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ABSTRACT

We extend the methodology in Yang et al. [SIAM J. Appl. Dyn. Syst. 22, 269–310 (2023)] to learn autonomous continuous-time dynamical
systems from invariant measures. The highlight of our approach is to reformulate the inverse problem of learning ODEs or SDEs from
data as a PDE-constrained optimization problem. This shift in perspective allows us to learn from slowly sampled inference trajectories and
perform uncertainty quantification for the forecasted dynamics. Our approach also yields a forward model with better stability than direct
trajectory simulation in certain situations. We present numerical results for the Van der Pol oscillator and the Lorenz-63 system, together
with real-world applications to Hall-effect thruster dynamics and temperature prediction, to demonstrate the effectiveness of the proposed
approach.

Published by AIP Publishing. https://doi.org/10.1063/5.0149673

Data-driven models have proven to be instrumental across
numerous scientific disciplines for their ability to predict and
control the behavior of complex physical systems.1 Popular
approaches for modeling dynamical trajectories typically adopt a
Lagrangian perspective and seek pointwise matching with either
the observed data or its approximate state derivatives. When
the observed data have a poor temporal resolution and the state
derivatives are difficult to approximate, these approaches may
struggle. Such difficulties are further exaggerated when measure-
ments are contaminated with noise, and the system in question
exhibits sensitive dependence on initial conditions. In this paper,
we propose an alternative approach that can circumvent some
of these challenges by treating global statistics of the observed
dynamics as the inference data.

I. INTRODUCTION

Differential equations are typically used to model trajectory
data originating from physical systems. Common techniques for fit-
ting differential equations to trajectory data include the shooting
methods,2,3 neural differential equations,4–6 and SINDy.7,8 Methods
based on the Kalman filter are effective in data assimilation and

in estimating unknown states and parameters of a system as it
evolves in time.9–14 When used to identify model parameters, these
approaches fall under the broad category of system identification.

These approaches all adopt a Lagrangian perspective and
directly fit the modeled trajectories or their state derivatives to the
observed measurements. While these techniques have seen great
success in modeling complex dynamics, their application is gen-
erally limited to inference trajectories sampled at a relatively high
frequency. When the inference trajectory is sampled slowly or in the
worst-case scenario when measurement times are unknown, these
approaches may not be applicable. For example, see Fig. 1 in which
we investigate the use of SINDy7 and a neural ODE4 for modeling
the dynamics of a slowly sampled limit cycle.

There are at least three sources of instabilities when directly
using the trajectory data to perform velocity reconstruction. First,
for certain chaotic dynamical systems, a small perturbation in the
initial condition can lead to a large deviation in the trajectory at a
later time, which cannot be differentiated from inaccurate dynamics
by looking at the data alone. Second, the estimation of the particle
velocity suffers from slowly sampled trajectory data, which directly
affects the reconstruction of the dynamics, as shown in Fig. 1. Third,
the measurement (extrinsic) noise and the model intrinsic noise
both change the state location. The small noise pollution can be
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FIG. 1. Comparison with the SINDy7,15,16 and the neural ODE4 frameworks for learning slowly sampled dynamics. The left panel shows the original dynamics (in gray) and
the first eight points of a slowly sampled trajectory (in red). While the SINDy and neural ODE frameworks can learn the quickly sampled dynamics (model output in gray),
both struggle to learn from the slowly sampled trajectory (model output in red). On the other hand, our framework can learn from both quickly and slowly sampled dynamics
(the red and gray model outputs coincide). Additional experiment details are provided in Sec. V A.

amplified more in the velocity estimation using the divided differ-
ence with a small time step. All three factors share the nature that a
small perturbation in the trajectory data leads to a large deviation in
the estimated velocity/learned dynamics.

In contrast with the Lagrangian approach to modeling dynam-
ics, our method builds on an Eulerian perspective17,18 in which veloc-
ity models are constructed to yield the same asymptotic statistics as
the observed measurements. This approach converts what is tradi-
tionally regarded as an ordinary differential equation (ODE) or a
stochastic differential equation (SDE) modeling problem into a par-
tial differential equation (PDE)-constrained optimization problem.
The motivation of our method is that, in certain situations, the PDE
forward model yields better stability in solving the inverse problem
than direct trajectory forward simulation based upon an ODE or
SDE. Importantly, our method does not rely on prior knowledge of
sampling times and can, thus, be used to learn the dynamics from
slowly sampled trajectories.

There are two important differences between the line of work
using Kalman filters and our proposed method. First, a Kalman filter
is a particular case of the Bayes filter using the Bayes theorem, while
our reconstruction follows a deterministic inverse problem (PDE-
constrained optimization). Second, time is a crucial element in
designing a Kalman filter, while in our approach, we use the invari-
ant measure and a time-independent PDE surrogate model. Once
the flow has been inferred, we can also perform uncertainty quantifi-
cation for the forecasted dynamics, building toward extending grid-
based Bayesian estimation of nonlinear low-dimensional systems19

to slowly sampled unknown systems with nontrivial invariant mea-
sures.

More specifically, instead of directly treating the noisy obser-
vations {x̃(ti)}n

i=1 from one single trajectory of an autonomous flow
ẋ = v∗(x) as inference data, we consider the occupation measure
ρ∗ generated by a single trajectory, where for each measurable
set B,

ρ∗(B) :=
1

n

n∑

i=1

χB (x̃(ti)), χB(x) =

{
1, x ∈ B,

0, x ̸∈ B.
(1)

When the occupation measures generated by a nontrivial
(see Sec. II A) set of initial conditions all weakly converge to the same
invariant measure, the limiting measure is said to be physical.20 In
this work, we consider the class of autonomous systems for which
the occupation measure of Lebesgue-almost all initial conditions
converges to a unique physical measure. Notably, this encompasses
chaotic attractors, such as the Lorenz-63 system.21,22 This assump-
tion guarantees the uniqueness of the invariant measure for the
dynamical system under study. If we relax it and allow the existence
of multiple invariant measures, further treatment of the PDE for-
ward model is needed; for instance, the fact that different invariant
measures are mutually singular as well as information on the ini-
tial condition, among other considerations, is necessary to guarantee
that the steady-state solution picked up by the PDE model matches
the observed invariant measure. We remark that the definition of a
physical measure demonstrates its robustness to perturbations with
respect to initial conditions.

Going forward, we write v = v(θ) = v(x; θ) to denote the
dependence of the reconstructed velocity fields on a set of param-
eters θ ∈ $ where $ ⊂ Rm is the admissible set of all parameter
values. The concrete form of θ depends on the hypothesis space of
v, which will be discussed in Sec. IV B. The task is now to find the
best-parameterized model v(x; θ) approximating the true velocity v∗

through the optimization

inf
θ∈$

J (θ), J (θ) := D(ρε(v(θ)), ρ
∗). (2)

The formulation (2) represents an inverse data-matching problem,
in which D denotes a metric or divergence on the space of prob-
ability measures and ρε(v(θ)) is a regularized approximation to
the physical measure of the dynamical system, given some regu-
larization parameter ε > 0 and the current velocity v(θ); that is,
v(θ) %→ ρε(v(θ)) is our new forward model.

Although one could approximate ρ(v(θ)) by numerically inte-
grating a trajectory and binning the observed states to a histogram,17

this approach does not permit simple differentiation of the resulting
measure with respect to the parameters θ . When the size of θ , i.e., m,
is large, it is practical to use gradient-based optimization methods
for solving the optimization problem (2), and one has to compute
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the essential gradient ∂θJ . In Ref. 18, this was handled by view-
ing ρε(v(θ)) as the dominant eigenvector of a regularized Markov
matrix originating from an upwind finite-volume discretization of
the continuity equation. The derivative ∂θJ was then seamlessly
computed via the adjoint-state method.18 The computation time
of the adjoint-state method is independent of the size of θ , mak-
ing the framework presented in Ref. 18 well-suited for large-scale
computational inverse problems.

In this work, we build upon the framework proposed in Ref. 18
and study invariant measure-based velocity learning with a large-
scale parameter space applied to real data. There are three essential
new contributions:

1. We consider the Fokker–Planck equation as the partial dif-
ferential equation (PDE) forward model for ρε(v(θ)), rather
than the continuity equation. This is motivated by the
Fokker–Planck equation’s greater modeling capacity. Indeed,
the Fokker–Planck equation reduces to the continuity equation
when its diffusion term is zero, and it can fit intrinsic noise
present in trajectories, which reduces over-fitting the param-
eterized velocity v(θ). Moreover, the Fokker–Planck equation
can be seen as an alternative to the teleportation regularization
used for the continuity equation in Ref. 18 in order to guarantee
the uniqueness of the computed stationary solution ρε(v(θ)).

2. In contrast to only learning three coefficients as done in Ref. 18,
we parameterize the velocity v(θ) using piecewise polynomial,
global polynomial, and neural network discretizations, which
can all yield large parameter spaces with thousands of dimen-
sions. We compare the reconstructed velocity in each case and
further discuss how the choice of parameterization affects the
inverse problem’s well-posedness and the reconstructed veloc-
ity’s regularity. We also consider various metrics/divergences as
the choice of the objective function.

