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Abstract. We study an optimal transportation approach for recovering parameters in dynamical systems with
a single smoothly varying attractor. We assume that the data are not su!cient for estimating time
derivatives of state variables but enough to approximate the long-time behavior of the system through
an approximation of its physical measure. Thus, we fit physical measures by taking the Wasserstein
distance from optimal transportation as a misfit function between two probability distributions. In
particular, we analyze the regularity of the resulting loss function for general transportation costs and
derive gradient formulas. Physical measures are approximated as fixed points of suitable PDE-based
Perron–Frobenius operators. Test cases discussed in the paper include common low-dimensional
dynamical systems.
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1. Introduction. The problem of parameter identification in dynamical systems is com-
mon in many areas of science and engineering, such as signal processing [30], optimal control
[34, 56], secure communications [64, 30], as well as biology [63, 36], to mention a few. The
main idea of parameter identification for a dynamical system is to identify a mathematical
model of the real-world system and adapt its parameters until the simulations obtained with
the mathematical model are close to experimental data. The models usually represent time-
dependent processes with numerous state variables and many interactions between variables.
In many applications, one can derive the form of the mathematical model from some knowl-
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270 YANG, NURBEKYAN, NEGRINI, MARTIN, AND PASHA

edge about the process under investigation but, in general, the parameters of such a model
must be inferred from empirical observations of time series data. The initial parameter val-
ues are usually based on, for instance, some preliminary knowledge of the real-world system.
The type of mathematical model and the parameter identification algorithm chosen strongly
influence the accuracy of the estimates.

More formally, suppose that we have noisy observations

X\rightarrow = (x\rightarrow (t0) + \omega 0,x
\rightarrow (t1) + \omega 1, . . . ,x

\rightarrow (tn) + \omega n) ,

where {t0, t1, . . . , tn} are sampling times, x\rightarrow is the solution of the autonomous dynamical
system ẋ = v(x, \varepsilon \rightarrow ), and {\omega 0, \omega 1, . . . , \omega n} are measurement errors or uncertainties. The goal
is to find \varepsilon \rightarrow from X\rightarrow .

Most common parameter estimation techniques estimate \varepsilon by integrating ẋ = v(x, \varepsilon ) and
fitting the resulting trajectory X(\varepsilon ) = (x(t0),x(t1), . . . ,x(tn)) to data X\rightarrow via optimization

inf
\omega \downarrow !

\rightarrow X(\varepsilon )\uparrow X\rightarrow 
\rightarrow 
2

for a suitably chosen norm \rightarrow · \rightarrow . For a linear map \varepsilon \downarrow \updownarrow v(x, \varepsilon ) and an L2 norm, the problem
above reduces to the least-squares problem that tends to overfit measurement errors [48, 45].
For a nonlinear map \varepsilon \downarrow \updownarrow v(x, \varepsilon ), this approach leads to a so-called single shooting method
[55] that uses a single initial condition to produce a trajectory. However, relying only on one
trajectory may not result in meaningful approximations of the desired solution for chaotic
systems due to their sensitivity to initial data. The multiple shooting algorithm deals with
this issue by using multiple trajectories to estimate parameters [7]. For a more complete
review we refer to [1] and [52]. Because of their universal approximation properties, neural
networks and combinations of the above methods with neural networks have also been used
recently for parameter identification of dynamical systems [8, 51, 58, 57].

An alternative approach is to fit the time derivatives of the state. More precisely, assume
that ẋ\rightarrow is either measured directly or estimated from X\rightarrow yielding

V\rightarrow = (ẋ\rightarrow (t0) + \vargamma 0, ẋ
\rightarrow (t1) + \vargamma 1, . . . , ẋ

\rightarrow (tn) + \vargamma n) ,

where {\vargamma 0, \vargamma 1, . . . , \vargamma n} are measurement or estimation errors. The parameter estimation is then
performed via an optimization problem

inf
\omega \downarrow !

\rightarrow V\rightarrow 
\uparrow v(X\rightarrow , \varepsilon )\rightarrow 2 +R(\varepsilon )

for a suitably chosen norm \rightarrow · \rightarrow and a regularization R(\varepsilon ), where we denote v(X\rightarrow , \varepsilon ) =
(v(x\rightarrow (t0), \varepsilon ), v(x\rightarrow (t1), \varepsilon ), . . . , v(x\rightarrow (tn), \varepsilon )) by slightly abusing the notation. Sparse identifica-
tion of nonlinear dynamics [16] is one such notable method, where one has a linear model
v(x, \varepsilon ) =

\Biggr) 
i
\varepsilon i\varpi i(x) with a suitably chosen dictionary of basis functions {\varpi i} and a sparsity

enforcing regularization term R(\varepsilon ) = \rightarrow \varepsilon \rightarrow 1.
We are interested in parameter estimation problems where trajectories are sensitive to

initial conditions and estimation parameters. In particular, we consider the case where the
time derivatives V\rightarrow cannot be estimated due to the lack of observational data, slow sampling,
discontinuous or inconsistent time trajectories, and noisy measurements [15, 11, 72, 65, 5]. The
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OPTIMAL TRANSPORT FOR PARAMETER IDENTIFICATION 271

Figure 1. From left to right: the Lorenz, Rössler, Chen, and Arctan Lorenz attractors.

methods described above incur many challenges or are inapplicable in such settings. Hence,
following [41], we “suppress” the time variable and consider the state-space distribution of
data

\varrho \rightarrow =
1

n+ 1

n\Biggl[ 

i=0

\varsigma x\uparrow (ti).

We say that a dynamical system ẋ = v(x, \varepsilon ) admits a physical measure \varrho (\varepsilon ) [73, Definition
2.3], [53, section 9.3], if for a Lebesgue positive set of initial conditions x(0) = x, one has that

\varrho (\varepsilon ) = lim
T\updownarrow \nearrow 

1

T

\Biggr] 
T

0
\varsigma x(t)dt.

Therefore, as an alternative, we can fit physical measures instead of trajectories for systems
admitting such measures. The convergence of \varrho \rightarrow to \varrho (\varepsilon ) highly depends on the data availabil-
ity and the fractal dimension of the attractor. Here, we assume that the observed trajectory
X\rightarrow provides a reasonable estimation of \varrho (\varepsilon ). This assumption might be too restrictive for sys-
tems with high-dimensional attractors. Nevertheless, numerous systems appearing in physics,
biology, and other fields admit low-dimensional attractors, for example, observed in [50] and
[37, Figures 1(B), S1].

In this work, we focus on dynamical systems with a unique physical measure. More
precisely, the parameter estimation problem reduces to the optimization problem

inf
\omega \downarrow !

f(\varepsilon ) := d(\varrho \varepsilon (\varepsilon ), \varrho 
\rightarrow ),(1.1)

where \varrho \varepsilon (\varepsilon ) is an approximation of \varrho (\varepsilon ) with an approximation (regularization) parameter
\varphi > 0, and d is a suitable metric in the space of probability measures.

Note that the definition of physical measures reflects their stability with respect to per-
turbations of initial conditions. Additionally, \varrho \rightarrow can provide an accurate estimate of \varrho (\varepsilon \rightarrow )
even if we perform slow sampling; that is, when the time derivatives V\rightarrow cannot be estimated
(subsection 6.2.4).

The di!culty and e!ciency of the parameter estimation problem (1.1) depend significantly
on the choice of the approximation method \varrho \varepsilon and the metric d. The Wasserstein metric
from optimal transportation (OT) [71] has recently gained popularity as a metric of choice
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272 YANG, NURBEKYAN, NEGRINI, MARTIN, AND PASHA

in numerous fields such as image processing [42], machine learning [6], large-scale inverse
problems [28], and statistical inference [9], only to mention a few. Interested readers may
further refer to [60]. The Wasserstein metric is beneficial for several reasons. First, it is well-
defined for singular measures and, unlike the Kullback—Leibler divergence, reflects both the
local intensity di""erences and the global geometry mismatches [28]. Additionally, the Lp and
total variation norms lead to weakly pronounced minima with small basins of attraction when
the supports are disjoint or only partially intersect. Second, recent works in both deterministic
and Bayesian inverse problems have demonstrated that the Wasserstein metric is robust to
noise [27, 24]. Thanks to the geometric nature of the OT problem, the Wasserstein metric is
primarily sensitive to global changes such as translation and dilation and is robust to small
local perturbations such as noisy measurements of \varrho \rightarrow . Since we are primarily interested in
problems where the latter occurs, the Wasserstein metric is an adequate choice.

Our first main goal of this work is to study OT distances as the objective function for
parameter identification problems in dynamical systems building on insights from [41]. An
important element of the method (1.1) is the surrogate model \varrho \varepsilon (\varepsilon ). In [41], the authors build
a histogram from a single long-time trajectory, where \varphi is the bin width. Although e""ective,
one drawback of this approximation method is the inability to di""erentiate \varrho \varepsilon (\varepsilon ) with respect
to \varepsilon . Consequently, it relies on a potentially slow derivative-free optimization method to solve
(1.1). Our second main goal is to explore an alternative scheme for the approximation \varrho \varepsilon (\varepsilon )
that is di""erentiable in \varepsilon , and rigorously study the regularity of f(\varepsilon ) in (1.1). One can then
devise more e!cient gradient-based optimization algorithms to solve (1.1).

In this work, we propose a partial di""erential equation (PDE)-based approximation method
for \varrho (\varepsilon ). Note that \varrho (\varepsilon ) is a distributional solution of the stationary continuity PDE

\uparrow \nearrow · (v(x, \varepsilon )\varrho (x)) = 0.(1.2)

Hence, we consider a regularized solution \varrho \varepsilon (\varepsilon ) of (1.2) and turn (1.1) into a PDE-constrained
optimization problem. We choose the teleportation regularization from Google’s PageRank
algorithm [39] because of its simplicity in implementation and other favorable properties such
as the uniqueness, absolute continuity, and di""erentiability (with respect to \varepsilon ) of \varrho \varepsilon (\varepsilon ). The
numerical method for computing \varrho \varepsilon (\varepsilon ) is based on its representation as a fixed point of a
suitable Perron–Frobenius operator.

Approximating physical measures by PDE and fixed points of Perron–Frobenius operators
instead of directly simulating single long-time trajectories is not new [23, 3]. Some of these
methods come with rigorous convergence guarantees, especially for uniformly hyperbolic sys-
tems [23, Theorem 4.14], and are more computationally e!cient because of considering \varrho \varepsilon (\varepsilon )
that are supported on tight covers of supp(\varrho ) [23, section 4]. However, the di""erentiability of
the resulting approximations with respect to the parameters is unclear and warrants separate
careful analyses. Here, we do not analyze the convergence of \varrho \varepsilon (\varepsilon ) to \varrho (\varepsilon ), but the numerical
evidence in subsection 6.2.5 and the discussion in section 3 suggest that this convergence oc-
curs for a suitable class of dynamical systems. Instead, we focus on studying the properties
of OT-based distances and the viability of the overall approach at the expense of employing a
less accurate yet more straightforward approximation method for the di""erentiability analysis.
Thus, our work serves as a foundation for possibly other OT-based techniques with di""erent
but di""erentiable approximation methods for the physical measures. Formally, we assume
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OPTIMAL TRANSPORT FOR PARAMETER IDENTIFICATION 273

that (1) the dynamical system of interest, ẋ = v(x, \varepsilon ), where \varepsilon \searrow \#, has one unique physical
invariant measure, and (2) the distributional solution to (1.2) with the same v(x, \varepsilon ) is unique
and recovers the physical invariant measure to the dynamical system. We refer to section 3
for more details.

The discussion above leads to our next essential contribution: the regularity analysis of
the optimal transport cost with respect to the inference parameter for generic cost functions;
see section 4. Although the gradient formula is well known in the literature, its validity
analysis seems to be missing except in special cases where the optimal transport cost can be
calculated explicitly [61, Lemma 2.4]. In the nonparametric setting, such analysis can be found
in [68, Theorem 2.4] for probability measures on finite spaces and [66, Proposition 7.17] for
probability measures on Rd. For probability measures modeled by push-forward maps, see [6].

Similarly to related results in the literature, we rely on Kantorovich’s formulation of the
OT problem and the regularity theory of optimal value functions [12]. Under rather mild
conditions, we prove that the transportation cost is directionally di""erentiable everywhere. In
general, the directional derivative is nonlinear and depends on the structure of Kantorovich
potentials. To this end, we find a su!cient condition in terms of the geometry of the optimal
transport plans that guarantees the linearity of the directional derivative providing a descent
direction for the optimal transport cost. To the best of our knowledge, this condition is new
in the literature.

The paper is arranged as follows. In section 2, we review challenges of chaotic dynamics,
the advantages provided by a PDE perspective (1.2), and a short introduction to optimal
transport. In section 3, we describe a regularized forward problem based on the PDE per-
spective and discuss a numerical scheme that enforces positivity and strict mass conservation.
The solution to the forward problem is computed as finding the dominant eigenvector of a
Markov matrix. In section 4, we present theoretical regularity analysis for evaluating gradients
of optimal transport costs with respect to the model parameters. In section 5, we introduce
two di""erent ways to compute gradients for our PDE-constrained optimization problem using
the implicit function theorem and the adjoint-state method. Numerical results for the Lorenz,
Rössler, and Chen systems are presented in section 6. In section 7, we summarize our results
and describe several future research directions.

2. Background. In this section, we present essential background of dynamical systems
and OT theory.

2.1. Dynamical systems. This section reviews some basic terminology in the field of
dynamical systems that will appear throughout the paper.

2.1.1. Chaotic dynamical systems. A continuous-time dynamical system represents the
behavior of a system in which the time-dependent flow of a point in a geometrical state space,
x, is governed by a function of that state, v(x), such that

dx

dt
= ẋ = v(x),(2.1)

in the form of an ordinary di""erential equation (ODE).
While linear first-order dynamical systems, ẋ = Ax, admit only stable, unstable, and

periodic solutions, the more general class of nonlinear dynamical systems can exhibit a range

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

12
/0

8/
23

 to
 1

32
.1

74
.2

52
.1

79
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



274 YANG, NURBEKYAN, NEGRINI, MARTIN, AND PASHA

of more complex long-time behaviors due to locally bounded regions of instability. It is this
local region of instability that enables the emergence of chaotic behavior.

While a formal definition of chaos remains elusive, it is generally characterized by sensi-
tive dependence to initial conditions, and expansivity; see [25] for more details. In particular,
it is this sensitive dependence on initial conditions that results in the apparent randomness
characteristic of chaotic systems. This randomness results from a combination of local in-
stability causing exponential divergence of nearby trajectories and state-space mixing that
occurs when this exponential divergence is restabilized such that a nontrivial attractor forms.
This combination makes long-time predictions impossible despite the purely causal nature
of the governing system. It is also this sensitivity that makes the classical trajectory-based
parameter inference problem challenging when the observed dynamics are obscured by noise,
slow sampling, and other corruption, as described in section 1.

2.1.2. From trajectory samples to the physical measure. We shift from the trajectory-
based to distribution-based perspective to remedy the aforementioned stability and data avail-
ability issues. Mathematically, statistical properties of (2.1) can be characterized by the oc-
cupation measure \varrho x,T defined as

\varrho x,T (B) =
1

T

\Biggr] 
T

0
1B(x(s))ds =

\Biggl\lfloor 
T

0 1B(x(s))ds
\Biggl\lfloor 
T

0 1Rd(x(s))ds
,(2.2)

where T > 0, 1 is the indicator function, B is any Borel measurable set, and x(·) is the
time-dependent trajectory starting at x. System (2.1) has robust statistical properties if there
exist a set of positive Lebesgue measure U and an invariant probability measure \varrho such that
\varrho x,T converges weakly to \varrho for all initial conditions x \searrow U . Such \varrho are called physical [73,
Definition 2.3], [53, section 9.3]. Sinai–Ruelle–Bowen measures [23, 73, 53] are archetypal
examples of physical measures.

