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modulation theory, a quasi-continuum approximation,
and numerical simulations. A surprisingly elaborate set
of solutions to this simple discrete regularization of
the inviscid Burgers’ equation is obtained. In addition
to discrete analogs of well-known dispersive hydrody-
namic solutions—rarefaction waves (RWs) and disper-
sive shock waves (DSWs)—additional unsteady solution
families and finite-time blowup are observed. Two solu-
tion types exhibit no known conservative continuum
correlates: (i) a counterpropagating DSW and RW solu-
tion separated by a symmetric, stationary shock and
(ii) an unsteady shock emitting two counterpropagating
periodic wavetrains with the same frequency connected
to a partial DSW or an RW. Another class of solutions
called traveling DSWs, (iii), consists of a partial DSW
connected to a traveling wave comprised of a periodic
wavetrain with a rapid transition to a constant. Por-
tions of solutions (ii) and (iii) are interpreted as shock
solutions of the Whitham modulation equations.
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1 | INTRODUCTION

The hydrodynamics of the conservation law (inviscid Burgers’ equation)
u; + (uz)x =0, €)

with u(x,t) € R, x,t € R is succinctly expressed by solutions of the Riemann problem that
consists of Equation (1) for t > 0 subject to the initial condition

_ <0,
u(x,0) = U= x= xeR (2)
u, x>0,

for u, € R. Solutions must be interpreted in a weak sense and depend intimately upon the regu-
larization applied. For the viscous regularization in which Equation (1) is modified to Burgers’
equation u; + (u?), = vu,, where v > 0, the weak solution of (1)—either a moving discon-
tinuity (shock) or rarefaction wave (RW)—is uniquely determined by considering the strong
vanishing viscosity limit v — 0T of Burgers’ equation.! This results in the well-known Rankine-
Hugoniot jump condition for the speed V' = (u_ + u, ) and Lax entropy condition u, <V < u_
of admissible shock solutions. Regularization by more complex viscous terms (nonlinear, higher
order, and viscous-dispersive) generally results in the same weak solution.? An alternative dis-
persive regularization is the Korteweg-de Vries (KdV) equation u; + (u?), + €2ty = 0. In this
case, the zero dispersion limit ¢ — 0 converges weakly in the sense that it satisfies the KdV-
Whitham modulation equations corresponding to averaged conservation laws."* Gurevich and
Pitaevskii recognized the physical importance of the asymptotic approximation obtained by con-
sidering small but nonzero ¢ and obtained the dispersive shock wave (DSW) solution of the
KdV equation for (2) when u_ > u, as a self-similar solution of the KdV-Whitham modulation
equations.* They also observed that when u_ < u,, the KdV equation with small but nonzero
¢ is well-approximated by the same RW obtained from the dispersionless Hopf equation (1).
DSWs are unsteady, modulated nonlinear wavetrains connecting two distinct levels.” In contrast
to viscous regularization, alternative dispersive regularizations can result in drastically different
Riemann problem solution behavior in the small dispersion regime, particularly when higher-
order® or nonlocal’ dispersive terms are considered. The multiscale dynamics of conservative
nonlinear wave equations in the small dispersion regime are generally referred to as dispersive
hydrodynamics.’

In this paper, we study the dispersive hydrodynamics of the discrete regularization of
Equation (1)

d 1
qin T 5(“;21+1 —u, ;) =0, 3)
by solving the Riemann problem
u, n<o0
un(o) = { 4)
u, n>0

for (3) where n € Z,t € R,u = u,(t) € R. Equation (3) is the simplest centered differencing
scheme for the hydrodynamic flux. As recognized in the early days of computational fluid dynam-
ics by von Neumann, and later clarified by Lax, differencing schemes like (3) introduce oscillations
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3 0f48 | SPRENGER ET AL.

that require mitigation if one wishes to converge strongly to viscously regularized solutions that
satisfy the conservation laws of fluid dynamics.® In this paper, we consider Equation (3), subject
to (4), in its own right, divorced from the aim of approximating solutions of Equation (1). The
semidiscrete equation (3) can be interpreted as the dispersive regularization

Uy + é sin(iedx) (12) = 0 )

by introducing T = ¢t, X =¢en into Equation (3), where € > 0 is the lattice spacing. Here,
isin(—id,) = % (exp(dy) — exp(—0,)) is the pseudo-differential operator for the centered discrete
derivative and acts on a function f in the variable x via

(isin(=18,)/)(0) = 3(fCx + 1) = fGx = D). ©
Equation (5) is similar to Whitham-type evolutionary equations®™'! except that it is further con-
strained to be band-limited. For the lattice equation (3) at time ¢, the support of the discrete-space
Fourier transform of u,,(¢t) is [—7, 7] due to the smallest length scale set by the lattice spacing,
whereas the Fourier transform of quasi-continuum approximations is not generally compactly
supported. As we will demonstrate, this fundamental property of lattice equations introduces new
hydrodynamic solution features that do not appear within certain continuum limits of the model.
Equation (5) can be used to formally derive quasi-continuum approximations by using Padé
approximants of é sin(—iedy) for 0 < € <« 1. For example, the (1,3) Padé approximant

i g2 !
leads to the Benjamin-Bona-Mahoney (BBM) equation absent the linear convective term'?

2
3
Ur + Uy — gUXXT =0. ®

This quasi-continuum approximation, inspired by the work of Rosenau on mass-spring
chains'*!*—see also the discussion in Ref. 15—is expected to faithfully represent the long-
wavelength behavior of the lattice model (3). But it is no longer band-limited. In fact, outside
of RWs and DSWs, the Riemann problem solutions we obtain for the lattice equation (3) bear
no resemblance to the corresponding Riemann problem solutions of (8) obtained in Ref. 7 where
short wave effects become important. Nevertheless, the quasi-continuum model (8) admits exact
solitary and periodic traveling wave solutions that can be used to approximate corresponding
solutions of the lattice model (3).

A particular feature of the band-limited lattice equation (3), and others with centered
differences, is the existence of stationary, period two (binary) oscillation solutions

Uy, =, Uy =P, NEZ ©)
for any «, B € R. Equation (3) was studied in Ref. 16 using extensive numerical simulations for

certain types of odd initial data and binary oscillations were found to play an important role.
Allowing for slow spatiotemporal modulations of this solution—a = a(X,T),8 = (X, T),T = t,
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SPRENGER ET AL. 4 0f 48

X =¢n, 0 < ¢ < 1—Turner and Rosales!® obtained the modulation equations

ar+(BHx =0, Br+(a?x =0. (10)

Two important implications of the hydrodynamic-type equations (10) are: (i) the equations (10)
are elliptic whenever a8 < 0 and (ii) the existence of discontinuous, shock solutions satisfying
Rankine-Hugoniot jump conditions. The ellipticity of (10) was shown to provide a route through
modulated binary oscillations to blowup of solutions of (3).

While the topic of DSWs and dispersive hydrodynamics has been more extensively explored
in the realm of continuum media,>'” as already implied by the above discussion, studies of the
discrete realm have the potential to offer new and intriguing wave features. In addition, the
motivation for such explorations has significantly increased on account of a diverse range of cor-
responding applications. A central topic is the study of granular crystals and associated nonlinear
metamaterials,” consisting typically of elastically interacting bead chains. There, a sequence of
experimental efforts in simpler,'®'” as well as in progressively more complex media, including
dimers®’ and the more recent setup of hollow elliptic cylinders®' have manifested the sponta-
neous emergence of DSWs under suitable loading conditions. However, this has not been the
only setting where “effectively discrete” DSWs have experimentally emerged. Another example is
in nonlinear optics where such structures have appeared in optical waveguide arrays.’” Finally,
and quite recently, yet another setup has emerged, that of tunable magnetic lattices®> in which
ultraslow shock waves can arise and be experimentally imaged.

Earlier interest in lattice shocks include the heyday of conservation laws and shock waves in the
1950s and 1960s when material scientists were interested in the compression of a solid by passage
of a very strong shock wave through materials.”* Early numerical studies (molecular dynamics
simulations) depicted what we now call a lattice DSW in the material’s stress profile and rec-
ognized its unsteady character in a one-dimensional anharmonic chain.? This contradicted the
basic assumption of steadiness underlying the Rankine-Hugoniot jump conditions and led to
some controversy in the field. The DSW’s leading edge was then identified with a homoclinic
traveling wave solution (solitary wave) of a continuum approximation in Ref. 26, later identi-
fied as a generic feature of DSWs in continuum media.*?” The controversy continued for about
15 years until, in 1979, three-dimensional lattice simulations were shown to exhibit a transition
from unsteady to steady shock fronts due to transverse strains.’® It is worth noting that the same
transition from one-dimensional, unsteady (dispersive) to multidimensional, steady (effectively
viscous) shock propagation, was recently observed in a completely different, ultracold atomic
superfluid.?’

These works have motivated the present authors to revisit “lattice hydrodynamics” and the
prototypical settings where DSW structures can arise in nonlinear dynamical lattices. Canonical
examples of first order in time, quadratically nonlinear lattice nonlinear ordinary differen-
tial equations (ODEs) in a conservation law form were discussed extensively in the work
of Turner and Rosales.'® A subset of the present authors has recently revisited this class of
models in Ref. 30 attempting to incorporate tools from Whitham modulation theory, bringing
to bear both data-driven, as well as more theoretically inspired quasi-continuum approaches
to obtain an effective dimensional reduction, through a local ODE description of the unsteady
DSW states. Our aim here is to expand on this work, offering a more systematic classifica-
tion of the possible solutions of such models by using Whitham modulation theory and, where
appropriate, quasi-continuum approximation considerations supplemented by direct numerical
simulations.
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FIGURE 1 Classification of the Riemann problem (4) of the discrete conservation law (3). The numerical
computations are shown at ¢ = 500 and have been performed with the initial data in (11).

We select the scale-invariant, representative nonlinear example (3) within the class of models
of Ref. 16 and set up the corresponding discrete Riemann problem (4). Our motivation for this
choice is to contrast the complex and rich nonlinear behavior that the latter model will be seen to
feature below with the far simpler dynamical phenomenology of the integrable discretization of
Section ITA and of the work of Lax.*! Figure 1 depicts our phase diagram as a partitioning of the
parameter space (u_, u, ) and identifies seven distinct solution behaviors. Some of these, such as
the possibility of an RW or a DSW as well as that of blowup are to a certain degree expected or have
been argued to be present previously.'® They are labeled RW, DSW, and o in Figure 1, respectively.
However, there are choices of initial conditions that yield less common dynamical outputs, some
of which are genuinely discrete in nature with labels in Figure 1 identified parenthetically. These
include, for instance, a stationary, symmetric shock on its own (SS) or separating an RW and a
DSW (DSW + SS + RW). Another example is a traveling DSW (TDSW), which consists of a par-
tial DSW connected to a heteroclinic periodic-to-equilibrium traveling wave. Arguably, the most
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SPRENGER ET AL. | 6 0f48

complex structure encountered is an unsteady shock (US) evolving between two distinct travel-
ing waves featuring the same temporal frequency. In what follows, we explain our partitioning of
the phase diagram of Figure 1 into the regions pertaining to these different dynamical behaviors
and we offer a set of tools that can be used to understand each one, as well as unveil some open
directions for future exploration.

There exists a family of Riemann problems that can be considered in the discrete setting by
modifying the value u,(0) in (4). For example, Turner and Rosales set u,(0) = 0 and u_ = —u,..'°
We primarily focus on the data (4) in which uy(0) = u_ resulting in the phase diagram of Figure 1.
While changing u,(0) does not affect the observed solution phases, it does change the phase
boundaries. We interpret this microscopic modification of the initial data impacting the macro-
scopic properties of solutions as an indication of nonuniqueness of the Riemann problem for the
dispersive regularization (7).

It is important to distinguish our use of the term “shock” or “shock wave” from the classical
notion of discontinuous weak solutions of inviscid Burgers’ equation (1). We identify four classes
of shock solutions to the discrete equation (3) by prefacing each with a descriptor in Figure 1. The
simplest is the symmetric, stationary shock (SS) solution of the lattice

Un(t) = {‘“0 =0, an
u

0 n>ao,

where u, > 0. The other shock solutions can be understood as special solutions of the first-order,
quasi-linear Whitham modulation equations corresponding to Equation (3) that are described
in Section 3. The unsteady DSW is approximated by a nonlinear, periodic wavetrain modu-
lated by an RW solution of the Whitham modulation equations. Note that the DSW does not
satisfy the Rankine-Hugoniot jump conditions of the Whitham modulation equations. On the
other hand, the US is approximated by two periodic traveling waves that satisfy the jump condi-
tions for the Whitham modulation equations. The TDSW consists of both an unsteady partial
DSW—approximated by a rarefaction solution of the Whitham modulation equations—and a
steady traveling wave—approximated by a periodic traveling wave and a solitary wave that satisfy
the jump conditions for the Whitham modulation equations. There is an important distinction
between the traveling wave and US as discontinuous solutions of the Whitham modulation equa-
tions. The phase speeds of the two periodic traveling waves in the US solution differ from one
another and from the shock speed, which is zero. On the other hand, the traveling wave solution
consists of a single periodic traveling wave whose phase speed is the same as the shock speed. For
clarity, we summarize the four distinct uses of the term “shock” in this paper:

1. The stationary lattice shock (SS) (11);

2. The unsteady DSW that is approximated by a rarefaction solution of the Whitham modulation
equations;

3. The unsteady shock (US) that is approximated by a discontinuous shock solution of the
‘Whitham modulation equations;

4. The traveling dispersive shock wave (TDSW) that is approximated by a shock-rarefaction
solution of the Whitham modulation equations.

