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ABSTRACT
Quantum circuit simulator (QCS) is essential for designing quan-
tum algorithms because it assists researchers in understanding how
quantum operations work without access to expensive quantum
computers. Traditional array-based QCSs su!er from exponential
time and memory complexities. To address this problem, Deci-
sion Diagram (DD) was introduced to compress simulation data
by exploring the circuit regularity. However, for irregular circuit
structures, DD-based simulation incurs signi"cant runtime and
memory overhead. To overcome this challenge, we present FlatDD,
a high-performance QCS that capitalizes on the strength of both
DD- and array-based approaches. FlatDD parallelizes the simula-
tion workload at multiple levels and leverages an e#cient caching
technique to reuse historical results. To further enhance the simula-
tion performance for deep circuits, FlatDD introduces a gate-fusion
algorithm to reduce the computational cost. Compared to state-of-
the-art QCSs on commonly used quantum circuits, FlatDD achieves
34.81→ speed-up and 1.93→ memory reduction.

CCS CONCEPTS
• Computing methodologies ↑ Parallel algorithms; Simu-
lation tools; • Computer systems organization↑ Quantum
computing.
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1 INTRODUCTION
Quantum computing (QC) has the potential to e#ciently handle cer-
tain types of problems that are classically intractable, such as quan-
tum chemistry [9], "nance [35], and cryptography [20]. Powered by
two fundamental quantum phenomena, superposition and entangle-
ment, many available quantum computers have shown signi"cant
speed-up over classical computers. For example, a recent photonic
quantum computer Jiuzhang can solve the Gaussian boson sam-
pling problem within "ve minutes, whereas a supercomputer needs
billions of years [95]. To enable widespread use of this quantum
advantage, researchers have been actively building software stacks
to support quantum computer designs [4, 11, 41, 81, 82, 90].

Among various QC applications, developing an e#cient quan-
tum circuit simulator (QCS) on a classical computer is a crucial task
because it helps researchers understand how quantum operations
work and verify the functionality of a quantum algorithm. However,
this task is extremely challenging because it demands large space
and time complexity to compute state amplitudes of qubits. For in-
stance, state-of-the-art QCSs [1, 4, 5, 19, 63, 68, 89, 91, 94] use arrays
to represent quantum gate matrices and state vectors. An 𝐿-qubit
circuit may result in a worst case of multiplying a 2𝐿 → 2𝐿 quantum
gate matrix by a 2𝐿 →1 state vector. To tackle this challenge, [86, 99]
have proposed decision diagram (DD) to compress simulation data
in a compact graph-based data structure by exploring regularity in
the circuit, such as state amplitude distribution and gate matrices
structures. As a result, DD can signi"cantly reduce the space com-
plexity and largely improve the simulation time. It is widely used
by many quantum software projects [11, 21, 22, 36, 37, 97].

Despite superior performance on regular circuit structures (e.g.,
quantum arithmetic), DD-based simulators cannot e#ciently han-
dle circuits that exhibit irregular distributions of state amplitudes,
such as deep neural network (DNN) [10], variational quantum eigen-
solver (VQE), and Google’s quantum supremacy circuits [7]. When
simulating these irregular circuits, DD has few advantages but suf-
fers from exponential runtime and memory overhead due to its
graph structure–which would otherwise be more e#cient using 1D
arrays. Figure 1 illustrates this problem by showing the runtime
and memory results between a DD-based simulator [99] and an
array-based simulator [19] on two regular (Adder, GHZ State [88])
and two irregular (DNN, VQE) quantum circuits.

To solve this problem, we have identi"ed an important property:
In DD-based simulation, the quantum gate matrix has a regular
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1Figure 1: Normalized runtime and memory results between a
DD-based simulator [99] and an array-based simulator [19]
on four structurally di!erent quantum circuits.

structure as it can be recursively decomposed to unitary operators
through Kronecker product. On the other hand, quantum state
vectors exhibit a di!erent behavior because of superposition and
ampli"cation over the state space [21]. Typically, the vector starts
with a highly regular distribution and gradually becomes irregular
as the simulation progresses. With this property, we present a high-
performance QCS called FlatDD that capitalizes on the strength of
both DD- and array-based approaches. We summarize our technical
contributions below:
• We introduce a hybrid data structure DMAV, which uses DD-
based gate matrix and array-based state vector for matrix-vector
multiplication. DD-based gate matrix enhances indexing e#-
ciency, while array-based state vector avoids exponential over-
head from irregularity.

• We introduce a parallel DMAV algorithmwith an e#cient caching
technique to reuse simulation data. Our DMAV algorithm over-
comes the limitation of DD-based simulation which is inherently
sequential, thus largely enhancing its runtime scalability on a
multicore architecture.

• We introduce a moving average-based algorithm to e!ectively
decide when to convert the simulation from DD to DMAV. Since
such a conversion can be time-consuming for large circuits, we
introduce a parallel algorithm to maximize the conversion e#-
ciency.

• We introduce a DMAV-aware gate-fusion algorithm to enhance
FlatDD’s e#ciency in handling large quantum circuits with deep
simulation length.
We evaluated FlatDD on a set of widely-used quantum circuits

from [7, 69, 88]. FlatDD can outperform two highly optimized state-
of-the-art DD-based and array-based simulators, DDSIM [99] and
Quantum++ [19], with signi"cant runtime improvement. For exam-
ple, FlatDD achieves an average of 34.81→ and 17.31→ speed-up
over DDSIM [99] and Quantum++ [19]. The source code is available
at https://github.com/IDEA-CUHK/FlatDD.

2 QUANTUM CIRCUIT SIMULATION
Given a quantum circuit, the goal of quantum circuit simulation
is to derive the "nal state value after applying all quantum gate
operations to an initial state. Mainstream simulation methods can
be categorized to array-based and DD-based, explained below:
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Figure 2: Examples of array-based data represented in deci-
sion diagrams. Edges without labels have a weight of one by
default.

2.1 Array-based Simulation
In array-based simulation [1, 4, 5, 19, 63, 68, 89, 91, 94], gate matrices
and state vectors are stored in 2D and 1D arrays. Multiplying a 2D
array with a 1D array expresses the action of exerting a quantum
gate on a state vector. For instance, when we apply a single-qubit
Hadamard gate 𝑀 to an input state |𝑁 ↓ = |0↓, it yields the resulting
state |𝑁 ↔↓ (Equation 1).

|𝑁 ↔↓ = 𝑀 · |𝑁 ↓ = 1↗
2

(
1 1
1 ↘1

)
·
(
1
0

)
=

1↗
2

(
1
1

)
(1)

This can also extend to larger circuits with𝐿 > 2 qubits. However,
we do not have to construct an entire 2𝐿 → 2𝐿 gate matrix [89, 91].
Instead, array-based simulators can manipulate the amplitudes of
state vectors locally. For instance, if we apply a single-qubit gate
𝑂 = (𝑃𝑂 𝑃 ) to the 𝑄-th qubit of state vector |𝑁 ↓ = (𝑅𝑂 )𝑄 , the operation
to derive resulting state |𝑁 ↔↓ = (𝑅↔𝑂 )𝑄 can be expressed in Equation 2.(

𝑅↔≃· · ·≃0𝐿≃· · ·≃
𝑅↔≃· · ·≃1𝐿≃· · ·≃

)
=
(
𝑃11 𝑃12
𝑃21 𝑃22

)
·
(
𝑅≃· · ·≃0𝐿≃· · ·≃
𝑅≃· · ·≃1𝐿≃· · ·≃

)
(2)

On the other hand, if we apply a two-qubit controlled gate 𝑆 =
(𝑇𝑂 𝑃 ) to the state vector, where 𝑈 represents the control qubit and 𝑉
is the target qubit, the in-place manipulation of the state vector is
expressed in Equation 3.(

𝑅↔≃1𝑀≃· · ·≃0𝑁 ≃· · ·≃
𝑅↔≃1𝑀≃· · ·≃1𝑁 ≃· · ·≃

)
=
(
𝑇11 𝑇12
𝑇21 𝑇22

)
·
(
𝑅≃1𝑀≃· · ·≃0𝑁 ≃· · ·≃
𝑅≃1𝑀≃· · ·≃1𝑁 ≃· · ·≃

)
(3)

2.2 Decision-diagram-based Simulation
Compared with array-based methods, decision diagram (DD)-based
simulators [86, 98, 99] are particularly good at handling the regu-
larity in gate matrices and state vectors. For example, if we equally
partition the matrix in Figure 2a into four sub-matrices, we observe
that the upper-left, upper-right, and lower-left sub-matrices are
identical. The lower-right sub-matrix is exactly the opposite of the
other three sub-matrices. As a result, these four sub-matrices can
be e#ciently stored as one single 2 → 2 sub-matrix with di!erent
weights. This idea extends to all gate matrices and state vectors,
which can be recursively partitioned until they become scalar val-
ues. This process forms a graph-based data structure, DD, where
nodes represent sub-matrices or sub-vectors at various partitioning
levels connected by weighted edges. Figure 2 shows DD examples
for gate matrix𝑊 and state vector 𝑆 .