In general, the existence and properties of such measures are rather intricate and require
careful analysis. For a more detailed account of these topics, we refer to [73] for general
systems, and [70, 69] for the Lorenz system. Furthermore, in some cases, one can recover \varrho as
the zero-noise limit of stationary measures of the corresponding stochastic dynamical systems
[18, 43, 47, 23].

As we will show in section 3, direct simulation of \varrho for parameter identification faces
the di!culty of not having access to the gradients of the loss function. Consequently, one
has to rely on gradient-free space-search methods. Motivated by these challenges, we take a
PDE perspective on \varrho and formulate the parameter inference problem as a PDE-constrained
optimization.

2.2. Optimal transportation. In this subsection, we give a brief overview of the topic of
OT, first brought up by Monge in 1781.

We first introduce the original Monge’s problem. Let \$ \simeq Rd be an arbitrary domain, and
µ, \leftharpoonup \searrow P(\$) arbitrary probability measures supported in \$. A transport map T : \$ \updownarrow \$ is
mass preserving if for any measurable set B \Leftarrow \$

µ(T\searrow 1(B)) = \leftharpoonup (B).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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OPTIMAL TRANSPORT FOR PARAMETER IDENTIFICATION 275

If this condition is satisfied, \leftharpoonup is said to be the push-forward of µ by T , and we write \leftharpoonup = T\vargamma µ.
In the case µ, \leftharpoonup are absolutely continuous, that is, dµ(x) = f(x)dx and d\leftharpoonup (y) = g(y)dy, we
have that T is a mass-preserving map if

f(x) = g(T (x)) · | det (\nearrow T (x)) |, x \searrow \$.

The transport cost function c(x, y) maps pairs (x, y) \searrow \$\Rightarrow \$ to R\Uparrow {+\Downarrow }, which denotes the
cost of transporting one unit mass from location x to y. The most common choice of c(x, y) is
|x\uparrow y|p, p \searrow N, where |x\uparrow y| denotes the Euclidean distance between vectors x and y. Given
a mass-preserving map T , the total transport cost is

\Biggr] 

""
c(x, T (x))f(x) dx.

While there are many maps T that can perform the relocation, we are interested in finding
the optimal map that minimizes the total cost. So far, we have informally defined the optimal
transport problem, which induces the so-called Wasserstein distance defined below, associated
with cost function c(x, y) = |x\uparrow y|p.

Definition 2.1 (the Wasserstein distance). We denote by Pp(\$) the set of probability
measures with finite moments of order p. For all p \searrow [1,\Downarrow ),

Wp(µ, \leftharpoonup ) =

\Biggr\rfloor 
inf

Tµ,\omega \downarrow M

\Biggr] 

""
|x\uparrow Tµ,\varpi (x)|

p dµ(x)

\Biggl\lceil 1
p

, µ, \leftharpoonup \searrow Pp(\$),(2.3)

where M is the set of all maps that push-forward µ into \leftharpoonup .

The definition (2.3) is the original static formulation of the optimal transport problem with
a specific cost function. In mid-20th century, Kantorovich relaxed the constraints, turning
it into a linear programming problem, and also formulated the dual problem [66]. Instead
of searching for a map T , a transport plan \leftharpoondown is considered, which is a measure supported in
the product space \$ \Rightarrow \$. The Kantorovich problem is to find an optimal transport plan as
follows:

Tc(µ, \leftharpoonup ) = inf
\varrho 

\Biggr\rceil \Biggr] 

""\simeq ""
c(x, y)d\leftharpoondown | \leftharpoondown \leftrightarrow 0 and \leftharpoondown \searrow \%(µ, \leftharpoonup )

\Biggl\{ 
,(2.4)

where \%(µ, \leftharpoonup ) = {\leftharpoondown \searrow P(\$ \Rightarrow \$) | (P1)\vargamma \leftharpoondown = µ, (P2)\vargamma \leftharpoondown = \leftharpoonup }. Here, P(\$ \Rightarrow \$) stands for the
set of all the probability measures on \$ \Rightarrow \$, functions P1(x, y) = x and P2(x, y) = y denote
projections over the two coordinates, and (P1)\vargamma \leftharpoondown and (P2)\vargamma \leftharpoondown are two measures obtained by
pushing forward \leftharpoondown with these two projections.

Since every transport map determines a transport plan of the same cost, Kantorovich’s
problem is weaker than the original Monge’s problem. If the cost function c(x, y) is of the form
|x\uparrow y|p and µ and \leftharpoonup are absolutely continuous with respect to the Lebesgue measure, solutions
to the Kantorovich and Monge problems coincide under certain conditions. When p > 1, the
strict convexity of |x\uparrow y|p guarantees that there is a unique solution to Kantorovich’s problem
(2.4) which is also the unique solution to Monge’s problem (2.3).
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276 YANG, NURBEKYAN, NEGRINI, MARTIN, AND PASHA

3. The forward model. While matching shadow state-space density in [41] provided a
potential route to resolve issues related to the chaotic divergence of state-space trajectories and
data availability, the direct estimation of state-space density from trajectory data still retained
two major challenges. One significant issue was the inability to e!ciently calculate a gradient
of the Wasserstein metric with respect to the parameters, forcing the reliance on evolutionary
or other gradient-free optimization methods. Another major issue was related to the time
required to converge to the density estimate asymptotically, as particularly highlighted in [41,
Figure 7], where the self-Wasserstein metric is observed to oscillate as it converges with more
ODE time steps. This slow convergence is related to the long and intermittent switching
times between lobes of the butterfly attractor. While the invariant measure of the Lorenz
system is known to exist [69], the long measurement times with respect to the switching times
complicate the parameter inference problem. The problem is exacerbated in more expensive
and complicated dynamics such as the thruster model [41].

To address these challenges, we instead directly solve for the solution of the stationary
continuity equation (1.2). This choice not only removes the issue of slow convergence with
respect to the slowest system processes but also provides a forward model that can be di""er-
entiated for building the required gradients needed to tackle the parameter inference problem
directly. This alternative forward model follows the approach described in [10] in converting
from the trajectory samples to the probability measure for the Bayesian estimation problem,
as detailed in subsection 3.1, but then recasts this forward Perron–Frobenius operator as a
Markov process for determining the steady-state solution as described in subsection 3.3.

Our approach is close in spirit to other cell-based or grid-based frameworks that intro-
duce a suitable Perron–Frobenius operator and compute its fixed points [23, section 4]. Some
of these methods, such as the software package GAIO developed by Dellnitz and Junge [21,
22], represent the attractors via a hierarchy of covers by cells: cells that do not intersect the
support of the invariant measure are ignored so that the data structures and computational
requirements for this method are smaller than the ones required for our grid-based approach.
In some cases, such as uniformly hyperbolic systems, these methods come with convergence
guarantees [23, Theorem 4.14]. Many other subdivision methods have been successfully ap-
plied to the numerical analysis of complex dynamical behavior; see, for instance, [20, 26, 67].
A more comprehensive list of examples can be found in [19, 38].

We regularize our Perron–Frobenius operator via teleportation regularization from Google’s
PageRank method [39], which ensures the uniqueness and regularity of the fixed point. This
step is similar to stochastic perturbation techniques for approximating physical measures [18,
43, 47, 23]. Intuitively, teleportation amounts to stopping the dynamics at a random time
and restarting it from a randomly chosen initial point. The regularization parameter \varphi con-
trols the restarting frequency: the smaller the \varphi , the rarer the restart. This regularization is
somewhat similar to “snapshot attractors” described in [62] where attractors are estimated
by following the dynamics from randomly chosen initial conditions for a fixed time. Here, we
do not analyze the convergence of \varrho \varepsilon (\varepsilon ) to the physical invariant measure, but the numerical
evidence in section 6.2.5 suggest that this convergence does take place for the tested examples.
Intuitively, if we restart the dynamics from the basin of attraction and do so very rarely, we
should approximate the physical measure. Additionally, general results in [47] hint at a con-
vergence result similar to [23, Theorem 4.14] for uniformly hyperbolic attractors. Analyzing
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the convergence of our model and the di""erentiability of other forward models described here
is an exciting future research direction that we plan to pursue. For additional methods based
on Markov partitions and chains we refer to [13, 35, 32]. Formally, we assume that (1) the
dynamical system of interest, ẋ = v(x, \varepsilon ), where \varepsilon \searrow \#, has one unique physical invariant mea-
sure, and (2) the distributional solution to (1.2) with the same v(x, \varepsilon ) is unique and recovers
the physical invariant measure to the dynamical system.

3.1. From linear advection to stationary eigenvectors. In converting the dynamical
system from the trajectory samples to the probability measure, the governing equation is
converted from a nonlinear ODE for the system state “point,” x, to a linear PDE (1.2) for
the state-space density \varrho (x).

Note that a causal dynamical system includes no di""usion. It then corresponds to (1.2),
a linear advection of probability density in state space. Subsection 3.2 describes a particular
simple low-order discretization of this linear advection problem. While adding physical dif-
fusion is a relatively simple modification of the numerical method, the more significant issue
with this approach relates to excess di""usion. Although the zero di""usion case can be relaxed
for stochastic dynamical systems where Dij \nwarrow = 0, the upwinding scheme required to stabilize
the advection introduces an artificial di""usion, which is the predominant numerical error as
described in [10]. This numerical di""usion is expected to dominate physical di""usion for the
moderate spatial resolution that is tractable for the forward model unless the dynamics of the
system are highly stochastic. As this numerical di""usion is irreducible at finite computational
cost, the addition of finite di""usion to the ODE model is explored in subsection 6.2 when
attempting to understand the class of problems for which inference with respect to the binned
direct ODE solution is viable.

3.2. Finite volume discretization. A finite volume discretization of the resulting conti-
nuity equation defined on the domain \$, as described in [10], is then obtained. The finite
volume discretization combined with a zero-flux boundary condition, v = 0 on the boundaries
\rightharpoonup \$, enforces strict mass conservation whenever the discrete integration by parts formulation
is used [31]. Only the first-order operator split upwind discretization is used in this work to
enforce positivity of the probability density, as will be shown to be a consequence of the form
of the discrete operator.

We first discretize (1.2) on a d-dimensional uniform mesh in space and time with no
added di""usion, which gives us the following equation for the explicit time evolution of the
probability density,

\varrho (l+1)(xi)\uparrow \varrho (l)(xi)

\&t
= \uparrow 

d\Biggl[ 

id=1

F (l)
(id)

(xi +\&x(id)/2)\uparrow F (l)
(id)

(xi \uparrow \&x(id)/2)

\&x(id)
.

Here, the point xi refers to the ith cell center vector and \&x(id) refers to the mesh spacing

in the idth direction, id = 1, . . . , d. The upwind id-direction flux at the lth time step, F (l)
(id)

,
is then approximated using the face center velocity assuming uniform density within the cell
centered at xi as follows:
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278 YANG, NURBEKYAN, NEGRINI, MARTIN, AND PASHA

F (l)
(id)

\Biggr\rfloor 
xi \uparrow 

\&x(id)
2

\Biggl\lceil 
= v+

(id\searrow 1
2
)
\varrho (l)(xi \uparrow \&x(id)) + v\searrow 

(id\searrow 1
2
)
\varrho (l)(xi),

where the upwind velocities v+(id) = max(v(id), 0) and v\searrow (id) = min(v(id), 0) refer to the idth
component of the velocity vector split between positive and negative values, and

v+
(id\searrow 1

2
)
:= v+(id)

\Biggr\rfloor 
xi \uparrow 

\&x(id)
2

\Biggl\lceil 
, v\searrow 

(id\searrow 1
2
)
:= v\searrow (id)

\Biggr\rfloor 
xi \uparrow 

\&x(id)
2

\Biggl\lceil 
.

Inserting these fluxes into the discrete equation yields the following expression for the future
time density, \varrho (l+1):

\varrho (l+1)
0 = \varrho (l)0 +\&t

d\Biggl[ 

id=1

\Biggr\} 
v+
(id\searrow 1

2
)
\varrho (l)\searrow + v\searrow 

(id\searrow 1
2
)
\varrho (l)0

\Biggl\langle 
\uparrow 

\Biggr\} 
v+
(id+

1
2
)
\varrho (l)0 + v\searrow 

(id+
1
2
)
\varrho (l)+

\Biggl\langle 

\&x(id)
,

where \varrho (l)0 = \varrho (l)(xi), \varrho 
(l)
\searrow = \varrho (l)(xi \uparrow \&x(id)), and \varrho (l)+ = \varrho (l)(xi +\&x(id)). The equation above

can be rewritten in matrix-vector format:

\varrho (l+1) = \varrho (l) +Kmat\varrho 
(l) = (I +Kmat)\varrho 

(l).

For steady-state distributions, \varrho (l+1) = \varrho (l) = \varrho eq. This corresponds to finding a nonzero
solution \varrho (eq) to the following linear system

Kmat\varrho 
(eq) =

\Biggr\rangle 
d\Biggl[ 

id=1

\&t

\&x(id)
K(id)

\Bigg/ 
\varrho (eq) = 0,

where for id = 1, . . . , d we have

K(id) =

\Bigg\backslash 

\Big/ \Big/ \Big/ \Big/ \Big/ \Big/ \Big/ \Big/ \Big/ \Big/ \Big/ \Big/ \Big/ \Big/ \Big/ \Big/ \Big/ \Big/ \Big/ \Big/ \Big/ \Big/ \Big/ \Big/ \Big\backslash 

. . .

\uparrow v\searrow 
(id\searrow 3

2
)

. . .
...

v\searrow 
(id\searrow 3

2
)
\uparrow v+

(id\searrow 1
2
)

\uparrow v\searrow 
(id\searrow 1

2
)

. . .
...

...
+v+

(id\searrow 1
2
)

v\searrow 
(id\searrow 1

2
)
\uparrow v+

(id+
1
2
)

\uparrow v\searrow 
(id+

1
2
)

...
...

. . .

+v+
(id+

1
2
)

v\searrow 
(id+

1
2
)
\uparrow v+

(id+
3
2
)

...
. . .

+v+
(id+

3
2
)

. . .

\left( 

\right) \right) \right) \right) \right) \right) \right) \right) \right) \right) \right) \right) \right) \right) \right) \right) \right) \right) \right) \right) \right) \right) \right) \right) \left[ 

.(3.1)

We remark that each K(id), id = 1, . . . , d, is a tridiagonal matrix, while the o""sets for the
three diagonals vary for di""erent id\Leftarrow s. For example, consider the case that \$ \Leftarrow R3 is a cuboid,
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OPTIMAL TRANSPORT FOR PARAMETER IDENTIFICATION 279

discretized with grid size nx, ny, nz in the x, y, z dimension, respectively. Then, K(1) is nonzero
at the first lower diagonal, the main diagonal, and the first upper diagonal; K(2) is nonzero
at the nxth lower diagonal, the main diagonal, and the nxth upper diagonal; K(3) is nonzero
at the (nx \Rightarrow ny)th lower diagonal, the main diagonal, and the (nx \Rightarrow ny)th upper diagonal.

We highlight that the solution \varrho (l) at any lth time step satisfies the mass conservation
property. That is,

\varrho (l) · 1 = \varrho (l+1)
· 1 = \varrho (eq) · 1, where 1 = [1, 1, . . . , 1]\Rightarrow .

