
Bernoulli 30(4), 2024, 3059–3088
https://doi.org/10.3150/23-BEJ1706

Gaussian differentially private robust mean
estimation and inference
MYEONGHUN YU1,a, ZHAO REN2,b and WEN-XIN ZHOU3,c

1Department of Mathematics, University of California, San Diego, La Jolla, CA, 92093, USA, amyyu@ucsd.edu
2Department of Statistics, University of Pittsburgh, Pittsburgh, PA, 15260, USA, bzren@pitt.edu
3Department of Information and Decision Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA,
cwenxinz@uic.edu

In this paper, we propose differentially private algorithms for robust (multivariate) mean estimation and inference
under heavy-tailed distributions, with a focus on Gaussian differential privacy. First, we provide a comprehensive
analysis of the Huber mean estimator with increasing dimensions, including non-asymptotic deviation bound,
Bahadur representation, and (uniform) Gaussian approximations. Secondly, we privatize the Huber mean estimator
via noisy gradient descent, which is proven to achieve near-optimal statistical guarantees. The key is to characterize
quantitatively the trade-off between statistical accuracy, degree of robustness and privacy level, governed by a
carefully chosen robustification parameter. Finally, we construct private confidence intervals for the proposed
estimator by incorporating a private and robust covariance estimator. Our findings are demonstrated by simulation
studies.
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1. Introduction

We consider the problem of estimating the mean of a random vector x ∈ Rd based on independent
and identically distributed (i.i.d.) samples {xi}ni=1. When the data are generated from heavy-tailed
distributions and/or contaminated with outliers, this problem, known as robust mean estimation, has
received a lot of attention recently in both statistical and machine learning communities; see, for exam-
ple, [6,11,12,15–17,28,30,38,40,41,44] for an unavoidably incomplete overview. For a more thorough
review of robust mean estimation and beyond, we refer to the survey articles [18] and [39].

It is well-known that the sample/empirical mean estimator has desired tail behaviors when the
distribution of x is light-tailed, but its performance deteriorates quickly and becomes sub-optimal
for heavy-tailed distributions. For example, for a Gaussian distribution with mean µ and covari-
ance matrix Σ, the following deviation bound of the sample mean is optimal [11]: for any z ≥ 0,
‖ x̄n − µ‖2 ≤

√
tr(Σ)/n +

√
2‖Σ‖2 · z/n with probability at least 1 − e−z , where x̄n = (1/n)∑n

i=1 xi .
The worst-case analysis in [11] shows that the deviations of the sample estimate significantly increase
when the sample distribution is far from being Gaussian. Over the past decade, significant effort has
been dedicated to developing robust mean estimators, both univariate and multivariate, that offer op-
timal Gaussian-type deviation bounds, as demonstrated above, commonly referred to as sub-Gaussian
deviation bounds. Although certain estimators, such as the median-of-means tournaments [38] and
the trimmed mean estimator [40], are capable of achieving the sharp concentration bound under the
bounded second moment condition, most of them are not computationally feasible. Some recent works
such as [28] and [15] have proposed polynomial-time mean estimation algorithms that achieve sub-
Gaussian rates. However, implementing these algorithms in practice remains a significant challenge. In
contrast, Huber’s M-estimator and its variants considered by [41] are computationally more efficient
as they are directly defined as minima of convex optimization problems. It is worth noting that the M-
estimation approach comes with a minor caveat. Specifically, Proposition 2 of [41] demonstrates that
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Huber’s M-estimator can attain the sub-Gaussian deviation bound within a limited range of z when the
distribution of x has finite q-th moment with q > 2. However, when x only exhibits finite variance, the
estimator attains the sub-optimal deviation bound; see also Remark 1.

While most of the aforementioned results solely focus on statistical properties without taking into
account the potentially sensitive information contained in the data, there has been an increasing de-
mand for data privacy guarantees in statistical methods during the last decade. Differential privacy
(DP), arguably the first widely accepted rigorous definition of data privacy, was introduced in [22] and
has since gained widespread acceptance and success. Informally, a mechanism is said to be differen-
tially private if its distribution over outputs is insensitive to the change of only one datum. Gaussian
differential privacy (GDP) [19] is an attractive variant of DP, especially for statisticians, due to its
neat hypothesis testing interpretation. The study of mean estimation with differential privacy is mostly
limited in the computer science literature. For example, [8,32,35] considered optimal private mean es-
timation in terms of sample complexity under different differential privacy frameworks. Another work
in statistics literature [10] proved minimax optimal mean estimation under squared error loss under DP.
However, these results all depend on the assumption that the underlying distribution is sub-Gaussian.

Recently, the problem of private robust mean estimation under heavy-tailed distributions has gained
increasing interest in the literature. For instance, based on pairwise comparisons, [34] introduced an
algorithm for private mean estimation under concentrate, pure, and (ε,δ)-DP when a distribution has
a bounded q-th moment for q ≥ 2. Additionally, [37] proposed a private iterative filtering-based algo-
rithm designed to estimate the mean vector of heavy-tailed distributions under (ε,δ)-DP, even when
the data is corrupted by arbitrary outliers. [29] utilized the sum-of-squares method to design private
algorithms that are robust to heavy-tailed distribution and arbitrary outliers under pure DP. However,
most of the proposed methods, although achieved by polynomial-time algorithms, are still not as com-
putationally tractable as those based on convex optimization.

Despite the growing interest in developing robust non-private and private mean estimators with sub-
Gaussian deviation bounds, existing results have mainly focused on providing concentration bounds.
Robust inference with heavy-tailed data, however, has often been neglected. Due to the high complexity
of existing robust mean algorithms, it is challenging to track the limiting distributions of the resulting
estimators. Constructing differentially private confidence sets presents an even greater challenge since
it involves accounting for the additional noise needed to guarantee privacy.

The main goal of this paper is to develop an easy-to-implement GDP robust mean estimator and
construct privacy-preserving confidence intervals for heavy-tailed data. To achieve robustness, we
adopt a Huber (robust) loss function with a diverging robustification parameter τ [11,41]. On the other
hand, data privacy is typically guaranteed by randomly perturbing the output of non-private algorithms
[22,42]. In particular, to privately release a non-private Huber-type robust estimator, inspired by [5,50],
we take a noisy optimization approach by adding Gaussian noises in each iteration of the gradient de-
scent method. This noisy gradient decent procedure guarantees that the desired privacy level can still
be met along a sequence of outputs by carefully choosing the scale of the added noise. To make valid
inferences, one needs to leverage the distributional properties of the resulting private robust mean
estimator. Existing concentration/deviation bounds such as those in [41] do not allow us to achieve
this goal, even for the non-private Huber-type mean estimator. To this end, we first provide a refined
non-asymptotic analysis and establish Bahadur representation of the non-private Huber-type mean es-
timator, which paves the road for the more challenging inference problem of its private counterpart.
In constructing the private confidence intervals, we show that the scale of the privacy-inducing noise
critically depends on the robustification parameter τ, which also balances the bias and robustness of
the non-private Huber-type estimator. The cost of privacy is further revealed by our different choices
of τ and the resulting deviation bounds together with Gaussian approximation bounds for private and
non-private robust mean estimators.
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Our contributions are mainly three-fold: (a) A comprehensive analysis of a Huber-type robust mean

estimator. While a concentration study already appeared in the literature for robust M-estimators of
locations, our first contribution is to go beyond deviation analysis and establish Bahadur representation
and (uniform) Gaussian approximation, which are key ingredients to construct both non-private and
private robust confidence intervals. Notably, our analysis of the Berry-Esseen bound reveals that the
choice of robustification parameter τ that leads to the smallest concentration bound results in a sub-
optimal Berry-Esseen bound; see Remark 2 for details. It is also worth mentioning that even for the
concentration bounds with bounded second moment assumption, our result still slightly improves that
in Proposition 2 of [41] due to using a different analysis. (b) Noisy gradient descent of Huber mean

estimator. Our second contribution is to privatize the Huber-type robust estimator via a noisy gradi-
ent descent algorithm. We provide a complete finite-sample convergence analysis, demonstrating that
private iterates converge linearly to a ball centered at the non-private Huber estimator with a radius
comparable to the noise added in each step. Different from most existing methods, one novelty is that
the privacy-inducing noise level critically depends on the robustification parameter τ, which in turn
controls the bias and robustness. In contrast to the non-private counterpart, the trade-off between bias,
robustness and privacy leads to a choice of τ explicitly depending on the privacy level. Consequently,
we show the cost of privacy in a deviation bound for our private robust mean estimator and demon-
strate its optimality in terms of the dependence on privacy and moment conditions for some scenarios.
In particular, the cost of privacy of our proposed estimator with an appropriate choice of τ achieves the
minimax optimal bound under the finite second moment, and the estimator has the same cost as in [34],
which is the smallest one in the literature under higher-moment assumptions. (c) Private robust confi-

dence intervals. The last but not least contribution is to construct both non-private and private robust
confidence intervals for linear projections of the mean under a bounded fourth moment condition. We
allow increasing dimension d due to the new Gaussian approximation results. The novel construction
of private robust confidence intervals is based on a noisy Studentized statistic. In particular, to guaran-
tee the privacy of the confidence interval, besides the private Huber-type mean estimator, we further
employ a robust and private estimator of the covariance.

Other related literature. In the statistics literature, a series of works are devoted to developing dif-
ferentially private approaches for statistical estimation with a focus on optimal rates of convergence,
including [1–3,9,10,20,49,54,55]. For example, under the local differential privacy, a slightly stronger
notion of DP, [55] revealed that existing private mechanisms lead to slower rates than the minimax rates,
and [20,49] further derived new minimax rates and corresponding private algorithms for several mod-
els. [9,10] considered minimax optimality of mean estimation and generalized linear regression with
given differential privacy (DP) constraint under both the low-dimensional and sparse high-dimensional
settings. The studies in hypothesis testing and confidence intervals with differential privacy are still
limited in the statistical community. The most relevant work to the current paper is [2], which con-
sidered optimization-based approaches for Gaussian differentially private M-estimators. In particular,
parametric inference problems are tackled by constructing private variance estimators. While their
general noisy gradient descent method can be applied for our robust mean estimation, the inference
analysis and results do not allow increasing dimensional settings. In contrast, our newly established
Gaussian approximation results together with a careful global convergence analysis of the noisy op-
timization reveal the critical role of the robustification parameter, which makes the inference under
growing dimensions possible.

