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67 Abstract. Radio-echo sounding (RES) has revealed an internal architecture within Antarctica’s ice sheets that
68 records their depositional, deformational and melting histories. Crucially, spatially-widespread RES-imaged
69 internal-reflecting horizons, tied to ice-core age-depth profiles, can be treated as isochrones that record the
70  age-depth structure across the Antarctic ice sheets. These enable the reconstruction of past climate and ice-
71 dynamical processes on large scales, which are complementary to but more spatially-extensive than
72  commonly used proxy records across Antarctica. We review progress towards building a pan-Antarctic age-
73  depth model from these data by first introducing the relevant RES datasets that have been acquired across
74  Antarctica over the last six decades (focussing specifically on those that detected internal-reflecting horizons),
75 and outlining the processing steps typically undertaken to visualise, trace and date (by intersection with ice
76  cores, or modelling) the RES-imaged isochrones. We summarise the scientific applications to which
77  Antarctica’s internal architecture has been applied to date and present a pathway to expanding Antarctic
78 radiostratigraphy across the continent to provide a benchmark for a wider range of investigations: (1)
79 Identification of optimal sites for retrieving new ice-core palaeoclimate records targeting different periods;
80  (2) Reconstruction of surface mass balance on millennial or historical timescales; (3) Estimates of basal
81 melting and geothermal heat flux from radiostratigraphy and comprehensively mapping basal-ice units, to
82  complementinferences from other geophysical and geological methods; (4) Advancing knowledge of volcanic
83  activity and fallout across Antarctica; (5) The refinement of numerical models that leverage radiostratigraphy
84  totune time-varying accumulation, basal melting and ice flow, firstly to reconstruct past behaviour, and then

85 to reduce uncertainties in projecting future ice-sheet behaviour.
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86 1 Introduction

87  Throughout the Quaternary (2.58 Ma to present), Antarctica’s ice cover has waxed and waned, inducing
88  concomitant rises and falls in global sea level on the order of several tens of metres (e.g., Drewry, 1983;
89 Pollard and DeConto, 2009; Dutton et al., 2015). It is critical to understand the rates and drivers of these past
90  oscillations in order to contextualise current observations of persistent and accelerating losses from the
91 contemporary Antarctic ice sheets (e.g., Fox-Kemper et al., 2021; Otosaka et al., 2023) and thereby project
92  as accurately as possible the rates at which future global sea-level rise fuelled by ice melt will occur (e.g.,
93  Scambos et al., 2017; Oppenheimer et al., 2019). The evidence for past Antarctic ice-sheet fluctuations has
94 been derived predominantly from sampling sediments deposited offshore around the continent (Escutia et
95 al., 2009; Naish et al., 2009; Cook et al., 2013; Bentley et al., 2014; Gulick et al., 2017; Hillenbrand et al., 2017),
96 dating the exposure history of onshore bedrock and moraine boulders (Brook and Kurz, 1993; Mackintosh et
97  al., 2014; Hillebrand et al., 2021), and by analysing the ice itself recovered from ice-core sites (e.g., EPICA
98 Community Members, 2004; Jouzel et al., 2007; Higgins et al., 2015; WAIS Divide Project Members, 2015;
99 Dome Fuji Ice Core Project Members, 2017; Yan et al., 2021) (see Brook and Buizert, 2018 for an overview).
100  Together, these form the palaeoclimate records that underpin numerical-modelling reconstructions of past
101 and present ice-sheet extents and inform projections of how these may evolve into the future and affect sea-
102 level change (e.g., Gasson et al., 2016; Golledge et al., 2019; DeConto et al., 2021; Pittard et al., 2022).
103 Recovery of further sediment and ice cores around Antarctica to refine these records and projections remains
104  a scientific imperative — and yet these records are intrinsically spatially limited. Radio-echo sounding across
105  Antarctica complements these records by providing spatially continuous data that record past and present

106 ice conditions and, by extension, past and present climate conditions, across the ice sheets.

107 Radio-echo sounding (RES) describes the investigation of the subsurface of ice sheets using electromagnetic
108 waves, and has been conducted from both airborne and ground-based platforms across the Antarctic ice
109 sheets for over 60 years (see reviews by Dowdeswell and Evans, 2004; Bingham and Siegert, 2007; Allen,
110  2008; Schroeder et al., 2020). Primarily deployed for mapping the ice-sheet bed and thereby measuring ice
111 thickness and thus ice volume, the majority of RES surveys have also imaged numerous englacial features,
112 predominantly internal-reflection horizons (a.k.a. internal or englacial layers), crevasses and rheologically-
113 distinct “basal units” of ice that occur between the more obvious reflections of the ice surface and bed (Fig.
114 1). For this review, we collectively term all of the Antarctic ice sheets’ RES-imaged englacial features its
115  internal architecture. We will demonstrate that although great progress has already been made in using some
116  of this resource to elucidate ice and climate history, Antarctica’s internal architecture has yet to be exploited

117  toits full potential in refining our understanding of past, present and future ice-sheet behaviour.

118 In Greenland, a comprehensive archive of internal architecture has already been assembled (see MacGregor

119 et al., 2015a), facilitating the ice-sheet-wide reconstruction of past accumulation and dynamics, to improve
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Figure 1. Schematic illustration of Antarctica’s internal architecture and the key processes governing its
structure. Internal-reflection horizons - the ice sheet’s “radiostratigraphy” - are represented by grey lines
between the surface and bed.

120

121 past and future sea-level estimates (MacGregor et al., 2016; Born and Robinson, 2021). However, several
122 major issues have confounded parallel progress in capturing and applying internal architecture across

123 Antarctica, including:
124 1) The Antarctic ice sheets together cover eight times the area of the Greenland Ice Sheet.

125  2)RESdata have been collected, processed and archived by multiple international groups across the Antarctic

126 ice sheets, and hence are not available in a standardised form across Antarctica.

127  3) A comprehensive suite of strategies for using internal architecture in numerical ice-sheet models has not

128 been developed.

129 4) Much internal architecture in RES data is highly challenging to identify and map with automated methods.

130  To address these challenges and work collectively towards consistently capturing and utilising Antarctica’s
131 internal architecture, an international community called AntArchitecture was formed in 2018. This
132 community, coordinated via the Scientific Committee for Antarctic Research (SCAR), aspires to the ultimate
133  scientific aim of using Antarctica’s internal architecture to deconvolve its ice sheets’ histories and thereby
134  facilitate improved projections of their future behaviour in the face of global climate warming. A first step in
135  this process, and one of the aims of this review, collectively written by the AntArchitecture community, is to

136  compile the international community’s understanding of the present state of the field in terms of available

6
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137 RES data across the Antarctic ice sheets and their potential applications. Additionally, we seek here to relay
138  community aspirations to address the aforementioned challenges and position Antarctica’s internal

139 architecture as a valuable resource for improving our understanding of its ice/climate interactions.

140  We begin with a brief overview of what gives rise to internal architecture in ice, especially the internal-
141 reflection horizons (hereafter IRHs) that are measured by RES (Sect. 2). We continue by summarising the key
142 RES datasets acquired across Antarctica that image internal architecture, to contextualise in a single place
143  the type and quality of information recorded by each institute and survey in the past six decades (Sect. 3). In
144  Sect. 4, we turn to how RES data have been, and can be, processed to optimise the extraction of internal
145  architecture and its visualisation; discuss the common methods currently used to characterise and date IRHs;
146 and finally build an inventory of existing IRH datasets. In Sect. 5, we review how internal architecture has
147 been used to reconcile ice-core records, calculate changes to past surface mass balance, explore basal
148 melting in association with subglacial lakes and areas of enhanced geothermal heat flux, and investigate ice-
149  sheet dynamics and other glaciological questions; and outline how the internal architecture has begun to be
150  used in in numerical-modelling applications to date. In Sect. 6, we outline a recommended pathway to
151 building a pan-Antarctic database of Antarctica’s internal architecture, and discuss key science deliverables

152  that can be facilitated by this activity.

153 2 Internal architecture in ice sheets

154  The most common way in which internal architecture is viewed and assessed is as radargrams, which are
155  two-dimensional profiles of echo power arrayed in the along-track direction (e.g., Fig. 2). Antarctic
156 radargrams commonly display clear radiostratigraphy, the collective term for the multiple sub-parallel and
157 closely-spaced IRHs that are seen in radargrams and often, although do not always, broadly follow the shape
158 of the ice-bed interface (e.g., Fig. 2). IRHs occur as radio-waves propagate down through the ice column and
159 reflect off any boundary where there is a contrast in the dielectric properties within the ice. The propagation
160  of radio-waves through snow, firn and ice is controlled by the complex relative permittivities of these
161 materials, which are functions of density, electrical conductivity, and/or the development of ice-fabric
162 anisotropy where ice crystals align into a preferential orientation as a result of large englacial stress. Where
163  contrasts in any of these properties are sufficiently strong and sharp, the incident energy will partition and a

164 small fraction of it will be reflected back to the RES receiver at or above the ice surface.

165 In the upper and middle part of the ice column, radiostratigraphy typically arises from (a) density variations,
166  as snow compacts into ice (as explained in pioneering work by Robin et al. (1969) and Clough (1977)) and (b)
167  variations in electrical conductivity, as volcanic aerosols present in the air during snow deposition are
168 incorporated into the firn (Hammer, 1980; Millar, 1981; Millar, 1982). These density- and electrical-

169  conductivity-derived IRHs are related to snow and ice layers of a specific age buried under subsequent snow

7
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Figure 2. Radargrams from Institute Ice Stream, West Antarctica, obtained by the British Antarctic Survey
PASIN RES system in (a) pulse (shallow-sounding) and (b) chirp (deep-sounding) radar modes (Frémand et
al., 2022), vertically differentiated to accentuate fine detail. Symbols highlight three IRHs found widely
across West Antarctica in airborne radar data. The bed reflection (black-white interface) is partially visible
in (a) and clearly visible in (b). Figure modified from Ashmore et al. (2020).

170

171 accumulation, and thus may be considered isochronous (Hempel et al., 2000; Eisen et al., 2006). Such RES-
172  imaged isochrones may often represent composites of multiple real horizons in the ice, and their thickness
173  is dependent on RES-system resolution (Harrison, 1973; Winter et al., 2017). They are often traceable for
174  considerable distances on RES profiles: some IRHs in the Antarctic and Greenland ice sheets are continuous
175 for hundreds or even thousands of kilometres (e.g., MacGregor et al., 2015a; Winter et al., 2019a; Ashmore
176 et al.,, 2020). For the focus of this review, isochronous reflections arising from density and electrical
177  conductivity are of significant interest, and IRHs that can be dated at ice cores and traced continuously over
178  long distances to form a “dated radiostratigraphy” are particularly valuable (as explored in-depth in Sect. 4
179 and 5). There are, however, some cases, especially in the lower part of the ice column, where diachronous
180 IRHs (i.e. IRHs that cannot be treated as single time markers) may be visualised in radargrams. The most
181 common such examples are IRHs that are thought to manifest sudden changes in ice-crystal-orientation
182  fabric that cause anisotropic radio-wave propagation, or cold-warm ice transitions where the pore space on
183 the warm side is filled with meltwater instead of air (Harrison, 1973; Fujita et al., 1999; Eisen et al., 2007).
184  Over ice shelves, pervasive IRHs can mark the boundary between atmospherically-derived (meteoric) and

185  subglacially/submarine-accreted (marine) ice (Holland et al., 2009; Das et al., 2020).