In Figure 2a, the root node𝑋1 represents the entire matrix 𝑊 ,
and the four outgoing edges represent four equally partitioned sub-
matrices in 𝑊 . The partition runs on the most signi"cant qubit,

https://github.com/IDEA-CUHK/FlatDD
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𝑌1, at the topmost level of the DD. Recursive partitions progress
level by level, from the most to the least signi"cant qubit. Each
qubit matches a unique level in DD. The weight for𝑋1’s incoming
edge is 1↗

2
, and the weights for its outgoing edges are 1, 1, 1 and

↘1, corresponding to the upper-left, upper-right, lower-left, and
lower-right sub-matrices. The weights are uniquely decided by
normalization [86, 99]. After dividing𝑋1’s incoming and outgoing
weights, the four sub-matrices are identical, which can be expressed
with one single node 𝑋2. 𝑋2 represents a 2 → 2 identity matrix,
which can be further partitioned on qubit 𝑌0. In this partition, the
upper-left and lower-right elements point to terminal constant
node one, and the upper-right and lower-left elements are zero. The
matrix value of an index pair equals the product of edge weights
along the corresponding path in DD. For instance, for𝑊 [0] [2] (i.e.,
𝑊 [|00↓] [|10↓]), we have 𝑌1 = 𝑌0 = 0 and 𝑌1 = 1,𝑌0 = 0 for row and
column indices, respectively. Multiplying the edge weights along
the path (thick red edges in Figure 2a) yields𝑊 [0] [2] = 1↗

2
→1→1 =

1↗
2
.
In Figure 2b, the root node 𝑇1 represents the entire state vector.

We equally partition the vector into two sub-vectors on the most
signi"cant qubit 𝑌2. The two sub-vectors are neither zero vectors
nor a scalar multiple of each other. Therefore, they are represented
in two unique nodes 𝑇2 and 𝑇3. The incoming weights for 𝑇2 and
𝑇3 are 1↗

2
, also uniquely determined by normalization. Thus, the

weight products along the paths to 𝑇2 and 𝑇3 are both 1↗
2
. After

dividing the weight products, the two sub-vectors represented by 𝑇2
and 𝑇3 can be further partitioned into

( 1↗
2

0
)𝑄 , (0 1↗

2

)𝑄 , ( 1↗
2

0
)𝑄

and
(
0 ↘ 1↗

2

)𝑄 on𝑌1 level, where the "rst and the third are identical,
represented in node 𝑇4, and the second and the fourth are oppo-
site, represented in node 𝑇5 with opposite incoming weights. After
further dividing weight products, 𝑇4 and 𝑇5 represent

(
1 0

)𝑄 and(
0 1

)𝑄 on the𝑌0 level, respectively. Similarly, the amplitude of an in-
dex is equal to the product of edge weights along the corresponding
path in DD. For example, to determine𝑆 [3] (i.e.,𝑆 [|011↓]), we have
𝑌2 = 0, 𝑌1 = 1 and 𝑌0 = 1. Multiplying the edge weights along the
path (thick red edges in Figure 2b) gives𝑆 [3] = 1→ 1↗

2
→ 1↗

2
→1 = 1

2 .
DD-based matrix-vector multiplication is done in a depth-"rst-

search (DFS) fashion, where each matrix node always "nds its
corresponding vector node counterpart on the same level. Identical
matrix-vector multiplications are avoided using hash tables [86, 98,
99].

3 ALGORITHM
In this section, we discuss the technical details of our FlatDD algo-
rithm. Figure 3 gives an overview of FlatDD. As aforementioned,
the quantum state vector typically begins with a highly regular
distribution and gradually turns irregular as the simulation pro-
gresses. For example, in Figure 3, DD-based simulation has a fast
runtime until about 24 gates at which the cost to maintain an
irregular DD-based state vector outweighs its advantage. Consider-
ing this property, FlatDD begins with DD-based simulation using
DDSIM [99] and converts to parallel simulation with DD-based gate
matrix and array-based state vector multiplication (DMAV). We

Gates
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per added 
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Input state 
vector in DD

Converting state vector 
from DD to flat array

Shift to 
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Circuit

Gate matrices 
in DD

Gate matrices 
in DD

Figure 3: Overview of the FlatDD algorithm. The top box dis-
plays the runtime for each quantum gate, while the bottom
box shows the quantum circuit and simulation data struc-
tures used to compute state vectors.

record a window of the DD size using moving average and exam-
ine if the state vector’s regularity has experienced a signi"cant
change. When such a change happens, we use a parallel algorithm
to convert the state vector from DD to array (Section 3.1), thereby
converting the simulation from DD-based to DMAV. In Section 3.2,
we introduce an e#cient parallel DMAV algorithm with a caching
technique to maximize performance. To further enhance the perfor-
mance of FlatDD on large, deep circuits with thousands of gates,
we introduce a DMAV-aware gate-fusion algorithm (Section 3.3).
Throughout this paper, we use 𝑉 to represent the number of threads
and 𝐿 to represent the number of qubits.

3.1 Conversion from DD-based Simulation to
DMAV

When the regularity of a DD-based state vector decreases to a cer-
tain level, DD-based simulation becomes less advantageous due
to the cost of maintaining a highly irregular DD structure. To ad-
dress this problem, a potential solution is to convert the DD-based
state vector to an array representation when the DD size exceeds a
certain threshold. The challenge is thus to decide when and how
to perform this conversion. To this end, we decide the conversion
timing via moving average (Section 3.1.1) and introduce a parallel
algorithm to e#ciently convert DD to array (Section 3.1.2).

3.1.1 Conversion timing. To decide the best timing for conver-
sion from DD to array, we monitor the DD size and perform con-
version when the regularity of DD experiences a drastic increase.
Speci"cally, we apply a widely used learning method, exponentially
weighted moving average [59] (EWMA). EWMA introduces little
computational overhead and is suitable for di!erent quantum cir-
cuits and simulation platforms. While simulating, gate 𝑍 is assigned
an EWMA value 𝑇𝑂 based on the previous EWMA value 𝑇𝑂↘1 and
the DD size 𝑎𝑂 , of the state vector at gate 𝑍 . 𝑇𝑂 is computed through
Equation 4.

𝑇𝑂 = 𝑏 · 𝑇𝑂↘1 + (1 ↘ 𝑏) · 𝑎𝑂 (4)
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Figure 4: Parallel DD-to-array conversion algorithmwith two
optimizations. The four colors represent four threads.

In Equation 4, 𝑏 is a parameter and 𝑇0 is initialized to 0. 𝑏 captures
the learning feature of EWMA based on a weighted window of
historical data. To decide whether to convert at gate 𝑍 , we compare
𝑐 · 𝑇𝑂 with 𝑎𝑂 , where 𝑐 is a threshold parameter. (1) If 𝑐 · 𝑇𝑂 ⇐ 𝑎𝑂 ,
then 𝑎𝑂 is not large enough to bene"t from DMAV. (2) On the other
hand, if 𝑐 · 𝑇𝑂 < 𝑎𝑂 , we convert from DD-based simulation to DMAV
(Section 3.2) by converting state vector from DD to 1D $at array.

