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ON NON-APPROXIMABILITY OF ZERO LOSS

GLOBAL L2
MINIMIZERS BY GRADIENT

DESCENT IN DEEP LEARNING

Thomas Chen and Patricia Muñoz Ewald

Abstract. We analyze geometric aspects of the gradient descent algorithm in
Deep Learning (DL), and give a detailed discussion of the circumstance that,
in underparametrized DL networks, zero loss minimization cannot generically
be attained. As a consequence, we conclude that the distribution of training
inputs must necessarily be non-generic in order to produce zero loss minimizers,
both for the method constructed in [2,3], or for gradient descent [1] (which
assume clustering of training data).

1. Introduction and Main Results

We analyze some basic geometric aspects of the gradient descent algorithm in
Deep Learning (DL) networks. For some thematically related background, see for
instance [4,5,7–11] and the references therein. In our previous papers [2,3], we gave
an explicit construction of globally minimizing weights and biases for the L2 cost
in underparametrized ReLU DL networks, leading to zero loss (i.e., the value of the
cost is zero). In the work at hand, we address the fact that in the underparametrized
case, zero loss minimizers do not exist generically. As a consequence, we conclude
that the distribution of training inputs must necessarily be non-generic to allow
for zero loss minimizers, both for the method constructed in [2,3] (which assumes
clustering of training data), or for gradient descent [1].

We let the input space be given by RM , with training inputs x
(0)
j → RM ,

j = 1, . . . , N . We assume that the outputs are given by yω → RQ, ω = 1, . . . , Q
where Q ↑ M . We introduce the map ε : {1, . . . , N} ↓ {1, . . . , Q}, which assigns
the output label ε(j) to the j-th input label, that is, x(0)

j corresponds to the output
yε(j). We define y

ε
:= (yε(1), . . . , yε(N))

T → RNQ, where A
T is the transpose of

the matrix A. Let Ni denote the number of training inputs belonging to the output
vector yi, i = 1, . . . , Q.

We assume that the DL network contains L hidden layers, with the ω-th layer
defined on RMω , and recursively determined by

x
(ω)
j = ϑ(Wωx

(ω→1)
j + bω) → RMω

via the weight matrix Wω → RMω↑Mω→1 , bias vector bω → RMω , and activation func-
tion ϑ. We assume that ϑ has a Lipschitz continuous derivative, and that the output
layer

x
(L+1)
j = WL+1x

(L)
j + bL+1 → RQ
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contains no activation function.
We let the vector ϖ → RK enlist all components of all weights Wω and biases bω,

ω = 1, . . . , L+ 1, including those in the output layer. Accordingly,

K =
L+1∑

ω=1

(MωMω→1 +Mω)

where we define M0 ↔ M for the input layer.
In the output layer, we denote x

(L+1)
j → RQ by xj [ϖ] for brevity, and obtain the

L2 cost as

C[x[ϖ]] = 1

2N

∣∣x[ϖ]↗ y
ε

∣∣2
RQN =

1

2N

∑

j

|xj [ϖ]↗ yε(j)|2RQ ,

using the notation x := (x1, . . . , xN )T → RQN . Here, | • |Rn is the Euclidean norm.

1.1. Comparison model. We consider the following toy model for compari-
son, defined by the gradient flow,

(1.1) ϱsx(s) = ↗↘xC[x(s)] x(0) = x
(0) → RQN

parametrized by s → R, or in components,

ϱs(xj(s)↗ yε(j)) = ↗ 1

N
(xj(s)↗ yε(j))

for all j = 1, . . . , N . This is trivially solvable,

xj(s)↗ yε(j) = e
→ s

N (xj(0)↗ yε(j))

with initial data xj(0) = x
(0)
j . Because the right hand side converges to zero as

s ↓ ≃, we find that xj(s) ↓ yε(j) as s ↓ ≃ for all j. In particular, this yields a
zero loss, global minimum of the cost, since C[x(s)] ↓ 0 as s ↓ ≃.

1.2. Gradient descent flow. The gradient descent algorithm seeks to mini-
mize the cost function by the use of the gradient flow for the vector of weights and
biases defined by

(1.2) ϱsϖ(s) = ↗↘ϑC[x[ϖ(s)]] ϖ(0) = ϖ0 → RK
,

where the vector field ↘ϑC[x[•]] : RK ↓ RK is Lipschitz continuous if the same
holds for the derivative of the activation function ϑ. Accordingly, the existence and
uniqueness theorem for ordinary di!erential equations holds for (1.2). In compu-
tational applications, the initial data ϖ0 → RK is often chosen at random. Clearly,
because of

(1.3) ϱsC[x[ϖ(s)]] = ↗
∣∣↘ϑC[x[ϖ(s)]]

∣∣2
RK ↑ 0

the cost C[x[ϖ(s)]] is monotone decreasing in s, and since C[x[ϖ(s)]] ⇐ 0 is bounded
below, the limit C↓ = lims↔↗ C[x[ϖ(s)]] exists for any orbit {ϖ(s)|s → R}, and
depends on the initial data, C0 = C[x[ϖ(0)]].