186  The specular behaviour of IRHs also positions them as ideal targets for repeated observations of vertical

187  velocity over time, directly tracking the deformation of the ice sheet, via static phase-sensitive repeat
8
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188 measurements at a point (autonomous phase-sensitive radio-echo sounder, or ApRES; Nicholls et al., 2015)
189  or from airborne re-flights of transects with coherent RES systems (Castelletti et al., 2021). Although these
190 methods have been practiced in recent field campaigns (e.g., Hills et al., 2022; Chung et al., 2023; Fudge et
191 al., 2023), we do not discuss this aspect of radiostratigraphy further in this review, beyond noting that
192  establishing the distribution of appropriate IRHs could be a valuable component in expedition planning. A
193 review of static techniques is found in Kingslake et al. (2014), while repeat-pass airborne interferometry of

194 IRH is an active field of research.

195  While the imaging and analysis of radiostratigraphy and its application to assessing ice-sheet stability forms
196  the main focus of this paper, other significant features of internal architecture also convey information that
197 can be used to help understand current and past ice-sheet processes (as depicted in Fig. 1). These include
198 basal units which exhibit different dielectric properties to the surrounding ice and may result from ice-folding
199  due to contrasts in material properties, to accretion, melting due to high rates of geothermal heat flux or
200  overburden pressure from the ice above, or freeze-on processes taking place at the base of the ice sheet (Bell
201 et al., 2011; Bell et al., 2014; Bons et al., 2016; Leysinger Vieli et al., 2018; Wrona et al., 2018; Ross et al.,
202  2020; Franke et al., 2023). Additionally, buried near-surface and basal crevassing imaged by RES systems may
203 be indicative of past grounding-line evolution or ice-stream stagnation events (Retzlaff et al., 1993; Matsuoka
204 et al., 2009; Catania et al., 2010; Kingslake et al., 2018; Wearing and Kingslake, 2019). We elaborate further

205 onthese other significant features of internal architecture in Sect. 5.5.

206 3 Radio-echo sounding datasets for characterising Antarctica’s internal architecture

207  Antarctic ice-penetrating RES data have been collected in a series of regional surveys for over six decades. A
208 broad overview of the history can be gained from the periodic release of maps of subglacial topography, the
209  first by Drewry (1975) and Drewry (1983; Antarctica Glaciological and Geophysical Folio Sheet 9), and then
210  through the Bedmap series, now in its third iteration (Frémand et al., 2023; their Fig. 1). However, those
211 maps outline only where RES data have been used to pick an echo at the ice bed, and crucially do not provide
212 any information on whether the constituent surveys also captured or recorded any information on internal
213 architecture. Therefore, we review here specifically which of the RES datasets acquired over Antarctica do

214 contain, or are likely to contain, useable internal architecture.

215  The most relevant datasets for characterising internal architecture across Antarctica derive from airborne
216 RES surveys, as they are the most spatially extensive (extending over thousands of kilometres; Fig. 3), typically
217  deploy more advanced and more powerful sounders relative to most contemporaneous ground-based
218  systems, and now commonly employ state-of-the-art processing methods. These qualities favour the
219  detection of multiple IRHs over wide-ranging regions, resolving IRHs at higher resolution and to greater

220  depths in the ice sheet. Accordingly, we focus mainly on airborne RES surveys below, in Sect. 3.1 to 3.8

9
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221 progressing chronologically by order of first Antarctic operations by each main airborne provider, and then
222  in Sect. 3.9 outlining briefly some additional airborne RES datasets acquired by other groups since airborne
223  surveying began in the 1960s. Our focus in this review, and hence throughout Sect. 3, is on “deep” RES
224  datasets, i.e. those that sound the full ice column to several kilometres’ depth. Also acquired across many
225 regions of Antarctica are several additional datasets of “shallow” RES - i.e. that image IRHs in finer detail
226  down to a few 100 m below the ice surface — which provide complementary resources for work typically
227  focussed on ice-climate interactions during more recent periods (i.e., the past few hundred years; e.g.,
228 Medley et al., 2014). To give shallow RES data and applications equal attention to their deeper counterparts
229 throughout this review would have made the paper unwieldy, but shallow IRHs imaged in RES data certainly
230 represent another hugely important and rich resource for palaeoclimate modelling and we return to this in

231 Sect. 6.2.3 when laying out future scientific aspirations.

232  Complementing the wide-ranging information acquired by airborne RES, several groups have acquired RES
233  datafrom vehicles driven along the snow surface. Ground-based RES (described as ground-penetrating radar,
234  GPR, in some glaciological literature) has typically been deployed to conduct dense surveys around sites of
235 particular glaciological and geophysical interest, but long exploratory traverses of several hundreds of
236 kilometres have also been undertaken. Ground-based RES surveys, usually operated with lower frequencies,
237 benefit from direct coupling to the ice (or snow/firn) surface, so are often particularly effective at mapping
238 local radiostratigraphy at fine vertical resolution or for deciphering the processes that influence the larger-
239  scale radiostratigraphy. Perhaps most notably for the purposes of building a pan-Antarctic age-depth model
240  are those ground-based surveys that can link between two or more large regions, and so in Sect. 3.10 we
241 outline where such far-ranging surveys have occurred. In parallel with the approach described for airborne
242 RES data above, here we introduce only the ground-based RES datasets that penetrate through the full ice
243  thickness.

244  Two important considerations to introduce before we proceed with introducing where RES data have been
245  obtained over Antarctica are whether the data were acquired digitally and/or coherently. While the majority
246  of the datasets discussed here were recorded digitally, RES data acquired before the 1990s were typically
247 recorded onto analogue tape recorders or film. Very few of these analogue RES datasets have been digitised,
248  with Schroeder et al. (2019) being a notable exception that has made automated digital interpretation of the
249  data possible and greatly increased their value for modern analyses. (Karlsson et al. (2024) provides an
250  equivalent legacy dataset for Greenland.) The use of pre-1990s RES datasets is also challenged by navigational
251 uncertainties occasioned by their acquisition from before digital navigation systems supported by Global
252 Navigation Satellite System (GNSS) were fully integrated into survey platforms. By their nature, the analogue
253  datasets were acquired incoherently, meaning that the RES systems only recorded signal amplitude and not
254 phase. Until the 2000s, when most airborne RES systems were equipped with GNSS and acquiring data

255  digitally, most RES systems remained incoherent. Despite this limitation, such systems have successfully
10
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256  imaged internal architecture, and indeed many ground-based RES systems presently deployed in Antarctica
257 remain incoherent. The advantage of incoherent ground-based systems is the relative simplicity of operating
258 and maintaining such RES systems in challenging field conditions. However, with improvements in technology
259  through the late 1990s/early 2000s, all of the airborne RES operators gradually transitioned to operating
260  coherent RES systems that detect both returned power and phase, permitting synthetic aperture radar (SAR)
261 processing of the data (see Sect. 4). This has been crucial for imaging finer details such as low-amplitude
262  englacial reflections lower in the ice column and across complex terrain that previously was shrouded by
263 scattering and frequently characterised as echo-free (Héliére et al., 2007; Peters et al., 2007). The overall
264 progression of RES systems from analogue to digital, from not having digital navigation to navigating with
265 high-precision GNSS, and from incoherent to coherent RES systems, is depicted in Fig. 3, and introduced in

266 further selected details below.
267 3.1 Scott Polar Research Institute / National Science Foundation / Technical University of Denmark

268 From the mid-1960s the UK-based Scott Polar Research Institute (SPRI) began airborne RES surveying across
269 parts of Antarctica, initially supported logistically by a combination of the British Antarctic Survey (BAS) and
270  the USA’s National Science Foundation (NSF) in reconnaissance flights in the Antarctic Peninsula, and out of
271 McMurdo and South Pole stations (Swithinbank, 1969; Evans and Smith, 1970; Drewry, 2023). From 1971,
272 engineers from the Technical University of Denmark (DTU) added antennas designed to operate at 60 MHz
273 centre frequency for improved reflection of IRHs (Gudmandsen et al., 1975) and thus commenced the earliest
274  extensive airborne RES campaigns across Antarctica which continued throughout the 1970s (Turchetti et al.,
275  2008). The SPRI-NSF-DTU surveys profiled >400,000 km across nearly half of the continent, contributing much
276  of the first iteration of Bedmap (Lythe et al., 2001) across West Antarctica and over East Antarctica between
277 Wilkes Land, the South Pole and Domes A and C (Fig. 3b). The clarity of IRHs in the 1970s SPRI-NSF-DTU
278 datasets rivals that sounded in many modern RES surveys, but use of the data is challenging because (1) they
279  were recorded onto 35-mm optical film and (2) navigation techniques before the use of GNSS were less
280 precise, leading to several kilometres of positional uncertainties (Schroeder et al., 2019). In the early 2000s,
281 many of the films were scanned as non-georectified digital images, from which a first archive of
282 radiostratigraphy across West Antarctica was constructed (Siegert et al., 2005). This seeded many early
283  applications of radiostratigraphy to glaciological problems across both ice sheets (e.g., Hodgkins et al., 2000;
284  Siegert and Hodgkins, 2000; Rippin et al., 2003b; Leysinger Vieli et al., 2004; Siegert and Payne, 2004; Siegert
285 et al., 2004; Bingham et al., 2007; Leysinger Vieli et al., 2011). All those studies acknowledged the inherent
286 limitations of using analogue data with low positional accuracy. Recently, the SPRI-NSF-DTU data have been
287 revived by a new finer-resolution digitisation and distribution programme (Schroeder et al., 2019; Schroeder
288 et al.,, 2022), which has substantially improved the visibility and accessibility of this wide-ranging

289 radiostratigraphy. Navigational uncertainties remain, but the radiometric digitisation process offers the

11
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Figure 3. (a) Reference map of main Antarctic locations mentioned in this review. (b) to (j) Airborne RES coverage by
data provider as discussed through Sect 3.1 to 3.9. Each legend outlines basic details of the provider's RES system
by system-name, typical centre frequency, whether the system was incoherent (inc.) or coherent (coh.), whether the
acquisition was analogue (an.) or digital (dig.), whether flight navigation used GNSS (assumed not for data collection
before 1990), and the date ranges over which a system was used. (k) Coverage of long-range ground-based RES data
across Antarctica with potential for extraction of deep internal-reflecting horizons. (1) Combined coverage of all digital
RES datasets across Antarctica with potential for contributing to AntArchitecture.
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291 prospect of using crossovers with more modern datasets to reconstruct the navigation with improved

292  accuracy (Teisberg and Schroeder, 2023).
293 3.2 Soviet / Russian Antarctic Expedition

294  Airborne RES surveying of Antarctica coordinated by the Soviet (later Russian) Antarctic Expedition began in
295  the mid-1960s. Surveys undertaken with a 60 MHz system, designed primarily to sound the bed but also
296  capable of imaging IRHs, were conducted between 1967 and 2014, after which all data acquisition was
297 conducted with a new 130 MHz RES system (Popov, 2020). Throughout the 1980s, systematic surveying was
298 conducted across large swathes of East Antarctica, extending across Enderby Land and to Vostok Station and
299 Domes A and F (Popov, 2020). For the early decades of these RES surveys, as for the SPRI-NSF-DTU surveys,
300 the data were recorded onto film and have a spatial accuracy of several kilometres due to not benefitting
301 from GNSS navigation; however, they likely contain a rich resource of radiostratigraphy which could be
302 particularly important because a number of these surveys span approximately one-fifth of East Antarctica
303  thatis otherwise mostly unsurveyed (compare Fig. 3c and 3I). From the 1990s onwards, Russian airborne RES
304  surveying continued systematically around coastal East Antarctica between ~20°E and 95°E, generally
305 extending at most 500 km inland to 75°S (Fig. 3c; Popov, 2020; Popov, 2022). A key development for the
306 ready recovery and future utilisation of radiostratigraphy from these datasets was the switch from analogue

307  to digital data acquisition that took place in the early 2000s.
308 3.3 British Antarctic Survey