It is a direct consequence of the fact that columns of Kmat sum to zero. Note also that the
o""-diagonal terms are all positive or zero while the diagonal terms are all negative or zero by
construction. One can construct a column-stochastic matrix M,

M = I + cKmat.

M can be positive definite if we ensure that c is small enough.
Since the main focus of this paper is parameter identification, the velocity field v is param-

eter dependent. Thus, we will highlight the dependency on the parameter \varepsilon by using notation
v(\varepsilon ), Kmat(\varepsilon ), K(id)(\varepsilon ), and \varrho (eq)(\varepsilon ) hereafter.

The upper bound on c unsurprisingly also depends on \varepsilon . Nevertheless, if we assume that
v depends continuously on \varepsilon and we operate in a bounded domain \$, we can choose c small
enough to serve all \varepsilon \Leftarrow s of interest. For instance, we can choose

0 < c < min
id

\&x(id)
2\&t max

x\downarrow "",\omega \downarrow !
|v(id)(x, \varepsilon )|

.(3.2)

3.3. Finding the stationary distribution of a Markov chain. From the previous section,
we learned that \varrho (\varepsilon ) is the solution of

M(\varepsilon )\varrho = \varrho , \varrho · 1 = 1,(3.3)

where,

M(\varepsilon ) = I + cKmat(\varepsilon ), Kmat(\varepsilon ) =
d\Biggl[ 

id=1

\&t

\&x(id)
K(id)(\varepsilon )

with K(id)(\varepsilon ) given in (3.1), and c is chosen to satisfy (3.2). While the matrix, M , was
built from a finite volume causal flow model, it was noted that this flux also approximates a
discrete cell-to-cell transition probability for a point randomly sampled from the volume of
one cell to its neighbor cells, which mirrors the propagator of a Markov chain as described
in [46].

A priori we have that the o""-diagonal entries of M(\varepsilon ) = I + cKmat(\varepsilon ) are nonnegative.
Additionally, we know that M(\varepsilon ) is column stochastic. Thus, by Gershgorin’s theorem [40]
we have that the spectral radius of M is not greater than one. On the other hand, we know
1 = [1, 1, . . . , 1]\Rightarrow is an eigenvector for M\Rightarrow which is a row-stochastic matrix, and so \rightharpoondown = 1 is an
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280 YANG, NURBEKYAN, NEGRINI, MARTIN, AND PASHA

eigenvalue for both M and M\Rightarrow . The spectral radius of M has to be equal to 1. Furthermore,
by a limiting argument, we can show that the eigenspace of M corresponding to the eigenvalue
\rightharpoondown = 1 contains vectors with nonnegative entries.

However, the dimension of this eigenspace may be bigger than one, which complicates our
analysis. Thus, we regularize M via the so-called teleportation trick, which is well known
from Google’s PageRank method [39]. That is, given a small positive constant \varphi , we consider

M\varepsilon (\varepsilon ) = (1\uparrow \varphi )M + \varphi n\searrow 11 1\Rightarrow = (1\uparrow \varphi )(I + cKmat(\varepsilon )) +
\varphi 

n
1 1\Rightarrow .(3.4)

Note that the o""-diagonal entries of M\varepsilon are at least \varepsilon 

n
> 0. The regularization also connects

all cells, achieving similar regularizing e""ects by having a di""usion term. Moreover, M\varepsilon is still
column stochastic. Based on the following Perron–Frobenius theorem, the spectral radius of
M\varepsilon must be 1.

Theorem 3.1 (Perron-Frobenius theorem [54]). If all entries of a Markov matrix A are
positive, then A has a unique equilibrium; there is only one eigenvalue equal to 1. All other
eigenvalues are strictly smaller than 1.

Consequently, the eigenspace {\varrho : M\varepsilon (\varepsilon )\varrho = \varrho } is one dimensional and has a generator
with all positive entries. Hence, the equation

M\varepsilon (\varepsilon )\varrho = \varrho , \varrho · 1 = 1, \varrho > 0,(3.5)

has a unique solution that converges to a solution of (3.3) as \varphi \updownarrow 0. We can analyze the error
between \varrho 0 and \varrho \varepsilon , where

M\varrho 0 = \varrho 0, M\varepsilon \varrho \varepsilon = \varrho \varepsilon , \varrho 0 · 1 = \varrho \varepsilon · 1 = 1.

The error analysis traces back to the classical root-finding problem. We define \&\varrho \varepsilon = \varrho \varepsilon \uparrow \varrho 0.
Using the forward error analysis, we obtain that

(M \uparrow I)\&\varrho \varepsilon = (M \uparrow I)\varrho \varepsilon = \varphi 
\Biggr\} 
M \uparrow n\searrow 11 1\Rightarrow 

\Biggl\langle 
\varrho \varepsilon , \&\varrho \varepsilon · 1 = 0.

Solving for \&\varrho \varepsilon from the linear system above can improve the current “root” \varrho \varepsilon , which is
precisely the principle behind Newton’s method. Using backward error analysis, starting
from M\varepsilon \varrho \varepsilon = \varrho \varepsilon , we obtain that

\Biggr\} 
(1\uparrow \varphi )M + \varphi n\searrow 11 1\Rightarrow \uparrow I

\Biggl\langle 
(\varrho 0 +\&\varrho \varepsilon ) = 0.

Up to the first-order terms, we have

(M \uparrow I)\&\varrho \varepsilon = \varphi 
\Biggr\} 
M \uparrow n\searrow 11 1\Rightarrow 

\Biggl\langle 
\varrho 0, \&\varrho \varepsilon · 1 = 0.

The above equation implies that \rightarrow \&\varrho \varepsilon \rightarrow is O(\varphi ), showing the convergence \varrho \varepsilon \updownarrow \varrho 0 as we
decrease \varphi . This is further verified by our numerical examples in subsection 6.2.5.

Numerically, the problem (3.5) can be solved by mature tools from numerical linear algebra
such as the power method and the Richardson iteration [39]. We present one direct solve
method in subsection B.1 using the sparsity of Kmat.
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OPTIMAL TRANSPORT FOR PARAMETER IDENTIFICATION 281

4. Optimal transport for parameter inference. Here, we discuss gradient evaluation of
optimal transport-based costs with respect to the inference parameters. Assume that \$ \simeq Rd

is a compact set, and c : \$2
\updownarrow R is a continuous cost function. The main goal of this section

is to discuss the di""erentiability of the objective function

f(\varepsilon ) = Tc(\varrho (·, \varepsilon ), \varrho 
\rightarrow ), \varepsilon \searrow \#,

where {\varrho (·, \varepsilon )}\omega \downarrow ! is a family of parameter-dependent probability measures on \$, and Tc is
the optimal transport cost defined in (2.4). Throughout the paper, we assume that \$ \simeq Rd is
compact, \varrho \rightarrow \searrow P(\$) is an arbitrary probability measure, and

A1. \# \simeq Rm is an open set, and {\varrho (·, \varepsilon )}\omega \downarrow ! \simeq P(\$) is a family of absolutely continuous
probability measures.

A2. For a.e. x \searrow \$ the mapping \varepsilon \downarrow \updownarrow \varrho (x, \varepsilon ) is di""erentiable, and |\nearrow \omega \varrho (x, \varepsilon )| \swarrow \omega (x), \varepsilon \searrow \#,
for some \omega \searrow L1(\$). Note that by slightly abusing the notation, we use the same
notation for probability measures and their densities.

A3. c : \$2
\updownarrow R is continuous and nonnegative.

Occasionally, we need the following hypothesis.
A4. For a.e. x \searrow \$ the mapping \varepsilon \downarrow \updownarrow \varrho (x, \varepsilon ) is locally semiconvex, and \nearrow 

2
\omega 
\varrho (x, \varepsilon ) \leftrightarrow 

\uparrow h(x), \varepsilon \searrow \#, for some h \searrow L1(\$).
Proofs for results of this section can be found in Appendix A.

4.1. Preliminaries. First, we recall preliminary results from the OT theory that can be
found in [71, 4, 66]. A key tool in OT is the Kantorovich duality [71, Theorem 1.3] that states

Tc(µ, \leftharpoonup ) = sup
(\varsigma ,\varphi )\downarrow \#c(µ,\varpi )

\Biggr] 

""
\lhook (x)dµ(x) +

\Biggr] 

""
\varpi (y)d\leftharpoonup (y), µ, \leftharpoonup \searrow P(\$),(4.1)

where 'c(µ, \leftharpoonup ) \simeq C(\$) \Rightarrow C(\$) is the set of pairs (\lhook ,\varpi ) such that \lhook (x) + \varpi (y) \swarrow c(x, y) for
all (x, y) \searrow \$2. The maximizing pairs (\lhook ,\varpi ) in (4.1) are called Kantorovich potentials. The
c-transform of a function x \downarrow \updownarrow \lhook (x) is defined as

\lhook c(y) = inf
x\downarrow ""

{c(x, y)\uparrow \lhook (x)} .

Similarly, the c-transform of a function y \downarrow \updownarrow \varpi (y) is defined as

\varpi c(x) = inf
y\downarrow ""

{c(x, y)\uparrow \varpi (y)} .

A function x \downarrow \updownarrow \lhook (x) (resp., y \downarrow \updownarrow \varpi (y)) is called c-concave if there exists a function \varpi (resp.,
\lhook ) such that \lhook = \varpi c (resp., \varpi = \lhook c).

Since \$ is compact and c is continuous, we obtain that c is bounded. Thus, the set 'c(µ, \leftharpoonup )
in (4.1) can be further restricted to uniformly bounded pairs of conjugate c-concave functions,
that is, pairs of (\lhook ,\lhook c) \searrow 'c(µ, \leftharpoonup ), where \lhook = \lhook cc, and 0 \swarrow \lhook \swarrow \rightarrow c\rightarrow \nearrow , \uparrow \rightarrow c\rightarrow \nearrow \swarrow \lhook c

\swarrow 0 [12,
Remarks 1.12–13]. We denote this set by Kc.

Since the modulus of continuity of y \downarrow \updownarrow c(x, y) \uparrow \lhook (x) (resp., x \downarrow \updownarrow c(x, y) \uparrow \lhook c(y)) is
bounded by that of c for all x (resp., y), Kc is uniformly equicontinuous, uniformly bounded,
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282 YANG, NURBEKYAN, NEGRINI, MARTIN, AND PASHA

and, consequently, precompact in C(\$) \Rightarrow C(\$) by the Arzelà–Ascoli theorem [66, section
1.2]. Additionally, since the c-transform is continuous under the uniform convergence, Kc is
compact in C(\$)\Rightarrow C(\$), and the existence of Kantorovich potentials in Kc is guaranteed [66,
Proposition 1.11].

4.2. The di!erentibility of the transport cost in the parameter space. Here, we heavily
rely on the Kantorovich duality (4.1) and the regularity theory of optimal value functions [12,
Chapter 4]. Recall that f is directionally di""erentiable at \varepsilon 0 \searrow \# if

lim
t\updownarrow 0+

f(\varepsilon 0 + t\&\varepsilon )\uparrow f(\varepsilon 0)

t
= f \Leftarrow (\varepsilon 0,\&\varepsilon )

for all \&\varepsilon \searrow Rm [12, section 2.2]. Furthermore, if \&\varepsilon \downarrow \updownarrow f \Leftarrow (\varepsilon 0,\&\varepsilon ) is linear, we say that f is
Gâteaux di""erentiable at \varepsilon 0 and denote by \nearrow f(\varepsilon 0) the generator of this linear map.

Next, denote by S(\varepsilon ) \simeq Kc the set of Kantorovoch potentials for the OT from
\varrho (·, \varepsilon ) to \varrho \rightarrow .

Proposition 4.1. Assume that A1–A3 hold.

(i) f is everywhere directionally di""erentiable, and

f \Leftarrow (\varepsilon 0,\&\varepsilon ) = sup
(\varsigma ,\varsigma c)\downarrow S(\omega 0)

\Biggr] 

""
\lhook (x)\nearrow \omega \varrho (x, \varepsilon 0)dx ·\&\varepsilon (4.2)

for all \varepsilon 0 \searrow \#, and \&\varepsilon \searrow Rm.
(ii) f is Gâteaux di""erentiable at \varepsilon 0 \searrow \# if and only if

\Biggr] 

""
\lhook 1(x)\nearrow \omega \varrho (x, \varepsilon 0)dx =

\Biggr] 

""
\lhook 2(x)\nearrow \omega \varrho (x, \varepsilon 0)dx(4.3)

for all (\lhook 1,\lhook c
1), (\lhook 2,\lhook c

2) \searrow S(\varepsilon 0). In this case, we have that

\nearrow f(\varepsilon 0) =

\Biggr] 

""
\lhook (x)\nearrow \omega \varrho (x, \varepsilon 0)dx(4.4)

for an arbitrary pair of Kantorovich potentials (\lhook ,\varpi ) \searrow 'c(\varrho (·, \varepsilon 0), \varrho \rightarrow ).

The proof is in subsection A.1.
Proposition 4.1 asserts that f is directionally di""erentiable at all points and that its

directional derivative is a one-homogeneous closed convex function. Since we are interested in
descent directions of f , we focus on cases when the directional derivative is a linear function
and thus provides a descent direction in the form of the negative gradient. In what follows, we
prove that f is generically di""erentiable even without (4.3). Furthermore, we find su!cient
structural conditions on the optimal transport plans between \varrho (·, \varepsilon 0) and \varrho \rightarrow to guarantee (4.3).

Theorem 4.2. Assume that A1–A3 hold. Then f is locally Lipschitz continuous, and (4.4)
holds a.e.. Additionally, if A4 holds, then f is locally semiconvex, and (4.4) holds up to a set
of Hausdor! dimension d\uparrow 1.
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The proof can be found in subsection A.2.
There is a natural degree of freedom for Kantorovich potentials given by the addition of

constants; that is, (\lhook ,\lhook c) is a pair of Kantorovich potentials if and only if (\lhook +\rightharpoondown ,\lhook c
\uparrow \rightharpoondown ) is also

a pair of Kantorovich potentials for an arbitrary constant \rightharpoondown . As a corollary of Proposition 4.1,
we obtain that the Gâteaux di""erentiability of f is guaranteed if the addition of constants is
the only degree of freedom for Kantorovich potentials.

Corollary 4.3. Assume that A1–A3 hold, and \varepsilon 0 \searrow \# is such that \lhook 2\uparrow \lhook 1 is constant \varrho (·, \varepsilon 0)
a.e. for all pairs of Kantorovich potentials (\lhook 1,\varpi 1), (\lhook 2,\varpi 2). Then f is Gâteaux di!erentiable
at \varepsilon 0, and (4.4) holds.

In general, Kantorovich potentials are not unique up to constants. In what follows, we
provide a su!cient condition for such uniqueness. Essentially, the OT should not amount to
transportation between disjoint parts of supp(\varrho (·, \varepsilon 0)) and supp(\varrho \rightarrow ).

More formally, assume that \varrho , \varrho \rightarrow \searrow P(\$) are such that int(supp(\varrho )) \nwarrow = \propto . Furthermore,
denote by (0(\varrho , \varrho \rightarrow ) the set of optimal transport plans; that is, minimizers in (2.4). We have
that

int(supp(\varrho )) = \Uparrow kOk,(4.5)

where Ok are disjoint open and connected sets. Next, denote by

Ek =cl ({y : (x, y) \searrow supp(\leftharpoondown ) for some x \searrow cl(Ok), \leftharpoondown \searrow (0(\varrho , \varrho 
\rightarrow )}) .(4.6)

In other words, Ek is the set where the mass from cl(Ok) is transported to.

