
1.  Introduction
New particle formation (NPF) is the main source of secondary aerosols in the atmosphere. Observations show 
NPF can enhance CCN concentrations by a factor of 0.5–11 at the regional scale (S.-H. Lee et al., 2019). Global 
modeling simulations also show NPF can contribute up to 70% of the global CCN (Gordon et al., 2017). NPF 
events have been observed at various locations and occur most frequently in the free troposphere and lower strato-
sphere, extremely polluted Chinese mega-cities, and boreal forests (Kerminen et al., 2018; S.-H. Lee et al., 2019). 
However, NPF occurs extremely rarely in forests with dominant isoprene emissions (Kanawade et al., 2011; S.-H. 
Lee et al., 2016, 2019). Long-term, continuous aerosol measurements have been made in Amazon rainforests 
over the last decades and these measurements show that NPF does not occur, either at the forest sites (Pöhlker 
et al., 2012) or the sites influenced by biomass burning emissions (Rissler et al., 2006). There are so far eight 
different mixed forests in the United States where aerosol size distributions have been made: for example, in upper 
Michigan (Kanawade et al., 2011), Whiteface Mountain (Bae et al., 2010), Pinnacle State Park (Bae et al., 2010), 
Duke forests (Pillai et al., 2013), a rural Alabama forest (S.-H. Lee et al., 2016), and a high-elevation mountaintop 
site in Steamboat Spring in Colorado where temperatures are low (around 5°C, a very favorable condition for 
aerosol nucleation) (Hallar et al., 2015; F. Yu et al., 2015). All these sites showed that NPF rarely takes place 
during the summer with strong emissions of isoprene despite low condensation sink conditions, and some cases 
even in the presence of sulfuric acid, ammonia, and amines (Kanawade et al., 2011; S.-H. Lee et al., 2016). With-
out considering the absence of NPF in isoprene-rich forests, global models can over-predict the CCN production 
and thus over-predict the aerosol and cloud cooling effects over isoprene-dominant regions (Gordon et al., 2017). 
This represents an important climate science issue, as isoprene accounts for majority of the global volatile organic 
compound (VOC) emissions (Guenther et al., 2006).

The plant chamber experiments by Kiendler-Scharr et  al.  (2009) for the first time showed that isoprene can 
suppress biogenic NPF. To understand the chemical mechanisms behind the biogenic NPF in isoprene-dominant 
forests, several laboratory studies were conducted in recent years (Heinritzi et al., 2020; McFiggans et al., 2019; 
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Wang et al., 2021). These studies in general show that isoprene can suppress pure biogenic NPF. And they also 
show that the suppression is in part due to “product suppression effects” of C20 highly oxygenated organic mole-
cules (HOMs) by isoprene-produced HOMs (C5 or C15). HOMs form from autoxidation reactions of organic 
peroxy (RO2) radicals via intramolecular hydrogen shift, a reaction so called “autoxidation” (Bianchi et al., 2019; 
Frege et al., 2018; Iyer et al., 2021; Simon et al., 2020; Tröstl et  al., 2016; Zhao et al., 2018). The “product 
suppression” can be explained intuitively as the following: in a biogenic VOCs system mixed with monoterpene 
and isoprene emissions, the C20 dimer formation from monoterpene C10 RO2 can be reduced due to the RO2 
cross-reactions between isoprene-formed C5 and monoterpene C10 RO2 radicals. C20 HOMs have very low 
volatilities (even lower than those of C15) so they are much more favorable for nucleation or NPF.