309  The British Antarctic Survey (BAS) has performed large-scale airborne RES surveys of Antarctica since the
310 1960s. Until the late 1970s, before which BAS field logistics were run centrally but BAS science was led out
311 of university research groups, the RES system-development and data analysis were the responsibility of SPRI,
312 and the RES systems that were deployed were as described in Sect. 3.1. As BAS became more autonomous
313  from the mid-1970s it transitioned to developing and running its own in-house RES systems, which
314 progressed in the early 2000s from incoherent to coherent systems (Robin et al., 1977; Corr et al., 2007;
315 Frémand et al., 2022). Prior to the early 2000s, BAS surveys focused on the Antarctic Peninsula and Filchner-
316 Ronne Ice Shelf and data were recorded only in analogue form (Fig. 3d). From 2004 onwards, BAS transitioned
317 to digital data acquisition (Rippin et al., 2003a; Ferraccioli et al., 2005) by developing the 150 MHz, higher-
318 power, coherent Polarimetric Radar Airborne Science Instrument (PASIN; Corr et al., 2007; Héliére et al., 2007;
319 Frémand et al., 2022). PASIN was upgraded in the mid-2010s to enable the acquisition of swaths (i.e. wide
320  strips) of RES data to map the ice-sheet bed (Arenas-Pingarrén et al., 2023). PASIN transmits two waveforms,
321 a narrow pulse (0.1 ps) for detecting shallow radiostratigraphy in the upper 2 km of the ice column, and a
322 deep-sounding chirp (4 us) for detecting deeper radiostratigraphy and the bed (see Fig. 2 for examples of
323 each). It has been deployed widely across Antarctica (Fig. 3d) and has detected radiostratigraphy across both

324 West and East Antarctica (Karlsson et al., 2009; Karlsson et al., 2014; Bingham et al., 2015; Winter et al., 2015;
13
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325  Ashmore et al., 2020; Ross et al., 2020; Bodart et al., 2021; Bodart et al., 2023; Sanderson et al., 2023).
326 Recently, >450,000 km of PASIN radargrams acquired between 2004 and 2020 were made accessible in open-

327  access format (Frémand et al., 2022).
328 3.4 University of Texas Institute for Geophysics

329  The USA-based University of Texas Institute of Geophysics (UTIG) has conducted airborne RES surveys of
330  Antarctica since the early 1990s, using several generations of systems of increasing sophistication, all with a
331 centre frequency of 60 MHz (Young et al., 2016). Their earliest surveys, principally of West Antarctica, used
332 adapted versions of the system used for the SPRI-NSF-DTU surveys and were recorded digitally but
333  incoherently (Blankenship et al., 2001; Carter et al., 2007). In the early 2000s, UTIG integrated a coherent
334 RES system (Moussessian et al., 2000) with the DTU radio-frequency hardware to allow high-power coherent
335 recording, which enabled synthetic-aperture-radar (SAR) processing of acquired data (Peters et al., 2005;
336 Peters et al., 2007; SAR processing is described in Sect. 4.1). This initial High-Capability Radar Sounder (HiCARS)
337  system (Blankenship et al., 2017a) was translated to commercially available components (HiCARSII,
338 Blankenship et al, 2017b) which were incorporated into the subsequent Multifrequency Airborne Radar-
339  sounder for Full-phase Assessment (MARFA), capable of cross-track interferometry for clutter discrimination
340 (Castelletti et al., 2017; Scanlan et al., 2020). These systems have successfully detected detailed
341 radiostratigraphy throughout the Antarctic ice sheets (Fig. 3e) as part of large-scale multi-national campaigns
342 (e.g., Morse et al., 2002; Carter et al., 2007; Muldoon et al., 2018; Beem et al., 2021) including, from 2008,
343  across large regions of East Antarctica as part of the ICECAP (Investigating the Cryospheric Evolution of the
344 Central Antarctic Plate) international consortium (e.g., Young et al., 2011; Wright et al., 2012; Cavitte et al.,
345  2016; Cavitte et al., 2018) and integrated into NASA’s Operation IceBridge (OIB; other airborne RES surveys
346 by OIB are introduced in Sect. 3.6). RES systems based on the commercial HiCARSII design have been
347 integrated into the Chinese (Sect. 3.8) and Korean Antarctic programmes, and UTIG is collaborating with
348  CReSIS (Sect. 3.6) on the mapping of Dome A as part of the US National Science Foundation’s Center for
349  Oldest Ice Exploration (COLDEX).

350 3.5 Alfred-Wegener Institute

351 The Germany-based Alfred-Wegener Institute (AWI) has performed airborne RES surveys since the mid-1990s
352  (Steinhage et al., 2001), recording digitally and acquiring a total of ~¥420,000 km of RES data (Fig. 3f), often as
353 part of multinational projects. Its primary system until the mid-2010s — the Aero-EMR (Electro-Magnetic
354 Reflection) instrument — operated around a centre frequency of 150 MHz in a toggle mode that allowed for
355  short (60 ns; high resolution but low-penetration depth) and long (600 ns; low-resolution but high-
356 penetration depth) pulses to be transmitted simultaneously (Nixdorf et al., 1999; Eisen et al., 2007). Following
357 progressive upgrades to the flexibility and sensitivity of its Aero-EMR, AWI began using an improved version

358  (MCoRDS5) of the CReSIS ultra-wideband RES system (Hale et al., 2016; see Sect. 3.6 below). Antarctic
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359  operations of this newer system have so far operated across Dronning Maud Land using frequencies ranging
360 from 180-210 and 150-520 MHz, respectively (Franke et al., 2021; Koch et al., 2023; Franke et al., 2024). AWI
361 RES data (Fig. 3f) have been used extensively to recover radiostratigraphy across East Antarctica with a
362 particular focus around the EPICA (European Project for Ice Coring in Antarctica) Dome C, Kohnen and Dome
363 F ice-core sites, Recovery Glacier (Humbert et al., 2018) and Dronning Maud Land (e.g., Steinhage et al., 2001;
364  Steinhage et al., 2013; Karlsson et al., 2018; Winter et al., 2019b; Wang et al., 2023). Additional significant

365  AWI RES surveys also span the Lambert and Recovery glacier catchments (Fig. 3f).
366 3.6 Centre for the Remote Sensing of Ice Sheets / Operation IceBridge

367 The USA-based University of Kansas began developing coherent RES systems in the 1980s but primarily
368  focussed on Greenland. A Kansas RES system with 150 MHz centre frequency was first deployed over
369  Antarctica in 2002 on a joint USA (NASA; National Aeronautics and Space Administration) / Chile (CECs;
370  Centro de Estudios Cientificos) mission to survey fast-changing regions of West Antarctica (Rignot et al., 2004).
371 In 2005, Kansas became host to the USA’s Center for Remote Sensing of Ice Sheets (CReSIS), an NSF-
372  designated national Science and Technology Centre with a focus on ice-sheet sounding?; and began to
373  operate an upgraded series of deep-looking RES systems named Multichannel Coherent Radar Depth
374  Sounders (MCoRDS). An early application of these RES systems was a wide-ranging survey of the Gamburtsev
375  Subglacial Mountains region of central East Antarctica in 2008/09 (Fig. 3g) that notably imaged multiple
376 basal-ice units disrupting the radiostratigraphy (Bell et al., 2011; and Sect. 5.4; Wolovick et al., 2014; Wrona
377 et al., 2018; and Sect. 5.4).

378 From 2009 to 2019, MCoRDS was frequently deployed onboard NASA’s Operation IceBridge (OIB) programme,
379  which performed ten Antarctic RES campaigns collecting ~350,000 km of RES data (Fig. 3g; MacGregor et al.,
380  2021). Most surveys detected widespread radiostratigraphy using centre frequencies of ~190-194 MHz, but
381 for the 2009 to 2011 campaigns MCoRDS Version 1 the radiostratigraphic continuity is relatively poor
382  (MacGregor et al., 2021). From 2012, MCoRDS Versions 2 to 7 were introduced with progressively greater
383 power and bandwidth, significantly improving the detection of radiostratigraphy using frequencies in the
384 range of 150-450 MHz (Rodriguez-Morales et al., 2013; MacGregor et al., 2021). NASA OIB / CReSIS data have
385 been used to assess and track radiostratigraphy within the central East Antarctic Ice Sheet (Cavitte et al.,
386 2016; Winter et al., 2017), and across West Antarctica’s central divide and Thwaites Glacier (Holschuh et al.,
387  2014;Koutnik et al., 2016; Bodart et al., 2021). Significantly, CReSIS pioneered early open access to processing
388 routines and radargrams (Liu et al., 2016), and continues to do so as part of the Open Polar Radar project

389 (Paden et al., 2021; and Sect. 6).

' From 2022 CReSIS, reflecting an expanding remit, was renamed the Center for Remote Sensing of
Integrated Systems.
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390 3.7 Lamont-Doherty Earth Observatory

391 From 2010, the Lamont-Doherty Earth Observatory (LDEQ) of the USA’s Columbia University developed an
392  in-house Deep ICE Radar (DICE) RES system as part of an aerogeophysical suite (“IcePod”) designed to be
393  operated from LC-130 aircraft typically deployed by the US Antarctic Programme. DICE, with 188 MHz centre
394  frequency and 60 MHz bandwidth, was operated between 2015 and 2017 to systematically survey the
395 500,000 km?Ross Ice Shelf (Fig. 3h; Tinto et al., 2019; Das et al., 2020).

396 3.8 Polar Research Institute of China

397  The Polar Research Institute of China (PRIC) has undertaken considerable airborne RES surveying across East
398  Antarctica since 2015 (Fig. 3i). Deploying a 60 MHz centre-frequency RES system, which has heritage in the
399 UTIG HIiCARSII system (Sect. 3.4), configured in the “Snow Eagle 601” airborne platform, PRIC has
400  systematically and extensively surveyed the Princess Elizabeth Land sector of East Antarctica (Cui et al.,
401 2020b). Further profiling has also covered much of Mac. Robertson Land including Amery Ice Shelf (Cui et al.,
402 2020a; Cui et al., 2020c). Several long profiles across Dome A, Ridge B, Vostok, Dome C and Wilkes Land (Cui
403  etal., 2020a) could also be used to link radiostratigraphy with other RES campaigns across key sectors of East
404 Antarctica. Recent efforts applying machine learning methods to the extraction of radiostratigraphy from

405  these airborne RES data (Dong et al., 2021) show rich promise.
406 3.9 Additional airborne RES datasets

407  The RES providers discussed in the preceding sections have acquired >90% of the airborne RES data suitable
408 for extracting internal architecture across the Antarctic ice sheets. Of the remainder (Fig. 3j), airborne RES
409  data have been acquired, primarily with analogue systems, around parts of coastal East Antarctica by
410  Antarctic programmes, institutions and universities from Australia (e.g., Morgan et al., 1982), Belgium (Van
411 Autenboer and Decleir, 1975; using a SPRI RES system), Germany (by groups led from University of Miinster,
412  e.g., Thyssen and Grosfeld (1988) and the Federal Institute for Geosciences and Natural Resources (BGR), e.g.,
413  and the Federal Institute for Geosciences and Natural Resources (BGR), e.g., Damaske and McLean (2005))
414 and Italy (e.g., Frezzotti et al., 2004; Urbini et al., 2010). In West Antarctica, airborne RES data were acquired
415 by the NSF in the 1970s across Ross Ice Shelf (Bentley, 1990) and in the 1980s across West Antarctica’s Siple
416  Coast region (Retzlaff et al., 1993) using a SPRI RES system; after which USA-led airborne RES surveys were
417  arranged through the institutions already introduced above (Sect. 3.4 [UTIG], 3.6 [NASA/CReSIS] and 3.7
418 [LDEQ]). More recently, the Korean Polar Research Institute has conducted airborne RES surveys around
419 coastal East and West Antarctica with a system based on the UTIG MARFA RES system (e.g., Lindzey et al.,
420  2020; Lee et al., 2021). Almost all of these campaigns, although we have broadly labelled them by national
421 programmes or institutions, have relied on, and fundamentally been supported by, international
422 collaboration in some or all of their component funding, logistical or scientific aspects. In most cases, because

16



https://doi.org/10.5194/egusphere-2024-2593
Preprint. Discussion started: 1 October 2024 EG U
sphere

(© Author(s) 2024. CC BY 4.0 License.