Definition 4.4. We say that cl(Ok) and cl(Ol) are linked in the OT from \varrho to \varrho \rightarrow with a
transport cost c, if there exist {ij}mj=1 such that k = i1, l = im, and Eij \prime Eij+1 \nwarrow = \propto , 1 \swarrow j \swarrow m.

Theorem 4.5. Assume that c \searrow C1(\$2), \varrho , \varrho \rightarrow \searrow P(\$), and

supp(\varrho ) = cl(int(supp(\varrho ))).(4.7)

Furthermore, suppose that {Ok} and {Ek} are defined as in (4.5) and (4.6), respectively.
Assume that all {cl(Ok)} are mutually linked. Then \lhook 2 \uparrow \lhook 1 is constant \varrho -a.e. for all pairs
of Kantorovich potentials (\lhook 1,\varpi 1), (\lhook 2,\varpi 2).

The proof is presented in subsection A.3. Theorem 4.5 and Corollary 4.3 yield the following
corollary.

Corollary 4.6. Assume that A1–A3 hold, and \varrho = \varrho (·, \varepsilon 0) satisfies the hypotheses in
Theorem 4.5. Then f is Gâteaux di!erentiable at \varepsilon 0.

In particular, if \varrho (·, \varepsilon 0) is supported on a closure of an open connected set, then f is
Gâteaux di!erentiable at \varepsilon 0.

The following proposition illustrates the sharpness of Corollary 4.6. Incidentally, the same
example illustrates that a smooth dependence on \varepsilon with respect to the flat L2 metric does not
guarantee smooth dependence on \varepsilon with respect to the Wasserstein metric.

Proposition 4.7. Assume that \$ = [0, 4] and c(x, y) = |x \uparrow y|p for some p > 1 (so that
Tc = W p

p ). Consider
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284 YANG, NURBEKYAN, NEGRINI, MARTIN, AND PASHA

\varrho (x, \varepsilon ) = (0.5 + \varepsilon )\rhook [0,1](x) + (0.5\uparrow \varepsilon )\rhook [2,3](x), |\varepsilon | < 0.5,

\varrho \rightarrow (y) =0.5\rhook [1,2](y) + 0.5\rhook [3,4](y),

where \rhook A is the characteristic function of set A \simeq R. Then we have that

1. {\varrho (·, \varepsilon )} satisfies A1–A3.
2. {\varrho (·, \varepsilon )} is not absolutely continuous in Pp(\$).
3. \varrho \downarrow \updownarrow W p

p (\varrho , \varrho \rightarrow ) is not Gâteaux di!erentiable at \varrho (·, \varepsilon ) for all |\varepsilon | < 0.5.
4. [0, 1] and [2, 3] are linked in the OT from \varrho (·, \varepsilon ) to \varrho \rightarrow for all |\varepsilon | < 0.5 except \varepsilon = 0.
5. \varepsilon \downarrow \updownarrow W p

p (\varrho (·, \varepsilon ), \varrho \rightarrow ) is di!erentiable for all |\varepsilon | < 0.5 except \varepsilon = 0.

The proof can be found in subsection A.4.

4.3. Qualitative error analysis for the gradient. In this subsection, we prove that almost-
optimal solutions of Kantorovich’s dual problem would provide accurate approximations
of \nearrow f .

Proposition 4.8. Assume that A1–A3 hold, and f is Gâteaux di!erentiable at \varepsilon 0 \searrow \#.
For every \varphi > 0 there exists a \varsigma > 0 such that for all (\lhook ,\varpi ) \searrow 'c(\varrho (·, \varepsilon 0), \varrho \rightarrow ) satisfying
I(\lhook ,\varpi , \varepsilon 0) > f(\varepsilon 0)\uparrow \varsigma one has that

\right] \right] \right] \right] \nearrow \omega f(\varepsilon 0)\uparrow 

\Biggr] 

""
\lhook cc(x)\nearrow \omega \varrho (x, \varepsilon 0)dx

\right] \right] \right] \right] < \varphi .

The proof is presented in subsection A.5.

Remark 4.9. Proposition 4.8 asserts that one needs to calculate c-transforms of suboptimal
\lhook for accurate gradients. This can be done very e!ciently for costs of the form c(x, y) =\Biggr) 

d

i=1 hi(xi \uparrow yi), where hi are even and strictly convex functions [44, section 4.1]. For OT
algorithms that produce c-concave iterates, such as in [44], no further considerations are
necessary.

5. Gradient calculation. Our parameter-dependent synthetic data obtained through the
forward model is given by a finite volume approximation

\varrho (x, \varepsilon ) =
n\Biggl[ 

i=1

\varrho i(\varepsilon )
\rhook Ci

(x)

|Ci|
,(5.1)

where n = nxnynz is the total grid size, each Ci is the finite volume cell, the parameter
\varepsilon \searrow \# \simeq Rm, and \varrho (\varepsilon ) = (\varrho i(\varepsilon ))ni=1 is the solution to (3.5) for some fixed c, \varphi > 0. Furthermore,
after discretization, our reference data are given by

\varrho \rightarrow (y) =
n\Biggl[ 

i=1

\varrho \rightarrow i
\rhook Ci

(y)

|Ci|
.

By slightly abusing the notation we denote \varrho \rightarrow = (\varrho \rightarrow 
i
)n
i=1. Our goal is to solve

min
\omega 

f(\varepsilon ) = Tc(\varrho (·, \varepsilon ), \varrho 
\rightarrow )(5.2)
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OPTIMAL TRANSPORT FOR PARAMETER IDENTIFICATION 285

by gradient-based algorithms, where Tc is the optimal transport cost defined in (2.4). To apply
Corollary 4.6, which will guarantee the di""erentiability of f , we need to verify A2 for (5.1)
and that the connected components of supp\varrho (·, \varepsilon ) are linked according to Definition 4.4. Since
in all our experiments in section 6, supp\varrho (·, \varepsilon ) = \Uparrow i:\leftharpoonup i(\omega )>0Ci is connected, the latter condition
is satisfied. Therefore, we just need to verify A2, which is equivalent to the di""erentiability
of \varepsilon \downarrow \updownarrow \varrho (\varepsilon ). This verification is part of subsection 5.1.

Once all assumptions are verified, we have that

\nearrow \omega \varrho (x, \varepsilon ) =
n\Biggl[ 

i=1

\nearrow \omega \varrho i(\varepsilon )
\rhook Ci

(x)

|Ci|
.

Therefore,

\nearrow f(\varepsilon ) =
n\Biggl[ 

i=1

\nearrow \omega \varrho i(\varepsilon )\lhook i(\varepsilon ), where \lhook i(\varepsilon ) =

\Biggl\lfloor 
Ci

\lhook (x, \varepsilon )dx

|Ci|
.(5.3)

Here, \lhook (·, \varepsilon ) is a Kantorovich potential for an OT from \varrho (·, \varepsilon ) to \varrho \rightarrow . Kantorovich potentials
can be calculated by one of many available OT solvers such as [44, 33]. Hence, we focus on
calculating \nearrow \omega \varrho i(\varepsilon ).

5.1. Gradient descent via implicit function theorem. First, we verify A2; that is, the
di""erentiability of \varepsilon \downarrow \updownarrow \varrho (\varepsilon ).

Lemma 5.1. Assume that \varepsilon \downarrow \updownarrow A(\varepsilon ), \varepsilon \searrow \#, is a C1 matrix valued function such that A(\varepsilon )
is column stochastic with strictly positive entries for all \varepsilon \searrow \#. Then the system of equations

A(\varepsilon )\varrho = \varrho , \varrho · 1 = 1,(5.4)

has a unique solution \varrho = \varrho (\varepsilon ) for all \varepsilon \searrow \#. Moreover, \varepsilon \downarrow \updownarrow \varrho (\varepsilon ) is continuously di!erentiable
with  \triangleleft k(\varepsilon ) = \rightharpoonup \omega k\varrho (\varepsilon ) being the unique solution of

(A(\varepsilon )\uparrow I) \triangleleft k = \uparrow \rightharpoonup \omega kA(\varepsilon )\varrho (\varepsilon ),  \triangleleft k · 1 = 0,(5.5)

where \varepsilon = (\varepsilon 1, \varepsilon 2, . . . , \varepsilon m).

Proof. The existence and uniqueness of \varrho (\varepsilon ) is a consequence of the Perron–Frobenius
theorem as explained in subsection 3.3. Denote by B(\varepsilon ) the matrix obtained from A(\varepsilon )\uparrow I by
adding an (n+1)th row vector 1\Rightarrow . Then we have that ker(B(\varepsilon )) = {0}, and so rank(B(\varepsilon )) =
n, and n rows of B(\varepsilon ) are linearly independent. Moreover, since ker(A(\varepsilon )\uparrow I) = span{\varrho (\varepsilon )},
we have that rank(A(\varepsilon )\uparrow I) = n\uparrow 1. Thus, the first n rows of B(\varepsilon ) are linearly dependent, and
any list of n independent rows must contain the last row 1\Rightarrow . Since \varepsilon \downarrow \updownarrow A(\varepsilon ) is continuous,
linearly independent vectors stay so in a neighborhood of each \varepsilon . Hence, we fix \varepsilon and without
loss of generality assume that the rows of B(\varepsilon ) from 2 to n+ 1 are linearly independent in a
neighborhood of \varepsilon .

Denote

F (\varepsilon , \varrho ) = \varsupsetneq B(\varepsilon )\varrho \uparrow en,
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286 YANG, NURBEKYAN, NEGRINI, MARTIN, AND PASHA

where \varsupsetneq B(\varepsilon ) is the matrix obtained from B(\varepsilon ) by dropping the first row and en is the nth
standard basis vector. Then we have that \varrho (\varepsilon ) is the unique solution of F (\varepsilon , \varrho ) = 0, and

D\leftharpoonup F (\varepsilon , \varrho ) = \varsupsetneq B(\varepsilon ) is non-degenerate. Thus, the Implicit function theorem applies and we
obtain that \varepsilon \downarrow \updownarrow \varrho (\varepsilon ) is continuously di""erentiable. Therefore, we can di""erentiate (5.4) and
obtain (5.5). Moreover, ker(B(\varepsilon )) = {0} yields that the solution of (5.5) is unique.

Applying Lemma 5.1 to A(\varepsilon ) = M\varepsilon (\varepsilon ) we obtain that the solution of (3.5) is di""erentiable
and (5.3) holds. Thus, we can devise a gradient descent algorithm as follows:

 
             

             

M\varepsilon (\varepsilon l)\varrho l = \varrho l, \varrho l · 1 = 1,

(M\varepsilon (\varepsilon l)\uparrow I) \triangleleft l
k
= \uparrow \rightharpoonup \omega kM\varepsilon (\varepsilon l)\varrho l,  \triangleleft l

k
· 1 = 0, 1 \swarrow k \swarrow m,

(\lhook l,\varpi l) \searrow argmax
\varsigma i+\varphi j\Uparrow c(xi,xj)

[\lhook · \varrho l + \varpi · \varrho \rightarrow ],

\varepsilon l+1
k

= \varepsilon l
k
\uparrow  \triangleright l \lhook l

·  \triangleleft l
k
, 1 \swarrow k \swarrow m,

(5.6)

where  \triangleright l > 0 is a proper step size for the gradient descent algorithm.

5.2. Gradient descent via adjoint method. Here we discuss an alternative approach to
calculate the gradient (5.3) via the adjoint-state method.

Lemma 5.2. Assume that \varepsilon \downarrow \updownarrow A(\varepsilon ) satisfies the hypotheses in Lemma 5.1, \varrho (\varepsilon ) is the
solution of (5.4), and \lhook \searrow Rn is an arbitrary vector. Then the linear system

(A(\varepsilon )\Rightarrow \uparrow I)\rightharpoondown = \uparrow \lhook + \lhook · \varrho (\varepsilon ) 1(5.7)

is consistent with a one-dimensional solution set. Moreover, for any solution \rightharpoondown one has that

\rightharpoonup \omega k(\lhook · \varrho (\varepsilon )) = \rightharpoondown · \rightharpoonup \omega kA(\varepsilon )\varrho (\varepsilon ).

Proof. Since im(A(\varepsilon )\Rightarrow \uparrow I) = ker(A(\varepsilon )\uparrow I)\Downarrow , we have to show that

\uparrow \lhook + \lhook · \varrho (\varepsilon ) 1 \searrow ker(A(\varepsilon )\uparrow I)\Downarrow = span{\varrho (\varepsilon )}\Downarrow .

A simple calculation yields the result

(\uparrow \lhook + \lhook · \varrho (\varepsilon ) 1) · \varrho (\varepsilon ) = \uparrow \lhook · \varrho (\varepsilon ) + \lhook · \varrho (\varepsilon ) 1 · \varrho (\varepsilon ) = 0.

Furthermore, since ker(A(\varepsilon )\Rightarrow \uparrow I) = span{1}, the solution set of (5.7) is a one-dimensional
coset of span{1}.
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OPTIMAL TRANSPORT FOR PARAMETER IDENTIFICATION 287

Finally, assume that \rightharpoondown is an arbitrary solution of (5.7). Then applying (5.5) we
obtain that

\rightharpoonup \omega k(\lhook · \varrho (\varepsilon )) = \lhook ·  \triangleleft k = (\lhook · \varrho (\varepsilon ) 1\uparrow (A(\varepsilon )\Rightarrow \uparrow I)\rightharpoondown ) ·  \triangleleft k

= \lhook · \varrho (\varepsilon ) 1 ·  \triangleleft k \uparrow \rightharpoondown · (A(\varepsilon )\uparrow I) \triangleleft k = \rightharpoondown · \rightharpoonup \omega kA(\varepsilon )\varrho (\varepsilon ).

Applying Lemma 5.2 to A(\varepsilon ) = M\varepsilon (\varepsilon ), we obtain an alternative, but equivalent, gradient
descent algorithm:

 
             

             

M\varepsilon (\varepsilon l)\varrho l = \varrho l, \varrho l · 1 = 1,

(\lhook l,\varpi l) \searrow argmax
\varsigma i+\varphi j\Uparrow c(xi,xj)

[\lhook · \varrho l + \varpi · \varrho \rightarrow ],

(M\varepsilon (\varepsilon l)\Rightarrow \uparrow I)\rightharpoondown l = \uparrow \lhook l + \lhook l
· \varrho l 1, \rightharpoondown l

· 1 = 0,

\varepsilon l+1
k

= \varepsilon l
k
\uparrow  \triangleright l \rightharpoondown l

· \rightharpoonup \omega kM\varepsilon (\varepsilon l)\varrho l, 1 \swarrow k \swarrow m.

(5.8)

Here,  \triangleright l > 0 is a chosen step size to guarantee enough decrease in the objective function. Note
that we add a condition \rightharpoondown l

· 1 to ensure the uniqueness of \rightharpoondown l.
We present a numerical scheme for e!ciently solving systems of equations (5.6) and (5.8)

in subsection B.1.

5.3. The gradient of M \bfitomega (\bfitomega ). For both algorithms (5.6) and (5.8) we need to evaluate
\rightharpoonup \omega iM\varepsilon (\varepsilon ). Denote by H(x) = dx

+

dx
the Heaviside function. We then have

\rightharpoonup \omega iv
+ = H(v)\rightharpoonup \omega iv, \rightharpoonup \omega iv

\searrow = (1\uparrow H(v))\rightharpoonup \omega iv.

We can also consider smoothed versions of H such as

Hk(x) =
d

dx
k log(1 + e

x
k ) =

e
x
k

1 + e
x
k

.