Our presentation will be structured as follows. In Section 2, we present the model equations, as
well as the principal setup and notation for our study. In Section 3, we focus on the Whitham
modulation equation formulation for the discrete problem. We discuss the corresponding
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conservation laws and how their averaging can provide information for the DSW features of our
model. Section 4 is dedicated to the systematic classification of our solutions in the different para-
metric regimes, accompanied by illustrative numerical computations of the different identified
waveforms. In Section 5, we show how modification of the Riemann data (4) at a single site can
lead to drastically different solution behaviors. Finally, in Section 6, we summarize our findings
and present our conclusions, as well as a number of open questions for further research into this
budding theme.

2 | MODEL EQUATIONS

It will be beneficial to generalize Equation (3) and consider the discrete scalar conservation law'®

du
2 dt” + & (Upyq) — ' (uy_q) = 0, (12)

a discretization of the more general conservation law u; + ®'(u), = 0, where n € Z,t € R,u =
u,(t) € R and the potential ®(u) is assumed to be smooth with ®'(u) a convex function of its
argument @' (u) # 0. Equation (12) possesses a Lagrangian and Hamiltonian structure,*” yet it is
first order only, making its analysis slightly more convenient when compared to classical nonlin-
ear oscillators, such as those of the Fermi-Pasta-Ulam-Tsingou (FPUT) type.** Besides serving
as a prototype model for lattice DSWs, Equation (12) is also of interest for applications, such as in
the description of traffic flow>*; for a discussion of relevant models and their continuum limits
see also Ref. 16.
In this paper, we primarily focus on the potential

d(u) = u; 13)

For this choice, Turner and Rosales'® showed that two quantities are conserved across the lattice.
The “mass”

M(t) = ) uy(t)

and “energy”

E(t) = ) ®(u,(1)),

when well-defined, are conserved in the infinite lattice and in a finite lattice with periodic
boundary conditions. It is not known to the authors if other conservation laws are available for
Equation (3), but the nonintegrability of the system suggests that more conservation laws are
unlikely. The linear dispersion relation for Equation (12) is

wo(k, ) = ®"(@)sin(k), k,i€R (14)
for linearized wave solutions of the form u,(t) = &t 4+ ae’®"~!  |a| < 1. Throughout the

manuscript, we consider the Riemann, step initial data (4). For numerical simulations, the infi-
nite lattice is truncated by introducing N > 0 (even) to represent the number of lattice sites. The
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SPRENGER ET AL. | 80f48

corresponding spatial domain is —N/2+ 1 < n < N/2 and the simulation temporal domain is
[0,Tf/e], where T is a fixed constant independent of ¢ = 1/N. We use free boundary condi-
tions u_y/, = u_n/241 and uy , = uy/,—1 in conjunction with the initial data equation (4), and
we choose domain sizes large enough that interactions with the boundary are negligible. When
investigating finite-time blowup, we employ periodic conditions. This allows us to monitor if the
rescaled quantities E(t) - E(t)/N and M(t) - M(t)/N are conserved (details in Section 4.6).
A variational integrator is used for simulations (see Ref. 32). Simulations were also carried out
with a Runge-Kutta method to check for consistency which yielded negligible differences on
the timescales considered in this paper (for cases that did not involve blow-up features). Due
to the scaling symmetry t — at, u, — au,, for any nonzero a € R of Equation (12) subject to
(13), we can set either u, = 1 or u_ = 1 without loss of generality. Figure 1 shows a classification
of the zoology of solutions that arise from the Riemann problem. They include RWs for u, =1
and u_ € (0.18,1), DSWs for u, € (0,1) and u_ = 1, solutions consisting of DSW + SS + RW for
u, =landu_ € (—1,—0.26), solutions consisting of TDSWs for u, € (—0.724,0) and u_ = 1, US
foru, =1andu_ € (—0.26,0.18), and blowup (o0) for u, € (—1,—-0.724) and u_ = 1. The region
boundaries are approximate. In Section 4, we provide a detailed analysis for each of the five solu-
tion types just described, starting first with the simplest, and moving through them gradually in
terms of their complexity according to the table in Figure 1. We employ a number of tools for the
study of these solutions, including direct numerical simulation, fixed-point iteration schemes,
modulation theory, weak solutions, DSW fitting, and quasi-continuum modeling. The details of
these approaches will be given in the sections they are employed, with the exception of modulation
theory. This analysis is slightly more involved, and thus has a dedicated section. Our intention in
presenting these tools is to leverage this specific, but interesting in its own right, example in order
to utilize a variety of techniques that may be of broader relevance to applications in other Hamilto-
nian nonlinear dynamical lattices. It would be of particular interest to identify similar phenomena
or/and to leverage the techniques utilized herein in other dispersive, nonlinear lattice models.

2.1 | An alternative, integrable discretization

Prior to describing the solutions of Equation (3) depicted in Figure 1, we briefly comment on the
alternative discretization

du,
dt

+ Uy (Upgr — up—q) =0, @15)

of Equation (1) subject to (13). This equation was studied in Refs. 31, 35 where it was shown
to exhibit DSWs and, for positive data, to be completely integrable by a transformation® to an
equation related to the Toda lattice.’” We have performed numerical simulations of Equation (15)
subject to the Riemann data (4) and observe DSWs when u_ > u, > 0, RWs when u, > u_ >0,
and blowup when u, and u_ exhibit opposite signs. Examples of numerical simulations of DSWs
and RWs that emerge from strictly positive initial Riemann data are shown in Figure 2.

Of course, complete integrability confers a great deal of mathematical structure. Whitham
modulation theory for the Toda lattice was developed in Refs. 38-40 while the inverse scatter-
ing transform for the Toda lattice with step-type initial data was developed in Ref. 41; see also the
recent discussion of Whitham theory applied to DSWs in the Toda lattice.** Collectively, these
works support our numerical observation that, for positive Riemann data, Equation (15) exhibits
only RW and DSW solutions. These Riemann problem solution behaviors are to be contrasted
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FIGURE 2 Classification of the Riemann problem of (4) (left panel) and typical time evolutions of the
Riemann data for a rarefaction wave (RW, middle) and a dispersive shock wave (DSW, right panel) within
Equation (15).

with those depicted in Figure 1. Although integrability of Equation (15) is lost for sign-indefinite
initial data, the only dynamics we numerically observe are indicative of blowup. Thus, the dis-
cretization (3) we focus on in this paper, admits a wider variety of dynamics than the integrable
alternative of (15).

3 | WHITHAM THEORY
3.1 | Modulation equations for a continuum system

In this section, we consider a continuum model system by introducing the interpolating function
u(x, t) such that u(n, t) = u,(t) for alln € Z. This allows us to represent the advance-delay opera-
tor in the discrete system (12) as a pseudo-differential operator. The resulting continuum model is

u; + isin(—id,) (®'(w)) = 0. @16)

Equation (16) can be written in the Hamiltonian form

7)

u=Js

where J = isin(—id,) is the antisymmetric operator and H = [ ®(u) dx is the Hamiltonian.
Periodic solutions of (16) are of the form u(x, t) = ¢(6; q) with phase 6 = kx — wt and parameters
q € R3 (e.g., wavenumber, amplitude, and mean). They satisfy

—w@g + isin(—ikdg)®'(p) = 0, (18)
which is equivalent to the nonlinear advance-delay differential equation

20@p(6) = @'(p(6 + k) — @' (¢(6 — k). 19)

The solution theory of such nonlocal equations is rather intricate but the existence of a three-
parameter family of traveling waves has been established in Ref. 32 by variational techniques.

dny) suontpuo) pue sua L, 341 23§ *[$70Z/90/1T] U0 Areiqr auiuQ Ad)ip *A1eiqr] 952100 utopmog Aq L9,T1 wdes/[ [ 1°01/10p/wod Ko[m Axeiqujautjuoy/:sdny woiy papeojumod “+ ‘20T ‘06S6L97 1

2-StIRl/ w0 Ko Kreiqiiouy

P

ASURIT suowwo)) d2aneax) aqeatjdde ayy £q pawIanos axe SI[RIIE YO 18N JO SN 10j KIvIqI duljuQ) AI[IAL UO (
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Integrating (18) once with respect to 6
—cp@ + sinc(—ikdg )@’ (@) = A, (20)

where ¢, = % is the phase speed and A is a real constant. The pseudo-differential operator is then
interpreted as a multiplier on the Fourier coefficients of ¢,

sinc(—ikdg)®' (p) = Z sinc(nk)p,e"®, (21)
n

1 2
b= | @GENeTde. 22)
2z J,
Equation (16) possesses the two conserved quantities
M(t) = / udx, (23)

E@) = / d(u)dx, (24)

where the domain of integration is determined by the decay or periodicity of u. We now seek the
modulation equations for a periodic wave with the slowly varying ansatz

u(x,t) = 6;qX,T)) + ep;(6, X, T)+---, X=¢ex, T=c¢t, 0<e<x], (25)
in which the leading-order term ¢(8;q) is the periodic traveling wave solution satisfying (20)
with vector of parameters q that varies on the slow scales X and T while ¢ is 27-periodic in 6.
We impose the generalized wavenumber and frequency relationships 8, = k and 6, = —w along
with their compatibility

kT + wy = 0. (26)

Lemma 1. The nonlocal operator acting on a modulated periodic function g(6,X,T) € C' has the
multiple-scale expansion

sin(—id,)g = sin(—ikdg — icdx)g
‘ @)
~ sin(—ikdg)g — iE (cos(—ikag)gx + (cos(—ikde)g)x) + O(e?).

Proof. The proof follows from the analyticity of sin(-). A detailed proof follows all of the ideas in
Ref. 11. (]

We now average Equation (16) and its higher-order conserved densities by introducing the
averaging operator

- 1 27
Pl T = 5 [ Floiacc my1de, (8)
0
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where Flu(x, t)] = F(u, uy, u;, Uy, ...) is alocal function of u and its derivatives. If u is a multiscale
function of the form u = g(6, X, T), then
at_F = —COaQ_F + Ean = EGTF,
L _ _ (29)
0,F = kOgF + e0xF = e0xF,

by virtue of the fact that F = F[g] is periodic in 0 so the period average of dgF|[g] is zero. We

use Lemma 1 to compute averages of, for example, sin(—ikdg)g for any g € L,([0, 27r]) with the
Fourier series g = ), 8,6

sin(—ikdg)g = Z sin(nk)g,ein® = 0. (30)
n

We now insert the multiple scales ansatz (25) into the two conservation laws associated with (16),
and average. This procedure results in the system of conservation laws

or+ @ (@) =0, (31a)
O(p), + %(Z cos(mk)p,zn) =0, (31b)
m X

In the vanishing amplitude a — 0 limit, Equations (31a) and (31b) become the Hopf equation
iy + @ (W)iy =0 (32)

for the mean @ = ¢, and the conservation of waves equation (31c) corresponds to linear wave
modulation theory with frequency w = w, given by the linear dispersion relation (14).

The nonlinear modulation equations can alternatively be derived by employing Whitham’s
other method of an averaged Lagrangian functional, see for instance, Refs.!, Chap. 14] and [*
for symplectic partial differential equations (PDEs),**~*’ for an application to FPUT chains as the
most prominent example of Hamiltonian lattices, and Ref. *° for the discrete conservation law
(12). In this setting, the modulation equations take the form

ur + (Ep)x =0, (33a)
kr + (Es)x =0, (33b)
St + (Ex)x = 0. (33¢)

This is a system of Hamiltonian PDEs with density variables u, k, and S, which represent the
wave mean, the nonlinear wavenumber, and a nonlocal auxiliary variable that might be regarded
as a generalized wave momentum. Moreover, the equation of state E = E(u, k, S) describes the
energy of a traveling wave and its partial derivatives provide the fluxes in (33). The energy is also
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conserved according to the extra conservation law

Er + <%E§ + EkES> =0, (33d)
X

which is implied by (33) thanks to the chain rule. A closer look to the derivation of (33) in Ref.
30 reveals that (31a) and (31c) correspond to (33a) and (33b), respectively, while (31c) is the ana-
log to (33d). A complete understanding of (31) and (33) is currently out of reach because we are
not able to characterize the analytical properties of the constitutive relations since these depend
in a very implicit and not tractable way on the three-dimensional solution sets of the nonlinear
advance-delay-differential equation (18). For instance, it is not even clear for which values of the
parameters, the Whitham system (33) is hyperbolic or genuinely nonlinear. For this reason, we do
not work with the full lattice modulation equations directly but combine different approximation
procedures with a careful evaluation of numerical data.