423  they are now some decades old or not digitally rendered, the contemporary utility of these additional
424  airborne RES datasets for providing useful information on internal architecture remains largely to be
425 investigated, but some of them may yet prove instrumental in linking between two or more wider-ranging
426  surveys across parts of the ice sheet. The most promising, because they comprise several links between
427  coastal regions and the deep interior of East Antarctica at Dome C, were acquired by the Italian programme
428 under the auspices of EPICA (e.g., Tabacco et al. (1999) and Tabacco et al. (2008); plus see Siegert et al.
429  (2001b), for an example of a combined use of these data and those from the SPRI-NSF-DTU surveys of the
430 1970s).

431 3.10 Ground-based RES datasets

432  Since the 1960s, groups from at least twelve institutions have acquired ground-based RES datasets focussed
433  on sounding Antarctica’s subglacial bed and have also typically imaged internal architecture in the process.
434  Typically, these ground-based surveys have been confined to smaller regions or shorter profiles than covered
435 by the airborne RES surveys, befitting the more common application of ground-based RES to detailed site
436  surveys in preparation for retrieving ice cores, or for accessing the ice bed or subglacial lakes (e.g., Frezzotti
437 et al., 2004; Laird et al., 2010; Christianson et al., 2012; Ross et al., 2020). From these surveys, several local
438 radiostratigraphies have been published (e.g., Eisen et al., 2005; Jacobel and Welch, 2005; Koutnik et al.,
439 2016; Cavitte et al., 2023; Chung et al., 2023; Koch et al., 2023). These detailed studies provide invaluable
440 seeding points for extending radiostratigraphies much more widely across the ice sheets (e.g., Winter et al.,

441 2019a) and for understanding better ice-sheet history and glaciological processes.

442 Supplementing the more local surveys, some ground-based profiles have been acquired over traverses of
443 multiple 100s of km over the Antarctic ice sheets, and these traverses, marked on Fig. 3k, merit special
444  attention as potential resources for analysing pan-continental radiostratigraphy. A particularly extensive
445 programme of ground-based surveys has been conducted since 1969 by the Japanese Antarctic Research
446 Expedition (JARE) connecting coastal East Antarctica in Dronning Maud and Enderby Land to Dome F, with
447  data from some of these traverses conducted in the 1990s underpinning seminal work on the origins of IRHs
448  (Fujita et al., 1999; Matsuoka et al., 2003). Today, data from JARE represent some of the most spatially
449  extensive of Antarctica’s ground-based RES datasets and a rich repository of internal architecture (Fujita et
450 al., 2011; Van Liefferinge et al., 2021; Tsutaki et al., 2022). Further long ground-based RES traverses were
451 acquired by several national and international teams in the 2000s under the auspices of the International
452  Trans-Antarctic Scientific Expedition (ITASE). RES profiles containing particularly rich internal architecture
453 were acquired by the USA-NSF’s ITASE traverses across both West (Welch and Jacobel, 2003; Jacobel and
454  Welch, 2005) and East Antarctica (Welch et al., 2009), with findings from Arcone et al. (2012a) suggesting
455  that in some parts of East Antarctica the radiostratigraphy is unconformable and may present significant

456  challenges to tracking radiostratigraphy.
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457 Other institutes/consortia who have acquired wide-ranging and deep-looking ground-based RES profiles
458  extending 100s of km across the Antarctic ice sheets include the Australian National Antarctic Research
459 Expedition (ANARE; over Mac. Robertson and Princess Elizabeth Lands, traversing around ice feeding Amery
460 Ice Shelf - Craven et al. (2001); Wilkes Land - Jones and Hendy (1985); Medhurst (1985)); BAS (e.g., surveys
461 across West Antarctic catchments by King (2009); King (2011); Ross et al. (2011); Bingham et al. (2012);
462 Bingham et al. (2017); and Filchner-Ronne Ice Shelf; (Kingslake et al., 2016)); the Chilean Antarctic Institute
463 (Instituto Antartico Chileno, INACH, surveys around Institute Ice Stream including Subglacial Lake CECs; Rivera
464  etal. (2015); Napoleoni et al. (2020) - and connecting Institute Ice Stream to South Pole in a joint enterprise
465  with the Brazilian Antarctic Programme; Zamora et al. (2007)); the Russian Antarctic Expedition (traverses
466  connecting coastal stations to Vostok and Ridge B; (Popov, 2015; Popov, 2020)); PRIC (traverses connecting
467  coastal Zhongshan Station with Dome A; Luo et al. (2022)); and the International Thwaites Glacier
468  Collaboration (WAIS Divide to lower Thwaites Glacier between 2022 and 2024 using BAS and CReSIS ground-
469 based RES systems) (Fig. 3k). Especially for ice-core-related imaging of radiostratigraphy, deep-looking

470 ground-based surveys are still essential because of their high horizontal resolution.
471 3.11 Summary

472 Figure 3l collates the coverage of those RES datasets which were digitally acquired with GNSS navigation and,
473  inprinciple, represent the present coverage of existing RES data that could be used to develop a pan-Antarctic
474 radiostratigraphy. In practice, as the following section explores, only a small subset of these data have so far
475 been exploited, in part due to challenges in accessing data and working with them consistently, but mainly
476 because tracing and dating radiostratigraphy using existing methods is a highly time- and resource-intensive

477 process.

478 4 Extracting and dating internal architecture from RES data

479  Theinformation available from radargrams (e.g. Fig. 2), and the degree to which the internal architecture can
480 be used for different applications, depend firstly on the settings of the RES system acquiring the data and
481 secondly on choices made in processing the data. Below we summarise the typical processing workflow for
482 radargram generation and highlight key decisions that influence interpretation of the resulting
483 radiostratigraphy. Figure 4 presents a conceptual support to this discussion. We then discuss the different
484 methods used to trace radiostratigraphy through radargrams, and to date key IRHs, and provide an inventory

485 of existing traced radiostratigraphy across Antarctica.
486 4.1 Pulse compression, filtering, and image focussing for optimising IRH tracing

487  RES can be categorised broadly based on two criteria: (a) Phase control of the transmitter or phase sampling

488 by the receiver (i.e., coherent vs. incoherent); and (b) the nature of the transmitted wave (pulsed versus
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Figure 4. Flowchart illustrating key steps for the processing of RES data from chirp and pulse systems for
subsequent radiostratigraphic analysis. (a) Basic configurations and parameters defined on data
acquisition. (b) Fundamental and (c) additional steps commonly taken when processing data to visualise

IRHs. (d) Depiction of some common ways of tracing or otherwise quantifying IRH geometry.
489

490  chirped; Gogineni et al. (1998); Peters et al. (2005)) (Fig. 4a). Processing is similar for all systems, so here we
491 highlight differences that affect radargram quality. Direct measurements of the dielectric properties of ice
492  cores show that ice conductivity varies on much smaller length scales than can be imaged by RES (Harrison,
493 1973; Eisen et al., 2003). Therefore, each RES system represents subsurface reflectors differently, and data
494  acquired from the same area but by different RES systems may show different IRHs on intersecting
495 radargrams due to the differences in RES imaging capabilities (see Fig. 5, after Winter et al. (2017), for an
496  example of a comparison between different RES systems). For pulsed systems, processing cannot improve
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details and original figure from which this is modified, see Winter et al. (2017).
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498  the vertical resolution, which is controlled by the bandwidth and the rate of sampling of the received
499  waveform. For chirped systems, the waveform must be fully sampled first and then match-filtered,
500 integrating the received power while also finely resolving radiostratigraphy targets based on the chirp’s
501 bandwidth (Héliere et al., 2007; Peters et al., 2007). This “pulse compression” is the first step in producing a

502 radargram from a chirped system.

503 Following initial data acquisition, RES data are typically processed using geophysical techniques of varying
504  sophistication (Fig. 4b). For example, incoherent noise is typically reduced by various forms of horizontal
505  averaging, and bandpass-filtering can remove irrelevant components of the measured signal. Finally, if
506 possible the data should be focused or migrated to reposition the received signal energy as precisely as
507 possible to their true subsurface locations. This can be done via several methods: (a) Incoherent echo
508  summation, often termed migration as in reflection seismology (Yilmaz, 2001); (b) SAR-focusing for point
509  scatterers, common in satellite applications (Ulaby and Lang, 2015); or (c) algorithms designed specifically
510  for RES of specular reflections (Heister and Scheiber, 2018; Castelletti et al., 2019; Xu et al., 2022). SAR-
511 focusing has a proven ability to reduce image artefacts and improve along-track resolution, especially in areas
512  with steeply-sloping radiostratigraphy (Holschuh et al., 2014; Castelletti et al., 2019). Multiple SAR-processing
513  techniques currently exist for coherent RES systems, including: (a) unfocused SAR (short apertures without
514 phase correction and equivalent in name to Doppler filtering or coherent echo summation; Héliere et al.
515  (2007)); or (b) more advanced focused SAR, using either 1-D correlations resulting in intermediate apertures,
516  or 2-D correlations resulting in longer apertures (Peters et al., 2005; Peters et al., 2007). The latter is the
517 processing of choice for modern coherent systems for the detection of IRHs in areas with steeply dipping
518 reflections. Unfocused and 1-D SAR approaches will emphasise flat specular reflectors and reduce clutter, at
519 a cost of dipping specular horizons. Large SAR apertures are critical for tracking steeply dipping IRHs, but
520 present greater computational costs and an overall reduction of signal to noise ratio. Cross-track antenna

521 arrays can allow for determination of cross-track IRH slopes.

522 A series of additional corrections and image-processing steps can also be taken to optimise RES data for
523  tracing radiostratigraphy (Fig. 4c). For radar data acquired by airborne platforms, the aircraft-to-ice surface
524  space on the radargram must be removed to obtain true depths below the ice surface; this is often conducted
525 by shifting the vertical axis of the radargram to time zero for each RES trace and flattening the surface based
526  on the location of the surface reflection on the radargram. This can be done using data from the altimeter
527 and/or LIDAR onboard the aircraft, high-resolution surface DEMs, or using the picked surface reflection from
528  the radargram itself (e.g., MacGregor et al., 2015a). Localised density corrections, based on ground-truthing
529 measurements in the upper section of ice cores or other geophysical measurements (e.g., radar data acquired
530 by airborne platforms; Eisen et al., 2002), may also be applied to convert the two-way-travel time from the
531 RES data to ice-equivalent depths. Alternatively, for depth-correcting RES below the pore close-off depth, a

532  spatially uniform density value that is typically of the order of several metres may be used to obtain ice-
21
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533  equivalent depths (e.g., Ashmore et al., 2020), although this assumption may only be valid in dry and stable
534 parts of the ice sheet and not in highly dynamic regions (Dowdeswell and Evans, 2004). Others have also
535  vertically rescaled (or flattened) RES data to facilitate the tracing of continuous reflections by semi-automatic
536 pickers (e.g., Fahnestock et al., 2001a; Sect. 4.2; MacGregor et al., 2015a). Finally, specific image-processing
537 filters can also be applied to enhance the gain and reduce incoherent noise, which can facilitate IRH tracing

538 on RES data (Ashmore et al., 2020; Bodart et al., 2021; Wang et al., 2023).