It is not hard to show that Hk is smooth and limk\updownarrow 0+ Hk(x) = H(x). Based on (3.4), we
derive that

\rightharpoonup \omega iM\varepsilon = (1\uparrow \varphi )c · \rightharpoonup \omega iKmat = (1\uparrow \varphi )c ·
d\Biggl[ 

id=1

\&t

\&x(id)
\rightharpoonup \omega iK(id)(\varepsilon ),

where each matrix \rightharpoonup \omega iK(id)(\varepsilon ) has three nonzero diagonals for each pair of (i, id) where 1 \swarrow 

i \swarrow m, 1 \swarrow id \swarrow d, while the o""sets of the diagonals depend on id, as we have discussed earlier
regarding (3.1). We emphasize that \rightharpoonup \omega iK(id)(\varepsilon ) shares the same tridiagonal structure with
K(id)(\varepsilon ) for each id as illustrated below;
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288 YANG, NURBEKYAN, NEGRINI, MARTIN, AND PASHA

\rightharpoonup \omega iK(id)(\varepsilon ) =

\Bigg\backslash 

\Big/ \Big/ \Big/ \Big/ \Big/ \Big/ \Big/ \Big/ \Big/ \Big/ \Big/ \Big/ \Big/ \Big/ \Big/ \Big/ \Big/ \Big/ \Big/ \Big/ \Big/ \Big\backslash 

. . .
. . .

. . . \uparrow 

\Biggr\} 
1\uparrow Hk(v(id\searrow 1

2
))
\Biggl\langle 
\rightharpoonup \omega iv(id\searrow 1

2
)

. . .
...

. . .
. . .

\Biggr\} 
1\uparrow Hk(v(id\searrow 1

2
))
\Biggl\langle 
\rightharpoonup \omega iv(id\searrow 1

2
) \uparrow Hk(v(id+ 1

2
))\rightharpoonup \omega iv(id+ 1

2
)

. . .

. . .
...

. . .

Hk(v(id+ 1
2
))\rightharpoonup \omega iv(id+ 1

2
)

. . .

. . .
. . .

\left( 

\right) \right) \right) \right) \right) \right) \right) \right) \right) \right) \right) \right) \right) \right) \right) \right) \right) \right) \right) \right) \right) \left[ 

.

One can also compute \rightharpoonup \omega iK(id)(\varepsilon ) through automatic di""erentiation; see subsection B.2 for
details of implementation and performance comparison.

6. Numerical results. In this section, we show several numerical results on dynamical
system parameter identification following the methodology described in the earlier sections.
The forward problem is to solve for the steady state of the corresponding PDE (1.2) rather than
the ODE system (2.1). The objective function that compares the observed and the synthetic
invariant measures is the quadratic Wasserstein metric (W2) from OT. The optimization
algorithm implemented for all inversion tests is the gradient descent method with backtracking
line search to control the step size [59].

6.1. Chaotic system examples. We test our proposed method on three classic chaotic
systems: the Lorenz, Rössler, and Chen systems. These models are widely used benchmarks
that illustrate typical features of dynamical systems with instabilities and nonlinearities that
give rise to deterministic chaos. We also perform an inversion test on a modified arctan Lorenz
system in which the unknown parameters are nonlinear with respect to the flow velocity in
terms of monomial basis. The true parameters are selected such that the dynamical systems
exhibit chaotic behaviors; see the illustration of time trajectories in Figure 1.

6.1.1. Lorenz system. Consider the following Lorenz system
 
  

  

ẋ = \oldstyle{0}(y \uparrow x),

ẏ = x(\varrho \uparrow z)\uparrow y,

ż = xy \uparrow \oldstyle{1}z.

(6.1)

The equations form a simplified mathematical model for atmospheric convection, where x, y, z
denote variables proportional to convective intensity, horizontal, and vertical temperature
di""erences. The parameters \oldstyle{0},\oldstyle{1}, \varrho are proportional to the Prandtl number, Rayleigh number,
and a geometric factor. The true parameter values that we will try to infer are \oldstyle{0} = 10, \oldstyle{1} =
8/3, \varrho = 28. These are well-known parameter values for which the Lorenz system shows a
chaotic behavior.
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OPTIMAL TRANSPORT FOR PARAMETER IDENTIFICATION 289

6.1.2. Rössler system. Consider the following Rössler System:
 
  

  

ẋ = \uparrow y \uparrow z,

ẏ = x+ ay,

ż = b+ z(x\uparrow c).

(6.2)

Here x, y, z denote variables, while a, b, c are the parameters we want to infer. The system
exhibits continuous-time chaos and is described by the above three coupled ODEs. The true
parameters that we try to infer are a = 0.1, b = 0.1, c = 14.

6.1.3. Chen system. Consider the following Chen system [17]:
 
  

  

ẋ = a(y \uparrow x),

ẏ = (c\uparrow a)x\uparrow xz + cy,

ż = xy \uparrow bz.

(6.3)

Again, x, y, z are variables and a, b, c are parameters we will infer. The system has a double-
scroll chaotic attractor. The true parameters that we will infer are a = 40, b = 3, c = 28.

6.1.4. Arctan Lorenz system. The parameters in the earlier examples are all coe!cients
of the monomial basis. Here, we modify the right-hand side of the Lorenz system (6.1) to
create a new dynamical system such that the particle flow velocity is nonlinear with respect
to the monomial basis:

 
    

    

ẋ = 50 arctan (\oldstyle{0}(y \uparrow x)/50) ,

ẏ = 50 arctan (x(\varrho \uparrow z)/50\uparrow y/50) ,

ż = 50 arctan ((xy \uparrow \oldstyle{1}z)/50) .

(6.4)

Again, x, y, z are variables, and \oldstyle{0}, \varrho ,\oldstyle{1} are parameters we want to infer. The reference values
are set to be (10, 28, 8/3), the same as the original Lorenz system.

6.2. The invariant measures. Here, we follow the numerical scheme described in sub-
section 3.3 and approximate the invariant measure through the regularized PDE surrogate
model, represented by the corresponding probability density function (PDF), for the three
dynamical systems at the given sets of parameters.

We compare PDFs obtained through the steady-state solution to (1.2) with the histogram
accumulated from long-time trajectories from direct numerical simulation (DNS). That is, we
solve systems (6.1)–(6.3) forward in time using the explicit Euler scheme with time step \&t
from t = 0 to its final time t = T . We then compute the physical invariant measure following
(2.2). Moreover, we use time trajectories that are enforced with either the intrinsic or the
extrinsic noises.

6.2.1. Numerical illustrations. Comparisons for the Lorenz system (6.1) are displayed in
Figure 2. The three plots in the top row show the x-y, x-z, and y-z projections of the dominant
eigenvector of the Markov matrix M\varepsilon . The grid size for the finite volume discretization of
(1.2) is 93 \Rightarrow 153 \Rightarrow 143. The teleportation parameter is \varphi = 10\searrow 6. In the second row, we
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290 YANG, NURBEKYAN, NEGRINI, MARTIN, AND PASHA

(a) Steady-state solution to (1.2)

(b) Histogram accumulated from noise-free Lorenz system time trajectory

(c) Histogram accumulated from Lorenz system time trajectory with intrinsic noise

(d) Histogram accumulated from Lorenz system time trajectory with extrinsic noise

Figure 2. Lorenz system. Top row: the steady state on the grid size 93 \rightarrow 153 \rightarrow 143 by solving (1.2). The
teleportation parameter is \omega = 10\uparrow 6. Second row: projections of physical invariant measure from noise-free
time trajectory for T = 2 \rightarrow 106. Third row: projections of physical invariant measure from time trajectory
with intrinsic noise \varepsilon \uparrow N (0, I). Last row: projections of physical invariant measure from time trajectory with
extrinsic noise \vargamma \uparrow N (0, I).
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(a) Steady-state solution to (1.2)

(b) Histogram accumulated from Rössler system time trajectory with intrinsic noise

Figure 3. Rössler system. Top row: the steady-state solution to (1.2) on the grid size 94 \rightarrow 87 \rightarrow 106.
The teleportation parameter is \omega = 10\uparrow 6. Bottom row: the histogram accumulated from Rössler system time
trajectory for total time T = 1\rightarrow 106 with intrinsic noise \varepsilon \uparrow N (0, 0.2I).

see the corresponding three projections of the physical invariant measure from noise-free time
trajectory for total time T = 2\Rightarrow 106. The third row and the bottom row show three projections
of the physical invariant measure from time trajectories of the same total time T but with
intrinsic noise \oldstyle{2} \infty N (0, I) (the noise occurs on the right-hand side of the dynamical system
as ẋ = v(x)+\oldstyle{2}) and extrinsic noise \oldstyle{3} \infty N (0, I) (the observation of the time trajectory su""ers
from noise as x\leftharpoondown = x + \oldstyle{3}), respectively. The bin size for all three histograms is a cube of
volume 0.53.

Similar plots for the Rössler system (6.2) are presented in Figure 3. Top row shows the
steady-state solution to (1.2) computed on a grid size is 94 \Rightarrow 87 \Rightarrow 106. The teleportation
parameter is \varphi = 10\searrow 6. For the bottom row, the Rössler system time trajectory runs for a
total time T = 1\Rightarrow 106 with an intrinsic noise \oldstyle{2} \infty N (0, 0.2I). The bin size for the histogram
is a cube of volume 0.63.

Figure 4 shows the comparisons for the Chen system (6.3). The first row displays the three
projections of the steady-state solution to (1.2) on a 104 \Rightarrow 104 \Rightarrow 69 grid. The teleportation
parameter is \varphi = 10\searrow 6. The bottom row shows the projections of the physical invariant
measure accumulated from time trajectory with intrinsic noise for a total time T = 5 \Rightarrow 105.
The bin size for the histogram is a cube of volume 0.53. The intrinsic noise \oldstyle{2} \infty N (0, 0.2I).

6.2.2. The e!ect of noise. It is important to understand the fundamental limitations and
challenges of converging the low-order solver for (1.2), particularly the role that the addition of
the extrinsic and intrinsic noises play here as an approximation of the di""usive errors expected
in the PDE solver.
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292 YANG, NURBEKYAN, NEGRINI, MARTIN, AND PASHA

(a) Steady-state solution to (1.2)

(b) Histogram accumulated from Chen system time trajectory with intrinsic noise

Figure 4. Chen system. Top row: the steady-state solution to (1.2) on the grid size 125 \rightarrow 125 \rightarrow 83. The
teleportation parameter is \omega = 10\uparrow 6. Bottom row: the histogram accumulated from Chen system time trajectory
with T = 5\rightarrow 105 and intrinsic noise \varepsilon \uparrow N (0, 0.2I).

After the ODE is solved, the extrinsic noise applied to the trajectory corresponds to an
e""ective Gaussian blur of the DNS results. In the limit of long-time DNS simulation, the true
density is the result of taking every point on the invariant measure, represented by a delta
function in state space based on the DNS solution, and then replacing it with a Gaussian ball
of equal integral mass with width defined by the standard deviation of the noise. This process
is equivalent to the Gaussian blur common in image processing.

The intrinsic noise case is more complicated. Since the three examples we have all admit
nontrivial basins of attraction, the shape of the distribution depends on both the magnitude
of the noise injected into the system and the dissipation rate in directions orthogonal to
the attractor. Fluctuations o"" the attractor place the system in states subject to additional
dissipation as the dynamics drive the solution back towards the attractor. The resulting
trajectories are biased random walks that balance the di""usion of the noise with contraction
in the stable state-space directions. While the extrinsic noise corresponds to a spatially
uniform low pass filter, the blurring resulting from the intrinsic noise depends on the local
stability and shape of the attractor in state space.

6.2.3. The e!ect of mesh size and numerical di!usion. While of a form dominated by
di""usion, numerical errors of the PDE solver have a dependence on the flow velocity \in v2\&t,
as described in [10]. This is the well-known numerical di""usion that motivates running com-
putational fluid dynamics solvers with a Courant–Freidrich–Lewy (CFL) condition number
as close to 1 as possible for low-order methods to minimize the numerical di""usivity. While
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Figure 5. The W2 metric and the L2 di!erence between the PDF accumulated from DNS with bin volume
(""x)3 and the PDF solved as the steady-state solution to (1.2) with spatial spacing ""x. The PDFs are for the
Lorenz system at the true parameters.

in this work, we seek a steady-state solution, the time step of the forward operator has ef-
fectively been selected to comply with this CFL restriction in the act of ensuring that the
forward operator is at least positive semidefinite in (3.2). Substituting the CFL restriction,
\&t = \&x/vmax, into the expression for the numerical di""usivity, it can be seen that numerical
di""usion in the PDE solver is e""ectively \in v2\&x/vmax, which is bounded by vmax\&x, suggest-
ing first-order convergence with \&x if vmax is bounded. More detailed numerical analysis for
the convergence and numerical errors can be found in [49]. The linear convergence is also seen
in Figure 5, where we compare the di""erences between the PDF accumulated from the Lorenz
system DNS with again T = 2\Rightarrow 106 and the steady-state solution to (1.2), both evaluated at
the true parameters for the Lorenz system. The histogram bin size changes as we use di""erent
\&x ’s in the finite volume discretization.

We remark that all the inversion tests in this paper use \&x = 3. It is for demonstration
only and thus far from being optimal. The size of the Markov matrix M grows \in \&x\searrow 3 as
\&x decreases, making it very expensive to compute the steady state at a fine mesh. Mesh-
refinement strategies could help provide better parameter estimates while saving computa-
tional costs of the forward solve. This, along with more e!cient numerical implementations,
will be left to future work.

6.2.4. The e!ect of random samples. One main advantage of the proposed framework is
that we allow the trajectory data to be “slowly” sampled, in which case we do not have access
to the state-space velocity or velocity estimates, i.e., the ẋ. In Figure 6(a), we illustrate the
total samples of the trajectory that will be used in the parameter inference, while Figure 6(b)
displays the relationship of the first 10 samples in the time series with the continuous trajectory
in the corresponding time window. One can observe that our random samples of state-space
positions are “sparse” and could not accurately estimate the state-space velocity. Later in
subsection 6.3.3, we use the reference measure constructed from such slowly sampled and
completely randomized state measurements to perform parameter identification.

In Figure 7, we numerically investigate the relationship between the amount of state-space
position samples and the approximation error for the invariant measure. In Figure 7(a), we
set the reference density to be the histogram accumulated from 108 samples and compare it
with the histogram accumulated from much fewer samples. We observe the classical Monte
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(a) 10
4
samples of the trajectory (b) Zoom-in view of the first 10 samples

Figure 6. Left: 104 random samples of the Lorenz trajectory; Right: illustration of the first 10 samples of
Figure 6(a) compared with the continuous trajectory.
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(b) DNS vs. PDE steady state

Figure 7. Left: the misfit between the density accumulated from subsampled data and the one from the
entire trajectory. Right: the misfit between the density accumulated from subsampled data and the computed
steady-state solution to the continuity equation.

Carlo error, O(1/
\ni 
N), where N is the number of samples. In Figure 7(b), we change the

reference density to the steady-state solution to the continuity equation (see (1.2)). The error
plateaus for large N since the modeling error, mainly due to the numerical di""usion discussed
in subsection 6.2.3, becomes the dominant factor of the mismatch when N is large enough.
It also indicates that we do not need too many trajectory samples to perform parameter
identification.

6.2.5. The e!ect of the teleportation parameter. To obtain the steady-state solution,
we used the so-called teleportation trick to regularize the Markov matrix; see subsection 3.2
for details. Here, we numerically investigate the impact of the teleportation parameter \varphi on
the obtained steady-state solution.