Convergence of C[x[ϖ(s)]] implies that lims↔↗ |ϱsC[x[ϖ(s)]]| = 0, and therefore,
lims↔↗ |↘ϑC[x[ϖ(s)]]|RK = 0 from (1.3). Thus, the basic goal is to find C↓ =
lims↔↗ C[x[ϖ(s)]] = C[x[ϖ↓]] where ϖ↓ is a critical point of the gradient flow (1.2),
satisfying 0 = ↗↘ϑC[x[ϖ↓]].

Remark 1.1. Notably, as s ↓ ≃, neither does lims↔↗ C[x[ϖ(s)]] = C[x[ϖ↓]]
imply that ϖ(s) converges to ϖ↓, nor to any other element of {ϖ↓↓ → RK |C[x[ϖ↓↓]] =
C[x[ϖ↓]]}, nor that ϖ(s) converges at all, without further assumptions on C[x[•]] (for
instance, of it being Morse-Bott).

Therefore, while C[x[ϖ(s)]] always converges to a stationary value of the cost
function under the gradient descent flow, ϖ(s) cannot generally be assumed to
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converge to a minimizer ϖ↓. This is a key shortcoming of the gradient descent
method, as for the training of a DL network, the main task is to find minimizing
weights and biases ϖ↓.

Remark 1.2. As an elementary 1-dimensional example illustrating the sit-
uation addressed in Remark 1.1, we may consider x[ϖ] = ϖ

1
ϑ2+1 and C[x[ϖ]] =

1
2 (x[ϖ])

2 = 1
2ϖ

2 1
(ϑ2+1)2 ⇐ 0 for ϖ → R. Here, clearly, ϖ↓ = 0 is a critical value

and global minimizer. The gradient descent flow is determined by ϱsϖ(s) =
↗ϱϑC[x[ϖ(s)]] = ϖ(s)((ϖ(s))2 ↗ 1) 1

((ϑ(s))2+1)3 , and one easily verifies that given any
initial data with |ϖ0| < 1, the corresponding orbit converges, lims↔↗ ϖ(s) = ϖ↓ = 0.

On the other hand, given any initial data with |ϖ0| > 1, the corresponding orbit
diverges, lims↔↗ |ϖ(s)| = ≃, while nevertheless, lims↔↗ x[ϖ(s)] = 0, and therefore,
lims↔↗ C[x[ϖ(s)]] = 0 = C[x[ϖ↓]]. This is because |ϱϑC[x[ϖ]]| ⇒ 1

|ϑ|3 for |ϖ| ⇑ 1, and
one straightforwardly verifies that for ϖ ⇑ 1, the solution of ϱsϖ(s) ⇒ 1

(ϑ(s))3 has
the asymptotic behavior ϖ(s) ⇒ s

1
4 ↓ ≃ as s ↓ ≃. The case for ϖ ⇓ ↗1 is similar.

1.3. Dynamics of x(s) := x[ω(s)]. Next, we note that C[x[ϖ(s)]] depends
on ϖ(s) only through its dependence on x[ϖ(s)]. Thus, defining the Jacobi matrix

D[ϖ] :=
[
ϱxj [ϖ]

ϱϖω

]

j=1,...,N ω=1,...,K
=





ϖx1[ϑ]
ϖϑ1

· · · ϖx1[ϑ]
ϖϑK

· · · · · · · · ·
ϖxN [ϑ]
ϖϑ1

· · · ϖxN [ϑ]
ϖϑK



 → RQN↑K

and writing x(s) := x[ϖ(s)] for brevity, we find that the gradient descent flow for
ϖ(s) induces the following flow for x(s) → RQN ,

ϱsx(s) = D[ϖ(s)]ϱsϖ = ↗D[ϖ(s)]↘ϑC[x[ϖ(s)]](1.4)

= ↗D[ϖ(s)]DT [ϖ(s)]↘xC[x[ϖ(s)]]

Passing to the second line, we used (1.2). Here, the matrix D[ϖ(s)]DT [ϖ(s)] →
RQN↑QN is positive semi-definite; it corresponds to the neural tangent kernel [6].
In the special case when it is strictly positive definite and thus invertible, (1.4)
is the gradient flow for x(s) in the metric on RQN defined by the metric tensor
(D[ϖ(s)]DT [ϖ(s)])→1. Our main results in this paper address the similarity or dis-
similarity in the qualitative behavior between solutions to (1.4) and the comparison
model (1.1), depending on this invertibility condition.