3.2 | Relation to the lattice dynamics

Although neither analytical nor numerical solutions to the nonlinear modulation systems (31) or
(33) are available, we can extract important partial information from numerical simulations of
initial-value problems to (12). The key observation is that the lattice ODE as well as an implied
energy equation represent discrete counterparts of local conservation laws and transform under
the hyperbolic scaling of space and time into first-order PDEs. To see this, we fix a window function
x that depends smoothly on the macroscopic variables (X, T), decays sufficiently fast, and has
normalized integral. Using a shifted copy of y, we are able to quantify the local moments of any
microscopic observable near a fixed macroscopic point. For instance, the average

(un)(X,T)=EZZ/u,-,(f))((af—T,sr'z—X)df, T=c¢t, X=¢n (34)

represents the mesoscopic space-time averages of u,(t) near the macroscopic point (X, T).

Lemma 2. Any bounded solution to (12) satisfies in the hyperbolic scaling limit € — 0 the
conservation laws

Or(uy, ) + 3x (P (u,)) =0, (35a)
or(@u,) + 0x{ 5 /) ¥ 1)) =0 (35b)

provided that these are interpreted in a distributional sense.

Proof. We only give an informal derivation but mention that an alternative and more elegant
framework is provided by the theory of Young measures. The latter can also be applied to non-
smooth window functions y and reveals that the mesoscopic averages (-) can be expected to
be independent of the particular choice for y. Using the abbreviation p, = ®'(u,), discrete
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integration by parts as well as the smoothness of y we verify

1 1 w1 v y 1 v y y
<§pn+1—Epn_l>(X,T)=53Zﬁl/pﬁ(t)<5)((5t—T,£n—s—X)—Eg((st—T,En+£—X)> df

—e? Z / Pi(D)dx x(ef — T, et — X)df + h.o.t.
7

—edx{pn)(X,T) + h.ot.

and by similar computations we obtain
(W41 )X, T) = —e 07 (u, )(X,T) + hoot.

The asymptotic validity of (35a) is thus a direct consequence of the microscopic dynamics (12), the
definition of the bracket (-) in (34), and the hyperbolic scaling. The lattice ODE (12) implies with

%q)(un) + <% q)/(un) (I),(un+l)> - <% (D,(un—l) (D,(un) > =0,

another discrete conservation law (in which the time derivative of a density is balanced by the
discrete divergence of a flux quantity), so the second claim (35a) can be justified along the same
lines. O

There is an important difference between the conservation laws in (31) and (35). The PDEs in
(31) (and likewise those in Equation 33) are derived under the hypothesis that the lattice solution
can be approximated by a modulated traveling wave, see (25), and the closure relations involve
the (unknown) profile functions for traveling lattice waves as well as averages with respect to the
scalar phase variable 8. Numerical simulations with well-prepared initial data (e.g., the Riemann
initial data 4) indicate that the approximation assumption concerning the microscopic data is
indeed satisfied but no rigorous proof is available, neither for the lattice (12) nor for FPUT chains
with convex interaction potential. The only exceptions are the few completely integrable cases
but the details are still complicated and involve special coordinates related to the Lax structure.
In particular, even for the lattice of Equation (15) and the Toda chain it is not easy to compute how
the phase averages in the modulation equations depend on the traveling wave parameters.

The status of (35) is completely different. The two PDEs can be established under very mild
assumptions (boundedness of lattice solutions) and by means of fundamental mathematical prin-
ciples (such as integration by parts and compactness in the sense of Young measures). They reflect
universal constraints for the macroscopic dynamics, do not require any a priori knowledge on
the fine structure of the microscopic oscillations, and hold for a large class of initial data (which
might even be oscillatory or random). Moreover, the mesoscopic space-time averages can eas-
ily by extracted from numerical data. In the simplest case, we use a straightforward box counting
with space-time windows of microscopic length 1/ \/E (or macroscopic length \/E). Of course, (35)
does not provide a complete set of macroscopic equations and without further information it is not
clear whether or how the fluxes can be computed in a pointwise manner from the densities. The
equations are nevertheless very useful since they allow us to derive and check partial information
on the solution of the modulation equations from numerical data. In particular, in the context of
modulated traveling waves, the PDEs (35a) and (35b) correspond to (31a) and (31b), respectively.
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3.3 | Self-similar solutions

The Whitham modulation equations (31) are a system of conservation laws that can be compactly
expressed in the form

P(q)T + Q(Q)X = 07 q-= [a’ a, k]T7 (36)

where the vectorial density P and flux Q depend on the slowly varying parameters q through
integrals of the periodic orbit ¢. Equation (36) can also be expressed in the form

(37)

5P\ 5Q
dq) 9q’

qr + Aqx =0, A=<

provided the inverse is nonsingular. We will use solutions of the Whitham equations to approx-
imate the long-time dynamics of solutions to the Riemann problem (3), (4). Consequently, it is
natural to consider the Riemann problem

_ X<O0
a0 =4 1 (38)
q X>0

for the Whitham equations (36) themselves. Rarefaction (simple) wave solutions and discontin-
uous shock solutions of the binary oscillation modulation system (10) were used in Ref. 16 to
interpret various features of the numerical solutions. In this work, we will make use of RW and
discontinuous shock solutions of the more general Whitham modulation equations (31).

The invariance of the Riemann problem (36), (38) with respect to the hydrodynamic scaling
X — oX', T — oT’ for real o # 0 suggests seeking self-similar solutions in the form q = q(£),
& = X /T. Equation (37) possesses RWs satisfying*®

dq 1
dé V-’

q(gi) = qi! g— < §+’ (39)

where Ar; = A;r; and 4; = £, provided the characteristic field is genuinely nonlinear V4; - r; # 0.
Since q, lie on the same, one-dimensional integral curve, they are constrained by two integral
relations resulting from integration of the third-order ODEs (39). Admissibility requires £_ < &,.
The eigenvalues A; can be interpreted as speeds. For example, in the context of DSWs, the trailing
edge speed is c_ = &_ and the leading edge speed ¢, = &,.

Another class of self-similar solutions are discontinuous shock solutions to the Whitham
system (31)

_Ja- &<V
(Jl(s*)—{q+ Es v, (40)

where V is the velocity of the shock solution that satisfies the Rankine-Hugoniot jump conditions
—V[P]+ Q] =o. (41)

The brackets [[-]] denote the jump in its argument evaluated on the left and right triple q. that
parameterize distinct, steady periodic orbits ..
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For strictly hyperbolic, genuinely nonlinear Whitham modulation equations with negative lin-
ear dispersion (6iw0 < 0), classical DSW solutions connecting the two constant states u, are
described by a rarefaction solution of (39) in which A = A, is the middle characteristic speed and
q- = [u_,0,k_],q; = [u,,a,,0]. The two constraints that result from integrating (39) determine
the trailing edge wavenumber k_ and speed &_ as well as the leading edge amplitude a, and speed
£, > Therefore, a classical DSW corresponds to an RW solution of the modulation equations, not a
shock solution. For DSW construction, we will use the DSW fitting method, which leverages cer-
tain structural properties of the Whitham modulation equations under the assumptions of strict
hyperbolicity and genuine nonlinearity in order to obtain k_, a,, and &, by integrating a scalar
ODE.>#

Whitham himself pondered the notion of discontinuous shock solutions to his eponymous
equations.' But their utility was only recently discovered in Ref. 6 where shock solutions of the
Whitham modulation equations for a fifth-order KdV (KdV5) equation were deemed admissible
if there exists a heteroclinic traveling wave solution connecting the corresponding left and right
periodic orbits, each moving with the same speed as the shock. Such traveling wave solutions
are possible in higher-order equations such as KdV5. These Whitham shocks were used to solve
the Riemann problem for KdV5 and, later, were investigated in the Kawahara equation.’® In this
paper, we will show that similar Whitham shocks emerge as the traveling wave portion of the
TDSW solution in Figure 1. We also provide analytical and numerical evidence of the existence
of a new class of Whitham shocks, that is, shock solutions of the Whitham modulation equations
(31) whose corresponding left and right periodic orbits possess the same frequency but different
speeds than one another and the shock itself (see US in Figure 1).

3.4 | Weakly nonlinear regime

In the previous sections, we derived the modulation equations supposing the existence of a family
of nonlinear periodic solutions. In the case where no known explicit periodic solution is available,
itis useful to approximate the periodic solution with a truncated cosine series. The approximation
via the Poincaré-Lindstedt method utilizes an asymptotic expansion of both the profile of the
periodic solution and its frequency in the small amplitude parameter 0 < a < 1. The approximate
periodic solution and its frequency are given, for a generic potential ® by

sin(2k)®®(a)
16@"(11)(2 sin(k) — sin(2k))

u~i+ % cos(kn — wt) + a? cos(2(kn — wt)) + o(a?), (42)

d)(1)?
(sec(k) — D@ ()

w ~ & (@) sin(k) + a’w, + 0(a?), w,= % sin(k)< + (13(4)(a)>, (43)

which maintain their asymptotic ordering so long as
a?/lk| <1 and |a®®@)/®"@)| < 1, (44)

that is, for ®(u) = u?/3, neither |k| nor |i| are too small. Inserting (42), (43) into the modulation
equations (31), we obtain the weakly nonlinear Whitham modulation equations in conservative
form by retaining terms up to O(a?)

iy + <c1>’(a) + T—Zd)’”(ﬁ)) =0, (45)
X
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<cI>(a) + ‘f—zcb”(a)) + (LI)’(a)2 + a—2(<1>”(a)2 cos(k) + @’(a)@’”(a))) =0, (46)
6 . 2 16 X
2 @(3)(a)2

(sec(k) — 1)@’ (1)

kr + (fb”(u) sin(k) + — sm(k)< + c1><4>(a)>) =0. (47)
X

In the case of the cubic potential (13), our focus here, the modulation equations are

iy + <a2 + %2> =0, (482)
X
i’ a2_> <1_4 a?_, >
—+—u) +|zu*+—=u*Qcos(tk)+1)) =0, (48b)
< 3 8 ) 2 8 x
_ a? sin(k) B
kT + (Zu Sln(k) _6 <m>> =0. (480)

Properties of the modulation equations can be elucidated by casting them in quasi-linear form
q; + Aq, = 0, where

21 % 0 u
A= 4a? cos(k) 211 cos(k) —2a%usin(k) | q=|a’ (49)
2sin(k) + a’w, 5 w, 2i cos(k) + a’w,y k
A perturbation calculation gives the eigenvalues of the flux matrix .4 to O(a)
Ay = 21 + 0(a?), (50a)
A, = 2iicos(k) + % cos <§> V2 = cos(k) + 0(a?), (50b)
A = 2iicos(k) — % cos <§> V2 —cos(k) + 0(a?), (50¢)
with the corresponding right eigenvectors
K T
r; = [a tan <§>,0, 1] + 0(a?), (51a)
T g k k] ,
I, = [O, 0,vV2— cos(k)] + zlesel 3 ) —32@ sin 5 ,0] +0(a?), (51b)
T
r a k _ . (k 2
r; =[0,0,4/2 — cos(k)]" — 1 [csc <5> ,—32#i sin <§> , O] + O(a*®). (51¢c)

The quasi-linear system is strictly hyperbolic if all of the eigenvalues are distinct, and real-
valued. To the order of the approximation given, the weakly nonlinear system is strictly hyperbolic
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provided a # 0, k # 7, and

o acos(%) 2 — cos(k)
lul # Uy, Uy = . (52)

8sin2<5)
2

When u > u,, and a > 0, the eigenvalues are ordered 4; < 4, < 4;3. When a = 0, Equations (48a)
and (48b) coincide with the Hopf equation for the mean @ and the remaining equation cor-
responds to the conservation of waves from linear wave modulation theory. When k = 7,
Equation (48c) is identically satisfied. While intuition might suggest that (48a) and (48b) are
somehow related to the modulation equations for binary oscillations (10), in fact, the asymp-
totic derivation breaks down. For example, the period average of the weakly nonlinear solution

(42) is no longer @ but rather @ — g so that the density in (48a) does not correspond to the
density in (35a). When k = 7, one should discard Equation (48) altogether in favor of the mod-
ulation equations for binary oscillations (10), which apply beyond the weakly nonlinear regime
considered here.