The rest of the paper is structured as follows. We first revisit the non-private robust mean estimation
problem under heavy-tailed distributions in Section 2. New concentration bounds and normal approxi-
mation results are established for the proposed Huber estimator to conduct robust inference, including
constructing confidence intervals and sets in this section. Section 3 introduces the basic background
of Gaussian differential privacy and presents our private Huber mean estimator via a noisy gradient
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descent algorithm with finite-sample convergence analysis. New approaches for constructing private
robust confidence intervals are further presented in Section 3. Section 4 presents the numerical studies
that evaluate the performance of the proposed robust mean estimators, both non-private and private.
Additionally, a data-driven approach is proposed to choose the robustification parameter. Some proofs
of theorems in Section 2 are given in the Appendix. The extension of our construction of private robust
estimators to other notions of differential privacy, a detailed description of the numerical algorithm for
computing private robust estimators, and remaining proofs for theoretical results are relegated to the
Supplementary Material [57].

NOTATION. The following notations will be used throughout this paper. For every integer d ≥ 1, we
use Rd to denote the d-dimensional Euclidean space. For any vector u = (u1, . . . ,ud) ∈ Rd , we use
‖u‖p(1 ≤ p ≤ ∞) to denote its �p-norm in Rp: ‖u‖p = (∑d

j=1 |u j |p)1/p and ‖u‖∞ = max1≤ j≤d |u j |.
The unit (d − 1)-sphere Sd−1 is defined as Sd−1

= {u ∈ Rd : ‖u‖2 = 1}. We write a � b if there exists
an absolute constant C > 0 such that a ≤ Cb, and a � b if b � a. Moreover, we write a � b if a � b and
a � b.

2. Robust mean estimation and inference via Huber loss

In this section, we consider robust (multivariate) mean estimation using Huber loss minimization. A
more general version of this approach was proposed by [41], in which concentration bounds are es-
tablished. The idea of using a robust loss function with a diverging robustification parameter (as a
function of sample size) dates back to [11], and has also been employed in regression settings [25,58].
In Section 2.1, we first provide a concentration bound for the Huber mean estimator, denoted by µ̂τ
parameterized by τ > 0, based on a different technical argument compared to that employed in [41].
Next, we provide a non-asymptotic Bahadur representation result, indicating that

√
n(µ̂τ − µ) can be

approximated by a linear statistic with higher-order remainders. Based on this result, in Section 2.2 we
establish several normal approximation results (through Berry-Esseen-type bounds) for the proposed
robust estimator, which pave the way for constructing robust confidence intervals under heavy-tailed
distributions.

Throughout, let x1, . . . , xn be independent observations from a random vector x ∈ Rd with mean
µ = (μ1, . . . , μd)T and covariance matrix Σ = (σkl)1≤k ,l≤d, both assumed to be unknown.

2.1. A concentration study of Huber mean estimator

Given τ > 0, define the loss function ρτ(u) = τ2ρ(u/τ) for some continuously differentiable convex
function ρ : R→ [0,∞). Assume that ψ(u) = ρ′(u) is Lipschitz continuous, concave, and differentiable
almost everywhere on R+. [41] provided a concentration study of the following M-estimator:

µ̂ = µ̂τ ∈ argmin
θ∈Rd

{
L̂τ(θ) :=

1
n

n∑

i=1

ρτ
(
‖xi − θ ‖2

)
}
. (1)

Let ψτ(u) = ρ′τ(u) = τψ(u/τ) be the score function. By the convexity of ρτ(·) and hence of L̂τ(·), the
M-estimator µ̂ can be equivalently defined as the solution to the equation

1
n

n∑

i=1

ψτ(‖xi − θ‖2)
‖xi − θ‖2

(xi − θ) = 0.
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In particular, [41] considered three robust mean estimators that are determined by their corresponding
score functions, which are

(i) (Huber’s score) ψ(u) = u1(|u| ≤ 1) + sign(u)1(|u| > 1);
(ii) (Catoni’s score) ψ(u) = log(1 + u + u2/2)1(u ≥ 0) − log(1 − u + u2/2)1(u < 0);
(iii) (Polynomial score) For p ≥ 1, ψ(u) = u

1+u1−1/p 1(u ≥ 0) − u

1+(−u)1−1/p 1(u < 0).

As demonstrated in [41], these three robust estimators exhibit similar theoretical and numerical per-
formance. Therefore, we restrict attention to Huber’s estimator [31]. The Huber loss is defined as

ρ(u) =min(u2/2, |u| − 1/2),

with its score function listed in (i) above. A variety of smoothed Huber loss functions have been dis-
cussed in the robust statistics literature [26]. See, for example, Examples 1 and 2 in [2].

Theorem 2.1 below provides a concentration bound for the (multivariate) Huber mean estimator µ̂τ
with a sufficiently large τ, explicitly dependent on the robustification bias. Throughout the rest, we
write

λ̄ = ‖Σ‖2 := max
u∈Sd−1

‖Σu‖2, λ = min
u∈Sd−1

uT
Σu and r(Σ) = tr(Σ)/‖Σ‖2

as the largest eigenvalue, smallest eigenvalue, and effective rank of the covariance matrix Σ, respec-
tively.

Theorem 2.1. Assume that the random vector x ∈ Rd has mean vector µ and covariance matrix Σ. For

any z > 0, the Huber mean estimator µ̂τ given in (1) with τ �
√

tr(Σ) satisfies the bound

‖ µ̂τ − µ‖2 � λ̄
1/2

√
r(Σ) + z

n
+

τz

n
+ bτ (2)

with probability at least 1 − 2e−z as long as n � r(Σ) + z, where

bτ :=

����E
{
ψτ(‖x − µ‖2)
‖x − µ‖2

(x − µ)
}����

2
≤
√
λ̄tr(Σ)
τ
. (3)

We refer to bτ as the robustification bias. When τ = ∞, it is easy to see that b∞ = 0; in general,
bτ > 0 for any fixed τ > 0 unless the distribution of x is symmetric around µ.

To determine the optimal robustification parameter τ that minimizes the upper bound (2) under
higher moment assumptions, we next derive a bound for bτ . Before doing so, we first introduce some
additional notations. Assuming that mq := E‖x − µ‖q2 is finite for some q ≥ 2, we define

νq = sup
u∈Sd−1

E|〈x − µ,u〉|q

(E〈x − µ,u〉2)q/2
and κq = max

1≤k≤d

E|xk − μk |q

{E(xk − μk )2}q/2
. (4)

In particular, ν4 and κ4 denote, respectively, the supremum of the kurtosises of all linear combinations
of x and the maximum of the kurtosises of all coordinates of x. These quantities characterize the
degree of skewness of the random vector x. It is easy to see that ν4 ≥ κ4 > 1 if x is non-degenerate,
and ν4 = κ4 = 3 when x ∼N(µ,Σ). Also, note that when mq <∞ for q ≥ 2, we have m

1/q
q ≥ tr(Σ)1/2 by
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Jensen’s inequality, and Hölder’s inequality yields

mq = E

{
‖x − µ‖q−2

2

d∑

k=1

(xk − μk)2
}

≤
d∑

k=1

(E‖x − µ‖q2 )
1−2/q(E|xk − μk |q)2/q ≤ m

1−2/q
q · κ2/qq tr(Σ), (5)

so that tr(Σ)1/2 ≤ m
1/q
q ≤ κ1/qq tr(Σ)1/2. With the notation, we now present the bound of the bias bτ .

Lemma 2.2. Assume that there exists some q ≥ 2 such that mq = E‖x − µ‖q2 is finite. Then, the bias

term bτ satisfies

bτ ≤ min

{
ν

1/q
q

λ̄1/2m
1−1/q
q

τq−1
,

mq

τq−1

}
.

Remark 1. By combining Lemma 2.2 and Theorem 2.1, we can choose τ that minimizes bτ + τz/n.
For instance, when the variance exists (q = 2), the optimal choice for τ is τ � λ̄1/4tr(Σ)1/4(n/z)1/2,
which leads to the bound

‖ µ̂τ − µ‖2 �

√
tr(Σ)

n
+ λ̄1/2r(Σ)1/4

√
z

n
(6)

with probability at least 1 − 2e−z as long as n � max{r(Σ),r(Σ)1/2z}. For heavy-tailed data without
adversarial corruption, the above bound slightly improves that in Proposition 2 of [41] with q = 2 and
εn = 0. In detail, Proposition 2 of [41] establishes that the Huber estimator µ̂τ with τ � tr(Σ)1/2(n/z)1/2

satisfies

‖ µ̂τ − µ‖2 �

√
tr(Σ)

n
+ λ̄1/2

√
z

n
+ λ̄1/2r(Σ)1/2

√
z

n

with probability at least 1 − 4e−z − e−n/32 as long as n � z in our notations. Consequently, our derived
bound improves upon the multiplicative factor of r(Σ)1/2 in the bound of [41], refining it to r(Σ)1/4.

Yet, the deviation bound (6) is still sub-optimal in terms of its dependence on λ̄, tr(Σ) and z. Specif-
ically, it includes an extra multiplicative factor of r(Σ)1/4, compared to the optimal Gaussian concen-
tration bound. However, the main advantage of Huber loss minimization is threefold: (i) the estimator
is defined as the solution to a convex optimization problem, for which the objective function is also lo-
cally strongly convex; (ii) the asymptotic distribution is easily tractable, which significantly facilitates
statistical inference; (iii) via noisy gradient descent, we can construct differentially private robust mean
estimator and the correspondent confident intervals/sets as discussed in Section 3.

Moreover, the Huber estimator µ̂ attains the optimal concentration bound as long as z is small under
higher-moment assumptions. Specifically, when mq <∞ for q > 2, we can choose τ � m

1/q
q (n/z)1/q to

obtain a tighter concentration bound given by

‖ µ̂τ − µ‖2 �

√
tr(Σ)

n
+m

1/q
q

(
z

n

) 1−1/q
(7)
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with probability at least 1 − 2e−z . Applying the inequality m
1/q
q ≤ κ1/qq tr(Σ)1/2, we can see that µ̂τ

satisfies the optimal Gaussian concentration bound provided that z =O(n(q−2)/(2q−2)
+n · r(Σ)−q/(q−2)).

