Physica D 469 (2024) 134315

journal homepage: www.elsevier.com/locate/physd —_—

Contents lists available at ScienceDirect

Physica D

Check for

On the Whitham modulation equations for the Toda lattice and the
quantitative characterization of its dispersive shocks

Gino Biondini **, Christopher Chong ", Panayotis Kevrekidis ¢
a Department of Mathematics, State University of New York at Buffalo, Buffalo, NY 14260, United States of America

b Department of Mathematics, Bowdoin College, Brunswick, ME 04011, United States of America

¢ Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003, United States of America

ARTICLE INFO ABSTRACT

Communicated by L. Truskinovsky

Keywords:

Toda lattice

Whitham modulation theory
Integrable systems
Dispersive shocks

The aim of this work is multifold. Firstly, it intends to present a complete, quantitative and self-contained
description of the periodic traveling wave solutions and Whitham modulation equations for the Toda lattice,
combining results from different previous works in the literature. Specifically, we connect the Whitham
modulation equations and a detailed expression for the periodic traveling wave solutions of the Toda lattice.
Along the way, some key details are filled in, such as the explicit expression of the characteristic speeds
of the genus-one Toda-Whitham system. Secondly, we use these tools to obtain a detailed quantitative

characterization of the dispersive shocks of the Toda system. Lastly, we validate the relevant analysis by
performing a detailed comparison with direct numerical simulations.

1. Introduction

The study of shock waves in dissipative [1], as well as in disper-
sive [2] systems has a time-honored history. While the former are,
arguably, more well-known and the corresponding theory is more well-
developed, the latter in the form of the so-called dispersive shock waves
(DSWs) have seen numerous developments in the last few decades.
This is both due to the emergence of theoretical approaches, such
as Whitham modulation theory [2-4] (see also the reviews [5,6])
for their study, but also due to numerous experimental developments
more recently that have made such patterns more experimentally ac-
cessible. These include, but are not limited to, nonlinear optical sys-
tems [7,8], ultracold Bose-Einstein condensates [9,10], as well as fluid
conduits [11,12].

While the above mentioned developments (and the vast majority of
the literature on shock waves) are rooted in the study of continuous
systems, recent theoretical and experimental developments have show-
cased the relevance of exploring and understanding such phenomena
also in (spatially) discrete realms. Some of the early studies [13],
focused on the analogy of discrete problems with corresponding contin-
uum ones (such as, e.g., of the Fermi-Pasta-Ulam-Tsingou model with
the well-established [3] Korteweg—de Vries (KdV) case). Nevertheless,
more recently, it has become evident that metamaterial lattices can
feature genuinely discrete and experimentally observable DSW features
[14-19] (indeed, a finding that was established at least as early as the
work of [20]). It is relevant to highlight here that in addition to these
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material lattices, optical systems of waveguide arrays [21] have also
been used to experimentally illustrate such discrete analogues. More
recently, the study of ultra-slow shock waves in a tunable magnetic
lattice [22] has been added to the list of relevant systems, further
diversifying the realm of applications of discrete DSW studies.

As may naturally be expected, the discrete systems that may feature
DSWs are prototypically ones where features related to integrabil-
ity [23,24] (Lax pairs, infinitely many conservation laws, and the
ability to solve the system analytically via inverse scattering) are
absent. Nevertheless, the ability to utilize exactly solvable integrable
systems to demonstrate ideas and develop analytical solutions related to
DSWs has had a time-honored history in continuum systems, as shown
in [2,3,5,6]. Indeed, similar analogies between discrete non-integrable
systems (such as the granular lattice [25]) and integrable ones (such
as the Toda lattice [26]) have proved valuable in connection to other
wave structures such as traveling waves [27,28]. This, in turn, renders
particularly relevant and timely the systematic revisiting of the analysis
of shock waves in a prototypical integrable discrete model, such as the
Toda lattice.

The Toda lattice was discovered almost sixty years ago [26], and has
been studied extensively since then (e.g., see [29-33] and references
therein). Much is known about it, including its direct and inverse
spectral theory, its multi-soliton and finite-genus solutions, Whitham
modulation equations, and solutions of various initial value problems.

0167-2789/© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, Al training, and similar technologies.


https://www.elsevier.com/locate/physd
https://www.elsevier.com/locate/physd
mailto:biondini@buffalo.edu
https://doi.org/10.1016/j.physd.2024.134315
https://doi.org/10.1016/j.physd.2024.134315
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physd.2024.134315&domain=pdf

G. Biondini et al.

However, a complete quantitative description of its periodic solutions
and Whitham equations was never put together in a self-contained
form, to the best of our knowledge. The purpose of this work is to
remedy this situation as well as to present in detail the use of these
tools to obtain a full characterization of the dispersive shocks of the
system. Our hope and expectation in subsequent work is that this will
provide a helpful bridge towards characterizing and understanding sim-
ilar patterns in non-integrable (and experimentally accessible) discrete
systems. It may also provide a basis for similar exploration of other
fully integrable systems, either semi-discrete (i.e., continuous in time)
or fully discrete in both space and time.

This presentation is structured as follows. Interestingly, the one-
dimensional Toda lattice appears in many different forms in the liter-
ature, and often with different and incompatible notations, hence in
Section 2 we begin by briefly reviewing them as well as presenting
some basic properties of the system, including its elliptic solutions and
the so-called “Toda shock problem”. In Section 3 we summarize the
Toda-Whitham modulation equations and provide explicit expressions
of the characteristic speeds in the genus-one case. In Section 4 we
combine the theory of Sections 2 and 3 to provide a quantitative
characterization of the dispersive shock waves of the Toda lattice. Fi-
nally, in Section 5, we provide detailed comparisons of direct numerical
simulations with the theory.

2. The Toda lattice, its solutions and the Toda shock problem
2.1. The Toda lattice

The most direct way to write the Toda lattice is as the equation of
motion for a chain of coupled nonlinear oscillators [34]:

Mj}n = eVn-1"Vn — e¥n"Vn+1 ) (2.1)
for all n = N, ..., N,, that is,

Myn = _¢l(yn - .anl) + ¢,(yn - yn+l)’ (22)

where a dot denotes differentiation with respect to time, M is the mass,
v, is the displacement from the rest position, and where the potential
function is

P =1 € = 1)+r 2.3)

with the mutual displacement between particles (i.e., the strain) de-
fined as

Fu =Yy = Voot - 2.4

Hereafter, boundary conditions are neglected, so we implicitly assume
that the system holds for all n € Z, i.e., N, = —N; = oo. Then (2.4)
implies y, = yn, + X Ny ke Also, hereafter we set the constants k and
M to 1 for simplicity, since the general system Eq. (2.1) can be mapped
into the canonical one by a suitable scaling transformation.

