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ADAPTIVE PRECONDITIONED GRADIENT DESCENT
WITH ENERGY→

HAILIANG LIU† , LEVON NURBEKYAN‡ , XUPING TIAN§ , AND YUNAN YANG¶

Abstract. We propose an adaptive step size with an energy approach for a suitable class of
preconditioned gradient descent methods. We focus on settings where the preconditioning is applied to
address the constraints in optimization problems, such as the Hessian-Riemannian and natural gradient
descent methods. More specifically, we incorporate these preconditioned gradient descent algorithms
in the recently introduced Adaptive Energy Gradient Descent (AEGD) framework. In particular, we
discuss theoretical results on the unconditional energy-stability and convergence rates across three
classes of objective functions. Furthermore, our numerical results demonstrate excellent performance
of the proposed method in several challenging test optimization problems.
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1. Introduction
We present an optimization method involving adaptive step size with energy coupled

with preconditioned gradient descent, designed for solving the constrained optimization
problem:

min
ω↑!

L(ω). (1.1)

Here L→C1(Rn) is bounded below, !↑Rn represents the set of all possible parameters.
In scenarios where !=Rn, one common strategy for solving (1.1) is to apply simple
iterative algorithms such as the standard gradient descent (GD):

ωk+1=ωk↓ε↔L(ωk), (1.2)

where ε>0 is the step size. However, if ! represents a constraint set where the simple
GD cannot guarantee the iterates to stay in !, the projected gradient descent method
(PGD) is often used:

ωk+1=P!(ωk↓ε↔L(ωk)), (1.3)

where P! denotes the projection onto !. Under relatively mild assumptions on L and !,
it can be proven that using (projected) GD with a su”ciently small step size ε enhances
the quality of the iterates over time, L(ωk+1)<L(ωk), and the method converges to a
stationary point within ! [34]. A more refined version of the algorithm determines ε
by searching for the minimum of the objective function along the descent direction [30]
at each iteration.

Closely related classes of algorithms are preconditioned gradient descent methods
defined as

ωk+1=ωk↓εTk↔L(ωk), (1.4)
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1414 ADAPTIVE PRECONDITIONED GRADIENT DESCENT WITH ENERGY

where Tk is a suitable preconditioning matrix. Algorithms of the form (1.4) include
many classical and well-known optimization methods, such as Newton’s and Gauss–
Newton methods [30], Hessian–Riemannian gradient descent (HRGD) [2], and natural
gradient descent (NGD) [3], just to name a few. In this work, we are interested in
the last two in the context of constrained optimization problems. More specifically, we
think of HRGD as a method for enforcing convex constraints and NGD as a method
of incorporating the geometry of the constraints manifold when the latter admits an
explicit parametrization.

HRGD corresponds to the choice Tk=P (ωk)
(
↔2h(ωk)

)↓1
, where h is a suitable

convex function, and P (ωk) is the ↔2h(ωk)-orthogonal projection onto an appropriate
linear subspace. Furthermore, NGD corresponds to the choice Tk=G(ωk)↓1, where G(ω)
is a suitable positive semidefinite matrix [31].

Although our focus in this paper is on HRGD and NGD, our proposed approach is
versatile and can be extended to problems beyond HRGD and NGD, provided a well-
identified preconditioning matrix is available. For instance, it can be applied to the
Laplacian Smoothing Gradient Descent (LSGD) method [32], where the authors use
A= I↓ϑ# to reduce the variance of the SGD method, with I being the n↗n identity
matrix and # the discrete one-dimensional Laplacian.

Adaptive Energy Gradient Descent (AEGD) [21,22] is a recently introduced method
for enhancing the performance of gradient descent algorithms for unconstrained prob-
lems. More specifically, let c→R be such that inf

ω↑Rn
(L(ω)+c)>0, and l(ω)=

√
L(ω)+c.

The algorithm initiates from ω0 and r0= l(ω0) and iterates as follows:

vk=↔l(ωk), (1.5a)

rk+1=
rk

1+2ε↘vk↘2
, (1.5b)

ωk+1=ωk↓2εrk+1vk. (1.5c)

Here, {r2k}↔k=0 play the role of an energy. In sharp contrast to GD, energy-adaptive
gradient methods, like AEGD, exhibit unconditional energy stability; that is, {r2k}↔k=0 is
a decreasing sequence irrespective of the base step size ε>0. The excellent performance
of AEGD-type schemes has been demonstrated across various optimization tasks [21,22].
AEGD can be extended to accommodate stochastic e$ects in gradient estimation [22] or
incorporate momentum for further convergence acceleration [21]. Moreover, the results
in [22] indicate that c has minimal impact on the performance of (1.5).

The main objective of this paper is to extend the AEGD framework to include
preconditioned gradient descent algorithms of the form (1.4). Indeed, setting c and l as
above, we consider the following algorithm:

vk=Tk↔l(ωk), (1.6a)

rk+1=
rk

1+2ε↘vk↘2
, (1.6b)

ωk+1=ωk↓2εrk+1vk, (1.6c)

which we call the adaptive preconditioned gradient descent with energy (AEPG).
For HRGD, we consider only a”ne constraints !, whereas for NGD, we consider

only !=Rn. In both cases, the updates in (1.6) guarantee that ωk →! holds for all k→N
as long as ω0→!, with any fixed ε. Under these scenarios, the proposed method (1.6)
demonstrates unconditional energy stability, regardless of the magnitude of ε. This
raises the following question:
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What is the convergence rate of this preconditioned gradient descent method with an
adaptive time step incorporating energy?

We provide answers for two scenarios:

(1) When !=Rn, and Tk=A↓1
k for some symmetric and positive definite Ak, we prove

that the AEPG method converges to a minimum of the objective function with
an appropriate step size. The convergence rates are influenced by the geometric
properties of the objective function, and we provide rates for both convex and
non-convex objectives, including those that satisfy the Polyak–Lojasiewics (PL)
condition. The analysis in this case covers HRGD without a”ne constraints, Pk= I
and Ak=↔2h(ωk), and NGD, Ak=G(ωk).

(2) When !={ω→Rn,Bω= b}, and Tk=PkG
↓1
k , where Gk is symmetric and positive

definite, and Pk is the Gk-orthogonal projection onto ker(B), we prove that the
AEPG method converges to a minimum of the objective function with a suitably
small step size. We derive convergence rates for both convex and non-convex ob-
jectives, including those that satisfy a projected Polyak–Lojasiewics (PL) condition
defined in (2.19). The analysis in this case covers the HRGD with a”ne constraints,
Gk=↔2h(ωk) and Pk=P (ωk).
A specific example of interest is the Wasserstein Natural Gradient Descent

(WNGD), which has recently gained much attention in machine learning and PDE-
based optimization applications [4, 17, 18, 31, 37,42]. Previous works primarily focus on
computing descent directions, whereas our emphasis here is on time steps. We apply the
AEPG algorithm in Equation (1.6) to WNGD, incorporating the e”cient computation
of {vk} using methods developed in [31]. See Section 5 for more details on WNGD.

Our approach represents a unique fusion of preconditioned gradient and energy-
adaptive strategies. This combination enables acceleration of standard GD in terms of
both better descent directions and step sizes, with provable convergence rates under
relatively mild conditions on both the objective function and the step size. Our current
findings for constrained optimization problems provide insight into energy-driven up-
date rules with preconditioned gradients, creating a path toward additional algorithms
employing AEGD-type techniques.

1.1. Contributions. In summary, our main contributions can be outlined as
follows.

(1) Novel AEPG Algorithm. We introduce a novel Adaptive Energy-based Pre-
conditioned Gradient (AEPG) algorithm for the optimization problem represented
by (1.1). The convergence theory is established across three distinct cases: gen-
eral di$erentiable objective functions, nonconvex objective functions satisfying the
Polyak-Lojasiewics (PL) condition, and convex objective functions.

(2) Application to HRGD and NGD. We apply our proposed AEPG to Hessian-
Riemannian Gradient Descent (HRGD) and Natural Gradient Descent (NGD), two
specific optimization algorithms that fit the general framework of Equation (1.4).
Our approach improves these methods by providing unconditional energy stability.

(3) Unifying Framework. We demonstrate that HRGD can be interpreted as an
instance of NGD. To the best of our knowledge, this is a new connection, providing
a unified framework for studying various constrained optimization algorithms.

(4) Numerical Experiments. We conduct several numerical experiments, illustrating
that AEPG exhibits faster convergence compared to classical algorithms without
using an adaptive step size. This superiority is powerful in handling challenging
scenarios such as ill-conditioned or nonconvex problems.
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1.2. Review of Related Literature. It is natural to seek an improved descent
direction to accelerate the convergence speed of GD. This can be achieved by leveraging
curvature information from the objective function, as demonstrated in Newton and
quasi-Newton methods. Specifically, for ϖ-smooth objective functions, these methods
attain a quadratic and superlinear local convergence rate, respectively [30]. The natural
gradient method, initially introduced in [3], falls within this category, using curvature
information from the Riemannian metric tensor. In recent years, the Wasserstein natural
gradient has attracted significant attention [18,19,31]. We refer interested readers to [26]
for additional insights on the natural gradient. Adding momentum is another widely
employed technique to enhance descent directions. Examples include the heavy-ball
(HB) method [33] and Nesterov’s accelerated gradient (NAG) [27,28].

An alternative avenue to expedite GD (or SGD) convergence involves the use of
adaptive step sizes. Previous steps’ gradients are often used to adjust the step size. This
idea is used in renowned works such as AdaGrad [12] and RMSProp [38]. Adam [15],
combining momentum and adaptive step size benefits, has demonstrated rapid con-
vergence in early iterations and has gained widespread use in the machine learning
community. Further enhancements to Adam can be explored in [11,23,24,35,44]. These
adaptive methods not only update the step size in each iteration but also compute in-
dividual step sizes for each parameter. Other adaptive techniques adjust the step size
based on the error of the objective function value [3, 41].

Manifold optimization is a well-explored area in the literature. The general feasible
algorithm framework on the manifold involves the use of a retraction operator, with
parallel translation or vector transport aiding in pulling the update back to the mani-
fold constraint. Computational costs and convergence behaviors of di$erent retraction
operators vary significantly; interested readers can find further details in [1,7,13,14,20]
and related references.