In Figure 8(a), we use the steady-state density in which the teleportation parameter \varphi = 0
as the reference data. We then compare it with those generated with a nonzero \varphi in terms
of the L2 norm and W2 metric. The misfit monotonically decreases to zero as \varphi \updownarrow 0. When
the reference density is replaced by the histogram accumulated from trajectory samples, the
misfit again plateaued when \varphi becomes small since the modeling error, mainly the numerical
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(b) PDE steady state vs. DNS

Figure 8. The L2 norm and W2 metric when the steady-state solution of various teleportation parameters
is compared with the steady state without teleportation (left), and with a fixed invariant measure obtained from
the trajectory samples (right).

di""usion from the finite volume solver, becomes the dominant factor of their di""erence. As
discussed in subsection 6.2.3, the error from numerical di""usion could be e""ectively reduced
as the mesh is refined, i.e., \&x \updownarrow 0.

6.3. Parameter inference. One main goal of this work is to perform parameter identi-
fication using the invariant measure, a macroscopic statistical quantity, as the data, rather
than inferring the parameter directly from time trajectories. All steady-state distributions in
this section are solved on a mesh with spacing \&x = 3.

6.3.1. Single parameter inference. We first focus on the single-parameter reconstruc-
tion by assuming that the other parameters in the dynamical systems are accurately known.
Figure 9(a) shows the single-parameter inversions of the Lorenz system where the ones for
Rössler and Chen systems can be found in subsection C.1. All experiments use the squared
W2 metric as the objective function; see (5.2). One can see that both the objective function
that measures the data mismatch and the relative error of the reconstructed parameters decay
to zero rapidly.

We remark that in these tests, the target invariant measure (our reference data) is simu-
lated as the steady-state solution to (1.2) at the true parameters, using the same PDE solver
that produces the synthetic data. Later, to mimic the realistic scenarios, we will show nu-
merical inversion tests where the reference data directly come from time trajectories and thus
contain both noise and model discrepancy.

6.3.2. Multiparameter inference via coordinate gradient descent. For numerical tests
we consider here, all dynamical systems have three parameters, while our observation is the
invariant measure \varrho (\varepsilon 1, \varepsilon 2, \varepsilon 3). Under certain assumptions for the continuous dependency on
the parameters, the first-order variation gives

\varsigma \varrho = \varrho \omega 1\varsigma \varepsilon 1 + \varrho \omega 2\varsigma \varepsilon 2 + \varrho \omega 3\varsigma \varepsilon 3,

which highlights the issue of multiparameter inversion. In the forward problem, a small
perturbation in each parameter causes a corresponding perturbation in the data \varrho , but in the
inverse problem, the observed misfit in \varrho could be contributed from any of the parameters,
causing nonzero and possibly wrong gradient updates.
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(a) Single-parameter inversion
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(b) Multi-parameter inversion

Figure 9. Top row: Lorenz system single-parameter inference starting with \varpi = 5 (left), \varrho = 20 (middle),
\varsigma = 1 (right), respectively. Bottom row: multiparameter inference by updating three parameters simultaneously
(bottom left) and using coordinate gradient descent (bottom right) with initial guess (\varpi , \varrho ,\varsigma ) = (5, 20, 1). The
reference PDF is generated through the same numerical solver producing the synthetic PDF.

Numerical strategies exist to reduce the interparameter trade-o"". One may mitigate the
interparameter dependency either from the formulation of the optimization problem or through
the optimization algorithm. Here, we separate the parameters in the optimization algorithm
by using the coordinate gradient descent by only updating one parameter at one iteration.

Figure 9(b) shows the Lorenz system multiparameter inversion. We remark again that
the reference data in these tests are produced by the same PDE solver that produces the
synthetic data and thus contains no modeling discrepancy. The left plot in Figure 9(b) shows
the convergence history of simultaneously updating all three parameters, but the iterates get
stuck at an incorrect set of values with no feasible descent direction. On the other hand,
the right plot shows the convergence result using coordinate gradient descent. The gradient
descent algorithm quickly converges to the true value (\oldstyle{0}, \varrho ,\oldstyle{1}) = (10, 28, 8/3) starting from
(5, 20, 1). The di""erent convergence behaviors of the two plots in Figure 9(b) demonstrate
that the reconstruction process is a""ected by the interparameter interaction.

6.3.3. Parameter inference for chaotic systems with noise. In this work, we formu-
late an inverse problem into a nonlinear regression problem, usually subject to at least three
sources of error: model discrepancy, data noise, and optimization error. As discussed earlier,
the almost perfect reconstructions in the previous section are achieved under the so-called
“inverse crime” regime and thus are immune to the first two types of errors. Here, we set
up tests to avoid the “inverse crime” regime. We first solve the dynamical system forward in
time with a fixed time step \&t from t = 0 to T = 2 \Rightarrow 106, achieving the DNS solution. We
then randomly subsample 104 state-space positions; see Figure 6 for their illustrations. The
reference data, i.e., the target estimated invariant measure, is obtained from the histogram
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(a) Lorenz with extrinsic noise (b) Arctan Lorenz with intrinsic noise

Figure 10. Comparison among the dynamics produced by the initial parameter (red); true parameter (green);
reconstructed parameters (blue) for two examples.
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Figure 11. Lorenz system (6.1): Multiparameter inference using coordinate gradient descent with initial
guess (\varpi , \varrho ,\varsigma ) = (5, 20, 1). The reference PDF is the histogram from the time trajectory with extrinsic noise.

that results from binning the subsampled data into cubic boxes in R3. Moreover, we also
use time trajectories incorporating intrinsic and extrinsic noises. Starting from the initial
guess (5, 20, 1), the multiparameter inversion for the Lorenz system (6.1) with extrinsic noise
converges to (\oldstyle{0}, \varrho ,\oldstyle{1}) = (10.63, 28.82, 3.04), and the test with the intrinsic noise converges
to (10.50, 28.41, 2.89). For the Arctan Lorenz system (6.4), the reconstruction converges to
(11.37, 27.64, 2.35) starting from (5, 20, 2), where the reference data are polluted by the in-
trinsic noise. We demonstrate the reconstructed dynamics in Figure 10. The plot for the
convergence history of the Lorenz example is shown in Figure 11. More numerical results can
be found in Appendix C.

Earlier in subsection 6.2.3, we have analyzed the numerical error between the synthetic
steady-state solution using the first-order finite volume method. It is shown both in Figure 5
and by numerical analysis that the error grows linearly with \&x. It is also a good charac-
terization of the model discrepancy and could be utilized to design specific stopping criteria
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298 YANG, NURBEKYAN, NEGRINI, MARTIN, AND PASHA

to avoid parameter overfitting. For example, Figure 5 could serve as the baseline: whenever
the objective function (W2 metric in our case) is minimized to a value smaller than the model
discrepancy, one should execute early stopping: terminate the iterative parameter reconstruc-
tion to avoid overfitting the noise. In machine learning, early stopping is designed to monitor
the generalization error of one model and stop training when the generalization error begins
to degrade, which is quite similar to the situation we encounter here.

7. Conclusion. In this paper, we propose a data-driven approach for parameter estima-
tion of chaotic dynamical systems. There are two significant contributions. First, we shift
from an ODE forward model to the related PDE forward model through a focus upon physical
measures. Instead of using time trajectories as the inference data, we treat statistics accumu-
lated from the direct numerical simulation as the observable, whose analog in the PDE setting
is the steady-state solution to (1.2). As a result, the original parameter identification problem
is translated into a data-fitting, PDE-constrained optimization problem. We then use an up-
wind scheme based on the finite volume method to discretize and solve the forward problem.
Second, we use the quadratic Wasserstein metric from OT to measure the di""erence between
the synthetic and the reference datasets. We provide a rigorous analysis of the di""erentia-
bility of Wasserstein-based parameter estimation and then derive two ways of calculating the
Wasserstein gradient following a discretize-then-optimize approach. In particular, the adjoint
approach is e!cient as the computational cost of gradient evaluation is independent of the
size of the unknown parameters, making the method scalable for large-scale parameterization
of the velocity fields. Finally, we show several numerical results to demonstrate the promise
of this new approach for chaotic dynamical system parameter identification.

For this method, su!cient data are required for the histogram estimate to converge to
the reference distribution. As in any nonparametric density estimate, the amount of data is
dependent on the coarseness of the approximation and level of stochastic error tolerated. In
this work, knowledge of the full state is also presumed. The approximated invariant measure
from the time trajectories as our reference data might be a singular probability measure with
highly complex support that has fractional fractal dimension. Thus, we use the regularized
forward PDE model as a surrogate in solving this inverse problem. We approximate the
steady-state solution to the PDE model with first-order accuracy based on the finite volume
upwind discretization. Due to the sparsity of the Markov matrix and a coarse grid, we can
evaluate the gradient of the resulting PDE-constrained optimization problem quite e!ciently
in terms of both memory and computational complexity. The Wasserstein metric from OT is
our objective function, which can compare measures with singular and compact support and
handle the fractional fractal dimension of the reference invariant measure.

Appendix A. Proofs from section 4.

A.1. Proof of Proposition 4.1.

Proof. We fix \varepsilon 0 \searrow \# and first prove that (i) implies (ii). Note that (4.3) follows immedi-
ately from (4.2). Furthermore, assume that (\lhook ,\varpi ) \searrow 'c(\varrho (·, \varepsilon 0), \varrho \rightarrow ) is an arbitrary pair of Kan-
torovich potentials. Note that (\lhook ,\varpi ) are not necessarily in S(\varepsilon 0). Since

\Biggl\lfloor 
""\nearrow \omega \varrho (x, \varepsilon 0)dx = 0,

we can add an arbitrary constant to \lhook and assume that sup\lhook = \rightarrow c\rightarrow \nearrow . In that case, we obtain
that (\lhook cc,\lhook c) \searrow S(\varepsilon 0), and
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\lhook cc(x) = \lhook (x), x \searrow supp(\varrho (·, \varepsilon 0)), and \lhook c(y) = \varpi (y), y \searrow supp(\varrho \rightarrow ).

Next, we have that supp(\nearrow \omega \varrho (·, \varepsilon 0)) \simeq supp(\varrho (·, \varepsilon 0)). Therefore, we have that
\Biggr] 

""
\lhook (x)\nearrow \omega \varrho (x, \varepsilon 0)dx =

\Biggr] 

""
\lhook cc(x)\nearrow \omega \varrho (x, \varepsilon 0)dx,

and (4.4) follows from (4.2) and (4.3).
Next, we prove (i). We apply [12, Proposition 4.12] with U = \#, X = C(\$) \Rightarrow C(\$),

' = C = Kc, and an objective function given by

I(\lhook ,\varpi , \varepsilon ) =

\Biggr] 

""
\lhook (x)\varrho (x, \varepsilon )dx+

\Biggr] 

""
\varpi (y)\varrho \rightarrow (y)dy.

For \varepsilon 1, \varepsilon 2 \searrow \# such that [\varepsilon 1, \varepsilon 2] \simeq \#, we have that

|I(\lhook 2,\varpi 2, \varepsilon 2)\uparrow I(\lhook 1,\varpi 1, \varepsilon 1)| \swarrow \rightarrow \lhook 2 \uparrow \lhook 1\rightarrow \nearrow + \rightarrow \varpi 2 \uparrow \varpi 1\rightarrow \nearrow + \rightarrow \lhook 1\rightarrow \nearrow \rightarrow \omega \rightarrow 1|\varepsilon 2 \uparrow \varepsilon 1|,(A.1)

and so I is continuous. Since Kc is compact, the supcompactness condition holds. Further-
more, A2 and the dominated convergence theorem yield the directional di""erentiability of
I(\lhook ,\varpi , ·) with

I \Leftarrow (\lhook ,\varpi , \varepsilon 0,\&\varepsilon ) =

\Biggr] 

""
\lhook (x)\nearrow \omega \varrho (x, \varepsilon 0)dx ·\&\varepsilon .

Finally, assume that tn \updownarrow 0+, (\lhook n,\varpi n) \searrow Kc, \&\varepsilon \searrow Rm, and (\lhook n,\varpi n) \updownarrow (\lhook ,\varpi ) \searrow Kc. Then
by the dominated convergence theorem we have that

lim
n\updownarrow \nearrow 

I(\lhook n,\varpi n, \varepsilon 0 + tn\&\varepsilon )\uparrow I(\lhook n,\varpi n, \varepsilon 0\varepsilon )

tn

= lim
n\updownarrow \nearrow 

\Biggr] 

""
\lhook n(x)

\varrho (x, \varepsilon 0 + tn\&\varepsilon )\uparrow \varrho (x, \varepsilon 0)

tn
dx = I \Leftarrow (\lhook ,\varpi , \varepsilon 0,\&\varepsilon ).

Thus, all conditions in [12, Proposition 4.12] are satisfied and (4.2) follows.

A.2. Proof of Theorem 4.2.

Proof. Assume that A1–A3 hold. Then (A.1) yields that \varepsilon \downarrow \updownarrow I(\lhook ,\varpi , \varepsilon ) is locally Lipschitz
for all (\lhook ,\varpi ) \searrow C(\$)\Rightarrow C(\$). Invoking (4.1), we conclude that f is locally Lipschitz and a.e.
di""erentiable by Rademacher’s theorem [29, section 3.1].

Next, assume that A4 also holds and denote C0 = \rightarrow c\rightarrow \nearrow \rightarrow h\rightarrow 1. For arbitrary (\lhook ,\lhook c) \searrow Kc

we have that

I(\lhook ,\lhook c, \varepsilon ) +
C0|\varepsilon |2

2
=

\Biggr] 

""
\lhook (x)

\Biggr\rfloor 
\varrho (x, \varepsilon ) +

h(x)|\varepsilon |2

2

\Biggl\lceil 
dx+

\Biggr] 

""
\lhook c(y)\varrho \rightarrow (y)dy

+

\Biggr\rfloor 
\rightarrow c\rightarrow \nearrow \rightarrow h\rightarrow 1 \uparrow 

\Biggr] 

""
\lhook (x)h(x)dx

\Biggl\lceil 
|\varepsilon |2

2
.
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300 YANG, NURBEKYAN, NEGRINI, MARTIN, AND PASHA

Since 0 \swarrow \lhook \swarrow \rightarrow c\rightarrow \nearrow , and \varepsilon \downarrow \updownarrow \varrho (x, \varepsilon ) + h(x)|\omega |2
2 is convex for a.e. x, we obtain that \varepsilon \downarrow \updownarrow 

I(\lhook ,\lhook c, \varepsilon ) + C0|\omega |2
2 is convex. Invoking Kantorovich duality again, we obtain that

f(\varepsilon ) +
C0|\varepsilon |2

2
= sup

(\varsigma ,\varsigma c)\downarrow Kc

I(\lhook ,\lhook c, \varepsilon ) +
C0|\varepsilon |2

2

is convex. Thus, by a theorem of Anderson and Klee [2] f is di""erentiable up to a set of
Hausdor"" dimension d\uparrow 1.

A.3. Proof of Theorem 4.5.

Proof. Fix an arbitrary pair of Kantorovich potentials (\lhook 1,\varpi 1), (\lhook 2,\varpi 2). Note that (4.7)
guarantees that int(supp(\varrho )) \nwarrow = \propto , and {Ok}, {Ek} are well defined.

First, we prove that \lhook 2 \uparrow \lhook 1 is constant on cl(Ok) for all k. Fix an optimal plan \leftharpoondown 0 \searrow 

(0(\varrho , \varrho \rightarrow ). For all x \searrow supp(\varrho ) there exists y \searrow \$ such that (x, y) \searrow supp(\leftharpoondown 0). Therefore
\lhook i(x)+\varpi i(y) = c(x, y), and so \lhook i(x) = \varpi c

i
(x) for x \searrow supp(\varrho ). Furthermore, since c \searrow C1(\$2) is

locally Lipschitz continuous, \lhook i are locally Lipschitz continuous in Ok. Thus, by Rademacher’s
theorem we have that \lhook i are a.e. di""erentiable in Ok, and by [66, Proposition 1.15] we obtain
that \nearrow \lhook 2 = \nearrow \lhook 1 a.e. in Ok. Since Ok are connected and \lhook i are continuous, we obtain that
\lhook 2 \uparrow \lhook 1 = \rightharpoondown k in cl(Ok) for some constants \rightharpoondown k.