4 | CLASSIFICATION OF SOLUTIONS

From now onward, we focus solely on the discrete equation (3) (Equation 12 subject to 13). Figure 1
depicts seven qualitatively distinct solution families to the Riemann problem (3), (4) depending
upon the parameters u, in the initial data. We now proceed to describe each of these solution
families using a combination of numerical simulation, Whitham modulation theory, and quasi-
continuum approximation. The straight-line boundaries between each solution family in Figure 1
are determined empirically (to two decimal digits accuracy) and some are explained by analytical
considerations. By a possible reflection and unit shift of the lattice n — —n — 1 and a rescaling of
time, we can, without loss of generality, set either u, = 1 while varyingu_ € [-1,1]orsetu_ =1
while varying u, € [—1,1]. Therefore, we can map out the phase diagram in the (u_,u, ) plane
by traversing the top and right edges of the square [—1,1]%.

The special case in which u, = u_ is trivial but the case in which u, = —u_ # 01is the SS solu-
tion (11) which, as already noted, is an expansion shock solution of the inviscid Burgers equation
(1) or dispersionless limit equation for the mean (32) with characteristics that emanate from the
discontinuity. Otherwise, the solutions exhibit more complexity, which we now explore. We start
with the simplest case first, and then work toward the richest, most complex scenario.

4.1 | Rarefaction waves

The simplest observed dynamical structure is the rarefaction wave shown as RW in Figure 1.
Empirically, we find that they form when u, = 1and u_ € (0.18, 1). The bifurcation at u_ = 0.18
will be described in Section 4.5. The leading-order RW behavior is given by the self-similar solution

(¢ =n/t=X/T)

u. &<2u_
u, () ~a(¢)=3€/2 2u_<&<2u, (53)
u, 2u,<¢
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' ' ' ' ' FIGURE 3 Comparison of the
self-similar solution (53) (red dashed)
with numerical simulation of the initial
data (4) with u_ = 0.5 and u, = 1 (black
dots).

0.4 , \ | ! | \
800 1000 1200 1400 1600 1800 2000 2200

of the dispersionless equation (32). A favorable comparison of this profile with a numerical sim-
ulation is shown in Figure 3. Because the data are expansive, the effect of dispersion manifests at
higher order where a small amplitude, dispersive wavetrain is emitted from the lower, left edge of
the RW. The slowest (most negative) group velocity is 6w (7, u_) = —2u_, which corresponds to
an inflection point of the linear dispersion relation (14). Consequently, the leftmost edge of these
small amplitude waves is expected to have an Airy profile whose decay estimate is proportional to
t~1/3, similar to the Fourier analysis carried out for linear FPUT chains.” The details of the linear
wavetrain accompanying RWs and DSWs for the BBM equation were studied in Ref. 7. We follow
a similar procedure by linearizing about the left initial state u,, = u_ + v,, to obtain

d
avn +u_(Vp41 = Vy-1) = 0. (54)
The initial data (4) then become
0 n<o,
fn= { (55)
uy—u_ n2x0,
whose discrete-space Fourier transform is the distribution
fk) = i fne i = (u, —u_) 1t + 76(k) k € (—n,x] (56)
- = n - + — 1 _ e—ik ’ > s

where (k) is the Dirac delta. To approximate the nonlinear equation (3) by the linear equation
(54), one could seek solutions in which 0 < u, — u_ < |u,| + |u_|. Alternatively, we follow Ref.
7 and consider scale separation in which the highest frequency components of (56) are assumed
to separate from the RW so that the initial data become

B T8 <kl <
6(k,0)={1—e—ik o <[kl <m. 7)
0 else

for some 0 < ky < 7 that is sufficiently far from the zero dispersion points, k = 0, 7. Then, the
solution of the linear equation (54) can be determined by taking the discrete-space Fourier
transform 0(k, t) = Zn v, (t)e~ The solution of Equation (54) subject to (57) is

/9
v, () = % / 0(k, 000t dkk O(k;n, t,u_) = kn/t — 2u_sin(k). (58)
-7
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FIGURE 4 Comparison of the linear wave from the stationary phase analysis (60) (red dots) and numerical
simulation (black dots) resulting in a rarefaction wave for (A) u_ = 0.5 and (B) u_ = 0.9.

Quantitative information regarding the solution can be determined asymptotically for t — oo with
n/t fixed using the method of stationary phase.! The leading-order behavior is determined by
analyzing the integral (58) near the stationary points, k; where 6,.(ks) = 0. Stationary points are
therefore given by +kg where

n/t = 2u_ cos(ky) (59)

for —2u_ < n/t < 2u_. The leading-order behavior in the vicinity of the stationary points is deter-
mined by expanding the integrand in (58) about the stationary points k = +k;. When kg # 7 and
|ks| > ko, the leading-order behavior is

1 . . )
Un(t) ~ (lj(ksa O)elksn—lwo(ks,u_)t+m/4 + C.C.),

N

(60)
1

N

(uy —u_)csc <%> sin <6(ks)t +7/4+ %)

The profile (60) is compared with numerical simulations of the initial-value problem in Figure 4
on the interval [—u_t ru_t f] at a final simulation time of t = ¢ty = 1000. The interval is chosen
so that kg € (/3,27 /3), that is, the truncation parameter k, = /3 and we avoid the degenerate
stationary points k; = 0, 7. We observe that the linear profile (60) is in good agreement with the
numerical simulation. However, for larger initial jumps, the linear wave begins to deviate from
the simulation. This may be attributed to the emergence of stronger nonlinear effects not captured
by the leading-order asymptotics which require a larger truncation parameter k.

To investigate the leftmost edge of the linear wave emitted from the RW, we modify our previous
analysis and expand the phase in the integral (58) about the inflection point k = 7 of the linear
dispersion relation

O(k) ~mn/t —(n/t +2u_)mw —k) +u_(mr —k)>/3 + - (61)
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FIGURE 5 Comparison of the Airy profile (62) (red curve) with numerical simulations (black dots)
resulting in a rarefaction wave with initial data u, = 1and (A) u_ =0.5and (B)u_ =0.9.

The expansion (61) is inserted into the integral (58). A calculation reveals that the leading-order
asymptotics in the vicinity of the ray n/t = —2u_ are given by

D(t) ~ —% cosGrn)Ai(—(n + 2tu_)(tu_)"1/3), (62)
where Ai(-) is the Airy function Ai(z) = i In eixz+i*/3 gy The Airy profile (62) favorably
compares with the two Riemann problem simulations depicted in Figure 5, even for large u, — u_.

It is worth contrasting the observed RW dynamics with those of the quasi-continuum approxi-
mation in the BBM equation (8) that was studied in Ref. 7. Qualitatively, the dynamics exhibited
by the two models in overlapping regimes of the (u_,u,) plane of Riemann data are very sim-
ilar. Both equations exhibit large-scale dynamics that are well-approximated by the self-similar
solution (53) and its analog for the BBM equation. The details of the short-scale, emitted dis-
persive wavetrains are quantitatively different but, since both equations admit nonconvex linear
dispersion relations, they both exhibit Airy profiles with amplitude decay proportional to t~1/3.

The long-time dynamics produced by the lattice model (3) significantly differs from those gen-
erated by its quasi-continuum BBM counterpart (8) when either equation is strongly influenced
by small-scale effects. The actual Riemann problems for the BBM equation studied in Ref. 7
were tanh-smoothed, monotone transitions between u_ and u,, a feature which introduces an
external length scale characterizing the width of the initial transition. When this width is larger
than the ©O(1) oscillatory length scale (or O(¢) in Equation 8), the BBM equation exhibits an RW
for all |u_| < u,. As shown in Figure 1, RW generation on the lattice is limited to the region
0.18u_ < u, < u_, u_ > 0, with short-scale oscillatory dynamics occurring when —u_ < u, <
0.18u_, u_ > 0. When the BBM initial transition width is sufficiently small, RW generation can
be accompanied by the spontaneous generation of solitary waves and/or an expansion shock,
features not observed in the lattice model.

4.2 | Dispersive shock waves
For u_ =1 and u, € (0,1), the data are compressive and results in an expanding, modulated

oscillatory wavetrain between the states u_ and u, . This structure is called a DSW; see the panel
labeled DSW in Figure 1. In Ref. 30, DSWs were studied in Equation (35) with ®(u) = u?/2 + u*/4
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FIGURE 6 Discrete dispersive ' ' ' ' j ' ' ' j
shock wave (DSW) foru_ = 1, u, = 0.5 iyl
at t = 1000. The dashed red oscillatory
envelope curves intersect at the
harmonic edge.
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and u_ =1, u, = 0 using numerical simulations and a dimension reduction approach. In the
following, we study DSWs in the system (3) as the step value u, varies using two semianalytical
approaches, DSW fitting and a continuum model.

4.2.1 | Approximation of the DSW harmonic and soliton edge speeds via DSW
fitting

In this section, we outline the method for fitting the macroscopic DSW properties (edge speeds,
amplitudes, and wavenumbers) by applying the fitting method first introduced by E1*’; see also
Ref. 5. This method was originally developed and justified for continuum PDEs where it has been
extensively applied. Since it only requires knowledge of the linear dispersion relation and the soli-
tary wave amplitude-speed relation, it is straightforward to extend the method to the semidiscrete
lattice equation (12).

An example DSW from a numerical simulation of the Riemann problem with u, = 0.5 and
u_ =1 is shown in Figure 6. The DSW is comprised of a modulated, nonlinear wavetrain that
terminates in two distinct limits: vanishing amplitude (called the harmonic edge) and vanishing
wavenumber (called the soliton edge). The modulation solution describing the DSW is the rar-
efaction solution (39) of the Whitham modulation equations (31) with q_ = [u_,0,k_]", q, =
[uy,ay, 0]T. The harmonic edge wavenumber k_ and the soliton edge amplitude a,, as well as
their corresponding edge speeds &£_ and &, are determined by integrating the ODE (39), thus
relating these macroscopic DSW properties to the initial data u,.. In numerical simulations, the
amplitude of the DSW does not vanish exactly at the harmonic edge, so we define the location of
the trailing edge by the intersection of the oscillatory envelope curves shown in Figure 6.

Although the DSW modulation is determined, in principle, by the aforementioned rarefac-
tion solution of the Whitham modulation equations (assuming strict hyperbolicity and genuine
nonlinearity of the second characteristic field), we do not have explicit expressions relating the
integrals in (31) to the periodic orbit’s parameters q = [i, a,k]”. An alternative technique that
allows one to obtain the DSW’s edge properties is the DSW fitting method.> This method assumes
the existence of the rarefaction solution. For the sake of completeness, we will carry out the DSW
fitting procedure for a generic potential ®(u). The wavenumber of the DSW at the harmonic edge
can be determined by solving the initial-value problem

dk _ B (k, i) _ 9”(@)sink
di  ®"(i1) — Opwo(k, @) @ ()1 — cosk)’

k(uy) = 0, (63)
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FIGURE 7 Comparison of dispersive shock wave (DSW) fitting predictions (solid, red line) and numerical
simulations of DSWs with u_ = 1 (blue circles). The leading edge, solitary wave velocity c, is shown in panel (A)
and the trailing, linear wave edge velocity comparisons are shown in panel (B).

where w, is the linear dispersion relation (14). This ODE can be integrated by separation of
variables to obtain

20" (u,) - <b”(a)> “

k(i) = cos™! ( ')

The wavenumber at the DSW harmonic edge is k_ = k(u_). The velocity of the harmonic edge is
given by evaluating the linear group velocity at k_

c_ = rawlk_,u_) =20"(u,) — ®"(u_). (65)

The velocity of the DSW at the soliton edge is calculated in a similar way. We begin by intro-
ducing the conjugate variables @, (k, it) = —iwy(ik, ) = ®" (@) sinh(k), where k acts as a soliton
amplitude parameter. The velocity of the DSW soliton edge is deduced by evaluating the soli-
tary wave dispersion relation ¢, = @(k,,u,)/k,, where we find k, by solving the initial-value
problem

dk _ 980 _ @”'(@)sinhk
di @) — 0@, (@)1 — coshk)’

k(u_)=o0. (66)

Integration results in

(67)

k(1) = cosh™! <2q)”(u_) — (D/,(a))

(I)N(a)

and the soliton edge conjugate wavenumber k. = k(u. ). The soliton edge velocity of the discrete
DSW is given by

kg, uy)
“T T T
+

2 /" " 4
V@) = ) (69)

Comparisons with numerical simulations of the Riemann problem are given in Figure 7 with the
potential ®(u) = u3/3 and the initial data normalized so that u_ = 1. To estimate the velocity of
the leading edge, we track the position of the rightmost lattice site that is above the far-field ini-
tial data u, at the integer valued times in our numerical simulation. This time-series data are fit
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with a line whose slope is the approximate velocity of the soliton edge of the DSW. To estimate
the harmonic edge velocity, we produce a linear fit of the modulated wavetrain amplitude near
the location of the harmonic edge, which is found by extracting peaks of the solution at output
times. The intersection of this linear approximation with the constant level u_ is the approxi-
mate location of the DSW harmonic edge. The time interval of our numerical computations varies
depending on u, . For instance, when we take u, = 0.1, we approximate the solution at ¢ = 1000,
while taking u, = 0.9 requires the longer time ¢ =~ 4000 for the solution to asymptotically develop.
Upon varying u, , we observe good agreement between the predictions of DSW fitting for the DSW
harmonic and soliton edge velocities and numerical simulations for u, > 0.5, while the predic-
tions begin to deviate from what is observed in numerical simulations below this threshold. The
DSW fitting method is subject to the convexity conditions

dc,. dc,

i#o’ ﬁ;éo' (69)

A direct calculation for the potential ®(i1) = #3/3 demonstrates that these convexity conditions
are indeed satisfied. The numerical results suggest that the DSW fitting method provides an
adequate approximate prediction of the discrete DSW edge properties.