Finally, a considerable body of work exists on strategies for improving GD in uncon-
strained optimization problems. For line search-based GD methods, the classical Armijo
rule (1966) and the Wolfe conditions (1969) guide the inexact line search, with addi-
tional insights available in [29,43], the book of [30], and associated references. The BB
method [5], a gradient method with modified step sizes motivated by Newton’s method
but without involving any Hessian, is noteworthy. Numerous studies explore methods
capable of handling constraints, such as projected gradient descent, proximal gradient
methods, penalty methods, barrier methods, sequential quadratic programming (SQP)
methods, interior-point methods, augmented Lagrangian/multiplier methods, primal-
dual strategies, and active set strategies; see, for instance, [6, 30]. Therefore, our work
contributes to the broader field of continuous optimization with constraints.

1.3. Notation. Throughout this paper, we adopt the following notations:
↘ ·↘ denotes the ϱ2 norm for vectors and the spectral norm for matrices. Additionally,
ς1(·), . . . ,ςn(·) represent the smallest and largest eigenvalues, respectively. For a function
L, we use↔L and↔2L to denote its gradient and Hessian, respectively, while L→ denotes
the global minimum value of L. For a positive definite matrix A, we introduce the
vector-induced norm by A as ↘w↘A :=

√
≃w,Aw⇐. The set {1,2, · · · ,n} is denoted as [n].

1.4. Organization. The rest of this paper is organized as follows. In Section 2,
we introduce the AEPG method and present the key theoretical results, including un-
conditional energy stability, convergence, and convergence rates. Section 3 delves into
HRGD, demonstrating how AEPG can solve a specific type of constrained optimiza-
tion problem using a Hessian–Riemannian metric. Moving to Section 4, we show that
the HRGD can be cast as an NGD. In particular, Section 5 discusses the Wasserstein
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natural gradient and an e”cient numerical method for computation through AEPG.
Numerical results and examples are given in Section 6 to further elucidate the discussed
concepts. Conclusions and further discussions follow in Section 7. Technical proofs
for theoretical results in Section 2 are presented in Appendix A. A construction of the
preconditioned matrix for HRDG is presented in Appendix B. Appendix C includes an
illustrative example to explain the projected PL condition. Finally, we put parameter
setup of the numerical examples in Appendix D.

2. Preconditioned AEGD and theoretical results
In this section, we present the theoretical results for the main preconditioned AEGD

algorithm on stability, convergence, and convergence rates.

2.1. Assumptions. We assume that the objective function L is di$erentiable
and bounded from below, and the update rule for AEPG follows (1.6). Throughout the
paper, we assume that ω0→! yields

ωk →!, ⇒k→N and ε>0. (2.1)

This assumption is valid in two specific cases we address:

(1) When !=Rn and Tk=A↓1
k , where the matrices (Ak)↔k=0 are symmetric and uni-

formly positive definite; that is,

ς1↘φ↘2⇑ φ↗Akφ⇑ςn↘φ↘2, ⇒φ→Rn, k⇓0, (2.2)

for some ςn⇓ς1>0.

(2) When !={ω→Rn,Bω= b} and Tk=PkG
↓1
k , where B→Rm↘n, b→Rm, (Gk)↔k=0 are

symmetric and uniformly positive definite, and Pk are the Gk-orthogonal projection
operators onto ker(B). The explicit form of the projection matrix is

Pk= I↓G↓1
k B↗(BG↓1

k B↗)↓1B. (2.3)

In Section 2.2 we discuss the unconstrained case, whereas Section 2.3 is devoted to
the a”ne constraints case.

2.2. No equality constraints. In this section, we assume that !=Rn, and so
(2.1) is valid.

Theorem 2.1 (Unconditional energy stability). AEPG (1.6) is unconditionally energy
stable. Specifically, for any step size ε>0,

r2k+1= r2k↓(rk+1↓rk)
2↓ 1

ε
↘ωk+1↓ωk↘2. (2.4)

This implies that rk is strictly decreasing and converges to r→ as k⇔↖. Furthermore,

↔∑

k=0

↘ωk+1↓ωk↘2⇑εr20. =↙ lim
k≃↔

↘ωk+1↓ωk↘=0. (2.5)

Proof. Starting from (1.6), we deduce

2rk+1(rk+1↓rk)=2rk+1v
↗
k (ωk+1↓ωk)=↓1

ε
↘ωk+1↓ωk↘2.

By rewriting with 2b(b↓a)= b2↓a2+(b↓a)2, we obtain equality (2.4). This implies
that r2k is monotonically decreasing (also bounded below), ensuring convergence. The
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1418 ADAPTIVE PRECONDITIONED GRADIENT DESCENT WITH ENERGY

non-negativity of rk further ensures the convergence of rk. Summation of (2.4) over k
from 0,1, · · · yields (2.5).

Note that, starting from (1.6b), the following relation is derived:

r0↓r→=2ε
↔∑

j=0

rj+1↘vj↘2↙ lim
k≃↔

(rk+1↘vk↘2)=0.

In simpler terms, after a finite number of steps, either ↘vk↘2 becomes small or rk becomes
small. For convergence to a stationary point in general objectives (↘vk↘2⇔0), it is
essential to control the rate of decrease of rk. This control can be achieved by imposing
a moderate upper bound on the base step size ε.

In Lemma 2.1, we establish a su”cient condition on ε that ensures a positive lower
bound for (rk)↔k=0, a condition crucial in the convergence proof of Theorem 2.2. This
is where the ϖ-smoothness assumption comes into play. We define L as ϖ-smooth if
↘↔2L(ω)↘⇑ϖ for any ω→Rn. Here, L→ := inf

!
L, and we assume c is chosen such that

l→ :=
∝
L→+c>0.

Lemma 2.1. Assume L is ϖ-smooth, bounded from below by L→, and rk generated by
AEPG (1.6) with Tk=A↓1

k . If r0⇓ l(ω0)↓l→

ε1
, then

rk⇓ r→>0, (2.6)

provided that:

ε<εs :=
4l→ς1

ϖr20

(
r0↓

l(ω0)↓ l→

ς1

)
(2.7)

where ς1>0 is the smallest eigenvalue of Ak.

Proof. Note that l(ω)=
√

L(ω)+c is concave with respect to L, and dl
dL = 1

2l . Thus,
we have

l(ωj+1)↓ l(ωj)⇑
1

2l(ωj)
(L(ωj+1)↓L(ωj)). (2.8)

Using the ϖ-smoothness of L, we have

L(ωj+1)⇑L(ωj)+↔L(ωj)
↗(ωj+1↓ωj)+

ϖ

2
↘ωj+1↓ωj↘2. (2.9)

From (1.6a), we derive ↔L(ωj)=2l(ωj)↔l(ωj)=2l(ωj)Ajvj . Hence,

↔L(ωj)
↗(ωj+1↓ωj)=2l(ωj)(Ajvj)

↗(↓2εrj+1vj)

=↓4εl(ωj)rj+1v
↗
j Ajvj

⇑↓4εl(ωj)ς1rj+1↘vj↘2

=2l(ωj)ς1(rj+1↓rj), (2.10)

where the last equality follows from a formulation of (1.6b). Substituting (2.10) and
(2.9) into (2.8), we obtain

l(ωj+1)↓ l(ωj)⇑ς1(rj+1↓rj)+
ϖ

4l(ωj)
↘ωj+1↓ωj↘2.
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Taking a summation over j from 0 to k↓1, we have:

l(ωk)↓ l(ω0)⇑ς1(rk↓r0)+
ϖ

4l→

k↓1∑

j=0

↘ωj+1↓ωj↘2

⇑ς1(rk↓r0)+
ϖε

4l→
r20.

Considering l(ωk)⇓ l→ and the last inequality, we obtain

rk⇓ r0↓
l(ω0)↓ l→

ς1
↓ ϖε

4l→ς1
r20 =

ϖr20
4l→ς1

(εs↓ε)>0.

This establishes a uniform lower bound for rk. Letting k⇔↖, we obtain (2.6).

Remark 2.1. Let us discuss the selection of r0= l(ω0), the default choice for consis-
tency with the method derivation. When ς1=1, then

εs=
4

ϖ

L→+c

L(ω0)+c
′ 4

ϖ

for c large enough. This asymptotic limit clearly exceeds the upper threshold 2/ϖ which
is known to be necessary for ensuring GD’s stability.

Remark 2.2. The stipulated lower bound for r0 is not overly restrictive. In can be
expressed equivalently as

√
L(ω0)+c>

√
L(ω0)+c↓ l→

ς1
.

This inequality holds for any value of c satisfying c+L→>0 when ς1⇓1. However, for
ς1<1, a larger c becomes necessary to fulfill the condition:

c+L→>
(1↓ς1)2

ς1(2↓ς1)
(L(ω0)↓L→).

Theorem 2.2. Under the same assumptions as in Lemma 2.1, with r0⇓ l(ω0)↓l→

ε1
,

let (ωk)↔k=0 be generated by AEPG (1.6). Then {L(ωk)}↔k=0 converges monotonically to
L(ω→), where ω→ is a local minimizer or a saddle point, if

0<ε⇑min

{
ε0,εs

}
, ε0 :=

ς1l→

ϖr0
. (2.11)

Proof. If ε⇑ε0, the e$ective step size falls into the regime where L(ωk) is shown to

be decreasing, indicating convergence. With r0⇓ l(ω0)↓l→

ε1
and ε⇑εs, Lemma 2.1 ensures

that rk is bounded below by a positive constant, allowing ↘↔L(ωk)↘2 to converge to zero
as k tends to infinity. For the detailed proof, please refer to Appendix A.1.

Remark 2.3. The Stable Manifold Theorem from dynamical systems theory, as
applied in [16], implies that if L satisfies a strict saddle property (that is, ↔2L has at
least one strictly negative eigenvalue at a saddle point), then the probability of ω→ being
a saddle point is zero. In practice, introducing noise can help prevent getting stuck at a
saddle point. Let’s discuss the convergence rate of AEPG with additional geometrical
insights into L, including properties such as convexity or the Polyak–Lojasiewicz (PL)
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1420 ADAPTIVE PRECONDITIONED GRADIENT DESCENT WITH ENERGY

condition. For a di$erentiable function L :Rn⇔R with argminL ∞=∈ (indicating the
optimization problem has at least one global minimizer), we say L satisfies the PL
condition if there exists µ>0 such that:

1

2
↘↔L(ω)↘2⇓µ(L(ω)↓L(ω→)), ⇒ω→Rn, ω→→argminL. (2.12)

This condition implies that ↔L(ω)=0 implies L(ω)=L(ω→) and ω→argminL. In other
words, critical points are global minimizers.