In this regime, the Huber estimator µ̂τ attains the optimal deviation bound.

Theorem 2.1 is restricted to establishing concentration/deviation bounds and thus falls short in ad-
dressing the distributional characteristics of µ̂τ . However, the latter is the cornerstone for statistical
inference. To fill this gap, we further establish a non-asymptotic Bahadur representation result for µ̂τ ,
which is the key to deriving Gaussian approximation results with explicit error bounds.

Theorem 2.3. Assume that there exists some q ≥ 2 such that mq = E‖x − µ‖q2 <∞. Given t > 0, let the

sample size satisfy n � r(Σ) + z. Then, the Huber mean estimator µ̂τ with τ �
√

tr(Σ) satisfies

����µ̂τ − µ − 1
n

n∑

i=1

ψτ(‖xi − µ‖2)
‖xi − µ‖2

(xi − µ)
����

2
�

{
λ̄1/2

√
r(Σ) + z

n
+

τz

n
+ bτ

} (
mq

τq
+

√
z

n

)
(8)

with probability at least 1 − 3e−z , where ψτ(u) = τψ(u/τ) and bτ is defined in (3).

Theorem 2.3 shows that with high probability,
√

n(µ̂τ − µ) is first-order equivalent to the linear term

1
√

n

n∑

i=1

ψτ(‖xi − µ‖2)
‖xi − µ‖2

(xi − µ),

which determines the asymptotic distribution of µ̂τ . Based on the Bahadur representation (8), in Sec-
tion 2.2, we establish several Gaussian approximation results for μ̂τ under the bounded third or fourth
moment condition. In particular, the boundedness of the fourth moment is crucial for robust covariance
estimation [43,45].

2.2. Gaussian approximations

In this section, we present two Gaussian approximation results for the Huber mean estimator µ̂τ under
the bounded third or fourth moment condition. The dimension d is allowed to grow with the sample size
n and enters the Gaussian approximation error bounds through the moment parameter mq = E‖x − µ‖q2
for q ≥ 3.

Theorem 2.4 below provides a Berry-Esseen bound for all (deterministic) linear combinations of µ̂τ ,
from which the asymptotic normality immediately follows.

Theorem 2.4. Assume that mq = E‖x − µ‖q2 <∞ for some q ≥ 3, and let the sample size satisfy n �

r(Σ) + log n. Then, the Huber mean estimator µ̂τ with τ � m
1/q
q (n/log n)γ for some γ ∈ [1/(q − 1),1/2]

satisfies

sup
u∈Rd , x∈R

��P
(√

n〈u/‖u‖Σ, µ̂τ − µ〉 ≤ x
)
−Φ(x)

���
m

1/q
q

λ1/2

log n
√

n
+ ν

2/q
q

(
log n

n

) (q−2)/(q−1)
+

ν3√
n
, (9)

where ‖u‖2
Σ

:= uT
Σu and Φ(x) is the cumulative distribution function of N(0,1).
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Remark 2. In Theorem 2.4, we require x to have at least the finite third moment so that the upper
bound in (9) depends on n through n−1/2. Instead, if m2+ι = E‖x − µ‖2+ι

2 <∞ for some 0 < ι < 1, the

dependence on n can at best be n−ι/2; see [27] for details. To achieve the optimal n−1/2-rate, Theo-
rem 2.4 shows that the choice of τ becomes more flexible as higher-order moments are bounded. It is
worth noting that the choice τ � m

1/q
q (n/log n)γ with γ ∈ [1/(q − 1),1/2] for Gaussian approximation

does not lead to the smallest concentration bound, as shown in (7) with a choice τ � m
1/q
q (n/log n)1/q .

Yet, for this choice of τ, we will obtain an n−1/2+1/q-rate for the Berry-Esseen bound.

When the q-th moment (q ≥ 3) is finite, the two parameters νq and κq defined in (4) are essentially

dimension-free. Using the inequality m
1/q
q ≤ κ1/qq tr(Σ)1/2 from (5), we can substitute this bound into (9)

to obtain a further bound for the first term on the right-hand side:

κ
1/q
q (λ̄/λ)1/2(log n)

√
r(Σ)

n
.

From an asymptotic view, with two dimension-free parameters νq and κq defined in (4) and a bounded
condition number of Σ, this shows that any linear combination of the coordinates of

√
n(µ̂τ − µ) con-

verges in distribution to the correspondent linear combination of N(0,Σ) as n →∞ under the growth
condition r(Σ) log2(n) = o(n) as n → ∞. Since r(Σ) ≤ d, a sufficient condition on the dimension is
d log2(n) = o(n).

To construct confidence intervals/sets based on the above result, we also need to robustly estimate the
variance ‖u‖2

Σ
= uT

Σu, or the covariance matrix Σ. To this end, we consider a U-type robust covariance
estimator proposed and studied by [24] and [36]. Given a robustification parameter ξ > 0, the U-type
covariance estimator Σ̂ξ is defined as

Σ̂ξ =
1( n
2

)
∑

1≤i< j≤n
ψξ

(
1
2
‖xi − x j ‖2

2

) (xi − x j )(xi − x j)T

‖xi − x j ‖2
2

, (10)

where ψξ (t) = ξψ(t/ξ). By choosing δ = e−z in Theorem 3.2 of [36] with a suitably chosen ξ, the
following proposition provides an exponential-type deviation bound for Σ̂ξ under a bounded fourth
moment condition.

Proposition 2.1 (Theorem 3.2 in [36]). Assume x ∈ Rd has bounded fourth moment, and write

v
2
0 :=

1
4

��E{(x1 − x2)(x1 − x2)T}2
��

2. (11)

Let n0 = �n/2� be the largest integer not exceeding n/2. For any z > 0, the U-type covariance estimator

Σ̂ξ defined in (10) with ξ = v0
√

n0/{log(2d) + z} satisfies

��Σ̂ξ − Σ
��

2 ≤ 2v0

√
log(2d) + z

n0

with probability at least 1 − e−z .

Remark 3. To compute Σ̂ξ , the major barrier is due to the U-statistics structure of (10), in which the
sum consists of O(n2) terms. [14] proposed a resampling technique named incomplete U-statistics,
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which reduces the computation complexity to O(n). Alternatively, we can use the following truncated
plug-in covariance estimator

Σ̃ξ =
1
n

n∑

i=1

ψξ (‖xi − µ̂‖2
2 )

‖xi − µ̂‖2
2

(xi − µ̂)(xi − µ̂)T, (12)

where ξ > 0 is a robustification parameter and µ̂ is a prespecified robust mean estimator. Given ξ and
µ̂, the computational complexity of Σ̃ξ is O(nd2). Assume x has a bounded fourth moment and let

σ2
0 = ‖E{(x − µ)(x − µ)T}2‖2.

For any z > 0, following the proof of Lemma 2.1 in [56], it can be similarly shown that conditioned
on the event {‖ µ̂ − µ‖2 ≤ C1

√
tr(Σ)z/n} for some C1 > 0, the truncated plug-in estimator Σ̃ξ with

ξ = σ0
√

n/(z + log d) satisfies

‖Σ̃ξ − Σ‖2 � σ0

√
z + log d

n
(13)

with probability at least 1 − 4e−z as long as n ≥ C2(σ0/λ̄)2(z + log d), where C2 > 0 is a constant de-
pending only on C1. Since σ2

0 ≤ ν4λ̄ tr(Σ) (see Lemma 4.1 in [46]), a sufficient sample size requirement
for (13) is n � ν4 r(Σ)(z + log d). On the other hand, it follows from Theorem 2.1 and Lemma 2.2 that
the Huber mean estimator µ̂τ with τ � (m4 n/z)1/4 satisfies

‖ µ̂τ − µ‖2 �

√
tr(Σ) + λ̄z

n
+m

1/4
4

(
z

n

) 3/4

�

√
tr(Σ) + λ̄z

n
+ κ

1/4
4 tr(Σ)1/2

(
z

n

) 3/4

�

√
tr(Σ)z

n

with probability at least 1−2e−z when the sample size satisfies n � ν4 r(Σ)(z+ log d) and z > 1. In other
words, the Huber mean estimator satisfies the required bound (with high probability) for the plug-in
estimate in (12).

The following result complements Theorem 2.4 by providing a Berry-Esseen-type bound for the
studentized robust statistic

√
n〈u, µ̂τ − µ〉/(uT

Σ̂ξ u)1/2 uniformly over u ∈ Rd .

Theorem 2.5. Assume m4 = E‖x − µ‖4
2 <∞ and let the sample size satisfy n � r(Σ) + log n. For any

γ ∈ [1/3,1/2], the Huber estimator µ̂τ with τ � m
1/4
4 (n/log n)γ satisfies

sup
u∈Rd ,x∈R

��P
{√

n〈u, µ̂τ − µ〉/(uT
Σ̂ξ u)1/2 ≤ x

}
−Φ(x)

��� ν1/2
4

λ̄

λ

√
r(Σ) log(nd) log n

n
, (14)

where Σ̂ξ is the U-type covariance estimator defined in (10) with ξ � v0
√

n/log(nd). In particular,

v
2
0 ≤ 2ν4λ̄ tr(Σ).

From Theorem 2.5 we see that a sufficient condition for the asymptotic normality of the Studentized
statistic

√
n〈u, µ̂τ − µ〉/(uT

Σ̂ξ u)1/2 is d log2(n) = o(n), the same as discussed following Theorem 2.4.



3068 M. Yu, Z. Ren and W.-X. Zhou

Consequently, for any (deterministic) vector u ∈ Rd of interest and α ∈ (0,1), we can construct robust
(approximate) 100(1 − α)% confidence interval for 〈u,µ〉 as

[
〈u, µ̂τ〉 − zα/2

(uT
Σ̂ξ u)1/2

√
n

, 〈u, µ̂τ〉 + zα/2
(uT
Σ̂ξ u)1/2

√
n

]
, (15)

where zα/2 =Φ
−1(1 − α/2) denotes the (1 − α/2)-th quantile of N(0,1).

We end this subsection with a uniform Gaussian approximation result, which provides theoretical
guarantees for multiple testing procedures based on Studentized robust statistics.

