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Abstract

In the last two decades, we have witnessed the advent of the internet era, with nearly every
application and tool we use on a daily basis providing some or all of its features by interacting with
networks of communicating devices distributed across the world. These diverse services range from
collaborative document editing, to online schooling, and even to industrial and municipal automation.
However, despite the ubiquity of these technologies, distributed computing is typically overlooked in
contemporary K-12 education, often due to complexity, cost, or a shortage of teachers who have
experience in this field. One project which addresses this issue is NetsBlox, a block-based
programming environment that prominently features high-level distributed computing abstractions. In
this paper, we expand this work by introducing a new NetsBlox Virtual Machine that allows students to
use NetsBlox to program stand-alone embedded devices and robots for a wide variety of engaging,
internet-enabled makers projects.

Keywords: Education, distributed computing, visual programming, embedded programming,
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1 INTRODUCTION

In our rapidly evolving technological world, having a solid foundational knowledge of computing
concepts is becoming increasingly vital for digital literacy. In particular, there has been an enormous
increase in our reliance on internet-based services and applications. From the user-level applications
of live digital classrooms, collaborative editing, and note taking tools, all the way down to the wireless
embedded sensors that enable municipal utility automation and weather forecasting, distributed
(networked) computing has revolutionized the efficiency and convenience of many facets of our daily
lives. However, despite the ubiquity of these technologies, distributed computing is often overlooked in
K-12 education, and the opportunity for students to gain hands-on experience building
internet-powered projects is even more uncommon.

One project trying to counteract this is NetsBlox [1] [2], a block-based programming environment
based on Snap! [3] (similar to Scratch [4]) which adds convenient distributed programming
abstractions. NetsBlox simultaneously has a low enough floor to build a simple project visualizing
historic CO2 concentrations from the online NOAA Antarctic ice core database with only a few blocks
of code, as well as a high enough ceiling to build a fully-functional recreation of Google Maps and
Street View with all features programmed by students using sufficiently abstracted blocks that access
Google’s APIs. In fact, NetsBlox has been so successful as an educational tool that it currently has a
full, year-long high school curriculum approved for use in Tennessee and currently being piloted [5].

In this work, we take NetsBlox to the next level with a new NetsBlox Virtual Machine (VM).
Traditionally, despite having full access to the internet, students’ NetsBlox projects could only run in
the browser on their laptop; however, with NetsBlox VM we can run students’ same project code on
practically any device, dramatically expanding the scope of creative projects students can build within
the same NetsBlox programming language. Three new educational platforms are already powered by
NetsBlox VM: 1) a smartphone app called PhoneloT which allows students to program their own
devices and access their phones’ sensors remotely just like real-world industrial applications of the
Internet of Things (IoT), 2) an embedded platform that allows students to create and program custom
internet-connected embedded devices and robots similar to those used in popular Makers projects,
and 3) a 3D virtual, collaborative robotics platform known as RoboScape Online that empowers
students to create custom virtual worlds and populate them with programmable robots with a multitude
of built-in virtual sensors. In this paper, we will overview the design of NetsBlox VM as it pertains to
K-12 education, and explore the three specific applications we have listed, along with some results
from a classroom study on RoboScape Online.



2 BACKGROUND

One of the biggest barriers to teaching advanced computer science concepts such as distributed
computing and embedded programming is simply the complexity of coding said projects in traditional
programming languages (e.g., C/C++). However, similar arguments have also been made about
general introductory programming in education, for which we have seen dramatic improvements in
approachability and accessibility through the application of visual programming techniques, the most
common of which being block-based programming [6]. This was the approach taken by the Scratch
project [4], which enables K-12 students to learn basic programming skills through the creation of
graphical projects and games. However, although Scratch has a low floor, it also has a relatively low
ceiling, at least when compared to general-purpose programming languages. One project that
addressed this issue was Snap! [3], which took the model of Scratch and added additional powerful
features such as lists as a first-class data type (i.e., students can now create lists on-the-fly and
compose lists of lists, etc.), the ability to define custom blocks (functions) which support recursion, and
the ability to use functions as values, which enables functional programming and higher-order
functions. Thus, Snap! is able to provide the same low floor as Scratch, but also provide a very high
ceiling by adding these “missing components” of advanced, but optional programming features.