3. We investigate velocity learning in time-delay coordinates,
which can characterize the full dynamics from partial state mea-
surements alone.23 After performing the optimization (2), we
evolve the learned Fokker–Planck equation forward in time
to quantify the uncertainty in predictions of future dynam-
ics. Based on this framework, we demonstrate that forecasts
incur larger uncertainties when the embedding dimension is
not sufficiently high. It is worth noting that there is no ana-
lytic form for the velocity in time-delay coordinates, even for
well-studied dynamical systems. We also stress that our pro-
posed approach permits larger-scale modeling of time-delayed
dynamics than the approach considered in Ref. 17 due to the use
of the adjoint-state method when solving the PDE-constrained
optimization.

The rest of the paper is organized as follows. In Sec. II, we
review essential background on dynamical systems, invariant mea-
sures, the Fokker–Planck equation, and time-delay coordinates. In
Sec. III, we introduce the forward surrogate model ρε(v(θ)) and
analyze its modeling errors. In Sec. IV, we present an efficient gra-
dient calculation for the objective function J (θ) by treating (2) as
a PDE-constrained optimization problem and utilizing the adjoint-
state method. We then adapt the gradient calculation to various
velocity parameterizations, including neural network discretizations

in which the gradient is computed along with the backpropagation
technique.24

Finally, in Sec. V, we present velocity reconstructions for the
Van der Pol oscillator and the Lorenz-63 system. We also model
dynamics in time-delay coordinates based on real-world data from
a Hall-effect thruster and actual temperature recordings. We per-
form uncertainty quantification on the last two real-data examples.
Conclusions follow in Sec. VI.

II. BACKGROUND

This section reviews the essential background on invariant
measures, stochastic dynamics, the Fokker–Planck equation, and
time-delay coordinates. We also review the Eulerian approach for
parameter identification proposed in Refs. 17 and 18, as well as past
work on the discrete inverse Frobenius–Perron problem.25

A. Physical measures

Physical measures characterize the long-term statistical behav-
ior of a significant collection of dynamical trajectories. When a
dynamical system is chaotic and exhibits sensitive dependence on
initial conditions, the existence of a physical measure unifies the sta-
tistical properties of trajectories that are pointwise dissimilar. While
ergodic measures also describe the long-term statistical behavior of
dynamical trajectories, they may have very small support or even
be singular. On the other hand, when a dynamical system admits a
physical measure, it holds that the trajectories corresponding to a
positive Lebesgue measure subset of initial conditions will all share
the same statistical behavior. We will now formalize these ideas in
the language of ergodic theory. For a more thorough treatment of
the topic, we refer to Refs. 20, 26, 27, and 28.

While we will review the theory of physical measures in the
context of discrete-time dynamical systems, our applications will
consider dynamics given by a time-'t flow map for some 't > 0.
Following Ref. 20, we assume that M is a compact Riemannian
manifold and that T : M → M is a diffeomorphism. A probabil-
ity measure µ is said to be invariant with respect to the map T
if µ(T−1(B)) = µ(B) for all B ∈ B, where B denotes the Borel
σ -algebra (see Ref. 29, Definition 2.1). Hereafter, we will assume that
µ is an invariant measure. A point x ∈ M is said to be generic (see
Ref. 20, Sec. 2.2) if for all g ∈ C(M), it holds that

lim
N→∞

1

N

N−1∑

k=0

g(Tk(x)) =
∫

M

g dµ. (3)

The left-hand side of (3) is known as the time-average of a function
g ∈ C(M), whereas the right-hand side of (3) is known as the space
average. It follows from Birkhoff’s pointwise ergodic theorem (see
Theorem 2.30 in Ref. 29) that the time-average of any g ∈ C(M)
necessarily exists on a set of full µ-measure. To formally discuss the
statistical properties of dynamical trajectories, we now define the N-
step occupation measure given the initial condition x ∈ M as

µx,N(B) :=
1

N

N−1∑

k=0

χB(T
k(x)), ∀B ∈ B. (4)
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The condition that a point x ∈ M is generic is equivalent to the
condition

lim
N→∞

µx,N = µ , (5)

where convergence takes place in the weak-* topology (see Ref. 29,
Definition 4.19). Since the quantity µx,N(B) approximates the aver-
age amount of time for which the orbit {Tk(x)}∞

k=0 initiated at x ∈ M
resides in a measurable set B ∈ B, this convergence indicates that
the collection of generic points all share the same asymptotic statisti-
cal behavior. When the measure µ is ergodic (see Ref. 29, Definition
4.19), it holds that µ-almost every x ∈ M is a generic point (see
Ref. 29, Corollary 4.20). However, if µ is an ergodic measure that is
singular with respect to the Lebesgue measure, the resulting collec-
tion of generic points may be physically insignificant and difficult to
observe computationally. Motivated by this perspective, an invariant
measure µ is said to be physical if there exists a collection of generic
points with a positive Lebesgue measure (see Ref. 20, Definition 2.3).

We will next discuss the ways in which a physical invari-
ant measure µ can be computationally approximated. If one col-

lects the measurements {Tk(x)}N

k=1, the weak-* convergence in (5)
suggests that the physical measure µ will describe the statistics
of our measurements provided that N is sufficiently large. Moti-
vated by this perspective, we can discretize the domain M and
directly compute the occupation measure (4) for each cell in the dis-
cretization to approximate the physical measure. This procedure has
been previously used to approximate physical measures.17,18,30 Other
approaches have been proposed to compute the invariant measure as
the stationary vector of the finite-dimensional approximation of the
continuous Frobenius–Perron operator,31 including Ulam’s27 and
Galerkin-type methods.32,33 More precisely, these discretizations are
used to construct a Markov matrix that represents a random dynam-
ical system approximating the deterministic map T : M → M. An
invariant measure for the discrete approximation is then recovered
as a stationary vector of the resulting Markov matrix. As the dis-
cretization is refined, certain assumptions guarantee that the desired
physical measure will be recovered in the weak-* limit (see Ref. 32,
Theorem 4.14).

B. Stochastic dynamics and the Fokker–Planck
equation

Consider an Itô stochastic differential equation (SDE) of the
form

dXt = v(Xt)dt + σ (Xt)dWt, X0 = x. (6)

Above, Wt is a Brownian motion, v is the velocity, and σ determines
the diffusion matrix )(x) = 1

2
σ (x)σ (x)⊤. For simplicity, we will

consider the case of constant diffusion. Similar to the deterministic
setting, there are analogous notions of invariant measures, ergodic-
ity, and physical measures in the stochastic setting.34,35 One may use
the Euler–Maruyama method to obtain the numerical solution to (6)
on the time interval [0, T], which assigns

Xj+1 = Xj + v(Xj)'t + σ (Xj)ξj

√
't,

where {ξj} are independently and identically distributed (i.i.d.) from
N (0, I), the standard normal distribution on Rd, 't := T/N, and
j ∈ {0, . . . , N − 1}.

The Fokker–Planck equation provides a PDE description of the
probability density ρ(x, t) of the random variable Xt. The density
evolves as (see Ref. 36, p. 88)

∂ρ(x, t)

∂t
= −∇ · (ρ(x, t)v(x)) + ∇ ·

(
∇ · ()(x)ρ(x, t))

)
. (7)

By assuming a constant diffusion, we may write)(x) = DI, where I
denotes the identity and D > 0 is a constant representing the scale
of the diffusion. Equation (7) can then be simplified to read

∂ρ(x, t)

∂t
= −∇ · (ρ(x, t)v(x)) + D∇2ρ(x, t). (8)

We leave the study of a non-constant or anisotropic diffusion for
later work. We remark that if D = 0, (8) reduces to the so-called
continuity equation, which instead models the probability flow of
the ODE given by ẋ = v(x). Under certain conditions,37 the steady-
state solution ρ(x) of (8) exists and satisfies

∇ · (ρ(x)v(x)) = D∇2ρ(x). (9)

Since (9) describes a limiting distribution limt→∞ ρ(x, t), it has been
previously used to provide approximations of invariant measures for
stochastically forced dynamical systems.30 In Ref. 38, an SDE learn-
ing problem was studied using (7) as the modeling equation with
different data assumptions.

C. Delay coordinates and Takens’ theorem

The technique of time-delay embedding is a popular approach
for reconstructing chaotic dynamical systems from limited obser-
vations.17,39–41 The procedure involves embedding time-series mea-
surements ψ(t) = ψ(x(t)) of the state x(t) into d-dimensional
Euclidean space by considering the vector of time-lagged observa-
tions,

,d,τ (t) = (ψ(t),ψ(t − τ ), . . . ,ψ(t − (d − 1)τ )),

for some τ > 0. Takens’ theorem23 provides suitable assumptions
under which,d,τ (t) and x(t) are related via diffeomorphism, imply-
ing that the time-lagged vector of partial observations ,d,τ (t) is
sufficient for reconstructing the full state x(t). Notably, the embed-
ding dimension provided in Ref. 23 is d = 2m + 1, where m is
the dimension of a compact manifold M on which the flow map
ft for the original dynamics is defined. In cases when trajectories
are attracted to a compact subset A with a box-counting dimen-
sion (see Ref. 42, p. 586) dA strictly less than m, it turns out that
lower-dimensional embeddings can be obtained.