Theorem 2.6. Assume m4 = E‖x − µ‖4
2 < ∞ and let the sample size satisfy n � r(Σ) + log n. Let

G = (G1, . . . ,Gd)T be a d-dimensional zero-mean Gaussian random vector with covariance matrix

cov(G) = corr(Σ) := (σkl/
√
σkkσll)1≤k ,l≤d. For any γ ∈ [1/3,1/2], the Huber estimator µ̂τ with

τ � m
1/4
4 (n/log n)γ satisfies

sup
x≥0

����P
{

max
1≤k≤d

����
√

n(μ̂k − μk )√
σ̂kk

���� ≤ x

}
− P(‖G‖∞ ≤ x)

����� ν
1/2
4

λ̄

λ
log2(d) log(n)

√
d

n
, (16)

where σ̂kk is the k-th diagonal element of Σ̂ξ defined in (10) and ξ � v0
√

n/log(nd).

Based on Theorem 2.6, we construct the confidence set

×d
k=1

[
μ̂k −ωα

√
σ̂kk

n
, μ̂k +ωα

√
σ̂kk

n

]
(17)

for µ ∈ Rd , which has level 1 − α asymptotically under the growth condition d log4(d) log2(n) = o(n),
whereωα is the (1−α)-quantile of ‖G‖∞. This confidence set is less conservative than the conventional
multiple testing methods, such as the Bonferroni method and the Šidák method, which ignore the
dependence structure among the d coordinates.

Another challenge is to compute ωα due to the unknown covariance matrix cov(G) = corr(Σ), or
equivalently Σ. To this end, we apply a plug-in method by replacing Σ with its robust estimate Σ̂ξ , and

then compute the quantile of ‖Ĝ‖∞ with Ĝ ∼ N(0,corr(Σ̂ξ )) via Monte Carlo simulations. Its validity
(consistency) is guaranteed by Proposition 2.2 below as long as the right-hand side of the inequality is
o(1).

Proposition 2.2. Assume m4 = E‖x − µ‖4
2 <∞, and let

G = (G1, . . . ,Gd)T ∼N(0,corr(Σ)) and Ĝ = (Ĝ1, . . . ,Ĝd)T ∼N(0,corr(Σ̂)),

where Σ̂ = Σ̂ξ is the U-type covariance estimator defined in (10) with ξ � v0
√

n/log(nd). Then, with

probability at least 1 − 2n−1, we have

sup
t≥0

�����P
(

max
1≤k≤d

|Ĝk | ≤ t

����x1, . . . , xn

)
− P

(
max

1≤k≤d
|Gk | ≤ t

) �����

� ν
1/2
4 (λ̄/λ)2 log(d) log(n)

√
r(Σ) log(nd)

n
. (18)
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Remark 4. In this section, the inference results of the Huber estimator µ̂τ are limited to constructing a
confidence interval for the one-dimensional projection of 〈u,µ〉, where u is a fixed direction in Rd , or
for obtaining confidence intervals simultaneously for each coordinate of µ. It is interesting to explore
the possibility of extending these results to establish a multivariate confidence region for the mean
vector µ.

Following the idea from [13,51], we propose a likelihood-based confidence set using the multiplier
bootstrap method. To elaborate, let u1, . . . ,un be independent and identically distributed random vari-
ables that are independent of the observed data Dn := {x1, . . . , xn} and satisfy E(ui) = 0,var(ui) = 1
and E exp(u2

i
/A2) <∞ for some constant A > 0. Introducing the random weights wi = 1+ ui , we define

the bootstrap loss and bootstrap Huber estimator as

L̂b
τ(θ) :=

1
n

n∑

i=1

wiρτ(‖xi − θ‖2) for θ ∈ Rd,

and µ̂
b
τ ∈ argmin‖θ−µ̂

τ
‖2≤R L̂b

τ(θ), respectively, where R > 0 is a prespecified radius parameter. Let P∗

denote the conditional probability over the random multipliers given Dn. Then, we denote zb
α = zb

α(Dn)
to be the upper α-quantile (0 < α < 1) of L̂b

τ(µ̂τ) − L̂b
τ(µ̂b

τ), that is,

zb
α = inf

{
z ≥ 0 : P∗{L̂b

τ(µ̂τ) − L̂b
τ(µ̂b

τ) > z} ≤ α
}
.

Based on this, a confidence region for µ at the given confidence level 1 − α is given by

{θ ∈ Rd : L̂τ(θ) − L̂τ(µ̂τ) ≤ zb
α}.

Practically, the conditional quantiles of L̂b
τ(µ̂τ) − L̂b

τ(µ̂b
τ) can be computed with arbitrary precision by

using Monte Carlo simulations.
Since a significant amount of additional work, including the derivation of the concentration property

of the Wilks’ expansion for the excess risk L̂τ(µ) − L̂τ(µ̂τ) and theoretical analysis of the bootstrap
estimators, is still needed, we leave a rigorous theoretical investigation and validation of this approach
to future work.

3. Differentially private robust mean estimation and inference

In this section, we propose a Gaussian differentially private robust mean estimator via the use of Huber
loss and noisy gradient descent. The key observation is that the derivative of the Huber loss ρτ(·),
denoted by ψτ(·), is bounded in magnitude by τ. Therefore, we can utilize the Gaussian mechanism
(surveyed later in Section 3.1) to gain privacy. Note that µ̂τ is defined as the minimum of a convex loss
function, solvable by gradient descent and its many variants, we thus apply a noisy gradient descent
method [5] to construct a private version of µ̂τ that is also statistically robust. We provide a deviation
study of this private robust mean estimator and establish a Bahadur representation result based on
which the validity of Gaussian approximation is also provided. This enables us to construct private
confidence intervals for any linear combination of the mean vector.

3.1. Background on Gaussian differential privacy

The notion of differential privacy (DP) was first proposed to formalize the ad-hoc data privacy idea
that a DP mechanism (randomized algorithm) M should make the distributions of M(X) and M(X ′)
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similar for any pair of datasets X and X ′ that differ by only one entry or datum. Intuitively, an attacker
is not able to detect whether any datum x belongs to the dataset X when a DP algorithm is applied
to X .

Definition 3.1 ([21,22]). A dataset X = (x1, x2, . . . , xn) ∈ Xn consist of n data from some space X.
We say two datasets X and X ′ are neighbors if they differ by one entry. A randomized algorithm
M : Xn → Y is said to be (ε,δ)-differentially private ((ε,δ)-DP) for ε,δ > 0 if for any neighboring
datasets X and X ′, and any measurable set E ⊆ Y,

P{M(X) ∈ E} ≤ eεP{M(X ′) ∈ E} + δ,

where the probabilities are computed only over the randomness of the mechanism M .

From a statistical viewpoint, it is more natural to understand differential privacy in a hypothesis
testing problem that takes the form

H0 : the underlying dataset is X vs H1 : the underlying dataset is X ′. (19)

As revealed by [55], for any 0 < α < 1, the power of α-level test based on the output of an (ε,δ)-DP
mechanism is upper bounded by eεα + δ. Therefore, it is impossible to construct a powerful test based
on the output of an (ε,δ)-DP mechanism for small ε and δ.

Built upon the hypothesis testing interpretation, [19] further proposed and advocated a notion of
Gaussian differential privacy (GDP). GDP has an attractive interpretation to statisticians: the testing
problem (19), e.g., identifying whether an individual is in a dataset, is at least as difficult as distinguish-
ing between N(0,1) and N(ε,1) based on a single draw for some ε > 0. In other words, the privacy
requirement in the notion of GDP can be precisely characterized by a single parameter ε . The formal
definition is as follows.

Definition 3.2 ([19]). Let M be a randomized algorithm. We say M is ε-Gaussian differentially private
(GDP) if any α-level test φ for (19) has a power function

β(α) ≤ 1 −Φ(Φ−1(1 − α) − ε)

for all α ∈ [0,1], where Φ(·) is the standard normal distribution function.

The definition might not be as transparent as the intuition described in the univariate Gaussian distri-
bution testing problem. Here, the functionΦ(Φ−1(1−α)− ε) describes the supreme of the type II errors
of all α-level tests for distinguishing N(0,1) and N(ε,1) based on a single draw, which is achieved by
the likelihood ratio test. For formal proof, we refer to Appendix A in [19] for more details.

Despite the remarkable success of (ε,δ)-DP, GDP has a number of appealing properties compared
to (ε,δ)-DP, as highlighted in [19]. Notably, among these distinct attributes, GDP has been proven to
provide a tight privacy guarantee under composition, a feature that is absent in the (ε,δ)-DP mech-
anism [48]. Furthermore, the GDP mechanism preserves a transparent hypothesis testing interpreta-
tion, while other relaxations of the (ε,δ)-DP mechanism, including concentrated differential privacy
(CDP) [7,23] and Rényi differential privacy [47], no longer have hypothesis testing interpretations.

We summarize several properties of GDP in the remainder of this subsection which are central in
developing our private robust mean estimator. A variety of basic algorithms such as the gradient descent
method used in Section 3.2 can be made private by simply adding a properly scaled Gaussian noise in
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the output. To this end, for any (non-private) statistics h(X) ∈ Rd of the dataset X , define the sensitivity
of h as

sens(h) = sup
X ,X′

‖h(X) − h(X ′)‖2, (20)

where the supremum is taken over all pairs of datasets X and X ′ that differ by one entry or datum.
The following lemma provides the key device to construct Gaussian differentially private estimators.
It is worth mentioning that only the univariate case (d = 1) was stated in Theorem 1 of [19] but the
extension to general d ≥ 1 is straightforward.

Lemma 3.3 (Theorem 1 in [19]). Define the Gaussian mechanism that operates on a statistic h ∈ Rd
as

M(X) = h(X) + sens(h)
ε

g,

where g ∼N(0,Id). Then, the Gaussian mechanism M is ε-GDP.

Many algorithms, including our gradient descent approach in this paper, involve a sequence of dif-
ferentially private steps where the computation of each step relies on both the same dataset and outputs
from previous steps. The joint mechanism is called “k-fold composition”. Intuitively, the privacy would
be gradually decayed along a sequence of outputs as the same dataset is used several times. One critical
question is how privacy degrades given that each step alone is private. While the computation of precise
privacy guarantees for compositions of (ε,δ)-DP mechanisms can be computationally challenging [48],
the overall privacy guarantee for a composition of GDP mechanisms can be accurately reduced to the
privacy guarantee of a single GDP mechanism. Indeed, this is one of the major reasons that GDP is
advocated.