It is convenient to use the strains r, as the generalized coordinates
for the system. One can write Eq. (2.1) in Lagrangian or Hamiltonian
form by introducing the Hamiltonian H = K+U, where the kinetic and
potential energies are, respectively,

1 Ny Ny
K=> DR, U= Y ). (2.5)
n=N, n=N;

Then the generalized momenta [i.e., the canonically conjugate vari-

ables to the r,] are s, = dL/dF,, where L(r,7) = K—U is the Lagrangian
N

of the system. Moreover, H(r,s) = K+U = Zn=2N1 [%(s,m - s,,)2 +o(r,)],

since (2.4) implies y, = s, — s,_,, and therefore Hamilton’s equations

of motion for (2.1) are

. 0H
Fa=o= = —(Spp1 =28, +5,_1), (2.6a)
Sn
. oH 9¢(r)
=— =— . 2.6b
S or or |, (2.6b)

n
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Solving (2.6b) for r, as a function of s, yields r, = —R($,), with

R(3) = log(1 + 5). Then (2.6a) becomes

ARG = (85,41 =25, +5,.1), 2.7)
dt

which is the dual form of the system (2.1). Moreover, by letting w, = s,,,

so that R(s,) = —log(1 +w,), and differentiating (2.7), one also gets the

form of the Toda lattice used in [35] and many other works, namely

dZ
v log(1 +w,) = w, ;1 — 2w, +w,_; . (2.8)

2.2. Flaschka variables and Lax pair

Yet another formulation of the Toda lattice that is quite common,
especially in works related to integrability, uses the so-called Flaschka
variables, namely

~ 1. = 1 -

a, = Eyn 5 bn = ie(y" Ynr1)/2 . (29)
(Note however that many different conventions and scalings exist for
these variables. See also below.) It is straightforward to verify that, in
these variables, the equations of motion (2.1) are

db

=202, - b)), d—t" = b, (@, — Gpyy) -

da,

P (2.10)

(The strain r, is recovered from (2.9) simply as r, = —21log(2b,_,). The
variables in Egs. (2.9) and (2.10) are exactly the same as in [34] except
for the switch a, = b, b, = d,.) The reason why the Flaschka variables
are useful is that, as is easily verified by direct calculation, (2.10) can
be written in Lax form as

dL

— =[B,L],
T [B,L]
where [A, B] = AB — BA is the matrix commutator, and L and B are
the doubly infinite tridiagonal matrices

(2.11)

™
B

|
S

B

~
Il
S
™«
S

B)
B

n+l ’ n

S

n+1

. &

(2.12a)
Note L and B can be thought of as operators in /(Z). Specifically,

L=a,l +b,,,¢+b,e?, B=b, e —be”, (2.13)

where I and e? are respectively the identity and the shift operator, the
latter acting as €’ f, = f,. Of these operators, L (which encodes the
state of the system at time 7) is self-adjoint, while B is skew-symmetric.
The inverse scattering transform for the Toda lattice is based on the
spectral theory of L, i.e., the study of the eigenvalue problem Lv = Av
(e.g., see [24]).

For the purposes of the present work, it will be most convenient to
use a different choice for the Flaschka variables and to replace (2.9) by
defining a,&b,, as in [29], as

a,=—y,, b, =e’n-17Vn (2.14)
which then replaces (2.10) with the ODEs

da db,

o = bart = by o= bulay = a, ). (2.15)
(In the notation of [29], a,(t) = uy(n, 1) and b,(t) = u;(n,t). The map
between the two sets of dependent variables is obviously a,,= -2a,

and b, =452_.)
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2.3. Soliton solutions

The Toda lattice admits constant solutions in the form a,(f) = a and
b,(t) = b, with a and b arbitrary constants. (One can verify that indeed
in this case (2.11) yields d L/dt = 0.) The Toda lattice also admits N-
soliton solutions for all N € N. For example, these solutions can be
written in the form (e.g., see [35])

d2
w,(t) = yr log 7(n, 1), (2.16)
where the 7 function is given by
fi1(n,1) fin+ N —1,1)
7(n,t) = det : : s (2.17)
fn(n,t) fn(n+N—-1,1)

fint) = el 4 (—1)iHe=0i(mD | 6;(n,t) =Kk;n—v;sinhk;1+86,,

(2.18)

where v; = +1 and x; < -+ < ky are arbitrary. In the simplest case
N = 1, one obtains the well-known solitary wave (i.e., one-soliton)
solution of the Toda lattice:

w,(H) = sinh? k sech?[xn — vt sinh «]. (2.19)

(Note that in [35] the signs v j’s were all taken to be —1, and the variable
k; was called log p;.)

2.4. Periodic traveling wave solutions of the Toda lattice

A partial family of periodic traveling wave elliptic solutions of the
Toda lattice was first presented by Toda himself in [32]. However,
that is not the most general family of periodic solutions, as it only
contains two free parameters, and all those solutions had zero average.
A full, four-parameter family of elliptic solutions of the Toda lattice was
derived by Teschl [31] as a special case of the finite-genus formalism.
Note that Teschl writes the Toda lattice in Flaschka variables as 4,1 =
a1 (by11 = byr) and b, 1 = (a, 1 —a;_, ), by introducing the variables
a,r = %e(yn‘ywl)/z and b, = —% y,, where we employed the subscript
“T” to denote the Flaschka variables in the notation of [31] to avoid
confusion with the notation used in the present work. Therefore, the
map between the two sets of dependent variables is a,7 = b, and
by = —a,, implying a, = 2b, 7 and b, = 4a’_, 1.

Explicitly, following [31], the general four-parameter family of
periodic solution of the Toda lattice is given by

b = (B2 + 3 + B2+ E3) 4 2R, (0 — 20 = 12200, (2.20a)
a,(t)=E + Ey+ Es+ Ey —2u,(1), (2.20b)
where
1 — (E,/E,) B sn*(Z,(t), m)
N=E 2.21
Ha(1) = E, = B s(Z.0.m) (2.21a)
Z,t) =2nF(A,m)+wt + Z, (2.21b)

o (B EXEE) @219
(Ey — E))(E5 — Ep)

R, (1) = =0,(t) /P, (1),

P(z) = (z - E\)(z— Ey)(z— E5)(z — Ey),

(2.21d)
E,-E E; - E
w=\(E,— E)(E; - E)), A= E“ EZ, B= E3 E2 )
4~ Ly 3~ L&y
(2.21e)
In the above equations, E|, ..., E, are the branch points of the genus-

one Riemann surface associated with the above solution, with E; <
E, < E; < E4; sn(z,m) is the Jacobi elliptic sine (see Section 5 for
further details), F(z,m) is the inverse of sn(z,m), Z, is an arbitrary
translational parameter (phase), u,(?) is the Dirichlet eigenvalue of the
scattering problem for the Toda lattice, and o¢,(f) = =+I is the sign
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associated with u,(#), and determines whether u,(7) is increasing or
decreasing as a function of n and ¢. Note also that: (i) p,(r) € [E,, E;]
(the spectral gap of the scattering problem) for all (n,7) € RZ; (ii)
u,(t) achieves its minimum and maximum values (i.e., E, and Ej;,
respectively) at Z, () = 0 and at Z,(r) = K(m), respectively, where K(m)
is the complete elliptic integral of the first kind; (iii) the mean value of
u,(t) over one period is

