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Call-By-Push-Value has famously subsumed both call-by-name and call-by-value by decomposing programs
along the axis of “values” versus “computations.” Here, we introduce Call-By-Unboxed-Value which further
decomposes programs along an orthogonal axis separating “atomic” versus “complex.” As the name suggests,
these two dimensions make it possible to express the representations of values as boxed or unboxed, so that
functions pass unboxed values as inputs and outputs. More importantly, Call-By-Unboxed-Value allows for
an unrestricted mixture of polymorphism and unboxed types, giving a foundation for studying compilation
techniques for polymorphism based on representation irrelevance. In this regard, we use Call-By-Unboxed-
Value to formalize representation polymorphism independently of types; for the �rst time compiling untyped
representation-polymorphic code, while nonetheless preserving types all the way to the machine.
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1 Introduction

High-level polymorphism and low-level machine representations can be like oil and water. The
most common implementation techniques avoid mixing them altogether, either specializing all
polymorphic code at compile-time (i.e., monomorphization) or forcing everything to look the
same (i.e., uniform representation). Both options have a cost: monomorphization can limit the
expressiveness of polymorphism and cause code duplication, while uniform representation can
introduce severely costly indirection due to boxing that replaces complex data with a pointer.
But there is a third option [15, 19, 47] that attempts to combine the best of both approaches by

instead using representation irrelevance to compile programs. The main idea is to still allow for
polymorphic source code to generalize over di�erent types of data that might be implemented with
representations at run-time, but only if the choice of representation has no real run-time impact
on the generated code. This technique relies on using a static type system to both statically track
the representation of each type of value, as well as to reject instances of polymorphism where the
compiled machine code would change for di�erent specializations.

One of the biggest complications with implementing representation irrelevance is that the type
system—and thus the dividing line between permitted and rejected programs—seems to depend on
some ambient notion of “the compiler.” For example, consider the polymorphic application function:

app :: (0 → 1) → 0 → 1

app 5 G = 5 G
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265:2 Paul Downen

The question is: can 0 and 1 have any representation, or must they be statically �xed to some
choice (e.g., a pointer) at compile-time? 5 is a function that is surely represented as a pointer (to a
closure), but G has the generic type 0. Thus, app’s code needs to statically �x 0’s representation
at compile-time to �nd where G is passed in. On the right-hand-side, we have an application 5 G

which will return a value of type 1, so app needs to �x 1’s representation as well to �nd where 5 G
returns its result.
But wait! We might know the compiler is always going to optimize tail calls so that the �nal

application 5 G will overwrite and reuse app′B stack space. If so, then 5 G doesn’t actually return
anything to app itself—it can’t—but instead returns directly to app’s original caller. In other words,
app’s return type 1 can have any representation sometimes, depending on whether or not our
compiler will optimize the tail call. The question of when representation is really irrelevant becomes
even more murky when we consider other, seemingly minor, variants of app:

app′ :: (0 → 1) → 0 → 1 app′ 5 = 5

app′ seems to be �ne with any 0 and 1 since all 0 → 1 values are represented as closures, making
the choice irrelevant for moving 5 around. In other words, app′ can have a more generic type than
app, even though they di�er only by a routine [-reduction. There is much left unsaid in this code.
This paper introduces a new parameter-passing paradigm, Call-By-Unboxed-Value, where pro-

grams fully spell out the details needed to unequivocally answer these kinds of questions. Instead
of relying on the intuition of seasoned compiler writers to decide when representation is relevant,
Call-By-Unboxed-Value provides a single, compiler-independent language with the motto:

If you can write it, you can run it.

In particular, Call-By-Unboxed-Value provides a stable basis for exploring the �eld of representation
irrelevance and polymorphism with the following bene�ts compared to previous work:

• It provides an unambiguous syntax for separating complex versus atomic unboxed values,
making it possible to predict when atomic values (ultimately stored in registers) will be
moved or copied or when the contents of references (ultimately stored in long-term memory)
will be read/written, without information about the compiler.

• All Call-By-Unboxed-Value programs can be directly compiled and run, as-is, without type
checking, to the bene�t of compilers with untyped intermediate languages. Instead of type
checking, the program is annotated with just enough information about representation that,
in addition to the boxed versus unboxed status, spells out where atomic values are held.

• Nevertheless, compilation of Call-By-Unboxed-Value preserves types if it happens to be
given a well-typed program, to the bene�t of compilers that work with typed intermediate
languages. This is in stark contrast with previous work [15, 19], that compiles well-typed
source code into impossible-to-type target code.

Happily, Call-By-Unboxed-Value also expresses the e�cient higher-order calling conventions
[15, 17], where function calls can pass several arguments at once to unknown functions without
checking any run-time information. For example, consider the common zipWith function:

zipWith 5 (G :GB) (~:~B) = 5 G ~ : zipWith 5 GB ~B zipWith 5 GB ~B = []

Ideally, the call 5 G ~ could be compiled as a fast call by just passing G and ~ in two registers,
unpacking 5 ’s closure, and jumping to 5 ’s code. But this calling convention would crash if 5 is
bound to a function expecting three arguments, like _G ~ I. (G +~) ∗I, or to a function expecting one
at a time, like _G. if G == 0 then(_~.~) else(_~.~/G). Call-By-Unboxed-Value’s foundation naturally
has the tools to spell out these di�erent calling conventions. In fact, the separate run-time actions
of (1) allocating a closure on a heap, (2) calling a closure, (3) delaying a function call until the
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Call-by-Unboxed-Value 265:3

function code is calculated, and (4) popping the next frame o� the stack are all expressed by separate
syntactic forms, and re�ected in the type system, giving �ne-grain control over closure allocation
and function calls that is safe across function and module boundaries.

In developing the Call-By-Unboxed-Value paradigm, we make the following contributions:

• Section 3 de�nes the Call-By-Unboxed-Value _-calculus, its syntax, type-and-kind system,
operational semantics, and equational theory.

• Section 4 presents examples using Call-By-Unboxed-Value to explicate run-time details of
functional programs. In particular, ordinary type polymorphism alone can already take
advantage of representation irrelevance without abstracting over representations.1

• Section 5 shows how to embed the well-studied Call-By-Push-Value [32] into Call-By-
Unboxed-Value, and proves that a polymorphic Call-By-Push-Value corresponds (in types
and equality) to a Call-By-Unboxed-Value encoding of uniform representation.

• Section 6 gives a low-level abstract machine where representations map to di�erent types
of registers, and the boxing and unboxing primitives map to read and write operations in a
global store. With this, we show how to compile and run (untyped) Call-By-Unboxed-Value
and prove correspondences between both their operational semantics and type systems.

2 Key Ideas: The Advantage of Being Second-Class

Avoid Li�ing at All Costs. The �rst semantic analysis of unboxed values [47] observed that theymust
be evaluated �rst before they can be passed to functions or bound to variables. Delayed arguments
are compiled as thunks—addresses to code that can generate their value on-demand—represented
by pointers. A thunk pointer cannot be stored in a �oating-point register, so even a lazy language
needs to make sure unboxed arguments are passed strictly by value.

Elegantly, the indirection cost of a lazy �oating-point number is re�ected in denotational seman-
tics: the domain of e�cient unboxed numbers must be unlifted. So for an e�cient implementation,
we need a semantics that lets us avoid lifting as much as possible, such as Call-By-Push-Value [32]
which avoids implicit lifts since they are easy to add but hard to remove. This is achieved by
separating values that already are versus computations that will do as two di�erent kinds of types:

ValueType ∋ � ::= �0 ×�1 | �0 +�1 | U� ComputationType ∋ � ::= � → � | �0 & �1 | F�
Costly lifts only happen in the explicit transitions (U� and F�) between values and computations.

This arrangement is no accident, appearing again in the Calculus of Unity [55]—an interpretation
of proof-theoretic focusing [3, 29] as pattern matching—for completely di�erent reasons. A key
step of focusing is to recognize positive versus negative types, divided like so:

PositiveType ∋ %+ ::= %+
0 ⊗ %+

1 | %+
0 ⊕ %+

1 | ´&− NegativeType ∋ &− ::= %+ → &− | &−
0 &&−

1 | ˆ%+

Interesting. The two foundations arose for di�erent reasons, but make identical divisions: value
types seem positive, and computation types seem negative. So the two are the same, right?

Disagreements onWho is First-Class. The parallel seems to line up perfectly in many ways. Value and
positive types model call-by-value whereas computation and negative types model call-by-name.
Value and positive types model data types whereas computation and negative types model things
like functions. Surprisingly, there is one glaring exception: they disagree on �rst-class status. Only
values can be named in Call-By-Push-Value. With focusing, interesting positive values are second
class: they cannot be given one name, because the program can—and must—deconstruct them.

1This is not to say there would be anything wrong with adding kind or representation polymorphism, but rather the design
of the Call-By-Unboxed-Value _-calculus seems to be able to handle the motivating examples already. If polymorphism over
kinds is desired anyway, we expect no special di�culty in adding it.
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265:4 Paul Downen

Atomic Value: � Complex Value: %+

Atomic Computation: � Complex Computation: &−

Val

F

Box

Ret
ˆ

Eval

U

Proc

Clos
´

F� = Ret(Val�) U� = Clos(Eval�) ˆ%+ = Eval(Ret %+) ´&−
= Val(Clos&−)

Fig. 1. The four kinds of types, and embeddings between them (do�ed arrows are derived from solid ones).

Our main idea is to combine these two similar systems while respecting their disagreement
about �rst-class status. Like Call-By-Push-Value, a variable always denotes an unknown value.
Like focusing, pattern matching is mandatory, and data structures cannot be named. The key to
simultaneously satisfying both constraints was already hinted at in [55]. To account for machine
primitives like numbers, the Calculus of Unity has special exceptions for “atomic” positive types
with no known structure in the language, but since their structure is unknown, they are always just
an unhelpfully generic “G .” What if we could talk about what goes on inside atomic values, too?
The result is Call-By-Unboxed-Value. It splits programs twice between two orthogonal dimen-

sions: value versus computation, and atomic versus complex. The atomic half of Call-By-Unboxed-
Value corresponds to Call-By-Push-Value, wherein values are simple to name (representing machine
primitives like numbers and pointers) and computations are ready to run (needing only a pointer to
the top of a call stack, or nothing at all). The complex half of Call-By-Unboxed-Value corresponds
to focusing and describes unboxed data structures and multi-part calling conventions. There is no
limit to how many registers an unboxed data structure can occupy, which is why pattern matching
is mandatory. Matching on a tuple (G,~, I) is the instruction for moving the three separate atoms
into the three registers named G , ~, and I. Dually, complex computations denote code that is not
ready to run without more information, such as a function that needs arguments to safely call.

“Here” Versus “There”: Why Two Dimensions Are Be�er Than One. The two-dimensional division of
programs is illustrated in �g. 1, alongwith the transition between each quadrant. Solid arrows denote
primitive operations within Call-By-Unboxed-Value; dotted arrows are derived and correspond to
ones found in Call-By-Push-Value and the Calculus of Unity. While the twofold division creates
more modes of transition, each one has a single familiar and operational signi�cance. By more
�nely decomposing the complex dotted arrows, the primitive transitions can be combined in new
ways that are familiar in low-level programs but couldn’t be explicated in either system.

The top row is concerned with values. Of course, atomic values like integers and pointers can be
stored in a larger complex data structure, signaled by Val. But to go the other way, a complex data
structure—which might bring together multiple registers and a tag to describe its shape—cannot
just be stu�ed in one register. Instead, it has to be Boxed by storing its information in memory
and then using an atomic pointer to it. Similarly, the bottom is concerned with computations. A
complex computation may need many immediate inputs in registers to run correctly, but an atomic
computation just wants something simple like a pointer to the call stack. Eval punctuates the end
of a complex computation’s input, giving a single action to evaluate. Proc boxes a complex calling
context—pushing a new frame on the stack—and runs an atomic action with the new stack. The
diagonal arrows are the only transitions between values and computations. Ret describes an atomic
computation that is ready to run, eventually returning multiple results in registers (a complex
value). Likewise, Clos describes an atomic pointer value to a closure around a complex computation.
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Call-by-Unboxed-Value 265:5

quotRem :: Nat → Nat → (Nat×Nat) -- Haskell-like, functional style
quotRem G ~ | G < ~ = (0, G)

| otherwise = let (@, A ) = quotRem (G − ~) ~ in (1 + @, A )
quotRem : Nat → Nat → F(Nat×Nat) -- Call-by-push-value
quotRem = _G._~. do1 ← G < ~;

mat�1 as { True → return (0, G)
False → doG ′ ← G − ~;

do I ← quotRem G ′ ~;
mat� I as (@, A ) → do@′ ← 1 + @;

return (@′, A ) }
quotRem : Val Nat → Val Nat → Eval(Ret(Val Nat×Val Nat)) -- Call-by-unboxed-value
quotRem = { val intG · val int~ · eval sub → doG < ~ as {

1, () → ret (val 0, valG) -- true case
0, () → do val intG ′ ← G − ~; -- false case

do (val int@, val int A ) ← quotRem (valG ′) (val~) . eval sub;
do val int@′ ← 1 + @;
ret (val@′, val A ) }}

Fig. 2. The same numeric algorithm in functional style, call-by-push-value, and call-by-unboxed-value.

In contrast, the two columns correspond to the two inspirational calculi: Call-By-Push-Value on
the left and Calculus of Unity on the right. Notice that the U and F transitions and ´ and ˆ polarity
shifts can be faithfully derived from the other ones, but not vice versa. Round trips via Val and Box
let us describe the details of pointer indirection to fully-evaluated data structures, like linked lists,
without adding laziness. Call-By-Push-Value or focusing on their own do not distinguish between
“here” and “there,” but they can when they are put together in Call-By-Unboxed-Value.