The original concept for NetsBlox [1] [2] was to address one more missing component that Snap!
lacked, namely the ability to access web-based resources and create distributed projects. To address
this with minimal changes/complexity, only two new concepts were added: Remote Procedure Calls
(RPCs), which allow students to access curated web services through simplified and abstracted
interfaces, and message passing, which allows students to send and receive custom packets of data
between projects over the internet. Figure 1 shows an example of using the “call” block to invoke
RPCs and receive their result (in this case, the air quality index at a specific geographical location), as
well as the blocks used for receiving and sending messages (e.g., to implement a distributed program
or multi-player game). These advanced features provided by NetsBlox and Snap! make it possible to
teach a wide range of topics spanning from introductory computing, to advanced computing (e.g.,
algorithms, data structures, and functional programming), and even to distributed computing and
networking.
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Figure 1. Examples of using NetsBlox RPCs (a) and (b), message receiving (c) and message sending (d).

However, despite all of this power, it is still the case that NetsBlox projects have been traditionally
trapped running in the browser. Because of this, it is impossible to run NetsBlox (or Snap!) projects on
other devices such as servers and especially embedded devices, which are by far the most limiting
platform for any software. There are some projects which attempt to address this embedded
programming limitation, such as the BBC micro:bit [7] and Snap4Arduino [8]; however, in providing
access to the embedded programming world, these platforms lose the vast majority of the advanced
programming features that tools such as Snap! have made possible. Indeed, these tools and others
typically degrade to a point even below that of base Scratch in terms of available programming
features. The goal, then, for NetsBlox VM is to address these same limitations through a different
approach that allows us to retain all of the advanced features of NetsBlox (and Snap!) while still being
able to target embedded devices and other platforms.

3 NETSBLOX VM

NetsBlox VM was designed with three primary requirements in mind: 1) it should support all of the
same advanced programming concepts added by Snap! and all of the distributed computing features
added by NetsBlox, 2) it should be able to run on any device, and 3) it should be extensible to allow
for its application in a wide range of use cases with minimal effort. With the goal of running on



embedded devices, requirement 2 necessitated the use of a “systems” programming language (e.g.,
C/C++). Rust was selected for this project due to its emphasis on safety/reliability and ease of
correctness testing while still being able to run on any platform; e.g., embedded microcontrollers,
desktop applications, mobile applications, websites, servers, and so on. Extra considerations were
made at this time to, for example, minimize the amount of memory needed for execution (vital for
embedded platforms) and to ensure that any errors in student code would have access to a rich
context of information to aid in student debugging. In fact, the error reporting system of NetsBlox VM is
even more powerful than the original NetsBlox/Snap! error reporting systems, as we will see in the
section on NetsBlox32.

However, this complete rebuilding of the entire NetsBlox/Snap!/ runtime was no trivial task, and
creating such a system can be quite error-prone since behaviors must match exactly or else lead to
student confusion. This was the intention behind design requirement 3, which would allow us to reuse
this same reimplementation of the NetsBlox/Snap! runtime for future projects, thus guaranteeing
identical program behavior while simultaneously greatly reducing the amount of work needed to create
new educational tools with NetBlox code execution features. To achieve this, NetsBlox VM was
equipped with a plugin-like system that allows tools to intercept existing or new/unknown blocks and
give them special behaviors. For instance, the standard blocks for turning sprites left or right could be
intercepted and instead used to control the movement of a physical robot. Another example might be
intercepting the “play note” blocks and, rather than playing them through the speakers, append them
to a live-transcribed piece of sheet music that is output as a rendered PDF (this is actually another real
application of NetsBlox VM which is being developed by an undergraduate intern in our lab). With this
level of extensibility in play, it is possible to create a wide range of applications which expand the
reach of NetsBlox/Snap! into new domains of creative projects spanning the entirety of STEAM [9].

4 APPLICATIONS

In this section, we will explore three example applications, each running on a different category of
device, which use NetsBlox VM to allow students to program said devices or simulations therein and
ultimately create personally-meaningful educational projects. It should also be noted that each of
these three applications uses the exact same NetsBlox VM code and only makes VM-related behavior
changes via the previously-described plugin system.