11 (B, m)

K(m) ~
where I1(-) is the complete elliptic integral of the third kind. Accord-
ingly, the minimum and maximum values of a,(t) are, respectively,

=E +(E,-E))

(2.22)

”mean

1 1
Ain = 3 (Ey+E,—E;+E,), Aax = 3 (Ey—E,+ E5+ E,), (2.23)

and are reached respectively at Z,(r) = K(m) and Z,(r) = 0, and its
mean value is

II(B, m)

1
amean=E(E2+E3+E4_El)_(E2_E1) K(m)

(2.24)

The harmonic limit (m — 0%) of the above solution is obtained as
E; > E; . In this case, similarly to what happens for the KdV equation,
the solution reduces to small-amplitude harmonic oscillations. (Recall
sn(z,0) = sin(z), F(4,0) = arcsind, K(m = 0) = x/2 and u,(1) —
E, + (E; — E,) sinz(Z,,(t)) + O(E; — E,)*.) Conversely, the soliton limit
(m — 17) of the above solution is obtained as E; — E;. In this
limit, the above expression yields the one-soliton solution of the Toda
lattice. (Recall sn(z,1) = tanhz, F(4,1) = log[(1 + 4)/V1— 4?] and
K(m) = % log[16/(1 — m)] — é(l —m)log(l = m)+O(1 —m) as m — 1.)

Additionally, since the Toda lattice is an integrable system, it also
admits finite-genus solutions of arbitrary genus, which were written
down in [31]. However, those are not needed here, so for brevity we
will not discuss them.

2.5. The Toda shock problem and the Toda rarefaction problem

The Toda shock problem, first considered by Holian, Flaschka and
McLaughlin in [36], and then studied by Venakides, Deift and Oba
using IST methods in [33], is the IVP for (2.1) with ICs

¥.(0)=0,

with ¢ > 0 and sign(0) = 0. (As noted in [33], more general ICs of
the form y,(0) = dn + e can be reduced to the above ones by a trivial
transformation.) The Toda rarefaction problem is the above IVP but
with ¢ < 0, and was studied by Deift, Kamvissis and Kriecherbauer
in [30]. Both the shock problem and the rarefaction problem were then
studied in [29] within the framework of Whitham modulation theory.
In the following sections we will focus our attention on the Toda shock
problem, since this is the case that leads to the formation of dispersive
shocks.

¥,(0) = —2c sign(n), (2.25)

3. Whitham modulation equations for the Toda lattice
3.1. General formulation of the Whitham equations for the Toda lattice

Since the Toda lattice is an integrable system, it possesses an infinite
number of conservation laws, and as a result one can write down
Whitham equations of arbitrary genus which govern the modulations of
the corresponding finite-genus solutions of the system. These Whitham
equations were written down in an elegant form by Bloch and Kodama
in [29] by making use of the integrability structure of the Toda lattice.

Specifically, and without repeating the derivation, it was shown
in [29] that the genus-g Whitham equations for the Toda lattice in
diagonal (i.e., Riemann invariant) form are given by
94 94

- =5, == =0,

L L i=1,...,2¢g+2, 3.1
ot 2 ox / & 3.1)
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with 4 = (4}, ..., 4p44,), where the Riemann invariants 4,,..., 4y, are
the branch points of the spectral curve associated with the genus-g solu-
tions of the Toda lattice. The characteristic speeds s, ... s S2g42 in (3.1)
are given by s;(4) = S(4, 4;), where the unique function S(4, z) is

28 4y z8 +y 28 4y

S(4,2) = - £, (3.2)
2 Hj=l(z -a;)

with y, = —%0'1 and 6; = A + -+ + Ay,,, and where the coefficients

a0 and y, ... Vg (which depend on all the quantities 4, ... ,Azg+2)

are given by the solution of the 2g x 2¢g system of equations

k k=1 0_ _
IL+pPI, +-+PI =0, k=1,...,g, (3.3a)
K+ k k-1 0_ _
1g+ +rodg + il +-~-yg1g—0, k=1,....g, (3.3b)
with
£ 14 &g 14
Pl—_zak’ PZ:Z Z k) Ty Pg:(—l)gHak,
k=1 Ki=1 ky=ky+1 k=1
(3.30)
) Adk+1 Jj
= Add (3.3d)
A2k R, (1)
2g+2
R () = H (A= A,). (3.3¢)

k=1
The system (3.3) arises from the normalization conditions of the
Abelian differentials associated with the genus-g solutions of the Toda
lattice.

It was shown in [29] that the characteristic speeds satisfy a “sorting
property”, namely: (i) for all j and k such that 4, < 4, one has
s(A;) < s(A); (D) d[s(4;)]1/04; >0 forall j =1,...,2g +2. This property
is crucial in order to ascertain the existence or non-existence of global
solutions to the IVP for the Whitham equations (e.g., see [29,37,38]).
Specifically, in [29] Bloch and Kodama proved that if the ICs for the
system (3.1) are non-increasing, the IVP has a global solution.

In order to apply the above Whitham equations to study modula-
tions of the periodic solutions discussed in the previous section, one
obviously needs a map between the Riemann invariants in Whitham
theory of [29] with g = 1 and the branch points in the elliptic solution
of [31]. This map can be obtained by recalling that, on one hand,
a, = =2a, = 2b,1 and b, = 4b._| = 4a’_, ., and, on the other hand,
the variable a, in Section 2.4 is directly proportional to the E;’s, while
a, in [29] is proportional to the /lj’s (also see Section 3.2 below).
Therefore one simply has 4; = 2E; for j = 1,...,4.

3.2. Genus-zero Whitham equations

The genus-zero Whitham system for the Toda lattice is the special
case g = 0 of the general system (3.1) above, and describes the
modulations of the “constant” solutions of the Toda lattice. In the

normalization of [29], one has (cf. (4.2) in [29])
1

a, = 5(11 + 4,),

and the characteristic speeds are

1
s1==Vb, = 7 —4).