When a time-series projection ψ(t) of an unknown system
ẋ = v(x) is observed, one can try to numerically determine a suit-
able embedding dimension d and time delay τ ; see, for example,
Refs. 43–46. Choosing a proper embedding dimension and time
delay is important for obtaining a reliable surrogate model of the
original dynamics in time-delayed coordinates. Notably, in Sec. V B,
we demonstrate that models for the velocity in time-delayed coordi-
nates can incur excess uncertainties when the embedding dimension
is not sufficiently large.
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D. Prior work on learning dynamics from invariant
measures

For chaotic systems, trajectories are sensitive to initial con-
ditions and estimation parameters. Sometimes, the approximate
reference velocity field {v̂(x(ti))} cannot be accurately estimated
from a trajectory {x(ti)} due to the lack of observational data, slow
sampling, discontinuous or inconsistent time trajectories, and noisy
measurements. To tackle such difficulties, instead of working with
the Lagrangian trajectories, Refs. 17 and 18 propose an Eulerian
approach by treating the occupation measure (4) as the data. When
enough samples are available, the occupation measure can be treated
as an approximation to the invariant measure; see Sec. II A. Find-
ing the optimal parameter θ is then translated into the optimization
problem (2). The reference measure ρ∗ is the occupation measure
converted from the observed trajectories {x̂(ti)}; see (4). In Ref. 17,
the approximated synthetic ρε(v(θ)) is generated by first simulating
the synthetic trajectories {x(ti; θ)} based on the dynamical system
and then computing its histogram following (4). Since this approach
requires lengthy trajectory simulation, each evaluation of ρε(v(θ))
for a given θ is relatively costly. Moreover, it is difficult to com-
pute the derivative of ρε(v(θ)) with respect to θ due to the histogram
approximation of nonlinear trajectories. As an improvement to the
original idea in Ref. 17, Ref. 18 proposes a surrogate model to
approximate ρε(v(θ)) that is differentiable in θ and sometimes faster
to compute. The key idea is to solve for ρε(v(θ)) as the distribu-
tional steady-state solution to the continuity equation [i.e., (9) with
D = 0] using a finite-volume upwind scheme together with the tele-
portation regularization. The gradient of the objective function J
in (2) with respect to the parameter θ can be efficiently computed
based on the adjoint-state method (see Sec. 5 in Ref. 18). The prob-
lem of learning an SDE from an invariant measure is also studied in
Ref. 47, which uses a deep learning framework to invert the drift and
diffusion terms.

The task of learning a dynamical system from an invariant mea-
sure has also been studied in the discrete-time setting under the
inverse Frobenius–Perron problem.25,48–50 The Frobenius–Perron
operator, also known as the transfer operator, characterizes the time
evolution of an initial measure µ0 according to some prespecified
dynamical system. Given a probability measure µ, the inverse Frobe-
nius–Perron problem seeks to construct a dynamical system for
which µ is a fixed point of the associated transfer operator. The most
widely studied case involves recovering an ergodic map T on [0, 1]
for which a prescribed absolutely continuous measure is the unique
fixed point of the discrete transfer operator. In this particular setting,
various approaches, such as topological conjugation51 and matrix
methods,52 have been introduced to solve the inverse problem. The
multivariate inverse Frobenius–Perron problem was also studied
in Ref. 53, where ergodic maps were constructed to adhere to the
statistics of two-dimensional densities. Moreover, due to inherent
non-uniqueness in the inverse problem, recent approaches further
restrict the solution space of the discrete ergodic maps to those
with a prescribed power spectrum.54 To the best of our knowledge,
Refs. 17, 18, and 47, and our contributions here are the first works
that numerically solve the inverse Frobenius–Perron problem in
the continuous-time setting. Notably, we do not assume that µ is
absolutely continuous, as we use a finite-volume discretization to
approximate the Frobenius–Perron operator.

III. THE FORWARD MODEL AND MODELING ERRORS

A central contribution of this work is to consider a different
regularized forward model than the one in Ref. 18, especially for
trajectory measurements containing intrinsic noise, which can be
interpreted as sample paths of stochastic dynamical systems (6). In
those cases, the Fokker–Planck equation (7) is a better candidate as
the PDE surrogate model, as it contains a diffusion term that can
fit noise present in the data. Based on the relationship between (6)
and (7), one can learn both the velocity field v(x) and the diffusion
tensor )(x) in the optimization framework (2). For simplicity, we
only consider a fixed diffusion constant and leave the investigation
of multi-parameter inversion to future work.

We will use (9) as the forward model to fit invariant mea-
sures generated by trajectories with intrinsic noise. While the dif-
fusion term allows the model to fit the intrinsic noise and prevent
over-fitting the noise into the target velocity component, it also
controls the scaling of the reconstructed velocity v(x; θ). Indeed,
when D = 0 and ṽ(x) = a v(x), we have ∇ · (ρ(x)ṽ(x)) = 0 as long
as ∇ · (ρ(x)v(x)) = 0 for any a > 0. However, for most cases, ṽ and
v will not solve the stationary Fokker–Planck equation (9) for D > 0.

A. Finite-volume discretization

We assume that our system evolves on the d-dimensional
rectangular state space,

. = [a1, b1] × · · · × [ad, bd] ⊂ R
d,

with a spatially dependent velocity v : . → Rd. We define ni ∈ Z+,
1 ≤ i ≤ d, to be the number of equally spaced points along the ith
spatial dimension at which we wish to approximate the solution of
(8), as well as the mesh spacing

'xi :=
bi − ai

ni − 1
.

We are, thus, interested in obtaining a solution to the forward
problem at points of the form

xk1,...,kd
:= (a1 + k1'x1, . . . , ad + kd'xd),

where ki ∈ {1, . . . , ni}. We will index our coordinates using column-
major order and write xk1,...,kd

= xj where

j = k1 +
d∑

i=2

(ki − 1)Si, Si :=
i−1∏

j=1

nj. (10)

We will regard xj as the center of the cell Cj where

Cj =
d∏

i=1

[
ai +

(
ki −

1

2

)
'xi, ai +

(
ki +

1

2

)
'xi

)
.

Following the approach in Ref. 19, we implement a first-order
upwind finite-volume discretization of the continuity equation,
adding a diffusion term using the central difference scheme
and enforcing a zero-flux boundary condition.55 This allows us
to obtain an explicit time evolution of the probability vector

ρ =
[
ρ1 ρ2 . . . ρN

]⊤ ∈ RN, where N =
∏d

i=1 ni. While ρ is
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a discrete probability measure over the cells Cj, it also cor-
responds to a piecewise-constant probability density function
on..

With an abuse of notation, we will refer to both the piecewise-
constant density and the discrete probability measure as ρ. We
discretize the time domain with a step size 't. Based on (8), the

probability vector at the lth time step evolves as

ρ(l+1) = ρ(l) + Kρ(l), K =
d∑

i=1

't

'x
Ki,

where each Ki is a tridiagonal matrix of the form

Ki :=

. . .

−vi,−
j−1 +

D

'xi

. . .
...

vi,−
j−1 − wi,+

j−1 −
2D

'xi

−vi,−
j +

D

'xi

. . .
...

...

wi,+
j−1 +

D

'xi

vi,−
j − wi,+

j −
2D

'xi

−vi,−
j+1 +

D

'xi

...
...

. . .

wi,+
j +

D

'xi

vi,−
j+1 − wi,+

j+1 − 2
D

'xi

...
. . .

wi,+
j+1 +

D

'xi

. . .

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Si

∈ R
N×N.

Above, we have defined for each j ∈ {1, . . . , N} the upwind
velocities

vi,−
j := min

{
0, vi

j

}
, vi,+

j := max
{
0, vi

j

}
,

wi,−
j := min

{
0, wi

j

}
, wi,+

j := max
{
0, wi

j

}
,

where vi
j := v

(
xj − ei'xi/2

)
· ei and wi

j := v
(
xj + ei'xi/2

)
· ei

denote the ith components of the velocity field at the center of cell
faces, and {ei} is the standard basis in Rd. We remark that if xj is

away from ∂., then wi,±
j = vi,±

j+1. To enforce the zero-flux boundary
condition, we set both the velocity v and diffusion D to be zero on
∂.. As a result, the columns of K each sum to zero, and the total
probability

ρ(l) · 1 = 1, 1 :=
[
1 . . . 1

]⊤ ∈ R
N

is conserved under time evolution. Since numerical artifacts cause
the flux accumulation along the boundary, we also enforce ρ = 0 on
∂.. When the boundary ∂. is sufficiently far from the trajectory
data, this artifact is insignificant. Hereafter, we assume the uniform
spatial discretization'xi = 'x for all i = 1, . . . , d. Here, we used an
explicit time stepping scheme. The Courant–Friedrichs–Lewy (CFL)
stability condition enforces 't = O('x2) to ensure the stability of

the scheme. To be more specific, we choose

't <
1

2d

'x2

D +'x∥v∥∞
,

where ∥v∥∞ = maxi ∥v(x) · ei∥∞. In this way, we can enforce that
all entries of I + K are non-negative with columns summed to one,
which implies that I + K is a Markov matrix.

For a complete description of the finite-volume scheme, we
refer to Ref. 55. We remark that there are many higher-order
structure-preserving schemes to solve (8), which also yield a Markov
matrix; see Ref. 56 for example. A more accurate numerical scheme
can further reduce the forward modeling error, which is left for
future work.

B. Teleportation and diffusion regularization

We use the finite-volume discretization of the Fokker–Planck
equation in Sec. III A to approximate its steady-state solution.
After discretization, finding such stationary distributions to (9) is
equivalent to solving the linear system,

(I + K)ρ = ρ.
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Since the columns of K sum to zero, we have that M := I + K is
a column-stochastic Markov matrix. When D ̸= 0, M is a tran-
sition matrix for an ergodic Markov chain, which has a unique
equilibrium. When D = 0, to guarantee the uniqueness of the equi-
librium, Ref. 18 applies the so-called teleportation regularization57

and considers

Mε := (1 − ε)M + εU, U = N−111⊤ ∈ R
N×N.