41 PhoneloT

The first platform we will discuss is PhoneloT [10], which is an existing tool used in some NetsBlox
curriculum on Internet of Things (loT) topics [5]. PhoneloT takes the form of a free and open-source
mobile application for Android and iOS devices. Once launched, the app automatically connects to the
NetsBlox server and makes itself accessible for remote interaction from student programs. To interact
with devices remotely, students can open a NetsBlox project and use a collection of RPCs to send the
phone requests such as getting the current values of sensors (e.g., gps location or air pressure) or to
send the phone commands such as placing an interactive button at a certain location on the screen. In
addition to these “polling” (on-demand) features, PhoneloT also supports several “streaming”
(asynchronous) access features. For instance, students can request to receive periodic updates from
specific sensors on the device at specific intervals. These updates are sent from the Phone back to
the student’s NetsBlox project via normal message passing. Thus, PhoneloT allows students to use
the same abstractions of RPCs and message passing to interact with real, remote IoT devices and use
them in a number of educational projects (e.g., a physics experiment where students drop their phone
onto a pillow while plotting the accelerometer value, or a project where students turn their phone into a
remote controller for a game or other distributed application).

Originally, PhoneloT supported only this remote access paradigm where students could use NetsBlox
projects to interact with their device over the internet, but could not program their phone directly.
Granted, this was the original novelty and purpose of the tool, as opposed to other projects such as
MIT App Inventor [11] which has the opposite problem. However, with the creation of NetsBlox VM, it
was possible to incorporate the ability to run NetsBlox projects directly on the device. To do this, the
existing (unmodified) code of NetsBlox VM was used and a plugin was developed that intercepts all of
the usual PhoneloT-related RPCs and message passing and sends them directly to/from the phone,
bypassing the internet entirely. That is to say, students need not even change their programs in order
to access this local execution feature: the same student program that accesses the phone remotely



can be loaded onto the phone (via QR code) in order to run locally. As an example, Figure 2 shows a
(remote or local) PhoneloT project that streams and plots live barometric pressure data on the phone.
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Figure 2. A PhoneloT project that plots barometric pressure data (kPa) on the phone screen in real time.
This same project can run remotely or directly on the device with no change of behavior.

Local execution also allows for significant speedups; whereas remote sensor access is artificially
limited to 10Hz due to network throughput considerations in large classroom settings, local execution
speed is unrestricted and can reach into the range of 300-400Hz. This enables the use of some
advanced real-time sensing projects, such as an existing PhoneloT project which translates “tap code”
(similar to Morse code) into text by detecting vibrations from any resting surface via high-frequency
accelerometer access. Overall, this goes to show how easy it is to integrate NetsBlox VM into an
existing tool and expand the types of projects students are able to create within the same NetsBlox
programming language.

4.2 NetsBlox32

In the previous section, we explored how the latest version of PhoneloT was equipped with NetsBlox
VM and gained the ability to provide real-time access to device sensors through local execution. This
makes it possible to use PhoneloT to teach some topics within the purview of embedded
programming, but we can do better. Because NetsBlox VM is written in “no-std” Rust, it is fully capable
of running directly on embedded microcontrollers. NetsBlox32 is specifically a tool which uses
NetsBlox VM to run directly on ESP32 microcontrollers, and in particular is tested on an ESP32-S3
with 8 MB of RAM (though smaller RAM sizes would also be sufficient). Notably, even the complete
development board costs only 17 USD, making its cost comparable to micro:bit.

One of the key design principles of NetsBlox32 was to provide a completely over-air experience and
not require any physical connection to the device for any purpose. To begin programming a
NetsBlox32 device, students need only open the NetsBlox editor with an extension hosted by the
board; this extension provides a way to interact with the device through a pop-up “terminal” window
shown in the NetsBlox editor. This includes the ability to upload the current program to the device,
download its stored program, as well as control program execution with the familiar NetsBlox/Snap!
controls to start/pause/stop execution. The terminal also contains a scrolling text display that shows
the output of any “say” blocks (the NetsBlox32 equivalent of a print statement), as well as any
messages from the system (e.g., error messages from student code).

When errors occur, a general description is output to the terminal, which is similar to the existing
NetsBlox/Snap! error reporting system in terms of detail. However, NetsBlox32 goes much further and
also produces a visual stack trace of the error including a snapshot of all relevant variables in scope at
each call site. This visual stack trace is displayed as a collection of red error comments shown directly



in a student’s project; Figure 3 shows an example of such an error being displayed. This additional
information when errors are encountered is expected to greatly aid students in debugging their
programs. When the error is resolved, students can dismiss any of the red error comments and the
entire collection will be deleted together. When not connected to the device, both output and errors are
stored in cyclic buffers, which allows students to debug errors that occurred even when they were not
connected to the device.
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Figure 3. An example of an error produced by NetsBlox32 and its visualization in the NetsBlox editor.