Next, we show that \rightharpoondown k = \rightharpoondown l for all k, l. We start with a claim that

\varpi i(y) = inf
x\downarrow cl(Ok)

{c(x, y)\uparrow \lhook i(x)}, y \searrow Ek.(A.2)

Indeed, we have that y = limn\updownarrow \nearrow yn, where yn are such that (xn, yn) \searrow supp(\leftharpoondown n) for some
\leftharpoondown n \searrow (0(\varrho , \varrho \rightarrow ), and xn \searrow cl(Ok). Therefore, for all n we have that \lhook i(xn)+\varpi i(yn) = c(xn, yn),
and so

\varpi i(yn) = inf
x\downarrow cl(Ok)

{c(x, yn)\uparrow \lhook i(x)}.

Since both \varpi i and y \downarrow \updownarrow infx\downarrow cl(Ok){c(x, y) \uparrow \lhook i(x)} are continuous, we deduce (A.2). Next,
\lhook 2 \uparrow \lhook 1 = \rightharpoondown k in cl(Ok), and (A.2) yields that \varpi 2 \uparrow \varpi 1 = \uparrow \rightharpoondown k in Ek.

Now fix arbitrary k, l. Since cl(Ok), cl(Ol) are linked, there exist {ij}mj=1 such that k =
i1, l = im, and Eij \prime Eij+1 \nwarrow = \propto , 1 \swarrow j \swarrow m. Since \varpi 2\uparrow \varpi 1 = \uparrow \rightharpoondown ij in Eij , and \varpi 2\uparrow \varpi 1 = \uparrow \rightharpoondown ij+1

in Eij+1 , we obtain that \rightharpoondown ij = \rightharpoondown ij+1 for all j. Thus, \rightharpoondown k = \rightharpoondown l, and, consequently, \lhook 2 \uparrow \lhook 1 = \rightharpoondown 
in int(supp(\varrho )) = \Uparrow kOk. Finally, (4.7) and the continuity of \lhook i yield that \lhook 2 \uparrow \lhook 1 = \rightharpoondown in
supp(\varrho ).

A.4. Proof of Proposition 4.7.

Proof. The proof is based on the following points.

1. We have that |\rightharpoonup \omega \varrho (x, \varepsilon )| = |\rhook [0,1](x)\uparrow \rhook [2,3](x)| \swarrow 1, for all x \searrow \$.
2. Assume that \uparrow 0.5 < \varepsilon 1 < \varepsilon 2 < 0.5. In R, OT maps are precisely the order-preserving

ones [71, section 2.2]. The total mass of [0, 1] with respect to \varrho (·, \varepsilon 1) and \varrho (·, \varepsilon 2) is
0.5 + \varepsilon 1 and 0.5 + \varepsilon 2, respectively. Since 0.5 + \varepsilon 1 < 0.5 + \varepsilon 2, all of the mass of \varrho (·, \varepsilon 1)
from [0, 1] has to be transported to [0, 1] with a linear transport map T (x) = 0.5+\omega 1

0.5+\omega 2
x.
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OPTIMAL TRANSPORT FOR PARAMETER IDENTIFICATION 301

Meanwhile, the excess mass of \varrho (·, \varepsilon 2) in [0, 1], supported on
\left\{ 
0.5+\omega 1

0.5+\omega 2
, 1
\right\} 
, has to be

transported from [2, 3], and therefore has to travel a distance \leftrightarrow 1. Since the excess
mass of \varrho (·, \varepsilon 2) left in [0, 1] is equal to 0.5 + \varepsilon 2 \uparrow (0.5 + \varepsilon 1) = \varepsilon 2 \uparrow \varepsilon 1, we obtain that
the transport cost is at least (\varepsilon 2 \uparrow \varepsilon 1) · 1p. Thus,

Wp(\varrho (·, \varepsilon 1), \varrho (·, \varepsilon 2)) \leftrightarrow |\varepsilon 2 \uparrow \varepsilon 1|
1
p \bigtriangleup \varepsilon 1, \varepsilon 2 \searrow (\uparrow 0.5, 0.5),

which means that \varepsilon \downarrow \updownarrow \varrho (·, \varepsilon ) is not absolutely continuous with respect to Wp metric.
3. Fix an arbitrary |\varepsilon | < 0.5. We only use the fact that supp(\varrho (·, \varepsilon )) \nsubseteqq [0, 4]. Assume

by contradiction that \varrho \downarrow \updownarrow W p
p (\varrho , \varrho \rightarrow ) is Gâteaux di""erentiable at \varrho (·, \varepsilon ) in the sense of

[66, Definition 7.12]; that is, there exists a measurable function g such that

d

d\varphi 
W p

p (\varrho (·, \varepsilon ) + \varphi ( \varrho \uparrow \varrho (·, \varepsilon )), \varrho \rightarrow )|
\varepsilon =0+ =

\Biggr] 4

0
g(x)( \varrho (x)\uparrow \varrho (x, \varepsilon ))dx

for all  \varrho \searrow P([0, 4]) \prime L\nearrow ([0, 4]). Let \lhook \searrow C([0, 4]) be an arbitrary Kantorovich
potential. From [66, Proposition 7.17] we have that \lhook is in the subdi""erential of
\varrho \downarrow \updownarrow W p

p (\varrho , \varrho \rightarrow ) at \varrho (·, \varepsilon ); that is,

W p

p (\varrho , \varrho 
\rightarrow ) \leftrightarrow W p

p (\varrho (·, \varepsilon ), \varrho 
\rightarrow ) +

\Biggr] 4

0
\lhook (x)(\varrho (x)\uparrow \varrho (x, \varepsilon ))dx \bigtriangleup \varrho \searrow P([0, 4]).

Hence, we have that

d

d\varphi 
W p

p (\varrho (·, \varepsilon ) + \varphi ( \varrho \uparrow \varrho (·, \varepsilon )), \varrho \rightarrow )|
\varepsilon =0+ \leftrightarrow 

\Biggr] 4

0
\lhook (x)( \varrho (x)\uparrow \varrho (x, \varepsilon ))dx.

Combining this inequality with the preceding equality, we obtain

\Biggr] 4

0
(\lhook (x)\uparrow g(x))\varrho (x, \varepsilon )dx \leftrightarrow 

\Biggr] 4

0
(\lhook (x)\uparrow g(x)) \varrho (x)dx

for all  \varrho \searrow P(\$) \prime L\nearrow (\$) and Kantorovich potentials \lhook . Fix an arbitrary potential
\lhook 0 and take  \varrho (x) = \rhook (1,2)(x). Furthermore, for every \rightharpoondown \searrow R consider

\lhook \rightharpoonup (x) = \lhook 0(x) + \rightharpoondown (x\uparrow 1)(2\uparrow x)\rhook (1,2)(x).

Note that \lhook \rightharpoonup is continuous and \lhook \rightharpoonup = \lhook 0 in supp\varrho (·, \varepsilon ). Thus, if (\lhook 0,\varpi 0) is a pair of
Kantorovich potentials, then (\lhook \rightharpoonup ,\varpi 0) is also a pair of Kantorovich potentials. Plugging
\lhook = \lhook \rightharpoonup into the inequality above we obtain

\Biggr] 4

0
(\lhook 0(x)\uparrow g(x))\varrho (x, \varepsilon )dx \leftrightarrow 

\Biggr] 2

1
(\lhook 0(x)\uparrow g(x))dx+ \rightharpoondown 

\Biggr] 2

1
(x\uparrow 1)(2\uparrow x)dx

=

\Biggr] 2

1
(\lhook 0(x)\uparrow g(x))dx+

\rightharpoondown 

6

for all \rightharpoondown \searrow R, which is a contradiction.
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302 YANG, NURBEKYAN, NEGRINI, MARTIN, AND PASHA

4. For this and the following item, we need an explicit characterization of the OT map,
T\omega , from \varrho (·, \varepsilon ) to \varrho \rightarrow . For \varepsilon = 0, we have that \varrho \rightarrow is a translation of \varrho (·, 0). Thus, we
have that

T0(x) = x+ 1, W p

p (\varrho (·, 0), \varrho 
\rightarrow ) = 1.

Next, for \varepsilon > 0 we have that \varrho ([0, 1], \varepsilon ) = 0.5 + \varepsilon > 0.5 = \varrho \rightarrow ([1, 2]). Therefore,

T\omega (x) =

 
         

         

1 +
0.5 + \varepsilon 

0.5
x, x \searrow 

 
0,

0.5

0.5 + \varepsilon 

 
,

3 +
0.5 + \varepsilon 

0.5

\Biggr\rfloor 
x\uparrow 

0.5

0.5 + \varepsilon 

\Biggl\lceil 
, x \searrow 

 
0.5

0.5 + \varepsilon 
, 1

 
,

3 +
\varepsilon 

0.5
+

0.5\uparrow \varepsilon 

0.5
(x\uparrow 2), x \searrow [2, 3].

(A.3)

For \varepsilon < 0 we have that \varrho ([0, 1], \varepsilon ) = 0.5 + \varepsilon < 0.5 = \varrho \rightarrow ([1, 2]). Therefore,

T\omega (x) =

 
         

         

1 +
0.5 + \varepsilon 

0.5
x, x \searrow [0, 1],

1 +
0.5 + \varepsilon 

0.5
+

0.5\uparrow \varepsilon 

0.5
(x\uparrow 2), x \searrow 

 
2, 2\uparrow 

\varepsilon 

0.5\uparrow \varepsilon 

 
,

3 +
0.5\uparrow \varepsilon 

0.5

\Biggr\rfloor 
x\uparrow 2 +

\varepsilon 

0.5\uparrow \varepsilon 

\Biggl\lceil 
, x \searrow 

 
2\uparrow 

\varepsilon 

0.5\uparrow \varepsilon 
, 3

 
.

(A.4)

For all \varepsilon , the connected components of int(supp(\varrho (·, \varepsilon ))) are

O1 = (0, 1), O2 = (2, 3).

Furthermore, using the definition (4.6) and invoking (A.3), (A.4) we obtain

E1 =

 
        

        

[1, 2], \varepsilon = 0,

[1, 2] \Uparrow 

 
3, 3 +

\varepsilon 

0.5

 
, \varepsilon > 0,

 
1, 1 +

0.5 + \varepsilon 

0.5

 
, \varepsilon < 0,

E2 =

 
        

        

[3, 4], \varepsilon = 0,
 
3 +

\varepsilon 

0.5
, 4

 
, \varepsilon > 0,

 
1 +

0.5 + \varepsilon 

0.5
, 2

 
\Uparrow [3, 4], \varepsilon < 0.

Thus, we have that

E1 \prime E2 =

 
        

        

\propto , \varepsilon = 0,
\Biggr\rceil 
3 +

\varepsilon 

0.5

\Biggl\{ 
, \varepsilon > 0,

\Biggr\rceil 
1 +

0.5 + \varepsilon 

0.5

\Biggl\{ 
, \varepsilon < 0,

which means that cl(O1), cl(O2) are linked for all |\varepsilon | < 0.5 except \varepsilon = 0.
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OPTIMAL TRANSPORT FOR PARAMETER IDENTIFICATION 303

5. The di""erentiability of \varepsilon \downarrow \updownarrow W p
p (\varrho (·, \varepsilon ), \varrho \rightarrow ) at \varepsilon \nwarrow = 0 follows from Corollary 4.6, and

Item 4 above. Recall that W p
p (\varrho (·, 0), \varrho \rightarrow ) = 1. Next, assume that \varepsilon > 0. From (A.3),

W p

p (\varrho (·, \varepsilon ), \varrho 
\rightarrow ) =

3\Biggl[ 

k=1

\Biggr] 

Ik

|T\omega (x)\uparrow x|p\varrho (x, \varepsilon )dx,(A.5)

where I1 =

 
0,

0.5

0.5 + \varepsilon 

 
, I2 =

 
0.5

0.5 + \varepsilon 
, 1

 
, I3 = [2, 3].

For x \searrow I1 \Uparrow I3 we use the elementary inequality

|T\omega (x)\uparrow x|p \leftrightarrow 1 + p(T\omega (x)\uparrow x\uparrow 1).

For x \searrow I2, we have that

|T\omega (x)\uparrow x|p \leftrightarrow 2p.

Plugging these inequalities into (A.5) and using (A.3) for evaluating elementary inte-
grals, we obtain

W p

p (\varrho (·, \varepsilon ), \varrho 
\rightarrow ) \leftrightarrow 1 + (2p + p\uparrow 1)\varepsilon \uparrow p\varepsilon 2, 0 < \varepsilon < 0.5,

and so

lim inf
\omega \updownarrow 0+

W p
p (\varrho (·, \varepsilon ), \varrho \rightarrow )\uparrow W p

p (\varrho (·, 0), \varrho \rightarrow )

\varepsilon 
\leftrightarrow 2p + p\uparrow 1.

For \varepsilon < 0, we have that

W p

p (\varrho (·, \varepsilon ), \varrho 
\rightarrow ) =

3\Biggl[ 

k=1

\Biggr] 

Jk

|T\omega (x)\uparrow x|p\varrho (x, \varepsilon )dx,(A.6)

where J1 = [0, 1], J2 = [2, 2\uparrow \omega 

0.5\searrow \omega 
], and J3 = [2\uparrow \omega 

0.5\searrow \omega 
, 3]. Furthermore,

|T\omega (x)\uparrow x|p \leftrightarrow 1 + p(T\omega (x)\uparrow x\uparrow 1), x \searrow J1 \Uparrow J3,

|T\omega (x)\uparrow x|p \leftrightarrow 0, x \searrow J2.

Plugging these inequalities into (A.6), we obtain

W p

p (\varrho (·, \varepsilon ), \varrho 
\rightarrow ) \leftrightarrow 1 + (p+ 1)\varepsilon + p\varepsilon 2, \uparrow 0.5 < \varepsilon < 0,

and so

lim sup
\omega \updownarrow 0\searrow 

W p
p (\varrho (·, \varepsilon ), \varrho \rightarrow )\uparrow W p

p (\varrho (·, 0), \varrho \rightarrow )

\varepsilon 
\swarrow p+ 1.

Since 2p+p\uparrow 1 > p+1 for p > 1, we obtain that \varepsilon \downarrow \updownarrow W p
p (\varrho (·, \varepsilon ), \varrho \rightarrow ) is not di""erentiable

at \varepsilon = 0.
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304 YANG, NURBEKYAN, NEGRINI, MARTIN, AND PASHA

A.5. Proof of Proposition 4.8.

Proof. Assume by contradiction that there exist (\lhook n,\varpi n) \searrow 'c(\varrho (·, \varepsilon 0), \varrho \rightarrow ) and \varphi 0 > 0 such
that I(\lhook n,\varpi n) > f(\varepsilon 0)\uparrow 

1
n
and
\right] \right] \right] \right] \nearrow \omega f(\varepsilon 0)\uparrow 

\Biggr] 

""
\lhook cc

n (x)\nearrow \omega \varrho (x, \varepsilon 0)dx

\right] \right] \right] \right] \leftrightarrow \varphi 0.(A.7)

Note that by adding a suitable constant to \lhook n, we can assume that sup\lhook n = \rightarrow c\rightarrow \nearrow . Thus,
(\lhook cc

n ,\lhook c
n) \searrow Kc and

f(\varepsilon 0) \leftrightarrow I(\lhook cc

n ,\lhook c

n, \varepsilon 0) \leftrightarrow I(\lhook n,\varpi n, \varepsilon 0) > f(\varepsilon 0)\uparrow 
1

n
.