3.1.2 Parallel Conversion from DD to Array. Although DD-based
QCS DDSIM [99] already incorporates a conversion algorithm, it is
inherently sequential. As a result, it can consume a large portion of
the total simulation runtime. To overcome this challenge, we intro-
duce a parallel algorithm with two optimizations, load balancing
and scalar multiplication, to improve the conversion e#ciency.

Figure 4 illustrates how our parallel conversion algorithm con-
verts state vector 𝑆 from DD to array using four threads (𝑉1, 𝑉2, 𝑉3,
and 𝑉4). In our algorithm, each DD node serves as a junction that
divides threads across its two outgoing edges, progressing from top
to bottom until further division of threads is not possible. Then,
each thread traverses the unvisited nodes using depth-"rst-search
(DFS), and computes the state amplitudes through the products of
weights along the traversal paths. In practice, however, edges may
be zero. For example, as shown in Figure 4a, the right outgoing
edges of 𝑇1 and 𝑇3, and the left outgoing edge of 𝑇4 are zero. We
address this problem with load-balancing optimization: If a DD
node’s outgoing edge is zero, threads are not divided; instead, they
all proceed along the non-zero edge. With this optimization, in
Figure 4a, all four threads follow the left outgoing edge at node 𝑇1
to node 𝑇2. Here, the threads divide: two take left to 𝑇3 and two
take right to 𝑇4. At nodes 𝑇3 and 𝑇4, the threads continue to nodes
𝑇5 and 𝑇6, respectively, and divide at 𝑇5 and 𝑇6. This optimization
prevents any threads from remaining idle.

Additionally, we optimize the conversion by identifying opportu-
nities for scalar multiplication, as it bene"ts from single instruction
multiple data (SIMD) parallelism. For example, in Figure 4b, we can
derive the second, third, and fourth quarters of the array from its
"rst quarter with scalar multiplication. This is because 𝑇1 and 𝑇2
each have identical child nodes, indicating that the four quarters of
the array are scalar multiples of one another [86]. Consequently,
we break the conversion in Figure 4b into two steps: 1→ Convert
the "rst quarter. With multi-threading, all four threads make two
consecutive left turns at 𝑇1 and 𝑇2, for they each have identical child

nodes, and divide at nodes 𝑇3, 𝑇4, and 𝑇5, to convert the "rst quarter
in parallel. 2→ SIMD-enabled scalar multiplication "lls the second,
third, and fourth quarters with three threads, using the "rst quarter
data. For instance, the fourth quarter is calculated by multiplying
the "rst quarter by scalar 𝑑𝑒/𝑅𝑈 . This optimization enhances per-
formance by leveraging both SIMD and multi-threading parallelism.

3.2 Simulation with DMAV
DMAV is di!erent from existing matrix-vector multiplications [8,
85] because a DD-based gate matrix has a speci"c regularity prop-
erty due to the tensor product. This regularity allows reusing com-
puted results through caching. However, caching requires addi-
tional memory to store historical data, which can introduce over-
head that, for certain gates, can outweigh its bene"ts. To e!ectively
determine which gates bene"t from caching, we introduce a com-
putational cost model for DMAV (Section 3.2.3). Using this model,
we apply DMAV without caching (Section 3.2.1) when its compu-
tational cost is lower. Otherwise, we apply DMAV with caching
(Section 3.2.2).

3.2.1 DMAVwithout Caching. Wedescribe DMAVwithout caching,
using Algorithm 1 and an example in Figure 5. In Figure 5, we
multiply a three-qubit (i.e., 𝐿 = 3) gate matrix𝑊 by a state vector
𝑆 using two threads (in blue and red, 𝑉 = 2), to derive state vector
𝑓 . Algorithm 1 consists of three functions: DMAV, Assign, and Run.
The top-level function DMAV takes input variables𝑊 (the topmost
edge to DD node𝑋1 in Figure 5), as well as𝑆 and𝑓 (the input and
output state vectors in $at arrays). DMAV has two steps: assigning
multiplication tasks to be executed on 𝑉 threads via Assign (line 2),
and running them in parallel via Run (lines 3-5).

In DMAVwithout caching, each thread evaluates𝑊 in row space
by computing 𝑔 rows from 𝑊 and the entire vector 𝑆 , resulting
in an 𝑔-sized sub-vector in𝑓 , where 𝑔 = 2𝐿/𝑉 . Assign decom-
poses this process for each thread into smaller multiplication tasks.
Assign divides matrix 𝑊 into 𝑔 → 𝑔 sub-matrices, and vectors 𝑆
and𝑓 into 𝑔-sized sub-vectors. Each sub-matrix is paired with the
corresponding sub-vectors, forming a multiplication task. A DD
sub-matrix can be located using its incoming edge, while a sub-
vector can be located using its start index in𝑆 or𝑓 . Thus, to record
the multiplication tasks for 𝑉 threads, we use 2D vectors 𝑇𝑀 , 𝑇𝑁 , 𝑇 𝑅
(each of length 𝑉 ) to track the sub-matrices’ DD edges, sub-vectors’
start indices, and the weight products along the DD traversal paths.
Assign is a recursive function, where the input arguments are dy-
namically decided during the recursive call. At line 8, 𝑊𝑆 is the
input sub-matrix’s DD edge, and 𝑕𝑆 is the weight product along the
DD traversal path. If each DD edge 𝑊𝑆𝑂 has weight 𝑊𝑆𝑂 .𝑖 along
DD traversal path 𝑗 , 𝑕𝑆 is given by 𝑕𝑆 = ω𝑂⇒𝑇𝑊𝑆𝑂 .𝑖 . Argument 𝑃
is the thread index for task assignment. 𝑘𝑁 is the start index for a
sub-vector in𝑆 . 𝑙 denotes the DD level of the current node, pointed
to by edge𝑊𝑆 (i.e.,𝑊𝑆 .𝐿). Assign is called from DMAV (line 2) using
DD edge𝑊 . The call initializes weight product 𝑕𝑆 , thread index 𝑃,
and start index 𝑘𝑁 to 1, 0, and 0 respectively, on the topmost level
𝑙 = 𝐿 ↘ 1.

In Assign, if𝑊𝑆 is zero, it returns (line 9).𝐿↘log2 𝑉↘1 represents
the border level: Assign ends here, and Run starts from here. In
Figure 5, the border level is 𝑌1 (i.e., 𝐿↘ log2 𝑉 ↘ 1 = 1). Assign spans
levels 𝑌2 and 𝑌1 (i.e., 𝑙 = 2, 1), while Run spans levels 𝑌1, 𝑌0, and
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the "nal level where the bottom-most terminal node one resides
(i.e., 𝑙 = 1, 0,↘1). Upon reaching the border level, we push the sub-
matrix’s DD edge𝑊𝑆 , the sub-vector’s start index 𝑘𝑁 , and the weight
product 𝑕𝑆 of thread 𝑃 to the corresponding vectors (lines 10-11). If
the border level is still not reached, we traverse the four outgoing
edges of𝑊𝑆 .𝐿 in row-major order (i.e.,𝑊𝑆 .𝐿.𝑚 [𝑍] [ 𝑛],⇑𝑍, 𝑛 ⇒ {0, 1}2)
and call Assign with the updated weight product𝑊𝑆 .𝑖 · 𝑕𝑆 (where
𝑊𝑆 .𝑖 is the weight of𝑊𝑆 ), thread index𝑃+𝑍 ·𝑉/2𝐿↘𝑈 and sub-vector’s
start index, 𝑘𝑁 + 2𝑈 𝑛 , going one level lower to 𝑙 ↘ 1 (lines 12-13).
The purposes of 𝑃 + 𝑍 · 𝑉/2𝐿↘𝑈 and 𝑘𝑁 + 2𝑈 𝑛 are to split 𝑉 threads and
𝑆 into halves, quarters, and so on, at each successive level, until
all threads are allocated a multiplication task. In Figure 5, on level
𝑌2, we call Assign with 𝑃 = 0, 1 and 𝑘𝑁 = 0, 4, essentially halving 𝑉
threads and𝑆 . After Assign, the blue thread in Figure 5 is assigned
𝑅 ·𝑋2 ·𝑆 [0 : 4] and 𝑑 ·𝑋2 ·𝑆 [4 : 8], while the red thread is assigned
𝑈 ·𝑋2 ·𝑆 [0 : 4] and 𝑒 ·𝑋2 ·𝑆 [4 : 8].