539 Importantly for users interested in tracing IRHs, and especially the deepest IRHs, most RES data over
540  Antarctica, including those available from open-access repositories, are not optimised for detecting
541 radiostratigraphy. Typically the data have been acquired and processed to optimise retrieval of the bed echo,
542 and some datasets require considerable reprocessing from the raw data to improve the clarity of the
543 radiostratigraphy between the ice surface and the bed (Castelletti et al., 2019). In particular, for thick or
544 unusually heterogenous ice, the best strategy is often to experiment with filtering data differently at different

545  depths until the IRHs at selected depths are most clearly visualised.
546 4.2 Tracing radiostratigraphy

547  The primary method for extracting internal architecture from radargrams has been to trace or “pick” IRHs,
548  typically using semi-automated techniques (e.g., Cavitte et al., 2016; Koch et al., 2023). Where radargram
549  quality is high, IRHs are easily traced and continuous, and automated methods may also perform well (e.g.,
550 Panton, 2014; Xiong et al., 2018; Delf et al., 2020). Machine-learning methods show promise for more rapidly
551 tracing radiostratigraphy in new datasets; but so far successful applications have been limited to shallow IRHs
552 in the upper few tens of metres of the ice column (e.g., Dong et al., 2021; Rahnemoonfar et al., 2021; Yari et
553  al.,, 2021). Thus, for most radargrams and deep-ice applications, semi-automated tracing of IRHs is presently
554 required. This relies on algorithms that typically follow the local maxima in return power between adjacent
555  traces within a predetermined vertical window, using either open-source or commercial and bespoke
556 software from the seismic industry (e.g., Winter et al., 2019a; Ashmore et al., 2020; Sanderson et al., 2024).

557 A comprehensive overview of IRH-tracing methods is provided by Mogadam and Eisen (2024).

558  The process of tracing IRHs can be categorised into two main approaches: (a) tracing as many IRHs as possible
559 regardless of their amplitudes or continuity (MacGregor et al., 2015a); or (b; more commonly) by identifying
560 IRHs that have a high echo-power, appear distinguishably brighter than adjacent IRHs on radargrams and are
561 continuous for long distances (>100 km), using crossovers between intersecting RES profiles to ensure
562 reliability in the tracing process (e.g., Cavitte et al., 2016; Winter et al., 2019a; Ashmore et al., 2020; Bodart
563 etal., 2021; Wang et al., 2023).

564 Importantly, the thickness of a given IRH in a radargram is dependent on the range resolution of the RES
565  system used to image it, such that RES systems with high pulse-width, and thus finer vertical resolution, may
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566  detect several thinner IRHs that would otherwise appear as a single, broader reflection in coarser-resolution
567 systems (see Fig. 5 and Harrison, 1973; Millar, 1982; Karlsson et al., 2014; Winter et al., 2017; Bodart et al.,
568 2021; Cavitte et al., 2021). This must be accounted for when comparing the position and aspect of IRHs traced

569  indatafrom RES systems operating with different frequencies and system characteristics (Winter et al., 2017).
570 4.3 Complementary approaches to tracing IRHs for characterising radiostratigraphy

571 Even having applied all possible data processing strategies described above, radiostratigraphy may remain
572 challenging orimpossible to trace over some regions due to the innate physical properties of ice in such areas.
573 For example, IRHs may become warped/buckled or disrupted by differential ice flow or flow over steep
574 topography (e.g., Siegert et al., 2003b; Ross et al., 2011; Bingham et al., 2015; Franke et al., 2023; Jansen et
575 al., 2024), while unconformities can be introduced by significant wind scouring of the ice surface (e.g., Welch
576  and Jacobel, 2005; Luo et al., 2022). This variability in itself provides important information about past and
577 present ice behaviour (as we explore further in Sect. 5), and hence warrants alternate methods to

578  characterise the radiostratigraphy where IRHs cannot readily be traced.

579  One method for assessing the general variability of radiostratigraphy across large regions of ice sheets is the
580 Internal Layering Continuity Index (ILCI) developed by Karlsson et al. (2012). This tool maps the variability in
581 vertical signal strength for individual RES traces, acting as a relative measure of the number of dielectric
582  contrasts compared to signal-to-noise ratio. High ILCl values typically indicate regions of an ice sheet
583 characterised by multiple, traceable IRHs, while low ILCI values tend to indicate regions of ice sheet with
584  disrupted or discontinuous IRHs or regions with very few or no IRHs detected by the RES system. Although
585 the method is not easily transferable between different RES systems due to acquisition and processing
586  differences, ILCI has been extensively applied to several regions both in Antarctica (Fig. 6) and Greenland as
587  amechanism for identifying rapidly the specific sub-regions in which IRHs are likely to be traceable (e.g., Sime
588  etal., 2014; Bingham et al., 2015; Karlsson et al., 2018; Frémand et al., 2022; Tang et al., 2022; Sanderson et
589  al., 2023).

590  Alternative methods have focussed on the extraction of IRH slopes. This avenue acknowledges the challenges
591 of tracing and dating radiostratigraphy in areas of fast or complex ice flow, or where the acquisition or
592 processing methods that have been used were not tailored to the recovery of radiostratigraphy. For
593 discontinuous radiostratigraphy, local slope information is valuable, because radiostratigraphic slope is
594  closely related to particle trajectories within the ice sheet (Hindmarsh et al., 2006; Parrenin and Hindmarsh,
595 2007; Ng and King, 2011; Holschuh et al., 2017). Several methods have therefore been developed to extract
596  slope information, such as incoherent averaging methods (Sime et al., 2011; Holschuh et al., 2017; Delf et al.,
597 2020) and methods that use along-track phase information during SAR processing to estimate IRH slope
598 (MacGregor et al., 2015a; Castelletti et al., 2019; Oraschewski et al., 2023).
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Figure 6. Radiostratigraphic continuity (ILCI) calculated over 10 airborne RES datasets acquired by BAS.
Continuous and readily traceable IRHs are indicated in the slow-flowing regions of the ice sheet (high ILCI;
bright yellow) whereas disrupted or absent IRHs are likely in the faster-flowing sections of ice streams or
where subglacial topography is highly variable (low ILCI; dark purple). The background maps show ice-
flow velocities from MEaSUREs (Rignot et al., 2017) and a hillshade of the bedrock from BedMachine
(Morlighem, 2020). Figure modified from Frémand et al. (2022).

599
600 4.4 Dating internal-reflection horizons (isochrones)

601 As introduced in Sect. 2, most RES-imaged IRHs have been shown to be isochronous, and the majority of
602  those we treat in this review (i.e. that are imaged in between the first and last few hundreds of metres of the
603 ice column) arise due to the RES systems imaging variations in the electrical conductivity (i.e. acidic content)
604  of the ice with depth. Hereafter in this paper, reiterating that most IRHs are isochrones, we will use the term
605 isochrones to refer to IRHs, and will only re-use the term IRH where it may be ambiguous concerning whether

606 IRHs are isochronous.

607  Agescan be assigned to isochrones at intersections with deep ice cores where age-depth models have already
608 been derived from chemistry analyses (e.g., McConnell et al., 2017; Cole-Dai et al., 2021; Bouchet et al., 2023),

609 but also using modelling techniques where this is not possible. Before any age can be assigned, the age
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610 uncertainty that arises from the RES system itself must first be assessed. Uncertainty in reflector depth arises
611 from several sources: (a) proximity of the RES profile to the ice-core site, otherwise a specific reflector
612 geometry (typically flat) must be assumed between the point of closest approach and the ice-core site
613  (MacGregor et al., 2015a); (b) the radio-wave speed, which varies based on permittivity variations as a
614  function of englacial density and anisotropy (e.g., Kovacs et al., 1995; Fujita et al., 2000); (c) the range
615 resolution of the RES system and the signal-to-noise ratio of each traced reflection at (or near) the ice-core
616  site, which enable an estimate of the depth precision to which each traced reflection can be known (e.g.,
617 Cavitte et al., 2016); and (d) the picking accuracy of both the ice surface and the isochrones themselves,
618 which can add several metres of uncertainty. This latter point may include the uncertainty arising from the
619  source of the surface product (i.e. either from cm-resolution onboard altimeter/LIDAR), or directly from the
620  RES data which have much lower resolution of the order of several metres); and whether the picking

621 algorithm is tailored to extract the onset of the reflection, the half-amplitude, or the peak value.

622  The ideal scenario for assigning ages to isochrones is that a RES profile intersects or passes sufficiently close
623  (~500 m vicinity) to the location of an ice-core site for the ice core’s depth-age scale (from chemical profiling
624  or layer counting) to be useable for directly assigning ages to the RES-imaged isochrones. In such cases, the
625  isochrone-depth uncertainty can then be combined with the ice-core age uncertainty to assign a total age
626 uncertainty to the mapped reflections; in these cases, uncertainty is generally dominated by the ice-core-
627  derived age uncertainty in the upper third of the ice column, while the RES-derived depth uncertainty
628 increasingly dominates at larger depth (e.g., MacGregor et al., 2015a; Cavitte et al., 2016; Muldoon et al.,
629 2018; Winter et al., 2019a; Wang et al., 2023). More recently, some isochrones have been dated not by their
630 direct intersection with an ice core, but rather by intersecting other RES datasets that in turn have already
631 been dated by their intersection with a distant ice core. In these cases, the age-depth profile is transferred
632  to the new dataset at the crossover(s) between the intersecting RES datasets (e.g., Ashmore et al., 2020;
633 Bodart et al., 2021). In these cases, the relative uncertainties of the different RES systems at the intersections
634  between RES datasets additionally need be factored into the final age estimation, and the final age estimates
635 are commonly checked using the modelling techniques introduced next (e.g., Bodart et al., 2021; Sanderson

636 etal., 2024).

637  Where isochrones cannot be directly correlated to an ice-core age-depth relationship due to a lack of nearby
638 ice cores, any intersections with previously dated isochrones, or missing sections in the record (e.g., due to
639  disrupted englacial stratigraphy), age-depth modelling is required to assign ages to isochrones. This is
640  typically done using 1-D models in stable parts of the ice sheet such as at ice divides (e.g., Nye, 1957;
641 Dansgaard and Johnsen, 1969; Ashmore et al., 2020; Bodart et al., 2021; Sanderson et al., 2024); or using
642 more complex multidimensional (2D/3D) models in areas with challenging ice-flow or bed conditions (e.g.,

643 Waddington et al., 2007; MacGregor et al., 2015a; Parrenin et al., 2017; Lilien et al., 2021).
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644 4.5 Existing dated radiostratigraphy across Antarctica

645 Before the inception of AntArchitecture in 2018, several studies had produced radiostratigraphies spanning
646  the last 17.5 ka across West Antarctica and 352 ka for East Antarctica (e.g., Hodgkins et al., 2000; Siegert and
647 Hodgkins, 2000; Siegert, 2003; Siegert and Payne, 2004; Jacobel and Welch, 2005; Leysinger Vieli et al., 2011;
648 Steinhage et al., 2013; Karlsson et al., 2014; Wang et al., 2016). However, the spatial extents of these
649 radiostratigraphies were relatively limited. Through AntArchitecture, a more coordinated and focused
650  approach to characterising Antarctic radiostratigraphy has been conducted, as depicted in Figure 7 and
651 detailed in Table 1. This programme has facilitated the recovery and characterisation of several isochrones
652  with ages up to 25 ka across much of the Amundsen and Weddell Sea sectors of West Antarctica (Muldoon
653 etal., 2018; Ashmore et al., 2020; Bodart et al., 2021; Bodart et al., 2023). Over East Antarctica, a much older
654 record has been extracted, owing to the more stable and slow-flowing ice conditions in the area, including
655 isochrones dating back to the last 705 ka (Cavitte et al., 2016; Winter et al., 2019a; Beem et al., 2021; Cavitte
656 et al., 2021; Chung et al., 2023; Wang et al., 2023; Sanderson et al., 2024).
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Figure 7. Existing open-access dated stratigraphies across Antarctica obtained from the Digital Object
Identifiers (DOIs) provided in Table 1, with RES profiles for Bedmap-2 and Bedmap-3 products shown in
the background (grey; Frémand et al., 2023). Existing deep ice cores (defined here as ice cores that have
been drilled to near the ice-bed interface and that provide a multi-millennial record) are shown as red
triangles. (a) Maximum number of layers traced through each dataset (from 1 to >8). (b-c) age of the
deepest (oldest) layer across each dataset for the WAIS (b) and EAIS (c) regions respectively.
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Table 1. Inventory of expansive radiostratigraphic datasets for the Antarctic ice sheets, ordered by region

and length (km of RES profiles) of dataset. The data are mapped in Figure 7; locations of ice cores are marked

on Fig. 3a. DOIs are provided where the underlying isochronal data are available in open-access format. Data-

provider acronyms are expanded in Sect. 3 of the text; in most cases we also list here a specific project

acronym for each survey which can be cross-referenced through the reference and/or dataset listed in each

row.