There is now a unique solution to the linear system

Mερ = ρ, ρ · 1 = 1, ρ > 0. (11)

From a computational aspect, it is useful to take advantage of the
fact that M − I is sparse where I ∈ RN×N is the identity matrix and
to instead solve

(1 − ε)(M − I)ρ = −N−1ε1,

where we have simply rearranged terms in (11) and used the fact that
ρ · 1 = 1.

Since U is also a column stochastic Markov matrix with the uni-
form probability of visiting any point of the mesh, using Mε amounts
to stopping the dynamics based on M at a random time and restart-
ing it from a uniformly randomly chosen initial point. The size of
ε represents the restarting frequency—the smaller ε, the rarer we
restart.18

On the other hand, adding the diffusion component D to the
tridiagonal matrix K can be seen as another way of regularizing the
noise-free Markov matrix by adding scaled Brownian motion after
each discrete evolution of the deterministic dynamics. For determin-
istic dynamics with D = 0, the solution to (9) might not be unique
if there is more than one attractor. The use of teleportation con-
nects all attractors through the “random restart,” and the solution
ρε to the linear system (11) has support that connects all the disjoint
attractors. Similarly, when D ̸= 0, the Brownian motion connects all
disjoint attractors of the deterministic dynamics, giving a unique
steady-state solution. In this scenario, the use of teleportation for
the diffusive case is simply a numerical treatment to improve the
conditioning of matrix M rather than to guarantee the uniqueness
of ρ.

It is worth noting that both the teleportation regularization and
an incorrect diffusion coefficient could be sources of modeling error
when we perform parameter identification. Although these regular-
izations enable faster evaluation of ρε(v(θ)) and better posedness of
the forward problem, they may reduce the accuracy of the inverse
problem solution.

C. Numerical diffusion

In Fig. 2, we illustrate ρε computed as the steady-state solution
to the Fokker–Planck equation in the top row and the approxima-
tion to physical invariant measures of the corresponding SDE in
the bottom row. From Fig. 2, we see that on a coarse mesh, the
first-order finite-volume scheme incurs significant numerical error,
which gives a computed solution with an artificial diffusion effect
and, thus, is often referred to as the numerical diffusion.19 The
amount of numerical diffusion is reduced as the mesh is refined
since it is incurred by the first-order scheme. In particular, it is
expected to decay as O(maxi'xi) in the L∞ norm as we refine the

mesh.55 Besides the teleportation and the modeling diffusion D, the
presence of numerical diffusion is another modeling error incurred
from solving the forward problem.

IV. GRADIENT CALCULATION AND VELOCITY
PARAMETERIZATION

Another main contribution of this paper is to reconstruct the
velocity field v(x) using large-scale parameterizations v(x; θ), which
turns an infinite-dimensional problem of searching for v(x) in a
function space to a finite-dimensional optimization problem of find-
ing θ ∈ $ ⊂ Rm. Here, we introduce parameterizations based on
piecewise-constant, neural network, and global polynomial func-
tions. We also investigate various data-fitting objective functions
J that compare the mismatch between the observed and simulated
invariant measures, ρ∗ and ρε(v(θ)). We compute the gradient of
such functions with respect to the coefficients θ in the parameter-
ized velocity model v(x; θ) based on the adjoint-state method for
the PDE-constrained part and the backpropagation technique24 for
the neural network part. Thanks to these techniques, we can then
efficiently evaluate the gradients of J with respect to θ and, thus,
conveniently use gradient-based optimization algorithms to itera-
tively update θ , e.g., steepest descent, L-BFGS, conjugate gradient
descent methods as well as stochastic methods such as Adam.58 For
notational simplicity, we will write ρ(v(θ)) = ρε(v(θ)) throughout
this section.

A. Gradient calculation through the adjoint-state
method

Recall the finite-volume scheme in Sec. III A for solving
(9). The forward model yields a discrete measure ρ(v(θ)) = ρ(θ)
= [ρ1(θ) . . . ρj(θ) . . . ρN(θ)]⊤ over the cells {Cj}, which converges
to the solution to (9) in the weak sense as we refine the dis-
cretization parameters. For the explicit form of ρ(v(θ)), we refer
to Eq. (5.1) in Ref. 18. Note that we have highlighted the depen-
dence of our approximate steady-state distributional solution to the
Fokker–Planck equation (9) on the velocity v(x; θ). Our goal is to
solve the optimization problem (2),

inf
θ∈$

J (ρ(v(θ)), ρ∗),

by using gradient-based methods, where J is the cost function and
ρ∗ represents our inference data. The adjoint-state method is an
efficient technique by which we can evaluate the derivative ∂θJ ,
as the computation time is largely independent of the size of θ .
One can derive the adjoint-state method for gradient computations
by differentiating the discrete constraint,59 which in our case is the
eigenvector problem,

g(ρ(θ), θ) = Mε(θ)ρ(θ) − ρ(θ) = 0,

where ρ(θ) · 1 = 1. Specifically, we compute ∂θJ = λ⊤∂θg where
λ solves (∂ρg)

⊤λ = −(∂ρJ )⊤. In our case, this linear system is the
adjoint equation [see Ref. 18, Eq. (5.8)]

(M⊤
ε − I)λ = −

(
∂ρJ

)⊤ +
(
∂ρJ

)⊤
ρ 1, (12)

and the derivative

∂θJ = λ⊤(∂θMε

)
ρ. (13)
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As a result, we only need to compute the derivatives ∂ρJ and ∂θMε

to determine the gradient ∇θJ = (∂θJ )⊤. The former depends on
the choice of the objective function, while the latter is based on a
specific parameterization of the velocity field v(x; θ) determined by
its hypothesis space.

1. The computation of ∂ρJ

For the objective function J , we consider the quadratic
Wasserstein distance, the squared L2 norm, the Kullback–Leibler
(KL) divergence, and the Jensen–Shannon (JS) divergence.

a. Quadratic Wasserstein distance. For probability measures
ρ and ρ∗ on ., with finite second-order moments, the squared
quadratic Wasserstein distance is defined by

W2
2(ρ, ρ∗) := inf

Tρ,ρ∗ ∈T

∫

.

|x − Tρ,ρ∗(x)|2dρ(x),

where

T := {T : . → . : ρ(T−1(B)) = ρ∗(B), B ∈ B}

is the set of maps that push ρ forward into ρ∗.60 With an abuse of
notation, we also use ρ(x) and ρ∗(x) to denote the densities of ρ
and ρ∗, respectively. For efficient computation of the W2 distance,
we utilize the back-and-forth method,61 which instead uses the dual
Kantorovich formulation,60

W2
2(ρ, ρ∗) = sup

φ1,φ2

(∫

.

φ1(x)ρ
∗(x)dx +

∫

.

φ2(x)ρ(x)dx

)
,

where φ1 ∈ L1
ρ∗(.) and φ2 ∈ L1

ρ(.) are required to satisfy

φ1(x) + φ2(y) ≤ |x − y|2. In this case, the Fréchet derivative
of J = W2

2(ρ, ρ∗) with respect to ρ is given by

∂J

∂ρ
= φ2.

b. Squared L2 norm. The squared L2 distance as the objective
function and its Fréchet derivative are given by

J =
1

2

∫

.

|ρ(x) − ρ∗(x)|2dx,

∂J

∂ρ
= ρ − ρ∗.

c. KL divergence. The KL divergence and its Fréchet derivative
are given by

J = DKL(ρ, ρ∗) :=
∫

.

ρ∗(x) log

(
ρ∗(x)

ρ(x)

)
dx,

∂DKL

∂ρ
= −

ρ∗(x)

ρ(x)
.

We remark that our definition of the KL divergence differs
from many applications in which it is commonly computed as
J = DKL(ρ

∗, ρ).

FIG. 2. As the mesh size of the forward model discretization is refined, we visually observe the convergence of the computed steady-state solution (a) to the approximate
physical measure (b). The Van der Pol oscillator (19) with c = 1 and D = 0.001 is used in this example, and the histograms indicate mass per cell. (a) The computed
steady-state solution to (9) for decreasing values of 'x. (b) The approximate physical measure obtained by binning a time trajectory based on the SDE (6) for decreasing
values of'x.
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d. JS divergence. Defining ρ ′ := (ρ + ρ∗)/2, the JS divergence
and its Fréchet derivative are given by

J = DJS(ρ, ρ∗) =
1

2
DKL(ρ, ρ ′) +

1

2
DKL(ρ

∗, ρ ′),

∂DJS

∂ρ
=

1

2
log

(
2ρ

ρ + ρ∗

)
.

Based on definitions of the KL and JS divergence, it is clear that
we may encounter numerical instability issues if either ρ or ρ∗ is
not supported on the entire domain .. Thus, we remark that for
the computation of both the KL and JS divergences, we restrict the
domain. to regions where both ρ and ρ∗ are strictly positive. This is
equivalent to the definition of the KL and JS divergence based upon
the so-called Csiszar divergence [see Ref. 62, Eq. (1)].

2. The computation of ∂θJ

We have presented a few cases of ∂ρJ for different choices

of J . Next, we show how to obtain ∂θMε , which is the other
necessary component in the adjoint-state method for gradient cal-

culation; see (12) and (13). To begin with, we consider θ = {vi
j} for

all i = 1, . . . , d and j = 1, . . . , N, which corresponds to one variant
of piecewise-constant velocity parameterization.