1
by = G = A% (3.4)

1
53= Vb == (4 — 4o). (3.5)
3.3. Genus-one Whitham equations

The genus-one Whitham equations are the equations that govern the
modulations of the periodic solutions of the Toda lattice, and, as we
show below, such equations are the most useful ones for characterizing
the dispersive shock waves in the problem of interest. In the case g = 1,
the expression (3.2) for the characteristic speeds simplifies to

22 +v,2+ 7

SO ==

(3.6)

Physica D: Nonlinear Phenomena 469 (2024) 134315

where the constants «; and y, are determined by the solution of the
linear system (3.3), which for g = 1 reduces to

Il —aI) =0, (3.72)
47,0l +71) =0, (3.7b)
which immediately implies

a =1/1), oy =—U]+7,ID/T). (3.8)

The coefficients in the above system are given by the following elliptic
integrals:

L

Y VR

3.4. Explicit expressions for the characteristic speeds for the genus-one
Toda—Whitham equations

A, R == 2= A)A= 25)(h = Ag). (3.9)

Notably, all the integrals in Eq. (3.9) can be evaluated exactly, using
in particular formulae 250.00, 250.01, 254.00, 254.10 or 255.00 (see
also 340.04) in [39]. Explicitly:

I? = GK(m), (3.10a)
I} =G4 K(m)+ (A — A 11,1, (3.10b)
IP=G | 2K(m)+24, (A — 1) I,
_ (4 - 11)2 2 2
=D =) ( @®E(m) + (m — a*) K(m)
+Qa?m+20* —a* =3m) 11, )|, (3.10c)

where E(m) is the complete elliptic integral of the second kind, and

(s = A)(Ay = A)) s A=y

m= BT PMTN) a7 (3.11a)
(/14 - /12)(/13 - /11) 13 - Al

G- 2 (3.11b)

Vs =205 = &)
Here, for brevity IT,, = IT1(a?, m), where as before I1(-) is the complete
elliptic integral of the third kind. Substituting I ?,I 11 &I 12 in (3.8) and
the resulting expressions for «; and y, in turn into (3.6) yields, after
some tedious but straightforward algebra, explicit expressions for the
characteristic speeds of the genus-one Toda-Whitham equations, which
are novel to the best of our knowledge. Specifically,

S(4,2) = [222 = Zz+ Aydy + Ay Ag) K(m) + (A3 — A))(A4 — 4))]

[[4(z = ApKm) = (3, = 41T,
(3.12)

where ¥ = A, + 4, + A3 + 4, and m and « are given by ((3.11)). Then,
substituting A = 2 ; in (3.12) for j = 1,...,4, one then finally obtains,

explicitly:
(3 = (43 = 444 = H)E(m) + (4, — 1)K (m)) ’ (3.132)

B 44y = A1,

_ (4= )((43 = ADE@m) = (A — ADK(m))
nd= 4 = AK(m) — 1T, ’ (3.130)
(A3 = A)D((Ag — A3)K(m) — (A4 — Ap) E(m))

AH=- s 3.13
s & — 4K (m) — (g — A1L,,) (3-13¢)
sa(d) = (A4 = 4))(A4 — 43)K(m) — (A3 — 4}) E(m)) (3.13d)

4((A4 — ADK(@m) — (A, — AIT )

These explicit and simplified expressions for the characteristic speeds
will be crucial in applying the Whitham theory for the practical de-
scription of DSWs, detailed in below in Sections 4 and 5. Note how the
characteristic speeds (3.13) contain the complete elliptic integral of the
third kind, unlike those for the genus-one Whitham equations for the
Korteweg—de-Vries and nonlinear Schrodinger equations [6].
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3.5. Harmonic limit and soliton limit

Like other genus-one Whitham systems, the above Toda—Whitham
modulation system of equations admits distinguished limits as m — 0
and m — 1. Specifically, the harmonic limit, m — 0, is obtained
when 4; — /1;’, in which case the elliptic solution of the Toda lattice
reduces to a vanishing-amplitude harmonic wave. Recall the Taylor
series expansion [40]

d (l) < (l)

. = i z: 2/n Z 2/s 2n-2.

m=a < o0l & e
n=| 5=l

(3.14)

Using (3.14), one can see that s3(1) = s,(4) as m — 0, and (3.1) limits
to a reduced system of modulation equations for A;, 4, and 44, with

1

1
s = —Z(/14 — A, $,=0, Sy = Z(/Lt —ApD. (3.15)

The corresponding system describes the propagation of a small-ampl
itude harmonic wave riding on top of the constant solution of the Toda
lattice.

Conversely, the soliton limit, m — 1, is obtained when 4; — iy, in
which case the elliptic solution of the Toda lattice reduces to its soliton
solution. Using 111.04 from [39], we obtain

K
1, = (m) a lo<1+a
1-a2 2(1-a?) -«
Using this expression one can see that s3(1) = 54(4) in the limit m — 1,
and (3.1) again limits to a reduced system of modulation equations for
Ay, A& 44, except that now

> + o(l — m), m—1". (3.16)

1 1
51 :—Z(Az—ll), Sy, = Z(ﬂz—ﬂ]),

(A4 = 444 = 4)
Sy = .

210g< Vg =2y + Ay — ,12>
Vo =1 = = 1

The soliton limit of the genus-one Whitham equations can now be
used to study the dynamics of a soliton propagating on a slowly varying
background, e.g., as in [12,41,42]. Similarly, the harmonic limit of the
genus-one Whitham equations will be useful to study the dynamics
of a small-amplitude harmonic wave propagating on a slowly varying
background.

(3.17a)

(3.17b)

4. Use of the elliptic solutions and Whitham equations to charac-
terize the dispersive shocks

4.1. Analysis of the Toda shock problem and rarefaction problem via the
Whitham equations

In [29], Bloch and Kodama used Whitham theory to study the
Toda shock problem and Toda rarefaction problem, which, expressed
in terms of the Flaschka variables, are

a,(0) = 2c sign(n), b,(0)=1. (4.1)

For the genus-zero system above, in the notation of [29], the corre-
sponding ICs are then

—2(c+1), <0, <0,
/11(x,0)={ (et x *

2(c —1), x>0, x> 0.

2(c—1),
A2(x:0) = {2(c+ 1

(4.2)

It was then shown in [29] that if ¢ > 0, the genus-zero system with
the above ICs develops shocks, whereas if ¢ < 0 the system does not
develop shocks. More precisely, in [29] it was shown that: (i) If ¢ > 1,
the ICs (4.1) are regularized by genus-one data. (ii) If 0 < ¢ < 1, the
ICs (4.1) are regularized by genus-two data. (iii) If ¢ < 0, the ICs (4.1)
do not break, and the genus-zero system has a global solution. A concise
description of the time evolution of the Riemann invariants arising in
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each case, together with the evaluation of the characteristic speeds of
the boundaries between regions of different genus, is found in [29].
A much more detailed analysis of each case, including descriptions
of the full solution of the Whitham modulation system and of the
corresponding solution of the Toda lattice, as well as comparisons with
numerical simulations, are provided below.

4.2. Practical guide for characterizing the Toda shock problem via Whitham
modulation theory

In this section we bring together the theory detailed above in order
to obtain concrete analytical predictions of various characteristics of
the DSWs of the Toda lattice. Such predictions will be compared to
numerical simulations of the full Toda lattice problem in the subsequent
section.

Recall that if the ICs for a given system of Whitham modulation
equations are non-increasing, the system admits a global solution. As
usual when using Whitham modulation theory to analyze Riemann
problems, if the ICs for the genus-zero system are not non-increasing,
one then tries to “regularize them” by writing them as a degenerate
case of a higher-genus system (e.g., see [29,37,38,43]). In the case
of the Toda shock problem, the precise steps involved (and the corre-
sponding results) depend crucially on the value of the speed ¢, so one
needs consider the following two cases separately: (i) ¢ > 1 and (ii)
0 < ¢ < 1. (We will not discuss the case ¢ < 0 since in this case no
DSWs are produced.)