Lemma 3.4 (Corollary 2 in [19]). Let M1 : Xn → Y1 be the first mechanism and Mt : Xn × Y1 ×
· · · × Yt−1 → Yt be the t-th mechanism for t = 2, . . . , k. We define the k-fold composed mechanism

M : Xn →Y1 × · · · × Yk as M(X) = (y1, y2, . . . , yk) where y1 = M1(X) and yt = Mt (X, y1, . . . , yt−1) for

t = 2, . . . , k. If M1 is ε1-GDP and Mt (·, y1, . . . , yt−1) is εt -GDP for any y1 ∈ Y1, . . . , yt−1 ∈ Yt−1, then the

k-fold composed mechanism M is

√
ε21 + . . . + ε

2
k

-GDP.

Of note, the k-fold composition is different from the traditional composition of functions which is
termed “post-processing” in the literature of privacy. In fact, privacy will not deteriorate if a GDP
mechanism/algorithm is simply post-processed independently of the original dataset, as summarized
in the lemma below.

Lemma 3.5 (Proposition 4 in [19]). Let M : Xn →Y be ε-GDP. Denote a post-processing (random-

ized) algorithm Proc : Y →Z that maps the input M(X) to some space Z. Then the post-processing

Proc ◦ M : Xn →Z is also ε-GDP.

3.2. Private robust mean estimation: Finite sample theory

In this section, under the Gaussian differential privacy mechanism, we propose a differentially private
Huber mean estimator via noisy gradient descent and provide a finite-sample convergence analysis.
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Recall the non-private Huber estimator µ̂τ defined in (1), which can be computed by gradient descent

µ(t+1)
= µ(t)

+

η0

n

n∑

i=1

ψτ(‖xi − µ(t)‖2)
‖xi − µ(t)‖2

(xi − µ(t)), t = 0,1, . . . ,

where η0 > 0 is the step size (learning rate) and µ(0) is the initial value. To achieve a certain level of
privacy, we consider the following noisy version of gradient descent [5]. For a predetermined number
of iterations T , it computes

µ(t+1)
= µ(t)

+

η0

n

n∑

i=1

ψτ(‖xi − µ(t)‖2)
‖xi − µ(t)‖2

(xi − µ(t)) + 2T1/2τ
η0

εn
gt (21)

for t = 0,1, . . . ,T − 1, where η0 > 0 is the step size, {gt }T−1
t=0 is a sequence of independent standard

d-variate normal random vectors, and ε > 0 is the privacy parameter. The final private estimator is
denoted by µ(T ). Here the scale of the Gaussian noise is carefully chosen based on the properties of
GDP, i.e., Lemmas 3.3-3.4.

Proposition 3.1. Given an initial estimate µ(0) ∈ Rd and dataset Xn = {x1, . . . , xn}, consider the noisy

gradient descent iterates {µ(t)}T
t=0 defined in (21). Then the final output µ(T ) is ε-GDP.

Proof. Consider two datasets Xn and X ′
n that differ by one datum, say x1 ∈ Xn versus x ′1 ∈ X ′

n. Let
the (vanilla) gradient update be

h(Xn,µ
(t)) = µ(t)

+

η0

n

n∑

i=1

ψτ(‖xi − µ(t)‖2)
‖xi − µ(t)‖2

(xi − µ(t)),

and define h(X ′
n,µ

(t)) similarly. At the first iteration, note that

‖h(Xn,µ
(0)) − h(X ′

n,µ
(0))‖2

=

η0

n

����
ψτ(‖x1 − µ(0)‖2)
‖x1 − µ(0)‖2

(x1 − µ(0)) −
ψτ(‖x ′1 − µ(0)‖2)
‖x ′1 − µ(0)‖2

(x ′1 − µ(0))
����

2
≤ 2τη0

n
.

Therefore, the sensitivity of h is upper bounded by 2τη0/n. By Lemma 3.3, adding a Gaussian noise
2T1/2τη0(εn)−1g0 to the gradient update makes this step (T−1/2ε)-GDP. Consequently, µ(1) is (T−1/2ε)-
GDP since the initial estimate µ(0) is deterministic. The second iterate µ(2)

= µ(2)(Xn) takes µ(1) as
input in addition to the dataset. It thus follows from Lemma 3.4 that the two-fold composed (joint)
mechanism (µ(1),µ(2)) is

√
ε2/T + ε2/T-GDP. Using the same argument repeatedly, we conclude that

the T-fold composed mechanism (µ(1), . . . ,µ(T )) is ε-GDP, and so is µ(T ).

To establish the statistical properties of the ε-GDP robust estimate µ(T ), we first derive a concentra-
tion bound conditioning on some “good” event with a set of parameters. Next, we show that this event
occurs with high probability when the parameters are properly chosen. To begin with, given parameters
r0 > 0 and χ ∈ (0,1), define the event

E1 = E1(r0, χ) =
{
µ̂ ∈ Θ(r0/2)

}
∩
{
∇2L̂τ(θ) � (1 − χ)Id, ∀θ ∈ Θ(r0)

}
, (22)
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where

Θ(r) := {θ ∈ Rd : ‖θ − µ‖2 ≤ r} for every r > 0, (23)

and µ̂ = µ̂τ is the non-private robust estimator defined in (1). We are now ready to present an oracle-
type concentration bound of the private estimator µ(T ) around µ̂ conditioning on E1.

Theorem 3.6. Consider the private estimate µ(T ) obtained from noisy gradient descent (21) with step

size η0 ∈ (0,1] and the initial estimate µ(0) ∈ Θ(r0) for some r0 > 0. Let χ ∈ (0,1), z > 0 and T ≥ 1.

Define the optimization error ropt and the privacy error rp as

r2
opt(T) = (1 − ρ)T r2

0 and r2
p (T) = η0T{η0 + (1 − χ)−1}

(
d

ρ
+ z

) (
τ

εn

) 2

,

where ρ = (1 − χ)2η2
0 . Assume that the sample size satisfies

n � T1/2τ

√
d +

√
logT + z

(1 − χ)εr0
. (24)

Then, conditioning on the event E1 = E1(r0, χ), µ(T ) satisfies

‖µ(T ) − µ̂‖2
2 � r2

opt(T) + r2
p (T)

with probability (over {gt }T−1
t=0 ) at least 1 − 2e−z .

Theorem 3.6 provides a concentration bound with two terms: optimization error ropt(T) and privacy
error rp(T). As the number of iterations T increases and the step size η0 approaches to 1, the optimiza-
tion error decreases, whereas the privacy error increases. In addition to these two errors, we also need
to account for the statistical error of µ̂ in (2) to obtain a deviation bound for µ(T ) around the true mean
µ. Hence, we need to select an appropriate number of iterations T to balance ropt(T) and rp(T), while
also choosing τ to balance bias, robustness and privacy error.

Before selecting appropriate parameters in Theorem 3.6 to consider the trade-off between different
sources of error and make the event E1 occur with high probability, we provide a few remarks regarding
the assumption on the initial iterate µ(0). In Theorem 3.6, the minimum sample size required and the
event E1 depend on r0, the �2 distance between the initial value µ(0) and the true mean µ. The following
proposition shows that if ‖µ(0) − µ‖2 > r0, implying R0 := ‖µ(0) − µ̂‖2 > r0/2 conditioning on the event
E1(r0, χ), then it takes as many as T0 =O((R0/r0)2) noisy gradient descent iterations to ensure that the
above initial value condition is met, that is, ‖µ(T0) − µ‖2 ≤ r0.

Proposition 3.2. Assume the step size η0 ∈ (0,1] and let R0 = ‖µ(0) − µ̂‖2. For any z > 0 and ∆ > 0, let

T0 ≥ R2
0/(η0∆) and the sample size satisfy

n �
T1/2BT0

ε
max

{
τ(R0 +T0τ)

∆
,T0
τη0

R0
,T0

(
τη0

R0

) 2
}
,

where BT0 = BT0 (z) =
√

d +
√

2(logT0 + z) and T is the predetermined number of iterations in the defi-

nition of noisy gradient descent (21). Then, µ(T0) satisfies L̂τ(µ(T0))− L̂τ(µ̂) ≤ ∆ with probability (over
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{gt }
T0−1
t=0 ) at least 1− e−z . In particular, conditioning on E1(r0, χ) and taking ∆ = (1− χ)r2

0 /8, we have

‖µ(T0) − µ‖2 ≤ r0 (25)

with probability (over {gt }
T0−1
t=0 ) at least 1 − e−z .

Next, the following proposition shows that, with suitably chosen (r0, χ), the event E1(r0, χ) occurs
with high probability.

Proposition 3.3. Assume the same conditions as in Theorem 2.1. Moreover, for a given z > 0, let

(r0, χ,τ) and n satisfy

r0 =
τ

2
and χ = χ(n, z) :=

4tr(Σ)
τ2
+

√
z

2n
.

Then, the event E1(r0, χ) with 0 < χ < 1 occurs with probability 1 − 3e−z as long as τ �
√

tr(Σ) and

n � r(Σ) + z.

Combining Proposition 3.3 with Theorem 3.6 yields the following result.

Corollary 3.1. Let ε > 0 be a predetermined privacy parameter. For any z > 1, let the sample size

satisfy

n � max

{
r(Σ) + z,T1/2

√
d +

√
logT + z

ε

}
(26)

with τ �
√

tr(Σ). Starting at µ(0) ∈ Θ(τ/2), the ε-GDP robust estimator µ(T ) defined through noisy

gradient descent (21) with η0 = 1 and T � log(n/z) satisfies the bounds

‖µ(T ) − µ̂‖2 � τ
z

n
+ (d + z)1/2(log n)1/2 τ

εn
(27)

and

‖µ(T ) − µ‖2 � λ̄
1/2

√
r(Σ) + z

n
+ τ

z

n
+ bτ + (d + z)1/2(log n)1/2 τ

εn
(28)

with probability at least 1 − 5e−z , where bτ is the bias term defined in (3).