The harmonic edge of the DSW is accompanied by linear radiation much like the left edge of
the RW in the previous section. To describe this, we apply the same approach as in Section 4.1 to
approximating the small amplitude linear waves that emanate from the DSW’s harmonic edge.
The only change is that, for the DSW, u, — u_ < 0 in Equation (55). A comparison is shown in
Figure 8.

422 | Approximations of the leading edge amplitude via a quasi-continuum
model

In this subsection, we go a bit deeper into the description of the solitary wave at the soliton edge of
the DSW. Like in the previous subsection, for u, € (0,1) (where u_ = 1 is fixed), we numerically
solve the Riemann problem, generate a DSW, and extract the amplitude of the soliton edge, and
its speed. This is done by inspecting the time series of a node sufficiently far from the center of
the lattice (we chose n = 300, in which case we have observed the leading edge is developed) and
simply computing the amplitude as a, = maxu,(¢t) — u,. The speed is estimated by computing
¢y =1/(t,41 — t,) where t,, and t,,,; are the time values where u,, and u,,,; attain their maxima.
The blue open circles in Figure 9A show the amplitude of the DSW soliton edge as a function of
u... Since for each value of u,, we compute both the speed c, and amplitude a,, we also show a
parametric plot of (c,, a, ) parameterized by u, in Figure 9B.

To confirm that the DSW soliton edge is indeed described by a solitary wave, we compute
a numerical solitary wave solution of the lattice equation (12) by using a fixed-point iteration
scheme®” to solve the advance delay equation

2V () = @' (uy + V(1 +1)) = ' (uy + V() — 1)), (70)
which is a rescaled copy of (18) and obtained by substituting

w () =uy + V), n=n—ct 7
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FIGURE 8 Comparison of stationary phase analysis (60) and the Airy profile (62) (both in red) with
numerical simulations (black dots) resulting in a dispersive shock wave (DSW) at t = 1000 with initial data
u_=1and (A, C)u, = 0.5and (B, D) u, = 0.9. The band-limited interval of the stationary points in the formula
(60) are (A) k; € (27 /3,57 /6) and (B) k; € (7/3, 27 /3). These intervals are chosen to avoid the linear waves at
the left edge of the DSW.
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FIGURE 9 (A) Amplitude of the DSW soliton edge as a function of u, for the numerical simulation (open
blue circles), the numerical solitary wave amplitude (solid red dots), the quasi-continuum formula X 3u,
(solid blue dots, with the c, obtained numerically), and the analytical prediction given by Equation (74) (red
line). (B) Same as panel (A), but the amplitude is shown against the wave speed ¢ = c, . (C) Comparison of the
numerical solitary wave (solid red dots) and the quasi-continuum approximation given by Equation (73).

into Equation (12). While we are free to select values of ¢ and u, when solving Equation (70), we
select combinations of them according to the relationship extracted from the DSW soliton edge
(i.e., the blue circles in Figure 9A). Upon convergence of the scheme, we compute the amplitude
of the resulting solitary wave, which is the maximum of the wave minus the background u, . The
amplitudes of the solitary waves are shown as the solid red dots in Figure 9A,B. Note that these

) SUOBIPUOD) PUE SWLID, 341 33 *[STOZ/90/ 1] U0 AIeaqry aunu A9Ji *Areaqr] 383(100) uiopmogt Aq L9Lz 1" wdes/[ [ 1°(1/10p/wiod &ajtav Kreiqraurjuoy/:sdny wioxy papeojumod ‘v ¥20¢ ‘0656L971

d

' Kapia &

ASURIT suowwo)) d2aneax) aqeatjdde ayy £q pawIanos axe SI[RIIE YO 18N JO SN 10j KIvIqI duljuQ) AI[IAL UO (



250f 48 | SPRENGER ET AL.

red dots fall almost exactly within the blue circles, indicating that the soliton edge of the DSW is
indeed well-approximated by a solitary wave solution of the lattice equation.

We can obtain an analytical approximation of discrete solitary waves by considering the BBM
quasi-continuum approximation (8) of the lattice dynamics (3). Entering the moving frame
UX,T) = ¢(X — cT) and integrating once, this PDE becomes the second-order ODE

g2
cgda” = B+ c¢ — 2¢2, (72)

where B is an arbitrary integration constant. This ODE can be solved using quadrature.”” In
particular, the solitary wave with tails decaying to the background state u, has the form

3¢ 5 %c —3u,
u,(t)=¢pX —cT)=u, + (5 - 3u+>sech — (n—-ct)|, (73)

which assumes ¢ > 2u, . Note the maximum speed of linear waves on a background u, is 2u,,
implying the solitary waves travel faster than all linear waves, as expected. In Equation (73), ¢ and
u, can be chosen independently of each other but we once again select combinations of them
according to the relationship extracting from the DSW soliton edge (the blue circles in Figure 9A).
The solid blue dots of Figure 9A show the quasi-continuum prediction of the amplitude a, =
3% — 3u,, where it is seen that the approximation becomes better as the jump height decreases
(i.e., as u, — 1). The quasi-continuum prediction of the amplitude is only semianalytical as it
relies on the numerically obtained relationship of u, and c, from the DSW soliton edge data. An
analytical prediction can be derived by using the DSW soliton edge speed in Equation (68) of the
previous subsection, which allows us to express the amplitude, a,, of the DSW soliton edge in

terms of just u, (or c,):

64/1—u,
a, = —2_ - 3u+. (74)
cosh™! (—u+ )
Uy

See the solid red line of Figure 9A,B for a plot of this formula.

Finally, the solitary wave profile given by Equation (73) matches the numerically computed
solitary wave solution of Equation (70) quite well, especially for longer wavelength solutions.
See Figure 9C for a comparison of the actual solitary wave (solid red dots) and quasi-continuum
approximation (solid red line) for two example parameter sets.

Because, the quasi-continuum approximation of DSWs here and in Ref. 30 performs well, we
briefly contrast the Riemann problems that result in DSWs for the lattice (3) and BBM (8) equa-
tions. The DSW fitting technique was applied to the BBM Riemann problem in Ref. 7. To compare
our results for the lattice with DSWs in the BBM equation (8), we consider the initial transi-
tion occurring between u_ =1 and u, =1 — A for 0 < A <« 1. At the DSW harmonic edge, the
characteristic wavenumber e2K2 = 4A + 26A%/9 + --- and speed C_ = 2 — 4A + 14A% /9 + --- for
BBM agree to O(A) with the expansions kZ = 4A + EAZ +--- and c_ = 2 —4A for the lattice.

Similarly, at the DSW soliton edge, the conjugate wavenumber EZKi = 4A +10A%/9 + --- and
speed C, =2 —2A/3 — 2A?/27 + --- agree to O(A) with the lattice: k2 = 4A + 8A%/3 + --- and
¢y =2—2A/3—8A%/45 + ---. The DSW’s soliton edge amplitude in BBM is A, = 2A — A%/9 +
.-« whereas the prediction (74) for the lattice expands as a, = 2A —4A2/15 + ---. Note that to
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leading order, these predictions agree with the DSW edge characteristics of the KdV equation U7 +
2UUx + §£2UXXX =0for X =en, T =¢t, UX,T) = u,(t). This is expected because BBM and
KdV are asymptotically equivalent to leading order in the weakly nonlinear, long-wavelength
regime.

In summary, the quasi-continuum approximation of lattice DSWs by DSWs in the BBM equa-
tion performs well for small initial jumps 0 < A < 1 when the oscillation wavelengths are much
larger than the lattice spacing. The agreement to O(A) in the DSW properties is expected and, in
fact, is a statement of universality of the KdV equation as a weakly((nonlinear, long-wavelength
model of dispersive hydrodynamics.” For sufficiently large A, the BBM DSW develops two-phase
modulations near the trailing edge.” In contrast, for A > 1, the lattice DSW bifurcates into a par-
tial DSW connected to a traveling wave called a TDSW or exhibits blowup that we will describe
in Sections 4.4 and 4.6, respectively.

43 | DSW +SS + RW

In this section, we investigate the case where the initial step generates two unsteady waves: a
leftward-moving DSW and a right-moving RW. At the origin, there is an SS joining symmetric
states at the level u, = +u,. A numerically computed example is depicted in Figure 10. This
class of solutions is empirically found for u, =1 and u_ € (—1,—-0.26). As will be shown, the
bifurcation at u_ = —0.26 occurs when the DSW’s harmonic edge exhibits zero velocity.

The numerical simulation shown in Figure 10 suggests that the solution can be approximated
for large t as

u_ n<s_t
upsw(n,t) s_t<n<s,t

—Uu s.t<n<0
u (=3 ° * = (75)

U 0 <n < 2upt

upw(n,t)  2upt <n <2uyt

Uy uyt <n.

The velocities s_ < s, give the motion of the DSW’s soliton and harmonic edges, respectively.
Across all of the simulations performed, we found the following relation for the intermediate,
symmetric states +u, to hold to very high precision

Uy —u_

: (76)

Ug =
This relation implies that the DSW and RW have the same jump height, albeit with oppo-
site polarities. We have been unable to mathematically justify this formula. However, as we
show in Section 5, the value of the intermediate state u, depends strongly on particular details
of the initial data. If the value of uy(0) is changed, then the intermediate value u, differs
from (76).

Utilizing the formula (76), we can completely determine the velocities that divide the approx-
imate solution (75) into different wave patterns. To determine the DSW edge velocities, we use
Equations (65) and (68), which were derived under the assumption that u_ > u, > 0. In the case
of the solution (75), the left (u_) and right (—u,) states are both negative. Since the governing
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FIGURE 10 (A) An example dispersive shock wave + stationary shock + rarefaction wave (DSW + SS +
RW) solution of the Riemann problem at ¢ = 500 for u_ = —0.5, u, = 1. (B) Solution contour plot in the
space-time plane with the predicted edge velocities of the DSW and RW denoted by dashed lines. (C) Zoom-in of
DSW. (D) Zoom-in of RW.

equation (3) is invariant under the transformation u,(t) - —u_,(t), the DSW velocities are
mapped as follows:

S—(u—9 _u0) = —c+(u0, _u—)’ S+(u—s _uO) = —C_(uo, _u—)- (77)

Then, using (76), we find

2 /
s =—— = ui—u%, Sy =3u_+u,. (78)

"~ cosh ™ (u, /Iu_|)

Figure 10B shows good agreement between the predicted velocities of the approximate solution
(75) and a numerical simulation when u, = 1, u_ = —0.5.

The DSW remains detached from the SS so long as the harmonic edge velocity s, remains
negative. From Equation (78), we predict that the DSW is no longer detached from the SS when
3u_ +u, = 0,which, foru, =1,occurswhenu_ = — 1. As noted earlier, the bifurcation from the
DSW + SS + RW to the US case is empirically identified as occurring when u_ = —0.26. As shown
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2 T T T T L % T T FIGURE 11 Example traveling
BRTIRTIRTIR | dispersive shock wave (TDSW) that
= UL emerges from the initial data (4) with
Topt ettt u_=1andu, = —0.5at ¢ = 200. The
e - inset is a zoom-in of the boxed region,

showing details of the

periodic-to-equilibrium traveling wave at
the leading edge.
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n

in Figure 10B, this small discrepancy in the bifurcation value can be explained by the deviation of
the computed DSW harmonic edge velocity from the DSW fitting prediction (65).

4.4 | Traveling dispersive shock wave

In this section, we consider the case where a partial DSW connects the level behind, u_, to a
periodic-to-equilibrium traveling wave solution to the level ahead u . Although we do not directly
compute it as a traveling wave solution of the discrete equation, it is interpreted as a heteroclinic
connection between a periodic orbit with the constant level ahead u, based on an analysis of the
numerical simulations of the Riemann problem. Such heteroclinic solutions of continuum equa-
tions with higher (fifth)-order dispersion were studied in Refs. 6, 50 and were associated with
so-called TDSWs that emerge from an associated Riemann problem. The existence of a hetero-
clinic traveling wave solution to the governing PDE was identified as the admissibility criterion
for a suitable discontinuous, shock solution of the Whitham modulation equations. Here, we use
a similar admissibility criterion for a shock solution of the Whitham modulation equations (31):
the existence of a heteroclinic traveling wave solution of the discrete conservation law (3).