For each of the two cases, to compare the predictions of Whitham
modulation theory to direct numerical simulations of the Toda lattice,
it is convenient to proceed according to the following steps:

1. On the density plots of the solution as a function of » and ¢,
draw straight lines representing the boundaries of the oscillation
zones.

2. Given the fixed values 3 of the 4 Riemann invariants, evaluate
the elliptic integrals as a function of the fourth one. Then,
at fixed t, use the value of the relevant integral to express x
explicitly as a function of m.

3. In the temporal snapshots of the solution use the self-similar
solutions of the Whitham equations and the corresponding max/
min of the elliptic solutions to plot the envelope of the oscilla-
tions as a function of n.

4. Using the formulae for the elliptic solutions, plot the full oscil-
lations as a function of n.

Next we discuss these four steps in more detail for each of the two cases.
4.3. Case 1: ¢ > 1

Step 1. Recall that, when ¢ > 1, the IC for g, and b,, given in (4.1)
are regularized by genus-one data. To see why this is the case, note
that the ICs for the genus-zero Whitham equations corresponding to
those in (4.1) are given by (4.2), and are shown in Fig. 1(a) (cf. Fig.
1 in [29]). Since these IC are not non-increasing, the time evolution of
the genus-zero system gives rise to a shock. The shock is regularized by
embedding the IVP into a degenerate case of the genus-one Whitham
equations, for which the corresponding IC are as follows:

A (x,0) = —4,(x,0) = —2(c + 1), Vx€eR, (4.32)
=21, x <0,
’12("’0)‘{ 2+ =14, x>0,
_ 20c+1) =44, x<0,

A3(x,0) = { e, o, (4.3b)

These ICs, shown in Fig. 1(b) (cf. (4.6) and Fig. 2 in [29]), are non-
increasing, and therefore the genus-one Whitham system admits a
global solution. In particular,

A(x, 1) = —A4(x, 1) = =2(c + 1), V(x,1) € RxR", (4.42)
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(b)

L Ag =X\ Ay

Fig. 1. (a) ICs for the genus-zero Whitham system for case 1 (¢ = 3/2). (b) Regularization of the IC via the genus-one Whitham system. (c) Bifurcation plot showing the genus-one
regions (in light gray) and genus-zero regions (in white) in the xr-plane. The core of the DSWs will be located in the gray regions, which will be counter-propagating. (d) The

value of the Riemann invariants at r = 1 (see text for details).

_ —2(c—-1), x < s;t,
A1) = { “2c+ D=4, x> s,
_ 20c+ D) =44, x< s3 1,
A1) = { 2c- 1), x> st (4.4b)

The value of 4, in the transition region s;r < x < sJ¢ varies con-
tinuously from 4, = 47 = -2(c — 1) to 4, = A; = A = 2c+ 1.
Similarly, the value of 1 in the transition region —s;7 < x < —s31 varies
continuously from A3 = A3 =2+ toi3= A;r = 2(c — 1).! Therefore,
the time evolution gives rise to two DSWs, located in the expanding
regions —s;7 < x < —s;t and s;r < x < s;t, in which the values
of all 4 Riemann invariants are distinct from each other, see Fig. 1(c)
(and also Fig. 3 in [29]). Bloch and Kodama compute the speeds of the
boundaries between the regions of different genus in the various cases
studied. The values of s§ and sf are (cf. (4.15) and (4.16) in [29], but

note that (4.16) in [29] is off by a minus sign):

Ve(e+1)

s;=—sf= —M—mM———— > 1, st =—=s5=2(c=1D(1-T)>0,
P07 Jogye+ Vet D P

(4.5a)
= sin® ¢ b

@ + sin® ¢)(c sin® ¢ + cos? ¢)

/ / " sy d¢
0 \/(c cos2 ¢ + sin? @)(c sin® ¢ + cos2 ¢)

/7[/2
0 \/(c cos?

(4.5b)

! The values of 1,,4; in the transition region are depicted qualitatively
in Fig. 3 of [29]. We give a quantitative description of these quantities below
in Eq. (4.7a) and Fig. 1(d).

The integrals in (4.5b) can be evaluated explicitly, yielding
N cE(m,)— K(m,)
sT=c

el T el 2_1-1/c, =1-1/c%. 4.6
3 cK(m,) - M(a2,m,) % fe m /e “-©)

The behavior of 4, and 4; within the 2 transition regions, which is not
specified in (4.4b) (and which was not given in [29]), is discussed in
detail in step 2 below. We point out that all the characteristic speeds
above can be obtained as limiting cases of the explicit formulae for the
characteristic speeds for the genus-one Whitham equations described
in Section 3, see Eq. (3.13).

Step 2. Note that the IC (4.3) possess a spatial reflection symmetry:
A (x,0) = —A4(=x,0) and 4,(x,0) = —A3(—x,0). Moreover, one can
check that the structure of the modulation equations guarantees that
this symmetry is preserved by the time evolution. Because of this, it is
sufficient to discuss the solution for x < 0. We begin by noting that,
since the values of all four invariants are known at the edges of the
“Whitham zone”, (2.21c) allows us to obtain the value of m at the edges
of the DSW. Specifically: (i) At x = -s31, we have A; = 4, = 2(c + 1),

Ay = =2(¢c — 1) and 4, = —2(c + 1), implying m = 1. Therefore, the
leading edge of the DSW is a solitary wave. (ii) At x = —s;t, we have
Ay = 2(c+ 1), 4 = =2(c — 1) and 4; = -2(c + 1), as before, but now

A3 = 2(c — 1), implying m = m, = 1 - 1/c? [as anticipated in (4.6)].
Therefore, the trailing edge of the DSW is not a harmonic wave. This
also means that in the central region, —s}7 < x < s, the solution is
an exact periodic solution of the Toda lattice (indeed, it is a binary
oscillation [33]).

Next, note that, since the values of 4,, 4, and 4, are constant in the
“Whitham zone” —sjr<x < —s;rt, (2.21c) allows us to express 45 as a

function of m as

As(m) = 2(c + 1)i —cd=m

m . (4.73)
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Fig. 2. (a) ICs for the genus-zero Whitham system for case 2 (¢ = 1/2). (b) Regularization of these ICs via the genus-two Whitham equations. (c¢) Snapshot of the profile of the
Riemann-invariants at t = 1. (d) Effective genus-one regularization for x < 0. (e) Effective genus-one regularization for x > 0. (f) Bifurcation plot showing the genus-one regions

(in light gray) and genus-zero regions (in white) in the xt-plane.

Recall that in Section 3 we simplified the abstract formulation of the
speeds given in Eq. (3.6) to the more practical formulae given in
Eq. (3.13). Combining Egs. (3.13) and (4.7a) and the values of 4,, 4,
and A4, we have s3(1) = s3(m), with

clc+1) (I+c(l—=m)E(m)—(c+ DA —-m)K(m)

el =m) . 4 1yKm)— (1 + (1 —m))n(ﬂ m>

c+1

(4.7b)

s3(m) =

Note that, one can recover s;: given in Egs. (4.6) and (4.5a) by taking
the limits m — 1 and m — m,, respectively, in Eq. (4.7b).