Algorithm 1 DMAV without caching

Input: 𝑔 = 2𝑃
𝑉 , the size for a sub-matrix or a sub-vector; 𝑇𝑀 = 𝑇𝑁 =

𝑇 𝑅 = {{}, · · · , {}}︸⨌⨌⨌⨌⨌⨌⨌⨌⨌︷︷⨌⨌⨌⨌⨌⨌⨌⨌⨌︸
𝑉

, vectors keeping track of the sub-matrices’

DD edges, sub-vectors’ start indices, and weight products as-
signed to each thread, respectively.

1: function DMAV(𝑊 , 𝑆 ,𝑓 )
2: Assign(𝑊 , 1, 0, 0, 𝐿 ↘ 1)
3: parallel for 𝑍 ⇒ [0, 𝑉)
4: for 𝑛 ⇒ [0, 𝑎𝑍𝑜𝑚 (𝑇𝑀 [𝑍]))
5: Run(𝑇𝑀 [𝑍] [ 𝑛],𝑆 ,𝑓 , 𝐿 ↘ log2 𝑉 ↘ 1, 𝑇𝑁 [𝑍] [ 𝑛], 𝑍𝑔, 𝑇 𝑅 [𝑍] [ 𝑛])
6: end function
7:
8: function Assign(𝑊𝑆 , 𝑕𝑆 , 𝑃, 𝑘𝑁 , 𝑙 )
9: if 𝑊𝑆 is zero edge then return
10: if 𝑙 == 𝐿 ↘ log2 𝑉 ↘ 1 then
11: 𝑇𝑀 [𝑃] ⇓ {𝑊𝑆 }; 𝑇𝑁 [𝑃] ⇓ {𝑘𝑁 }; 𝑇 𝑅 [𝑃] ⇓ {𝑕𝑆 }; return
12: else for 𝑍, 𝑛 ⇒ {0, 1}2
13: Assign(𝑊𝑆 .𝐿.𝑚 [𝑍] [ 𝑛],𝑊𝑆 .𝑖 · 𝑕𝑆 , 𝑃 + 𝑂 ·𝑉

2𝑃↘𝑄 , 𝑘𝑁 + 2𝑈 𝑛 , 𝑙 ↘ 1)
14: end function
15:
16: function Run(𝑊𝑆 , 𝑆 ,𝑓 , 𝑙 , 𝑘𝑁 , 𝑘𝑊 , 𝑕𝑆 )
17: if 𝑊𝑆 is zero edge then return
18: if 𝑊𝑆 .𝐿 is terminal node then
19: 𝑓 [𝑘𝑊 ] ⇔𝑓 [𝑘𝑊 ] + 𝑕𝑆 ·𝑊𝑆 .𝑖 ·𝑆 [𝑘𝑁 ]; return
20: for 𝑍, 𝑛 ⇒ {0, 1}2
21: Run(𝑊𝑆 .𝐿.𝑚 [𝑍] [ 𝑛], 𝑆 ,𝑓 , 𝑙 ↘ 1, 𝑘𝑁 + 2𝑈 𝑛 , 𝑘𝑊 + 2𝑈 𝑍 , 𝑕𝑆𝑊𝑆 .𝑖 )
22: end function

Run is also a recursive function. We launch 𝑉 threads (line 3), and
iterate through the edges in 𝑇𝑀 determined by Assign (line 4). At
line 5, we calculate each multiplication task 𝑇 𝑅 [𝑍] [ 𝑛] · 𝑇𝑀 [𝑍] [ 𝑛] ·
𝑆 [𝑇𝑁 [𝑍] [ 𝑛] : 𝑇𝑁 [𝑍] [ 𝑛] + 𝑔] via Run. The input parameters (line
16) for Run consist of the following:𝑊𝑆 , sub-matrix’s DD edge; 𝑆
and𝑓 , the input and output state vectors; 𝑙 , the level on which
node𝑊𝑆 .𝐿 is located; 𝑘𝑁 and 𝑘𝑊 , start indices for accessing 𝑆 and
𝑓 ; and 𝑕𝑆 , weight product. In Run, if 𝑊𝑆 is zero, then we return
directly (line 17). If𝑊𝑆 .𝐿 is a terminal node (lines 18-19), wemultiply
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Figure 5: DMAV without caching on two threads, illustrated
in blue and red colors. The input matrix and vector are 𝑊
and 𝑆 , and the resulting vector is𝑓 (i.e.,𝑊 ·𝑆 ↑𝑓 ).

𝑊 [𝑘𝑊 ] [𝑘𝑁 ] by 𝑆 [𝑘𝑁 ], and add the result to𝑓 [𝑘𝑊 ]. If 𝑊𝑆 .𝐿 is not
yet terminal, we traverse the four outgoing edges of𝑊𝑆 .𝐿 and call
Run accordingly. We update the weight product with 𝑕𝑆 ·𝑊𝑆 .𝑖 , 𝑘𝑁
with 𝑘𝑁 + 2𝑈 𝑛 , and 𝑘𝑊 with 𝑘𝑊 + 2𝑈 𝑍 (lines 20-21). The purposes of
𝑘𝑁 + 2𝑈 𝑛 , 𝑘𝑊 + 2𝑈 𝑍 are to divide the 𝑔-sized sub-vectors in 𝑆 and
𝑓 into halves, quarters, and so on, at each successive level, until
the sub-vectors cannot be divided further, at which point𝑊𝑆 also
reaches a terminal node.

In Figure 5, the blue thread "rst computes 𝑅 · 𝑋2 · 𝑆 [0 : 4]
(allocated by Assign). We make two recursive Run calls, using the
upper-left outgoing edges of 𝑋2 and 𝑋3 for the 𝑊𝑆 inputs, and
setting both 𝑘𝑁 and 𝑘𝑊 to 0, leading to𝑓 [0] ⇔𝑓 [0] +𝑊 [0] [0] ·
𝑆 [0] at step 1→. Then, at step 2→, we exit the outermost Run and
call another Run (𝑊𝑆 = 𝑋3’s lower-right edge, and 𝑘𝑁 = 𝑘𝑊 = 1),
leading to𝑓 [1] ⇔ 𝑓 [1] +𝑊 [1] [1] · 𝑆 [1]. This continues until
𝑅 ·𝑋2 ·𝑆 [0 : 4] is "nished and we make a switch for task 𝑑 ·𝑋2 ·𝑆 [4 :
8] at step 5→. A similar process applies to the red thread.

DMAV outperforms array-based QCSs (e.g., Quantum++ [19]) due
to its e#cient indexing. Unlike Quantum++, which requires 𝑝 (𝐿)
operations per state, DMAV uses a recursive Run function within
a DD structure, enhancing data locality and reducing indexing to
a constant average number of operations. This results in an 𝐿→
increase in indexing speed for DMAV compared to Quantum++.

3.2.2 DMAV with Caching. Figure 6 illustrates an example of com-
putation reduction with caching in DMAV. Executing the DMAV
in Figure 6 involves two multiplications: 1→ 𝑅𝑋2 · 𝑆 [0 : 2] and
2→ 𝑑𝑋2 · 𝑆 [0 : 2]. Without caching, both require four multiply-
accumulate (MAC) [2] operations. However, 1→ and 2→ share iden-
tical left and right operands (sub-matrix DD node and sub-vector)
and di!er only in their scalar coe#cients (𝑅 or 𝑑). Caching the result
of 1→ allows its reuse for 2→ by scaling it by 𝑑/𝑅, yielding only two
MAC operations, compared to four without caching.

DMAV with caching is notably di!erent from DMAV without
caching. Speci"cally, to facilitate data reuse, each thread evalu-
ates the gate matrix in column space instead of row space. We
describe DMAV with caching using both Algorithm 2 and Figure 7.
In Figure 7, we multiply gate matrix𝑊 by state vector𝑆 using four
threads, each with its own cache, to obtain the resulting state vector
𝑓 . In Algorithm 2, we present two functions: top-level DMAVCache,
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Figure 6: Saving the number of MAC operations by reusing
historical results in DMAV.

which conducts DMAV with caching, and AssignCache, which as-
signsmultiplication tasks to 𝑉 threads. For previously computedmul-
tiplication tasks, we can fetch the results from the cache, while other
multiplication tasks are computed using Run from Algorithm 1. We
only apply caching to the multiplication tasks directly assigned by
AssignCache to avoid frequent memory allocation and deallocation
on di!erent threads.

