¥)(€uiv) # 0,

where &;.iy is the trivial character of I'*¢. Similarly, from Theorem 4.5 and
Definition 5.5 we see that

L0y, k/2) #0 = L5 () " (€uv) # 0.
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Therefore by the factorization in Theorem 4.9 we thus see that
Lp(ad(gr) ® ¥)(Euiv) # 0, and 80 fiy aq0(4) 7 0 by the explicit reciprocity
law of Corollary 5.7. The result now follows from Theorem 7.3 and global
duality by the same argument as in [2, Theorem 9.5]. O

Remark 7.5. — The hypotheses in Theorem 7.4 and the decomposi-
tion (2.1) imply that the sign of the functional equation for L(V,s) is +1,
and so the nonvanishing of L(V,0) is expected to hold generically.

7.2. The Iwasawa main conjecture

Here we deduce our main result towards the anticyclotomic Iwasawa
main conjecture for V.

Since 1 has central character ex by assumption, its associated theta
series 6, has trivial nebentypus. In the following we denote by £(8,,) its
global root number.

THEOREM 7.6. — Assume hypotheses (h1)—(hT7), and in addition that:
o £4(Vyggr) = +1 for all primes £ | N,
° &‘(aw) - +1,
o gcd(Ng, Ny) is squarefree.
If the p-adic L-function Lp(audO (9x) ® v) is nonzero, then the Pontryagin
dual of Selyny (Koo, A) is A?°-torsion, with

Char pse (Selunb (Koo, 4)Y) D (Ly(ad’ (9x) @ 1) 'ngatZW)_’L)
in Z3'[1*] ®z, Qp.
Proof. — The assumption that (6,;) = +1 implies that the anticyclo-
tomic projection ,,SpratZ (1) 7" is nonzero by Greenberg’s nonvanishing re-

sults [15]. Since L,(ad’(gx) ® ¢) # 0 by hypothesis, together with the
factorization in Theorem 4.9 it follows that

Ly(ad(gx) @) # 0.

By Corollary 5.7, this shows that the class iy aq0(4),00 18 nOD-torsion. By
the general results of [23] (see also [2, Theorem 8.5]), we thus conclude that
Xbal (Koo, A) and Selpa (Ko, T) both have A?“-rank one, with

Selpai (Koo, T') >2

Char pae (Xbal (Koos A)tors) D Charpac <Aa€ " Ky ,adO(

g),00

The result now follows from this by the same argument as in the proof of [2,
Theorem 7.15] based on Poitou-Tate duality and the explicit reciprocity
law of Corollary 5.7. O
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