While these laboratory studies agreed on the product suppression effects on biogenic NPF, they showed contra-
dicting mechanisms between each other or contradicting atmospheric observations. McFiggans et  al.  (2019) 
showed that biogenic NPF is suppressed because of the reduced OH by isoprene, in addition to production 
suppression effects. The reduction of OH is likely in an enclosed system (especially without NOx), but in real 
forests OH is not reduced as shown by a number of observations (Di Carlo et al., 2004; Hofzumahaus et al., 2009; 
Kanawade et al., 2011; Lelieveld et al., 2008; Martinez et al., 2010; Paulot et al., 2009; Peeters et al., 2009). OH 
is rather regenerated by isoprene in the atmosphere, for example, during the autoxidation of RO2 radicals (Bates & 
Jacob, 2019; Bianchi et al., 2019) or during the decomposition of Criegee intermediate biradicals (Finlayson-Pitts 
& Pitts, 2000; Seinfeld & Pandis, 2016). In contrast to McFiggans et al. (2019), Heinritzi et al. (2020) showed that 
even in an enclosed system like in the CERN Cosmics Leaving Outdoor Droplets (CLOUD) chamber, a higher 
level of OH radicals suppresses biogenic NPF, by increasing C5 and C15 HOMs (to cause even stronger product 
effects). Wang et al. (2021) flow tube experiments showed that isoprene can suppress biogenic NPF in the pres-
ence of OH, but in the absence of OH (i.e., under oxidation by ozone alone), isoprene can enhance NPF unlike 
other studies (Heinritzi et al., 2020; McFiggans et al., 2019).

Here, we show laboratory experiments of biogenic NPF under a large range of R (the ratio of isoprene carbons 
over monoterpene carbons) and oxidation conditions (ozone vs. OH) to reconcile these seemingly inconsistent 
roles that isoprene plays in biogenic NPF in the current literature (Heinritzi et al., 2020; McFiggans et al., 2019; 
Wang et al., 2021). We show the biogenic NPF is highly sensitive to the experimental conditions, and the differ-
ences in the literature occurred mostly because their experimental conditions were relatively polarized in terms 
of R and oxidation conditions. We also show that while product suppression effects play an important role in the 
suppression of biogenic NPF by isoprene, the HO2 + RO2 reactions compete with the formation of dimer HOMs 
(C15 and C20), as occurring in the atmosphere, to suppress the biogenic NPF.

2.  Methods
The biogenic NPF experiments were conducted in the Tandem Aerosol Nucleation and Growth Environment 
Tube (Tiszenkel et al., 2019) setup (Figure S1 in Supporting Information S1). This is a dual-flow tube system 
where nucleation and growth can take place in separate independent environments. In the current study, the 
conditions in the two flow tubes were kept the same. While chamber studies analyze batch samples over a certain 
reaction time (e.g., half-hour), flow tube studies look at the snapshot of air samples at a specific residence time 
(e.g., 150 s, in our case). Flow tubes are easy to control experimental conditions, clean the wall, and charac-
terize the wall loss (e.g., in a cylindrical tube). The Supporting Information S1 includes the detailed experi-
mental procedures. Typical experimental conditions used in our study are shown in Table S1 in Supporting 
Information S1. Briefly, experiments were conducted at room temperature and dry conditions (RH < 10%). In our 
experiments, OH was generated from ozonolysis of VOCs (hence dark OH source, as opposed to ozone photol-
ysis). HOMs produced from the oxidation of BVOCs were measured with the high-resolution time-of-flight 
chemical ionization mass spectrometer (HrTOF-CIMS) using iodide as a reagent (B. H. Lee et al., 2014). Both 
gas- and aerosol-phase HOMs were detected simultaneously, by attaching a Filter Inlet for Gas and AEROsol 
(Lopez-Hilfiker et al., 2014) inlet to HrTOF-CIMS. Impurities of ammonia and amines were measured with a 
CIMS using protonated ethanol as an ionization reagent (You et al., 2014; H. Yu & Lee, 2012). Since we did not 
introduce SO2 into the system, it was assumed that no sulfuric acid was produced. Particle number concentrations 
larger than 1 nm were measured with a particle size magnifier (PSM, Airmodus A10) (Vanhanen et al., 2011). 
And particle sizes between 1 and 4 nm were estimated using the PSM-measured particle number concentrations 
under different fluid flow rates and with an inversion program developed by (Lehtipalo et al., 2014). Particle sizes 
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from 3 to 100 nm were measured with an scanning mobility particle sizer 
(TSI 3936N76) which consists of nano-differential mobility analyzer  (TSI 
3085) and butanol-based ultrafine condensation particle counter (TSI 3776).