In DMAV with caching, each thread computes 𝑔 columns in𝑊
and an 𝑔-sized sub-vector in 𝑆 (𝑔 = 2𝐿/𝑉 ), generating a partial out-
put equivalent in size to 𝑆 . These partial outputs are then summed
to obtain the output state vector𝑓 . Given the sparse nature of quan-
tum gate matrices [34], the partial outputs from di!erent threads
often have non-overlapping segments. Thus, to save memory and
time, multiple partial outputs can share a single memory bu!er, and
we sum the bu!ers to obtain the output state vector.

AssignCache, which is adapted from Assign in Algorithm 1,
divides matrix 𝑊 into 𝑔 → 𝑔 sub-matrices, and vector 𝑆 as well
as the partial output vectors into 𝑔-sized sub-vectors. Each sub-
matrix is paired with the corresponding sub-vectors, forming a
multiplication task. To record the multiplication tasks for 𝑉 threads,
we use vectors 𝑇𝑀 , 𝑇𝑇 , and 𝑇 𝑅 to keep track of the sub-matrices’ DD
edges, start indices of sub-vectors in a partial output, and weight
products assigned to each thread. Vector 𝑇𝑋 associates each thread
with a speci"c bu!er index, which can be used to access bu!ers in
𝑞, the vector of bu!ers. The input parameters for AssignCache are:
𝑊𝑆 , input matrix’s DD edge; 𝑕𝑆 , weight product along DD traversal
path; 𝑃, thread index; 𝑘𝑇 , start index of a sub-vector in a partial
output; and 𝑙 , DD level of the current node. AssignCache returns if
𝑊𝑆 is zero (line 17). Upon reaching the border level at 𝐿 ↘ log2 𝑉 ↘ 1,
we push the sub-matrix’s edge 𝑊𝑆 , the sub-vector’s start index
𝑘𝑇 , and the weight product 𝑕𝑆 of thread 𝑃 to the corresponding
vectors (lines 18-19). At lines 20-21, we traverse the four outgoing
edges of𝑊𝑆 .𝐿 in column-major order and call AssignCache with
the updated weight product, thread index, sub-vector’s start index,
and DD level, similar to Assign (line 13 in Algorithm 1). After all
threads have been assigned multiplication tasks, we assign each
thread to its bu!er. Speci"cally, for each thread 𝑍 , we check if there
is another thread 𝑛 with a non-overlapping partial output. If such a
thread 𝑛 exists, threads 𝑍 and 𝑛 will share a bu!er (line 24); otherwise,
thread 𝑍 will receive its own bu!er (line 25).

In DMAVCache, each thread executes its multiplication tasks from
AssignCache (line 2). We focus on threads 𝑉1 and 𝑉2 in Figure 7 (in
black dashed boxes). 𝑉1 is assigned 𝑅 ·𝑋4 ·𝑆 [0 : 𝑔] and𝑑 ·𝑋4 ·𝑆 [0 : 𝑔],
while 𝑉2 is assigned 𝑈 ·𝑋5 ·𝑆 [𝑔 : 2𝑔] and 𝑒 ·𝑋5 ·𝑆 [𝑔 : 2𝑔], where
sub-vectors 𝑆 [0 : 𝑔] and 𝑆 [𝑔 : 2𝑔] are the "rst two quarters in
𝑆 . As these four tasks have non-overlapping outputs, they can

Algorithm 2 DMAV with caching

Input: 𝑔 = 2𝑃
𝑉 , the size for a sub-matrix or a sub-vector; 𝑇𝑀 = 𝑇𝑇 =

𝑇 𝑅 = {{}, · · · , {}}︸⨌⨌⨌⨌⨌⨌⨌⨌⨌︷︷⨌⨌⨌⨌⨌⨌⨌⨌⨌︸
𝑉

, vectors keeping track of the sub-matrices’

DD edges, start indices of sub-vectors in a partial output, and
weight products, respectively; 𝑇𝑋 , a vector of bu!er indices
assigned to each thread;𝑞, a vector of bu!ers for partial outputs;
𝑈𝑅𝑈𝑔𝑚 , a vector where each element is a cache speci"c to a
thread.

1: function DMAVCache(𝑊 , 𝑆 ,𝑓 )
2: AssignCache(𝑊 , 1, 0, 0, 𝐿 ↘ 1)
3: parallel for 𝑍 ⇒ [0, 𝑉)
4: for 𝑛 ⇒ [0, 𝑎𝑍𝑜𝑚 (𝑇𝑀 [𝑍]))
5: 𝑟 ⇔ 𝑈𝑅𝑈𝑔𝑚 [𝑍].lookup(𝑇𝑀 [𝑍] [ 𝑛] .𝐿)
6: if 𝑟 ω {} then
7: 𝑞 [𝑇𝑋 [𝑍]] [𝑇𝑇 [𝑍] [ 𝑛] : 𝑇𝑇 [𝑍] [ 𝑛]+𝑔] ⇔ SIMDMul(𝑇 𝑅 [𝑍] [ 𝑛]/

𝑟 [0], 𝑞 [𝑇𝑋 [𝑍]] [𝑟 [1] : 𝑟 [1] + 𝑔])
8: else
9: Run(𝑇𝑀 [𝑍] [ 𝑛], 𝑆 , 𝑞 [𝑇𝑋 [𝑍]], 𝐿 ↘ log2 𝑉 ↘ 1, 𝑔 · 𝑍 , 𝑇𝑇 [𝑍] [ 𝑛],

𝑇 𝑅 [𝑍] [ 𝑛]) /* From Algorithm 1 */
10: 𝑈𝑅𝑈𝑔𝑚 [𝑍] .insert(𝑇𝑀 [𝑍] [ 𝑛] .𝐿, {𝑇 𝑅 [𝑍] [ 𝑛], 𝑇𝑇 [𝑍] [ 𝑛]})
11: parallel for 𝑍 ⇒ [0, 𝑉)
12: for 𝑛 ⇒ [0, 𝑎𝑍𝑜𝑚 (𝑞))
13: 𝑓 [𝑍 · 𝑔 : (𝑍 + 1) · 𝑔] ⇔ SIMDAdd(𝑓 [𝑍 · 𝑔 : (𝑍 + 1) · 𝑔],

𝑞 [ 𝑛] [𝑍 · 𝑔 : (𝑍 + 1) · 𝑔])
14: end function
15:
16: function AssignCache(𝑊𝑆 , 𝑕𝑆 , 𝑃, 𝑘𝑇 , 𝑙 )
17: if 𝑊𝑆 is zero edge then return
18: if 𝑙 == 𝐿 ↘ log2 𝑉 ↘ 1 then /* Border level */
19: 𝑇𝑀 [𝑃] ⇓ {𝑊𝑆 }; 𝑇𝑇 [𝑃] ⇓ {𝑘𝑇 }; 𝑇 𝑅 [𝑃] ⇓ {𝑕𝑆 }; return
20: else for 𝑛, 𝑍 ⇒ {0, 1}2
21: AssignCache(𝑊𝑆 .𝐿.𝑚 [𝑍] [ 𝑛],𝑕𝑆𝑊𝑆 .𝑖 ,𝑃 + 𝑃 ·𝑉

2𝑃↘𝑄 ,𝑘𝑇 + 2𝑈 𝑍 ,𝑙 ↘ 1)
22: if 𝑙 == 𝐿 ↘ 1 then for 𝑍 ⇒ [0, 𝑎𝑍𝑜𝑚 (𝑇𝑇 ))
23: if not Overlap(𝑇𝑇 [𝑍], 𝑇𝑇 [ 𝑛]), ↖ 𝑛 ⇒ [0, 𝑍) then
24: 𝑇𝑋 [𝑍] ⇔ 𝑇𝑋 [ 𝑛]
25: else 𝑇𝑋 [𝑍] ⇔ 𝑎𝑍𝑜𝑚 (𝑞); 𝑞 ⇓ {{0, · · · , 0}︸⨌⨌⨌⨌⨌⨌︷︷⨌⨌⨌⨌⨌⨌︸