Since we are only interested in computing the gradient away

from ∂., we can utilize the property that wi,±
j = vi,±

j+1. First, observe
that

∂Mε

∂vi
j

= (1 − ε)

d∑

ℓ=1

't

'x

∂Kℓ
∂vi

j

= (1 − ε)
't

'x

∂Ki

∂vi
j

,

as well as

∂Ki

∂vi
j

=

. . .
0

. . .
...

−H(vi
j) −(1 − H(vi

j))

. . .
...

...
H(vi

j) (1 − H(vi
j)) 0

...
...

. . .
0 0

...
. . .

0

. . .

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Si

H(x) :=

⎧
⎨

⎩
1, x > 0

0, x ≤ 0
. (14)

In (14), H(·) is the Heaviside function. We remark that ∂vi
j
Ki

can only be nonzero in the (j, j), (j, j − Si), (j − Si, j), and (j − Si,
j − Si)th entries where Si is defined in (10). After solving (12) for
λ and applying (13), we deduce that

∂J

∂vi
j

= λ ·
∂Mε

∂vi
j

ρ = (1 − ε)
't

'x

(

λ ·
∂Ki

∂vi
j

ρ

)

= (1 − ε)
't

'x

(
H(vi

j)ρj−Siλj + (1 − H(vi
j))ρjλj

− H(vi
j)ρj−Siλj−Si − (1 − H(vi

j))ρjλj−Si

)

= (1 − ε)
't

'x

(
λj − λj−Si

) (
H(vi

j)ρj−Si + (1 − H(vi
j))ρj

)
.

(15)

Equation (15) provides an efficient way for computing the gra-
dient of the objective function with respect to the piecewise-constant
velocity based on cells {Cj} from our finite-volume discretization.

Alternatively, if the velocity v = v(x; θ) is smoothly parameter-
ized by the vector θ = [θ1, . . . , θk, . . . , θm]⊤ ∈ Rm, for each θk, we
can then evaluate

∂J

∂θk

=
N∑

j=1

d∑

i=1

∂J

∂vi
j

∂vi
j

∂θk

(16)

∂vi
j

∂θk

= ei ·
∂v

∂θk

∣∣∣∣
(xj−ei'xi/2;θ)

to determine the derivative ∂θJ . By using a similar indexing con-
vention to Sec. III A, we can collect the terms ∂vi

j
J and ∂θk vi

j into the

vectors ∂vJ and ∂θk v, respectively. Therefore, the double summa-
tion in (16) is achieved by the inner-product ∂vJ · ∂θk v. Note that
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for different θk, we only need to change ∂θk v as ∂vJ does not depend
on θk.

B. Velocity parameterization

We now apply Eqs. (15) and (16) to evaluate the gradients
of several parameterized velocity models. Specifically, we consider
piecewise constant, global polynomial, and neural network parame-
terizations of the velocity.

1. Piecewise-constant parameterization

In the case of the piecewise-constant parameterization, we
model the velocity as

v(x; θ) =
d∑

i=1

N∑

i=j

vi
j χCj(x) ei, θ = {vi

j}. (17)

Here, we again use the column-major ordering from Sec. III A to
accumulate vectors of cells Cj with centers xj and velocity compo-
nents

vi
j = v(xj − ei'xi/2) · ei

along the ith direction of the cell face located at xj − ei'x/2. The
parameter space of the model presented in (17) is given by {vi

j},
which has size N · d, and the gradient of the parameters {vi

j} can be
directly evaluated by (15).

We remark that (17) is only one variant of piecewise-constant
parameterization since the parameterization mesh is the same as
the discretization mesh in the finite-volume method; see Sec. III A.
These two meshes do not have to be coupled together. To reduce
the numerical error from the first-order scheme, it is preferable to
reduce the spacing {'xi}, but we can keep the parameterization
mesh fixed so that the size of the optimization problem does not
change. In this case, we need to apply the chain rule (16) to obtain
the final gradient after evaluating (15).

The model defined by (17) can be learned by gradient-based
optimization methods. The regularity of the piecewise-constant
model defined by (17) can be improved to a C0 function by inter-
polating between the values vi

j using either piecewise linear or
higher-order piecewise polynomial functions, as in Ref. 63.

2. Global polynomial parameterization

Though the regularity of the piecewise-constant model given by
(17) can be improved by interpolation, the inverted velocity v(x; θ)
may still be highly oscillatory if the mesh size'x is small. Modeling
approaches, such as SINDy,7 learn the velocity fields of dynamical
systems from a polynomial basis together with sparse regression.
Here, we show how the gradient derivation in (16) can be adapted to
such polynomial basis parameterizations of the velocity field:

v(x; θ) = [v1(x; θ), . . . , vd(x; θ)]
⊤ =

d∑

i=1

vi(x; θ) ei.

The ith component of the velocity field vi(x; θ) parameterized by a
linear combination of the monomial basis of degree at most K can

be written as

vi(x; θ) =
M∑

ℓ=1

ai
ℓ(x

⊤e1)
1ki
ℓ . . . (x⊤ed)

dki
ℓ ,

M =
(

d + K
K

)
, (18)

where the powers are represented by multi-indices

ki
ℓ = (1ki

ℓ, . . . , dki
ℓ),

with 1 ≤ ℓ ≤ M, |ki
ℓ| ≤ K, and θ = {ai

ℓ}. The size of θ in this case
is d · M. To learn the model parameterized by (18), we can use
(16) to compute the gradient ∂J /∂ai

ℓ. Without loss of generality,
we assume 'xi = 'x for all 1 ≤ i ≤ d. The only term in (16) that
explicitly depends on the velocity parameterization is

∂vi
j

∂ai
ℓ

=
(
(xj − ei'x/2)⊤e1

)1ki
ℓ . . .

(
(xj − ei'x/2)⊤ed

)dki
ℓ ,

where i, j, ai
ℓ and the multi-index ki

ℓ are fixed. Note that ∂ai
ℓ
vi′

j

= 0 if i′ ̸= i. Thus, we can again use gradient-based methods to infer
proper polynomial coefficients {ai

ℓ}.
Although a global polynomial parameterization guarantees

ideal C∞ regularity of the parameterized velocity v(x; θ), the Runge
phenomenon could be a potential downside of this approach. Specif-
ically, as we increase the maximum degree K of the polynomial
basis, we may encounter substantial interpolation errors near the
boundary ∂..

3. Neural network parameterization

Motivated by the universal approximation theory of neural
networks,64 we may also choose to model each component of the
velocity vi(x; θ) as a feed-forward neural network, where the tunable
parameters θ make up the network’s weights and biases. We follow
Ref. 65 to combine the adjoint-state method for the PDE constraints
and the backpropagation technique to update the weights and biases
of the neural network.

The term ∂vi
j
J in the gradient calculation (16) can be computed

by first evaluating the neural network on the mesh of cell face centers
oriented in the direction of ei to obtain {vi

j}, which is then plugged
into (15) to obtain ∂vi

j
J . The remaining term ∂θv in (16) is then

computed via the backpropagation technique.24

For simplicity, we restrict ourselves to single-layer feed-
forward networks. Moreover, by using a smooth activation function,
such as the hyperbolic tangent or the sigmoid function, we can
guarantee C∞ regularity of the reconstructed velocity v(x; θ) on the
domain .. To enforce the zero-flux boundary condition, we man-
ually set v = 0 on ∂.. Consequently, the neural network parame-
terization may lack regularity near ∂.. However, if the domain is
sufficiently large, the support of the physical measure will be very
far from ∂., in which case, we will not observe any discontinu-
ities originating from the boundary condition while simulating the
trajectories based on (6). As we increase the number of nodes in
the hidden layer of the neural network, both the approximation
power and the potential difficulty of training the neural network are
expected to increase.
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V. NUMERICAL RESULTS

In this section, we present several numerical examples to
demonstrate the utility of the proposed approach for learn-
ing dynamical systems from invariant measures with intrinsic
noise. [We include a publicly available code (https://github.com/
jrbotvinick/Learning-Dynamics-on-Invariant-Measures), which
contains an example demonstrating the velocity inversion for the
Van der Pol oscillator (19) based on a global polynomial parameter-
ization. It can also be used to reproduce the comparison in Fig. 1
and Table II.] In Sec. V A, we study the inverse problem for the
Van der Pol oscillator with piecewise constant, global polynomial,
and neural network parameterizations of the velocity. In Sec. V B,
we time-delay embed a signal sampled from a Hall-effect thruster
and proceed to model the dynamics in delay-coordinates based upon
the time-delayed invariant measure. We then illustrate that a low-
dimensional embedding may increase the uncertainty of the learned
model and that the choice of parameterization largely affects the reg-
ularity of the reconstructed velocity. In Sec. V C, we study rolling
averages of a temperature data set and perform uncertainty quan-
tification using the learned Fokker–Planck PDE in time-delayed
coordinates. We conclude in Sec. V D by inverting a component
of the Lorenz-63 system’s velocity using a neural network param-
eterization. All experiments are conducted using an Intel i7-1165G7
CPU.

A. Van der Pol oscillator

We begin by considering the autonomous Van der Pol
oscillator,66 given by

{
ẋ = y,

ẏ = c(1 − x2)y − x.
(19)

Our results for learning a dynamical system with prescribed sta-
tistical properties given by the stochastically forced Van der Pol
oscillator are shown in Fig. 3. In the top row, the first panel fea-
tures the velocity of (19) for the choice of c = 0.5, the second panel
shows the approximate occupation measure [see (4)] obtained from
the simulation of a single SDE trajectory [see (6)], the third panel
shows the SDE trajectory used to approximate the invariant mea-
sure, and the fourth panel shows the dynamics of the oscillator
without stochastic forcing. Throughout, we color the SDE trajec-
tories by their histogrammed density to illustrate the connection
between the Lagrangian and Eulerian perspectives. We also stress
that the experiment in Fig. 3 assumes the diffusion coefficient to be
known a priori, but that Sec. V B relaxes this assumption.