(For EGUsphere formatting, this 10-column table is presented across two pages.)

Region | Survey dates | Data provider | Survey name / Ice-core No. of traced
(cf. Sect. 3) acronym intersection(s) isochrones
AWI / DoCo / EPICA/ | Kohnen /Vostok /
EAIS 1998 - 2008 5
CReSIS AGAP Dome C
Beyond EPICA
EAIS 2016 - 2017 AWI . Kohnen / Dome F 7
Dome Fuji
EAIS 2008 - 2018 UTIG ICECAP Dome C 26
AGAP /
EAIS 2007 - 2016 BAS South Pole 3
PolarGap
EAIS 1974 - 1979 SPRI-NSF-DTU - Vostok / Dome C 12
EAIS 1974-1979 | SPRI-NSF-DTU - Vostok / Dome C >32
South Pole
EAIS 2016 -2017 PRIC i South Pole 8
Corridor
Beyond EPICA
EAIS 2016 -2018 BAS . Dome C 20
Little Dome C
EAIS 2002 - 2003 AWI - Dome F 8
EAIS 1974-1979 | SPRI-NSF-DTU - Vostok 15
Dome A
EAIS 2004 - 2005 PRIC Vostok 6
(CHINARE-21)
CASERTZ /
Byrd /
WAIS 1991 -2014 UTIG SOAR / AGASEA . 1
WAIS Divide
/ GIMBLE
BAS / BBAS / -
WAIS 2004 - 2018 WAIS Divide 4
CReSIS oIB
WAIS 2010-2011 BAS IMAFI - 3
WAIS 2000 - 2001 NSF ITASE Byrd 1
WAIS 1977 - 1978 SPRI-NSF-DTU - Byrd 5
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666  Table 1 continued: Columns 6-10.

Isochrone age | Length of traced Reference Dataset DOI
range (ka) IRHs (km)
38.0-161.0 40 000 Winter et al. (2019a) 10.1594/PANGAEA.895528
31.4-232.7 20000 Wang et al. (2023) 10.1594/PANGAEA.958462
10.0-705.0 15 500 Cavitte et al. (2021) 10.15784/601411
10.5285/cfafb639-991a-
38.0-162.0 13 000 Sanderson et al. (2024)
422f-9caa-7793c195d316
Leysinger Vieli et al.
17.5-352.4 8000 10.1029/2010JF001785
(2011)
45.9 -169.7 4000 Siegert (2003) -
4.7-93.9 2 000 Beem et al. (2021) 10.15784/601437
10.5-414.6 1280 Chung et al. (2023) 10.1594/PANGAEA.963470
4.7-72.4 1200 Steinhage et al. (2013) -
Leysinger Vieli et al.
17.0-211.0 1000 -
(2004)
343-161.4 215 Wang et al. (2016) -
4.7 19 000 Muldoon et al. (2018) 10.15784/601673
10.5285/f2de31af-9f83-
23-16.5 15 000 Bodart et al. (2021)
44f8-9584-f0190a2cc3eb
19-8.1 6 000 Ashmore et al. (2020) 10.5281/zenodo.4945301
Jacobel and Welch
17.5 1850 10.7265/N5R20Z9T
(2005)
Siegert and Payne
0.8-16.0 800 10.1002/esp.1238
(2004)

667
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668 A notable finding is the presence of widespread and ubiquitous isochrones that have been imaged by
669  different RES systems and are found in several ice-core records. Across West Antarctica, the most ubiquitous
670 isochrone, dated precisely and independently at Byrd and WAIS Divide ice cores to ~4.7 ka, has been
671 identified by several studies (Jacobel and Welch, 2005; Karlsson et al., 2014; Holschuh et al., 2018; Muldoon
672 etal., 2018; Ashmore et al., 2020; Table 1; Bodart et al., 2021; Bodart et al., 2023). There is evidence that this
673  same isochrone may also be found widely across East Antarctica, based on sulphate concentrations in ice
674 cores and findings from individual RES surveys across the region (Steinhage et al., 2013; Winski et al., 2019;
675 Beem et al., 2021; Cole-Dai et al., 2021; Sigl et al., 2022). Additionally, across much of the West Antarctic Ice
676 Sheet an isochrone dated at 17.5 ka has been observed in both ground-based and airborne RES data (Jacobel
677 and Welch, 2005; Muldoon et al., 2018; Bodart et al., 2021; Table 1). This 17.5 ka RES isochrone has been
678 identified and linked to an eruption from West Antarctica’s Mount Takahe in both the Byrd (Hammer et al.,
679 1997) and WAIS Divide (McConnell et al., 2017) ice cores. Over East Antarctica, packages of closely spaced
680 isochrones of ages ~38 ka, ~73 ka, ~128 ka, ~160 ka, and ~170 ka have been traced from ice cores (Leysinger
681 Vieli et al., 2011; Winter et al., 2019a; Cavitte et al., 2021; Table 1; Wang et al., 2023; Sanderson et al., 2024);
682 notably, the ~73 ka isochrone has been linked by ice-core profiling to the Toba Eruption in Indonesia
683  (Svensson et al., 2013). Together, such distinct isochrones, imaged by and from multiple RES systems and
684 platforms, provide important regional or continental-wide time markers, equivalent to Greenland’s highly
685 recognisable “three sisters” (Fahnestock et al., 2001a; MacGregor et al., 2015a) for inferring past changes at

686 specific time intervals.

687 Despite the advances discussed here, the established radiostratigraphy across the Antarctic ice sheets
688 currently represents only a small subset of the total available RES data (Fig. 7, and refer back to Sect. 3 and
689 Fig. 3). The establishment of the AntArchitecture community, and its commitment to establish protocols for
690  sharing and processing internal architecture across the multiple datasets, is expected to facilitate further
691 isochrone tracing, which will in turn contribute to the development of the first three-dimensional age-depth

692 model of the ice sheet.

693 5 Applications of internal architecture to wider Antarctic science

694 Here, we now review to what scientific purposes internal architecture has already been exploited. Sect. 5.1
695  to 5.4, supported by Figure 8, exemplify four primary applications of RES-imaged isochrones, Sect. 5.5
696  explores the scientific applications of other forms of internal architecture, and Sect. 5.6 discusses how
697 radiostratigraphic data have been incorporated into numerical modelling, and their use in calibrating ice-
698  sheet models of varying complexity. This section contextualises the following Sect. 6 which then suggests
699 priorities for future research that will be enabled as Antarctica’s internal architecture, and particularly its

700 radiostratigraphy, continue to be explored and made available.
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Figure 8. Schematic illustration of radiostratigraphic observations within an ice sheet and their scientific applications; (a), in the
centre, depicts typical ice-sheet locations for applications shown in subsequent panels. (b) Connecting and validating ice cores in
Greenland (after MacGregor et al., 2015a). (c) Imaging intersections of IRHs with ice surface in region of surface wind scouring
(after Winter et al., 2016). (d) Using isochrones to calculate basal melting across Subglacial Lake Vostok (after Siegert et al.,
2001a). (e) Using isochrone drawdown to locate region of elevated geothermal heat flux near South Pole (after Jordan et al.,
2018). (f) Application of “Internal Layering Continuity Index” (ILCI) to quantify disruption (folding/warping) to otherwise
continuous isochrones (after Bingham et al., 2015). (g) Using intersecting RES profiles to explore ice anisotropy (after Gerber et
al., 2023). (h) Raymond Arch imaged in shallow (top panel) and deep RES across Derwael Ice Rise, Dronning Maud Land (after
Drews et al., 2015). (i) Basal-ice units and suggested accreted basal ice in East Antarctica (after Bell et al., 2011). (j) Basal crevasses
imaged in West Antarctica and used to date regrounding of previously floating ice (after Kingslake et al., 2018). (k) Prominent
tephra horizon imaged by RES across Pine Island Glacier, West Antarctica (after Corr and Vaughan, 2008).
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702 5.1 Radiostratigraphy and ice cores

703 Ice cores from Antarctica provide fundamental palaeoclimate records (e.g., EPICA Community Members,
704  2004; WAIS Divide Project Members, 2015), and we have already introduced the concept that RES records
705  tied to existing ice cores provide a basis for extending these “point-source” age-depth chronologies into 3-D
706  age-depth fields that extend widely across the Antarctic ice sheets (Sect. 4; especially 4.4 and 4.5). Conversely,
707 RES-imaged radiostratigraphy can be used to guide the best locations for recovering future ice cores.
708  Accumulation rate, ice dynamics and age-depth relationships extracted from isochrones have previously
709  informed the appropriateness of coring sites (e.g., Neumann et al., 2008; Parrenin et al., 2017; Beem et al.,
710  2021; Wang et al., 2023) and have been essential for pre-site survey of potential future ice coring, e.g. for
711 the Oldest Ice endeavour of the International Partnerships for Ice Core Sciences (IPICS; e.g., Fischer et al.,

712 2013; Van Liefferinge and Pattyn, 2013; Karlsson et al., 2018; Lilien et al., 2021; Chung et al., 2023).

713 Radiostratigraphy has also provided opportunities for synchronising and reducing uncertainties in ice-core
714  chronologies by facilitating the direct tracing of isochrones between two or more ice cores in order to
715  correlate ice-core chronologies (as achieved for the Greenland Ice Sheet by MacGregor et al., 2015a; see Fig.
716  8b). In Antarctica, previous studies that have used isochrones to correlate chronologies between ice cores
717  include Siegert et al. (1998), Steinhage et al. (2013), Cavitte et al. (2016) Le Meur et al. (2018) and Winter et
718  al. (2019a) for East Antarctica, and Muldoon et al. (2018) for West Antarctica. These studies have provided
719 confidence that ice cores obtained from locations separate by 100s of km capture analogous variations in
720 palaeoclimate at regional scales, and that the signals recorded by RES correspond to genuine physical
721 variations in the ice (typically variations in electrical conductivity, often related to fallout from past volcanic

722 eruptions; as noted in Sect. 4.5).