2𝑃

}

26: end function

share the same output bu!er 𝑞 [0]. At step 1→, 𝑉1 and 𝑉2 execute
𝑅𝑋4 ·𝑆 [0 : 𝑔] and 𝑈𝑋5 ·𝑆 [𝑔 : 2𝑔] simultaneously. First, they search
in caches (line 5). Finding no historical results, they directly call the
Run function from Algorithm 1. Upon obtaining the result, 𝑉1 caches
𝑋4 with a pair consisting of𝑋4’s weight product and the start index
of the resulting sub-vector in 𝑉1’s partial output (i.e., {𝑅, 0}). We
only cache the left operand (sub-matrix DD node𝑋4) because the
right operand (𝑔-sized sub-vector in 𝑆 ) is the same for all assigned
multiplication tasks on the same thread. Similarly, 𝑉2 caches 𝑋5
and {𝑈,𝑔} (lines 8-10). At step 2→, 𝑉1 and 𝑉2 execute 𝑑𝑋4 ·𝑆 [0 : 𝑔]
and 𝑒𝑋5 · 𝑆 [𝑔 : 2𝑔] simultaneously. Again, they check if𝑋4 and
𝑋5 are cached, discovering historical results (lines 5-6). 𝑉1 "nds an
𝑔-sized sub-vector in its partial output (stored in bu!er 𝑞 [0]) at
start index 0 with weight 𝑅. It then multiplies this sub-vector by
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Figure 7: DMAV with caching on four threads, illustrated in
the four colors. The input matrix and vector are𝑊 and𝑆 , and
the resulting vector is𝑓 (i.e.,𝑊 ·𝑆 ↑𝑓 ). DD edges without
labels have a weight of one by default.

𝑑/𝑅 using SIMD-enabled scalar multiplication and places it in the
fourth quarter of the 𝑞 [0] (line 7). Likewise, 𝑉2 performs a similar
scalar multiplication. Finally, at step 3→, we sum the bu!ers to form
the "nal result𝑓 using multi-threading and SIMD (lines 11-14).

3.2.3 Computational Cost in DMAV. Based on our observation,
the MAC operation dominates DMAV computation. For example,
within the Run function (Algorithm 1), which accounts for 99.99%
of DMAV’s runtime, the only non-trivial computation is performed
by line 19, which executes a MAC operation. Therefore, we intro-
duce the computational cost model based on the number of MAC
operations.

First, it is necessary to determine the number of MAC operations
in a DMAV. As shown in Figure 8, we use DFS to traverse DD nodes
and a look-up table (MAC count table 𝑠 ) to track MAC operations
for unique nodes, given that identical DD nodes incur the same
number of MAC operations. The number of MAC operations of
each node is the sum of that of its children, and the terminal node
has one MAC operation. For each node, we traverse the outgoing
edges from top to bottom and from left to right. Following this
rule, at step 1→, we go through𝑋1,𝑋2,𝑋3, and arrive at𝑋5.𝑋5
only has one outgoing edge to a terminal node with one MAC (i.e.,
𝑠 (𝑋5) = 1). At step 2→, we proceed to𝑋3’s lower-right outgoing
edge, which also points to𝑋5. Thus,𝑋3 has two MAC operations
(i.e., 𝑠 (𝑋3) = 2𝑠 (𝑋5) = 2). Then, we return to𝑋2, and visit the
upper-right edge pointing to𝑋4. Similarly, we derive that 𝑠 (𝑋6) =
1 and 𝑠 (𝑋4) = 2, at steps 3→ and 4→. The lower outgoing edges
of𝑋2 connect to the previously visited nodes𝑋3 and𝑋4, giving
us 𝑠 (𝑋2) = 2𝑠 (𝑋3) + 2𝑠 (𝑋4) = 8 at step 5→. Finally, at step 6→,
we return to𝑋1, obtaining 𝑠 (𝑋1) = 2𝑠 (𝑋2) = 16. The total MAC
count for this DMAV is 𝑠 (𝑋1) = 16.

Then, we model the computational cost based on the number of
MAC operations. We observe that DMAV’s workload distribution
among threads, with or without caching, is always balanced. There-
fore, the computational cost model evenly divides the number of
MAC operations by 𝑉 threads. Suppose 𝑡1 is the number of MAC
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Figure 8: Counting the number of MAC operations of a
DMAV.

operations for a DMAV without caching, Equation 5 models its
computational cost 𝑢1.

𝑢1 =
𝑡1
𝑉

(5)

For DMAV with caching, we consider three costs. (1) The cost
of scalar multiplication. By identifying 𝑀 cache hits from re-
peated nodes in 𝑇𝑀 (Algorithm 2), each corresponding to a scalar
multiplication of size 2𝐿/𝑉 , we determine that the number of MAC
operations for scalar multiplication is 2𝐿𝑀/𝑉 . If SIMD computes 𝑒
data elements simultaneously, on 𝑉 threads, the cost of scalar multi-
plication is 2𝐿𝑀/(𝑒 · 𝑉2). (2) The cost of summing bu!ers. Sum-
ming 𝑑 bu!ers, each of size 2𝐿 , incurs 2𝐿𝑑 MAC operations. When
using SIMD on 𝑉 threads, the cost of summing bu!ers is 2𝐿𝑑/(𝑒 · 𝑉).
(3) The cost unrelated to caching.We count the MACs unrelated
to caching in DMAV, as in Figure 8, this time avoiding the addition
of the repeated nodes mentioned in (1). Suppose there are 𝑡2 MAC
operations unrelated to caching, the corresponding cost is 𝑡2/𝑉 . In
summary, we model the computational cost 𝑢2, for DMAV with
caching as the following.

𝑢2 =
𝑡2
𝑉

+ 2𝐿

𝑒 · 𝑉 (
𝑀

𝑉
+ 𝑑) (6)

To minimize the total computational cost, we choose DMAV
with caching if𝑢1 > 𝑢2, and without caching if not. To sum up, the
computational cost for a DMAV operation is min{𝑢1,𝑢2}.

3.3 DMAV-Aware Gate-Fusion Algorithm
To further boost FlatDD’s performance on large circuits, we propose
a DMAV-aware gate-fusion algorithm that greedily fuses gates to
reduce the total computational cost of DMAV.

Figure 9 shows the advantage of gate fusion. Consider two quan-
tum gates𝑊1,𝑊2 in DD, there are two approaches to applying them
consecutively to a state vector 𝑆 . (1) Sequential DMAV: Multiply
𝑊1 by 𝑆 to obtain intermediate state𝑓1, and then multiply𝑊2 by
𝑓1 to obtain the "nal state𝑓2, as shown in Figure 9a. (2) Gate
fusion: Apply DD-based matrix-matrix multiplication (DDMM)
to𝑊1 and𝑊2, fusing them into𝑊21, and then multiply𝑊21 by 𝑆
to obtain the "nal state𝑓2, as shown in Figure 9b. For simplicity,
we evaluate two options using Equation 5 to determine which one
has a lower computational cost. In sequential DMAV, the two con-
secutive DMAVs result in a total computational cost of 512/𝑉 . In
contrast, gate fusion performs one DDMM and one DMAV. The
DMAV computational cost is 256/𝑉 . The DDMM calls 12 multiplica-
tions and 4 additions, which is negligible compared to the DMAV
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Figure 9: Computation reduction from gate fusion.
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Figure 10: Gate fusion can result in more computation.

computational cost since each multiplication or addition only con-
structs one DD node. Therefore, gate fusion reduces computation
compared to sequential DMAV.

However, gate fusion does not always reduce computation, as
shown in Figure 10. In Figure 10a, sequential DMAV without gate
fusion incurs a computational cost of 6144/𝑉 . Conversely, in Fig-
ure 10b, gate fusion results in a DMAV computational cost of 8192/𝑉
and 21 DDMM multiplication calls. In this case, sequential DMAV
has a lower computational cost.