A First Taste of Call-By-Unboxed-Value. To get an initial impression of what call-by-unboxed-value
programs look like, we present an example function for simultaneously calculating the quotient and
remainder of two numbers at the same time in �g. 2. First, the function is presented in a familiar,
Haskell-like syntax. Next, we show the translation into call-by-push-value which brings out details
of its step-by-step execution. Namely, the result of each operation — like an arithmetical operator
or function call — is named in a sequence of steps annotated by the do keyword, reminiscent of
monadic do-notation, and the �nal result is given by an explicit return statement represented by the
F in the function’s type. Additionally, pattern-matching or branching is represented as a separate
mat� statement. Despite explicating these details, more still remain. Are the returned pairs (@′, A )
and (0, G) allocated on the heap? Are the function arguments passed one at a time (requiring a
closure to be allocated and consumed in each recursive loop)? These are left open-ended.
These kinds of questions are answered by the �nal call-by-unboxed-value version. Variable

bindings of the form val intG denote a named value stored in an integer-sized register (or on the
stack, if all such registers are full). The result bound by a do must be immediately matched on,
including destructuring a tuple (as in the recursive result (val int@, val int A )) or choosing a response
(as in the boolean branches for 1, () representing True and 0, () representing False). This means the
pair ret (val@′, val A ) is returned unboxed, without allocation. Additionally, applying a function
never triggers evaluation on its own; that second action is explicated by the “eval sub” operation
that evaluates a subroutine. So from its syntax, we know the call-by-unboxed quotRem will never
touch the heap, and will only push a single return pointer on the stack for each recursive call.2

2This, too, could be eliminated by rewriting the function in accumulator style so the recursive call to quotRem is the �nal
tail call. Doing so would syntactically guarantee that the function is implemented as a loop that runs in constant space.
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265:6 Paul Downen

Syntax of complex values and complex computations:

StructShape ∋ B ::= () | B0, B1 | 1, B | □, B | val□ StackShape ∋ : ::= B · : | 1 · : | □ · : | eval$
Struct ∋ ( ::= B [+ ...] Stack ∋  ::= : [+ ...]
Pa�ern ∋ ? ::= B [' G : �...] Copa�ern ∋ @ ::= : [' G : �...]

MatchCode ∋ � ::= { ? → "... } | 6 FunCode ∋ � ::= {@ → "... } | 5
Bit ∋ 1 ::= 0 | 1 Call ∋ ! ::= _� | ". enter | + . call

Syntax of atomic values and computations:

Value ∋ + ::= ' G | box ( | clos � | = | =.= | ) Rep ∋ ' ::= ref | int | �t | ty
Comp ∋ " ::= ( as� | unbox+ as� | do" as� Obs ∋ $ ::= run | sub

| ret ( | proc � | ⟨! ∥  ⟩
Syntax of types:

Type ∋ ) ::= � | � | % | &
Kind ∋ g ::= ' val | cplx val | $ comp | cplx comp

CmplxValTy ∋ % ::= G | 1 | %0 × %1 | 0 | %0 + %1 | ∃' G : �. % | Val�
AtomValTy ∋ � ::= G | Box % | Clos& | Int | Nat | Float | Typeg

CmplxCompTy ∋ & ::= G | % → & | ⊤ | &0 &&1 | ∀' G : �. & | Eval�
AtomCompTy ∋ � ::= G | Ret % | Proc& | Void

Fig. 3. The syntax of the Call-By-Unboxed-Value _-calculus.

⟨! ( ∥  ⟩ = ⟨! ∥ ( ·  ⟩ ⟨! 1 ∥  ⟩ = ⟨! ∥ 1 ·  ⟩
⟨! + ∥  ⟩ = ⟨! ∥ + ·  ⟩ !. eval$ = ⟨! ∥ eval$⟩

do? ← " ;# = do" as { ? → # } unbox? ← + ;# = unbox+ as { ? → # }

Fig. 4. Syntactic sugar for writing call stacks in functional style and single-case matching.

3 Call-By-Unboxed-Value _-Calculus

We now present the polymorphic Call-By-Unboxed-Value _-calculus: its syntax (section 3.1), op-
erational semantics (section 3.2), type system (section 3.3), and equational theory (section 3.4).
Peculiarly, functions are called with complex unboxed data structures as parameters, and yet these
very unboxed structures are second-class citizens that cannot be directly named. Reconciling these
two seemingly contrary design decisions is the key ingredient that makes this calling convention
useful for combining both polymorphism with multiple kinds of atomic value representations.

3.1 Syntax

The Call-By-Unboxed-Value _-calculus’s syntax is given in �g. 3. Based on the _-calculus, it is not
as perfectly symmetric as the Calculus of Unity [55]; nevertheless, we aim to highlight its implicit
dualities that and eliminate unnecessary redundancies whenever possible. To clarify examples,
we use syntactic sugar to write structures, stacks, and (co)patterns inline, in the usual way. For
example, writing (1, val intG, val 3.14) instead of (1, val□, val□) [intG, 3.14]. We also use syntactic
sugar given in �g. 4 to write curried function applications in the more familiar _-calculus style, or
to list out a nested chain of single-case, pattern-matching bindings as a sequence of steps like �g. 2.
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Complex Structures (B, (, ?,�). Every complex data structure has a particular shape that describes
how it was constructed out of atomic parts. As such, a structure shape B is a context where
constructors surround multiple holes □ where atomic values can be inserted. Many of these
constructors are familiar: an empty tuple (), a pair (B0, B1), an injection (1, B) into the sum type
%0 + %1 where 1 is a 0 or 1 bit. We also have the base case val□ of type Val� where an atomic value
(of type �) is inserted, as well as the modular (i.e., existential ∃) package □, B of type ∃' G : �. % in
which an atomic value (importantly, a type) is named G and can be mentioned in B’s type.

Actual concrete structures ( are introduced by �lling all □’s with real values, written as B [+ ...],
and are eliminated by pattern matching. Patterns ? are formed by �lling a shape with distinct
variables B [' G : �...] annotated by their representations and types; we may omit these annotations
when they are clear from context or unneeded. Pattern-matching code � is a set of alternatives
{ ? → "... } sending patterns to an atomic computation" , or else some primitive operation 6.

Complex Call Stacks (:,  , @, � ). Every complex computation must be executed in a context with a
very speci�c shape, taking the form of a call stack. Like structures, complex call stack shapes :
are multi-holed contexts where each hole □ surrounds an atomic value. Possible call stack shapes
include an unboxed function call B · : , in which B is the argument’s shape and : speci�es the rest
of the call, and a projection 1 · : out of a binary product &0 &&1 in which 1 says which option :

calls. Polymorphic (i.e., universal) specialization □ · : of type ∀' G : �. & names the value (e.g., a
type) placed in the □ as G in the type of : . eval$ marks a �nished calling context that can now be
evaluated. The annotation $ describes the context of evaluation: will it run as a sub-computation
of the larger program (sub) and return to some caller, or is it “naked” and running with no larger
context (run). Like structures, call stacks  are built by �lling the stack shapes with values, written
: [+ ...], and used by copattern matching [1]. Copatterns @ �ll a stack shape with distinct variables
: [' G : �...]. Copattern-matching code � , i.e., function code, is a set of alternatives {@ → "... }
sending copatterns to atomic computations" , or some primitive function 5 .

Atomic Values (+ , '). Atomic values have simple enough run-time representations to store directly
in a register, like a number. Each atomic value + has a self-evident representation ', spelling out
the low-level details needed to implement operations on values. Both signed (Int) and unsigned
(Nat) whole numbers = are represented as int, and a �oating-point number =.= is represented as
�t. Some values are represented as references (ref) into long-term storage, including the boxed
complex structures (box ( of type Box % ) or closure around function code (clos � of type Clos&).

We also admit types ) as atomic to be used as parameters for polymorphism ∀ tyG : Typeg . & à
la System F [22, 23] and modular packages ∃ tyG : Typeg . %—this is a syntactic convenience used in
practice by compilers like GHC to easily include types in the list of function parameters, instead
of : [) ...,+ ...]. But to be sure, these type parameters should still be erasable because they never
impact run-time behavior (see section 6.4). Thus, we give type values the representation ty, with
the understanding that they occupy “phantom” registers that don’t really exist in a real machine.

The only atomic value left is a variable, which reads a value already stored in a register. Variables
are the only form of value whose representation is not immediately obvious: G could be assigned
a reference or a number. Therefore, we annotate variable access with its representation as ' G

(omitted when clear from context), to distinguish di�erent instructions like ref G for reading an
address register named G or �tG for reading a �oating-point register coincidentally named G , too.

Atomic Computations (",$). The last group of syntax involves atomic computations that can just
run on their own accord without referencing their context. The computation ( as� matches the
structure ( against the patterns of � . But notice how trivial this is: ( must already be a fully-built
structure made with known constructors that have to exactly match against the patterns in � .
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265:8 Paul Downen

Operational reduction rules " ↦→ " ′

(V Box) unbox box ( as� ↦→ ( as� (V Clos) ⟨clos � . call ∥ ⟩ ↦→ ⟨_� ∥  ⟩
(V Ret) do ret( as� ↦→ ( as� (V Proc) ⟨proc � . enter ∥ ⟩ ↦→ ⟨_� ∥  ⟩
(Prim6) ( as6 ↦→ 6(() (Prim5 ) ⟨_5 ∥  ⟩ ↦→ 5 ( )

(V as) B′ [+8 8∈�...] as { B ['B8 GB8 : �B8
8∈�...] → "B

B∈%... } ↦→ "B′ [+8/('B′8 GB′8 ) 8∈�...] (B′ ∈ %)
(V_) ⟨_ { : [':8 G:8 : �:8

8∈�...] → ":
:∈&... } ∥ : ′ [+8 8∈�...]⟩ ↦→ ": ′ [+8/(': ′8 G: ′8 )8∈�...] (: ′ ∈ &)

Evaluation contexts (�) and terminal forms:

EvalCxt ∋ � ::= □ | do� as� | ⟨�. enter ∥ ⟩
" ↦→ "

� ["] ↦→ � [" ′]
6(() = terminal

( as6 terminal

5 ( ) = terminal

� [⟨_5 ∥  ⟩] terminal

Fig. 5. The Call-By-Unboxed-Value operational semantics.

In e�ect, every ( as� expression can either be statically resolved now, as-is, or it never will be,
independent of its context. For example, ( might refer to some free variables, but their values will
never be relevant for deciding the branch in ( as� . Instead, loading the contents of a boxed data
structure is accomplished exclusively by unbox+ as� , which immediately deconstructs its shape.

We still need to sequence sub-computations and remember the results they return. Call-By-Push-
Value does this with a doG ← " ;" ′ computation which runs " until it returns a result named
G before continuing to " ′. Call-by-Unboxed-Value has a similar atomic computation do" as�

with one key di�erence: the sub-computation returns" as an unboxed result that is matched in
place. The unboxed ( returned by ret ( is a second-class entity that cannot be named directly, since
it can contain multiple values with many di�erent shapes. Therefore, a do-statement is forced to
immediately pattern-match on the result to name the atomic values and decide how to continue.
Finally, we need a way to operate with function code. A fully applied function call can be

written as ⟨! ∥  ⟩ where  is the complete call stack and ! describes how the call is initiated,
either: (1) directly invoking known code as _� , (2) calling a �rst-class closure object as + . call, or
(3) running a second-class procedure as proc � . Procedures are useful when a function is being used
imminently (so no closure is allocated), but its code is not yet known and needs to be computed.
To do so,  is put aside into long-term storage as a frame on the call stack until the computation
�nishes, yielding proc � which pops that frame o� the stack and continues as � .

3.2 Operational Semantics

The Call-By-Unboxed-Value operational semantics is given in �g. 5, containing only eight reduction
rules, many similar to one another. V Box and V Ret handle unboxing and returning, respectively;
both dissolve into a known pattern match ( as� . Likewise, V Clos and V Proc handle calling a
closure and entering a computed sub-procedure, respectively, via a known function call ⟨_� ∥  ⟩.
All that remains is to reduce these statically-known forms of (co)pattern matching. With the

shape of a complex structure and the matching code at hand, V as just looks up the chosen shape
among the alternatives and substitutes the contained atomic values for the variables bound by the
matching pattern, continuing as the associated computation. V_ works in much the same way by
comparing stack shapes to choose a branch and substituting atomic values for local variables to run
the associated response. Note that substitution is only de�ned for values and variables of the same
representation. For example," [box (/ref G] is de�ned, as is" [ref ~/ref G], but" [3.14/ref G] and
" [�t~/ref G] are unde�ned, since �oating-point numbers are never stored in address registers.
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Primitive Operations. The last two reduction rules cover the behavior of primitive operations 5 and
6, which are meant to express instructions of the machine for built-in atomic types like int and �t.
Each primitive operation needs to be given a speci�cation for what it does on structures, written
6((), or stacks, written 5 ( ). Here are some examples of primitive arithmetic:

eqint#(val= · val= · eval sub) = ret 1, ()
eqint#(val= · val=′ · eval sub) = ret 0, () (= ≠ =′)

sqrt#(val=.= · eval sub) = ret val
√
=.=

where the equality check eqint# encodes the boolean result as an unboxed 1 + 1. Some cases of a
primitive operation might have no result, like division by zero, and must safely exit the program:

divmod#(val= · val=′ · eval sub) = ret val3, val A (3 × =′ + A = =, =′ ≠ 0)
divmod#(val= · val 0 · eval sub) = terminal

We expect some primitive applications, like divmod#(val 12 · val 0 · eval sub), will fail to return any
result; these are called terminal. In other cases, this operation simultaneously returns two unboxed
integers at once—the dividend and the remainder—if there is an answer.

A terminal operation—which is terminal on every possible application—can be used intentionally
to model the �nal state where the program exits normally (end#) or abnormally (error#), like so:

end#(val=) = terminal error#(val= · � ·  ) = terminal

Note that end# takes a complex value, so it represents primitive matching code that can be triggered
in a program do" as end#. end# is just expecting to receive an integer (the exit code), and stops
the program when there is nothing left to do. In contrast, error# is meant to be a polymorphic
function (from the fact that it takes a type parameter �) that can be used anywhere, which is useful
for (safely) aborting a program when some unexpected condition occurs.

Primitive Parametricity. Primitive operations could be de�ned arbitrarily. To ensure they are reason-
able in some sense and compatible with the semantics, we assume they are parametric in both types
and references: they can take types and references as parameters, but cannot read or write their
contents or directly compare addresses. Formally, we express parametricity as equations letting us
abstract out the speci�c contents of any type or reference passed to a primitive operation.