Basic code execution aside, NetsBlox32 also supports a collection of external hardware peripherals
that can be accessed by a special “syscall” (system call) block, which is conceptually the embedded
analogy for the familiar RPC call block. Currently, these supported peripherals include: digital
inputs/outputs, DC motors, ultrasonic distance sensors, temperature sensors, pressure sensors, light
sensors, 3-axis accelerometers, and RGB LED matrix displays. This collection was carefully selected
to enable a broad range of practical science projects (e.g., a wireless remote weather station
measuring temperature and pressure over several weeks). Additionally, when possible, peripherals
were selected which use the 12C bus protocol, which are quick and easy for students to connect and
swap. Although built-in support for new types of peripherals must be added in Rust, the specific
collection of peripherals on a NetsBlox32 device and their settings can be configured wirelessly
through the board’s configuration page and requires no flashing process, unlike similar platforms.
Figure 4 shows an example of a NetsBlox32 device equipped with several peripherals and a short
autonomous driving program.

"motors":
{ "name": "LeftWheel", "gpio_pos": 4, "gpio_neg": 5 },
{ "name": "Rightwheel", "gpio_pos": 6, "gpio_neg": 7 }

'
"motor_groups": [
“name”: "wheels", "motors": ["LeftWheel","RightWhesl"] } syscall Motor.Wheels.setPower | [EE] [EW
"hesreas":
{ "name": "Forward", "gpio_trigger": 15, "gpio_echo": 16 }

LeftWheel »
RightWheel »
Wheels » |setPower

Figure 4. A NetsBlox32 robot (bottom left) configured with two motors and an ultrasonic distance sensor
(top left). A short program (top right) controls the robot to drive forward but avoid obstacles by turning right.



4.3 RoboScape Online

While NetsBlox32 provides a demonstration of how NetsBlox VM may be used to control a mobile
robot, it represents a significant difference from previous NetsBlox robotics activities. Existing robotics
support for NetsBlox is provided through the RoboScape service [12], where robots are exposed as
distributed components belonging to a web service where commands are sent through RPCs. This
system allows students to control robots through the same abstractions used with other web services,
making robotics a more natural extension of the initial NetsBlox lessons for students still learning the
basics of computer science.

However, the physical robots traditionally used with RoboScape have many barriers to entry restricting
their use in classrooms. The costs associated with purchasing and maintaining physical robots, among
other such barriers, have motivated the creation of a networked simulation environment for
educational robotics in NetsBlox, known as RoboScape Online. While earlier versions of RoboScape
Online had scenarios created in JavaScript, C#, or another editor, the newest iteration of the platform
has integrated NetsBlox VM to allow all scenarios used in its curriculum to be implemented entirely in
NetsBlox itself. A suite of new services built through the loTScape service [14] has been created to
allow elements of the simulation to be created, modified, manipulated, and removed all through
NetsBlox RPCs. Now, each RoboScape Online scenario is simply the execution of a shared NetsBlox
project running in a NetsBlox VM instance on the simulation server. The introductory project for
creating RoboScape online scenarios and the resulting simulation state is shown in Figure 4. While
creating a new scenario for the simulation, the user is able to work and test their code in the browser
NetsBlox environment, but in actual use the project will be executed in NetsBlox VM. This not only
lowers the floor of creating a scenario to skills learned through normal NetsBlox use, but also
simplifies the process for students to distribute their creations.
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Figure 4. An example of a simple RoboScape Online program

Furthermore, the integration with NetsBlox VM has allowed for many components of the simulation
which would otherwise require custom implementations for code reuse between different scenarios,
such as a timer or a state machine, to no longer need implementation in the server code. Instead, the
built in capabilities of NetsBlox no longer require additional work to expose these components to the
user. Existing NetsBlox libraries can be used in these projects, and the same web services are
available to projects powering simulation scenarios. Figure 5 shows an example scenario creating a
different environment based on real-world weather conditions in Nashville obtained through the
“Weather” web service. Message passing may also be used, communicating with other NetsBlox
projects to widen the walls of potential projects even further.
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Figure 5. An example of a RoboScape Online scenario program using a web service.