Remark 5. Taking r0 = τ/2 in Proposition 3.2, we observe that even when the initial iterate µ(0) fails
to meet the assumption of Corollary 3.1, that is, when ‖µ(0) − µ‖2 > τ/2 which implies

τ

4
< R0 := ‖µ(0) − µ̂‖2 ≤ ‖µ(0) − µ‖2 +

τ

2

conditioning on the event E1(r0, χ), we only need T0 � R2
0/τ

2 iterations to satisfy the initial condition.

Then, provided that T0 < T , we can consider µ(T0) as an initial estimate instead of µ(0) in Theorem 3.6,
resulting in

‖µ(T ) − µ̂‖2 � ropt(T −T0) + rp(T −T0)
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with high probability, where ropt(·) and rp(·) are defined in Theorem 3.6. Note that we require T � log n

in Corollary 3.1, and we choose τ to diverge as n →∞ to control the bias bτ , implying T0 � R2
0/τ

2
=

O(1). Consequently, we have T − T0 � T , and the deviation bound of Corollary 3.1 remains valid even
when the initial condition is not satisfied. Furthermore, we also note that since T0 � R2

0/τ
2, the sample

size requirement of Proposition 3.2 reduces to

n �
T1/2BT0

ε
max

(
R0

τ
,T0

)
�

T1/2BT0

ε
T0.

Given that we have T0 = O(1), the sample size requirement of Corollary 3.1 implies that the above
inequality holds as long as n is sufficiently large. Therefore, Corollary 3.1 and Proposition 3.2 together
ensure that the accuracy of the initial estimator does not significantly impact the algorithm’s conver-
gence.

Remark 6. From Corollary 3.1 we see that the parameter τ not only controls the bias-robustness
tradeoff, but also determines the global sensitivity. The latter is the key to the privacy-preserving
Gaussian mechanism [19], as summarized in Lemma 3.3. Assume that x has bounded q-th moment
mq = E‖x − µ‖q2 (q ≥ 2), satisfying tr(Σ)1/2 ≤ m

1/q
q ≤ κ1/qq tr(Σ)1/2 according to (5). Taking z = log n

and

τ � ν1/q
q λ̄

1/(2q)m(q−1)/q2

q

{
εn√

(d + log n) log n

}1/q
,

employing Lemma 2.2 yields

‖µ(T ) − µ‖2 � λ̄
1/2

√
r(Σ) + log n

n
+ ν

1/q
q λ̄

1/(2q)tr(Σ)(q−1)/(2q)
{
(log n)1/2(d + log n)1/2

εn

}1−1/q

with probability exceeding 1 − 5n−1. Comparing this result with the bound (7) for non-private robust
estimator µ̂, with a dimension-free parameter νq and bounded λ̄, we have a larger second term

ν
1/q
q λ̄

1/(2q)tr(Σ)(q−1)/(2q)
{
(log n)1/2(d + log n)1/2

εn

}1−1/q
�

(
d log n

εn

) 1−1/q
,

which quantifies the “cost of privacy” of our ε-GDP robust mean estimator µ(T ) compared to its non-
private counterpart µ̂.

Recently, [10] showed that the minimax �2 risk of sub-Gaussian mean estimation with (ε,δ)-
differential privacy is at least O(

√
d
n
+

d log1/2(1/δ)
εn

), explicitly demonstrating its dependence on ε
and δ. By Corollary 1 in [19], an algorithm is ε-GDP if and only if (ε,δ(ε))-DP, where δ(ε) =
Φ(−1 + ε/2) − eεΦ(−1 − ε/2). Consequently, the cost of privacy of sub-Gaussian mean estimation
with ε-GDP is thus at least O( d

εn
), up to logarithmic factors. In fact, supq≥1 κ

1/q
q is upper bounded by a

constant if x is sub-Gaussian with a finite Orlicz ψ2-norm [53]. In this case, it can be shown from Corol-
lary 3.1 that with τ �

√
d + log n, the resulting ε-GDP Huber estimator attains the minimax-optimal �2

convergence rate, up to logarithmic factors.
For mean estimation under bounded q-th moment, the �2 error of the proposed robust ε-GDP estima-

tor with the optimal τ is of order O(
√

d/n+ ( d
εn
)1−1/q) with high probability, ignoring the log(n)-factor.

The slower term ( d
εn
)1−1/q characterizes the impact of heavy-tailedness and privacy. For q = 2, we find

that this matches the lower bound on the �2-risk [33]. The latter proposed an algorithm for achieving
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(ε,δ)-DP with polynomial-time complexity, albeit with a more intricate implementation. The lower
bound for q > 2 remains unknown. Furthermore, for q > 2, the privacy cost of the �2-risk of our esti-
mator aligns with that of the (ε,δ)-differentially private estimator proposed in [34]. Finally, it is worth
noting that the tail probability bound for the private robust estimator we obtained decays exponentially
with z, while the proof of Theorem 39 in [34] employs Markov’s inequality, resulting in a bound with
a polynomial decay.

Combining the deviation bound (27) with Theorem 2.3, we obtain a non-asymptotic Bahadur repre-
sentation for the ε-GDP Huber estimator µ(T ) as stated below.

Corollary 3.2. For any z > 0, assume that all the conditions in Corollary 3.1 hold. Then, the ε-GDP

Huber estimator µ(T ) satisfies

�����µ
(T ) − µ − 1

n

n∑

i=1

ψτ(‖xi − µ‖2)
‖xi − µ‖2

(xi − µ)
�����

2

�

{
λ̄1/2

√
r(Σ) + z

n
+

τz

n
+ bτ

} (
mq

τq
+

√
z

n

)
+ (d + z)1/2(log n)1/2 τ

εn
(29)

with probability at least 1 − 8e−z .

Corollary 3.2 shows that with high probability,
√

n(µ(T ) − µ) is first-order equivalent to the linear
term

1
√

n

n∑

i=1

ψτ(‖xi − µ‖2)
‖xi − µ‖2

(xi − µ),

which determines the asymptotic distribution of µ(T ) when τ is chosen in a suitable way. Based on the
Bahadur representation (29), in Section 3.3 we obtain a Gaussian approximation result for µ(T ) under
a bounded third or fourth moment condition.

3.3. Construction of private confidence intervals

In this section, we present a Gaussian approximation result for the ε-GDP Huber estimator µ(T ) un-
der the bounded q-th moment condition with q ≥ 3, based on which differentially private confidence
intervals can be constructed. Without loss of generality, we assume ε ≤ 1.

Theorem 3.7. Assume mq = E‖x − µ‖q2 < ∞ for some q ≥ 3. Let the sample size satisfy (26) and

n �
√
(d + log n) log n/ε with z = log n and τ � m

1/q
q {εn/

√
(d + log n) log n}1/q . For µ(0) ∈ Θ(τ/2), the

ε-GDP Huber estimator µ(T ) with η0 = 1 and T � log(n/log n) satisfies

sup
u∈Rd , x∈R

��P(
√

n〈u/‖u‖Σ,µ(T ) − µ〉 ≤ x) −Φ(x)
��

�
m

1/q
q

λ1/2

{√(d + log n) log n

ε

}1−1/q ( 1
n

) 1/2−1/q
+ ν

2/q
q

{√(d + log n) log n

εn

}1−2/q
, (30)

where νq is defined in (4).
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Remark 7. Since m
1/q
q ≤ κ1/qq tr(Σ)1/2, the first term on the right-hand side of (30) is further bounded,

up to constants, by

r(Σ)1/2
{√(d + log n) log n

ε

}1−1/q ( 1
n

) 1/2−1/q
,

which is the leading term under mild conditions. This term quantifies the impact of the pro-
posed privacy-preserving random noise mechanism and the heavy-tailedness of x. When x fol-
lows a sub-Gaussian distribution with a finite Orlicz ψ2-norm, the above rate can be improved to
ε−1

√
r(Σ)(d + log n) log(n)/n (as if q = ∞). Comparing this result with Theorem 2.4 for non-private

robust estimator µ̂, the different choice of τ � m
1/q
q {εn/

√
(d + log n) log n}1/q is due to the tradeoff

among bias, robustness and global sensitivity. Consequently, we have a slower rate for the Berry-Esseen
bound. Similar to the discussion following Theorem 2.4, from an asymptotic view with a fixed value
of ε , any linear combination of the coordinates of

√
n(µ(T ) − µ) converges in distribution to a normal

distribution under a sufficient growth condition d(2q−1)/(q−2)(log n)(q−1)/(q−2)
= o(n).

To construct confidence intervals/sets in the differential privacy setting, the plug-in method de-
scribed in Section 2.2 cannot be directly applied. In the following, we introduce a differentially private
counterpart of the robust covariance estimator Σ̂ξ given in (10).

Proposition 3.4. Let E ∈ Rd×d be a symmetric random matrix whose upper-triangular and diagonal

entries are i.i.d. N(0,1). For any robustification parameter ξ > 0, the perturbed robust estimate Σ̂ξ +
4ξ
εn

E is ε-GDP.

Proof. Let D =
d(d+1)

2 , and denote by h(Xn) the D-dimensional vector that consists of the upper-

triangular and diagonal entries of the covariance estimator Σ̂ξ = Σ̂ξ (Xn) ∈ Rd×d. Consider two datasets
Xn and X ′

n that differ by one datum, say x1 ∈ Xn versus x ′1 ∈ X ′
n. We have

‖h(Xn) − h(X ′
n)‖2 ≤ ‖Σ̂ξ (Xn) − Σ̂ξ (X ′

n)‖F

≤
�����

2
n(n − 1)

∑

2≤i≤n

{
ψξ

( ‖x1 − xi ‖2
2

2

)
(x1 − xi)(x1 − xi)T

‖x1 − xi ‖2
2

− ψξ
( ‖x ′1 − xi ‖2

2

2

) (x ′1 − xi)(x ′1 − xi)T

‖x ′1 − xi ‖2
2

}�����
F

≤ 4ξ
n
.

By Lemma 3.3, h(Xn) + 4ξ
εn

g with g ∼ N(0,ID) is ε-GDP. Then it follows from Lemma 3.5 that

Σ̂ξ +
4ξ
εn

E is also ε-GDP.