Assumption 3.1 (Primitive Parametricity). All primitive operations must satisfy these equalities:

6(( [) /tyG]) = 6(() [) /tyG] 5 ( [) /tyG]) = 5 ( ) [) /tyG]
6(( [+ /ref G]) = 6(() [+ /ref G] 5 ( [+ /ref G]) = 5 ( ) [+ /ref G]

As a consequence, note that these equations imply that pointer equality is forbidden as a primitive
operation. Suppose we had such an operation de�ned as:

eq#(val ref G · val ref G · eval sub) = ret 1, ()
eq#(val ref G · val ref ~ · eval sub) = ret 0, () (G ≠ ~)

Then the parametricity of references forces the following equations for an arbitrary reference value
+ (where : = val ref □ · val ref □ · eval sub):
eq#(: [+ ,+ ]) = eq#(: [ref G, ref G]) [+ /ref G] = (ret 1, ()) [+ /ref G] = ret 1, ()
eq#(: [+ ,+ ]) = eq#(: [ref G, ref ~]) [+ /ref G] [+ /ref ~] = (ret 0, ()) [+ /ref G] [+ /ref ~] = ret 0, ()
So pointer equality operations like eq# have to be barred since they would force invalid equivalences
like ret 1, () = ret 0, (). Likewise, type equality is forbidden as a primitive operation.
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ValueEnv ∋ Γ,Δ ::= • | Γ, ' G : � CompEnv ∋ Φ ::= � : $ comp

Base types ) : g

Int : int val Nat : int val Float : �t val Typeg : ty val

1 : cplx val 0 : cplx val ⊤ : cplx comp Void : run comp

Kinds of types Γ ⊢ ) : g

Γ, tyG : Typeg, Γ′ ⊢ G : g
TyVar ) : g

Γ ⊢ ) : g
BaseTy

Γ ⊢ % : cplx val

Γ ⊢ Box % : ref val
Box)

Γ ⊢ & : cplx comp

Γ ⊢ Clos& : ref val
Clos)

Γ ⊢ % : cplx val

Γ ⊢ Ret % : sub comp
Ret)

Γ ⊢ & : cplx comp

Γ ⊢ Proc& : sub comp
Proc)

Γ ⊢ %0 : cplx val Γ ⊢ %1 : cplx val
Γ ⊢ %0 × %1 : cplx val

×)
Γ ⊢ %0 : cplx val Γ ⊢ %1 : cplx val

Γ ⊢ %0 + %1 : cplx val
+)

Γ ⊢ � : ' val Γ, ' G : � ⊢ % : cplx val

Γ ⊢ ∃' G : �. % : cplx val
∃) Γ ⊢ � : ' val

Γ ⊢ Val� : cplx val
Val)

Γ ⊢ % : cplx val Γ ⊢ & : cplx comp

Γ ⊢ % → & : cplx comp
→)

Γ ⊢ &0 : cplx comp Γ ⊢ &1 : cplx comp

Γ ⊢ &0 &&1 : cplx comp
&)

Γ ⊢ � : ' val Γ, ' G : � ⊢ & : cplx comp

Γ ⊢ ∀' G : �. & : cplx comp
∀)

Γ ⊢ � : $ comp

Γ ⊢ eval� : cplx comp
Eval)

Fig. 6. The kinds of types and typing environments.

3.3 Type System

The Call-By-Unboxed-Value type system is given in �gs. 6 to 8. The kinds of types are classi�ed
in �g. 6—all % : cplx val and & : cplx comp types are just complex with no further speci�cation,
but atomic value types � are further separated by their representation ', written � : ' val, and
atomic computation types � are separated by the observational context $ , written � : $ comp. For
example, both Int and Nat share the kind int val, since their values are represented as (respectively,
signed or unsigned) integers, whereas Box % and Clos& share the kind ref val since their values are
references. For atomic computations, both Ret % and Proc& are types of sub-computations, written
sub comp, since they both need to interact with the top of the stack (either to return some value(s)
to an evaluation context or to pop the stack frame o� and run a procedure). The sole run comp

type is void, which classi�es computations that need no context because they never return.
The types of values are classi�ed in �g. 7. One set of rules involves introducing various shapes

of structures, written Γ | Δ ⊢ B : % ; where Δ lists the types of atomic values that �t in B’s holes, % is
the type of structure built when those holes are �lled, and Γ keeps track of any free type variables
in Δ or % . Since the holes of B are only distinguished by position, the order of Δ matters. Individual
atomic values can only be well-typed, written Γ ⊢ + : � : ' val, when their type has a known
representation '. Note that the premise of the Match rule must check for all the possible patterns
(i.e., all the possible shapes, up to renaming the holes) of type % to ensure that every case is covered.
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Structure shapes Γ | Δ ⊢ B : % ;

Γ | • ⊢ () : 1 ; 1�
Γ | Δ0 ⊢ B0 : %0 ; Γ | Δ1 ⊢ B1 : %1 ;

Γ | Δ0,Δ1 ⊢ B0, B1 : %0 × %1 ;
×�

Γ | Δ ⊢ B0 : %0 ;
Γ | Δ ⊢ 0, B0 : %0 + %1 ;

+�0
Γ | Δ ⊢ B1 : %1 ;

Γ | Δ ⊢ 1, B1 : %0 + %1 ;
+�1 No 0� rules

Γ, ' G : � | Δ ⊢ B : % ;

Γ | (' G : �,Δ) ⊢ (□, B) : (∃' G : �. %) ; ∃�
Γ ⊢ � : ' val

Γ | ' G : � ⊢ val□ : Val� ;
Val �

Structures Γ ⊢ ( : % , patterns Γ | Δ ⊢ ? : % ; , and pattern match Γ ; � : % ⊢ Φ

Γ | Δ ⊢ B : % ; Γ ⊢ +8 8∈�... : Δ
Γ ⊢ B [+8 8∈�...] : %

Struct
Γ | Δ ⊢ B : % ;

Γ | Δ ⊢ B [Δ] : % ;
Pat

∀(Γ | Δ? ⊢ ? : % ;). Γ,Δ? ⊢ "? : Φ

Γ ; { ? → "?
?∈%... } : % ⊢ Φ Match

6 : %

Γ ; 6 : % ⊢ void : run comp
PrimMatch

Atomic values Γ ⊢ + : � : ' val

Γ, ' G : �, Γ′ ⊢ ' G : � : ' val
+0A

Γ ⊢ =.= : Float : �t val
Float �

Γ ⊢ = : Int : int val
Int �

= ≥ 0

Γ ⊢ = : Nat : int val
Nat

Γ ⊢ ) : g
Γ ⊢ ) : Typeg : ty val

Type�

Γ ⊢ ( : %
Γ ⊢ box ( : Box % : ref val

Box�
Γ ⊢ � : & ;

Γ ⊢ clos � : Clos& : ref val
Clos�

Value sequences Γ ⊢ + ... : Δ

Γ ⊢ • : •
Γ ⊢ + : � : ' val Γ ⊢ + ′ ... : Δ[+ /' G]

Γ ⊢ + ,+ ′ ... : (' G : �),Δ

Fig. 7. Types of complex and atomic values.

The types of computations are classi�ed in �g. 8. We have rules for introducing various shapes
of stacks, written Γ | Δ ; : : & ⊢ Φ, where Δ lists the types of atomic values that �t in :’s holes, &
is the type of complex computation the stack can call to produce an atomic computation Φ, and Γ

keeps track of free type variables in Δ, & , or Φ. We follow Gentzen’s tradition [20] and write : : &

to the left of the ⊢, similar to [11, 53], since these rules correspond to the sequent calculus’ left
rules. As before, CoMatch requires covering all possible copatterns of type& . Atomic computations,
Γ ⊢ " : Φ, can only be well-typed when we statically know how to observe them. For certain
atomic computations, like ret ( : Ret % : sub comp and proc � : Proc& : sub comp, this is �xed to
sub, but the block forms like do and unbox could have any type of result with any observation.

Aside 3.2. Every complex value type % classi�es a �nite number (zero or more) of possible
structure shapes B; likewise & classi�es a �nite number of stack shapes : . As such, the number of
premises to the Match and CoMatch rules can vary but is always �nite. Moreover, polymorphism
in % or & can force their set of shapes to be zero if a generic type variable is seen before reaching
something atomic. For example, Val Float×Val Int describes only the shape (val□, val□) but ∃ ty0 :

Type cplx val . Val Float×0 describes no shapes, since a generic ty0 : cplx val has no known pat-
terns. Some polymorphism—both atomic and complex—allows for pattern-matching, however. For
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Stack shapes Γ | Δ ; : : & ⊢ Φ
Γ | Δ ⊢ B : % Γ | Δ′ ; : : & ⊢ Φ
Γ | Δ,Δ′ ; B · : : % → & ⊢ Φ →!

Γ | Δ ; :0 : &0 ⊢ Φ
Γ | Δ ; 0 · :0 : &0 &&1 ⊢ Φ

&!0
Γ | Δ ; :1 : &1 ⊢ Φ

Γ | Δ ; 1 · :1 : &0 &&1 ⊢ Φ
&!1 No ⊤! rules

Γ, ' G : � | Δ ; : : & ⊢ Φ
Γ | (' G : �,Δ) ; (□ · :) : (∀' G : �. &) ⊢ Φ ∀!

Γ ⊢ � : $ comp

Γ | • ; eval$ : Eval� ⊢ � : $ comp
Eval!

Stacks Γ |  : & ⊢ Φ , copatterns Γ | Δ ; @ : & ⊢ Φ , and function de�nitions Γ ⊢ � : & ;

Γ | Δ ; : : & ⊢ Φ Γ ⊢ + ... : Δ

Γ | : [+ ...] : & ⊢ Φ Stack
Γ | Δ ; : : & ⊢ Φ

Γ | Δ ; : [Δ] : & ⊢ Φ CoPat

∀(Γ | Δ@ ; @ : & ⊢ Φ@). Γ,Δ@ ⊢ "@ : Φ@

Γ ⊢ {@ → "@
@∈&... } : & ;

CoMatch
5 : &

Γ ⊢ 5 : & ;
PrimFun

Complex computation Γ ⊢ ! : &

Γ ⊢ � : & ;

Γ ⊢ _� : &

Γ ⊢ + : Clos& : ref val

Γ ⊢ + . call : &
Clos�

Γ ⊢ " : Proc& : sub comp

Γ ⊢ ". enter : &
Proc�

Atomic computations Γ ⊢ " : Φ

Γ ⊢ ( : %
Γ ⊢ ret ( : Ret % : sub comp

Ret �
Γ ⊢ " : Ret % : sub comp Γ ; � : % ⊢ Φ

Γ ⊢ do" as� : Φ
Ret�

Γ ⊢ ( : % Γ ; � : % ⊢ Φ
Γ ⊢ ( as� : Φ

StructCut
Γ ⊢ + : Box % : ref val Γ ; � : % ⊢ Φ

Γ ⊢ unbox+ as� : Φ
Box�

Γ ⊢ ! : & Γ |  : & ⊢ Φ
Γ ⊢ ⟨! ∥  ⟩ : Φ StackCut

Γ ⊢ � : & ;

Γ ⊢ proc � : Proc& : sub comp
Proc �

Fig. 8. Types of complex and atomic computations.

example, ∃ ty0 : Type ref val . Val Float×Val0 and ∃ ty0 : Type cplx val . Val Float×Val(Box0)
both describe the same shape (□, val□, val□). The same scenario occurs in stack shapes, where
Val Float → Eval Void describes (val□ · eval run), both ∀ ty0 : Type sub comp . Val Float → Eval0

and ∀ ty0 : Type cplx comp . Val Float → Eval(Proc0) describe (□ · val□ · eval sub), but ∀ ty0 :

Type cplx comp . Val Float → 0 describes no shapes. The second-class status of complex structures
and call stacks automatically enforces the ad-hoc monomorphism restrictions imposed by [15, 19].

Aside 3.3. Note that the typing rules for ∃� , ∀!, and for value sequences + ,+ ′ : (' G : �),Δ
make it appear that types could depend on any kind of atomic value. However, in reality, only
meaningful dependencies are on ty-represented values — standing in for a type — which can be
accessed via the TyVar rule. There are no other rules in �g. 6 that allow the free variables of other
representations (int, �t, etc.) to actually appear in well-formed types. Vice versa, the only allowed
use of a ty-value is as a parameter to ∀ tyG : Typeg .& or ∃ tyG : Typeg .% ; there are no other
operations on Typeg values. As such, we could restrict ∀ and ∃ to exactly these special cases, and
limit the appearance of types only to parameters of stacks or structures, and get a syntax that more
closely resembles System F [22] — a familiar basis for typed intermediate languages — without any
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([ Proc) proc {@ → ⟨". enter ∥@⟩ @∈&... } = " (" : Proc& �+ (") ∩ �+ (@...) = ∅)
([ Clos) clos {@ → ⟨+ . call ∥@⟩ @∈&... } = + (+ : Clos& �+ (+ ) ∩ �+ (@...) = ∅)
([ Box) unbox+ as { ? → " [box?/G]?∈%... } = " [+ /G] (+ : Box % �+ (") ∩ �+ (?...) = ∅)
([ Ret) do" as { ? → � [ret?]?∈%... } = � ["] (" : Ret % �+ (�) ∩ �+ (?...) = ∅)

Fig. 9. Extensional [ axioms of the typed equational theory.

change of expressiveness. We avoid doing so because the extra restrictions further complicate the
grammar of syntax without providing any extra bene�ts that cannot already be inferred as-is.

Type Safety. The only thing remaining is types for primitive operations. As these are de�ned outside
of the calculus itself, we use an abstract notion to classify when they can be safely assigned a type.

Assumption 3.4 (Primitive Safety). 6 : % implies that Γ ⊢ 6(() : void : run comp or 6(() terminal

for every Γ ⊢ ( : % such that Γ binds only ref or ty variables. Likewise, 5 : & implies that
Γ ⊢ 5 ( ) : Φ or 5 ( ) terminal for every Γ |  : & ⊢ Φ such that Γ binds only ref or ty variables.

For example, some primitive operations de�ned in section 3.2 can be safely assigned these types:

eqint# : Val Int → Val Int → Eval(Ret(1 + 1))
divmod# : Val Int → Val Int → Eval(Ret(Val Int×Val Int))

error# : Val Int → ∀ ty0 : Type cplx comp . 0

In error#’s type, after receiving an Int error code, it proceeds as any type of complex computation.
That means error# can be asked to return any complex result by instantiating 0 = Eval(Ret1) for
an arbitrary 1 : Type cplx val. We can also instantiate 0 to a function (% → &) or product (& && ′)
in case we need to signal an error during a complex computation.

Assuming all primitive operations are safe, the Call-By-Unboxed-Value _-calculus is type safe.

Lemma 3.5 (Progress). If • ⊢ " : void : run comp, then either" ↦→ " ′ or" terminal.