1.3.1. The overparametrized case. In the overparametrized situation where
K ⇐ QN , we have the following result.

Theorem 1.1. Assume that x[ϖ↓] is a stationary solution,

(1.5) 0 = ↗D[ϖ↓]D
T [ϖ↓]↘xC[x[ϖ↓]]

Then, it corresponds to a global minimum of the L2 cost,

C[x[ϖ↓]] = 0,

if and only if ↘xC[x[ϖ↓]] = 0.
A necessary condition for ↘xC[x[ϖ↓]] = 0 to follow from (1.5) is that

rank(D[ϖ↓]D
T [ϖ↓]) = QN

has full rank. This, in turn, is only possible if K ⇐ QN which means that the DL
network is overparametrized.

Moreover, if there exist s0 ⇐ 0 and ς > 0 such that D[ϖ(s)]DT [ϖ(s)] > ς for all
s ⇐ s0 (so that, in particular, rank(D[ϖ(s)]DT [ϖ(s)]) = QN) along the orbit ϖ(s),
the solution of (1.4) converges to the global minimizer for any initial condition
x(0) → RQN .



70 CHEN AND MUÑOZ EWALD

Proof. In components, ↘xC[x[ϖ↓]] = 0 is explicitly given by
1

N
(xj [ϖ↓]↗ yε(j)) = 0 ⇔j → {1, . . . , N}.

Therefore, ↘xC[x[ϖ↓]] = 0 is equivalent to xj [ϖ↓] = yε(j) for all j, and thus holds if
and only if C[x[ϖ↓]] = 0.

We recall that D[ϖ↓] → RQN↑K where K is the total number of parameters
contained in all weights and biases. Therefore, rank(D[ϖ↓]D

T [ϖ↓]) ↑ min{QN,K},
and for D[ϖ↓]D

T [ϖ↓] to have full rank QN , it is necessary that QN ↑ K. But, this
means that the DL network is overparametrized.

Finally, if there exists s0 ⇐ 0 such that D[ϖ(s)]DT [ϖ(s)] > ς for a positive
constant ς > 0 and all s ⇐ s0, then

ϱsC[x(s)] = ↗(↘xC[x(s)])TD[ϖ(s)]DT [ϖ(s)]↘xC[x(s)]

↑ ↗ς|↘xC[x(s)]|2RQN = ↗2
ς

N
C[x(s)]

for all s > s0. Therefore, lims↔↗ C[x(s)] ↑ lims↔↗ e
→2 ε

N (s→s0)C[x(s0)] = 0. Since
C[x(s)] is a convex function of x(s)↗ y

ε
, this implies that for any arbitrary initial

data x(0) = x0 → RQN , the solution of (1.4) converges to the global minimizer
x↓ = lims↔↗ x(s) which satisfies x↓ ↗ y

ε
= 0. ↭

Remark 1.3. We note that while x↓ = lims↔↗ x(s) = lims↔ x[ϖ(s)] converges
in the above situation, the vector of weights and biases ϖ(s) itself nevertheless does
not necessarily converge.

1.3.2. The underparametrized case. In the underparametrized situation where
K < QN , we have the following result.

Theorem 1.2. Assume that K < QN , and that ϖ(s), s → R, is an orbit of
the gradient descent flow (1.2). Denote by P[ϖ(s)] the projector, orthogonal with
respect to the Euclidean inner product on RQN , onto the range of D[ϖ(s)]DT [ϖ(s)]
where rank(D[ϖ(s)]DT [ϖ(s)]) ↑ K (the latter is not assumed to be constant in s),
and let P↘[ϖ(s)] := 1QN↑QN ↗ P[ϖ(s)] denote its complement. Then,

ϱsx(s) = ↗P [ϖ(s)](D[ϖ(s)]DT [ϖ(s)]↘xC[x[ϖ(s)]])
P↘[ϖ(s)]ϱsx(s) = 0

has the structure of a constrained dynamical system. In particular,

(1.6) P[ϖ(s)] = D[ϖ(s)](DT [ϖ(s)]D[ϖ(s)])→1
D

T [ϖ(s)],

if rank(D[ϖ(s)]DT [ϖ(s)]) = K is maximal. Let ϖ↓ be an arbitrary stationary point
of the cost function, with ↘ϑC[x[ϖ↓]] = 0, and rank(D[ϖ↓]D

T [ϖ↓]) ↑ K. Then,

0 = P[ϖ↓]↘xC[x[ϖ↓]].
In particular, the local extremum of the cost function at ϖ↓ is attained at

(1.7) C[x[ϖ↓]] =
N

2

∣∣P↘[ϖ↓]↘xC[x[ϖ↓]]
∣∣2
RQN

where rank(P↘[ϖ↓]) ⇐ QN ↗K.