It’s important to note that strongly convex functions (ς1(↔2f)⇓µ) satisfy the PL
condition (2.12). However, a function that satisfies the PL condition may not necessarily
be convex. For instance, consider the function:

L(ω)=ω2+3sin2ω, ω→R,

which is nonconvex but satisfies the PL condition with µ= 1
32 and minL=0.

Theorem 2.3. Assume (ωk)↔k=0↑! when ! ∞=Rn. The convergence rates of AEPG
(1.6) are given in three distinct scenarios:

(i) For any ε>0 and r0>0, we have

min
j<k

↘↔L(ωj)↘2⇑
2r0ς2

n

εrkk

(
max
j<k

L(ωj)+c

)
, (2.13)

with ςn given in (2.2). Under the assumptions of Theorem 2.2 with ε satisfying (2.11),
we have rk>r→>0, and the following convergence rates:

(ii) If L is PL with a global minimizer ω→, then {ωk} satisfies (2.14), hence conver-
gent:

↔∑

k=0

↘ωk+1↓ωk↘⇑
4ςn∝
2µς1

√
L(ω0)↓L(ω→), (2.14)

L(ωk)↓L(ω→)⇑ e↓c0krk/εn(L(ω0)↓L(ω→)), c0 :=
µε

l(ω0)
.

(iii) If L is convex with a minimizer ω→, then

L(ωk)↓L(ω→)⇑ c1ςn↘ω0↓ω→↘2

krk
, c1=

2l(ω0)

ε
. (2.15)

Proof. The proof of (ii) and (iii) is somewhat standard and is therefore deferred
to Appendix A.2. Here we present a proof for (i).

(i) Using the scheme (1.6b), we have

rj+1↓rj =↓2εrj+1↘vj↘2.

Take a summation over j from 0 to k↓1 gives

r0↓rk=2ε
k↓1∑

j=0

rj+1↘vj↘2⇓2εrk

k↓1∑

j=0

↘vj↘2⇓
2εrk
ς2
n

k↓1∑

j=0

↘↔l(ωj)↘2,

which, upon rearrangement, leads to

kmin
j<k

↘↔l(ωj)↘2⇑
k↓1∑

j=0

↘↔l(ωj)↘2⇑
r0ς2

n

2εrk
.
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Using 4l2↘↔l↘2=↘↔L↘2, and dividing both sides by k gives result (2.13).

Remark 2.4.

(1) Unlike GD, which uses a fixed step size constrained by the typically unknown
smoothness constant ϖ (thus making standard GD prone to non-convergence with
larger step sizes), the gradient norm sequence’s convergence rate to zero for AEPG
in scenario (i) extends to general non-convex objective functions for any ε>0. No-
tably, these observations remain valid regardless of the presence of ϖ. It is natural
to ponder whether this convergence rate can be enhanced. Interestingly, the answer
is negative, at least within the general class of functions under consideration here.

(2) Regarding the upper bound in Equation (2.13), we can establish the following in-
equality:

L(ωk)⇑L(ω0)+
ϖεr20
2

. (2.16)

This bound holds when L is ϖ-smooth. Using the ϖ-smoothness of L and the descent
direction of the search, we can express this as:

L(ωj+1)⇑L(ωj)+↔L(ωj)
↗(ωj+1↓ωj)+

ϖ

2
↘ωj+1↓ωj↘2⇑L(ωj)+

ϖ

2
↘ωj+1↓ωj↘2.

By summing over j from 0 to k↓1 and using Equation (2.5),

L(ωk)↓L(ω0)⇑
ϖ

2

k↓1∑

j=0

↘ωj+1↓ωj↘2⇑
ϖε

2
r20.

It is important to note that such a bound is unavailable for GD unless the step size
is su”ciently small.

(3) It is crucial to highlight that the aforementioned results remain valid for a variable
ε, as long as it adheres to the constraint specified in (2.11) and is not excessively
small. The convergence theory with a variable ε provides the flexibility to adjust
ε when necessary. For instance, the inclusion of the sequence (ωk)↔k=0↑! becomes
essential when ! ∞=Rn. This need for adaptability is addressed in Algorithm 1,
which we will introduce in Section 3.2, where ε is selected based on a line search at
every iteration.

2.3. Equality constraints. In this section, we assume that

!={ω→Rn | Bω= b},

for some B→Rm↘n, b→Rm, and

Tk=P (ωk)G(ωk)
↓1, (2.17)

where G(ω) is a symmetric positive definite matrix, and P (ω) :Rn⇔ker(B) is the G(ω)-
orthogonal projection operator on ker(B).

Before discussing convergence analysis results, we provide a motivation for the
choice (2.17). To this end, assume that Rn is endowed with a Riemannian structure
given by a metric tensor G(ω), ω→Rn; that is, for all ω→Rn we have an inner product

≃v1,v2⇐G(ω)=v↗1 G(ω)v2, v1,v2→TωRn, (2.18)
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where TωRn′=Rn is the tangent space of Rn at ω. Note that

Tω!′=ker(B)={v→Rn | Bv=0}.

The choice (2.17) is motivated by the following lemma.

Lemma 2.2. For every smooth f :Rn⇔R one has that

argmin
v

{
df(ω)

dt

∣∣∣∣ ω̇=v, v→Tω!, ↘v↘G(ω)⇑1

}
=↓ P (ω)G(ω)↓1↔f(ω)

↘P (ω)G(ω)↓1↔f(ω)↘G(ω)
.

Hence, the steepest descent direction of f on the submanifold (!,G) is
↓P (ω)G(ω)↓1↔f(ω).

Proof. We have that

df(ω)

dt
=v↗↔f(ω)=v↗G(ω)G(ω)↓1↔f(ω)= ≃v,G(ω)↓1↔f(ω)⇐G(ω)= ≃v,↔Gf(ω)⇐G(ω),

where we denote by↔Gf(ω)=G(ω)↓1↔f(ω) the metric gradient. So we have the problem

argmin
v

{
≃v,↔Gf(ω)⇐G(ω)

∣∣∣∣ v→Tω!, ↘v↘G(ω)⇑1

}

=argmin
v

{
≃v,P (ω)↔Gf(ω)⇐G(ω)

∣∣∣∣ v→Tω!, ↘v↘G(ω)⇑1

}

=↓ P (ω)↔Gf(ω)

↘P (ω)↔Gf(ω)↘G(ω)
=↓ P (ω)G(ω)↓1↔f(ω)

↘P (ω)G(ω)↓1↔f(ω)↘G(ω)
,

where the first equation follows from the definition of the orthogonal projection.

Remark 2.5. As previously mentioned, selecting (2.17) in (1.6) yields ωk+1↓ωk=
↓2εrk+1vk →Tωk!′=ker(B). Therefore, (1.6) returns feasible updates; that is, (2.1) is
valid.

The following theorem provides a concise summary of the stability and convergence
properties of (1.6) in the context of the chosen (2.17).

Theorem 2.4. Let ω0→!={ω→Rn, Bω= b}, and G(ω) be symmetric and positive
definite with 0<ς1⇑↘G(ω)↘2⇑ςn for all ω→!. Furthermore, let (ωk) be generated by
(1.6) with (2.17). The following statements hold:

(1) Unconditional Energy Stability: It satisfies unconditional energy stability,
as stated in Theorem 2.1.

(2) Positive Lower Bound: The statement in Lemma 2.1 regarding a positive
lower bound for rk remains valid.

(3) Monotonic Convergence: Under the same assumptions and conditions on ε
as described in Theorem 2.2, L(ωk)↔k=0 decreases monotonically and converges
with

lim
k≃↔

↘P↗
k ↔L(ωk)↘⇔0.

(4) Convergence Rates: Convergence rates are obtained in three distinct scenar-
ios:
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(i) For any ε>0 and r0>0, it holds that

min
j<k

↘P↗
j ↔L(ωj)↘2⇑

2r0ς2
n

εrkk

(
max
j<k

L(ωj)+c

)
.

Under the same assumptions and conditions on ε as described in Theorem
2.2, where rk>r→>0, the following convergence rates are established:

(ii) If L satisfies the projected PL condition with a minimum ω→→!:

1

2
↘P (ω)↗↔L(ω)↘2⇓µ(L(ω)↓L(ω→)), ⇒ω→!, (2.19)

where µ>0, then the sequence {ωk} has finite length, and hence converges.
Furthermore,

L(ωk)↓L(ω→)⇑ e↓c0krk/εn(L(ω0)↓L(ω→)), c0 :=
µε

l(ω0)
. (2.20)

(iii) If L is convex with a minimum ω→→!, then:

L(ωk)↓L(ω→)⇑ c1ςn↘ω0↓ω→↘2

krk
, c1=

2l(ω0)

ε
. (2.21)

Proof.

(1) The proof for Theorem 2.1 remains applicable in this context.

(2) To demonstrate that (2.10) still holds in the case of (2.17), we recall that Pj is the
Gj-orthogonal projection operator, and Pj is an involution, P 2

j =Pj , and Gj-symmetric,

GjPj =P↗
j Gj . Hence, Tj =PjG

↓1
j =G↓1

j P↗
j and Tj =PjTj =PjG

↓1
j P↗

j . We can ex-
press the gradient term as:

↔L(ωj)
↗(ωj+1↓ωj)=↓4εl(ωj)rj+1↔l(ωj)

↗G↓1
j P↗

j ↔l(ωj)

=↓4εl(ωj)rj+1↘P↗
j ↔l(ωj)↘2G↑1

j
. (2.22)

Considering that

vj =Tj↔l(ωj)=G↓1
j P↗

j ↔l(ωj) ↙ P↗
j ↔l(ωj)=Gjvj ,

we further bound (2.22) by

↔L(ωj)
↗(ωj+1↓ωj)=↓4εl(ωj)rj+1↘Gjvj↘2G↑1

j

⇑↓4l(ωj)ες1rj+1↘vj↘2=2l(ωj)ς1(rj+1↓rj).

This establishes the validity of (2.10), and the remaining portion of the proof aligns
with that of Lemma 2.1.

The proofs for (3) and (4) mirror those of Theorem 2.3, and therefore are deferred
to Appendix A.3.

Remark 2.6. Rather than relying on the conventional gradient ↔L(ω), the conver-
gence and convergence rate of L(ωk) are influenced by the projected gradient P↗↔L(ω).
This is also evident at the continuous level: the projected PL condition (2.19) implies:

d

dt
L(ω(t))=↓↘P↗↔L(ω)↘2G↑1 ⇑↓2µ

ςn
(L(ω(t))↓L→).
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Thus, for any t>0,

L(ω(t))↓L→⇑ e↓2µt/εn (L(ω(0))↓L→) ,

where ω(0)=ω0, representing the initial guess.