5 METHODOLOGY

Use of NetsBlox VM in the RoboScape Online application has been evaluated through a classroom
case study. During the Fall 2023 semester, a class using RoboScape Online was implemented at the
School for Science and Math at Vanderbilt (SSMV). The SSMV program allows high school age
students in the Metropolitan Nashville Public Schools district to attend special STEM courses, with a
focus on participating in research, on the Vanderbilt campus one day per week instead of their usual
classes. Over eight two-hour sessions, the students were introduced to NetsBlox, given a series of
activities on autonomous robotics, and finally introduced to creating their own environments for the
simulator and running them on the VM through the cloud-based RoboScape Online server instances.
While only the final three lessons directly demonstrated the use of student-written code running in
NetsBlox VM, all environments used in all simulated robotics activities were NetsBlox projects run in
the VM. The class consisted of 26 high school sophomores. Although the ages of the students were
similar, their other demographics make up a diverse group: 10 students identified as male, 15
identified as female, and 1 did not wish to identify their gender. 10 students identified as non-Hispanic
white, 8 as black, 2 as Asian/Pacific Islander, 2 as South Asian/Indian, 1 as Hispanic/Latino, and 3 as
bi-/multi-racial.

Evaluation of the program focused on student opinion surveys and interviews. A range of questions
adapted from the Electronic Textiles Student Survey [13] modified for a focus on robotics and
computational creativity were used to assess student attitudes before and after the course. These
surveys were given online through the REDCap platform, and all opinion questions were scored on a
six-point Likert scale. In interviews, students were asked open-ended questions about their favorite
activities, likes and dislikes regarding the environment, feelings about creating their own environments,
and other similar topics.

The use of NetsBlox VM in PhoneloT and NetsBlox32 are currently awaiting evaluation in classroom
settings.



6 RESULTS

The entire class of 26 students using RoboScape Online provided pre-survey responses, while only 21
completed the post-survey. An imputation method was used to allow for analysis of the responses
received, using the students’ pre-survey data to fill in their missing post-survey data, which would only
reduce the probability of rejecting the null hypothesis and the effect size. Although the surveys were
unpaired, demographic data of the missing students was sufficient to give only 24 possible
combinations of missing data. The values presented in this work are based on the worst-case of these
combinations. The statistically significant survey responses are listed in Table 1.

Table 1. Significant Survey Results.

Question Pre-survey Post-survey Effect size p-value
average average (Cohen’s d)
| think | am very good at coming 4.640 5.077 >0.46 <0.03
up with new ideas when working on
projects.
Thinking like a computer scientist 4.000 4.538 > 0.61 <0.03
will help me do well in my classes.
| can be creative in computer 4.308 5.040 >0.78 <0.01
science.
| can express myself in computer 3.769 4.600 >0.76 <0.02
science.
| can explain how robots make 3.500 4.385 >0.74 <0.01
decisions.

7 CONCLUSIONS

In this paper, we have provided an overview of the NetsBlox VM system, which is able to execute
student-written block-based programs on any platform while providing extensibility for its use in a
number of diverse educational tools/platforms. Specifically, we have explored the merits of NetsBlox
VM being used in three educational tools: PhoneloT, NetsBlox32, and RoboScape Online. In each
case, we saw that students are able to create relatively simple programs in the same, familiar
NetsBlox block-based language in order to target different aspects of STEAM learning; e.g., IoT and
app development through PhoneloT, real-time sensing and robotics through NetsBlox32, and 3D
scenario creation and simulation management through RoboScape Online.

Although evaluation of PhoneloT and NetsBlox32 has not yet been performed, we have explored
some results from using RoboScape Online in a classroom study with 26 students. All simulation
scenarios used in the study were implemented as NetsBlox projects running in NetsBlox VM to
construct and administrate the scenario. Additionally, the final three sessions in the study gave
students the ability to create their own custom scenarios (as NetsBlox projects) which could then be
published (shared) and run in NetsBlox VM just like the other “official” scenarios used earlier in the
studdy. Additionally, from the pre-/post-survey results, it was found that the use of RoboScape Online
led to statistically significant increases in several positive attitudinal axes, including but not limited to,
creativity when working on projects, belief that computational thinking will help students in their
classes, and understanding of robot decision methods.
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