3.  Results and Discussions
Figure S2 in Supporting Information  S1 shows the results taken from the 
pure α-pinene oxidation experiments at α-pinene of 60  ppb and ozone in 
the range from 0 to 3.2 ppm. The measured aerosol size distributions show 
increased particle number concentrations of sub-3  nm particles as well as 
ultrafine particles, with increasing HOM formation. The derived J1.8 shows a 
power dependence of 4–5 with the PHOM, indicating that the critical clusters 
may contain 4-5 HOM molecules, based on the classical homogeneous nucle-
ation theory (Kashchiev, 1982), although there is a caveat that this assump-
tion may not be accurate for atmospherically relevant particles (Ehrhart & 
Curtius, 2013; Kupiainen et al., 2012; Malila et al., 2015). As expected, the 
GR also increased with increasing PHOM.

Using these results as the baseline conditions (α-pinene 238 ppb and ozone 
1.2 ppm), we added isoprene gradually with the R ratio increasing from 0, 
0.05, 0.2, 0.5, 1, 2.5, 5.2, and 11.2 (Figure S3 in Supporting Information S1). 
When R increased from 0 to approximately 2, there was a continuous reduc-
tion of particle number concentrations in all sizes, but after R > 2, particle 
concentrations increased. Nucleation rates also show a similar trend with 
R (Figure 1). We conducted the experiments under the same conditions for 
6 days and they all showed the consistent trend as discussed here.

When comparing this trend with the OH and HO2 concentrations calculated from the box model (Figure S4 in 
Supporting Information S1), it became clear that the turning point (R of ∼2) is the condition where more than 
90% of OH was scavenged by isoprene. As OH radicals were scavenged instantly by isoprene in the system and 
their maximum concentrations decreased with increasing R values, whereas HO2 concentrations increased with 
R. Thus, while the suppression of NPF was related to the reduced OH (thus decreasing the monoterpene oxidation 
products) consistent with (McFiggans et al., 2019; Wang et al., 2021), but HO2 also reacted with RO2 radicals 
which prevented the formation of dimers (as opposed to RO2 + RO2 reactions). This analysis is further examined 
using the HOMs chemical composition measurements as discussed below.

During α-pinene and/or isoprene oxidation reactions, we identified the elemental composition of ∼1,600 ion 
peaks. Tables S2 and S3 in Supporting Information  S1 include 20 top HOMs signals for each experimental 
condition in the gas- and particle-phase, respectively. The general observation is as the following: regardless 
R values, the highest concentration of HOMs was in the range of C5–C10, with the components C9H14O4 and 
C5H10O3 having the highest concentrations in the gas phase, and a larger amount of C20 dimers present in the 
particle phase.

The mass defect plots clearly show the autoxidation production of HOMs (Figure 2). A large range of oxygen 
atoms, for example, in C10H16Ox (x from 3 to 8) indicate that these highly oxygenated species indeed form from 
autoxidation reactions. The general pattern of mass defect plots of the gas- and aerosol-phase HOMs are strik-
ingly similar, indicating that the gas-to-particle conversion process was dominant, and possible heterogenous 
reactions (such as oligomerization) were negligible within such a short reaction time (<200 s) in our experiments. 
Previous CLOUD studies have also shown similar elemental composition of HOMs in the gas- and aerosol-phase 
from the α-pinene/ozone or α-pinene/isoprene mixed systems (Caudillo et al., 2021; Q. Ye et al., 2019). In the 
pure α-pinene/ozone system, oxygenated C10 HOMs dominated the gas-phase spectra. However, even in the 
pure α-pinene system, there were abundant C5 and C15 HOMs, likely due to decomposition or fragmenta tion 
of C10 or C20 HOMs. C5 and C15 HOMs were also observed from the pure α-pinene/ozone system with 
the nitrate-CIMS by (Caudillo et al., 2021; Simon et al., 2020). The abundance of peaks seen above m/z 300 
shows that particles formed in this pure α-pinene/ozone system contained a wide range of C20 HOMs. This is 
consistent with the formation of highly oxygenated, low volatility dimers that characterize monoterpene particle 