Remark 2.7. In general, verifying the projected PL condition directly can be chal-
lenging. To illustrate this new structural condition, consider an example involving loss
functions of the form:

L(ω)=
1

2

(
↼ω21+ϖω22

)
,

subject to a general linear constraint

q(ω)=aω1+bω2↓1=0,

where ab ∞=0,ϖ⇓↼>0 are constants. This constrained minimization problem is convex,
thereby admitting a unique solution:

ω→=

(
aϖ

a2ϖ+b2↼
,

b↼

a2ϖ+b2↼

)
.

Upon a careful calculation (refer to Appendix C for details), it can be verified that the
projected PL condition holds for any ω→!, where

µ=
a2ϖ+b2↼

a2+b2
.

To apply the method and theoretical results to a specific optimization task, it
remains essential to identify and compute matrices G↓1

j . This aspect will be addressed
in the subsequent sections.

Remark 2.8. It is observed that the convergence rate for convex objectives in (4)-(iii)
remains the same as that in the scenario Tk=A↓1

k .

3. Hessian-Riemannian metric
In Section 2.3, we explored preconditioning matrices of the form (2.17), where G is a

generic metric. In this section, we discuss a more specific choice for G based on the Hes-
sian of a suitable convex function. The preconditioned gradient descent algorithm (1.4)
based on such G is known as the Hessian-Riemannian gradient descent [2].

For analysis purposes, we previously assumed only a”ne equality constraints. In
this section, we do not perform analysis and include more general convex inequality
constraints. We believe the reader will benefit from this more general exposition, and
it will motivate our future work. More precisely, we introduce

M={ω | U(ω)⇓0}, (3.1)

where U is a concave function, and assume

!={ω | U(ω)⇓0, Bω= b} . (3.2)

Thus, (1.1) reduces to

min L(ω)
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s.t. Bω= b, (linear equality constraints)

U(ω)⇓0. (inequality constraints)

In large-scale nonlinear programming, popular methods for solving the above problem
include the interior-point method and active-set SQP methods [30]. In this section, we
show that this problem can be more e”ciently solved using AEPG (1.6) with a suitable
choice of Tk.

3.1. Hessian-Riemannian formulation. We start by reviewing the Hessian-
Riemannian framework in the geometric context preceding Lemma 2.2. We first consider
only inequality constraints; that is,

min{L(ω) |ω→M}, (3.3)

where L→C1 is bounded from below, and M↑Rn is a closed convex set such that
int(M) ∞=∈. Standard gradient descent for (3.3) may not necessarily stay in M. To
address this limitation, one approach is to introduce a suitable Riemannian metric on
M that shrinks the gradients near ↽M to prevent updates from leaving M.

Assume M is endowed with a metric G as in (2.18). Then for a smooth f :M⇔R
the metric gradient and chain rule are

↔Gf(ω)=G(ω)↓1↔f(ω),
df(ω)

dt
=
〈
↔Gf(ω), ω̇

〉

G(ω)
,

where t ∋⇔ω(t)→M is an arbitrary smooth curve (see Lemma 2.2).
For a convex function L, the variational characterization of ω→→argmin

M
L is given

by:

≃↔GL(ω),ω↓ω→⇐G(ω)⇓0, ⇒ω→M.

Therefore, if there exists a function V such that ↔GV (ω)=ω↓ω→, then V serves as a
natural Lyapunov function for the gradient flow

ω̇=↓↔GL(ω).

Indeed, it follows that

dV (ω)

dt
= ≃↔GV (ω), ω̇⇐G(ω)=↓≃↔GL(ω),ω↓ω→⇐G(ω)⇑0.

The existence of such Lyapunov functions is valuable for proving convergence results for
gradient descent algorithms. The following theorem [2] characterizes G for which such
V can be found. Furthermore, these V are nothing else but Bregman divergences.

Theorem 3.1 (Theorem 3.1 [2]). A metric G→C1(int(M)) ensures that for any
given φ→ int(M), there exists a functional Vϑ : int(M)⇔R satisfying ↔GVϑ(ω)=ω↓φ if
and only if there exists a strictly convex function h→C3(int(M)) such that ⇒ω→ int(M),
G(ω)=↔2h(ω). Additionally, defining Dh : int(M)↗ int(M)⇔R by

Dh(φ,ω)=h(φ)↓h(ω)↓≃↔h(ω),φ↓ω⇐ (3.4)

and taking Vϑ =Dh(φ, ·), we get ↔GVϑ(ω)=ω↓φ.
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The preceding discussion motivates the application of the metric

G(ω)=↔2h(ω), ω→ int(M), (3.5)

for a suitable convex function h : int(M)⇔R. There are many choices of h for a fixed
M. The Legendre type identified in [2], is a class of h suitable for enforcing M and
performing convergence analysis. Precisely, we say that h is of Legendre type if:

(1) h→C2(int(M)) is strictly convex,

(2) |↔h(φj)|⇔+↖ for all {φj}↑ int(M) converging to a boundary point of M.

For constraints described by U as in (3.1), we discuss the construction of h in Appendix
B.

3.2. Adding linear equality constraints. We now consider the case when (3.2)
holds; that is, we have the optimization problem:

min{L(ω) |U(ω)⇓0, Bω= b}. (3.6)

Following Section 2.3, we can combine the Hessian-Riemannian metric and the projec-
tion operator onto ker(B). Thus, (3.6) is in the form of (1.1) and can be solved by (1.6)
with

Tk=P (ωk)↔2h(ωk)
↓1=↔2h(ωk)

↓1
(
I↓B↗(B↔2h(ωk)

↓1B↗)↓1B↔2h(ωk)
↓1

)
. (3.7)

The algorithmic steps for solving (3.6) can be summarized in Algorithm 1.

Algorithm 1 AEPG for solving problem (3.6) with U in the form of (B.3). Good
default setting for parameters are c=1 and r0= l(ω0)=

√
L(ω0)+c

.

Require: G: a metric in M and G(ω)=↔2h(ω) for some h of the Legendre type; B:
equality constraint matrix; c: a parameter such that L(ω)+c>0 for all ω→M; ε→:
an upper bound for the step size; ⇀→ [0, 12 ] : a small positive constant; and K: the
total number of iterations.

Require: ω0: initial guess of ω satisfying Bω0= b and Ui(ω0)⇓0 for i→ [p]
1: for k=0 to K↓1 do
2: Compute: ↔2h(ωk)↓1

3: ↔l(ωk)=↔L(ωk)/(2l(ω0))
4: A†

k=↔2h(ωk)↓1
(
I↓B↗(B↔2h(ωk)↓1B↗)↓1B↔2h(ωk)↓1

)

5: vk=A†
k↔l(ωk) (compute Riemannian gradient)

6: Line search: εk=clip
(
argmax{ε | Ii(ε)⇓ ⇀Ui(ωk),i→ [p]},0,ε→

)

7: rk+1= rk/(1+2εk↘vk↘2) (update energy)
8: ωk+1=ωk↓2εkrk+1vk (update parameters)

9: return ωK

Remark 3.1. The line search step in Algorithm 1 is to ensure that (ωk)k⇐0 stay in
int(M). Simultaneously, our experiments show that this can be simply guaranteed by
choosing ε suitably small.

Remark 3.2. We should point out that the choice of r0 can significantly a$ect the
performance of AEPG. In our experiments, we observe that the choice r0= l(ω0)/ς1

is better than the default choice r0= l(ω0) in some scenarios, see Table 6.2. This is
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consistent with the theoretical results obtained in Lemma 2.1 under the condition r0>
l(ω0)↓l→

ε1
, where ς1 is the smallest eigenvalue of Ak. This remark also applies to Algorithm

2.

4. Natural gradient descent
In this section, we show that HRGD can be cast as an NGD.

4.1. Natural Gradient Descent. We present the Natural Gradient Descent
(NGD) following the exposition in [31]. Let (M,g) be a (formal) Riemannian manifold,
!↑Rk a closure of a non-empty open set, ⇁ :! ∋⇔M a smooth forward model that
parametrizes M explicitly, and f :M⇔R a smooth function. Furthermore, consider
the optimization problem

min
ω↑!

f(⇁(ω)). (4.1)

Let
{
↽g
ωi
⇁(ω)

}k

i=1
↑Tϖ(ω)M be the tangent vectors. Then the NGD direction for this

problem is given by

pnat=↓G(ω)↓1↔ωf(⇁(ω)), (4.2)

where

Gij(ω)= ≃↽g
ωi
⇁(ω),↽g

ωj
⇁(ω)⇐g(ϖ(ω)), 1⇑ i,j⇑k, ω→!,

is called an information matrix. This choice of the metric corresponds to the steepest
descent as measured in the “natural metric” of the model-manifold (M,g). Hence, there
is an inherent robustness with respect to the parameterization ω ∋⇔⇁(ω) [31].

For simplicity, we assume that G(ω) is invertible for all ω→!. Otherwise, G(ω)↓1

should be replaced by the pseudoinverse G(ω)†.
To establish a connection between NGD and Hessian-Riemannian Gradient Descent

(HRGD), we first present a variational formulation of pnat in (4.2). The following lemma
is elementary and can be found in many works on NGD. Nevertheless, we present it here
for the convenience of the reader. For a more comprehensive discussion of the subject,
we refer to [31] and numerous references therein.

Lemma 4.1. Let pnat be given by (4.2). Then one has that

pnat=arg min
p↑Rk

∥∥∥∥∥↔
gf(⇁(ω))+

k∑

i=1

pi↽
g
ωi
⇁(ω)

∥∥∥∥∥

2

g(ϖ(ω))

. (4.3)

Proof. Expanding the square norm, we have:

∥∥∥∥∥↔
gf(⇁(ω))+

k∑

i=1

pi↽
g
ωi
⇁(ω)

∥∥∥∥∥

2

g(ϖ(ω))

=p↗G(ω)p+2p↗↔ωf(⇁(ω))+↘↔gf(⇁(ω))↘2g(ϖ(ω)) ,

(4.4)

where we used the chain rule

≃↔gf(⇁(ω)),↽g
ωi
⇁(ω)⇐g(ϖ(ω))=↽ωif(⇁(ω)), 1⇑ i⇑k.