To reduce the total computational cost, we fuse two gates only
when the fused gate has a smaller computational cost compared
to sequential DMAV. Accordingly, we introduce our DMAV-aware
gate fusion in Algorithm 3. Algorithm 3 operates on the group of
remaining gates, 𝑣 , after FlatDD conversion. We initialize𝑊𝑌 (the
previous gate matrix) to an identity DD matrix and set its DMAV
computational cost (Section 3.2.3) 𝑢𝑌 to 0 (line 2). Next, we iterate
through𝑣 (line 3). For the 𝑍th gate matrix𝑊𝑂 , we calculate its DMAV
computational cost, 𝑢𝑂 . Then, we multiply𝑊𝑂 by𝑊𝑌 to form𝑊𝑂𝑌 ,
and calculate its DMAV computational cost𝑢𝑂𝑌 (line 4). If𝑢𝑂 +𝑢𝑌 <
𝑢𝑂𝑌 , sequential DMAV is computationally cheaper than gate fusion.
We then add 𝑊𝑌 to the resulting gate group 𝑤 . Before the next
iteration, we assign the 𝑍th gate𝑊𝑂 and its DMAV computational
cost 𝑢𝑂 to the previous gate𝑊𝑌 and its DMAV computational cost
𝑢𝑌 (line 6). If𝑢𝑂 +𝑢𝑌 < 𝑢𝑂𝑌 fails to satisfy, we fuse the current gate
𝑊𝑂 with𝑊𝑌 . Then, we assign the fused gate𝑊𝑂𝑌 and cost𝑢𝑂𝑌 to the
previous gate𝑊𝑌 and cost 𝑢𝑌 (line 8). Finally, we return 𝑤 at line 9.

4 EXPERIMENTAL RESULTS
In this section, we evaluate the performance of FlatDD using
12 commonly used quantum circuits from QASMBench [69], MQT

Algorithm 3 DMAV-aware gate fusion
Input: 𝑣 , group of remaining gates after FlatDD conversion.
Output: 𝑤 , group of gates after gate fusion.
1: function GateFuse(𝑣)
2: 𝑊𝑌 ⇔ 𝑘𝑍𝑍 ; 𝑢𝑌 ⇔ 0
3: for𝑊𝑂 ⇒ 𝑣
4: 𝑢𝑂 ⇔ cost(𝑊𝑂 );𝑊𝑂𝑌 ⇔DDMM(𝑊𝑂 ,𝑊𝑌 );𝑢𝑂𝑌 ⇔ cost(𝑊𝑂𝑌 )
5: if 𝑢𝑂 +𝑢𝑌 < 𝑢𝑂𝑌 then
6: 𝑤 ⇓ {𝑊𝑌 }; 𝑢𝑌 ⇔ 𝑢𝑂 ;𝑊𝑌 ⇔ 𝑊𝑂
7: else
8: 𝑊𝑌 ⇔ 𝑊𝑂𝑌 ; 𝑢𝑌 ⇔ 𝑢𝑂𝑌
9: return 𝑤
10: end function

Bench [88] and Quantum supremacy [7]. These benchmarks span
both regular and irregular structures. First of all, we compare the
runtime and memory performance of FlatDD with two state-of-
the-art QCSs (Section 4.2). Then, we demonstrate the scalability of
FlatDD over increasing numbers of threads (Section 4.3). We then
evaluate the e!ectiveness of our parallel DD-to-array conversion
algorithm (Section 4.4) and DMAV caching technique (Section 4.5).
Lastly, in Section 4.6, we evaluate our DMAV-aware gate-fusion
algorithm on deep circuits with thousands of gates. All the exper-
iments are conducted on a Ubuntu 22.04.2 LTS machine with 64
Intel Xeon Gold 6226R CPUs at 2.9 GHz and 256 GB memory capac-
ity. We compile all programs with optimization $ag -O3 enabled.
All SIMD operations are executed using Intel’s AVX2 [60] vector
instructions. For data with exponential di!erence, we measure the
average in geometric mean.

4.1 Baselines
Given the large number of QCSs, it is not possible to compare
FlatDD with all of them. Instead, we consider two representative
QCSs, DDSIM [99] and Quantum++ [19], for two reasons: (1) Both
DDSIM and Quantum++ are highly optimized and have demonstrated
superior performance over existing QCSs. DDSIM introduces a DD-
based compact representation of gate matrices and state vectors,
as well as an e#cient data structure for handling complex num-
bers [98]. On the other hand, Quantum++ leverages OpenMP [3] to
enable multi-threaded simulation based on Eigen [23] array and
matrix data structures. (2) Both DDSIM and Quantum++ are open-
source [6, 87] and widely used by the community, allowing us to
fairly study and reason their results.

4.2 Overall Performance Comparison
Table 1 compares the overall performance of FlatDD with DDSIM

and Quantum++. In this experiment, we do not incorporate the pro-
posed gate-fusion algorithm but focus on the full-state simulation
workload itself. We run FlatDD and Quantum++ using 16 threads
and run DDSIM using one thread as DDSIM does not support multi-
threading. For all FlatDD runs, we set 𝑏 = 0.9 and 𝑐 = 2, as these val-
ues are determined to be e!ective across multiple quantum circuits.
Unless otherwise speci"ed, all runtime and memory are measured
in seconds (s) and megabytes (MB). We terminate the runs that take
longer than 24 hours. We measure memory usage by recording the
maximum resident set size (RSS) of our program using /bin/time.
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On average, FlatDD is 34.81→ and 17.31→ faster over DDSIM and
Quantum++ on all circuits. In terms of memory usage, FlatDD is
1.70→ and 1.93→ less than DDSIM and Quantum++. DDSIM demon-
strates exceptional performance on regular circuits such as Adder
and GHZ state. For instance, the circuit Adder has a very reg-
ular distribution of state amplitudes throughout the simulation;
DDSIM takes less than 1 s while Quantum++ takes 1793.67 s. How-
ever, when the regularity does not appear frequently, such as DNN,
VQE, and Quantum supremacy, DDSIM becomes signi"cantly slower
than FlatDD and Quantum++. For example, DDSIM is 13.66→ and
12.64→ slower than FlatDD and Quantum++ when simulating the
16-qubit DNN.

Although DDSIM and Quantum++ have their own strength in sim-
ulating certain circuits, FlatDD demonstrates a consistent perfor-
mance advantage on all. For highly regular circuits, such as Adder,
and GHZ state, where DDSIM performs extremely well, FlatDD also
achieves fast runtime (< 1 s). This is because FlatDD does not
switch from DDSIM to DMAV during the simulation. The only rea-
son that FlatDD can be slower than DDSIM, such as simulating the
23-qubit GHZ state, is the overhead of DD size calculation and con-
version timing checking (Section 3.1.1). For irregular circuits, such
as 20-qubit DNN and quantum supremacy circuit, FlatDD can still
take advantage of DD-based state vector to a certain extent before
the state vector turns irregular. After this turning point, as observed
from Figure 11a and Figure 11b, the runtime of DDSIM will signif-
icantly increase whereas FlatDD cleverly converts to DMAV and
stays stable. Additionally, after the turning point, FlatDD is faster
than Quantum++ primarily due to the e#cient indexing pattern of
our DMAV (see Section 3.2).

The memory usage of FlatDD is comparable to DDSIM and
Quantum++. When the circuit is small, Quantum++ consumes the
smallest memory compared with FlatDD and DDSIM, both of which
require additional data storage for DDs. For example, when simu-
lating the 16-qubit DNN, Quantum++ needs only 8.2 MB, whereas
FlatDD and DDSIM need 32.26 MB and 69.6 MB, respectively. On
the other hand, when the circuit is large, Quantum++ consumes
signi"cantly higher memory than FlatDD and DDSIM. For instance,
when simulating the 25-qubit KNN, Quantum++ needs 1577.2 MB,
while FlatDD and DDSIM only need 1078.78 MB and 388.1 MB, re-
spectively. If the state vector is highly regular (e.g., Adder, GHZ
state), FlatDD and DDSIM have similar memory usage, as FlatDD
does not switch from DDSIM to DMAV. However, if the state vector
contains high irregularity (e.g., DNN, VQE, Quantum supremacy),
FlatDD has smallermemory usage than DDSIM because it will switch
from DDSIM to DMAV to reduce DD overheads. Lastly, if the state
vector is irregular in large circuits, FlatDD consumes smaller mem-
ory than both DDSIM and Quantum++. For example, when simulat-
ing the 26-qubit quantum supremacy circuit, FlatDD consumes
2132.48 MB memory, while DDSIM and Quantum++ consume 16799.4
and 3156.58 MB memory.