Lemma 3.6 (Preservation). If Γ ⊢ " : � : $ comp and" ↦→ " ′ then Γ ⊢ " ′ : � : $ comp.

3.4 Equational Theory

If we want to reason extensionally about program equality—based only on their input-output
behavior—then we need some additional rules stating that taking things apart and putting them
back together is unobservable. We only need four rules, written as familiar [-style axioms of the
_-calculus, given in �g. 9. With them, the Call-By-Unboxed-Value equational theory is de�ned as
the re�exive, transitive, symmetric, and compatible closure of these V and [ rules (�gs. 5 and 9).
Although we only list four extensional [-axioms, other familiar properties are derivable from

them. The do identity [ axiom and commuting conversions are both derivable:

([ Ret�3 ) do" as { ? → ret? ?∈%... } = "

(22 Ret) � [do" as { ? → " ′?∈%... }] = do" as { ? → � [" ′]?∈%... }

[ Ret�3 is just a special case of [ Ret, and � [do□ { ? → " ′?∈%... }] is another evaluation context, so

� [do" as { ? → " ′?∈%... }] =[ Ret do" as { ? → � [do ret? as { ? → " ′?∈%... }]?∈%... }
=V Ret do" as { ? → � [" ′]?∈%... }
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4 Examples of Representation Irrelevance in Call-By-Unboxed-Value

We now turn to some examples of writing some simple polymorphic code into Call-By-Unboxed-
Value, both to get familiar with its di�erences to high-level functional code, as well as to explore
ways in which it can already express the representation-polymorphic code of [15, 19] without the
need to fully characterize complex representations or to abstract over them.

The Humble Identity Function. Let’s start with the simplest possible example: the polymorphic
identity function: id G = G . It is no surprise that this function can’t really be polymorphic over
di�erent representations of G ; eventually, its machine code will hard-wire details about moving G
around. For example, here are two hard-wired choices for �xing 0’s representation:

idFlt : Val Float → Eval(Ret(Val Float))
idFlt = { val �tG : Float · eval sub → ret val �tG }
idIntFlt : ∀ ty0 : Type int val .Val0 × Val Float → Eval(Ret(Val0 × Val Float)))
idIntFlt = { ty0 : Type int val ·(val intG : 0, val �t~ : Float) · eval sub → ret(val intG, val �t~) }

so that calling ⟨_idFlt ∥ val 3.14 · eval sub⟩ successfully matches the copattern, which computes
to ret val 3.14, but ⟨_idFlt ∥ (val 5, val 3.14) · eval sub⟩ is intuitively not OK, and this intuition is
supported by the fact that the copattern does not match causing the computation to get stuck here.
Likewise, the second specialization can be passed an unboxed pair withNat ·(val 2, val 1.41)·eval sub,
since Nat is represented by int, but a call stack with a single �oating-point value doesn’t match.

However, trying to write a fully general function of type ∀ ty0 : Type cplx val .0 → Eval(Ret0)
would fail—not from some arbitrary restriction, but simply because we don’t know any patterns of
a generic ty0 : cplx val; it’s not an atomic value so we cannot name it as valG , and the type-speci�c
rules don’t apply. Instead, the most general-purpose identity function takes an atomic reference:

idRef : ∀ ty0 : Type ref val .Val0 → Eval(Ret(Val0))
idRef = { ty0 : Type ref val · val ref G : 0 · eval sub → ret val ref G }

idRef can take all kinds of values at the usual cost of indirection. For example, idRef can be given
the argument box(val−4), box(val 3.14), or box(val 2, val 1.41) (by instantiating 0 to BoxVal Int,
BoxVal Float, and Box(Val Nat×Val Float), respectively). We can also pass closures around code
to idRef , like clos idRef itself, since a Clos(. . . ) is also an atomic reference value.
The fact that we can pass closures to idRef means that it already can be used for call-by-name

application in a way: given a delayed argument clos { . . . } : Clos(Eval(Ret(Val Int))) that will
eventually return an integer, it can be passed to idRef and it will be returned back unevaluated.
However, as is painfully obvious from the type, there is a lot of costly indirection to this calling
convention: after the caller passes the delayed argument to idRef , it will wait for idRef to return a
closure that the caller can then evaluate and then wait again for the real answer. Yikes!

It would be better to cut down on all the back and forth. Even lazy languages evaluate id G only
when the result G is needed. So id might as well do the evaluation itself, like so:

idEval : ∀ ty0 : Type sub comp .Val(Clos(Eval0)) → Eval0

idEval = { ty0 : Type sub comp · val ref G : Clos(Eval0) · eval sub → ⟨ref G . call ∥ eval sub⟩ }

Notice the di�erent type of idEval: its parameter G is a closure around a subroutine that can be
evaluated directly with no extra input, of type 0 : sub comp . For example, 0 = Ret(Val Int) means
the closure returns an integer, and 0 = Ret(Val Int×Val Float) means it returns an unboxed pair.
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Unboxed Sum Fusion. Next, let’s consider some unboxed sum types to see how they behave when
combined together or with other unboxed types. For example, to translate the boolean and function:

and TrueG = G and FalseG = False

we can use the usual encoding of booleans as Bool = 1 + 1, where True = 1, () and False = 0, ().
When we try to rewrite this de�nition of and in Call-By-Unboxed-Value, we cannot just name
the second boolean parameter G , because G is not a pattern of 1 + 1. Instead, it must elaborate the
possible shapes that G might be and replace them for G on both sides,3 like so:

and : Bool → Bool → Eval(Ret Bool)
and = {1, () · 1, () · eval sub → ret 1, (); 0, () · 1, () · eval sub → ret 0, ();

1, () · 0, () · eval sub → ret 0, (); 0, () · 0, () · eval sub → ret 0, (); }
Of course, there are four possible options, enumerated by the four di�erent stack shapes that contain
no atomic values. We might ask how this information might be represented in a real machine, and
what other types might have the same run-time representation. For example, it’s correct to expect
that rewriting and to have the type (Bool×Bool) → Eval(Ret Bool) rearranges the parentheses
slightly, but essentially corresponds to the same low-level code. What may be more surprising is
that merging the two booleans together into another sum type Bool+Bool, or even folding the
choice of function arguments into one big product has essentially no change at run-time. Here are
two other versions of and (where we use the shorthand ˆ% = Eval(Ret %) from �g. 1):

and′ : (Bool+Bool) → ˆBool

and′ = {1, 1, () · eval sub → ret 1, ();
1, 0, () · eval sub → ret 0, ();
0, 1, () · eval sub → ret 0, ();
0, 0, () · eval sub → ret 0, (); }

and′′ : (ˆBool) & (ˆBool) & (ˆBool) & (ˆBool)
and′′ = {1 · 1 · eval sub → ret 1, ();

1 · 0 · eval sub → ret 0, ();
0 · 1 · eval sub → ret 0, ();
0 · 0 · eval sub → ret 0, (); }

All three versions of and have equivalent run-time calling conventions, and are implemented in
the exact same way: a single switch statement over the four possible options.
Of course, this implementation won’t do if we want to interpret and non-strictly; we should

take care that the second argument is never evaluated if it isn’t needed in the answer. This can be
done by passing delayed boolean-generating closures of type ´ˆBool (where we use the shorthand
´& = Val(Clos&) from �g. 1) as is usual in similar mixed evaluation order calculi [32, 56], like so:

andCBN : ´ˆBool → ´ˆBool → ˆBool

andCBN = {val ref ~ : Clos ˆBool · val ref G : Clos ˆBool · eval sub →
do~. call . eval sub as {1, () → ref G . call . eval sub;

0, () → ret 0, (); }
where we now use familiar functional-style application from �g. 4. Here, the di�erent boolean
options can’t be fused: they haven’t been evaluated yet, and pattern-matchingmust stop at closures.
This fusion into a single complex (co)pattern is not a special for simple enumerations. Any

unboxed sum containing any amount of atomic values are all fused into a single shape. For example,

maybeAdd Nothing ~ = ~ maybeAdd (JustG) ~ = G + ~
is translated into Call-By-Unboxed-Value (using a primitive add# : Val Nat → Val Nat → ˆNat) as:

maybeAdd : (1 + Val Nat) → Val Nat → ˆNat

maybeAdd = {(0, ()) · val int~ · eval sub → ret val int~;

(1, val intG) · val int~ · eval sub → _add# (val intG) (val int~). eval sub; }
3Although we can alleviate much of this burden through some additional syntactic sugar. See appendix A for how to do so.
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Now, regrouping the parentheses changes the type of maybeAdd, but does not a�ect where infor-
mation is stored or how it will be moved around. That means that the second argument val int~
might as well be part of the �rst argument, as in

maybeAdd′ : Val Nat+(Val Nat×Val Nat) → ˆNat

maybeAdd′ = {(0, val int~) · eval sub → ret val int~;

(1, (val intG, val int~)) · eval sub → _add# (val intG) (val int~). eval sub; }

or the one complex function might as well be divided into a product of two simpler ones, as in

maybeAdd′′ : (Val Nat → ˆNat) & (Val Nat → Val Nat → ˆNat)
maybeAdd′′ = {0 · val int~ · eval sub → ret val int~

1 · val intG · val int~ · eval sub; → _add# (val intG) (val int~). eval sub; }

All three maybeAdd functions correspond to equivalent run-time code: a binary switch that loads
one or two numbers into registers after deciding whether to add or not.

If wewere unhappywith fusing the two arguments, we could forcibly separate them by boxing the
�rst one, asmaybeAdd : Val(Box(1+Val Nat)) → Val Nat → ˆNat; this passes the �rst argument in
a box, but otherwise it has the same evaluation order (both arguments must still be computed before
maybeAdd is called). The non-strict version, of typemaybeAdd : ´ˆ(1+Val Nat) → ´ˆNat → ˆNat,
naturally has its arguments separated into two heap-allocated closures.

Higher-Order Calling Conventions. Now, we’ll see how the four di�erent kinds of types give greater
precision over calling conventions for higher-order functions. The most basic one, app 5 G = 5 G ,
translated to Call-By-Unboxed-Value becomes:

app : ∀ ty0 : Type ref val .∀ ty1 : Type sub comp . ´(Val0 → Eval1) → Val0 → Eval1

app = {ty0 · ty1 · val ref 5 · val ref G · eval sub → ⟨5 . call ∥ val ref G · eval sub⟩}

Here, we must pass the function and its argument to app so we need to know their representations
to even write the function code: a closure 5 is always a reference, but G : 0 might be anything, so we
pick 0 : Type ref val to specify it is a reference, too. We need to know how to call 5 , so we assume
that 5 can be evaluated as a sub-routine after being given exactly one argument (a reference); this
requires 1 to be an atomic sub comp. Even still, we have the freedom to instantiate 1 to Ret(Val Int)
to return just one result or Ret(Val Float×Val Nat×Val Clos&) to return an unboxed triple; that
complex representation is irrelevant to app’s code. But maybe we can be even more generic. Recall
that app can be [-reduced to app′ 5 = 5 , which seems not to manipulate the second argument at
all. In fact, this de�nition is the same as the identity function, which we can reuse as

app′ : ∀0 : Type cplx val .∀1 : Type cplx comp . ´(0 → 1) → ˆ(Clos(0 → 1))
app′ = {ty0 · ty1 · val 5 : Clos(0 → 1) · eval sub → _idRef (Clos(0 → 1)) 5 . eval sub}

This time, 0 and 1 can be any complex types; they are never relevant to (co)pattern matching.
If we want to pass more than one argument at a time in a higher-order call, like dup 5 G = 5 G G ,

it can be translated to Call-By-Unboxed-Value as

dup : ∀ ty0 : Type ref val .∀ ty1 : Type sub comp . ´(Val0 → Val0 → Eval1) → Val0 → Eval1

dup = {ty0 · ty1 · val ref 5 · val ref G · eval sub → ⟨5 . call ∥ val ref G · val ref G · eval sub⟩}

Here, we can assume that 5 . call is expecting exactly two (reference) arguments passed during the
same call—anything else would be a type error because the call stack val ref G · val ref G · eval sub
cannot match a copattern naming only one argument or naming three arguments—so dup’s code
only has to handle the case of a perfect arity match, like [15].
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Dictionary-Passing Type Classes. One of the more exciting applications of [19] is generalizing over
unboxed representations used for type classes. For example, a simpli�ed numeric type class

classNum0where (+) :: 0 → 0 → 0

negate :: 0 → 0

introduces overloaded operators (+) :: Num0 ⇒ 0 → 0 → 0 and negate :: Num0 ⇒ 0 → 0 → 0

that work for any instance of Num0. Ideally, we would like to have e�cient instances of Num for
various kinds of unboxed numeric types like Int and Float, but that’s only possible if these are valid
specializations of 0. Eisenberg and Peyton Jones [19] allow for this through the use of polymorphism
over representations. The Call-By-Unboxed-Value _-calculus that we’ve introduced here only has
monomorphic representations; nevertheless, it can still express the same generalization because all
unboxed types have the same kind cplx val with no further speci�city.

To see how the unspeci�ed cplx val helps, consider how type classes are typically compiled using
dictionary-passing style. The type class declaration of Num introduces a type of Num dictionaries—
tuples of closures implementing each operation—that we would translate as:

Num(ty0 : cplx val) : cplx val = Clos(0 → 0 → ˆ0) × Clos(0 → ˆ0)
The Num0 ⇒ . . . constraint in generic code—like (+) and negate themselves, or other functions
de�ned in terms of them—is then translated as a regular parameter of the dictionary type Num0

that the code uses to extract concrete de�nitions of the Num0 operations. There is clearly no
hope for de�ning overloaded operators of type negate : ∀ ty0 : Type cplx val . Num0 → 0 → ˆ0

because there is no pattern for an unknown ty0 : cplx val. However, we can easily implement
these functions which merely extract and return one of the closures in the dictionary.