Figure 1.  The measured nucleation rate J1.8 as a function of R. Vertical 
bars indicate one standard variation in J1.8. We have conducted the same 
experiments for 6 days, and these data showed the same trend as shown 
here. Data shown in this figure and Figures 2–4 are from the same day's 
experiments.
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Figure 2.  Mass defect plots for (a–d) gas- and (e–h) aerosol-phase highly oxygenated organic molecules measured 
simultaneously with the iodide high-resolution time-of-flight chemical ionization mass spectrometer. Experiments were 
conducted with (a, e) pure α-pinene, (b, f) R = 0.2 where a suppression of new particle formation (NPF) took place, and (c, g) 
R = 5.2 and (d, h) R = 11.1 where an enhancement of NPF took place. Color (in Log scale) and bubble size (in linear scale) 
indicate peak intensity.
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formation. As isoprene was added at low R values, signals for these C20 compounds weakened in both the 
gas- and particle-phase, consistent with the product suppression effects observed in previous studies (Heinritzi 
et al., 2020; McFiggans et al., 2019; Wang et al., 2021). Upon further increases in R, gas-phase C20 HOMs were 
suppressed, yet these signals were still significant in the particle-phase spectra. Thus, C20 HOMs that form under 
these high-isoprene conditions tended to partition very efficiently into particles. The C15 HOMs enhancement 
was also observed as R increased, but C15 compounds with higher masses were not detected in the particle 
phase outside of the highest isoprene concentrations. This suggests that in the presence of high concentrations 
of isoprene, it is not only favorable for C15 monoterpene/isoprene dimers to form, but there is an additional 
tendency for those C15 to have higher volatilities.

Figure 3 shows the relative changes in ion peaks in the mixed system as compared to the pure α-pinene oxidation 
system. Clearly, with the addition of isoprene, in both gas- and aerosol-phases, C5 and C15 HOMs were enhanced 
while C20 HOMs decreased. The increase in C5 and C15 concurrent with a decrease in C20 is evidence for both 
product scavenging, in which C15 compounds favorably form over C20 compounds, and RO2 + HO2 termination 
reactions, which suppress C20 while increasing monomer signals. When particle formation rates were suppressed 
at lower R values, there was a decrease for all C20 signals in the particle phase. However, C20 HOMs below 
m/z 500 were enhanced at higher R values. At R = 5.2, these lower mass C20 HOMs tended not to partition into 
the particle phase. At R = 11.1, these same C20 HOMs were detected in the particle phase, indicating that when 
a sufficient amount of isoprene oxidation products is available, lower mass (thus likely higher volatility) C20 

Figure 3.  Stick plots showing differences in ion signal in the mass spectra taken at varying R values compared to the pure α-pinene spectra in the (a, c) gas and (b, 
d) particle phase. Negative peaks indicate stronger peaks in pure α-pinene spectrum, while positive peaks indicate stronger peaks in isoprene-containing spectra. 
Colors indicate highly oxygenated organic molecules classes based on the number of carbon atoms. Note that y-axes are split to maintain a consistent scale while still 
emphasizing the magnitude of the tallest peaks on each spectrum.
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compounds are present in the particle phase. This may be due to the abundance of isoprene and ozone leading 
to rapid formation of isoprene oxidation products, which can react by RO2-RO2 reactions in to C20 compounds 
that tend to be less oxidized than those formed by monoterpene dimerization reactions. The abundant availability 
of these compounds at high values of R could result in more favorability for these compounds to partition into 
the particle phase. These trends indicate that within a certain class of HOMs (e.g., when simply grouped as C5, 
C10, C15, or C20), there exists a large range of volatilities that cannot be easily predicted from the elemental 
composition (or chemical formula) alone. Indeed, individual thermograms grouped by the HOM classes meas-
ured during this experiment showed a broad range of desorption temperature (Figure S5 in Supporting Informa-
tion S1), indicating that conclusions of HOM volatility in this system demand a more granular analysis. Figure S5 
in Supporting Information S1 shows the average thermogram profiles of HOMs for C5 (C5 only), C10 (C6–10), 
C15 (C11–15), and C20 (C16–20) groups. C5, C10, and C15 had a similar Tmax ∼70°C, corresponding to LogC* 
of approximately −3. On the other hand, C20 had a broader range of Tmax between ∼50 and 120°C approximately, 
corresponding to Log C* roughly between ∼−1 and −7 and hence falling into the low volatility compounds 
and extremely low volatility compounds groups at room temperature (C. Ye et al., 2021; Ylisirniö et al., 2021). 
Thermograms of C10 compounds measured by (Caudillo et al., 2022) also showed a nearly 100°C range in deso-
rption temperatures among compounds even with similar oxidation states, for example. Thus, the broad ranges 
of these thermograms indicate that a simple grouping of HOMs by the carbon number is insufficient to account 
for vola tility differences in the particle phase. This is because even with the same chemical formula, there are 
different isomers that can have different oxidation status, and chemical functional groups can dictate the volatility 
of an organic compound more greatly compared to the number of carbon atoms.