Hence, the first-order optimality condition with respect to p in (4.4) yields (4.3).
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4.2. Hessian-Riemannian Gradient Descent as a Natural Gradeint De-
scent. Consider again the constrained optimization problem

min
x↑Rd

{f(x) : U(x)⇓0, Bx= b} , (4.5)

where U is a concave function, and B→Rm↘d such that rank(B)=m<d. As before, we
denote by

M={x : U(x)⇓0}, (4.6)

and assume that h : int(M)⇔R is a convex function of Legendre type. Recall that the
HRGD direction is given by

ẋ=↓P (x)↔2h(x)↓1↔f(x), (4.7)

where P (x) :Rd⇔ker(B) is the ↔2h(x)-orthogonal projection. Our goal is to show
that (4.7) can be interpreted as an NGD direction.

Since rankB=m, the solutions of Bx= b have a parametric representation by an
a”ne map ⇁ :Rd↓m⇔Rd; that is,

{x : Bx= b}={⇁(ω) : ω→Rn, n :=d↓m} .

Moreover, without loss of generality, we can assume that the Jacobian of ⇁ has the form

Dω⇁(ω)=

(
W
I

)
,

where

• W →Rm↘n,

• I →Rn↘n is the identity matrix,

• rankDω⇁(ω)=n,

• the column vectors of Dω⇁(ω) form a basis for ker(B).

Hence, denoting by !=⇁↓1(M), we obtain that (4.5) can be written as

min
ω↑!

f(⇁(ω)),

recovering the setup in (4.1).

Lemma 4.2. Consider the problem (4.5). Suppose that !,⇁ are given as above, and
M is equipped with the Hessian metric

≃v1,v2⇐g(x)=v1 ·↔2h(x)v2, v1,v2→TxM′=Rd.

Furthermore, assume that ω̇=pnat, where pnat is defined as in (4.2). Then for x=⇁(ω)
we have that the equality (4.7) is valid.

Proof. From Lemma 4.1 we have that

pnat=argmin
p↑Rn↑m

↘↔gf(⇁(ω))+Dω⇁(ω) p↘2⇒2h(ϖ(ω)) .
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Since the columns of Dω⇁(ω) form a basis in ker(B), we have that vectors of the form
Dω⇁(ω)p span the whole subspace ker(B), and so

Dω⇁(ω)p
nat=↓P (⇁(ω))↔gf(⇁(ω))=↓P (⇁(ω))↔2h(⇁(ω))↓1↔f(⇁(ω)),

where P (⇁(ω)) is the ↔2h(⇁(ω))-orthogonal projection on ker(B), and we used the fact
that

↔gf(x)=↔2h(x)↓1↔f(x), ⇒x→ int(M).

Hence, using the Chain Rule, we obtain

ẋ=Dω⇁(ω)ω̇=Dω⇁(ω)p
nat=↓P (⇁(ω))↔2h(ω)↓1↔f(⇁(ω))=↓P (x)↔2h(x)↓1↔f(x).

5. Wasserstein metric
In Section 4, we explored the NGD in the context of a general (formal) Riemannian

manifold (M,g). In this section, our focus shifts to the Riemannian manifold induced
by the Wasserstein metric, commonly known as the optimal transportation metric. This
metric has gained recent popularity in data science and inverse problem communities,
which explains our motivation to pay special attention to the Wasserstein metric and
discuss the computational aspects of the corresponding NGD and AEPG algorithms.

In particular, we present how to compute tangent vectors {↽g
ωi
⇁(ω)}ki=1 and discuss

e”cient methods of computing the NGD direction pnat in (4.2) following the discussion
in [31]. Subsequently, we combine the Wasserstein NGD with the AEPG algorithm (1.6)
and obtain an adaptive Wasserstein NGD algorithm described in Algorithm 2.

Let M=P2,ac(Rd) be the set of Borel probability measures in Rd with finite second
moments that are absolutely continuous with respect to the Lebesgue measure in Rd.
In what follows, we slightly abuse notation, using same symbols for both probability
measures and their density functions.

The quadratic Wasserstein distance is then defined as

W2(ρ1,ρ2)= inf
ϱ↑P2(R2d)

(∫

R2d

|x↓y|2dπ(x,y)
) 1

2

s.t.

∫

R2d

⇁(x)dπ(x,y)=

∫

Rd

⇁(x)dρ1(x), ⇒⇁→C↔
c (Rd),

∫

R2d

▷(y)dπ(x,y)=

∫

Rd

▷(y)dρ2(y), ⇒▷→C↔
c (Rd),

(5.1)

for all ρ1,ρ2→M. It turns out that W2 can be interpreted as a geodesic distance on a
(formal) Rimennian manifold as follows [1]. For ρ→M we set

TςM={↔⇁ : ⇁→C↔
c (Rd)}

L2
ω(Rd;Rd)

, (5.2)

and

≃v1,v2⇐g(ς)=
∫

Rd

v1(x) ·v2(x)ρ(x)dx, ⇒v1,v2→TςM. (5.3)

Our goal is to solve the problem

min
ω↑!

L(ω) :=f(ρ(ω, ·)), (5.4)

For the author's personal use only.

For the author's personal use only.



1430 ADAPTIVE PRECONDITIONED GRADIENT DESCENT WITH ENERGY

where !↑Rn is a closure of a non-empty open set, f :M⇔R, and ρ(ω, ·)→M for all
ω→!.

In this setting, the NGD direction of L is given by

pW =↓G(ω)↓1↔L(ω), (5.5)

where G(ω)→Rn↘n is the information matrix

Gij(ω)=

∫

Rd

↽W
ωi ρ(ω,x) ·↽

W
ωj ρ(ω,x) ρ(ω,x)dx, 1⇑ i,j⇑n, (5.6)

and {↽W
ωi
ρ}↑TςM are the suitable tangent vectors.

Lemma 4.1 yields that

pW =argmin
p↑Rn

∥∥∥∥↽
W
ς f+

n∑

i=1

pi↽
W
ωi ρ

∥∥∥∥
2

L2
ω(Rd;Rd)

, (5.7)

where ↽W
ς f is the Wasserstein gradient of f at ρ.

Proposition 5.1 (Proposition 2.2 in [31]). Let ↽ςf and {↽ωiρ}ni=1 be, respectively,
the L2 derivative and tangent vectors; that is, the derivative and tangent vectors in the
standard sense of calculus of variations. Then we have that

↽W
ς f =↔↽ςf, (5.8)

↽W
ωi ρ=argmin

v


↘v↘2L2

ω(Rd;Rd) | ↓↔ ·(ρv)=↽ωiρ

, i=1, ...,n. (5.9)

An interesting fact is that the minimization problem (5.9) can be characterized by using
a potential function [40, Sections 8.1.2 and 8.2], [25, Section 4], [9, Section 3], [18, Section
2].

Lemma 5.1. One has that

min
v

{↘v↘2L2
ω(Rd;Rd) | ↓↔ ·(ρv)=↽ωiρ} (5.10)

=min
ϖ

{
↘↔⇁(x)↘2L2

ω(Rd;Rd) |
∫

Rd

⇁(x)dx=0,↓↔ ·(ρ↔⇁(x))=↽ωiρ

}
. (5.11)

This minimization problem thus admits the following solution:

↽W
ωi ρ=(↔(↓#ς)

↓1)↽ωiρ, i=1, ...,n. (5.12)

Remark 5.1. Note that (5.12) is well-defined at the continuous level, while for
computational e”ciency, we still use (5.9).

By Proposition 5.1, given the L2 tangent vectors {↽ω1ρ, · · · ,↽ωnρ} and gradient ↽ςf ,
the Wasserstein natural gradient can be calculated in two steps:

(1) Compute ṽi=
∝
ρ↽W

ωi
ρ for i=1, ...,n by

ṽi=argmin
ṽ

{↘ṽ↘2L2(Rd;Rd) |Mṽ=↽ωiρ}, where Mṽ=↓↔ ·(∝ρṽ). (5.13)

Here ṽi is uniquely defined by ↽ωiρ, denoted by M†(↽ωiρ).
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(2) Compute the Wasserstein natural gradient by

pW =argmin
p↑Rn

∥∥∥∥
∝
ρ↔↽ςf+

n∑

i=1

piṽi

∥∥∥∥
2

L2(Rd;Rd)

. (5.14)

Upon further spatial discretization, pW can be conveniently used for updating ωk
in AEPG algorithm stated below. For further details about the spatial discretization,
we refer to [31].

Algorithm 2 AEPG for solving the problem (5.4). Good default setting for parameters
are c=1 and r0= l(ω0)=

√
L(ω0)+c.

Require: ρ(ω), f a loss function; c: a constant such that L(ω)+c>0, where L(ω)=
f(ρ(ω)); ε: base step size; and T : the total number of iterations.

Require: ω0: initial guess of ω.
1: for k=0 to T ↓1 do
2: compute pWk via (5.13) and (5.14) (update natural gradient)
3: vk=↓pWk /2l(ωk)
4: rk+1= rk/(1+2ε↘vk↘2) (update energy)
5: ωk+1=ωk↓2εrk+1vk (update parameters)

6: return ωT

6. Numerical examples
This section presents a series of optimization examples to illustrate the following

two points1

(1) The advantages of natural gradient over the standard gradient.

(2) The enhanced convergence of AEPG over HRGD (1.4) with Tk given by (3.7)) and
WNGD ((1.4) with Tk=G(ωk)↓1, where G(ω) is the information matrix given by
(5.6)), particularly in addressing ill-conditioned or nonconvex problems.

In Subsection 6.1, we first present benchmark convex and nonconvex constrained op-
timization problems in the form of (3.3). These problems are solved by HRGD by
constructing a Hessian matrix ↔2h dictated by the form of constraints and then ap-
plying the AEPG method. We show the advantage of AEPG over HRGD, especially
in handling ill-conditioned or nonconvex problems. Furthermore, we apply AEPG to
address the D-optimal design problem, showcasing that with the preconditioning ma-
trix identified by the Hessian–Riemannian metric, AEPG exhibits advantages in both
e”ciency and accuracy.

In Subsection (6.2), we delve into an optimization problem on the Wasserstein
Riemannian manifold presented in the form of (4.1). We employ the least-squares
formulation (5.13) and (5.14) to e”ciently compute the Wasserstein natural gradient.
Our results indicate that methods utilizing the standard gradient (GD and AEGD)
may get stuck at a local minimum, whereas methods employing the Wasserstein natural
gradient (WNGD and AEPG) reliably converge to the global minimum.

Throughout all experiments, we fine-tune the step size of each method to ensure they
solve the problem with the minimum number of iterations or the least computational
time. For AEPG, we use default setting c=1 and r0= l(ω0) (refer to Algorithm 1 and
Algorithm 2) unless otherwise stated.