(+) : ∀ ty0 : Type cplx val . Num0 → ˆ´(0 → 0 → ˆ0)
(+) = { ty0 · (val ref 5 : Clos(0→0→ˆ0), val ref 6 : Clos(0→ˆ0)) · eval sub → ret val ref 5 }
negate : ∀ ty0 : Type cplx val . Num0 → ˆ´(0 → ˆ0)
negate = { ty0 · (val ref 5 : Clos(0→0→ˆ0), val ref 6 : Clos(0→ˆ0)) · eval sub → ret val ref 6 }

Notice how the subtle—but essential!—detail that a closure is returned, as opposed to these operations
calculating the result themselves, is recorded very conspicuously in the ˆ´ shift in the types. Later,
speci�c instances of Num0 are just values of the dictionary type Num0. When picking 0, they may
choose types with any representation at all; since the instance chooses the 0, it also knows how it
is represented. For example, the unboxed integer and �oating-point instances for Num are:

NumInt : Num Int

NumInt = (clos add#, clos negate#)
NumFlt : NumFloat

NumFlt = (clos addFlt#, clos negateFlt#)

5 Translating Functional Programs to Call-By-Unboxed-Value

To be sure that unboxed data structures and call stacks don’t cause any unintended issues, Call-By-
Unboxed-Value should faithfully preserve the semantics of source-level functional programs that
don’t mention unboxed types at all. Rather than studying strict and non-strict languages separately,
we will just demonstrate how to embed Call-By-Push-Value, since it subsumes both. And since
polymorphism is one of our primary concerns, we extend Call-By-Push-Value with polymorphism
à la System F—with universal abstraction Λ- : g ." and application" ) and existential packages
(),+ ) and unpacking mat�+ as (- : g, G : �) → "—without mention of representations.4

We can then embed this Polymorphic Call-By-Push-Value _-calculus into Call-By-Unboxed-Value
as shown in �g. 10. The key idea of this embedding is to interpret the (potentially polymorphic) types

4For the full formal de�nition, see appendix B.
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Translation of types CBPV J�K = �′ and CBPV J�K = �′ and kinds CBPV JgK = g ′

CBPV JvalK = ref val

CBPV J1K = Box 1

CBPV J�0×�1K = Box(ValCBPV J�0K× ValCBPV J�1K )
CBPV J0K = Box 0

CBPV J�0+�1K = Box(ValCBPV J�0K+ValCBPV J�1K )
CBPV J∃- :g .�K = Box(∃ty- : Type JgK .ValCBPV J�K )

CBPV JU�K = Clos(EvalCBPV J�K )

CBPV JcompK = sub comp

CBPV J- K = -

CBPV J�→�K = Proc(ValCBPV J�K→EvalCBPV J�K )
CBPV J⊤K = Proc⊤

CBPV J�0&�1K = Proc(EvalCBPV J�0K & EvalCBPV J�1K )
CBPV J∀- :g .�K = Proc(∀ty- : Type JgK . EvalCBPV J�K )

CBPV JF�K = Ret(ValCBPV J�K )

Translation of values CBPV J+ K = + ′

CBPV JGK = ref G CBPV Jthunk"K = clos { eval sub → CBPV J"K }
CBPV J()K = box() CBPV J(+ ,+ ′)K = box(valCBPV J+ K, valCBPV J+ ′K)

CBPV J(1,+ )K = box(1, valCBPV J+ K) CBPV J(),+ )K = box(CBPV J) K, valCBPV J+ K)
Translation of computations CBPV J"K = "′

CBPV Jmat�+ as { ?8 → "8 8∈�... }K = unboxCBPV J+ K as { ?8 [val ref G/G, G ∈�+ (?8 )... ] → CBPV J"8K8∈�... }
CBPV Jmat�+ as { (-,~) → " }K = unboxCBPV J+ K as { (ty-, val ref ~) → CBPV J"K }

CBPV JdoG ← " ;"′K = doCBPV J"K as { val ref G → CBPV J"′K }
CBPV Jreturn+ K = ret valCBPV J+ K

CBPV J_G."K = proc { val ref G · eval sub → CBPV J"K }
CBPV J" + K = ⟨CBPV J"K . enter ∥ valCBPV J+ K · eval sub⟩
CBPV J_ { }K = proc { }

CBPV J_ {1."1
1∈{0,1}... }K = proc {1 · eval sub → CBPV J"1K1∈{0,1}... }

CBPV J" 1K = ⟨CBPV J"K . enter ∥1 · eval sub⟩
CBPV JΛ- ."K = proc { ty- · eval sub → CBPV J"K }
CBPV J" ) K = ⟨CBPV J"K . enter ∥CBPV J) K · eval sub⟩

CBPV J+ . forceK = ⟨CBPV J+ K . call ∥ eval sub⟩

Fig. 10. The translation from Polymorphic Call-By-Push-Value to Call-By-Unboxed-Value.

with uniform representations. Every value type � : val is an atomic reference J�K : ref val, and
every computation type � : comp is an atomic subroutine J�K : sub comp. Uniform representation,
unsurprisingly, forces boxes around every complex value (tuples, sum types, and packages). On the
computation side, all computation is coerced to simple subroutines via sub-procedures (proc { . . . })
that we can just evaluate. Note that the Proc& type hasn’t appeared much in the examples seen
thus far (in section 4), but here they are absolutely essential: the semantics of proc preserves the
extensional properties (i.e., [ and sequencing equalities) of Call-By-Push-Value computation types.
Without Proc& , we would be forced to return closures instead, which is observably di�erent from
the source semantics. As such, Call-By-Push-Value is equivalent to an aggressively boxed subset of
Call-By-Unboxed-Value that preserves not just typing but also all program equalities.

Theorem 5.1 (Type Preservation). Let J_K denote CBPV J_K in the following:

(1) Γ ⊢ � : g in Polymorphic CBPV if and only if JΓK ⊢ J�K : JgK in CBUV .
(2) Γ ⊢ + : � in Polymorphic CBPV if and only if JΓK ⊢ J+ K : J�K : ref val in CBUV .
(3) Γ ⊢ " : � in Polymorphic CBPV if and only if JΓK ⊢ J"K : J�K : sub comp in CBUV .
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Theorem 5.2 (Soundness & Completeness). Polymorphic Call-By-Push-Value’s equational theory
is sound and complete with respect to Call-By-Unboxed-Value:" = " ′ i� CBPV J"K = CBPV J" ′K.

Optimizing Away Boxes and Closures. One might notice the translation in �g. 10 gives code with
drastically more indirection—and thus worse performance—than the examples given in �g. 2
and section 4. How do we actually use call-by-unboxed-value in a compiler to express optimizations
that avoid boxes and currying to generate e�cient code? One temptation is to give a better
compilation translation with less indirection, but this involves some non-trivial understanding the
source to identify boxes and closures that can be safely eliminated without changing the results.

An alternative approach is the worker/wrapper transformation [21] used by the Glasgow Haskell
Compiler and previous work [15, 19, 47]. The idea is to naïvely translate source terms, and then
afterward apply optimizations directly to the call-by-unboxed-value code to eliminate indirection.
Since this optimization will involve changing the type of the code, it is split into two parts: the
“worker” that e�ciently executes the function at a new type, and the “wrapper” that just calls
the worker and marshals between the old and the new types. For example, the naïve translation
JquotRemK (�g. 2) can be optimized as the following wrapper quotRem and worker quotRem′:

quotRem : CBPV JNat → Nat → F(Nat×Nat)K
quotRem = proc{val ref G · eval sub → proc{val ref ~ · eval sub →

unbox val intG ′ ← G ; unbox val int~′ ← G ;

do (val int@, val int A ) ← _quotRem′ (valG ′) (val~′) . eval sub;
ret box(val(box(val@)), val(box(val A ))) }}

quotRem′ : Nat → Nat → Eval(Ret(Val Nat×Val Nat))
quotRem′

= { val intG · val int~ · eval sub →
do val ref I ← CBPV JquotRemK . enter(val(box(valG))). enter(val(box(val~))) . eval sub;
unbox (val ref I1, val ref I2) ← I; unbox val int@ ← I1; unbox val int A ← I2;

ret (val@, val A )}

The code for the worker quotRem′ is generated by applying the simple translation JquotRemK in
a context that actually uses it; though this seems ine�cient, other standard optimizations (based
on the equational theory in section 3.4) can reduce it to the e�cient form shown in �g. 2. The
remaining wrapper quotRem is small and can be inlined aggressively; if a call site actually passes
unboxed arguments to quotRem then this will simplify to a fast direct call to quotRem′.

6 An Unboxed Abstract Machine

Having studied Call-By-Unboxed-Value from the high-level—as a suitable target for semantics-
preserving compilation of functional programs—we now consider it from a lower-level perspective
to be sure that it can actually be implemented with the intended memory behavior on realistic
machines. Speci�cally, the only objects in long-term storage are reference values box ( and clos � , as
well as contiguously-stored subroutine stack frames corresponding to do□ as� and ⟨□. enter ∥ ⟩—
everything else can be held in simple but fast register locations. Moreover, our contribution is to
show how programs can be compiled and run using only the information in their syntax, ignoring
all typing information at compile-time and run-time, but nevertheless preserving typability.

6.1 Annotated Machine Code

Call-By-Unboxed-Value variables are already annotated with �xed representations and the evalua-
tion of functions is annotated by what kind of computation to expect. The missing information to
compile code is about closure environments: when code pointers are stored, we need to know what
are the relevant free variables to copy into the closure, and thus how they are represented. We can
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explicate this information by extending the Call-By-Unboxed-Value syntax like so

Value ∋ + ::= · · · | clos � [Γ] Comp ∋ " ::= · · · | do" as� [Γ,$]

Thankfully, closure information is easy to recover just from the program itself—whether or not we
have any type-checking information. In fact, we can even annotate ill-typed programs, though they
may go wrong at run-time. The most interesting steps for compiling atomic values (�"J+ K

Γ
= + ′),

computations (�"J"K$
Γ
= " ′), and (co)matching code (�"J�K$

Γ
= � ′ and �"J�K

Γ
= � ′) are:

�"Jclos �K
Γ
= clos�"J�K

Γ
[Γ |�+ (� ) ]

�"Jdo" as�K$
Γ
= do�"J"Ksub

Γ
as�"J�K$

Γ
[Γ |�+ (� ) ,$]

�"J{ : [Γ: ,$: ] → ":
:∈&... }K

Γ
= { : [Γ: ,$: ] → �"J":K

$:

Γ,Γ:
:∈&... }

�"J{ B [ΓB ] → "B
B∈%... }K$

Γ
= { B [ΓB ] → �"J"BK

$
Γ,ΓB

B∈%... }

where the parameter Γ collects information about the local variables from their binding sites, and
$ is the expected observation of a computation. The operation Γ |�+ (� ) means to restrict Γ to only
the free variables actually found in � (i.e., �+ (� )). As shorthand for inspecting copatterns, we write
: [Γ,$] to mean : ends in eval$ . The rest of the cases follow directly by induction. Of note, we can
always determine how to observe computation sub-terms from context. Usually, this$ comes from
the expectation imposed on matching code � (as in do above) or from a surrounding copattern,
but in ". eval we know " should have some sort of Proc& type, which is always a subroutine
computation, thus �"J". enterK

Γ
= �"J"Ksub

Γ
. eval.

6.2 Machine Configurations and Transitions

The abstract machine is de�ned in �g. 11. Notice that a machine con�guration< combines three
parts: a command 2 saying what to do, local registers d and ^, and long-term storage f . Each d

register is �xed to one atomic representation ' and only holds compatible '-represented values, :
numeric constants, reference pointers (ref G) into storage, or closed types ) . As such, reading or
writing a variable’s value in d requires knowing its name and its representation.While type registers
[ty G := ) ] may seem to hold a large, complex type ) , the ty representation denotes a phantom
register that is erased for real execution; it is only maintained hypothetically to correspond with
typing information from the source language. ^ denotes the context of evaluation, and points to the
top of the call stack subG during a subroutine computation, or is empty during a run computation.
Long-term storage f contains a combination of heap objects [G := � ] as well as stack frames

[G := �]. The two address spaces are kept separate to accommodate distinct allocation strategies: G
addresses are heap-allocated and garbage collected, but G addresses follow a linear stack discipline
and can be allocated and freed as a traditional, contiguous call stack. Stored code objects, clos � [d]
and do� [d^], are closed over the contents of (value and stack) registers at storage time.
At times, we need to simplify a sequence of values + ... into a sequence of constants, ... that

can actually be stored locally in registers. This is done through the multi-value storing operation
d∗ (+ ...) that returns a both a sequence of constants, ..., which may include references, along with
heap-allocated objects that close over those references. For example, just storing d∗ (clos � [Γ]) will
allocate the closure clos � [d |Γ] (where d |Γ denotes the restriction of d to only variables listed in Γ)
to some location G on the heap, and return the pair ref G ; [G := clos � [d |Γ]]. In the other direction,
sometimes we need the real value of a source code + , which may be a variable reference. fd (+ )
looks up + if it is a reference into f , and returns the heap object representation in either case.

Lastly, the command 2 itself may take three di�erent forms. ⟨"⟩ is the standard command, which
just executes the given computation " corresponding to the operational semantics. The other
two, ⟨B ∥, ... ∥ �⟩ and ⟨� ∥ : ∥, ...⟩ are intermediate states that unify the cases where a pattern
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RegValue ∋, ::= = | =.= | ) | ref G Registers ∋ d ::= • | ' G :=, ; d

HeapObject ∋ � ::= box B [, ...] | clos � [d] Store ∋ f ::= • | f, G := � | G := �, f

StackFrame ∋ � ::= enter: [,...^] | do� [d^] StackReg ∋ ^ ::= run | subG
Machine ∋< ::= 2 [d^] [f] Command ∋ 2 ::= ⟨"⟩ | ⟨B ∥,... ∥�⟩ | ⟨� ∥ : ∥,...⟩

+ ...; d′ = Load 5 (:,, ...) 5 (: [+ ...]) = terminal

⟨5 ∥ : ∥, ...⟩ [d^] [f] terminal

+ ...; d′ = Load6 (B,, ...) 6(B [+ ...]) = terminal

⟨B ∥, ... ∥ 6⟩ [d run] [f] terminal

Transition rules < ↦→<′

(do) ⟨do" as� [Γ,$]⟩ [d^] [f] ↦→ ⟨"⟩ [d subG] [G := do� [d |Γ ^ ($)], f]
(enter) ⟨⟨".enter ∥ : [+ ...,$]⟩⟩ [d^] [f] ↦→ ⟨"⟩ [d subG] (if, ...;f′ = d∗ (+ ...))

[G := enter: [, ..., ^ ($)], f, f′]
(as) ⟨B [+ ...] as�⟩ [d^] [f] ↦→ ⟨B ∥, ... ∥ �⟩ [d^] [f, f′] (if, ...;f′ = d∗ (+ ...))
(_) ⟨⟨_� ∥ : [+ ...]⟩⟩ [d^] [f] ↦→ ⟨� ∥ : ∥, ...⟩ [d′^] [f, f′] (if, ...;f′ = d∗ (+ ...))