A comparison of HOMs with OH and HO2 concentrations reveals an interesting interplay between HOx and 
isoprene (Figure 4). The box model was incorporated with the Master Chemical Mechanism (MCM) v.3.3.1 
(Jenkin et al., 2015). Figure 4 shows the normalized ion intensities of C5, C10, C15–C20 HOMs in the gas- 
and aerosol-phase as a function of R. While OH decreased with increasing R values, HO2 increased with R, as 
discussed above. As expected, HO2 and C5 also showed very similar trends with varying R values, as they form 
from similar reaction pathways involving isoprene autoxidation reactions (Bates & Jacob, 2019). C10 HOMs 
decreased with the decreasing OH, indicating a significant portion of C10 HOMs in our experimental system 
were formed from the OH oxidation of α-pinene as well as ozonolysis. Additionally, the decrease in C10 is due 
to the presence of C5 RO2 with increasing isoprene in the system, leading to C15-forming RO2 + RO2 reactions. 
Thus, the low R region (<∼2) can be considered as dual oxidation regime where OH oxidation plays a dominant 
role in the formation of HOMs from monoterpenes, whereas as high R region (>∼2) can be considered as the 
mostly ozone-oxidation regime with minimal OH concentrations.

At the low R region (<∼2), the proportion of C15 present in both the gas- and particle-phase becomes dominant 
over C20 as C5 increases, which can be attributed to the product scavenging effects of C5 on C20 dimers. This 
is the region where NPF suppression was observed. In the gas-phase, we saw a significant decrease at low R in 

Figure 4.  The normalized highly oxygenated organic molecules in the (a) gas-phase and (b) aerosol-phase for C5, C10, C15, and C20 groups and the box 
model-calculated OH and HO2 concentrations are shown for different R conditions.
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C10 that was not present in the particle-phase, indicating that the mechanism of C20 suppression was not only 
due to the decrease in C10 proportion, but can also be attributed to the addition of C5 compounds in the system. 
As R became larger than ∼2, HO2 increases with a concurrent decrease in gas phase C15 and C20, indicating 
that HO2 + RO2 reactions were suppressing the formation of dimers (C15 and 20). In the gas phase, HOMs were 
dominated by C5 and C10 (they together account for more than 99% of total HOMs). On the other hand, the frac-
tion of C15 and C20 HOMs in the particle phase was 4–5 times higher than in the gas phase (less than 1%), due to 
the active gas-to-particle conversion processes of these HOMs. C5 and C10 contents were nearly the same across 
different R values, because they were abundant in the gas phase and readily sufficient for aerosol formation. At 
higher R conditions, J1.8 was greatly enhanced by the increasing fraction of C15 and C20. This enhancement was 
also likely due to the increased partitioning of abundant higher mass C10 molecules in to the particle phase as 
isoprene increased. While Figure 4b shows the proportion of C10 in the particle phase does not change, Figure 3b 
clearly shows an increase in particle-phase C10 at higher masses. This indicates that in the presence of isoprene it 
is likely that isoprene-derived C5 monomer RO2 radicals react with one another to form oxidized dimer C10 that 
then efficiently partition in to the particle phase.