For u_ =1 and u, € (—0.724,0), numerical simulations show a qualitatively similar solution
pattern to that depicted in Figure 11 in which u,(t) begins on the left with the value u_. It then
progresses into an oscillatory wavetrain with increasing amplitude that resembles the leftmost
portion of a DSW, called a partial DSW, that is then connected to a periodic traveling wave. The
periodic traveling wave is connected to the constant state ahead u, via an abrupt transition that
moves with the same speed. Collectively, this partial DSW and traveling wave is referred to as the
traveling DSW.

The TDSW solution studied here is the discrete analog of the TDSW studied for the KdV5
equation.® The terminology traveling dispersive shock wave unites the unsteady component of the
partial DSW and the steady traveling wave component (a heteroclinic periodic-to-equilibrium
solution) to which it is attached in this nonclassical DSW. Consequently, the entire TDSW
structure is unsteady.

441 | Approximation of the traveling wave via the quasi-continuum model

One can describe the periodic portion of the traveling wave (TW) (see, e.g., the interval n €
[—90, 100]) of Figure 11) using the continuum reduction presented in Section 4.2.2. In particular,
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FIGURE 12 (A)Zoom of the periodic wave in the gray shaded region of Figure 11A with u, = —0.16 (blue
markers) and quasi-continuum approximation (solid blue line). (B) Plot of the phase plane (u,,(¢), 1,(t)) for a
time interval such that the periodic wave has developed. The color intensity corresponds to the value of u_ . Since
the interval containing the traveling wave changes as u, is changed, the value of n for each loop is not fixed. In
particular, u, = —0.16 (blue, n = 400), u, = —0.40 (green, n = 400), u, = —0.6 (yellow, n = 140), and u, = —0.72
(red, n = 140). The solid lines are the corresponding quasi-continuum approximations. (C) Plot of the mean (red
solid lines), amplitude (blue dashed lines), and frequency 1/T (yellow dashed-dot line) as a function of u_. The
quasi-continuum approximation of these wave parameters is shown as open circles. For u, € [—0.72,—0.28], the
lattice index is fixed to n = 140 and for u, € (—0.28,—0.2] to n = 400 and for u, = 0.08 to n = 500.

there is a three-parameter family of traveling wave solutions of the quasi-continuum BBM
equation (8), given by

un(t)=r1+r2—r3+2(r3—r1)dn2<\¢ M(n—d),m),

rz—rl’ . 2(rq +r2+r3). 79)
r3—rg 3

We treat rq,r,,73 as fitting parameters. After a sufficiently long time, the traveling wave in the
numerical simulation forms, as in Figure 11. We then isolate a small interval of that traveling wave,
which is then fit to Equation (79). Figure 12A shows a comparison of the actual lattice dynamics
at t = 480 (blue markers) and quasi-continuum approximation (blue lines) with the step values
u_ = 1and u, = —0.16. Figure 12B shows the trajectory in the phase plane (t4q0(t), tt490(t)) (two
outermost lobes) and (u;49(¢), t1140(t)) (two innermost lobes) for various values of u_ for the actual
lattice dynamics (markers) and quasi-continuum approximation (lines). We show the phase plane
for different values of n since the location of the traveling wave within the lattice is moving. The
agreement is quite good throughout the interval of existence for these structures, but is best when
the jump height is smallest (compare the blue and red trajectory of Figure 12B). The comparison
of the frequency, amplitude, and mean parameters is shown in Figure 12C. These are computed
via the following formulas with n fixed. For u_ € [—0.72, —0.28], the lattice index is fixed to n =
140, for u_ € (—0.28,—0.2], the index is n = 400, and for u_ = 0.08, the index is n = 500. The
frequencyis f = 1/T,where T is the period (computed as the peak-to-peak time of the trajectory);
the mean is
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where I7 is the time interval of one oscillation period. For the computations shown here, it is
I; = [480 — T, 480]. The amplitude is

a = max u,(t) — min u, ().
tely tely

Once the best-fit values of r, r,, r; are obtained, the wave parameters can be computed directly
from Equation (79) as

V2e(rs —ry)

2K(m)

E(m)

Km)’ a=2(r,—ry),

f= s u=ri+ry—r3+2r;—ry)
where K(m) and E(m) are the complete elliptic integrals of the first and second kind, respectively.
We note that while Equation (8) is able to describe the local periodic traveling wave dynamics of
the TDSW structure, it does not admit continuous solutions resembling the entire TDSW structure
since heteroclinic periodic-equilibrium solutions do not exist for the planar ODE (72). We note
in passing that while discontinuous solutions of the BBM equation have been studied,” their
direct connection to the TDSW solution is not yet apparent. Such a description may be possible
by using a higher-order (1,5) Padé approximant instead of the (1,3) approximant in (7) to arrive at
the fifth-order model

) e 74
Ur +U)x — gUXXT + %UXXXXT =0.

Similar models have been shown to admit such solutions.® While this is an interesting topic that
pertains to admissibility of modulation shock solutions as mentioned earlier, we will not pursue
the identification of such a heteroclinic orbit further herein.

4.4.2 | Modulation solution of the weakly nonlinear Whitham modulation
equations

To obtain the form of an approximate modulation solution q = [i, a, k] of the Whitham equa-
tions (31) that describes the TDSW, we appeal to the structure of the TDSW evident in Figure 11.
An oscillatory wavetrain emerges from the left level u_ with increasing amplitude that saturates
at a periodic traveling wave. The traveling wave then abruptly transitions to the right level u,.
Guided by previous work on the TDSW solutions of the KdV5 equation,® we make the self-similar
modulation ansatz (§ = X /T = n/t)

q- § < /12(‘1—),
Grw(§) A(qo) <& < A (qp),
6= P (80)
ac dp A(qp) < & < Ax(q4),
q+ A(qy) <€

for Equation (37) where 4, is the middle characteristic velocity. In addition, the constant states
are
]T

q— = [u_,O, k— ’ qp = [Hp’ ap’kp]T’ q+ = [u+’a+’0]T, (81)
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and qrw(§) is the rarefaction solution (integral curve) of Equation (39) for the second characteris-
tic field (1,, r,) that continuously connects the harmonic edge state q_ and the periodic traveling
wave state q,, of the TDSW. The discontinuity from qy to q. satisfies the jump conditions (41)
for the Whitham modulation equations where V' = 4,(q, ) is simultaneously the phase speed of
the periodic traveling wave with parameters qp, the shock speed, and the phase speed of the
solitary wave with parameters q., that is, it represents the TW component of the TDSW solu-
tion. The modulation solution (80) corresponds to a rarefaction-shock solution of the Whitham
modulation equations.

The five parameters (k_, qps a, ) in the modulation solution (80) can, in principle, be obtained
by solving the full Whitham modulation equations (31), but we lack explicit periodic traveling
wave solutions to do so. Instead, we approximate the modulation solution (80) in the weakly
nonlinear regime by solving Equations (48).

A general feature of Whitham modulation systems in the weakly nonlinear regime is the ©O(a?)
mean induced by the finite amplitude modulated wavetrain.! Absent mean changes due to ini-
tial/boundary data, the third-order weakly nonlinear modulation system (48) can be simplified,
with the same order of accuracy, to a second-order modulation system. The procedure to do so is
as follows. The induced mean is represented by the ansatz

uX,T) = uy + alX, TYuy(k(X,T)) + ---, (82)

where u, € R is a constant background. This introduces the induced-mean coefficient u, (k) that
gives rise to an effective nonlinear frequency shift &, by inserting (82) into Equation (43) and
expanding as

w(k, @) = wy(k, uy) + a*(w,(k, uy) + 7wy (k, ug)u,(k)) + o(a?),
(83)
= wy(k, uy) + a’d,(k, uy) + o(a?).

With this effective nonlinear frequency shift, weakly nonlinear wave modulations are generically
described by the simplified system'

(a%), + (woxa®), =0, (842)
ki + (@), + cbz(az)x =0, (84b)

provided
() = 1 (k) = (cosk —2) cot(k/z). (85)

" 16uy(1 — cosk)’ 16u,

Note that the additional coupling term involving &, and its derivatives contribute at higher order
in a. The induced-mean coefficient u,(k) in Equation (85) is determined by compatibility of aver-
aged mean, energy conservation laws (48a), (48b) with the induced-mean modulation system
(84), which asymptotically satisfies (F(k)a®); + (F(k)woa®)x = 0 for any differentiable F, in
particular F(k) = u,(k).

Under the assumption of induced-mean variation, we can analytically obtain the rarefaction
solution qrw(£) in (80) by solving Equation (84) for an RW and then inserting it into Equation (82).
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For this, we express the induced-mean modulation system in Riemann invariant form

or, or,
T Py =0 (86)

where

1 Wo,kk 12
ri=a¢§/<a~)2> dk

1
:aizﬁuocos_l<§(—1+Zcosk)>, uy>0, 0<k<m a>0.

(87)
The restriction to positive mean and wavenumber is due to the fact that we have selected the
positive square root in (87). The characteristic velocities are
a k
Ay =2uycosk + 508 | 5 2 —cosk, (88)

so that 1, = 4, and 1_ = 4, in Equation (50).
We can now solve for qgrw(£) in (80) by setting uy, = u_ and taking the fast RW solution of Equa-
tion (86) that satisfies r_ = const and 1, = £. The constant slow Riemann invariant r_ implies

a
cos™! l(—1 +2cosk_)) = —2— + cos! l(—1 +2cosk,) ), (89a)
3 4y 2u_ 3
and the assumption of induced mean implies
up = u_ + u(ky)ay. (89b)

The RW profile is obtained by inverting 1, = £ for a(¢) and k(&) subject to the constraint

a($)
4\/514_

Equations (89a) and (89b) are two conditions on the four unknown solution parameters
(k_, Ep, ap, kp)- The other two conditions are obtained from the jump conditions (41).

The sharp transition from the periodic traveling wave q, to the solitary wave ahead q, is
achieved by a shock solution of the Whitham modulation equations. We obtain the jump con-
ditions from the conservation laws (31a) and (31b) by assuming that the periodic traveling wave
is in the weakly nonlinear regime (42) and the level ahead is a solitary wave where k — 0, both
with the same phase speed V:

cos~! (%(—1 + 2cos k_)> = + cos™! <%(—1 + 2cos k(§))>. (89)

—V (@ —uy) + 0 + 12

S~ u? =0, (89d)

13 1_ 1 14 1 _2 1 1
—V(Eup + gupag - gui> + Uy + Zaf) (up cos(ky) + Euf)) - Eui =0. (8%)
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FIGURE 13 Traveling dispersive shock wave (DSW) parameters obtained from the modulation solution

(80) (curves) and numerical simulation (circles).
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FIGURE 14 Two solutions at t = 1000 along with the envelope predictions from the modulation solution

(80). (A) u, = —0.7 and (B) u, = —0.2.

The jump condition from the conservation of waves equation (31c) is satisfied because w = k = 0
for the solitary wave and V' = @, /k,, for the periodic traveling wave

e wo(kp, u_) + apds(ky)

X (891)

p

Solving for a, and u, from (89a) and (89b), then inserting them into (89d), (89¢) and using
the phase velocity (89f) determines two nonlinear equations for k_ and kj,. We solve these
equations numerically using standard root finding methods to obtain all the parameters of
the shock-rarefaction modulation solution (80) and compare it with numerical simulation in
Figures 13 and 14. We observe in the figures that near the onset of the TDSW, the solution’s mean,
amplitude, and frequency are accurately captured by the above theory. On the other hand, as the
amplitude of the solution increases, the approximation loses quantitative efficacy. Nevertheless,
the qualitative trend of the solution’s properties are captured by the above analysis.

With the parameters of the periodic solution available, we can then evaluate the characteristic
velocities of the Whitham modulation equations in the weakly nonlinear limit, cf. Equations (48).
These calculations show that the Whitham shock corresponding to the leading edge of the TDSW
is refractive in the slowest characteristic family, weakly expansive in the middle characteristic
family, and weakly compressive in the fastest characteristic family. Since the shock does not
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FIGURE 15 (A) Unsteady shock solution arising from step initial data (4) withu_ =0and u, =1.(B, C)
Series data of the evolution of lattice sites n = +20 (B) and n = —20 (C) for ¢t € [900, 1000].

satisfy the classical Lax entropy conditions, it is nonclassical. Therefore, its admissibility requires
further analysis. For example, one may be able to identify admissibility by identifying a hetero-
clininc solution of the discrete conservation law—analogous to the continuous case studied in
Ref. 6.

4.5 | Unsteady shock

In Section 4.3, we found that foru, = 1andu_ € (-1, —0.26), an SS separated two counterpropa-
gating waves, one a DSW, the other an RW. When u_ = —0.26, the DSW no longer separates from
the SS. Instead, the DSW + SS + RW is numerically observed to bifurcate into the unsteady gener-
ation of counterpropagating periodic waves that we term an US for u_ € (—0.26,0.18). When u_
exceeds 0.18, the US bifurcates into an RW, described in Section 4.1. We now investigate the US.