723 The key challenge in synchronising ice-core records between distant sites using RES has been in resolving the
724 radiostratigraphically- and ice-core-derived chronologies between each ice-core site, given the order-of-
725 magnitude difference in resolution of chronologies recoverable from RES (on the order of metres) versus ice-
726  core records (on the order of centimetres). This has typically been dealt with using forward modelling based
727  on electrical-conductivity measurements or dielectric profiling of the ice cores to provide a transfer function
728 (e.g., Miners et al., 1997; Hempel et al., 2000; Eisen et al., 2003; Eisen et al., 2006; Winter et al., 2017;
729 Mojtabavi et al., 2022), or by adopting Bayesian frameworks which provide a probability distribution of the
730  age of the isochrones (Muldoon et al., 2018). Thus, while the age-depth fields compiled from isochrones will
731 never match the precision and accuracy of ice-core age-depth relationships (MacGregor et al., 2015a; Winter
732 et al., 2017), they provide the spatial context that ‘point-source’ ice cores cannot. Through isochrone-
733  constraint modelling (see Sect. 5.6), the age of the ice and its spatial distribution can be more effectively

734 constrained in regions distant from the current drilling sites (Born and Robinson, 2021; Sutter et al., 2021).
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735 In marginal locations of the ice sheets, or around nunataks, where persistent pronounced surface scouring is
736  co-located with upward ice flow over subglacial topography —i.e., in regions of so-called “blue ice” —very old
737  ice may outcrop obliquely to the ice surface and hence allow the recovery of a “horizontal ice core” along
738  the ice surface (Spaulding et al., 2013). Dated isochrones have been used to trace the age-depth model
739 recovered from horizontal ice cores back into the ice sheet (Reeh et al., 2002; Siegert et al., 2003a; Winter et
740  al., 2016; Fogwill et al., 2017; Baggenstos et al., 2018; see Fig. 8c). However, shearing and folding can disrupt
741 the stratigraphic order of the outcropping IRHs, rendering the interpretation of their radiostratigraphy more

742  complex than for most vertical ice cores.
743 5.2 Surface mass balance

744 In slow-flowing ice and especially around ice divides, the depth of isochrones is largely controlled by surface
745 mass balance and therefore dated radiostratigraphy has made it possible to reconstruct past surface mass
746 balance over millennial timescales across spatially extensive regions (e.g., Nereson et al., 2000; Siegert, 2003;
747 Siegert and Payne, 2004; Eisen et al., 2005; Waddington et al., 2007; Neumann et al., 2008; MacGregor et al.,
748 2009; Leysinger Vieli et al., 2011; Karlsson et al., 2014; Koutnik et al., 2016; Cavitte et al., 2018; Bodart et al.,
749  2023). Such records have fundamentally informed us about how mass balance has changed with time over
750 past millenia, for example showing that accumulation rates changed significantly over central (Siegert and
751 Payne, 2004; Neumann et al., 2008; Koutnik et al., 2016; Bodart et al., 2023) and coastal (Karlsson et al., 2014)
752 West Antarctica throughout the Holocene. Typically, vertical strain rates must be corrected for the whole ice
753  column, particularly in regions of (present or past) fast flow, or there is a need to account for basal processes
754  such as enhanced basal melting (e.g., Leysinger Vieli et al., 2011; Chung et al., 2023), because in such cases
755  theisochrone depths will be dynamically modified and therefore will not represent the surface mass balance
756  at the time of deposition (e.g., Koutnik et al., 2016). Where the radiostratigraphy has not been impacted
757 significantly by strain, the shallow-layer approximation can be applied, which allows us to ignore these strain-
758 rate corrections (Waddington et al., 2007). If horizontal advection influences the stratigraphy 2D, 2.5D or 3-

759 D modelling is required (see Sect. 5.6).

760 Regions of unconformable radiostratigraphy occurring throughout the ice column in parts of Antarctica have
761 partly limited the extent to which some surface mass balance records could be more widely extrapolated
762  (Arcone et al., 2012b; Cavitte et al., 2016). RES surveys of the upper ~100 m of the ice column in the affected
763 regions typically reveal widespread conformal, annual horizons modified by local variations in accumulation
764  orice flow (Eisen et al., 2008), and the majority of them have been ascribed to wind scouring out surface
765  deposits and forming “megadunes” (Das et al., 2013; Traversa et al., 2023) that then become progressively
766  buried as sets of unconformable IRHs. Studies have identified such unconformities in several locations in East
767 Antarctica (Welch and Jacobel, 2005; Traversa et al., 2023) and West Antarctica (Woodward and King, 2009;
768 Holschuh et al., 2018).
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769 5.3 Basal melting and geothermal heat flux

770 Isochrones have been used to calculate melting at the base of the ice exploiting the principle that melting
771 from the presence of a subglacial water body or enhanced geothermal heat flux draws isochrones down
772 towards the ice base. Mismatches between surface-accumulation-driven modelled isochrones and traced
773 isochrones have been used to infer regions of enhanced basal melting in Greenland (Dahl-Jensen et al., 1997;
774 Fahnestock et al., 2001b) and Antarctica (Carter et al., 2009) on the principle that removal of ice at the base
775 by basal melting thins annual layers above. However, for locating areas of enhanced geothermal heat flux (or
776  subglacial lakes, which may sometimes owe their existence to enhanced geothermal heat flux) researchers
777  now typically rely more on analysing the reflectivity or specularity of the ice-bed echo in RES data (e.g., Young
778 etal., 2016; Chu et al., 2021), and only use isochrones to guide derivations of basal melting where such more

779 direct data are lacking.

780 Isochrones have been analysed in more detail over parts of Antarctica to constrain basal melting in more
781 localised settings. For example, Siegert et al. (2000) used deviations in the dip of deep isochrones away from
782 parallelism with the ice-bed/subglacial-lake surface over Subglacial Lake Vostok to calculate basal melting
783  and water exchange between the lake and the overlying ice sheet (Fig. 8d). Jordan et al. (2018) identified
784  isochrones dipping towards the bed ~200 km from the South Pole (Fig. 8e), and used these to model how
785 much basal melt would be required to draw the isochrones down towards the bed. By assuming that minimal
786 frictional melting would be generated by the slow ice flow in this region, they showed that the most likely
787  cause of the isochrones being drawn down towards the bed must be enhanced geothermal heat flux in this
788 region. Ross and Siegert (2020) undertook a detailed survey of isochrone geometry over Subglacial Lake
789 Ellsworth, West Antarctica, and showed that the isochrones were preferentially drawn down over the NW
790  shoreline of the lake, rather than the lake itself. This conclusion was in agreement with the pattern of basal
791 mass balance derived from previous numerical modelling of water circulation in the lake and indicated very

792 high basal melting of ~16 cm a* on its northern shoreline.
793 5.4 Ice-flow dynamics

794 Present-day (last ~35 years) information on ice-flow dynamics is derived from satellite monitoring of ice-
795 surface flow (Rignot et al., 2017), but to understand fully where and how ice-flow dynamics have changed
796 over the past several thousand years, and hence may be likely to do so again, researchers have interrogated
797 how changes to ice-flow dynamics have been imprinted into the RES-imaged internal architecture. The most
798  common methodology has been to explore and classify where the radiostratigraphy diverges from relatively
799 flatisochrones to profiles that show folding (a.k.a. buckling, warping or disruption) of the isochrones (Fig. 8f).
800 Wherever there is folding of isochrones, and we assume they were originally deposited as flat layers, it is an
801 indication that the ice has experienced considerable strain, often as a result of flowing around or over

802 significant bedrock obstacles (Robin and Millar, 1982; Hindmarsh et al., 2006; Tang et al., 2022) or becoming
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803  variously stretched and compressed as it flows through an ice-stream onset region or through ice-stream
804 shear margins (Jacobel et al., 1993; Bell et al., 1998; Ng and Conway, 2004; King, 2011). Overall, isochrone
805 folding can indicate convergent ice flow, anisotropic rheology, basal freeze-on, basal sliding, non-negligible
806  transverse velocity gradients, or the abutting of units of contrasting rheology. Importantly, the signature
807 recorded by these processes is often advected downstream, so that where it is observed does not necessarily
808 indicate where the folding took place (Weertman, 1976; Jacobel et al., 1993; Leysinger Vieli et al., 2004;
809 NEEM Community Members, 2013; Wolovick et al., 2014; Bons et al., 2016; Leysinger Vieli et al., 2018; Ross
810 etal., 2020; Franke et al., 2021; Jennings and Hambrey, 2021; Jansen et al., 2024). In certain cases, relict folds
811 that do not correspond to the current ice-flow direction indicate a past change in ice-flow direction (Conway

812 et al., 2002; Siegert et al., 2004; Rippin et al., 2006; Franke et al., 2022).

813 While, therefore, there are multiple origins for isochrone folding, their geographical association with fast ice
814  flow has led to their presence being used as a broad diagnostic of the long-term stability (or otherwise) of ice
815  flow around Antarctica (e.g., Rippin et al., 2003b; Siegert et al., 2003b; Bingham et al., 2007; Karlsson et al.,
816 2009; Ross et al., 2011; Bingham et al., 2015; Winter et al., 2015; Sanderson et al., 2023). In areas where
817  isochrones are strongly disrupted by (past or present) enhanced flow, extracting ILCI or isochrone-slope
818 products from the radiostratigraphy (as introduced in Sect. 4.3) has helped to complement reconstructions
819 of past or present ice-flow dynamics (e.g., Karlsson et al., 2012; Bingham et al., 2015; Holschuh et al., 2017;
820 Ashmore et al., 2020; Luo et al., 2020; Sanderson et al., 2023). In some cases, sequences of folded isochrones
821 have been observed beneath sequences of conformable isochrones, indicative of a past sudden change from
822 fast to slow ice flow (e.g., Conway et al., 2002; Siegert et al., 2013; Kingslake et al., 2016). To obtain more
823 complex information on past ice-dynamic changes falls into the realm of applying numerical modelling, which

824 is taken up in Sect. 5.6.

825 An important outcome of most ice flow is that the ice crystals themselves develop a preferred orientation,
826  typically termed anisotropic crystal-orientation fabric, which may then influence the direction-dependent
827 propagation speed of radio waves through ice (Gow and Williamson, 1976; Robin and Millar, 1982; Fujita et
828  al., 1999; Matsuoka et al., 2003; Eisen et al., 2007; Drews et al., 2012; Jordan et al., 2020; Jordan et al., 2022).
829  Studies have reconstructed and constrained the mechanical anisotropy of ice and histories of ice deformation
830 by calculating the travel-time difference for IRHs across intersecting RES profiles where the radio waves have
831 been polarised in different directions (e.g., Fig. 8g; Ershadi et al., 2022; Jordan et al., 2022; Gerber et al., 2023;
832  Zeising et al., 2023). A special case of isochrone folding due to changes in ice-crystal fabric occurs at ice
833  divides, where upward-pointing folds termed Raymond Arches (Fig. 8h) form due to the interplay of the
834  strain-rate dependence of ice viscosity, which leads to stiffer ice beneath the divide, slowing isochrone
835 thinning down relative to the flanks (Raymond, 1983; Vaughan et al., 1999; Martin et al., 2009; Hindmarsh et
836 al., 2011; Matsuoka et al., 2015). The special geometry of these isochrone arches has been used to infer local

837 ice-flow history including the onset of divide flow (Conway et al., 1999; Kingslake et al., 2016), divide
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838 migration (Nereson et al., 1998; Martin et al., 2009; Schannwell et al., 2019) and ice-thickness changes (Drews
839  etal, 2015). With stable ice-divide positions over extended periods of time, these arches can evolve further
840 into double-peaked Raymond Arches, as observed (Drews et al.,, 2013) and simulated by incorporating
841 anisotropy into the ice-flow models (Pettit et al., 2007; Martin and Gudmundsson, 2012; Martin et al., 2014).
842 In terms of efforts to trace isochrones widely across the Antarctic ice sheets, Raymond Arches have the
843  greatest relevance in how they affect site selection for deep ice cores that are ideally used to assign ages to
844 Antarctic-wide isochrones (as introduced in Sect. 4.4). The relative thinness of isochrones at the apex of
845 Raymond Arches implies that better resolution age-depth records reaching further back in time would be

846 obtained around the flanks, rather than on the apexes, of ice divides where arches are present.
847 5.5 Applications of internal architecture complementary to radiostratigraphy

848  The basal ice of Antarctica and Greenland is typically characterised by an echo-free or low-backscatter zone
849 lacking coherent layered reflections, termed an echo-free zone (EFZ) in early observations (Drewry and
850 Meldrum, 1978; Robin and Millar, 1982; Fujita et al., 1999). With modern RES systems, this zone now appears
851 as a basal unit in which IRHs are often warped, folded and winnowed out, and consequently lack coherent
852 reflections (Drews et al., 2009), but even without traceable radiostratigraphy this architecture contains useful
853  information about ice properties and origins. With the progressive enhancement of RES-system range
854 resolution, a variety of reflection sub-units distinctly standing out from the otherwise low-backscatter zone
855 have been identified (e.g., Fig 8i; Bell et al., 2011; Bell et al., 2014; Wrona et al., 2018; Ross et al., 2020; Lilien
856 et al., 2021; Franke et al., 2024). Some of these features manifest as zones with nearly continuous high
857 backscatter spanning several hundred metres in thickness. Some features drape over mountainous subglacial
858 regions (e.g., in Antarctica’s Gamburtsev Mountains and Jutulstraumen drainage basin; Bell et al., 2011;
859 Wrona et al., 2018; Franke et al., 2024), while others build plume-like structures within the cores of englacial
860 folds (e.g., in northern Greenland and Antarctica's Institute Ice Stream; Bell et al., 2014; Ross et al., 2020).
861 These basal units are likely of different origins and exhibit different dielectric properties compared to their
862 low-backscatter surroundings, offering insights into potential formation mechanisms. Current hypotheses
863 include strong deformation on the micro-scale by ice dynamics (Drews et al., 2009), freeze-on of subglacial
864 water at the ice base (Bell et al., 2011; Creyts et al., 2014; Leysinger Vieli et al., 2018), and the incorporation
865 of point reflectors (e.g., basal sediment; Winter et al., 2019b; Franke et al., 2024), as well as ice flowing over
866 regions with changes in basal friction (Wolovick et al., 2014; Wolovick and Creyts, 2016) or convergent flow
867  (Bons et al., 2016; Ross et al., 2020). The presence of these basal units can influence the rheological
868 properties and fabric structure of the ice column, as well as impact the continuity of climatic records,
869 highlighting their significance for ice-core drilling projects and ice-flow-modelling endeavours (Bell et al.,

870 2014; MacGregor et al., 2015a; Panton and Karlsson, 2015).