1The code is available at https://github.com/txping/AEPG.
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6.1. Hessian-Riemannian method. In the first two examples, we assess the
performance of HRGD and AEPG on functions with varying condition numbers (specif-
ically, the condition number of ↔2f). More precisely, we set the stopping criterion as
|f(x)↓f→|< ⇀ and compare the number of iterations each algorithm takes to achieve the
specified accuracy. Additionally, we calculate the ratio of HRGD iterations to AEPG
iterations. The summarized results are presented in Tables 6.1 and 6.2. Both sets of re-
sults indicate that AEPG significantly enhances the convergence of HRGD, particularly
in the context of ill-conditioned and nonconvex problems.

(a) Quadratic (b) Rosenbrock

Fig. 6.1: Contour plot and trajectories of AEPG and HRGD on two constrained optimization prob-
lems: the quadrative problem with ω=10 (a), and the Rosenbrock problem with ω=100 (b). In each
plot, the red star represents the minimum point.

6.1.1. Convex objectives. We begin with the constrained quadratic problem:

min f(x1,x2)=(x1↓1)2+ϖ(x2↓1)2,

s.t. (x1+0.5)2+(x2↓1)2⇑1,

where ϖ is a positive constant. With the provided constraint, the minimum value of f is
0.25 achieved at (0.5,1). In our experiments, we vary the value of ϖ, which corresponds
to the condition number of ↔2f , and solve the problems using HRGD (1.4) and AEPG
(Algorithm 1) with Tk=↔2h(xk)↓1. Here, we set

h(x1,x2)=u lnu↓u, u :=u(x1,x2)=1↓(x1+0.5)2↓(x2↓1)2.

The initial point is set at (↓1,1.8). The results are presented in Table 6.1, and the
trajectories of the two methods are visualized in Figure 6.1 (a).

6.1.2. Nonconvex objectives. We then consider the benchmark 2D-
Rosenbrock function of the form

f(x1,x2)=(x1↓1)2+ϖ(x2↓x2
1)

2,

where ϖ is a positive constant. This serves as a standard test case for optimization
algorithms. The global minimum (1,1) lies within a long, narrow, parabolic flat valley.
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ϖ ⇀
Step sizes ε Number of iterations Computational time (s)

HRGD AEPG HRGD AEPG Ratio HRGD AEPG Ratio

1 1e-7 1e-1 3e-1 416 103 4 0.0234 0.0075 3
10 1e-6 8e-3 2e-1 3175 47 67 0.1592 0.0046 35
100 1e-5 9e-4 9e-3 23120 723 32 1.1257 0.0533 21
1000 1e-4 3e-4 9e-4 14190 1715 8 2.6121 0.1349 19
10000 1e-3 2e-5 6e-5 147284 5075 29 14.9539 0.2805 53

Table 6.1: Number of iterations and computational time (in seconds) required by HRGD and AEPG
to achieve ε accuracy and the corresponding step sizes on the constrained quadratic problem. Here
ω controls the condition number of →2f ; the stopping criteria is |f(x)↑f→|< ε; Ratio = number of
iterations (computational time) of HRGD / number of iterations (computational time) of AEPG.

Finding the valley is simple, but pinpointing the actual minimum of the function proves
less trivial. In this example, we examine the constrained problem:

min f(x1,x2)=(x1↓1)2+ϖ(x2↓x2
1)

2, s.t. x1<0, x2>0.

Under the given constraint, the minimum value of f is 1 at (0,0). We vary the value
of ϖ, which corresponds to the condition number of ↔2f , and solve the problem using
HRGD and AEPG (Algorithm 1) with Tk=↔2h(xk)↓1. Here, we use

h(x1,x2)=K(↓x1)+K(x2), K(s)=s lns↓s,

leading to ↔2h(x)↓1=diag(↓x1,x2). The initial point is set at (↓0.5,2). The results
are presented in Table 6.2. Numerically, we observe that with a suitably larger step
size, AEPG still converges to the minimum point, as shown in Figure 6.1 (b).

ϖ ⇀
Step sizes ε Number of iterations Computational time (s)

HRGD AEPG HRGD AEPG Ratio HRGD AEPG Ratio

1 1e-7 2e-1 2e-3 7896 4802 2 0.2913 0.2257 1
10 1e-6 2e-2 2e-4 7935 1956 4 0.2604 0.1294 2
100 1e-5 2e-3 2e-5 8712 689 12 0.3606 0.0572 6
1000 1e-4 2e-4 1e-6 28705 1327 21 0.8766 0.0843 10
10000 1e-3 2e-5 1e-7 226524 2813 80 6.6848 0.1436 46

Table 6.2: Number of iterations and computational time (in seconds) required by HRGD and AEPG
to achieve ε accuracy and the corresponding step sizes on the constrained Rosenbrock problem. For
this problem, r0= l(ϑ0)/ϖ1 where ϖ1=0.01 is used in AEPG. Here ω controls the condition number
of →2f ; the stopping criteria is |f(x)↑f→|< ε; Ratio = number of iterations (computational time) of
HRGD / number of iterations (computational time) of AEPG.

6.1.3. D-Optimal Design Problem. Consider the problem of estimating a
vector x→Rm from measurements y→Rn given by the relationship

y=Ux+◁, ◁′N (0,1),

where U =[u1, · · · ,un]↗ is a matrix that contains n test (column) vectors ui→Rm. During
the experiment design phase, a reasonable goal is to minimize the covariance matrix,
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which is proportional to (U↗U)↓1. Using the D-optimality criteria, the problem is
formulated as a minimum determinant problem [39]:

min
ω

L(ω) := logdet


n∑

i=1

ωiuiu
↗
i

↓1

,

s.t.
n∑

i=1

ωi=1 and ωi⇓0, i→ [n].

(6.1)

This is a convex problem with the unit simplex as the feasible region. In computational
geometry, the D-optimal design problem arises as a dual problem of the minimum
volume covering ellipsoid (MVCE) problem and finds applications in computational
statistics and data mining [39].

To apply AEPG (Algorithm 1) to solve (6.1), we define the Hessian matrix by
↔2h(ωk), with

h(ω)=
n∑

i=1

K(ωi), K(s)=s lns↓s.

From this, we have ↔2h(ω)↓1=diag(ω1, ...,ωn). Note that B=[1,1, ...,1], resulting in the
preconditioning matrix, as defined by (3.7), taking the form:

Tk=↔2h(ωk)
↓1↓↔2h(ωk)

↓1B↗(B↔2h(ωk)
↓1B↗)↓1B↔2h(ωk)

↓1

=diag(ωk,1, · · · ,ωk,n)↓ωkω
↗
k , (6.2)

where B↔2h(ωk)↓1B↗=
n

i=1ωk,i=1 is used. Notably, from the structure of the pre-
conditioning matrix in (6.2), it is evident that the computation of AEPG is independent
of m (the dimension of the test vectors ui). Hence, AEPG is well-suited for solving D-
optimal design problems constructed with high-dimensional test vectors.

Several alternative algorithms have been proposed for solving (6.1), such as the
interior point method and the Frank–Wolfe (FW) method [10]. While the interior
point method requires the second-order derivative of f , the FW method is a first-order
gradient method. To make the comparison more convincing, we also consider FW with
away steps (FW-away), an e$ective strategy that enhances the vanilla FW algorithm’s
convergence speed and solution accuracy. Further details on applying FW and FW-away
to solve the D-optimal design problem can be found in [8, Chapter 5.2.7]. Parameter
setup of AEPG can be found in Table D.1 in Appendix D.

In our experiments, we maintain n=1000 (number of test vectors) and
compare AEPG (Algorithm 1) with other algorithms for various values of m:
10,30,50,80,100,200,300,400,500. We generate test vectors ui using independent ran-
dom Gaussian distributions with zero mean and unit variance. The initial point is set
as ω0=( 1n , ...,

1
n ). All computations are performed using Python 3.7 on a 2 GHz PC

with 16 GB Memory.

Comparison with the interior point method (IPM). For cases where m=
10,30,50,80,100, we conduct a comparison analysis between AEPG with IPM 2. Specif-
ically, we establish the stopping criteria as |L(ω)↓L→|<10↓7 and compare the compu-
tation time required for both methods to meet the stopping criteria. The summarized
results in Table 6.3 reveal that the computation time of AEPG is significantly less than
that of IPM, especially for relatively large m (m>10).

2The interior point method is applied through the Python package PICOS [36].
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m n
Computational time (s)

IPM AEPG Ratio

10 1000 1.39 2.84 0.5
30 1000 6.15 2.93 2
50 1000 21.33 3.02 7
80 1000 112.92 2.63 43
100 1000 253.37 2.44 104

Table 6.3: Comparison of computational time (in seconds) between AEPG and IPM for the D-optimal
design problem. The datasets have varying dimensions of test vectors m with a fixed number of test
vectors n=1000. Ratio = computational time of IPM / computational time of AEPG.

Comparison with the Frank-Wolfe (FW) method. For scenarios where m=
200, 300, 400, 500, the IPM failed to solve the problems. Consequently, we compare
AEPG with the FW method and FW-away method. The results are visually represented
in Figure 6.2. Across all cases, the vanilla FW algorithm fails to converge to solutions
meeting the stopping criteria, and AEPG consistently requires less time than FW-away
to reach the minimum value, particularly when m=300,400,500.

(a) m=200 (b) m=300 (c) m=400 (d) m=500

Fig. 6.2: Comparison of computational time (in seconds) between AEPG and the FW/FW-away
method for the D-optimal design problem. The datasets have varying dimensions of test vectors m and
a fixed number of test vectors n=1000.

In both comparative experiments, we observe that unlike the FW-away algorithm
and the IPM, whose computation time increases as m gets larger, the computation time
of AEPG remains nearly constant across all cases. The advantage of AEPG over the
IPM and the FW-away algorithm becomes increasingly evident as m gets larger.

6.2. Wasserstein natural gradient. Consider a 2-dimensional Gaussian mix-
ture model for ρ defined as:

ρ(x;ω)=wN (x;(ω1,3),I)+(1↓w)N (x;(ω2,2),I),

where w⇓0 is a weight factor. In accordance with [31], we formulate the data fitting
problem:

min
ω

{
L(ω)=

1

2

∫

”
|ρ(x;ω)↓ρ→(x)|2dx

}
,
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where % is a compact domain, and ρ→(x) is the observed reference density function. In
our experiments, we set w=0.05, %=[0,5]2, and ρ→(x)=ρ(x;(1,3)). The initial point is
set at (4,4.2).