Remark 8. Based on Remark 3, we further consider a differentially private counterpart of the truncated
covariance estimator Σ̃ξ given in (12), which has a much smaller computational complexity than Σ̂ξ . Let
E ∈ Rd×d be the same random matrix as above. Following a similar argument as in Propositions 3.1 and
3.4, we see that given a robustification parameter ξ > 0 and an ε-GDP mean estimator µ̂, the perturbed
plug-in covariance estimator Σ̃ξ +

2ξ
εn

E is
√

2ε-GDP.
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Note that the perturbed matrix Σ̂ξ +
4ξ
εn

E may not be positive semi-definite, and therefore is not

always a valid covariance estimator. To avoid this issue, we project Σ̂ξ +
4ξ
εn

E onto a cone of positive
definite matrices {H : H � ζI} and obtain

Σ̂ξ,ε = argmin
H�ζI

����H −
(
Σ̂ξ +

4ξ
εn

E

) ����
2
, (31)

where ζ > 0 is sufficiently small. By Lemma 3.5, Σ̂ξ,ε is also ε-GDP because it is the outcome of a
deterministic post-processing step. The following proposition provides a non-asymptotic concentration
bound of the private covariance estimator Σ̂ξ,ε .

Proposition 3.5. Assume x has the finite fourth moment so that v2
0 given in (11) is well-defined. Let

n0 = �n/2� be the largest integer not exceeding n/2. Then, the private covariance estimator Σ̂ξ,ε defined

in (31) with ξ = v0
√

n0/log(2nd) satisfies

‖Σ̂ξ,ε − Σ‖2 � v0

√
log(nd)

n
+

v0

ε

√
d

n

with probability at least 1 − 2n−1.

Similarly to Theorem 2.5, we establish below a Berry-Esseen-type bound for the studentized private
statistic

√
n〈u,µ(T ) − µ〉/(uT

Σ̂ξ,ε u)1/2 for any u ∈ Rd .

Corollary 3.3. Under the same conditions as in Theorem 3.7 with q ≥ 4, we have

sup
u∈Rd ,x∈R

��P{
√

n〈u,µ(T ) − µ〉/(uT
Σ̂ξ,ε u)1/2 ≤ x} −Φ(x)

��

�
m

1/q
q

λ1/2

{√
d + log n) log n

ε

}1−1/q ( 1
n

) 1/2−1/q
+ ν

1/2
4

λ̄

λ

√
r(Σ) log n

(√
log n

n
+

1
ε

√
d

n

)
, (32)

where Σ̂ξ,ε is the differentially private covariance estimator defined in (31) with ξ = v0
√

n/log(2nd).

Recall from Theorem 2.5 that v2
0 ≤ 2ν4λ̄ tr(Σ). Based on Theorem 3.7 and Proposition 3.5, the proof

of (32) is almost identical to that of Theorem 2.5, and thus is omitted. Ignoring the moment parameters
and the condition number λ̄/λ of Σ, the leading term on the right-hand side of (32) is

r(Σ)1/2
{√(d + log n) log n

ε

}1−1/q ( 1
n

) 1/2−1/q
,

which essentially matches the upper bound in (30). In other words, the covariance estimation error is
dominated by the Gaussian approximation error under privacy.

Based on the Gaussian approximation result in Corollary 3.3, for any α ∈ (0,1) and deterministic
vector u ∈ Rd , we construct the following (

√
2ε)-GDP (approximate) 100(1 − α)% confidence interval

of 〈u,µ〉:
[
〈u,µ(T )〉 − zα/2

(uT
Σ̂ξ,ε u)1/2

√
n

, 〈u,µ(T )〉 + zα/2
(uT
Σ̂ξ,ε u)1/2

√
n

]
, (33)

where zα/2 denotes the (1 − α/2)-th quantile of N(0,1).



Gaussian differentially private robust mean estimation and inference 3079

4. Numerical studies

In this section, we perform simulation studies to evaluate the numerical performance of the Huber
mean estimator and its differentially private counterpart. Regarding the choice of robustification pa-
rameter τ, cross-validation provides a viable option but can be computationally expensive and blind to
problem structure. Recall from Theorem 2.4 that when the fourth moment is finite, the Huber estimator
with τ � m

1/4
4 (n/log n)γ for any γ ∈ [1/3,1/2] satisfies the Berry-Esseen bound (9) that is of order

m
1/4
4 (λn)−1/2 log n+ ν

1/2
4 {log(n)/n}3/4. Motivated by this, we propose a heuristic data-driven approach

to choose τ as described below.
Let µ(0)

= (1/n)∑n
i=1 xi be an initial estimate. At iteration t = 1,2, . . ., we take

τ(t) = 0.2 × ŝ(t) ×
(

n

log n

)γ
with ŝ(t) =Med

(
{‖xi − µ(t−1)‖2}ni=1

)
,

and compute the gradient descent iterate

µ(t)
= µ(t−1)

+

η0

n

n∑

i=1

ψτ(t ) (‖xi − µ(t−1)‖2)
‖xi − µ(t−1)‖2

(xi − µ(t−1)),

where η0 > 0 is the step size and γ ∈ [1/3,1/2]. Here, we compute the median of {‖xi − µ(t−1)‖2}ni=1,

which is equivalent to taking the fourth root of the median of {‖xi−µ(t−1)‖4
2 }

n
i=1, for a robust estimation

of m
1/4
4 = (E‖xi−µ‖4

2 )
1/4. Repeat the above two steps until convergence, or until the maximum number

of iterations is reached. Since the loss function is locally strongly convex with high probability, we can
either use a fixed step size, say η0 = 1, or apply the Barzilai-Borwein method [4] to compute the step
size automatically without requiring any parameters. We choose γ = 1/2 in the following simulation
studies. The algorithm for computing the GDP Huber estimator and its confidence interval is provided
in the Supplementary Material [57].

4.1. Robust mean estimation and inference

For estimation purposes, we compare the Huber mean estimator, computed by the above algorithm with
automatically tuned τ, with the sample mean estimator and the geometric median estimator (gmed)
[44] under the following three distributions, the multivariate normal (lighted-tailed and symmetric),
multivariate t (heavy-tailed and symmetric) and Pareto (heavy-tailed and asymmetric).

(i) x ∼N(µ,Σ), where µ = (μ1, . . . , μd)T with μj ’s independently drawn from the Rademacher dis-
tribution, and Σ = (0.8 |k−l |)1≤k ,l≤d.

(ii) x follows a multivariate t distribution with 2.1 degrees of freedom. The mean vector µ is gener-
ated the same way as in (i), and the covariance matrix is set to be Σ = 21 ∗ (0.8 |k−l |)1≤k ,l≤d.

(iii) x = (x1, . . . , xd)T has independent coordinates, and each xj follows a Pareto distribution with
shape parameter α = 2.5 and scale parameter 1.

We refer to [41] for more comparisons on the estimation errors. For statistical inference, we only com-
pare the proposed robust confidence construction with that of the sample mean. How to construct
confidence intervals/sets for other well-known robust mean estimators, such as the geometric median
and the geometric median of means, remains an open question.

We fix d = 100 and let the sample size n increase from 1000 to 2000. Figure 1 depicts the �2-error
versus sample size for the three methods, averaged over 500 repetitions. The Huber estimator is almost
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Figure 1. Plots of estimation error (under �2-norm) versus sample size based on 500 repetitions when d = 100.

identical to the sample mean with normally distributed data, and considerably outperforms the latter
for t and Pareto distributed data. The robustness of Huber can be further demonstrated by the boxplot
comparison (when (n,d) = (2000,100)) in Figure 2. These numerical results provide evidence that the
Huber approach gains robustness against heavy-tailedness without compromising efficiency.

Next, we compare the proposed robust confidence intervals (CIs) based on the Huber estimator
with the standard CIs constructed from the sample mean and the sample covariance matrix. We fix
(n,d) = (3000,100), and randomly generate a unit vector u. The robust 95% CI for 〈u,µ〉 takes the
form of (15) but with Σ̂ξ replaced by Σ̃ξ in (12) to reduce computational cost. After obtaining the
Huber mean estimator µ̂, we use ξ = ŝ

√
n/log(nd) with ŝ =Med({‖xi − µ̂‖2}ni=1) to construct the robust

covariance estimate. The empirical coverage probabilities and average interval width (with its standard
deviation in the parenthesis), averaged over 500 Monte Carlo simulations, are reported in Table 1. Both
methods achieve the nominal coverage under the three distributions, but the robust CIs are consistently
narrower and much less variable in the case of heavy-tailed distributions.

In addition, we also conduct a comparative analysis of the performance of the proposed robust mul-
tiple CIs against the Bonferroni method and the Šidák method. For α ∈ {0.1,0.05}, we construct robust
multiple 100(1 − α)% CIs for µ, which take the form of (17). For the Bonferroni and Šidák methods,
we replace ω1−α by z1−α/(2d) and z1−{1−(1−α)1/d }/2, respectively. The empirical coverage probabilities
under the multivariate normal and multivariate t-distribution, averaged over 1000 Monte Carlo sim-
ulations, are presented in Table 2. The multiple CIs based on the uniform Gaussian approximation
consistently achieve the nominal coverage. In contrast, the other two methods demonstrate a conser-
vative behavior, indicated by their coverage probabilities surpassing the nominal coverage. Hence, this
empirical result supports the assertion that our proposed multiple CIs are less conservative than the
Bonferroni and Šidák methods.

Figure 2. Boxplots of estimation error (under �2-norm) based on 500 repetitions when (n,d) = (2000,100).
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Normal t Pareto
Coverage width (sd) Coverage width (sd) Coverage width (sd)

Sample
mean

0.954
0.067
(0.001)

0.944
0.166
(0.076)

0.948
0.101
(0.020)

Huber 0.954
0.067
(0.001)

0.938
0.101
(0.003)

0.954
0.090
(0.002)

Table 1. Empirical coverage probabilities and average interval widths (with standard deviation in parenthesis) of
two normal-based 95% CIs for 〈u,µ〉 using the sample mean and the Huber estimator, respectively. The results are
based on 500 Monte Carlo simulations when (n,d) = (3000,100).