(Box) ⟨unbox+ as�⟩ [d^] [f] ↦→ ⟨B ∥, ... ∥ �⟩ [d^] [f, f′] (if box B [, ...];f′ = fd (+ ))
(Clos) ⟨⟨+ ′ .call ∥ : [+ ...]⟩⟩ [d^] [f] ↦→ ⟨� ∥ : ∥, ...⟩ [d′^] [f, f′] (if clos � [d′]; • = fd (+ ′)

and, ...;f′ = d∗ (+ ...))
(Ret) ⟨ret B [+ ...]⟩[d subG] [G :=do� [d′^′], f] ↦→ ⟨B ∥, ... ∥ �⟩ [d′^′] [f, f′] (if, ...;f′ = d∗ (+ ...))
(Proc) ⟨proc � ⟩ [d subG] [G := enter: [, ...^′], f] ↦→ ⟨� ∥ : ∥, ...⟩ [d^′] [f]

(Fun) ⟨{ : [Γ: ] → ":
:∈&... ∥ :′ ∥, ... }⟩ [d^] [f] ↦→ ⟨": ′ ⟩ [d, (Γ: ′ :=, ...)^] [f]

(Match) ⟨B′ ∥, ... ∥ { B [ΓB ] → "B B∈%... }⟩ [d^] [f] ↦→ ⟨"B′ ⟩ [d, (ΓB′ :=, ...)^] [f]

(Prim5 ) ⟨5 ∥ : ∥, ...⟩ [d^] [f] ↦→ ⟨Prim5 (: [+ ...])⟩ [d′^] [f] (if + ...; d′ = Load 5 (:,, ...))
(Prim6) ⟨B ∥, ... ∥ 6⟩ [d^] [f] ↦→ ⟨Prim6 (B [+ ...])⟩ [d′^] [f] (if + ...; d′ = Load6 (B,, ...))

Value loading fd (+ ) = � ;f , value storing d∗ (+ ...) =, ...;f , and primitive operations

fd (clos � [Γ]) = clos � [d |Γ]; • fd (ref G) = f (d (ref G)); •
fd (box B [+ ...]) = box B [, ...];f′ (if, ...;f′ = d∗ (+ ...))

d∗ (+ ..., ' G) =, ..., d (' G);f (if d∗ (+ ...) =, ...;f)
d∗ (+ ..., const) =, ..., const;f (if const ∈ {=, =.=}, d∗ (+ ...) =, ...;f)

d∗ (+ ..., box B [+ ′ ...]) =, ..., ref G ; (G := box B [, ′ ...], f′, f) (if d∗ (+ ′ ...) =, ′ ...;f′, d∗ (+ ...) =, ...;f)
d∗ (+ ..., clos � [Γ]) =, ..., ref G ; (G := clos � [d |Γ], f) (if d∗ (+ ...) =, ...;f)

d∗ (+ ...,) ) =, ...,) [d (tyG)/tyG G ∈�+ () )... ];f (if d∗ (+ ...) =, ...;f)
Prim5 (: [+ ...,$]) = �"J5 (: [+ ...])K$

Sig5 (: )
Prim6 (6, B [+ ...]) = �"J6(B [+ ...])Krun

Sig6 (B )

Fig. 11. The Call-By-Unboxed-Value abstract machine.

or copattern match is ready to happen. When � or � are de�ned as source code { : [Γ] → "... }
or { B [Γ] → "... }, then the Fun and Match rules do a switch statement on the shape B or : , and
then bind the associated values, ... to the registers named by Γ. For primitive operations 5 and
6, we assume that they are implemented in a way compatible with the operational semantics,
as speci�ed by Prim5 and Prim6, which fundamentally relies on the parametricity of references
(assumption 3.1). Speci�cally, runtime-allocated store locations can’t be compiled into the de�nitions
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of primitive operations. Thus, we also assume that each operation has an associated run-time
parameter signature Sig 5 (:) = Γ and Sig6 (B) = Γ known at compile-time for each shape, as well as
a parameter-loading routine Load 5 (:,, ...) = + ...; d and Load6 (B,, ...) = + ...; d that abstracts out
parameters from, ... into d and replaces them with their d-bound names.

Aside 6.1. It may seem like matching on shapes : and B in the Fun and Match rules would be a
complex operation to implement. But remember: shapes are devoid of any information about the
atomic values held “inside,” and don’t even assign some name to positions, leaving them blank □s.
Furthermore, structures and stacks are second-class and must be fully formed in-place, since the
syntax statically separates shapes from their contents. The only run-time requirement of complex
types of shapes is that they are all distinct. As such, the whole shape can be reduced to a single
constant and choosing a branch is just one switch statement. Once the branch has been selected, the
associated atomic values, ... can be assigned their local names to evaluate the next computation.

For example, a pointer G : Box((Val Int+Val Float×Val Int) + 1) to a boxed value can have three
possible shapes: (0) 0, 0, val□ contains a single int, (1) 0, 1, val□, val□ contains a pair of a �oat and
int, and (2) 1, () contains nothing. To generate code, we need an enumeration mapping each shape
to a di�erent constant distinguish the options. For instance, we could use the numeric labels of the
above enumeration, so box(0, 1, val 3.14, val 42) is represented as a pointer to a single-byte tag 1, a
64-bit �oating-point 3.14, and a 32-bit integer 42. If G points to this sequence, the unboxing

unboxG as { 0, 0, val int~ → "1;

0, 1, val �t~, val int I → "2;

1, () → "3}

should be compiled to a C-like tagged union and switch statement as shown in �g. 12a.
Copatterns are more di�cult to express in a C-like pseudo code, since we only know what

arguments to expect after checking the tag denoting the stack frame’s shape. However, it still
follows the same principle in a lower-level language with an explicit call stack. All versions of the
maybeAdd function should be compiled to the same low-level code with two possible stack shapes:

(0) 0 · val□ · eval sub describes a frame with 1 integer argument and 1 return pointer, and
(1) 1 · val□ · val□ · eval sub describes a frame with 2 integer arguments and 1 return pointer.

As before, we can generate code for this complex type by following the enumeration to assign a
numeric index to each stack shape. The function can be called by passing the number stack shape
tag in the �rst register, followed by any additional parameters. �g. 12b shows an example of an Intel
x86 implementation of register-passing code, where the tag is passed in %al and the arguments are
passed in the remaining registers and spill onto the stack as usual. On the other side, maybeAdd’s
code �rst starts with a switch or conditional to check the tag describing the stack shape, then
jumps to the code for that case that knows how to access the remaining parameters for that branch.
Function code with more copattern cases would likely be implemented by a jump table, rather
than a long sequence of conditional jumps. E�ectively, this spells out a “switch function” which
branches on the �rst special argument before loading the rest.

6.3 Back-Translation and Bisimulation

The abstract machine in �g. 11 is meant to correctly implement the low-level details left abstract in
operational semantics in �g. 5. To be sure that the two give the same results, we can show that
the steps of the two systems remain in sync by relating machine con�gurations back to the source
calculus. To decompile machine code (�"J"K−1, �"J+ K−1, etc.), we just need to erase the extra
annotations that were added to function closures and do-statements.
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struct {

char tag;

union {

int zero; // case 0 = 0, 0, val int

// case 1 = 0, 1, val flt, val int

struct { float fst; int snd; } one;

// empty case 2 = 1, ()

} body;

} *x;

switch (x->tag) {

case 0:

int y = x->body.zero;

M1...

break;

case 1:

float y = x->body.one.fst;

int z = x->body.one.snd;

M2...

break;

case 2:

M3...

}

(a) Unboxing a complex value in C.

# at the call site of: maybeAdd (1, val 10) (val 20).eval sub

movb $1, %al # case 1 = (1, val []) · val [] · eval sub

movl $10, %edi # first argument = 10

movl $20, %esi # second argument = 20

call maybeAdd # maybeAdd (1, val 10) (val 20).eval sub

# at the function definition site...

maybeAdd:

cmpb $1, %al # check for case 1

je maybeAdd1 # jump to convention = 1 · val [] · val [] · eval sub

# otherwise, use convention = 0 · val [] · eval sub

maybeAdd0:

# %edi holds the only argument y

movl %edi, %eax # only return result is y held in %eax

ret # return val int y

maybeAdd1:

# %edi holds first argument, %esi holds second argument

movl %edi, %eax

addl %esi, %eax # add both arguments

ret # return the only result

(b) Function code with complex calling conventions in x86

assembly.

Fig. 12. Examples of generating low-level code for pa�ern and copa�ern matching.

Commands �"J2K−1 = " and con�gurations �"J<K−1 = "

�"J⟨"⟩K−1 = �"J"K−1 �"J⟨B ∥, ... ∥ �⟩K−1 = B [, ...] as�"J�K−1

�"J2 [d^]K−1f = �"J^K−1f [�"J2K−1 [�"JdK−1]] �"J⟨� ∥ : ∥, ...$⟩K−1 = ⟨_�"J�K−1 ∥ : [, ...]⟩
�"J2 [d^] [f]K−1 = �"J2 [d^]K−1f [�"JfK−1]

Stack pointers �"J^K−1f = � and stored stack frames �"J�K−1f = �

�"Jdo� [d^]K−1f = �"J^K−1f
[

do□ as�"J�K−1 [�"JdK−1]
]

�"JrunK−1f = □

�"Jenter: [, ...^]K−1f = �"J^K−1f [⟨□. enter ∥: [, ...]⟩] �"JsubGK−1f = �"Jf (G)K−1f

Registers �"JdK−1 =, /' G... , heap objects �"J�K−1f = + and the heap �"JfK−1 = + /G ...

�"Jclos � [d]K−1 = clos�"J�K−1 [�"JdK−1] �"Jbox B [, ...]K−1 = box B [, ...]
�"JG := �, ..., •K−1 = • �"J' G :=, ...K−1 =, /' G...

�"Jf, G := �, f′K−1 = �"JfK−1, (�"J�K−1 [�"Jf, f′K−1])/G,�"Jf′K−1 (if G ∉ �+ (f, f′))

Fig. 13. Decompilation of the abstract machine.

Decompiling commands and con�gurations, as shown in �g. 13, takes more work. The main idea
is that the registers (d) and the store (f) hold information about deferred substitutions that would
have happened already in the operational semantics. In �"J2 [d^]K−1, registers d are decompiled
as a substitution applied to 2 , while the stack register ^ gets rebuilt as an evaluation context
surrounding 2 . The last step is to sort through the heap in f and substitute each reconstructed heap
object back into the computation. Doing so relies on the fact that f is non-cyclic, which means we
can always �nd (at least) one object that nothing else depends on to build. With this decompilation
complete, we can create a bisimulation that links both semantics, under the assumption that
primitive parameter passing correctly abstracts out values into registers.
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De�nition 6.2 (Bisimulation Relation). The bisimulation relation" ∼< between closed Call-By-
Unboxed-Value terms and closed con�gurations of the abstract machine is:" ∼< i�" = �"J<K−1

Assumption 6.3. + [�"JdK−1] ... =, ... for all + ...; d = Load 5 (:,, ...) or + ...; d = Load6 (B,, ...).

Lemma 6.4 (Bisimilarity). CBUV ’s operational semantics and abstract machine are bisimilar,

(1) For all closed" ," ∼ ⟨�"J"Krun• ⟩ [run] [•],
(2) for all closed< with a non-cyclic f , �"J<K−1 ∼<,
(3) if" ∼< then" terminal if and only if< ↦→∗

do enter as_
<′ terminal,

(4) if" ∼< and" ↦→∗ " ′ then< ↦→∗ <′ such that" ′ ∼<′, and
(5) if" ∼< and< ↦→∗ <′ then" ↦→∗ " ′ such that" ′ ∼<′.

Theorem 6.5 (Operational Correspondence). For any closed " , " ↦→∗ " ′ terminal if and
only if ⟨�"J"Krun• ⟩ [run] [•] ↦→∗ <′ terminal, and in such a case," ′ ∼<′.

6.4 Type System, Safety, and Erasure

Decompilation does more than relate dynamic semantics; it also relates static semantics of the
two as well. If the source program happens to be well-typed, that information is preserved in the
machine and can be re�ected back. Well-typed programs correspond to well-typed abstract machine
con�gurations—following the typing rules given in �g. 14—with their own type safety property.
The key to typing the machine is to understand the two levels of environments corresponding to
d^ versus f in 2 [d^]f . The free variables Γ and results Φ in 2 refer to registers bound by d and ^,
while the references out of d and ^ refer to a surrounding environment Ψ and Ξ bound by f . From
there, we get type safety for the machine that is equivalent to typing in the source.

Assumption 6.6. (1) If Ψ ⊢ ⟨5 ∥ : ∥, ...⟩ : Φ and + ...; d = Load 5 (:,, ...) then Ψ ⊢ d : Sig 5 (:)
and Sig 5 (:) ⊢ 5 (: [+ ...]) : Φ.
(2) If Ψ ⊢ ⟨B ∥, ...∥6⟩ :Φ and+ ...; d = Load6 (B,, ...) then Ψ ⊢ d : Sig 5 (B) and Sig6 (B) ⊢ 6(B [+ ...]) :Φ.

Theorem 6.7 (Type Preservation). (1) If<OK then • ⊢ �"J<K−1 : void : run comp.
(2) If Γ ⊢ " : � : $ comp then Γ ⊢ �"J"K$

Γ
: � : $ comp.

Lemma 6.8 (Progress & Preservation). If<OK then< ↦→<′ OK or< terminal.

The ty registers in the machine are helpful for maintaining the type preservation link, as they
keep track of how generic type variables are instantiated as the program runs. However, they have
no impact on the behavior of the machine or the overall result of a program. Note that in �g. 11,
the only time the machine reads a ty register is for the purpose of loading another ty register, and
the contents of ty registers cannot a�ect the result of a primitive operation by assumptions 3.1
and 6.3. Therefore, we can erase all types in the program without changing the answer.

Theorem 6.9 (Type Erasure). Let erased be a type constant and terminal states be similar, written
< ≃<′, if they share the same primitive operation and shape. ⟨"⟩ [d^] [f] [) /tyG ...] ↦→∗ <1 terminal

if and only if ⟨"⟩ [d^] [f] [erased/tyG ...] ↦→∗ <2 terminal, such that<1 ≃<2.