A plot of the solution for u_ = 0 and u, = 1 is given in Figure 15. Two distinct counterpropa-
gating periodic waves traveling with speed c, emerge from the origin that then transition to the
constant level u_ behind through a partial DSW and to u, ahead via a partial DSW and an RW.
While the velocities c,. are distinct, Figure 15B depicting the time series u, o(t) indicates that the
two periodic waves have approximately the same temporal frequency, which we confirm below
numerically to high precision.

4.51 | Poincaré description

A spatiotemporal intensity plot of the US with u_ = —0.16 near n = 0 is shown in Figure 16A.
The counterpropagating traveling waves can clearly be identified. While the underlying wave
parameters of the left- and right-moving waves will generally be different, they do share the
same frequency. Thus, the dynamics correspond to a time-periodic solution. Indeed, inspection
of Figure 16C confirms this, which shows the same intensity plot as panel A, but with the solu-
tion sampled every T time units, where T is the period of oscillation. This is the Poincaré map
of the dynamics. With this sampling size, the solution appears to be constant, suggesting that
the waveform is genuinely time-periodic. To demonstrate this further, we simulated the equa-
tions of motion on a small lattice n € [—20, 20] with boundary conditions given by the periodic
solution, that is, the left boundary is given by u_,(t) and the right boundary is given by u,((t). The
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FIGURE 16 Intensity plot of the absolute value of the displacement with u_ = 0.16 and u, = 1 for the full
simulation (aA) and truncated simulation (B) for n = —20 ... 20 with forced boundaries. Panels (C) and (D) show
the Poincaré map of the solution in (A) and (B), respectively, evaluated at every period.

dynamics upon initialization with the periodic solution u,,(450) are shown in Figure 16B, which
can be hardly distinguished from the dynamics in (A). The evolution remains periodic, as can be
inferred from Figure 16D, which are the dynamics sampled every T seconds. An avenue for poten-
tial further study, prompted by these findings, is the seeking of exact time-periodic solutions of
the model and their corresponding Floquet analysis.

452 | Approximation of traveling waves via quasi-continuum model

If considering the left- and right-moving waves as separate entities, we can once again apply the
quasi-continuum reduction to describe the traveling wave using Equation (79). A comparison of
the spatial profile of the left-moving wave with u, = —0.16 at time t = 480 is shown in Figure 17A.
The phase plane for the left-moving waves (left lobes) and right-moving waves (right lobes) is
shown in Figure 17B in markers, with corresponding quasi-continuum approximations shown as
solid lines. Like before, the reduction is best for smaller step heights (compare the blue and red
orbits in panel B). A comparison of the mean, amplitude, and frequency of the simulation and
quasi-continuum approximation as a function of u_ is shown in panel C for both the left- and
right-moving waves. We can observe that the approximation provides a very adequate description
of the relevant traveling patterns.

dny) suonipuo) pur sua ], ay) 238 *[SZ07/90/12] U0 Areiqry autuQ Kafip *Areaqry a3a][0D utopmog £q £9£z 1 wides/[ [ [1°01/10p/woo Kajia Keaqrjaurfuoy/:sdny woij papeojumod ‘470 *06S6L9t1

' Kofian &

ASULDIT SuOWWo)) 2aNEAI) Aqeatjdde oy £q pawIaA0S are SA[IIIE YO a8 JO SI[NI 10§ AIRIQIT dUI[uQ) AR[IA UO (SUOT]



SPRENGER ET AL. 36 of 48

(A) (B) ©)
04 n=—-50 1+ _o1
0.4- 1Mo.12 o7
0.45 o
-0 -
05" 1 0.2 n=20 |l 0, 05 %

07 -0.16 ©
-0.5
0.75 - - 04 !

-60 »55" -50 -45 -1 -0.5 , 0 0.5 -015 -0.1  -0.05 1 0 0.05 0.1
FIGURE 17 (A)Zoom of the left periodic wave with u_ = —0.16 (blue markers) and quasi-continuum
approximation (solid blue line). (B) Plot of the phase plane (u_sy(t), t1_so(¢)) (left lobes) and (u,4(t), t150(t)) (right
lobes) for a time interval such that the periodic wave has developed. The color intensity corresponds to the value
of u_. In particular, u_ = —0.16 (blue), u_ = —0.04 (green), u_ = 0.04 (yellow), u_ = 0.12 (red). The solid
markers are the corresponding quasi-continuum approximations. (C) Plot of the mean (red solid lines),
amplitude (blue dashed lines), and frequency 1/T (yellow dashed-dot line) as a function of u_. The
quasi-continuum approximation of these wave parameters is shown as open circles (for the left wave, n = —50)
and open squares (for the right wave, n = 20).

4.5.3 | Jump conditions

Figure 16 shows two counterpropagating periodic traveling waves with a rapid transition between
them in the vicinity of n = 0. This motivates the hypothesis that these two waves satisfy the jump
conditions obtained from the Whitham modulation system’s conservation laws. We denote the
periodic traveling waves by ¢, for the left (—) and right (+) periodic waves, respectively. For
a discontinuous shock solution of the Whitham system at the origin, the corresponding jump
conditions are Equation (41):

(2'(p2)) = (@'(p)) =0, (902)
(¥ (p)SP'(p-)) — (¥ (,)SP' (1)) =0, (90b)
w_—w, =0, (90¢)

where S is the unit shift operator SR(n) = R(n + 1), and [} is defined as in Eq. (71). To check if
these jump conditions are indeed satisfied, we approximate the above averages using the numer-
ical simulations. In particular, we let the structure come close to a periodic state (as in Figure 16)
and extract one period of motion at a particular node n. Let T, be the period of node n and
let It = [r,7 + T,] be the corresponding time interval from ¢ = 7. We then make the following
approximations:

(V@) g [ @)= o, o1a)
nJ,

(@52 (@0) 1 [ @) s Ot = o) (910)
nJi,

for 7 > 1 (we set T = 240 in what follows). The first jump condition, Equation (90a), is checked
by comparing f(—5) to f(5), while the second jump condition Equation (90b) is checked by
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FIGURE 18 Numerical verification of the 0.5
jump conditions (90) of the Whitham
equations as u_ is varied for the US solution.
. L, 04r o4 1
Open blue circles: (®'(p_)|,=_s) = f(—5). Open 4
blue squares (&' (¢_)SP' (@) |5 ~ g(=5). 04 o)
Open blue triangles: w_|,—_s = 1/T_s. Red 03¢ ®o %6 1
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blue markers, the jump conditions are satisfied . AAAA Aap
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comparing g(—5) with g(5). The third jump condition is simply the difference in the frequency,
which we estimate via 1/T_s and 1/Ts. Figure 18 shows a plot of f(—5) (open blue circles), g(—5)
(open blue squares), and 1/T_s (open blue triangles), while the red dots show the corresponding
quantities for n = 5. Notice that each red point falls nicely into an open blue marker, indicating
that the jump conditions are, up to some small numerical error, satisfied. The maximum resid-
ual over the interval of u_ values tested for the first jump condition was max,,, |f(=5) — f(5)|
0.001, whereas the maximum residual for the second condition was 0.0017 and the maximum
residual for the third was 0.0008.

The numerical evidence is a compelling indication that the US can be interpreted as a shock
solution of the Whitham modulation equations. While shock solutions of the Whitham equa-
tions have been constructed previously,>° the previous definition of admissibility requires the
existence of traveling wave solutions of the corresponding continuum PDE in which the phase
velocities and shock velocity all coincide. In the present case of the US for the lattice equation (3),
all three of these velocities differ but the frequencies are the same. This suggests a new class of
admissible shock solutions to the Whitham equations corresponding to time-periodic solutions
of the lattice equation, an intriguing possibility for future work.

We also note the similarity between the US and defect solutions of reaction-diffusion
equations.”* Because the waves in the US are in-phase (see Figure 16), it most closely resem-
bles a target pattern with a source from which waves are emanating, in the language of Ref. 54.
The target pattern exhibits a Hopf bifurcation of the background state and a specific transition
of the eigenvalues associated with the linearized operator about the background state. It would
be interesting to explore potential connections between the underlying diffusive regularization of
the target pattern and the dispersive regularization of the US studied here.

4.6 | Blowup

In Section 4.4, we observed that a TDSW (a partial DSW connected to a traveling wave) is gener-
ated that transitions from the left level u_ = 1 to the right level u, € (—0.724,0). By decreasing
the value of u, below —0.724, a new wavetrain develops on the right level. Figure 19 shows three
example profiles. When u, is close to the transition value u, = —0.724, the excitation on top of
the right level u, is small (see Figure 19A). Decreasing u, further results in a larger amplitude
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(A) ®)
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FIGURE 20 Interpolated spatial profiles at different times in the comoving frame for u, = —0.8 with speed

(A) c; =0.229, (B) ¢, = 0.15 demonstrating that the waves to the left and right of the sharp transition move at
different speeds.

wavetrain that resembles another TDSW (see Figure 19B). Close to u, = —1, the wavetrains on
the left and right levels approach binary oscillations, as shown in Figure 19C. Solution dynam-
ics similar to those shown in Figure 19C, but with odd initial data, were studied extensively in
Ref. 16. In the work of Turner and Rosales,'° it is claimed that the emergence of blowup for the
odd initial data they considered is “almost always” associated with the emergence of regions of
binary oscillations for which the upper and lower oscillatory envelopes have opposite sign. Such
a scenario was observed to result in the loss of hyperbolicity in the modulation equations (10) for
binary oscillations and, consequently, a dynamical instability and thus exponential growth in a
localized region of space that ultimately led to the finite-time blowup of the wave pattern. It was
also shown that the wave pattern near the blowup closely resembles a self-similar solution of the
lattice equation, u,, = a;(n + a3)/(t + a3) with a;, a,, a; being appropriate constants (see Ref. 16
for details).

For the Riemann data considered here (4), we numerically observe blowup in regions of the
solution where binary oscillations are not apparent, which we now explore.

We will start with a more detailed discussion of the structure in Figure 19B with u, = —0.8,
which is representative of many of the patterns found for u, € (—1,—0.724) and u_ = 1. A zoom-
in of the solution in the comoving frame n — ct near the shock interface is shown in Figure 20
at three separate times (¢t € {340, 345, 350}) represented by different colors. Both the solution on
the lattice (dots) and its zero-padded Fourier interpolant (curves) are shown with two different
speeds. In Figure 20A with speed c = c; = 0.229, the leftmost wave at the three distinct times
overlap, suggesting that it moves in the steady frame n — c;¢. Contrastingly, in Figure 20B with
speed ¢ = ¢, = 0.15, the rightmost wave at the three distinct times overlap, suggesting it moves
in the slower steady frame n — c,t. The spatial profile at t = 350 and the Fourier transform 7(k)
of a 40-site window of the leftmost (rightmost) wave are shown in Figure 21A in red (blue). Each
wave has wavenumber concentration, and they are distinct (k ~ 2.76 for the left and k = 2.51 for
the right). This solution is a generalization of the US studied in Section 4.5 in that two traveling
waves are connected through a sudden jump. However, there are key differences. First, the shock
interface itself is moving as shown in Figure 20. Second, the frequency for the leftmost and right-
most waves are not identical, which can be seen in Figure 21C that shows the time series at a node
located at the left wave (n = 20) and the right wave (n = 250). Here, it is clear that the oscillation
frequencies are distinct. We conjecture that, much like the US, this wavetrain can be modeled
by a discontinuous, weak solution of the Whitham equations satisfying the jump conditions (41).
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FIGURE 21 Various zooms of the solution with u_ = 1 and u, = —0.8. (A) Zoom of spatial profile near the
interface with ¢t = 350. The inset shows the spatial Fourier transform of the left wave (red) and right wave (blue).
(B) Zoom of spatial profile near the interface with ¢t = 800, very close to the blowup time. (C) Time series of the
n = 20 node (red) and n = 250 node (blue) much before the blowup. The mass M(t) is shown as the solid gray
line, and the energy E(t) is also shown as a dashed gray line. Note that both are vertically displaced for visual
purposes. The actual values are E(0) = 0.0813 and M(0) = 0.1. (D) Same as (C), but for a time interval closer to
the blowup time.

Rather than pursue this further, we instead turn to an examination of the large t dynamics of the
solution and, specifically, its eventual blowup.

This structure is relatively coherent until about ¢ = 600, after which small disturbances in
the leftmost wave develop. Disturbances are noticeable if one compares the time series for ¢ €
(350, 400) (shown in Figure 21C) and for t € (750, 800) (shown in Figure 21D). At about ¢ = 816,
the solution appears to experience finite-time blowup. Figure 22A shows the blowup. The spatial
profile close to (but before) the time of blowup is shown in Figure 21B. Notice that the location
of the blowup is spatially concentrated within the leftmost wave and that the wavenumber of
the traveling wave where the instability seems to manifest is about k ~ 2.76, (i.e., not a binary
oscillation).