Next, looking for a self-similar solution of the genus-one Whitham
equation (3.1), namely A; = A3(x/r), we obtain an equation that
determines x/¢ as a function of A3 or equivalently m:

x/t = —s3(m), (4.7¢)

with s5(m) as above. One can now combine (4.7a) and (4.7c) to obtain
A; as a function of x, parametrically in terms of m, for any fixed ¢.
Fig. 1(d) shows the value of the Riemann invariants at + = 1. These
speeds were validated by careful comparison with direct numerical
simulations (see the following section), showing excellent agreement.

Step 3. By combining the results of the previous step with the expres-
sions for a;;, an. and a,,, in the preceding section, we can plot the
envelope and mean of the oscillations for any fixed 7 as a function of x,
as parameterized by the value of m. These values were also validated by
careful comparison with direct numerical simulations (in the following
section), again showing excellent agreement.

Step 4. The last step is accomplished using a similar method as for
step 3, but now combining that with the expression for the periodic
traveling wave solutions of the Toda lattice presented in Section 2.4.
Namely, for any fixed value of ¢, one sets n = x as given by (4.7¢c)
and uses the resulting expression in (2.20a) and (2.20b). Note that
the easiest way to compare the analytical predictions with the results
of direct numerical simulations is to compute a,(), whose expression
[(2.20b)] is simpler than b, (in other words, we will compare the
velocity, since y = —2a,(1)). The resulting expressions were validated
by careful comparison with direct numerical simulations, once more
showing excellent agreement.

4.4. Case 2: 0<c< 1

The implementation of the various steps for case 2 is quite similar
to that for case 1, so, to avoid unnecessary repetition, we will keep the
presentation for this case more concise, limiting ourselves to pointing
out the differences between the two cases and giving the relevant
formulae. See Fig. 2 for the corresponding plots.

Recall that, when 0 < ¢ < 1, the ICs for a, and b, still given
in (4.1) are regularized by genus-two data. The ICs for the genus-zero
Whitham equations, still given by (4.2), also give rise to a shock. In this
case, however, to fully regularize the problem it is necessary to embed
the ICs as a degenerate case of the genus-two Whitham equations. The
corresponding ICs are

{2(c ~1), x<0,

A0 ==2c+1), Ay(x,0)= (4.82)

—2(c+1), x>0,

A(x,0)=2c—1), Aux.0)=-2(c—1), (4.8b)
2(c+ 1), x <0,

A5(x,0) = 26(x,0) = 2(c + 1). 4.8

5(,0) {_2(6_1)’ oo k0 =2+ (4.80)

The upshot is that the two DSWs are located in the regions —s57 < x <
—s;“t and =55t <x< —s;t, where (it is trivial to show that 55 > s;r for
all0<e<1)

Vele+ 1) .

si=-s; =1l-c. 4.9)

- _
S 5

5T _log(\/z+\/c+1)’

In general, one cannot obtain explicit expressions for the Riemann
invariants of the genus-two Whitham equations in the Whitham zones,
even in parametric form. Similarly, a quantitative comparison between
the predictions of the genus-two Whitham theory and the actual be-
havior of the solutions of the Toda lattice would require evaluation of
the expressions of the finite-genus solutions of the Toda lattice in terms
of theta function [31]. Importantly, however, even though one needs
to employ the genus-two Whitham equations in order to regularize the
ICs for case 2 for all x € R, it is, in fact, possible to compute all the
necessary quantities using only the genus-one Whitham equations, as
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long as one uses two different genus-one reductions to study negative
and positive values of x.

The key observation that makes this possible is that, even though
the regularization of the ICs involves the genus-two Whitham equa-
tions, no genus-two region is ever produced by the time evolution.
Accordingly, only four Riemann invariants are distinct for x < 0,
and the same is true for x > 0. The two sets of four invariants are
not the same, which requires one to use six invariants in order to
regularize the ICs for all x. However, as long as we are interested
in only studying positive or negative values of x, we can use two
different regularizations in parallel: a first one in order to compute
the solution for x < 0 and a second one to compute the solution for
x > 0. Specifically, denoting by A%’ the Riemann invariants of the
genus-g Whitham equations, and referring to Fig. 7 in [29], we have
the following:

To study the region x < 0, we set

}‘1(1) - 11(2)’ )»2(1) - 14(2), 13(1) - 15(2)’ /14(1) - }‘6(2)’ (4.10)

thereby neglecting 4, and 4;®, whose values coincide for all x < 0.
The corresponding ICs are then

40 =201 +0), L0 =201 -0, (4.11a)
2(1+0), <0,

PRONID Sl 20 =21 +0). (4.11b)
2(1 =¢), x>0,

To study the region x > 0, we set

/11(1) - 11(2)’ /12(1) — /12(2)’ /13(1) - 13(2)’ 14(1) — /16(2)’ (4.12)

thereby neglecting 4, and 1;®, whose values coincide for all x < 0.
The corresponding ICs are

=2(1 —¢), <0,

WO =20 4e, 0= 2T (4.132)
—2(1+¢), x>0,

10 =201 -0), AP =2(1+0). (4.13b)

With the above setup, we can use the framework developed in
the previous section to study the dynamics. Similarly to case 1, the
Riemann invariants again satisfy the symmetry 4;(x,t) = —4;_;(-x,1)
for all x € R, j = 1,...,6. Therefore it is sufficient to just present
the results for x < 0. Using the effective genus-one regularization for
x < 0 presented above, one finds that, in the Whitham modulation
zone —s3t < x < —si1, 3D (m) is still given by (4.7a). Moreover, the
corresponding characteristic speed is also still given by (4.7b). Similarly
to before, one can then look for a self-similar solution of the Whitham
equations, i.e., A5 = A5(x/t), obtaining the analogue of (4.7¢) x/t =
—s5(m). The remaining steps in the analysis are completely analogous
to those in case 1.

5. Direct numerical simulations and comparison with the theory

The previous section describes how to produce an analytical pre-
diction of the leading and trailing edge speed, the maximum, mini-
mum and mean value of the solution, and the actual spatio-temporal
profile itself. We now compare these predictions against numerical
simulations.