In the following rows of Fig. 3, we use neural network, piece-
wise constant, and global polynomial parameterizations of the veloc-
ity to solve the inverse problem using the optimization frame-
work from Secs. III A and IV. For the case of the neural network
parameterization, we compare each objective function studied in
Sec. IV A 1, while we only focus on the L2 objective for the remaining
two parameterizations. Across all tests, the reconstructed velocity
is shown to vary significantly from the true velocity shown in the
first row of Fig. 3. This is mainly due to the lack of data away from
the main attracting limit cycle. In regions of the state space with no
available data, we can only expect that the modeled velocity v(x; θ)

will direct trajectories toward the attracting limit cycle on which the
invariant measure is supported. Indeed, this is what we observe.

Moreover, while the learned PDE model (9) matches the
observed occupation measure (4) across all tests, we find that the
SDE and ODE trajectories generated using the learned velocity vec-
tor fields may vary depending on the parameterization. Table I
provides a comparison of the accuracy of the learned models, as
well as the required computation times. While the piecewise con-
stant velocity is by construction discontinuous and, thus, does not
naturally guarantee the existence and uniqueness of the correspond-
ing ODE solution, the neural network parameterization based on the
hyperbolic tangent activation function yields a C∞ velocity. More-
over, while the global polynomial parameterization is also C∞, it
may suffer from the Runge phenomena and grow rapidly near the
boundary of the domain. Thus, we mainly consider neural network
parameterizations of the velocity for the remainder of the numerical
tests.

To reduce the computational cost of the inversion in the final
row of Fig. 3, we compute J = W2

2 on a coarsened mesh. Among
the four objective functions in Fig. 3, it is worth noting that the W2

metric does not compare the two densities pointwisely and is well-
defined for comparing singular measures. The distance reflects both
the local intensity differences and the global geometry mismatches.67

It has also been shown that the Wasserstein metric is robust to
noise.68,69 Thanks to the geometric nature of the optimal transporta-
tion problem, the Wasserstein metric is primarily sensitive to global
changes, such as translation and dilation, and is robust to small local
perturbations, such as noisy measurements of ρ∗. The better stability
also brings a downside as the optimization landscape can be rela-
tively flat around the ground truth, which may lead to compromised
accuracy in the velocity inversion.

The different velocities shown in the second column of Fig. 3
reveal that there is nonuniqueness if we only use the invariant
measure as the reference data. The current modeling assumption
yields dynamics reproducing the same invariant measure but does
not necessarily recover the same velocity field. Depending on the
concrete application, one can add regularization, time information,
or focus on velocities in a particular parameterized subspace to avoid
nonuniqueness. The large error for the reconstructed velocity near
the origin is due to the fact that the method aims to learn the flow on
or (in the case of stochastically forced dynamics) near the invariant
measure. It is, therefore, unsurprising that the learned velocity does
not match the ground truth where there are no data.

In Fig. 4, we show how the inversion accuracy and compu-
tation time depend on the chosen value of 'x; that is, as 'x
decreases, we can learn velocities that can reproduce the statistics
of the observed occupation measure more accurately, with the cost
of longer computation time.

Next, we provide experimental details on the comparison of
our approach with SINDy7 and the neural ODE4 frameworks in
Fig. 1. This test uses the Van der Pol oscillator with c = 2. Since the
SINDy and neural ODE methods are designed for modeling ODEs,
the experiments in Fig. 1 use the diffusion coefficient D = 0. While
we only plot the first eight points of the slowly sampled trajectory in
Fig. 1, the full trajectory used for inference contains 2.5 × 103 obser-
vations. The quickly sampled trajectory also consists of 2.5 × 103

observations. The three approaches considered for comparison have
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FIG. 3. Learning velocity fields to reproduce the statistics of the stochastically forced Van der Pol oscillator. The ground truth occupation measure, velocity, and dynamics are
shown in (a). The results for inverting the velocity based on the occupationmeasure from (a) using piecewise constant, global polynomial, and neural network parameterizations
are shown in (b)–(g). The first column shows the objective function, the second column shows the learned velocity vector field, the third column shows the final PDE forward
model evaluation based on the learned velocity, the fourth column shows the simulation of a diffuse trajectory, and the final column shows the simulation of a trajectory
without diffusion. Specifically, the “diffuse trajectories” are simulated according to the Euler–Maruyama method using the assumed diffusion coefficient D = 0.02, while the
“non-diffuse” trajectories assume D = 0. The coloring of each diffuse trajectory is given by the occupation measure it generates; see (4). Across all tests, the objective
function is minimized to 0.25%–0.35% of its initial value. For (b)–(c), the L-BFGS-B algorithm is used for optimization. In (d)–(g), the neural network architecture consists of a
single hidden layer with the hyperbolic tangent activation function, trained by the Adam optimizer with a learning rate of 10−1. (a) Ground truth velocity, occupation measure,
diffuse trajectory, and non-diffuse trajectory for the Van der Pol oscillator with c = 0.5 and D = 0.02. (b) Piecewise constant parameterization (see Sec. IV B 1) with the
squared L2 objective function. (c) Degree five global polynomial parameterization (see Sec. IV B 2) with the squared L2 objective function. (d) Neural network parameterization
(see Sec. IV B 3) with the squared L2 objective function. (e) Neural network parameterization with the KL divergence objective function. (f) Neural network parameterization
with the JS divergence objective function. (g) Neural network parameterization with the squaredW2 objective function.
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TABLE I. Comparison of the wall-clock computation time and the error for the exper-
iments shown in Fig. 3. The error is quantified by the squared W 2 distance between
the occupation measure of the ground truth diffuse trajectory [see the third panel of
Fig. 3(a)] and the occupation measure accumulated from the simulation of a trajec-
tory with diffusion according to the learned velocity [see the fourth panel of Figs. 3(c)
and 3(d)].

Parameterization Objective Wall-clock time (s) Error

Piecewise constant L2 3.13 × 101 2.36 × 10−1

Global polynomial L2 1.75 × 102 2.90 × 10−2

Neural network L2 4.14 × 102 9.07 × 10−3

Neural network KL 2.04 × 102 7.11 × 10−3

Neural network JS 2.16 × 102 9.48 × 10−3

Neural network W2 2.16 × 103 1.07 × 10−2

various hyperparameters, which can be tuned. For SINDy, we learn
the models from the monomial basis up to degree three and use the
sequentially thresholded least squares optimizer with a threshold of
0.025 to enforce a sparsity condition on the learned coefficients; see
Ref. 7. For the neural ODE framework, the velocity is parameter-
ized by a single-layer fully connected neural network with 100 nodes
and a hyperbolic tangent activation function. The neural ODE is
trained using a multiple shooting approach with the mean-squared
error objective function. More specifically, rather than treating the
simulation of a single long time trajectory as the forward model,
we integrate N − 1 trajectories initiated at the observed data points
{x(ti)}N−1

i=1 for a time of 't = ti+1 − ti. This approach results in
greater success while modeling slowly sampled dynamics. The Adam
optimizer with a learning rate of 10−3 is used, and the tolerance for
both relative and absolute errors of the ODE solver is set as 10−5.

To ensure a fair comparison with the neural ODE framework,
we consider our approach based on a neural network parameter-
ization of the velocity using the same architecture, optimizer, and
learning rate. For our approach, we use the KL-divergence objec-
tive function (see Sec. IV A 1), apply additional Gaussian filtering to
the occupation measure [see (4)] to simplify the resulting optimiza-
tion, assume a diffusion coefficient of D = 10−3 during training, and
set 'x = 0.1. Thus, the only differences between the setup for our
approach and the neural ODE framework are the forward model and
the objective function.

As shown in Fig. 1, all three frameworks can learn from the
quickly sampled trajectory. However, SINDy and the neural ODE
frameworks are less robust to changes in the sampling frequency of
the inference data than our approach. This is further demonstrated
in Table II, where we quantify the error in the simulated occupation
measure based on the learned velocity. We report the average error
over ten trials with different random training seeds to compare our
method and the neural ODE framework. When the data are sampled
at a sufficiently high frequency, Table II also shows that methods,
such as SINDy or the neural ODE, are preferable in terms of both
computational cost and accuracy.

B. Hall-effect thruster

We now turn to the more realistic setting of experimentally
sampled time-series data. Specifically, we study the cathode-Pearson

FIG. 4. We demonstrate how the computation time and inversion accuracy
depend on the mesh spacing used in the first-order FVM solver. Here, we use
the Van der Pol oscillator with D = 0.05 and learn the velocity using a neural net-
work parameterization. The Adam optimizer is used with a learning rate of 10−2.
In each case, we reduce the KL divergence objective function below 0.5% of its ini-
tial value. The error is quantified in terms of the squaredW2 discrepancy between
the simulated occupation measure ρ̂ according to the learned dynamics and the
observed occupation measure ρ∗.

signal sampled from a Hall-effect thruster (HET) in its breath-
ing mode. Hall-effect thrusters are in-space propulsion devices that
exhibit dynamics resembling stable limit cycles while in a breath-
ing mode. For details about the experimental setup used to collect
the data, the reader is encouraged to consult Refs. 70 and 71. In
Sec. V B 1, we utilize Takens’ theorem23 to reformulate the large-
scale optimization framework presented in Secs. III and IV to be
compatible with scalar time-series observations, and in Sec. V B 2,
we demonstrate numerical results based upon this reformulation.