We apply the least-squares formulation (5.13) and (5.14) to compute the Wasserstein
natural gradient and compare the performance of WNGD (1.4) and AEPG (Algorithm
1) with Tk=G(ωk)↓1, where G(ω) is the Wasserstein information matrix (5.6). The
trajectories are presented in Figure 6.3(b). The step sizes used for WNGD and AEPG
are 9 and 11, respectively, chosen to optimize performance. Notably, both WNGD and
AEPG successfully locate the global minima, with AEPG converging in fewer iterations.
Additionally, we showcase the trajectories of GD and AEGD (using standard gradient)
in Figure 6.3(a), observing that both methods with standard gradient get stuck at a
local minimum.

(a) Standard gradient (b) Wasserstein natural gradient

Fig. 6.3: Gaussian mixture model: level sets, vector fields, and convergent paths using (a) methods
with standard gradient and (b) methods with the Wasserstein natural gradient.

7. Discussion
This research introduces a unified framework for the application of AEGD (Adaptive

Gradient Descent with Energy) techniques, using a general preconditioning descent
direction to address a class of constrained optimization problems. The key idea is to
incorporate the advantages of adapting the descent direction to the problem’s geometry
and adjusting the step size through an energy variable.

Theoretical insights reveal that AEPG (Adaptive Energy Preconditioned Gradient)
is unconditionally energy stable, independent of the step size. Under the condition
of a suitably small base step size, we establish that AEPG is guaranteed to find the
minimum value of the objective function. Convergence rates are derived for three types
of objective functions: general di$erentiable functions, nonconvex functions satisfying
Polyak–Lojasiewic’s (PL) condition, and convex functions when the descent direction is
preconditioned by a positive definite matrix against a possible projection matrix.

We investigate two application scenarios where optimization problems with explicit
or implicit constraints are considered. In one instance, optimization problems with pa-
rameters in a convex set are addressed by endowing the feasible set with a Riemannian
metric, following the strategy outlined in [2]. Extension to cases with linear equality
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constraints is achieved by adjusting the preconditioning matrix through a projection
operator, with convergence theories established under mild assumptions. Another ap-
plication pertains to optimization problems over the probability density space with the
Wasserstein metric. To e”ciently compute the natural gradient G(ω)↓1↔l(ω) in AEPG,
we adopt the strategy proposed in [31], treating the natural gradient as the solution to
a least-squares problem.

Numerical results show that AEPG outperforms vanilla preconditioned gradient de-
scent algorithms such as HRGD and NGD, particularly on ill-conditioned or nonconvex
problems. Notably, these results indicate that the choice of the preconditioning matrix
not only impacts the convergence rate but influences the stationary point where the
iterates converge within a nonconvex optimization landscape.

Optimal choices for Riemannian metrics remain unclear for manifolds with intricate
structures. Good options should probably combine specific problem characterisitcs and
applications. Identifying a suitable preconditioning matrix that accelerates convergence
without introducing computational overhead is crucial. Moreover, the development of
e”cient methods for computing the natural gradient in large-scale optimization prob-
lems is imperative.
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Appendix A. Technical proofs. In this section, we provide proofs for some
theoretical results mentioned in Section 2:

A.1. Proof of Theorem 2.2. To analyse the convergence behavior of AEPG
(1.6), we reformulate it as

ωk+1=ωk↓εkA
↓1
k ↔L(ωk), εk :=ε

rk+1

l(ωk)
. (A.1)

Using the ϖ-smoothness of L, we have

L(ωk+1)=L(ωk↓εkA
↓1
k ↔L(ωk))

⇑L(ωk)↓εk↔L(ωk)
↗A↓1

k ↔L(ωk)+
ε2kϖ

2
↘A↓1

k ↔L(ωk)↘2

⇑L(ωk)↓εk↘↔L(ωk)↘2A↑1
k

+
ε2kϖ

2ς1
↘↔L(ωk)↘2A↑1

k

=L(ωk)↓εk

(
1↓ εkϖ

2ς1

)
↘↔L(ωk)↘2A↑1

k
. (A.2)
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This ensures that L(ωk) is strictly decreasing as long as ↘↔L(ωk)↘2A↑1
k

∞=0, providing

that

0<εk<
2ς1

ϖ
. (A.3)

Hence we have L(ωk) converges as k⇔↖. We further sum (A.2) over k to get

↔∑

k=0

εk

(
1↓ εkϖ

2ς1

)
↘↔L(ωk)↘2A↑1

k
⇑

↔∑

k=0

(L(ωk)↓L(ωk+1))⇑L(ω0)↓ infL(ωk)<↖.

This implies

lim
k≃↔

εk

(
1↓ εkϖ

2ς1

)
↘↔L(ωk)↘2A↑1

k
=0. (A.4)

With ε⇑εs, Lemma 2.1 guarantees that εk :=ε rk+1

l(ωk)
⇓ φr→

l(ω0)
when r0⇓ l(ω0)↓l→

ε1
. With ε⇑

ε0=
ε1l

→

↼r0
, we have εk :=ε rk+1

l(ωk)
⇑ ε1

↼ . These two bounds imply that εk

1↓ φk↼

2ε1


⇓ φr→

2l(ω0)
>

0, which together with (A.4) ensures that ↘↔L(ωk)↘2A↑1
k

⇔0, hence ↘↔L(ωk)↘⇔0 since

A↓1 is positive definite. Therefore, {L(ωk)}↔k=0 converges monotonically to L(ω→), where
ω→ is a local minimizer or a saddle point. Note that here we use the fact that ω→ can
not be a local maximizer since L(ωk) is decreasing in k.

A.2. Proof of Theorem 2.3.
(ii) Using the ϖ-smoothness assumption and similar derivation as (A.2), we have

L(ωk+1)↓L(ωk)⇑↓εk

(
1↓ εkϖ

2ς1

)
↘↔L(ωk)↘2A↑1

k

⇑↓εk
2
↘↔L(ωk)↘2A↑1

k
(since εk⇑ς1/ϖ)

⇑↓ εk
2ςn

↘↔L(ωk)↘2. (A.5)

Denote wk=L(ωk)↓L(ω→), then the PL property of function L implies

1

2
↘↔L(ωk)↘2⇓µ(L(ωk)↓L(ω→))=µwk. (A.6)

With this property, (A.5) can be written as

wk+1↓wk⇑↓µεk
ςn

wk ↙ wk+1⇑

1↓ µεk

ςn


wk. (A.7)

By induction,

wk⇑w0

k↓1

j=0


1↓ µεj

ςn


=w0 exp




k↓1∑

j=0

log

1↓ µεj

ςn




⇑w0 exp



↓µ
k↓1∑

j=0

εj
ςn



 .

Note for j <k that εj =ε rj+1

l(ωj)
⇓ε rk

l(ω0)
, hence,

wk⇑w0 exp

↓ c0krk

ςn


, c0=

µε

l(ω0)
.
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To ensure convergence of ωk, we use ϖ-smoothness for L and scheme (A.1) to get

L(ωk+1)↓L(ωk)⇑↔L(ωk)
↗(ωk+1↓ωk)+

ϖ

2
↘ωk+1↓ωk↘2

⇑↓ 1

εk
↘ωk+1↓ωk↘2Ak

+
ϖ

2
↘ωk+1↓ωk↘2

⇑ (↓ς1

εk
+

ϖ

2
)↘ωk+1↓ωk↘2

⇑↓ ς1

2εk
↘ωk+1↓ωk↘2 (since εk⇑ς1/ϖ),

which further implies

wk↓wk+1⇓
ς1

2εk
↘ωk+1↓ωk↘2. (A.8)

The PL property (A.6) when combined with (A.1) gives

↘Ak(ωk+1↓ωk)↘2=ε2k↘↔L(ωk)↘2⇓2µε2kwk ↙ 1
∝
wk

⇓
∝
2µεk

ςn↘ωk+1↓ωk↘
. (A.9)

Using wk>wk+1, we have

∝
wk↓

∝
wk+1⇓

1

2
∝
wk

(wk↓wk+1)⇓
∝
2µς1

4ςn
↘ωk+1↓ωk↘.

Here the last inequality is by (A.8) and (A.9). Taking summation over k gives

↔∑

k=0

↘ωk+1↓ωk↘⇑
4ςn∝
2µς1

∝
w0.

This yields (2.14), which ensures the convergence of {ωk}.
(iii) With the convexity assumption on L, we have

wk :=L(ωk)↓L(ω→)⇑↔L(ωk)
↗(ωk↓ω→)⇑↘↔L(ωk)↘↘ωk↓ω→↘,

where we used the Cauchy-Schwarz inequality. We claim that for convex f ,

↘ωk↓ω→↘⇑↘ω0↓ω→↘. (A.10)

The proof of this claim is deferred to the end of this subsection. Thus we have

↘↔L(ωk)↘⇓
wk

↘ωk↓ω→↘ ⇓ wk

↘ω0↓ω→↘ . (A.11)

This when combined with (A.5) (since εk⇑ς1/ϖ) leads to

wk+1⇑wk↓
εk

2ςn↘ω0↓ω→↘2w
2
k. (A.12)

This implies wk⇓wk+1. Multiplying 1
wk+1wk

on both sides gives

1

wk
⇑ 1

wk+1
↓ εk

2ςn↘ω0↓ω→↘2
wk

wk+1
⇑ 1

wk+1
↓ εk

2ςn↘ω0↓ω→↘2 .
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Using εj =ε rj+1

l(ωj)
⇓ε rk

l(ω0)
, we proceed to obtain

1

wk
⇓ 1

wk↓1
+

εk↓1

2ςn↘ω0↓ω→↘2

⇓ 1

w0
+

1

2ςn↘ω0↓ω→↘2
k↓1∑

j=0

εj

⇓ kεrk
2ςnl(ω0)↘ω0↓ω→↘2 .

Hence for maxj<k εj ⇑ς1/ϖ, we have

L(ωk)↓L(ω→)=wk⇑
c1ςn↘ω0↓ω→↘2

krk
, c1=

2l(ω0)

ε
.

Finally, we prove claim (A.10). We proceed with

ωk+1↓ω→=ωk↓ω→↓εkA
↓1
k ↔L(ωk)

=ωk↓ω→↓εkA
↓1
k (↔L(ωk)↓↔L(ω→))

=ωk↓ω→↓εkA
↓1
k

(∫ 1

0
↔2L(ω→+s(ωk↓ω→))ds=:Bk

)
(ωk↓ω→).