We simulate Eq. (2.1) with M = k = 1 using the symplectic Verlet
scheme with a time step size of 4r = 0.001, [44]. While we are cognizant
of important recent work illustrating the effect of such integrators
on imposing an effective periodic drive, and ultimately leading to a
breakdown of integrability over (very) long time simulations [45], such
effects are not relevant over the timescales considered herein. The
simulation is initialized with the shock initial data given by Eq. (2.25).
In the simulations shown here we selected N = 8000 nodes, such that
the leftmost index is N; = —4000 and the rightmost index is N, = 3999.
We employ free boundary conditions, that is yy, = yy,4; and yy, =
¥n,_1- For the simulations considered, the lattice is sufficiently large
to avoid interactions between the excitations and the boundaries. We
perform simulations to cover representative examples of the two cases
presented above, namely ¢ = 1.5 for case 1 and ¢ = 0.5 for case 2.
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5.1. Case 1: ¢ > 1

We first compare the formulae of Section 4.3 with numerics. A 2D
density plot of a simulation initialized by Eq. (2.25) with ¢ = 1.5 is
shown in Fig. 3(a). This is a standard way to present the evolution
of a DSW [46-52]. In the figure, color intensity corresponds to the
velocity, y,. Note, while the computational window consisted of N =
8000 nodes, only 4000 are shown for clarity purposes. Two counter-
propagating and expanding waveforms can be identified, which are
the DSWs. In the first region (where the lattice index is negative)
the leading and trailing edge of the DSW are predicted by the —s3

and —s; formulae, respectively, which are defined in Eq. (4.5a). For
the calculation of s;, we use the symbolic formula (4.6) instead of

numerically evaluating Eq. (4.5b). This requires the computation of the
complete elliptic integrals of the first (E(m)), second (K (m)), and third
(I1(n, m)) kinds. These are standard in most computational libraries (for
example in Matlab, they are computed as [K,E]=ellipke(m) and
M(n,m=ellipticPi(n, m)).

In Fig. 3(a), a plot of 1 = _”/Sa_ (solid white line) and ¢t = —n/s;r
(dashed white line) are shown, which compare very well to the leading
and trailing edge of the DSW in the first region. A similar plot of —n/s
(solid black line) and —n/ s;r (dashed black line) are also shown, which
compare very well to the leading and trailing edge of the DSW in the
second region. These two regions correspond to the genus-one regions
of the Whitham equations, see also the gray regions of Fig. 1(c). In
the genus-zero region (the region between —n/s;r and —n/s7, see also
the central white region of Fig. 1(c)) there are binary oscillations with
non-zero amplitude [33]. Note that with m = m, the wavelength of
oscillation in Eq. (2.20b) is 2, which corresponds to a binary oscillation.
The comparison shown in Fig. 3(a) corresponds to step 1 of Section 4.
Note that step 2 of Section 4 does not involve any comparison to
numerical simulation, and hence there is no corresponding figure here,
and we move onto step 3.

In Fig. 3(b) a zoom of the velocity profile of the DSW in the first
Whitham zone at time ¢ = 800 is shown. The vertical solid lines are
the theoretical predictions of the leading and trailing edges located at
the lattice positions n = —800s3 and n = —8003;, respectively. The
minimum and maximum of the analytical prediction of the velocity are
given by Eq. (2.23) and the mean is given via (2.24). These formulae
are parameterized by E,, E,, E;, E,, which are given in terms of the
Riemann invariants via the formula 2E ;=4,j=1234.In the first
Whitham zone (i.e., the DSW for n < 0 in Fig. 3(a)), the parameters

A
E => =-(+o),

are constant throughout the region and E;(m) varies as a function of m.
In turn, m is parameterized by » and . In practice, it is easier to define
values of m € [m,, 1] (wWhere m, =1 -1 /c? is the cut-off value of the
parameter m) and then compute n via n = s3(m)r where ¢+ = 800 and
s5(m) is given by Eq. (4.7b). Thus, for each given value of m € [m,, 1]
we can map the value of

A3(m) l—c(l=m)

E3(m) = ) = (C + l)m

2 2
E2=72=—(c—1), E4=74=(c+1),

to a particular coordinate (n,t), and hence we can map a,,,, a,,;, and
Gmean tO (n,7). To compare these values to the corresponding values of
the velocity, we simply use the definition y, = —2a,(¢). In Fig. 3(b) the
sloped solid black lines represent the envelope prediction of the DSW
(i.e. ay,, and ag;,) as a function of n with r = 800 fixed. The curved
line is the mean value prediction. The solid black lines and curves of
Fig. 3(b) correspond to step 3 of Section 4.

We now will compare the velocity profile itself to the theoretical
prediction. The process is essentially the same as detailed above, where
for each value of m € [m,, 1] we obtain E,, E,, E3, E,, and hence we can
compute q,(1), which is defined in Eq. (2.20b). Note that this requires
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Fig. 3. (a) Intensity plot of the DSW of Eq. (2.1) with the shock initial data, Eq. (2.25), with ¢ = 1.5. The solid and dashed curves represent the straight space-time lines associated
with the trailing and leading edge speed predictions, respectively. Color intensity corresponds to the velocity. (b) Zoom of velocity profile of the solution shown in (a) at time
t = 800. The vertical solid lines are the theoretical predictions of the trailing and leading edges. The curved line is the mean value prediction, and the sloped lines represent the
envelope prediction of the DSW. (¢) Zoom of DSW shown in (b) at the first gray shaded region (blue markers). The gray solid curve is the theoretical prediction. (d) Same as (c),
but the zoom corresponds to the middle gray shaded region of (b). (e) Same as (c), but the zoom corresponds to the last gray shaded region of (b).

the computation of F(z,m), which is the inverse of sn(z, m). Namely,
F(z,m) is the function such that z = sn(F(z, m), m), i.e.,

F(z,m):/ —a
0 /(1 =12)(1 —mr?)

This function can be approximated using methods such as those im-
plemented in [53]. Panels (c) - (e) of Fig. 3 show a comparison of
the theoretical prediction, given via —2a(f) (gray curves), and the
numerical solution (blue markers). Note that, as usual when comparing
the predictions of Whitham theory to the underlying dynamics of the
original nonlinear system, one must take into account the presence of
a slowly-varying translation offset that is not captured by Whitham
theory; see, e.g., [6]. In our case, the phase shift is also a slowly
varying function of n,t (i.e., the Zy(n,1) term of Eq. (2.21b)). For the
purpose of comparison with numerical simulations, we treat Z,(n, )
as a fitting parameter. The blue markers in Fig. 3(c) correspond to
the numerical DSW shown in (b) at the first gray shaded region. The
lattice indices are n € [—1325, —1305], which for 7 = 800 corresponds to
m € [0.9652,0.9696]. The gray solid curve is the theoretical prediction
given by —24,(800). For this spatial window, we chose Z;, = 1.3 to
obtain good agreement between theory and simulation. Panel (d) is
the same as (c), but the zoom corresponds to the middle gray shaded
region of (b), in which case n € [-885,-865] and m € [0.8512,0.8578].
In this spatial window Z, = 1.2. Panel (e) is also the same as (c), but
the zoom corresponds to the last gray shaded region of (b), in which
case n € [-495,-475], m € [0.7024,0.7120] and Z, = 1.1. The above
choices are in line with the expectation of slow variation of Z,. The
comparisons shown in panels (c)—(e) correspond to step 4 of Section 4.