7 Future and Related Work

Optimizing Unboxed Data and Curried Functions. Call-By-Unboxed-Value follows [47]’s tradition of
modeling a value’s boxed versus unboxed status as a feature in a compiler’s intermediate language.
This idea was extended to allow for polymorphism over representation of values [19] and the calling
convention of functions [15]. Call-By-Unboxed-Value stays closer to more modest roots [17] by
keeping representations simple and monomorphic, yet is still able to express many programs that
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Updated typing rules for annotated closures and do-sequences:

Γ |Δ ⊢ � : & ;

Γ ⊢ clos � [Δ] : Clos& : ref val
Clos �

Γ ⊢ " : ret % : sub comp Γ |Δ ; � : % ⊢ � : $ comp

Γ ⊢ do" as� [Δ,$] : � : $ comp
Ret�

StoreEnv ∋ Ψ ::= • | Ψ, G : � StackEnv ∋ Ξ ::= • | G : �

Types for register values Ψ ⊢, : � : ' val and the stack registers ^ : Φ ⊢ Ξ

Ψ ⊢ = : Int : int val Ψ ⊢ =.= : Float : �t val Ψ, G : �,Ψ′ ⊢ G : � : ref val

• ⊢ ) : g

Ψ ⊢ ) : Typeg : ty val subG : � : sub comp ⊢ G : � run : void : run comp ⊢ •

Types for heap objects Ψ ⊢ � : � and stack frames Ψ | � : � ⊢ Ξ

Ψ ⊢, ... : Δ • | Δ ⊢ B : % ;

Ψ ⊢ box B [, ...] : Box %
Ψ ⊢ d : Γ Γ ⊢ � : & ;

Ψ ⊢ clos � [d] : Clos&
Ψ ⊢, ... : Δ • | Δ ; : : & ⊢ Φ Ψ | ^ : Φ ⊢ Ξ

Ψ | enter: [, ...^] : Proc& ⊢ Ξ
Ψ ⊢ d : Γ Ψ | ^ : Φ ⊢ Ξ
Ψ | do� [d^] : Ret % ⊢ Ξ

Typed value registers Ψ ⊢ d : Γ and sequences Ψ ⊢, ... : Δ

Ψ ⊢, : � : ' val Ψ ⊢ d : Γ [, /' G]
Ψ ⊢ ' G :=,, d : (' G : �, Γ) Ψ ⊢ • : •

Ψ ⊢, : � : ' val Ψ ⊢, ′ ... : Δ[, /' G]
Ψ ⊢,,, ′ ... : (' G : �,Δ)

Types for the long-term store f : (Ψ ⊣ Ξ) binding heap objects (Ψ) and a top stack frame (Ξ)

• : (• ⊢ •)
f : (Ψ ⊣ Ξ) Ψ ⊢ � : �

(f, G := � ) : (Ψ, G : � ⊣ Ξ)
Ψ | � : � ⊢ Ξ f : (Ψ ⊣ Ξ)
(G := �, f) : (Ψ ⊣ G : �)

Machine commands Ψ | Γ ⊢ 2 : Φ and closing con�gurations:

Γ ⊢ " : Φ

Ψ | Γ ⊢ ⟨"⟩ : Φ
Γ | Δ ⊢ B : % ; Ψ ⊢, ... : Δ Γ ; � : % ⊢ Φ

Ψ | Γ ⊢ ⟨B ∥, ... ∥ �⟩ : Φ
Γ ⊢ � : & ; Γ | Δ ; : : & ⊢ Φ Ψ ⊢, ... : Δ

Ψ | Γ ⊢ ⟨� ∥ : ∥, ...⟩ : Φ
Ψ ⊢ d : Γ Ψ | Γ ⊢ 2 : Φ ^ : Φ ⊢ Ξ

2 [d^] : Ψ ⊢ Ξ
RegCut

2 [d^] : (Ψ ⊢ Ξ) f : (Ψ ⊣ Ξ)
2 [d^] [f] OK StoreCut

Fig. 14. The Call-By-Unboxed-Value abstract machine type system.

abstract over types with di�erent representations (section 4). Still, there may yet be applications
that want to abstract over representations or observations, which we leave to future work.

By decoupling the four-way split between atomic versus complex and value versus computation,
Call-By-Push-Value gives a platform for expressing optimizations for curried functions, too. These
optimizations are important in practice to avoid wastefully allocating intermediate closures [9, 30,
35]. Usually, the question of how many arguments a function “really” requires (i.e., its arity) is
an informal property from complex compile-time analysis [9, 48, 54] and can be easily changed
by program optimizations [24]. Call-By-Unboxed takes a type-based approach à la [15, 17] where
a function’s arity is a property of its type, not just its code. One issue we do not capture here is
closure conversion [5, 28]. More recent approaches to typed closure conversion [2, 38] represent
them abstractly [8], which has also been modeled in a Call-By-Push-Value framework [50].
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Adjoint Calculi. Call-By-Unboxed-Value is explicitly inspired by adjoint calculi [31, 32, 42, 43, 55, 56],
which are similar to the monadic framework of computation [41], except that they explicitly divide
the program into two parts in the same way that a monad can be decomposed into an adjoint
pair of functors. This decomposition is able to accurately express the semantics of types, such as
“strong sums” [44], especially in the presence of side e�ects [33], making good on the promise that
even e�ectful programs have the expected isomorphisms between types [34] and can be losslessly
compiled down to basic, �nite, building blocks [13, 14]. Combining multiple evaluation orders in
the same program makes it possible to represent programs that are seemingly polymorphic over
evaluation order when the result is the same either way [15, 19] or may be di�erent [18].

Memoization. The interplay between call-by-name and call-by-value is motivated by multiple
foundations in denotational semantics and polarized logic. But in practice, non-strict functional
languages use call-by-need [6, 7] evaluation to memoize (i.e., remember) answers and avoid re-
computation. As such, we cannot simply “evaluate” a memoized computation; somewhere the
answer must be recorded for e�cient future retrieval. Call-By-Push-Value has been extended with
call-by-need, but at the cost of losing [ equalities [37] or an explicitly type-based semantics [13].
Promisingly, we already have a mechanism to talk about di�erent observations—i.e., represen-

tations of evaluation contexts—that gives a direct path to insert memoization as another kind of
atomic computation di�erent from a simple subroutine (sub comp). The evaluation of memoizing
computation (memo comp) is always represented as two references memoG, G : one (G ) to the stack
frame needing the answer, and another (G) to the thunk itself to be overwritten. More concretely,
we could add memoizing computations as tagless [46] thunks to Call-By-Unboxed-Value machine:

Γ |Γ′ ⊢ " : � : sub comp

Γ ⊢ start" [Γ′] : Tape� : ref val

Γ ⊢ ref G : Tape� : ref val

Γ ⊢ G . play : � : memo comp

Γ |Γ′ ⊢ " : sub comp

Γ ⊢ pause" [Γ′] : memo comp

d∗ (+ ..., start" [Γ]) =, ..., ref G ;G := start" [d |Γ] (d∗ (+ ...) =, ...;f)
⟨G . play⟩ [d subG] [f] ↦→ ⟨"⟩ [d ′ memoG, G] [f] (f (d (ref G)) = start" [d ′])

⟨pause" [Γ]⟩ [d memoG, G] [f] ↦→ ⟨"⟩ [d subG] [f, G := start(pause" [Γ]) [d |Γ]]
Tagless thunks are like a cassette tape: they start at the beginning and, when forced, begin to
play out until they reach the end where the answer is ready. The tape then stays paused at this
end position on all future access. Unlike usual presentations, the program is given control over
when to pause the Tape. Call-By-Unboxed-Value could be a good setting to explore mechanisms for
memoization—including tagged and tagless styles—and their optimizations, even letting a compiler
choose exactly when and how memoization happens depending on the speci�c application.

Type-Safe Coercions. Sometimes two di�erent types will have identical representations or calling
conventions at runtime, like the unboxed sum examples in section 4. Yet, the type system separates
programs of these runtime-equivalent types; this is part of the reason that compilation to the
machine model preserves types. However, this separation prevents some optimizations, such as
using an uncurried function (%0 × %1) → & in place of a curried one %0 → (%1 → &) without any
runtime overhead. This is justi�ed because the two di�erent types of call stacks have a one-to-one
correspondence with the �attened sequence of atomic arguments in the same order.

In lieu of using more complex kinds [15, 19] to calculate when types are runtime-equivalent, we
could instead employ the more general technique of type-safe coercions [51] to add extra equations
between types whose programs are interchangeable. This would make it possible to add other
type equalities about unboxed sums discussed in section 4—justi�ed from compiling shapes as in
aside 6.1—such as (%0 +%1) → & ≈ (%0 → &)& (%1 → &) and (%0 +%1) ×%2 ≈ (%0 ×%2) + (%1 ×%2),
while keeping order-changing inequalities like %0 + %1 0 %1 + %0 and %0 × %1 0 %1 × %0 separate.
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Join Points. Sharing code is an important concern in practical implementations, especially when the
representation forces the program to do the same work in multiple possible branches [27]. There
are multiple approaches to this problem, the most popular being Static Single Assignment (SSA) [12]
for imperative programs and Continuation-Passing Style (CPS) [4] for functional ones, which are
known to be related [10, 26]. Another way to share code is with join points [36] that keep functional
programs in direct style. Extending Call-By-Unboxed-Value with join points would alleviate code
duplication problems caused by the mandate to pattern match on complex structures and stacks
even if the answer is the same, as we saw in the and example in section 4. The code in and is small
enough to not matter, but in larger examples this doubling is unacceptable. A potential avenue for
integrating join points may be a look at the Calculus of Unity [55] which is primarily concerned
about naming code, not values; both it and the predecessor to functional join points [16] share a
common foundation in the sequent calculus [20] in the style of [11, 53], which could be the key.

E�ective Dependent Types. To be clear, studying dependent types is not an objective of this paper.
Types are treated as regular �rst-class, atomic values (represented as erasable phantom ty registers)
simply because it is easier if they are not special: the parameter list in an unboxed call stack is just
a sequence of values, rather than some interleaving of types and values. The same convenience is
used in practice in GHC’s Core representation for similar reasons. This simplifying assumption
makes it easier to formalize quanti�ers as ∀' G : �. & and ∃' G : �. % for generic atomic value
types �. Even so, the only interesting choice is to quantify over ty variables, since they are the only
ones we are allowed to meaningfully use in the types % or & (via the TyVar rule in �g. 6).

But what if types could refer to other kinds of atomic values, and not just otherTypeg parameters?
It seems like the natural expression of type abstraction and the quanti�ers lends itself readily to a
dependently typed calculus. We take pause here and do not jump in eagerly, because the adjoint
foundation of Call-By-Unboxed-Value is fundamentally engineered to handle computational e�ects,
and the mixture of e�ects and dependent types is notoriously fraught with danger [25, 45]. Despite
this, there have been some promising starts based on Call-By-Push-Value [45, 52] and sequent
calculi [39, 40, 49]. Call-By-Unboxed-Value could be particularly interesting in this space, since it
would allow for a richer type system for describing type-safe, low-level representations. What if
the programmer wants �rst-class access to the tags in a tagged union (i.e., unboxed sum type) and
control pattern matching? That could be expressed by ∃ intG : Nat . % .

8 Conclusion

Here, we have introduced the Call-By-Unboxed-Value paradigm, which further decomposes Call-
By-Push-Value and focusing regimes based on an operational semantics distinguishing boxed
versus unboxed values in real machines. Our goal is to give a more robust foundation for studying
the combination of parametric polymorphism with the representation of values and the calling
conventions of higher-order functions. It turns out many motivating examples of representation
polymorphism can be expressed with a more modest type system, and in fact, representation-
irrelevant polymorphic code can be compiled and run without any type information. We hope
this enables the study of new applications and implementations of representation irrelevance in
other settings. The strength of this approach is to pursue a �ne-grained set of tools that can be
recombined in new ways. Sometimes the parts are greater than the sum.
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Extended syntax:

StructShape ∋ B ::= · · · | □ ∈ { B ... } StackShape ∋ : ::= · · · | more ∈ { :... }
Struct ∋ ( ::= B [X] Stack ∋  ::= : [X]
Values ∋ X ::= • | X,+ | X, ( Call ∋ ! ::= · · · | "

Γ::= · · · | Γ, G : % : cplx val Δ ::= · · · | % : cplx val,Δ Φ::= · · · | & : cplx comp

∀(Γ | Δ ⊢ B : % ;)
Γ, G : % cplx val, Γ′ ⊢ G ∈ { B B∈%... } : %

∀(Γ | Δ ⊢ B : % ;)
Γ | % : cplx val ⊢ □ ∈ { B B∈%... } : % ;

Γ | Δ ⊢ B : % ; Γ ⊢ X : Δ

Γ ⊢ B [X] : % Struct
Γ | Δ ; : : & ⊢ Φ Γ ⊢ X : Δ

Γ | : [X] : & ⊢ Φ Stack

Γ ⊢ ( : % Γ ⊢ X : Δ
Γ ⊢ ((, X) : (% : cplx val,Δ)

∀(Γ | Δ ; : : & ⊢ Φ)
Γ | • ; more ∈ { : :∈&... } : & ⊢ & : cplx comp

Γ ⊢ " : & : cplx comp

Γ ⊢ " : &

Fig. 15. Complex Call-By-Unboxed-Value: the extension with (co)pa�ern disjunction.

A Complex Variables in Call-By-Unboxed-Value

Sometimes, being forced to elaborate all pattern-matching options can be rather burdensome when
the result is the same in multiple cases. Not only does it waste more bits or ink, it can cause serious
code duplication problems. In lieu of a more serious solution, like join points [36], we can easily
add some syntactic sugar for letting us assign a name to a whole complex value, corresponding to
Zeilberger’s complex variables [56]. However, [56]’s notion of complex variables are only meaningful
in a typed setting: the missing patterns are elaborated by checking the type of the variable and
expanding the options. Instead, we still want to be able to compile and run untyped code, even
when using this shorthand to combine redundant cases.

Our solution is to extend Call-By-Unboxed-Value with the ability to summarize multiple (co)-
patterns within the same alternative branch, as shown in �g. 15. Intuitively, the idea is that we
might combine multiple patterns disjunctively, by saying what to do if either “this or that” matches.
This disjunction can be embedded inside of a larger pattern, in which case we can assign a name
to the whole complex choice, written as G ∈ { B8 8∈�... }, where the set { B8 8∈�... } disambiguates all the
possible di�erent shapes that the complex variable G might take.