Since Kc is compact, we have that (\lhook cc
n ,\lhook c

n) \updownarrow (\lhook ,\lhook c) \searrow Kc at least through a subsequence.
Thus,

I(\lhook ,\lhook c, \varepsilon 0) = lim
n\updownarrow \nearrow 

I(\lhook cc

n ,\lhook c

n, \varepsilon 0) = f(\varepsilon 0),

and so (\lhook ,\lhook c) \searrow S(\varepsilon 0). Hence, from Proposition 4.1 we have that
\right] \right] \right] \right] \nearrow \omega f(\varepsilon 0)\uparrow 

\Biggr] 

""
\lhook cc

n (x)\nearrow \omega \varrho (x, \varepsilon 0)dx

\right] \right] \right] \right] 

=

\right] \right] \right] \right] 
\Biggr] 

""
\lhook (x)\nearrow \omega \varrho (x, \varepsilon 0)dx\uparrow 

\Biggr] 

""
\lhook cc

n (x)\nearrow \omega \varrho (x, \varepsilon 0)dx

\right] \right] \right] \right] \swarrow \rightarrow \lhook \uparrow \lhook cc

n \rightarrow \nearrow \rightarrow \omega \rightarrow 1,

which contradicts (A.7) and finishes the proof.

Appendix B. Numerical schemes for computing the gradient.

B.1. Numerical scheme for (5.6) and (5.8). We remark that the first equations in both
(5.6) and (5.8) are the same, which corresponds to solving the forward problem (3.5) given
the current iterate of the unknown parameter \varepsilon l. There are at least three ways to solve the
linear system: (1) the power method, (2) Richardson iteration, and (3) the sparse linear solve.
We refer the readers to [39] for more details about the first two approaches and explain (3) in
more detail.

In (3.5), we are interested in finding the solution \varrho to the linear system

M\varepsilon \varrho = (1\uparrow \varphi )M\varrho +
\varphi 

n
11\Rightarrow \varrho = \varrho ,(B.1)

where 1 = [1, 1, . . . , 1]\Rightarrow , M is defined in (3.3), and \varphi is our teleportation (regularization)
parameter. Thus, we can rewrite the linear system as

((1\uparrow \varphi )M \uparrow I)\varrho = \uparrow 
\varphi 

n
11\Rightarrow \varrho .

Since the biggest eigenvalue of (1 \uparrow \varphi )M is 1 \uparrow \varphi < 1, the matrix on the left-hand side is
invertible, and the solution is unique. We have

\varrho \rightarrow =
\varrho 

1\Rightarrow \varrho 
= \uparrow ((1\uparrow \varphi )M \uparrow I)\searrow 1 \varphi 

n
1,(B.2)

where \varrho \rightarrow is our solution that we seek as 1\Rightarrow \varrho \rightarrow = 1.
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OPTIMAL TRANSPORT FOR PARAMETER IDENTIFICATION 305

Regarding the second equation of (5.6), we consider the general linear system as below to
solve for  \triangleleft given the right-hand side y where

(M\varepsilon \uparrow I) \triangleleft = y.(B.3)

Based on Lemma 5.1, we know the right-hand side of (5.6), which we denote as y, satisfies
y · 1 = 0, and M\varepsilon \uparrow I has a one-dimensional null space with generator \varrho \rightarrow . We seek a unique
solution  \triangleleft \rightarrow , where 1\Rightarrow  \triangleleft \rightarrow = 0. Note that (B.3) is equivalent to

((1\uparrow \varphi )M \uparrow I) \triangleleft = y \uparrow 
\varphi 

n
11\Rightarrow  \triangleleft .

Since 1\Rightarrow  \triangleleft \rightarrow = 0, we obtain that  \triangleleft \rightarrow must satisfy ((1\uparrow \varphi )M \uparrow I) \triangleleft \rightarrow = y. As above, (1\uparrow \varphi )M \uparrow I
is invertible, and this system has a unique solution. Therefore,

 \triangleleft \rightarrow = ((1\uparrow \varphi )M \uparrow I)\searrow 1y.(B.4)

Regarding the third equation of (5.8), we consider the general linear system as below to solve
for  \triangleleft given the right-hand side b, where

(M\Rightarrow 
\varepsilon \uparrow I) \triangleleft = b.(B.5)

Based on Lemma 5.2, we know the right-hand side of (5.8), which we denote as b, satisfies
b · \varrho \rightarrow = 0, and M\Rightarrow 

\varepsilon \uparrow I has a one-dimensional null space with generator 1. We seek a unique
solution  \triangleleft \rightarrow where 1\Rightarrow  \triangleleft \rightarrow = 0. Note that (B.5) is equivalent to

((1\uparrow \varphi )M\Rightarrow 
\uparrow I) \triangleleft = b\uparrow 

\varphi 

n
11\Rightarrow  \triangleleft .

Since 1\Rightarrow  \triangleleft \rightarrow = 0, we obtain that  \triangleleft \rightarrow must satisfy ((1\uparrow \varphi )M\Rightarrow 
\uparrow I) \triangleleft = b. As above, (1\uparrow \varphi )M\Rightarrow 

\uparrow I
is invertible, and this system has a unique solution. Therefore

 \triangleleft \rightarrow = ((1\uparrow \varphi )M\Rightarrow 
\uparrow I)\searrow 1b.(B.6)

Note that both the matrix (1\uparrow \varphi )M\uparrow I and its transpose are sparse. Therefore, it is relatively
e!cient to solve the linear systems that are essential for gradient calculation. The other
components in (5.6) and (5.8) are rather straightforward once we solve (B.1) and (B.3) (or
(B.5)).

B.2. Automatic di!erentiation. In the previous sections, we explained how to directly
compute \nearrow \omega Kmat(\varepsilon ) (or equivalently \nearrow \omega M\varepsilon (\varepsilon )), which is necessary to calculate \nearrow \omega \varrho (\varepsilon ). How-
ever, if the numerical scheme for the forward problem changes, the structure of Kmat(\varepsilon )
changes, and consequently, one has to rederive the explicit form of \nearrow \omega Kmat(\varepsilon ). Such situa-
tions occur when using a higher-order finite volume method or switching to other standard
numerical schemes such as the discontinuous Galerkin method. In order to make our code
more flexible, we also implemented an automatic di""erentiation version using the Python
library JAX [14].

We compute the full Jacobian matrices of Kmat(\varepsilon ) using the jacfwd function. It uses
forward-mode automatic di""erentiation, the most e!cient choice when working with “tall”
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306 YANG, NURBEKYAN, NEGRINI, MARTIN, AND PASHA

matrices like those in this paper. The method of automatic di""erentiation is extremely valu-
able when working with real-world data. In many realistic situations, such as weather fore-
cast, we do not have access to the underlying dynamical system, and thus we cannot compute
\nearrow \omega Kmat(\varepsilon ) directly. In future work, we plan on using neural networks to approximate the dy-
namical system from data. Given the large number of parameters and the complex functional
form of a deep neural network, it would be impossible to derive \nearrow \omega Kmat(\varepsilon ) explicitly, making
the automatic di""erentiation approach necessary.

Appendix C. More numerical results.

C.1. Single parameter inversion for the Rössler and Chen systems. Figures 12 and
13 show the single-parameter inversion for the Rössler and Chen systems, respectively. The
reference data is produced by the same PDE solver as the synthetic data but evaluated at the
true set of parameters.

C.2. Convergence history of parameter inference with noisy time trajectories. Fig-
ures 11 and 14 are the inversion results where the Lorenz time trajectory is polluted by
extrinsic and intrinsic noises, respectively. The properties of the time trajectories that are
a""ected by the intrinsic and extrinsic noises are the same as the ones in Figure 2. As one can
see from all the single-parameter and multiparameter inversions, it gets more challenging to
achieve reconstruction with high accuracy than the previous noise-free cases. In particular, the
overfitting phenomenon occurs, which can be directly observed for \oldstyle{1} in the single-parameter
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Figure 12. Rössler system single-parameter inference starting with a = 0.5 (left), b = 0.5 (middle), c = 10
(right), respectively. The reference PDF is generated by the truth (a, b, c) = (0.1, 0.1, 14) through the same
numerical solver for the synthetic data.
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Figure 13. Chen system single-parameter inference starting with a = 45 (left), b = 5 (middle), c = 20
(right), respectively. The reference PDF is generated by the truth (a, b, c) = (40, 3, 28) through the same
numerical solver for the synthetic data.
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(a) Single-parameter inversion
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(b) Multi-parameter inversion

Figure 14. Top row: Lorenz system single-parameter inference starting with \varpi = 5 (left), \varrho = 20 (middle),
\varsigma = 1 (right), respectively. Bottom row: Multiparameter inference using coordinate gradient descent with initial
guess (\varpi , \varrho ,\varsigma ) = (5, 20, 1). The reference PDF is the histogram from the time trajectory with intrinsic noise.

inversion (the top right plot in both figures) and the three-parameter joint inversion (the bot-
tom plots). As the number of iterations increases, the reconstructed \oldstyle{1} first reaches the actual
value but immediately deviates away as the objective function keeps being minimized to fit
the noise.
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[5] S. J. Araki, J. W. Koo, R. S. Martin, and B. Dankongkakul, A grid-based nonlinear approach to
noise reduction and deconvolution for coupled systems, Phys. D, 417 (2021), 132819.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

12
/0

8/
23

 to
 1

32
.1

74
.2

52
.1

79
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



308 YANG, NURBEKYAN, NEGRINI, MARTIN, AND PASHA

[6] M. Arjovsky, S. Chintala, and L. Bottou, Wasserstein generative adversarial networks, Proc. Mach.
Learn. Res. (PMLR), 70 (2017), pp. 214–223.

[7] E. Baake, M. Baake, H. Bock, and K. Briggs, Fitting ordinary di!erential equations to chaotic data,
Phys. Rev. A (3), 45 (1992), p. 5524.

[8] R. Bakker, J. C. Schouten, C. L. Giles, F. Takens, and C. M. Van Den Bleek, Learning chaotic
attractors by neural networks, Neural Comput., 12 (2000), pp. 2355–2383.

[9] E. Bernton, P. E. Jacob, M. Gerber, and C. P. Robert, On parameter estimation with the Wasser-
stein distance, Inf. Inference, 8 (2019), pp. 657–676.

[10] T. R. Bewley and A. S. Sharma, E""cient grid-based Bayesian estimation of nonlinear low-dimensional
systems with sparse non-Gaussian PDFs, Automatica J. IFAC, 48 (2012), pp. 1286–1290.

[11] B. P. Bezruchko and D. A. Smirnov, Extracting Knowledge From Time Series: An Introduction to
Nonlinear Empirical Modeling , Springer, Heidelberg, 2010.

[12] J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer Ser. Oper.
Res., Springer, New York, 2000.

[13] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Di!eomorphisms, Lecture Notes in
Math. 470, Springer, Berlin, 1975.

[14] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A.
Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang, JAX: Composable Transforma-
tions of Python+NumPy Programs, 2018, http://github.com/google/jax.

[15] J. Brocker, U. Parlitz, and M. Ogorzalek, Nonlinear noise reduction, Proc IEEE, 90 (2002), pp.
898–918.

[16] S. L. Brunton, J. L. Proctor, and J. N. Kutz, Discovering governing equations from data by sparse
identification of nonlinear dynamical systems , Proc. Natl. Acad. Sci. USA, 113 (2016), pp. 3932–3937.

[17] G. Chen and T. Ueta, Yet another chaotic attractor , Internat. J. Bifur. Chaos, 9 (1999),
pp. 1465–1466.

[18] W. Cowieson and L.-S. Young, SRB measures as zero-noise limits, Ergodic Theory Dynam. Systems,
25 (2005), pp. 1115–1138, https://doi.org/10.1017/S0143385704000604.

[19] M. Dellnitz, G. Froyland, and O. Junge, The algorithms behind GAIO—set oriented numerical
methods for dynamical systems, in Ergodic Theory, Analysis, and E!cient Simulation of Dynamical
Systems, Springer, Berlin, 2001, pp. 145–174.

[20] M. Dellnitz and O. Junge, Almost invariant sets in Chua’s circuit , Internat. J. Bifur. Chaos, 7 (1997),
pp. 2475–2485.

[21] M. Dellnitz and O. Junge, An adaptive subdivision technique for the approximation of attractors and
invariant measures, Comput. Vis. Sci., 1 (1998), pp. 63–68.

[22] M. Dellnitz and O. Junge, On the approximation of complicated dynamical behavior , SIAM J. Numer.
Anal., 36 (1999), pp. 491–515.

[23] M. Dellnitz and O. Junge, Set oriented numerical methods for dynamical systems, in Handbook of
Dynamical Systems, Vol. 2, B. Fiedler, ed., Elsevier, Amsterdam, 2002, pp. 221–264.

[24] M. M. Dunlop and Y. Yang, Stability of Gibbs posteriors from the Wasserstein loss for Bayesian full
waveform inversion, SIAM/ASA J. Uncertain. Quantif., 9 (2021), pp. 1499–1526.

[25] S. Effah-Poku, W. Obeng-Denteh, and I. Dontwi, A study of chaos in dynamical systems, J. Math.,
2018, (2018), 1808953.

[26] M. Eidenschink, Exploring Global Dynamics: A Numerical Algorithm Based on the Conley Index Theory ,
Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA, 1995.

[27] B. Engquist, K. Ren, and Y. Yang, The quadratic Wasserstein metric for inverse data matching ,
Inverse Problems, 36 (2020), 055001.

[28] B. Engquist and Y. Yang, Optimal transport based seismic inversion: Beyond cycle skipping , Comm.
Pure Appl. Math., 2020.

[29] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Stud. Adv. Math.,
CRC Press, Boca Raton, FL, 1992.

[30] J. C. Feng, Reconstruction of Chaotic Signals With Applications to Chaos-Based Communications, World
Scientific, Singapore, 2008.

[31] D. C. D. R. Fernández, P. D. Boom, and D. W. Zingg, A generalized framework for nodal first
derivative summation-by-parts operators, J. Comput. Phys., 266 (2014), pp. 214–239.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

12
/0

8/
23

 to
 1

32
.1

74
.2

52
.1

79
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

http://github.com/google/jax
https://doi.org/10.1017/S0143385704000604


OPTIMAL TRANSPORT FOR PARAMETER IDENTIFICATION 309

[32] B. Fiedler, Handbook of Dynamical Systems, Elsevier, Amsterdam, 2002.
[33] R. Flamary, N. Courty, A. Gramfort, M. Z. Alaya, A. Boisbunon, S. Chambon, L. Chapel,

A. Corenflos, K. Fatras, N. Fournier, L. Gautheron, N. T. H. Gayraud, H. Janati, A.
Rakotomamonjy, I. Redko, A. Rolet, A. Schutz, V. Seguy, D. J. Sutherland, R. Tavenard,
A. Tong, and T. Vayer, POT: Python optimal transport , J. Mach. Learn. Res., 22 (2021), pp. 1–8.

[34] A. L. Fradkov and R. J. Evans, Control of chaos: Methods and applications in engineering , Annu.
Rev. Control, 29 (2005), pp. 33–56.

[35] G. Froyland, Extracting dynamical behavior via Markov models, in Nonlinear Dynamics and Statistics,
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