Fig. 4 is similar to Fig. 3(b)-(e), but the time evolution is shown
and lattice location is fixed to n = —480 (which falls within the window

shown in Fig. 3(e)). Panel (a) of Fig. 4 shows a comparison of the time
evolution of the numerical simulation (blue lines) and the predicted
maximum, minimum, and mean (black curves). The leading and trailing
edges are also shown, which are the vertical black lines located at
the times ¢ = 480/s7 and r = 480/s], respectively. For t > —s7, the
solution is time periodic. The time window shown is large relative to
the frequency of oscillation on the microscopic scale, and hence the
solution appears to be a solid blue segment. However, upon zooming
into the solution, one can see the oscillatory structure, as shown in
panel (b). Once again, for the purpose of comparison with numerical
simulations, we treat Z(n,t) as a fitting parameter. The blue markers
in Fig. 4(b) correspond to the numerical DSW shown in (a) in the gray
shaded region. While the time trajectory is continuous, we only plot the
solution every Ar = 0.2 time units, which allows for easier comparison
between the theory and numerics. The time window is ¢ € [290, 300],
which for n = —480 corresponds to m € [0.959,0.970]. The gray solid
curve is the theoretical prediction. For this temporal window, we chose
Z, = 0.68 to obtain good agreement between theory and simulation.

52 Case2: 0<c<1

In terms of comparison, case 2 is very similar to case 1, with a few
differences, which we highlight here. A 2D density plot of a simulation
initialized by Eq. (2.25) with ¢ = 0.5 and N = 8000 nodes is shown
in Fig. 5(a). In the figure, color intensity corresponds to the velocity.
In the first region (where the lattice index is negative) the leading and
trailing edge of the DSW are predicted by the —s and —s;' formulae,
respectively, which are defined in Eq. (4.9).

In Fig. 5(a), a plot of —n/ss‘ (solid white line) and —n/s;r (dashed
white line) are shown, which compare very well to the leading and
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Fig. 4. (a) Zoom of temporal velocity profile of the solution shown in Fig. 3(a) at lattice site n = —480. The vertical solid lines are the theoretical predictions of the leading edges.
The curved line is the mean value prediction, and the sloped lines represent the envelope prediction of the DSW. (b) Zoom of DSW shown in (a) in the gray shaded region (blue
markers). The gray solid curve is the theoretical prediction given by —2a_s,(r) where b,(r) is defined in Eq. (2.20b). (¢) Zoom of temporal velocity profile of the solution shown
below in Fig. 5(a) at lattice site n = —480. The vertical solid lines are the theoretical predictions of the leading edges. The curved line is the mean value prediction, and the sloped
lines represent the envelope prediction of the DSW. (d) Zoom of DSW shown in (c) in the gray shaded region (blue markers). The gray solid curve is the theoretical prediction.

trailing edge of the DSW in the first region. A similar plot of —n/s;
(solid black line) and —n/ s; (dashed black line) are also shown, which
compare very well to the leading and trailing edge of the DSW in the
second region. This comparison corresponds to step 1 of Section 4.
These two regions correspond to the genus-one regions of the Whitham
equations. Unlike the simulation shown for the ¢ > 1 case, the ampli-
tude of the DSW decays to zero as the end of the first Whitham zone is
approached. Within the central region, there are small amplitude linear
waves that have amplitude that decays proportionally to t~!/3, which
can be demonstrated with the use of Fourier analysis [54]. Note that, as
usual, there is a discrepancy between the linear tails of the dispersive
shock and the predictions of Whitham theory, which is due to the fact
that one is considering a double limit in which both the wave amplitude
and the parameter used in the Whitham expansion tend to zero; see [6].

In Fig. 5(b), a zoom of the velocity profile of the DSW in the first
Whitham zone at time r = 800 is shown. The vertical solid lines are
the theoretical predictions of the leading and trailing edges located at
the lattice positions —800s3 and —SOOS;, respectively. The minimum
and maximum of the analytical prediction of the velocity are given by
Eq. (2.23) and the mean is given via (2.24). This comparison corre-
sponds to step 3 of Section 4. As in the ¢ > 1 case, these formulae are
parameterized by E|, E,, E;, E,;, whose definitions remain unchanged.
For the present 0 < ¢ < 1 case, however, the parameter m belongs in
the interval m € [0, 1]. The calculations and subsequent comparisons
are otherwise identical. We can also compare the velocity profile
itself to the theoretical prediction, see Fig. 5(c)-(d). This comparison
corresponds to step 4 of Section 4.

We can also compare the time evolution against the theory. Fig. 4(c,d)
shows this comparison, and was generated in the same way as Fig. 4(a,b),

but for ¢ = 0.5. In panel (b) the corresponding window of m is m €
[0.953,0.970] and the phase shift value is selected as Z, = 1.53.

6. Conclusions and future challenges

In the present work, we have motivated, as well as revisited the
study of shock waves in the integrable realm of the Toda lattice. We
argued that the recent development of numerous applications, such as
notably, recent studies of granular crystals and variants thereof [17,19],
the optical setting of coupled waveguides [21], or that of tunable
magnetic lattices [22] render this a timely and interesting topic of
exploration. Upon revisiting and homogenizing the notation and fun-
damental solutions of the Toda problem (including the solitonic and
periodic ones), we set up the Toda shock problem in both its DSW and
rarefaction variants for suitable discrete jump initial data. We leveraged
the most general four-parameter family of elliptic traveling waves of the
Toda lattice [31] within the setup of Whitham modulation equations
of arbitrary genus for the Toda lattice, based on the earlier key work
of [29]. We analyzed more concretely solutions of genus-zero and
genus-one, providing explicit expressions for the characteristic speeds
of the latter. In addition to illustrating the special harmonic and soliton
limits relevant to the two ends of the DSW, we showcased how to use
these elliptic solutions in conjunction with the Whitham formulation
to provide a full characterization of the DSWs and rarefaction waves of
the Toda shock problem.

We believe that this first step in revisiting this time-honored prob-
lem may be an important one. On the one hand, it suggests the
relevance of providing an analysis (from the integrable and also from
the modulation theory perspective) of a wider class of Riemann prob-
lems, rather than the arguably fundamental one examined herein. In
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Fig. 5. Same as Fig. 3, but with ¢ = 0.5. In panels (c) - (d) the corresponding windows of m are m € [0.955,0.980], m € [0.705,0.742] and m € [0.280,0.340] and the phase shift

values are Z, =2, Z, = 1.65, and Z; = 1.6, respectively.

line with earlier studies concerning traveling waves [27,28], this effort
may pave the way for exploring regimes where the Toda problem
may provide a controllably suitable approximation to experimentally
relevant settings such as granular crystals [15-17], hollow elliptic
cylinder variants thereof [19] or the recently explored tunable mag-
netic lattices [22]. It would also be interesting to use the soliton limit
of the Whitham equations to study the dynamics of solitons propagating
on a slowly varying background, as in [12,41,42]. Finally, it would
be particularly interesting to revisit other central integrable lattice
examples such as the well-known Ablowitz-Ladik problem [24] and
leverage their finite-genus solutions [55-57] in order to solve the
corresponding modulation equations [58] and similarly describe the
corresponding DSWs. This, in turn, could be important towards both
non-integrable (but physically relevant) and integrable discrete variants
of the nonlinear Schrodinger model. Such directions constitute, in our
view, an intriguing program for future studies.
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