Denote dk :=↘ωk↓ω→↘, we have

dk+1=↘(I↓εkA
↓1
k Bk)(ωk↓ω→)↘

⇑ max
0⇑ϑ⇑ ε

ϑ1

|1↓εkφ|dk.

For εk⇑ς1/ϖ, we have

dk+1⇑dk,

hence dk⇑d0 for any integer k. This completes the proof.

A.3. Proof of Theorem 2.4.
(3) The proof is similar to the proof for Theorem 2.2. Using ϖ-smoothness, we have

L(ωk+1)=L(ωk↓εkTk↔L(ωk))

⇑L(ωk)↓εk↔L(ωk)
↗Tk↔L(ωk)+

ε2kϖ

2
↘Tk↔L(ωk)↘2. (A.13)

Since Tk=PkG
↓1
k =G↓1

k P↗
k , we have

L(ωk+1)⇑L(ωk)↓εk↘P↗
k ↔L(ωk)↘2G↑1

k
+

ϖε2k
2ς1

↘P↗
k ↔L(ωk)↘2G↑1

k

=L(ωk)↓εk

(
1↓ εkϖ

2ς1

)
↘P↗

k ↔L(ωk)↘2G↑1
k
. (A.14)

This ensures that L(ωk) is strictly decreasing as long as ↘P↗
k ↔L(ωk)↘2G↑1

k

∞=0, providing

that (A.3) holds. For the rest of the proof, we refer the readers to (A.1).
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(4) We now turn to estimate convergence rates, while we use

Pk= I↓G↓1
k B↗(BG↓1

k B↗)↓1B

so that BPk=0.

(i) In the proof of (i) for Theorem 2.3, we replace vk=G↓1
k ↔l(ωk) by G↓1

k P↗
k ↔l(ωk),

thus obtain the stated convergence bound for minj<k ↘P↗
j ↔L(ωj)↘2.

(ii) We first show convergence of ωk. Using εk⇑ ε1
↼ , we further bound (A.14) by

L(ωk+1)⇑L(ωk)↓
εk
2
↘P↗

k ↔L(ωk)↘2G↑1
k
. (A.15)

This and

ωk+1↓ωk=↓εkG
↓1
k P↗

k ↔L(ωk)→K, K :={p| Bp=0}

lead to

L(ωk+1)↓L(ωk)⇑↓ ς1

2εk
↘ωk+1↓ωk↘2 ↙ wk↓wk+1⇓

ς1

2εk
↘ωk+1↓ωk↘2. (A.16)

The projected PL property (2.19) when combined with (A.16) gives

↘Gk(ωk+1↓ωk)↘2=ε2k↘P↗
k ↔L(ωk)↘2⇓2µε2kwk ↙ 1

∝
wk

⇓
∝
2µεk

ςn↘ωk+1↓ωk↘
. (A.17)

Combining (A.16) with (A.17) gives

∝
wk↓

∝
wk+1⇓

1

2
∝
wk

(wk↓wk+1)⇓
∝
2µς1

4ςn
↘ωk+1↓ωk↘.

This ensures that {ωk} is a Cauchy sequence, hence ωk⇔ω→ as k⇔↖.

Next we show the convergence rate of wk=L(ωk)↓L(ω→). From (A.15) we have

wk+1↓wk=L(ωk+1)↓L(ωk)⇑↓ εk
2ςn

↘P↗
k ↔L(ωk)↘2 (A.18)

for εk⇑ ε1
↼ . By the projected PL condition (2.19), we have

↘P↗
k ↔L(ωk)↘2⇓2µwk,

hence

wk+1⇑wk


1↓ µεk

ςn


,

which is exactly (A.7), hence an induction argument will imply

wk⇑w0 exp

↓ c0krk

ςn


, c0=

µε

l(ω0)
.

(iii) For linear constraint q(ω)=Bω↓b, we have ωk+1↓ωk →K={p| Bp=0} with
B=↔q(ωk), hence ωk↓ω→→K={p| Bp=0}. By the convexity of L,

wk :=L(ωk)↓L(ω→)⇑↔L(ωk)
↗(ωk↓ω→)=↔L(ωk)

↗Pk(ωk↓ω→)

=(P↗
k ↔L(ωk))

↗(ωk↓ω→)⇑↘P↗
k ↔L(ωk)↘↘ωk↓ω→↘,
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which implies

↘P↗
k ↔L(ωk)↘⇓

wk

↘ωk↓ω→↘ ⇓ wk

↘ω0↓ω→↘ .

This when combined with (A.18) gives

wk+1↓wk⇑↓ εk
2ςn

↘P↗
k ↔L(ωk)↘2⇑↓ εkw2

k

2ςn↘ω0↓ω→↘2 .

This is the same as (A.12), and the remaining argument in the proof for Theorem 2.3
(iii) applies here.

Appendix B. Construction of h. We present a construction of h for M when
(3.1) holds with a smooth concave U . We define

h(ω)=K(U(ω)), ω→ int(M),

where K : (0,↖)⇔R is a smooth function. It is important to note that:

↔h(ω)=K ⇓(U(ω))↔U(ω), (B.1)

↔2h(ω)=K ⇓⇓(U(ω))↔U(ω)△↔U(ω)+K ⇓(U(ω))↔2U(ω),

and it is clear that K should be chosen to satisfy the following conditions:

(i) lims≃0+K ⇓(s)=↓↖,

(ii) ⇒s>0, K ⇓⇓(s)>0,

(iii) ⇒s>0, K ⇓(s)<0 when U is not an a”ne function.

Two commonly used functions for K are ↓ ln(s) and s ln(s)↓s. Additional admissible
choices can be found in [2].

Lemma B.1. If K is selected to satisfy conditions (i)-(iii) as mentioned above, the
strict convexity of h=K(U) can only be ensured if

φ ·↔U(ω)=0, φT↔2U(ω)φ=0 =↙ φ=0, ⇒ω→ int(M). (B.2)

Proof. For any ω→ int(M), and φ→Rn, based on the properties of K, we have

φT↔2h(ω)φ=K ⇓⇓(U(ω))|↔U(ω)φ|2+K ⇓(U(ω))φT↔2U(ω)φT ⇓0.

Equality holds if and only if

φ ·↔U(ω)=0 and φT↔2U(ω)φ=0.

Hence, (B.2) implies the strict convexity of h.

Remark B.1. WhenK(U) does not satisfy (B.2), adding a correction term is su”cient
to ensure the strict convexity of h in M. For instance, for the domain

M={ω→Rn |Ui(ω)⇓0,i→ [p]} (B.3)

with each Ui being concave, a valid choice is

h(ω)=
p∑

i=1

K(Ui(ω))+ h̃(ω), ω→M,
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where h̃ is added to ensure the strict convexity of h in M. If h̃ is strictly convex, then

φT↔2h(ω)φ=
p∑

i=1

(
K ⇓⇓(Ui(ω))|↔Ui(ω)φ|2+K ⇓(Ui(ω))φ

T↔2Ui(ω)φ
T
)
+φT↔2h̃(ω)φ

⇓φT↔2h̃(ω)φ>0, ⇒φ ∞=0.

Non-strictly convex alternatives for h̃ are viable, provided they result in a strongly
convex function h when combined with (Ui)

p
i=1.

Example B.1. We illustrate several specific examples below.

(1) When U is strictly concave for the domain M={ω→Rn |U(ω)⇓0}, with U =1↓
ωTSω, where S symmetric and positive definite, a suitable choice for h is given by

h(ω)=K(1↓ωTSω). (B.4)

(2) In case where ↔U spans the entire space Rn for the domain M={ω→Rn |ai⇑ωi,i→
[n]}, a suitable option is

h(ω)=
n∑

i=1

K(ωi↓ai). (B.5)

(3) For the domain M={ω→Rn | ai⇑ωi,i→ [p]}, where 1⇑p<n, a valid choice for h
is given by

h(ω)=
p∑

i=1

K(ωi↓ai)+
1

2

n∑

i=p+1

ω2i , (B.6)

is a valid choice.

Appendix C. On the projected PL condition. For the constrained minimiza-
tion problem:

min L(ω)=
1

2

(
↼ω21+ϖω22

)
,

subject to q(ω)=aω1+bω2↓1=0,

where ab ∞=0,ϖ⇓↼>0. The minimum point of this problem is given by

ω→=

(
aϖ

a2ϖ+b2↼
,

b↼

a2ϖ+b2↼

)
.

Using ↔q(ω)=(a,b) and Equation (2.3), the projection matrix is

P =
1

a2+b2

(
b2 ↓ab
↓ab a2

)
,

and the projected gradient is

P↗↔L(ω)=
b↼ω1↓aϖω2

a2+b2
(b,↓a)↗.

For the author's personal use only.

For the author's personal use only.



1444 ADAPTIVE PRECONDITIONED GRADIENT DESCENT WITH ENERGY

To verify the projected PL condition, it is observed that

↘P↗↔L(ω)↘2=(b↼ω1↓aϖω2)2

a2+b2
=

1

a2+b2

(
(b↼+

a2ϖ

b
)ω1↓

aϖ

b

)2

=
1

(a2+b2)b2

(
(b2↼+a2ϖ)ω1↓aϖ

)2

=
(b2↼+a2ϖ)2

(a2+b2)b2
(ω1↓ω→1)

2,

where ω2=(1↓aω1)/b was used in the second equality. Also,

L(ω)↓L(ω→)=
1

2
(↼ω21+ϖω22)↓

1

2
(↼ω→21 +ϖω→22 )

=
1

2
↼(ω21↓ω→21 )+

1

2
ϖ(ω22↓ω→22 )

=
1

2
↼(ω21↓ω→21 )+

1

2
ϖ

(
(
1↓aω1

b
)2↓(

1↓aω→1
b

)2
)

=

(
1

2
↼+

1

2
ϖ
a2

b2

)
(ω21↓ω→21 )↓ aϖ

b2
(ω1↓ω→1)

=
a2ϖ+b2↼

2b2
(ω1↓ω→1)

(
(ω1+ω→1)↓

2aϖ

a2ϖ+b2↼

)

=
a2ϖ+b2↼

2b2
(ω1↓ω→1)

2.

Hence the projected PL condition holds for µ>0 if

µ⇑ a2ϖ+b2↼

a2+b2
.

Appendix D. Experimental setting.

m n c ε

10 1000 9 0.08
30 1000 10 0.02
50 1000 10 0.01
80 1000 7 0.01
100 1000 7 0.01
200 1000 1 0.009
300 1000 1 0.006
400 1000 1 0.005

Table D.1: Parameter setup of AEPG for the D-optimal design problem.
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