4.2. Privacy-preserving robust mean estimation and inference

In this subsection, we first examine the numerical performance of the proposed private robust algorithm
for mean estimation when x = (x1, . . . , xd)T consists of i.i.d. t2.1-distributed coordinates. The marginal
means μj = E(xj )’s are generated independently from the Rademacher distribution so that |μj | = 1 for
all j = 1, . . . ,d. We fix the initial estimate µ(0)

= 0 ∈ Rd and step size η0 = 1, and set the number of
iterations as T = �log n�. We implement the private Huber estimator under the following two scenarios.

(i) Fix d = 64, let n increase from 10000 to 50000, and set ε ∈ {0.3,0.5,0.9,∞}, the privacy param-
eter. Here “ε =∞” corresponds to the non-private Huber estimator.

(ii) Fix ε = 0.5, set d ∈ {32,64,128}, and let n increase from 10000 to 50000.

The logarithmic �2-errors (log(‖ µ̂(T ) − µ‖2)) versus sample size, averaged over 100 repetitions, are
depicted in Figure 3. As n increases, the correspondent logarithmic �2-errors with various privacy
parameters differ by a constant. This is consistent with the theoretical rate of convergence stated in
Theorem 3.6.

Next, we proceed to assess the performance of the proposed robust GDP CIs based on the private ro-
bust estimator. We fix the parameters (n,d) = (50000,32), ε = 0.5, and randomly generate a unit vector
u ∈ Sd−1. For µ = (μ1, . . . , μd)T with μj’s independently drawn from the Rademacher distribution, we
generate i.i.d. coordinates xj’s from (i) N(0,1) and (ii) the t distribution with 2.5 degrees of freedom.
We construct the (

√
2ε)-GDP robust 95% CI for 〈u,µ〉 following the formulation outlined in (33). How-

ever, we replace Σ̂ξ,ε with the perturbed plug-in covariance estimator outlined in Remark 8 to reduce
computational cost. The empirical coverage probabilities, averaged over 500 Monte Carlo simulations,
are presented in Table 3. The result demonstrates that private confidence intervals achieve nominal

Normal t

α = 0.1 α = 0.05 α = 0.1 α = 0.05

Proposed CIs 0.905 0.951 0.885 0.945

Bonferroni method 0.933 0.959 0.923 0.957

Šidák method 0.931 0.959 0.918 0.957

Table 2. Empirical coverage probabilities of three multiple 100(1−α)% CIs for µ using the Huber estimator with
α ∈ {0.1,0.05}. The results are based on 1000 Monte Carlo simulations when (n,d) = (3000,100).
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Figure 3. Plots of logarithmic �2-error versus sample size, averaged over 100 repetitions, for the private Huber
mean estimator under the t2.1 sampling distribution.

coverage as long as the sample size is sufficiently large to compensate for the efficiency loss due to
privacy protection.

To highlight the robustness property of the proposed method, we further compare the ε-GDP Hu-
ber estimator with the (ε,δ)-DP truncated mean estimator with δ =Φ(−1 + ε/2) − eεΦ(−1 − ε/2) (see
Algorithm 3.1 in [10]) under normal and Pareto distributions. For simplicity, we generate independent
coordinates xj’s from N(0,1) and the Pareto distribution with shape parameter α = 2.1 and scale pa-
rameter 1. We fix d = 50, ε = 0.5 (so that δ ≈ 0.05), and let the sample size n increase from 10000
to 50000. As before, we set T = �log n� and η0 = 1 in the noisy gradient descent algorithm. Note that
Algorithm 3.1 in [10] involves a truncation tuning parameter R. For normal distributions, we use the
theoretically optimal choice R = 4

√
log n as suggested in [10]; for the heavy-tailed Pareto distribution,

there is no theoretical guidance for choosing R. We thus take R ∈ {5
√

log n,10
√

log n} in this case.
Figures 4 and 5 show that the two methods perform similarly in the normal case. Interestingly, the

private Huber estimator does exhibit a visible improvement. In the heavy-tailed case (Pareto distribu-
tion), the private Huber method considerably outperforms the noisy truncated sample mean, at least
under the prespecified truncation levels. Together, the numerical results in Sections 4.1 and 4.2 provide
strong evidence that the Huber mean estimator, either non-private or private, achieves a high degree
of robustness against heavy-tailedness while maintaining high efficiency under light-tailed (e.g., sub-
Gaussian) distributions.

Normal t2.5
α = 0.1 α = 0.05 α = 0.1 α = 0.05

Coverage 0.898 0.960 0.896 0.934

Table 3. Empirical coverage probabilities of normal-based 100(1 − α)% (
√

2ε)-GDP CIs for µ using the private
Huber estimator with α ∈ {0.1,0.05} and ε = 0.5. The results are based on 500 Monte Carlo simulations when
(n,d) = (50000,32).



Gaussian differentially private robust mean estimation and inference 3083

Figure 4. Plots of logarithmic �2-error versus sample size, averaged over 100 repetitions, for the ε-GDP Huber
estimator and (ε,δ)-DP truncated mean estimator [10] when d = 50.

Appendix: Proofs of main results

A.1. Proof of Theorem 2.1

For simplicity, we write µ̂ = µ̂τ . For some r > 0 to be determined, define µ̃ = (1 − u)µ + uµ̂, where
u = sup{t ∈ [0,1] : t(µ̂ − µ) ∈ Θ(r)}. By this definition, u = 1 if θ̂ ∈ Θ(r), and u ∈ (0,1) otherwise. For
the latter, µ̃ ∈ ∂Θ(r).

Since µ̂ minimizes the convex objection function L̂τ(·), the first-order condition holds, that is,
∇L̂τ(µ̂) = 0. Further, applying Lemma C.1 in the supplementary material of [52] implies

〈∇L̂τ(µ̃) − ∇L̂τ(µ), µ̃ − µ〉 ≤ u〈∇L̂τ(µ̂) − ∇L̂τ(µ), µ̂ − µ〉 ≤ ‖∇L̂τ(µ)‖2‖ µ̃ − µ‖2.

Figure 5. Boxplots of logarithmic �2 error based on 100 repetitions for the ε-GDP Huber estimator and (ε,δ)-DP
truncated mean estimator [10] when (n,d) = (50000,50).
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For the left-hand side, since µ̃ ∈ Θ(r), it follows from the mean value theorem that

〈∇L̂τ(µ̃) − ∇L̂τ(µ), µ̃ − µ〉 ≥ inf
θ∈Θ(r)

λmin
(
∇2L̂τ(θ)

)
· ‖ µ̃ − µ‖2

2,

where λmin(∇2L̂τ(θ)) is the smallest eigenvalue of ∇2L̂τ(θ). For any z > 0 and r < τ, Lemma D.1
in [57] implies that, with probability at least 1 − e−z ,

1 − P
(
‖x − µ‖2 > γ

)
−
√

z

2n
≤ uT∇2L̂τ(θ)u ≤ 1 (34)

holds uniformly over θ ∈ Θ(r) and u ∈ Sd−1, where γ = τ − r and Θ(r) is defined in (23). Furthermore,
by Lemma D.2 in [57], we have

‖∇L̂τ(µ)‖2 ≤ 2

√
tr(Σ)

n
+

√
2‖Σ‖2z

n
+

4τz
3n
+ bτ (35)

with probability at least 1 − e−z . Therefore, denoting Gz to be the event that (34) and (35) hold, Gz

occurs with probability at least 1 − 2e−z . By Markov’s inequality, P(‖x − µ‖2 > γ) ≤ γ−2 tr(Σ). Then,
conditioned on Gz , the above upper and lower bounds yield

(
1 − γ−2 tr(Σ) −

√
z

2n

)
· ‖ µ̃ − µ‖2

2 ≤ ‖ µ̃ − µ‖2

{
2

√
tr(Σ)

n
+

√
2‖Σ‖2z

n
+ bτ +

4τz
3n

}
.

This, combined with the local constraint µ̃ ∈ Θ(r), implies

‖ µ̃ − µ‖2 ≤ 2

√
tr(Σ)

n
+

√
2‖Σ‖2z

n
+ bτ +

4τz
3n
+ r ·

{
tr(Σ)
γ2
+

√
z

2n

}
.

To conclude the proof, note from Lemma D.2 in [57] that bτ ≤ τ−1
√
‖Σ‖2 tr(Σ). Taking r = γ = τ/2,

and let (n, τ) satisfy n � r(Σ) + z and γ �
√

tr(Σ), the right-hand side of the above inequality is strictly
less than r , indicating that µ̃ falls in the interior of Θ(r). Via proof by contradiction, we reach the
conclusion µ̂ = µ̃ ∈ Θ(r) (otherwise µ̃ must be on the boundary of Θ(r)), and hence the same bound
applies to µ̂.

A.2. Proof of Theorem 2.3

For h ∈ Rd , define the function ∆(h) = ∇L̂τ(µ + h) − ∇L̂τ(µ) − h. By the mean value theorem for
vector-valued functions,

∆(h) =
∫ 1

0
∇2L̂τ(µ + th)dt · h − h =

∫ 1

0

{
∇2L̂τ(µ + th) − Id

}
dt · h.

Hence, for any r > 0, we have sup‖h ‖2≤r ‖∆(h)‖2 ≤ supθ∈Θ(r) ‖∇2L̂τ(θ) − Id ‖2 · r . This together with
Lemma D.1 in [57] implies that, with probability at least 1 − e−z ,

sup
‖h ‖2≤r

��∇L̂τ(µ + h) − ∇L̂τ(µ) − h
��

2 ≤ r

(
γ−qE‖x − µ‖q2 +

√
z

2n

)
, (36)

where γ = τ − r .
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For simplicity, we write µ̂ = µ̂τ . Setting ĥ = µ̂ − µ, Theorem 2.1 ensures that ‖ĥ‖2 ≤ r0 with r0 �√
{tr(Σ) + ‖Σ‖2z}/n+τz/n+bτ with probability at least 1−2e−z , provided n � r(Σ)+ z and τ �

√
tr(Σ).

Note that the gradient of the empirical loss L̂τ(·) is given by

∇L̂τ(θ) = −
1
n

n∑

i=1

ψτ(‖xi − θ ‖2)
‖xi − θ ‖2

(xi − θ) (37)

for θ ∈ Rd . Taking r = r0, the claimed bound (8) follows from (36), (37) and the fact that ∇L̂τ(µ̂) =
0.
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