1. Methods

Intrinsic physical fluctuations present in the cathode-Pearson
signal indicate that the HET’s dynamics may be modeled well by a
Fokker–Planck equation. Motivated by this insight, we first time-
delay embed the cathode-Pearson signal C(t) in d-dimensions to
form the trajectory Cd,τ (t) := (C(t), C(t − τ ) . . . , C(t − (d − 1)τ )).

TABLE II. Comparison with the SINDy and neural ODE frameworks for learning from
trajectories sampled at different frequencies (Hz). The wall-clock computation time is
reported, and the error is quantified by W 2

2 (ρ̂, ρ
∗), where ρ̂ is the simulated occu-

pation measure from the learned velocity field and ρ∗ is the observed occupation
measure.

Method Sampling freq. Wall-clock time (s) Error

SINDy 10.00 2 × 10−2 5.6 × 10−3

Neural ODE 10.00 5 × 102 5.32 × 10−3

Ours 10.00 5 × 102 1.14 × 10−1

SINDy 0.25 10−2 3.52
Neural ODE 0.25 5 × 102 1.81
Ours 0.25 5 × 102 6.79 × 10−2
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FIG. 5. Learning the velocity from the embedded cathode-Pearson signal’s invariant measure. We present the time-delay embedded signal (a), the reconstructed velocity
field from the embedded signal’s occupation measure (b), and the trajectory simulated with the Euler–Maruyamamethod from the learned velocity and the diffusion coefficient
(c). In (b), blue indicates slow speed and red indicates fast. The velocity was parameterized by a neural network with 500 nodes in a single hidden layer and learned using
the KL divergence loss function. The three-step procedure in Sec. V B 1 is used to learn the model, and in step one, additional Gaussian filtering is applied to the occupation
measure ρ∗ to simplify the resulting optimization.

We then use a histogram approximation to compute the occupa-
tion measure ρ∗ of Cd,τ (t); see (4). By viewing each dimension
of the coordinate system on which the measure ρ∗ is supported
as the independent variables C−kτ (t) := C(t − kτ ) where 0 ≤ k ≤
d − 1, we then seek a solution to the optimization problem (2)
for a velocity v = v(Cd,τ ; θ). Such a velocity can then provide us
with a model of the asymptotic statistics of the embedded trajec-
tory Cd,τ (t), provided that a suitable diffusion coefficient can be
found.

We note that forming the time-delay coordinates Cd,τ (t) does
require a knowledge of measurements at uniform increments in
time. However, the available data may still be sampled slowly enough
such that it is impractical to seek a direct approximation of the
Lagrangian velocity through the standard approaches described in
Sec. I. This perspective motivates our use of the approach devel-
oped in Secs. III and IV to learn dynamical systems from invariant
measures in time-delay coordinates.

There are a few additional considerations that arise when
adapting the modeling framework presented in Secs. III and IV to
real-world data; namely, we do not know the proper diffusion coef-
ficient a priori (as was the case in Sec. V A). Moreover, the invariant
measure that the model is based on does not contain any informa-
tion about the time scale at which the system evolves. Toward this,
we utilize the following three-step procedure as a computationally
efficient means to mitigate these difficulties.

1. Bin the trajectory Cd,τ (t) onto a d-dimensional mesh with
spacing 'x along each axis to form the occupation measure
ρ∗, assume a constant diffusion coefficient D > 0, and learn
the velocity v = v(Cd,τ ; θ), using the framework from Secs. III
and IV.

2. Bin the trajectory Cd,τ (t) onto another d-dimensional mesh
with spacing 'x̂ ≤ 'x to create a new occupation measure ρ̂∗

and adjust the diffusion coefficient by solving the optimization

problem

D̃ = arg min
D̂∈R

J (ρε(v; D̂), ρ̂∗), (20)

where the term ρε(v; D̂) in (20) denotes the forward model
evaluation with the diffusion coefficient D̂.

3. Rescale both the velocity and diffusion by solving the optimiza-
tion problem

ã = arg min
a∈R

N∑

i=1

∥∥∥Ĉ(ti; a) − Cd,τ (ti)
∥∥∥

2

2
, (21)

where Ĉ(ti; a) denotes the time-ti solution of the ODE ini-
tial value problem with velocity av(·; θ) and initial condition
Cd,τ (t0). The final velocity and diffusion are then given by
ãv(·; θ) and ãD̃, respectively.

The three-step approach makes repeated use of the fact that
ρε(v; D) = ρε(av; aD) for any scalar multiple a > 0. Indeed, if the
true diffusion coefficient D∗ > 0 is unknown a priori, but we instead
seek a solution v(·, θ) with a different diffusion D > 0, it is guaran-
teed that the velocity v = (D/D∗)v∗ will still provide a solution to
the inverse problem. This observation motivates step one, in which
an arbitrary diffusion coefficient is used to find a solution v(·; θ)
to the inverse problem. As the dimensionality d is increased, solv-
ing the large-scale optimization problem in step 1 on a fine mesh
becomes infeasible. As such, step one is typically performed on a
coarse mesh where additional Gaussian filtering is applied to the
inference measure ρ∗ to make the large-scale optimization more
feasible.

The diffusion coefficient is then adjusted in step two on a finer
mesh via (20) to mitigate the errors due to the Gaussian filtering,
numerical diffusion, and histogram errors incurred during step one
(see Fig. 2). Finally, in step three, the scale of both the velocity and
diffusion is adjusted via (21) such that the time evolution of simu-
lated trajectories is consistent with the inference trajectory Cd,τ (t) in
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FIG. 6. Comparing the model accuracy and uncertainty for the embedded cathode-Pearson signal with 2D and 3D time delays. The time evolution of the 2D and 3D models
is compared to a collection {Cd,τ (ti)}ni=1 of samples (plotted in black) from the time-delayed cathode-Pearson signal. The plots (a) and (b) feature a qualitative comparison,
whereas (c) shows a quantitative comparison of the uncertainties. Throughout, the time units are normalized to the inverse of a HET breathing mode frequency (16.6 kHz).
Both the 2D and 3D models utilized neural network velocity parameterization with 500 nodes in a single hidden layer and reduced the KL divergence objective function to
0.1% of its initial value during training. As in Fig. 5, the three-step procedure in Sec. V B 1 is used to learn the models, and in step one, additional Gaussian filtering is applied
to the occupation measure ρ∗ to simplify the resulting optimization. The 3D visualization was plotted using Ref. 72. (a) Using the 2D model to predict the evolution of the
samples C2,τ . (b) Using the 3D model to predict the evolution of the samples C3,τ . (c) Uncertainty comparison for the 2D and 3D model predictions.
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FIG. 7. Comparison between the three parameterizations detailed in Sec. IV B for learning a velocity field from the time-delayed cathode-Pearson signal’s invariant measure
using a diffusion coefficient D = 0.01. The learned velocities and densities for the piecewise constant (PC), global polynomial (GP), and neural network (NN) discretizations
are shown in three columns, respectively. We show the learned velocity field on the full state space (a), a close-up of the velocity field’s direction near the attracting limit cycle
(b), and the forward model output ρε(v(θ)) for each parameterization (c). The resulting parameter spaces of these discretizations have a dimensionality of 9800 (PC), 56
(GP), and 400 (NN). The L2 loss is reduced below 0.1% of its initial cost for the PC and NN discretizations and reduced below 0.7% of its initial value for the GP case when
we stopped the optimization.

delay coordinates. Since diffusion plays a relatively small role over
short time scales for the quasiperiodic HET data, we use the zero-
diffusion trajectory to calibrate reasonable time scaling between our
model and the available data. However, as the magnitude of the

diffusion increases, the least squares fit in (21) will become less reli-
able, and it may be preferable to instead minimize a transport cost
between a collection of model samples and a collection of data sam-
ples at each time step. While this final optimization is similar in
spirit to various Lagrangian approaches for learning dynamics (see

Sec. I), we remark that the parameter space in (21) has only one
dimension.

2. Results

The results of the three-step procedure in Sec.V B 1 for
learning the HET dynamics are shown in Fig. 5 for an embedding
dimension of d = 3 and time-delay of τ = 1.4 × 10−5 sec or rather
τ = .23 when normalizing the time scale to the HET breath-
ing mode frequency (16.6 kHz). The modeled trajectory accu-
rately reconstructs the shape of the embedded cathode-Pearson
signal but cannot capture the variable diffusion present through-
out the time-delayed signal. We do not expect to capture such
details, as we assume a constant diffusion coefficient in our model.
Nevertheless, we regard the reconstruction of the 3D globally
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FIG. 8. Performing prediction and uncertainty quantification for Ithaca, NY’s temperature in 2019. (a) The ground truth occupation measure accumulated from 13 years of
weekly rolling averaged temperature observations, normalized by an affine transformation to [−1, 1]. (b) The learned velocity vector field. (c) The corresponding forward
model output. In (d), the PDEmodel with a uniform initialization in the box from (c) is evolved in time and used to quantify the uncertainty in the measurements of C0. Observed
trajectories of the temperature in delay coordinates with initial conditions displayed in the top left plot are also shown to demonstrate the effectiveness of the learned model.
A time delay of τ = 280 days is used, and the model is trained using a neural network parameterization and the KL-divergence objective function.

attracting limit cycle as a success and leave extending the model
to account for the case of a non-constant diffusion tensor to future
work.