We conjecture that the observed blowup is due to an instability of the leftmost wave with
wavenumber k ~ 2.76, and not due to numerical instability. A piece of evidence in this direc-
tion is that the mass and energy are conserved until times very close to the blowup time. The
solid gray and dashed lines of Figure 21C,D show the mass M(¢) and energy E(t), respectively.
Note that in order for these quantities to be conserved, we employ periodic boundary conditions.
For the simulations in this subsection, we concatenate the initial condition equation (4) with its
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FIGURE 22 (A)Semilog plot of max,, |u,(t)| versus time leading to blowup (red). The semilog plot of

|E(t) — E(0)| (dashed gray line) and |M(t) — M(0)| (solid gray line) are also shown. (B) Observed blow-up time for
various values of u, with u_ = 1 fixed. The lattice size is 2N = 100000 and we simulate until ¢ = 10000. For

u_ > —0.725, we observed no blowup.

reflection about the first site, leaving us with 2N total nodes. Thus, the relevant window of space
for the plots is only the second half of the lattice. We define the lattice indices so that the initial
(t = 0) jump from u_ down to u, occurs at n = 0. This makes the plots consistent with those in
the previous sections. We include the entire spatial window for the computation of E(t) and M(¢).
Note that in Figure 21C,D the quantities M(t) and E(t) are indeed conserved, even as the wave-
form begins to break down (see t ~ 790 of panel, Figure 21D). The gray solid and dashed lines of
Figure 22A show plots of M(t) and E(t), respectively, for times leading to the blowup itself. While
the energy E(t) remains constant after the strong onset of instability at about ¢ = 785, the energy
conservation breaks down for t > 800, while M(t) remains conserved. The conservation of mass
in the numerical scheme is not surprising, since by direct computation one sees that the varia-
tional integrator applied to Equation (35) with ®'(u) = u? conserves the mass exactly.’” The near
conservation of energy for the variational integrator relies on the boundedness of the underlying
numerical solution.” This will be clearly violated for solutions exhibiting collapse-type phenom-
ena and thus it is not surprising that the energy is not conserved in the numerical scheme close
to the time of blowup. Thus, it seems the initial collapse is due to instability of the wave (energy
remains conserved for t < 790), but after experiencing sustained large amplitude oscillations, the
numerical scheme may begin to exhibit additional numerical instabilities (since energy is not
conserved for ¢t > 790). The blowup time found here is an approximation that depends on the
particulars of the numerical scheme.

For u, € (—1,—0.724) and u_ = 1, we observe a similar blowup of the solutions, with the
blowup time varying roughly between t = 700 and ¢ = 2500 (see Figure 22B). We define the
solution as blown-up once max,, |u, | exceeds a large threshold. We practically used 1000 as the
threshold (the actual threshold makes little difference in Figure 22B since the blowup occurs
so quickly). For this figure panel, we used a lattice size of 2N = 100000 and simulated until
t = 10000. We observe blowup with u, = —0.725 (at about ¢t = 1500) but no blowup with u, =
—0.724, even when simulating until ¢ = 10000. This sharp transition between finite-time blowup
and no blowup is further evidence that the blowup is due to an underlying instability of the
waveform and not due to numerical instability.

The question of stability of traveling waves of this lattice is thus an important open ques-
tion, meriting further investigation. Based on these findings, it appears that traveling waves with
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wavenumbers other than k = 7 can lead to instabilities and finite-time blowup, a generaliza-
tion of the findings in Ref. 16 where binary oscillations with k = 7 were identified as a primary
instability mechanism.

5 | NONUNIQUENESS OF RIEMANN PROBLEMS

As already mentioned in the introduction, the solutions to the Whitham system (31) are
nonunique for certain classes of initial data. To discuss this in greater detail, we start with some
preliminary comments concerning the inviscid Burgers’ PDE (1), which describes the dispersion-
less, hyperbolic scaling limit of the lattice (3) in the case of no oscillations and is a subsystem of
(31) that governs the dynamics in the case of zero wave amplitude or zero wavenumber. To obtain
an elementary example for nonuniqueness, we impose the odd initial condition

u(x,0) = sign(x) (92)
and notice that the RW
-1 for —c0<é&<-2
u(x,t) = U(x/t) with U)=<&/2 for —2<&<+2 (93)
+1 for +2<&<+o0

is the unique self-similar solution according to the classical theory of hyperbolic conservation
laws (see, for instance, Ref. 2). The latter complements the PDE with an additional selection rule
to exclude solutions that are considered to be unphysical. The most prominent example is the
Lax condition for shocks, but without such an admissibility criterion there exists a plethora of
possibilities to fulfill the initial-value problem (1)+(92). For instance, the formulas

-1 for —oco<é<-2

/2 for —2<&<-2u -1 for —co<é<-1-—p

- for —2u<é<o —u  for -1—-u<é<o
v =1 " pet and U@ =1 " <O gy

+u for 0<é&<+2pu +u for 0<&<+4u+1

/2 for +2u<é&é<+2 +1 for +u+1<+o0

+1 for +2<§<+4+

provide two families of further self-similar solutions in dependence of the real parameter 0 <
u < 1land u > 1, respectively, and contain (93) as limiting case for 4 = 0. The corresponding pro-
file functions U are illustrated in Figure 23 and combine a steady discontinuity at x = 0 (which
violates the Lax condition on both sides) with either two RWs or two Lax shocks. In numerical
simulations of the lattice (3), we find a related family of solutions that differ only in microscopic
details of the imposed initial conditions. As a typical but still elementary example we study the
lattice initial data

-1 for n<0
u,(0)=<n for n=0 (95)
+1 for n>0,
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FIGURE 23 Solutions from (94) with (A) = 0.3 and (B) u = 1.7 to the inviscid Burgers’ equation (1) with
initial data (92).
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FIGURE 24 Lattice solution with initial data (95) and two choices of the microscopic parameter (A) n = 0.5
and (B) n = 1.3 att = 500. The initial data are shown in red.

where the free parameter 7 reflects that the macroscopic Riemann data (92) can be realized in
many different ways on the microscopic scale. Figure 24 reveals that the numerical solutions for
different choices of 7 correspond to distinct waves on the macroscopic scale. We always find a
steady discontinuity at x = 0 but its jump height as well as the other waves depend crucially on
the value of microscopic parameter. In analogy to Figure 23, we observe two RWs in the case of
0 <1 < 1but for » > 1 we have to replace the Lax shocks by DSWs.

It remains a challenging task to understand the macroscopic impact of small-scale fluctuations
in the initial data. For instance, it seems that the parameter  in (95) determines the jump height
of the emerging steady discontinuity in Figure 24 but we are not aware of any heuristic or even
rigorous explanation thereof. Numerical simulations also indicate that microscopic details might
not be relevant for Riemann data that are either positive or negative on both sides but also this
must be investigated more thoroughly. Both issues are also intimately related to the properties
of the Whitham system (33) which can be regarded as an extension of the Burgers’ equation (1).
At least for sign changing Riemann problems, the lattice (3) is able to produce an entire family
of Whitham solutions and it is very natural to investigate and classify them in terms of selection
criteria and entropy inequalities. Moreover, other nonlinearities might produce further effects due
to linearly degenerated states in the scalar first-order PDE corresponding to (12); see Refs. 47, 56
for a related problem in FPUT chains whose force functions are increasing with inflection point.
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6 | CONCLUSIONS AND FUTURE CHALLENGES

In the present work, we revisit the first-order nonlinear dynamical lattice of Equation (12) through
the lens of “lattice hydrodynamics” by providing a systematic analysis of the solutions to the
canonical lattice Riemann problem (4) for the case of quadratic flux (3). Building on earlier works
of Refs. 16, 30, 32, we have characterized DSWs and RWs, familiar from continuum dispersive
hydrodynamics. But we also discover a variety of nonclassical hydrodynamic-like solutions. In
addition to finite-time blowup, recognized earlier in the work of Turner and Rosales,'® we identify
three additional dynamical regimes that are interpreted using a combination of numerical simu-
lation, quasi-continuum approximation, and Whitham modulation theory. These regimes include
the generation of a counterpropagating DSW and RW pair separated by a stationary, abrupt shock.
In addition, an abrupt, unsteady transition between two counterpropagating periodic waves with
the same frequency is interpreted as a shock solution of the Whitham modulation equations.
Finally, the phase diagram 1 of solutions to the lattice Riemann problem is rounded out by a
TDSW, consisting of an unsteady partial DSW, connected to a heteroclinic periodic-to-equilibrium
traveling wave.

These elements of the lattice model’s phenomenology provide an opportunity to develop dif-
ferent aspects of the mathematical analysis of lattice hydrodynamics. For instance, we adapt the
DSW fitting method of Ref. 49 to lattice equations in order to characterize the expansion and edge
properties of lattice DSWs. We also follow up the work of Ref. 30, providing abstract modula-
tion equations for a quasi-continuum analog of the lattice dynamical system. We connect these
to the genuinely discrete modulation equations, made explicit in the weakly nonlinear regime
by a Poincaré-Lindstedt expansion of periodic traveling wave solution profiles and their frequen-
cies. Hyperbolicity and self-similar solutions of the modulation equations are used to characterize
lattice hydrodynamics. The quasi-continuum theory was also leveraged elsewhere, such as in
characterizing the leading edge amplitude of the DSW and the periodic/traveling wave solutions
of the discrete model. A truncation of the dynamics in wavenumber space allows for a linearized,
large ¢ analysis of small amplitude oscillations that accompany the RW and DSW solutions.

Beyond the binary oscillations that have been studied previously, this work has identified new
lattice hydrodynamic features that, so far, appear not to have a continuum, dispersive hydro-
dynamic parallel. Of particular interest is the rapid, unsteady transition between two in-phase
counterpropagating periodic traveling waves with the same frequency (US in Figure 1), identified
with a shock solution of the Whitham modulation equations. This solution is born out of the bifur-
cation of another lattice solution particular to the lattice, the counterpropagating DSW, RW pair
separated by an SS (DSW + SS + RW in Figure 1) when the DSW merges with the SS. The US rep-
resents an unsteady generalization of the steady periodic-to-equilibrium heteroclinic solutions of
higher-order continuum dispersive equations, themselves interpreted as admissible shock solu-
tions of the corresponding Whitham modulation equations.®>° This work points to a new class of
admissible “Whitham shocks” in the lattice context, though it remains to be seen what specific
admissibility criteria, or entropy inequalities, are required for such solutions to exist. It will be
interesting to see if continuum solutions of this type also exist.

The asymptotic and semianalytical tools used in this work constitute an effective framework
in which to investigate the hydrodynamics of other lattice dynamical systems for which DSW
phenomena may arise. For example, the Riemann problem for FPUT chains generalizes to two
wave families (second order in time); the problem of a single wave family studied here has been
shown to exhibit a variety of lattice hydrodynamic solutions, including steady transition fronts®’
and DSWs.™
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A number of interesting open questions remain. Here, we list some of these. While the exis-
tence of periodic traveling waves has been proven,*? their stability and the existence, as well as
stability of a more general class of traveling waves consisting of periodic-to-periodic heteroclinic
solutions are important problems to better understand lattice hydrodynamics, with implications
for finite-time blowup and the construction of the TDSW solution. In the DSW + SS + RW solu-
tion, we have not been able to provide a mechanism that leads to the particular selection of
the intermediate constant uy = (1, — u_)/2. We suspect that this is due to microscopic details
of the lattice equation that have been neglected in the analysis. Of similarly unknown origin is
the selection mechanism for shock solutions of the binary modulation equations (10) investi-
gated in detail in Ref. 16. On the other hand, the US constitutes a genuine time-periodic orbit.
Such periodic orbits are worthy of exploration in their own right, including from the perspec-
tive of dynamical systems by, for example, generalizing the spatial dynamics in dispersive® and
dissipative®* systems. The existence, stability, and bifurcation analysis of such states are intriguing
problems for future exploration that portend an admissibility criterion for a class of modulation
shock solutions. Such an admissibility criterion would be physically meaningful. Yet another
interesting research direction to pursue is the identification of equivalent admissibility crite-
ria that are easier to apply. Whether a suitable entropy function and entropy inequality can be
identified to determine admissibility of modulation shocks remains an interesting open ques-
tion for further study. As discussed in Ref. 16, the model with quadratic flux (3) analyzed herein
is one among several possible discretizations of the inviscid Burgers’ equation. A comparative
study of different discretizations of the more general conservation law u; + ®'(u), = 0 could
lead to other lattice hydrodynamics and, in the case of integrable discretizations, be amenable
to deeper mathematical analysis. These topics constitute some of the open problems within the
theme of DSWs in one spatial dimension. The study of higher-dimensional models appears to be
wide open. Some of these topics are currently under consideration and will be reported in future
publications.
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