4.3 Scalability of FlatDD
We demonstrate the scalability of FlatDD over increasing num-
bers of threads. Figure 12 illustrates the runtime of FlatDD and
Quantum++ at di!erent numbers of threads on two circuits (Quan-
tum supremacy and KNN). When the number of threads increases,
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Figure 11: Runtime comparison among FlatDD, DDSIM, and
Quantum++ per gate.
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Figure 12: Runtime scalability of FlatDD and Quantum++ under
di!erent numbers of threads.

FlatDD can complete the simulation faster, as illustrated in Fig-
ure 12a. For instance, at eight threads, FlatDD is 7.26→ faster than
one thread on KNN. FlatDD’s performance saturates at about 16
threads. Likewise, in Figure 12b, Quantum++ shows a similar trend.
4.4 Evaluation of Parallel DD-to-Array

Conversion Algorithm
Figure 13 compares the e#ciency of FlatDD’s parallel DD-to-array
conversion algorithm with DDSIM on 10 quantum circuits using
16 threads. In this experiment, we integrate DDSIM’s DD-to-array
algorithm into FlatDD. Figure 13a compares the conversion time,
and Figure 13b compares the cost of conversion in terms of its
percentage in the total simulation time.

As shown in Figure 13a, FlatDD outperforms DDSIM in convert-
ing DDs to arrays on all circuits. For instance, our DD-to-array
algorithm is 61.86→ faster than DDSIM on KNN of 25 qubits; on aver-
age, FlatDD is 22.34→ faster, which is attributed to multi-threading
and SIMD parallelism. In terms of conversion cost, as shown in Fig-
ure 13b, FlatDD’s DD-to-array algorithm takes only about 0.01–7%
of the total runtime, while DDSIM can take up to 83.2% (Swap test
of 25 qubits). This result highlights the e#ciency of our parallel
DD-to-array conversion algorithm.
4.5 Evaluation of DMAV Caching Technique
Figure 14 demonstrates the e#ciency of the proposed DMAV
caching technique in terms of reduced computational cost and
speed-up gain at di!erent numbers of threads. We plot the results
in a region (marked in blue) across the six largest quantum circuits,
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Table 1: Comparison of simulation runtime and memory among FlatDD, DDSIM, and Quantum++ on 12 widely used circuits that
exhibit di!erent regularity structures.

Circuits FlatDD (ours) DDSIM [99] Quantum++ [19]
Name Qubits (𝐿) Gates Runtime Memory Runtime Speed-up Memory Runtime Speed-up Memory

DNN
16 2032 4.12 32.26 56.27 13.66→ 69.6 4.45 1.08→ 8.2
20 6214 73.06 75.26 21847.81 299.02→ 504.832 249.62 3.42→ 61.34
25 9644 2283.02 1089.54 > 24 h > 37.84→ ⇐ 4249.6 17527.8 7.68→ 1586.54

Adder 28 117 0.037 30.21 0.00167 0.045→ 28.2 1793.67 48477.57→ 12584.0
GHZ state 23 46 0.028 30.21 0.004 0.14→ 29.7 12.388 442.43→ 397.93

VQE 16 95 0.178 31.232 79.24 445.92→ 50.2 0.20 1.12→ 7.8

KNN 25 39 4.75 1078.78 480.72 101.20→ 388.1 135.669 28.56→ 1577.2
31 48 500.22 67136.51 > 24 h > 172.72→ ⇐ 2518.0 13123.5 26.23→ 100657.37

Swap test 25 39 4.84 1077.76 1649.81 340.94→ 649.7 136.995 28.31→ 1577.6

Quantum
supremacy

20 4500 101.38 65.54 67814.99 668.92→ 700.928 185.207 1.83→ 61.2
24 5560 1050.07 558.59 > 24 h > 82.28→ ⇐ 5794.77 5034.7 4.80→ 799.23
26 5990 3980.07 2132.48 > 24 h > 21.71→ ⇐ 16799.4 22632.7 5.69→ 3156.58

Geometric mean 17.08 296.38 > 594.53 > 34.81→ ⇐ 504.52 295.62 17.31→ 571.16

Table 2: Comparison of simulation runtime and computational cost among FlatDD with DMAV-aware gate fusion (ours),
FlatDD without gate fusion, and FlatDD with k-operations [100] on six deep circuits (> 1000 gates). Red. is the reduction in
computational cost.

Circuits
FlatDD with

DMAV-aware gate
fusion (ours)

FlatDD without
gate fusion

FlatDD with
k-operations [100]

Name 𝐿 Gates Runtime Cost Runtime Speed-up Cost Red. Runtime Speed-up Cost Red.

DNN
16 2032 0.32 5.4 → 105 4.12 12.81→ 8.2 → 106 15.4→ 1.27 3.96→ 3.7 → 106 6.85→
20 6214 5.09 2.7 → 107 73.06 14.36→ 2.4 → 108 8.56→ 25.858 5.1→ 1.1 → 108 3.89→
25 9644 126.48 1.2 → 109 2283.02 18.0→ 1.7 → 1010 13.4→ 688.396 5.44→ 5.3 → 109 4.32→

Quantum
supremacy

20 4500 7.68 4.7 → 107 101.38 13.2→ 3.8 → 108 8.04→ 36.99 4.82→ 2.9 → 108 6.19→
24 5560 90.90 9.0 → 108 1050.07 11.55→ 7.4 → 109 8.26→ 581.64 6.40→ 5.7 → 109 6.37→
26 5990 405.04 3.9 → 109 3980.07 9.83→ 3.2 → 1010 8.21→ 2568.12 6.34→ 2.6 → 1010 6.73→

Geometric mean 19.70 1.2 → 108 257.45 13.1→ 1.2 → 109 9.94→ 103.83 5.27→ 6.7 → 108 5.59→

DNN (𝐿 = 16, 20, 25) and quantum supremacy (𝐿 = 20, 24, 26), with
a line showing the average. As shown in Figure 14a and Figure 14b,
our caching technique can reduce the computational cost as the
number of threads increases. For instance, with 16 threads, we can
achieve 13.53% reduction. A similar trend can be observed in the
speed-up plot (Figure 14b). For example, our caching technique
contributes to an average of 16.47% speed-up at 16 threads where
the performance saturates (see Figure 12). This result highlights
the e!ectiveness of our caching technique under di!erent numbers
of threads.
4.6 Evaluation of DMAV-Aware Gate Fusion
In this experiment, we evaluate the performance advantage of our
gate-fusion algorithm by running FlatDD on the six deepest circuits
(DNN and supremacy) with and without gate fusion. We compare
the result with k-operations [100], a particularly e!ective gate-
fusion algorithm designed for DD-based simulators. As shown in
Table 2, our gate-fusion algorithm achieves 13.1→ and 5.27→ speed-
up in terms of geometric mean when compared with FlatDD with-
out gate fusion and k-operations, respectively. Our gate-fusion
algorithm also reduces computational cost by 9.94→ and 5.59→when
compared with FlatDD without gate fusion and k-operations, re-
spectively. This is because our gate-fusion algorithm always fuses
a quantum gate that reduces the computational cost. The result in

Table 2 shows the e!ectiveness of our DMAV-aware gate-fusion
algorithm.
5 CONCLUSION
In this paper, we have introduced FlatDD, a parallel quantum circuit
simulator that combines the strengths of DD-based and array-based
simulators. Evaluated on commonly used quantum circuits, FlatDD
has demonstrated 34.81→ speed-up and 1.93→ memory reduction
compared to state-of-the-art simulators. Inspired by our success of
GPU-accelerated computing [12–18, 24–33, 38–58, 61, 62, 64–67, 70–
80, 83, 84, 92, 93, 96], our future work will enhance the simulation
performance using GPU.
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Figure 13: Comparison between FlatDD’s parallel DD-to-array
algorithm and DDSIM’s DD-to-array algorithm.
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Figure 14: Performance comparison between DMAV with
caching and DMAV without caching over di!erent numbers
of threads on various quantum circuits.
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