Our analysis shows that the low R region (<∼2; in our experimental conditions) represents primarily the OH 
oxidation regime in the presence of ozone, whereas the high R region (>∼2) represents the ozone oxidation. Table 
S1 in Supporting Information S1 compares different oxidation regimes and R conditions used in the previous 
studies. Heinritzi et al. (2020) used both OH and ozone were present in their experiments, but their R values were 
mostly at a small range of R (<2) with only a few exceptions. Thus, their experimental conditions resemble the 
low R condition, where continuous suppression of NPF by isoprene takes place due to the production effects of 
C20, as discussed above (Figure 4). In (McFiggans et al., 2019), the R values went higher, but their experiments 
were made at high concentrations of OH, thus in terms of oxidation chemistry, their conditions still resemble 
the low R condition. Wang et al. (2021) used both the OH + ozone oxidation and ozone-only oxidation regime, 
where they observed both the suppression and enhancement of NPF, respectively, similarly to the present study. 
Our study further demonstrates that in addition to the product suppression effects, HO2 + RO2 reactions also play 
important roles in the suppression of dimers (C15 and C20) and in biogenic NPF processes. It is possible that 
in real forests, HO2 + RO2 reactions may be even more important than product suppression effects, for example, 
depending on the relative concentrations of HO2 versus RO2 and the different RO2 + RO2 (or RO2 + R'O2) reac-
tion rate coefficients. In the real atmosphere, R varies depending on season and atmospheric condition. R values 
can be as high as >10 (Kanawade et al., 2011; S.-H. Lee et al., 2016, 2019). The tipping point where suppression 
of NPF by isoprene shifts to enhancement was ∼2 in our experimental conditions. However, as shown in the 
above analysis, this threshold value is sensitively dependent on the oxidation regime and VOCs composition and 
concentrations, and thus cannot be simply molded into real atmospheric environments.

4.  Conclusions
Our biogenic NPF experiments show that isoprene can suppress biogenic NPF where OH oxidation is domi-
nant (e.g., at a low R); but when the ozone oxidation is dominant with minimal OH radicals (at a high R), 
isoprene can also enhance NPF. While our results agree with previous studies on product suppression effects 
by isoprene (Heinritzi et al., 2020; McFiggans et al., 2019; Wang et al., 2021), we also find the HO2 + RO2 
reactions are important for the suppression of dimer formation (C15 and C20), as occurring in the real atmos-
phere (Wang et al., 2021). Specifically, at conditions favorable to the suppression of NPF by isoprene, particle 
chemical composition suggests RO2 + HO2 termination reactions play an important role in the observed lack of 
particles. As R increases, product suppression occurs, which reduces the proportion of dimers consisting of two 
monoterpene units (C20 dimers) in favor of isoprene-monoterpene dimers (C15 dimers). Our results highlight the 
important synergetic effects of isoprene and HOx on biogenic NPF.

At present, there are strong discrepancies in the literature amongst biogenic NPF studies involving isoprene 
(Heinritzi et al., 2020; McFiggans et al., 2019; Wang et al., 2021), and our analysis shows that seemingly incon-
sistent chemical mechanisms and interpretations provided from these previous studies were due to different 
oxidation regimes and different R ranges used in their experiments. Our results, together with these previous 
studies, can explain the lack of NPF events observed in pristine Amazon rainforests. However, to simulate the 
atmospheric conditions of mixed deciduous forests in the United States with substantial influences of man-made 
air pollutants (e.g., SO2 and ammonia), additional work using the multicomponent nucleation systems is required.
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Data Availability Statement
The data is available at Zenodo (https://doi.org/10.5281/zenodo.7864401) The MCM v3.3.1 model is available 
at Jenkin et al. (2015).
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