The dimensionality of the original HET dynamics is unknown,
and as such, a sufficient embedding dimension for the cathode-
Pearson signal is unclear, though likely very high. Interestingly, we
can compare the model learned in Fig. 5 with a 2D analog to demon-
strate that when the number of time delays is not sufficiently large,
there is more uncertainty in modeling the time-delayed dynamics.
This phenomenon is most evident when inspecting regions of the
delayed cathode-Pearson signal for which the 2D embedding lacks
structure readily observed in 3D.

Specifically, consider a collection of nearby samples {C3,τ (ti)}n
i=1

in the 3D time-delay coordinate system (C0, C−τ , C−2τ ). The

corresponding 2D samples {C2,τ (ti)}n
i=1 will also be nearby one

another in the 2D time-delay coordinate system (C0, C−τ ). In
Fig. 6, we initiate uniform distributions centered about these sam-
ples in both 2D and 3D time-delay coordinate systems. We then
evolve both the samples and initial uniform distributions forward
in time. The evolution of the ground truth samples is simply
determined by the time-delayed cathode-Pearson signal Cd,τ (t), and
the evolution of the uniform distributions is given by Fokker–Planck

models constructed from the time-delayed cathode-Pearson signal’s
invariant measure. As the modeled probability densities and ground
truth samples evolve in time, we observe in Fig. 6 that the mean of
the 3D model matches the true sample mean more closely than the
2D model and that it has less uncertainty.

In Fig. 7, we study the three parameterizations from Sec. IV B
for learning the time-delayed cathode-Pearson signal’s velocity, now
with an embedding dimension of two to allow for clearer visualiza-
tions. It can be seen that the density associated with each velocity
parameterization indeed matches the ground truth density in Fig. 7,
but that the velocity fields differ significantly from one another. The
piecewise-constant velocity in Fig. 7 suffers from poor regularity
with discontinuities on the attracting limit cycle. As a result, we
lose the connection between the Eulerian and Lagrangian dynam-
ics and cannot reconstruct zero-diffusion trajectories that form a
stable limit cycle. On the other hand, the velocities parameter-
ized by the global polynomial and the neural network are both

C∞. The differences among these three can clearly be seen via the
zoomed-in velocity plots in the second row of Fig. 7. The global
polynomial and neural network discretizations are both global
parameterizations of the velocity, and as such, their values near the
domain’s boundary are dictated by the available data in the center of
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FIG. 9. Neural network parameterization of ẋ using the Lorenz system’s stochastically perturbed invariant measure with D = 10 and 'x = 2. For visualization of the
occupation measure used to learn the model displayed in the top row, we refer to Ref. 18. (a) Learned velocity vector field (left), a simulated trajectory with diffusion (middle),
and a simulated trajectory without diffusion (right). (b) True velocity (left), a ground truth SDE trajectory (middle), and a ground true ODE trajectory (right).

the domain. This causes the polynomial velocity to rapidly increase
near the boundary, and a similar effect can also be seen for the neural
network.

It is worth noting that the initial condition for the optimization
in Fig. 7 can play a large role in the reconstructed velocity, which is
related to the optimization landscape of the nonconvex optimiza-
tion problem (2) we tackle. In the case of the piecewise-constant
discretization, we initialize all velocities to be significantly less than
the diffusion coefficient D = 0.1. Thus, diffusion initially dominates
in the finite-volume solver, and all non-boundary cells will contain
nonzero mass, which allows for accurate gradient updates every-
where. This phenomenon can also help neural network training,
though it is not always necessary due to the global nature of param-
eterization. Moreover, we initialize our polynomial basis to form the
velocity

(ẋ, ẏ) =
(
−y + x(0.1 − x2 − y2), x + y(0.1 − x2 − y2)

)
,

which describes a globally attracting limit cycle. To converge to the
ground truth limit cycle of the time-delayed cathode-Pearson signal,
this initial velocity only needs to be translated and deformed.

C. Temperature uncertainty quantification

We now study 2D time-delay embedded data of weekly rolling
averages of the temperature in Ithaca, NY, between 2006 and 2020.73

We view temperature fluctuations over short time scales as an intrin-
sic diffusion process and the approximately periodic oscillation of
seasonal temperatures driven by some nonzero velocity. Thus, we
model the 2D data in delay coordinates as a diffuse limit cycle. We
again follow the procedure in Sec. V B 1 to learn a velocity v(x; θ)
and diffusion coefficient D, which closely matches the occupation
measure.

As in Sec. V B, we can use the trained model v(x; θ) to
quantify measurement uncertainties through the Fokker–Planck
equation (9), whose solution is a probability density in the time-
delay coordinates (C0, C−τ ). Specifically, if we know some initial
probability distribution that captures the current state of the tem-
perature system well, we can consider the time evolution of the
distribution using our trained model to quantify the uncertainty of
future temperature measurements. The process of evolving both the
Fokker–Planck PDE from a uniform distribution and the ground
truth sample paths from past temperature measurements is shown
in Fig. 8. The uncertainty bounds from the model accurately cap-
ture fluctuations in the training data used to form the occupation

Chaos 33, 063152 (2023); doi: 10.1063/5.0149673 33, 063152-18

Published by AIP Publishing

 07 July 2023 22:45:30

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

FIG. 10. Neural network parameterization of ẋ using the arctan Lorenz system’s stochastically perturbed invariant measure with D = 10 and'x = 2. The neural network
used to learn the velocity contains a single layer of 100 nodes with the sigmoid activation function, and the L2 objective function is used to train the model. (a) Learned
velocity vector field (left), a simulated trajectory with diffusion (middle), and a simulated trajectory without diffusion (right). (b) True velocity (left), a ground truth SDE trajectory
(middle), and a ground true ODE trajectory (right).

measure (plotted in black), as well as a testing sample path previ-
ously unseen by the model (plotted in red).

It is also worth noting that the confidence intervals we con-
struct may be larger than the actual range due to several fac-
tors, including additional extrinsic noise from filtering the data,
modeling errors accumulated from the hypothesis space, numer-
ical diffusion in the forward model, and a sub-optimal embed-
ding dimension. Reducing such errors may result in tighter con-
fidence intervals, and considering time delays in higher dimen-
sions could yield better predictions of the temperature’s transient
behaviors.

D. Lorenz-63 system

We conclude this section by studying the Lorenz-63 system,21

defined by

⎧
⎪⎨

⎪⎩

ẋ = c1(y − x),

ẏ = x(c2 − z) − y,

ż = xy − c3z,

(22)

where we consider (c1, c2, c3) = (10, 28, 8/3). For these choices of
parameters, the Lorenz-63 system exhibits chaotic behavior and
admits a unique physical measure.22 In Fig. 9, we assume that the
quantities ẏ and ż are known, and we learn a model for the velocity
in the x-direction, using the stochastically forced Lorenz-63 system’s
occupation measure. We emphasize that the data used to approxi-
mate the Lorenz system’s occupation measure can be sampled slowly
or even randomly in time (see Fig. 7 in Ref. 18). From the approxi-
mate occupation measure, we are able to successfully invert the first
component ẋ of the Lorenz-63 system’s velocity via neural network
parameterization.

We remark that when ẋ, ẏ, and ż are all simultaneously inverted,
the optimization is unsuccessful at reconstructing the true velocity
(22). While we may be able to learn a velocity that approximately
recovers the stationary state of the Lorenz-63 system in the sense of
(9), the physical property (3) does not hold. Whether the difficulties
of inverting all velocity components of the Lorenz-63 system are due
to inherent non-uniqueness in the inverse problem or simply incon-
venient local minima during training is worth further investigation
in future work. To demonstrate the applicability of our approach
to non-rational velocities, we also consider the arctan Lorenz-63
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system,18 given by

⎧
⎪⎨

⎪⎩

ẋ = 50 arctan(c1(y − x)/50),

ẏ = 50 arctan(x(c2 − z)/50 − y/50),

ż = 50 arctan(xy/50 − c3z/50),

(23)

where again, (c1, c2, c3) = (10, 28, 8/3). The results for inverting ẋ
from the occupation measure generated by (23) with additional
stochastic forcing are shown in Fig. 10, assuming that the quantities
ẏ and ż are known.

VI. CONCLUSION

In this paper, we introduced a PDE-constrained optimization
approach to modeling trajectory data originating from stochastic
dynamical systems. We first adapted the invariant measure sur-
rogate model in Ref. 18 based upon the continuity equation to
the Fokker–Planck equation. This increased our modeling capacity
and prevented overfitting the reconstructed velocity while mod-
eling intrinsically noisy trajectories. We next extended the three-
coefficient learning performed in Ref. 18 to thousands of coefficients
by modeling the velocity via global polynomials, piecewise polyno-
mials, and fully connected neural networks. The efficient gradient
computation presented in Sec. IV made these large-scale parameter-
izations of the velocity computationally tractable. We finally studied
velocity inversion for invariant measures of time-delay embedded
observables. The method of time-delay embedding is useful for
analyzing real-world data, where in many cases, only limited obser-
vations of complex systems are available. As such, we proceeded
to learn the velocity in time-delay coordinates for a Hall-effect
thruster system and rolling weekly averages of temperature mea-
surements. Using these models, we predicted future states of the
systems and quantified uncertainty in forecasts by evolving the
learned Fokker–Planck equation forward in time.
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