Proof. Due to being a symmetric matrix, D[ϖ(s)]DT [ϖ(s)] = R
T!R for any

given s → R (where we notationally suppress the dependence of R and ! on ϖ(s) for
brevity), where ! ⇐ 0 is diagonal and R → SO(QN). Then, letting P! denote the
projector obtained from replacing all nonzero entries of ! by 1, we have P[ϖ(s)] =
R

T
P!R. From P!! = ! = !P! follows that

(1.8) D[ϖ(s)]DT [ϖ(s)] = P [ϖ(s)]D[ϖ(s)]DT [ϖ(s)] = D[ϖ(s)]DT [ϖ(s)]P[ϖ(s)].
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In other words, [D[ϖ(s)]DT [ϖ(s)],P[ϖ(s)]] = 0 commute, and from

(1.9) D[ϖ(s)]DT [ϖ(s)] = P [ϖ(s)]D[ϖ(s)]DT [ϖ(s)]P[ϖ(s)],

the ranges and kernels of D[ϖ(s)]DT [ϖ(s)] and P [ϖ(s)] coincide, for every s → R.
If rank(D[ϖ(s)]DT [ϖ(s)]) = K is maximal, then the matrix D

T [ϖ(s)]D[ϖ(s)] →
RK↑K is invertible, as a consequence of which the expression (1.6) for the ortho-
projector P[ϖ(s)] is well-defined.

It follows from (1.4) and (1.8) that

ϱsx(s) = ↗P [ϖ(s)](D[ϖ(s)]DT [ϖ(s)]↘xC[x[ϖ(s)]]),
and as a consequence,

P↘[ϖ(s)]ϱsx(s) = 0.

It follows from (1.4) that ϱsϖ(s) = 0 implies ϱsx(s) = 0.
Let ϖ↓ denote a stationary point for (1.2), with rank(D[ϖ↓]D

T [ϖ↓]) ↑ K, so
that clearly, rank(P↘[ϖ↓]) ⇐ QN ↗K. Then,

0 = ↗D[ϖ↓]D
T [ϖ↓]↘xC[x[ϖ↓]]

from which follows that
P[ϖ↓]↘xC[x[ϖ↓]] = 0,

due to (1.9). Then,

C[ϖ↓] =
N

2
|↘xC[x[ϖ↓]]|2 =

N

2

(∣∣P[ϖ↓]↘xC[x[ϖ↓]]
∣∣2
RQN +

∣∣P↘[ϖ↓]↘xC[x[ϖ↓]]
∣∣2
RQN

)

=
N

2

∣∣P↘[ϖ↓]↘xC[x[ϖ↓]]
∣∣2
RQN

as claimed. ↭
1.3.3. Comparison with constructive minimizers from [2]. The map x : RK ↓

RQN , ϖ ↖↓ x[ϖ] from the space of parameters to the output space is determined
by the training inputs

{
(x(0)

j,i )
Nj

i=1

}Q

j=1
. Accordingly, the map x : RK ↓ RQN is

generic if the distribution of training inputs
{
(x(0)

j,i )
Nj

i=1

}Q

j=1
is generic (i.e., it is

highly random and unstructured).
We, therefore, arrive at the following main result.

Theorem 1.3. Zero loss minimizers of underparametrized ReLU DL networks
do not exist for generic distributions of training data.

Proof. The ReLU activation function ϑ acts component-wise by the ramp
function (φ)+ = max{0, φ} for φ → R. Suitably smoothing the latter in an ↼-
neighborhood of the origin for an arbitrary small ↼ > 0, we obtain ϑϱ, which we
assume to be monotone increasing, and to have a Lipschitz continous derivative.
Accordingly, the corresponding gradient vector field ↘xC[x[ϖ]] and the matrix D[ϖ]
are Lipschitz continuous in ϖ. Therefore, Theorem 1.2 can be applied to the flow
generated by it. For generic training inputs, the right hand side of (1.7) is strictly
positive, due to the nonzero rank of P↘[ϖ↓]; accordingly, zero loss does not occur.
We conclude that zero loss minimizing weights and biases for the L2 cost in un-
derparametrized ReLU DL networks do not exist, and cannot be approximated via
the gradient descent flow, if the distribution of training inputs is generic. ↭

The DL network studied in [1–3] is underparametrized, with M = Mω = Q = L

⇔ω and K = (Q + 1)3 + (Q + 1)2 < QN (respectively, ⇓ QN), and uses the
ReLU activation function. The minimizers obtained in [1–3] are robust under a
small deformation of ϑ to a monotone increasing ϑϱ (in particular, they involve
no derivatives of the activation function). Accordingly, the construction given in
[2, 3] with ϑ replaced by ϑϱ yields a degenerate zero loss minimum of the cost
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function. In [1–3], the training data is clustered, and hence non-generic. Therefore,
the existence of zero loss minimizers, constructed explicitly for underparametrized
ReLU DL in [2, 3], and via gradient flow in [1], is not in contradiction with the
above.
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