Disjunction shouldn’t just be limited to pattern variables: it’s useful in the result of a call, too. In
particular, we might want to de�ne a complex curried function with partial copattern matching by
writing only the relevant parameters and projection options and leaving the right-hand side as
another complex computation. We can end the partial copattern early by writing more ∈ { :8 8∈�... },
where the set { :8 8∈�... } disambiguates all the possible ways that the complex call could continue.

The reason to include the disambiguating set for complex variables G ∈ { B ... } and complex
continuations more ∈ { :... } is to give just enough information that programs can be desugared
into the simpler Call-By-Unboxed-Value syntax in �g. 3. This elaboration is shown in �g. 16. Notice
that no type information is needed for the macro expansion, so untyped programs can still be
compiled and run. This serves as an untyped alternative to the explicitly-typed complex variables
of [56]. Moreover, we did not need to complicate the language of representations or observations to
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Pa�ernCxt ∋ ?1 ::= □ | ?1, ? | ?, ?1 | 1, ?1 | ' G : ), ?1

CoPa�ernCxt ∋ @1 ::= □ | ?1 · @ | ? · @1 | 1 · @1 | ' G : � · @1

{ . . . ;?1 [G ∈ { B8 8∈�... }] → " } → { . . . ;?1 [B8 [G8 ...]] → " [B8 [G8 ...]/G]8∈�... }
{ . . . ;@1 [G ∈ { B8 8∈�... }] → " } → { . . . ;@1 [B8 [G8 ...]] → " [B8 [G8 ...]/G]8∈�... }

{ . . . ;@1 [more ∈ { :8 8∈�... }] → " } → { . . . ;@1 [:8 [G8 ...]] → ⟨" ∥ :8 [G8 ...]⟩ 8∈�... }

⟨( as { ? → "?
?∈%... } ∥  ⟩ → ( as { ? → ⟨"? ∥  ⟩ ?∈%... }

⟨unbox+ as { ? → "?
?∈%... } ∥  ⟩ → unbox+ as { ? → ⟨"? ∥  ⟩ ?∈%... }

⟨do" as { ? → "?
?∈%... } ∥  ⟩ → do" as { ? → ⟨"? ∥  ⟩ ?∈%... }

B [X] ∈ { B8 8∈�... } → B [X] (B ∈ { B8 8∈�... })
⟨⟨! ∥ @1 [X,more ∈ { :8 8∈�... }]⟩ ∥ : [X ′]⟩ → ⟨! ∥ @1 [X, : [X ′]]⟩ (: ∈ { :8 8∈�... })

Fig. 16. Untyped macro expansion of complex (co)pa�ern disjunction

do so, either. In that way, the (co)pattern shape sets serve as a more modest alternative to complex,
multi-faceted representations [19] and calling conventions [15].

As an example, the shared code in the boolean and function

and :: Bool → Bool → Bool

and TrueG = G

and FalseG = False

can be kept in tact using pattern disjunction like so:

and : Bool → Bool → Eval(Ret Bool)
and = {1, () · G ∈ { 1, (); 0, () } · eval sub → retG ∈ { 1, (); 0, () }

0, () · G ∈ { 1, (); 0, () } · eval sub → ret 0, ()}

Desugaring this de�nition using �g. 16 gives exactly the fully-elaborated, four-way branching
version from section 4.

B Polymorphic Call-By-Push-Value _-Calculus

The full de�nition of the polymorphic Call-By-Push-Value _-calculus is given in �gs. 17 to 20.
Notice that Call-By-Push-Value’s sequencing axioms from �g. 20 don’t seem to appear in Call-

By-Unboxed-Value simple V[ equational theory in section 3.4. These are equivalent to conversions
that commute a proc computation to pull out of any block statement—do, unbox, or a plain as—to
pop the stack �rst before running the computation, like so:

(22 Proc) do" as { ? → proc {@ → "′
@?

@∈&... } ?∈%... } = proc {@ → do" as { ? → "′
@?

?∈%... } @∈&... }
(22 Proc) unbox+ as { ? → proc {@ → "@?

@∈&... } ?∈%... } = proc {@ → unbox+ as { ? → "@?
?∈%... } @∈&... }

(22 Proc) ( as { ? → proc {@ → "@?
@∈&... } ?∈%... } = proc {@ → ( as { ? → "@?

?∈%... } @∈&... }
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Kind ∋ g ::= val | comp

Type ∋ ) ::= � | �
ValueType ∋ � ::= - | 1 | �0 ×�1 | 0 | �0 +�1 | ∃- : g .� | U�

CompType ∋ � ::= - | � → � | ⊤ | �0 & �1 | ∀- : g .� | F�

Value ∋ + ::= G | () | (+0,+1) | (0,+ ) | (1,+ ) | thunk"
Comp ∋ " ::= doG : � ← " ;" ′ | return+ | + . force

| mat�+ as { () → " } | mat�+ as { (G0 : �0, G1 : �1) → " }
| mat�+ as { (1, G1 : �1) → "1

1∈{0,1}... } | mat�+ as { (- : g, G : �) → " }
| _G :�." | " + | _ { } | _ {1."1∈{0,1}... } | " 0 | " 1 | Λ- :g ." | " )

Fig. 17. Polymorphic Call-By-Push-Value syntax.

EvalCxt ∋ � ::= □ | doG : � ← �;" | � + | � 0 | � 1 | � )

(V F) doG : � ← return+ ;" ↦→ " [+ /G]
(V1) mat� () as { () → " } ↦→ "

(V×) mat� (+0,+1) as { (G0 : �0, G1 : �1) → " } ↦→ " [+0/G0,+1/G1]
(V+0) mat� (0,+ ) as { (1, G1 : �1) → "1

1∈{0,1}... } ↦→ "0 [+ /G0]
(V+1) mat� (1,+ ) as { (1, G1 : �1) → "1

1∈{0,1}... } ↦→ "1 [+ /G1]
(V∃) mat� (),+ ) as { (- : g, G : �) → " } ↦→ " [) /-,+ /G]
(V U) (thunk"). force ↦→ "

(V→) (_G :�.") + ↦→ " [+ /G]
(V&0) (_ {1."1

1∈{0,1}... }) 0 ↦→ "0

(V&1) (_ {1."1
1∈{0,1}... }) 1 ↦→ "1

(V∀) (Λ- :g .") ) ↦→ " [) /- ]

Fig. 18. Polymorphic Call-By-Push-Value operational semantics.

If we want to look at things the other way, we can likewise push the stack frames downward
into block statements, toward the sub-procedures that want them, like so:

(22 enter) ⟨do" as { ? → "?
?∈%... } . enter ∥ ⟩ = do" as { ? → ⟨"? . enter ∥ ⟩ ?∈%... }

(22 enter) ⟨unbox+ as { ? → "?
?∈%... } . enter ∥ ⟩ = unbox+ as { ? → ⟨"? . enter ∥ ⟩ ?∈%... }

(22 enter) ⟨( as { ? → "?
?∈%... } . enter ∥ ⟩ = ( as { ? → ⟨"? . enter ∥ ⟩ ?∈%... }

All of the 22 enter and 22 Proc equations are derivable from the V[ axioms already seen in �gs. 5
and 9. For example, here is a derivation of 22 enter using only the V Ret and [ Ret axioms:

⟨do" as { ? → "?
?∈%... } . enter ∥ ⟩ =[ Ret do" as { ? → ⟨do ret? as { ? → "?

?∈%... } . enter ∥ ⟩ ?∈%... }
=V Ret do" as { ? → ⟨"? . enter ∥ ⟩ ?∈%... }
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Kinds of types Γ ⊢ ) : g

Γ, - : g, Γ′ ⊢ - : g
TyVar

Γ ⊢ 1 : val 1)
Γ ⊢ 0 : val 0)

Γ ⊢ ⊤ : comp
⊤)

Γ ⊢ �0 : val Γ ⊢ �1 : val

Γ ⊢ �0 ×�1 : val
×)

Γ ⊢ �0 : val Γ ⊢ �1 : val

Γ ⊢ �0 +�1 : val
+)

Γ, - : g ⊢ � : val

Γ ⊢ ∃- : g .� : val
∃)

Γ ⊢ � : comp

Γ ⊢ U� : val
U)

Γ ⊢ � : val Γ ⊢ � : comp

Γ ⊢ � → � : comp
→)

Γ ⊢ �0 : comp Γ ⊢ �1 : comp

Γ ⊢ �0 & �1 : comp
&)

Γ, - : g ⊢ � : comp

Γ ⊢ ∀- : g .� : comp
∀) Γ ⊢ � : val

Γ ⊢ F� : comp
∃)

Types of values Γ ⊢ + : �

Γ, G : �, Γ′ ⊢ G : �
Var

Γ ⊢ () : 1 1�
No 0� rules

Γ ⊢ +0 : �0 Γ ⊢ +1 : �1

Γ ⊢ (+0,+1) : �0 ×�1
×�

Γ ⊢ + : �0

Γ ⊢ (0,+ ) : �0 +�1
+�0

Γ ⊢ + : �1

Γ ⊢ (1,+ ) : �0 +�1
+�1

Γ ⊢ ) : g Γ ⊢ + : �[) /- ]
Γ ⊢ (),+ ) : ∃- : g .�

∃�
Γ ⊢ " : �

Γ ⊢ thunk" : U�
U �

Types of computations Γ ⊢ " : �

Γ ⊢ " : F� Γ, G : � ⊢ " ′ : �

Γ ⊢ doG :� ← " ;" ′ : �
F�

Γ ⊢ + : �
Γ ⊢ return+ : F�

F �

Γ ⊢ + : 1 Γ ⊢ " : �

Γ ⊢ mat�+ as { () → " } : � 1�
Γ ⊢ + : �0 ×�1 Γ, G0 : �0, G1 : �1 ⊢ " : �

Γ ⊢ mat�+ as { (G0 : �0, G1 : �1) → " } : � ×�

Γ ⊢ + : 0
Γ ⊢ mat�+ as { } : � 0�

Γ ⊢ + : �0 +�1 Γ, G0 : �0 ⊢ "0 : � Γ, G1 : �1 ⊢ "1 : �

Γ ⊢ mat�+ as { (0, G0 : �0) → "0; (1, G1 : �1) → "1 } : �
&�

Γ ⊢ + : ∃- : g .� Γ, - : g, G : � ⊢ " : �

Γ ⊢ mat�+ as { (- : g, G : �) → " } : � ×�
Γ ⊢ + : U�

Γ ⊢ + . force : �
U�

Γ, G : � ⊢ " : �

Γ ⊢ _G :�." : � → �
→�

Γ ⊢ " : � → � Γ ⊢ + : �

Γ ⊢ " + : �
→�

Γ ⊢ "0 : �0 Γ ⊢ "1 : �1

Γ ⊢ _ { 0."0; 1."1 } : �0 & �1

&�
Γ ⊢ " : �0 & �1

Γ ⊢ " 0 : �0

&�0
Γ ⊢ " : �0 & �1

Γ ⊢ " 1 : �1

&�1

Γ ⊢ _ { } : ⊤ ⊤�
No ⊤� rules.

Γ, - : g ⊢ " : �

Γ ⊢ Λ- :g ." : ∀- :g .�
∀�

Γ ⊢ " : ∀- :g .� Γ ⊢ ) : g

Γ ⊢ " ) : � [) /- ] ∀�

Fig. 19. Polymorphic Call-By-Push-Value type system.
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Rules for congruence (equality can be applied in any context) plus:

Γ ⊢ " : �

Γ ⊢ " = " : �
Re�

Γ ⊢ " = " ′ : �

Γ ⊢ " ′
= " : �

Symm
Γ ⊢ " = " ′ : � Γ ⊢ " ′

= " ′′ : �

Γ ⊢ " = " ′′ : �
Trans

Γ ⊢ " = " ′ : � " ′ ↦→ " ′′

Γ ⊢ " = " ′′ : �
Step

Extensional [ axioms:

([→) _G :�.(" G) = " : � → � (G ∉ �+ ("))
([0) _ { } = " : ⊤
([&) _ { 0.(" 0); 1.(" 1) } = " : �0 & �1

([∀) Λ- :g .(" - ) = " : ∀- :g .� (- ∉ �+ ("))
([ U) thunk(". force) = " : U�

([ F) doG : � ← " ; returnG = " : F�

([1) mat�+ as { () → " [()/G] } = " [+ /G] (+ : 1)
([×) mat�+ as { (G0:�0, G1:�1) → " [(G0, G1)/G] } = " [+ /G] (+ : �0 ×�1, G0, G1 ∉ �+ ("))
([0) mat�+ as { } = " [+ /G] (+ : 0)
([+) mat�+ as { (1, G1 :�1) → "1 [(1, G1)/G]1∈{0,1}... } = " [+ /G] (+ : �0 + �0, G1 ∉ �+ ("1))
([×) mat�+ as { (- :g, G :�) → " [(-, G)/G] } = " [+ /G] (+ : ∃- :g .�, -, G ∉ �+ ("))

Sequencing axioms:

(22→) doG ← " ; (_~." ′) = _~.(doG ← " ;" ′) (~ ∉ �+ ("))

(22&) doG ← " ; (_ {1. "1
1∈{0,1}... }) = _ {1.(doG ← " ;"1)1∈{0,1}... }

(22∀) doG ← " ; (Λ- ." ′) = Λ- .(doG ← " ;" ′) (- ∉ �+ ("))

(22 F)
doG ← ( do~ ← " ′;

");
" ′′

=

doG ← " ;

do~ ← " ′;

" ′′
(G ∉ �+ (" ′), ~ ∉ �+ ("))

Fig. 20. Polymorphic Call-By-Push-Value equational theory.

In their most general form, we can summarize all of these small-step commutations by a single
commutation between tail contexts �C;—which surround all the places that an atomic computation
might return from, a.k.a tail positions—with the introduction and elimination forms of the Proc&
type, expressed by just these two axioms:

TailCxt ∋ �C; ::= □ | ( as�<A | unbox+ as�<A | do" as�<A

MatchRespCxt ∋ �<A ::= { ? → �C;
?

?∈%... }

(22 proc) �C; [proc {@ → "8@
@∈&... } 8∈�...] = proc {@ → �C; ["8@

8∈�...]@∈&... }
(22 enter) ⟨�C; ["8

8∈�...] . enter ∥ ⟩ = �C; [⟨"8 . enter ∥ ⟩ 8∈�...]

which can be derived from the small-step commutations by induction on �C; .
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