35



https://doi.org/10.5194/egusphere-2024-2593
Preprint. Discussion started: 1 October 2024 EG U
sphere

(© Author(s) 2024. CC BY 4.0 License.

871 Buried surface crevasses imaged in RES data have been used as key evidence for timing the shutdown of
872 Kamb Ice Stream (Retzlaff et al., 1993; Jacobel et al., 2000; Smith et al., 2002; Catania et al., 2006) and the
873 reorganisation of flow through Whillans Ice Stream (Conway et al., 2002). The locations and geometry of
874 basal crevasses formed near the grounding line (Fig. 8j) have also been used to identify previously floating
875 ice, and time the formation of ice rises and ice-flow reorganisation during the Holocene in Antarctica’s

876  Weddell Sea Sector (Kingslake et al., 2018; Wearing and Kingslake, 2019).

877 Finally, some particularly bright isochrones have been used to constrain the timing of past volcanic eruptions
878  and constrain the ranges of their tephra fallout. Most such reflectors are relatively bright through chemical
879  signatures alone (e.g., Welch and Jacobel, 2003), but a particularly prominent isochrone, ~30 dB stronger
880 than other typical isochrone-reflection strengths, and thus interpreted as containing physical tephra
881 fragments in addition to chemical residues, was mapped and interpreted by Corr and Vaughan (2008) to
882  demonstrate a volcanic eruption occurred ~2000 years ago in West Antarctica and covered much of the Pine

883 Island Glacier basin (Fig 8k).
884 5.6 Using isochrones in ice-sheet models

885 Ice-flow models of different complexities comprise the foremost tools for projecting future ice-sheet and
886 glacier evolution (e.g., Gagliardini et al., 2013; Cornford et al., 2015; DeConto and Pollard, 2016; Seroussi et
887  al., 2020). Incorporating radiostratigraphic data into ice-sheet models provides a means for validation,
888  improves their calibration and might be essential for making more robust projections by models seeking to
889 constrain ice-sheet evolution over the past few centuries to the late Quaternary (Hindmarsh et al., 2009;
890 Leysinger Vieli et al., 2011; Holschuh et al., 2017; Born and Robinson, 2021; Sutter et al., 2021). Palaeo-proxy
891 records such as exposure-age dating (Brook and Kurz, 1993; Mackintosh et al., 2014; Hillebrand et al., 2021),
892  grounding-line reconstructions (Bentley et al., 2014; Wearing and Kingslake, 2019) or estimates of past sea-
893 level highstands (Dutton et al., 2015) provide invaluable snapshots of ice-sheet variability on local, regional
894 and continental scales (Lecavalier et al., 2023, present a state-of-the-art database), but their interpretation
895 remains challenging in terms of attribution of ice volume, and changes to the grounding zone and ice
896  elevation. Dated radiostratigraphy, on the other hand, contains detailed information on the evolution of ice
897  flow on the relevant timescales (as compiled for today in Sect. 4.5) and thus provides a much-refined
898  calibration target bridging gaps in between snapshot proxy data. Although the theoretical link between ice
899  flow and isochrone geometry has been established for steady tube flow of an ice sheet (Parrenin and
900 Hindmarsh, 2007), the general 3D and transient case remains far more challenging. In this section, we
901 overview recent developments in ice-sheet modelling that incorporate or exploit isochronal data from RES

902 surveys.
903 5.6.1 Modelling past climate and ice-dynamic changes
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904 Radiostratigraphy is an ideal tuning target for ice-sheet models on continental, regional (catchment) and local
905  scales, because it inherently records the history of the ice flow as well as its response to changing climate
906 conditions in its geometry. As opposed to traditionally-employed tuning targets such as surface flow, ice-
907  sheet geometry or ice volume, which only represent snapshots of ice-sheet evolution, radiostratigraphy
908 provides a 3-D structure which has been formed by the transient palaeo-evolution of the ice sheet. Modelling
909  isochronal geometry and age is technically relatively straightforward, with the main challenge being
910 pervasive uncertainties in boundary conditions (e.g. climate forcing and geothermal heat flux) and the
911 intrinsic uncertainties of ice-sheet models due to their parameterisations of physical processes (Sutter et al.,
912 2021). Isochrones in RES data, age-depth profiles in ice cores and the isotopic content of ice sheets have
913 been modelled either by employing Lagrangian (Sutter et al., 2021) or semi-Lagrangian (Tarasov and Peltier,
914 2003; Clarke et al., 2005; Goelles et al., 2014) advection or isochronal models (Born, 2017; Rieckh et al., 2024).
915 Models that simulate stratigraphy can thus be used to explore the effects of palaeoclimate evolution on ice-

916 dynamic changes, such as marine ice-sheet instabilities or the evolution of ice-sheet drainage systems.

917  Continental-scale ice-sheet models employing approximations of the full-Stokes equations have allowed the
918 computation of ice flow on time scales of centuries to millions of years, albeit at the cost of resolution, which
919 is usually ~5—40 km (Pollard and DeConto, 2009; Golledge et al., 2015; Sutter et al., 2019; Albrecht et al.,
920  2020; Seroussi et al., 2020). While these relatively coarse grid sizes (compared to applications of full-Stokes
921 models; e.g. Zhao et al., 2018) preclude a meaningful interpretation of small-scale processes that influence
922 radiostratigraphy (e.g. local freezing, melting, bedrock features etc.), large-scale models have the advantage
923  that they incorporate the whole thermomechanically-coupled ice-sheet system and its response to changing
924 climate conditions. Consequently, large-scale models are also the main tools for projections of sea-level

925 contributions from the Antarctic and Greenland ice sheets (e.g., Goelzer et al., 2020; Seroussi et al., 2020).

926  The analysis of isochrones to inform on past ice flow need not be limited to the grounded parts of an ice
927 sheet and has been extended to ice shelves (VisSnjevi¢ et al., 2022; Moss et al., 2023), ice rises (Goel et al.,
928 2018; Goel et al., 2024), and the ice-rise/ice-shelf system (Henry et al., 2024). In these studies, isochrones
929 have served as valuable resources for reconstructing both the surface and/or basal mass balance of ice
930  shelves and ice rises using forward and inverse modelling along the flowline (in 2D), and for investigating
931 rheological properties of ice rise/ice shelf systems in 3D (Henry et al., 2024). Extending this approach to
932  include the past ice-shelf evolution and linking the isochronal structure to its grounded counterparts remains
933  challenging due to the lack of tie points to dated isochrones and a lack of observable isochronal structure

934  across the grounding line.
935  5.6.2 Model integration of isochronal data
936 A range of models has been used to calculate the age-depth relationship in ice over both large and small

937 portions of Antarctica and compare this with existing radiostratigraphies; an exercise that can offer valuable
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938  insights into ice-sheet processes and how these are represented in ice-sheet models (Fig. 9). When
939  integrating isochronal data in models, multiple factors play a role in the choice of model set up, such as the
940  size of the area of interest (e.g. regional or continental) and the type of flow regime present (e.g. dome,
941 vertical shearing, extension). Various types of flow regime are found in Antarctica, ranging from vertical
942  compression at domes moving to vertical shear and finally to longitudinal extension in ice streams and ice
943  shelves. Consequently 1D, 2D or 3D models might be the optimal choice to simulate the age or stratigraphy
944 of ice, with 2.5D models, i.e. 2D models that take into account some aspects of a third dimension, providing

945  another option (Chung et al., 2024).

946 1D models typically assume negligible horizontal flow, making simplifying assumptions such as a steady-state
947 velocity field and the local layer approximation (Waddington et al., 2007, provide guidelines on its
948 applicability) and have predominantly been used at domes such as Dome C (Parrenin et al., 2017; Lilien et al.,
949 2021; Chung et al., 2023) and Dome F (Obase et al., 2023; Wang et al., 2023), where vertical compression
950 dominates. Dated isochrones have been used in multiple studies to constrain 1D age-depth models of
951 different complexity to determine millennial-scale accumulation rates in Antarctica (e.g., Leysinger Vieli et
952 al., 2004; Siegert and Payne, 2004; MacGregor et al., 2009; Karlsson et al., 2014; Koutnik et al., 2016; Cavitte
953 et al., 2018; Zhao et al., 2018; Ashmore et al., 2020; Bodart et al., 2023; Sanderson et al., 2024) and retrieve
954 horizontal flow velocity from 2D isochrone architecture (Eisen, 2008). While most such studies have been
955 restricted to using steady-state due to temporal limitations in available data, some models have allowed for

956 temporal changes in boundary conditions (Callens et al., 2016; Parrenin et al., 2017; Chung et al., 2023).

957 3D modelling of ice-rise stratigraphy (Henry et al., 2024) has provided a step towards constraining long-term
958  simulations in coastal areas. The influence of model physics on this stratigraphy was first investigated in 2D
959 idealised studies of Raymond arches (Pettit and Waddington, 2003; Pettit et al., 2007; Martin and
960 Gudmundsson, 2012), with Hindmarsh et al. (2011) extending this work in 3D idealised simulations.
961 Modelling studies have examined the influence of Glen’s flow law exponent on Raymond-arch amplitude
962 (Pettit and Waddington, 2003; Martin et al., 2006; Martin and Gudmundsson, 2012). This methodology has
963  been extended to 2D simulations of real-world ice rises and domes in coastal Antarctica with the comparison
964 of modelled and observed Raymond arches at ice divides (Martin et al., 2009; Hindmarsh et al., 2011; Pettit
965 et al.,, 2011; Martin et al., 2014; Drews et al., 2015; Goel et al., 2018; Goel et al., 2024).

966 Isochrones have also been used to estimate ice temperature on catchment- to continent-wide scales.
967 Because the electrical conductivity of ice varies exponentially with temperature, resulting in higher dielectric
968 attenuation in warmer ice (MacGregor et al., 2007), temperature variability across the ice sheets leaves a
969  signature in the returned power of measured radio waves. To date, studies have concentrated on using
970  thermomechanical ice-sheet models to improve interpretation of RES data by using modelled temperature

971 fields to remove attenuation effects and strengthen interpretations of bed properties based on basal
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Figure 9. 3D visualisation of selected traced and dated isochrones in East And West Antarctica, and
locations where different modelling applications have been conducted. (a) 2.5 ka (black lines) and 16.5 ka
(grey lines) isochrones across the Pine Island/Thwaites Glacier catchment area (Bodart et al., 2021). (b)
2.5, 4.7 and 6.9 ka isochrones spanning Institute Ice Stream (Ashmore et al., 2020). (c) Map of Antarctic
traced and dated isochrone transects (black lines) and areas where at least one modelling study is
available (grey boxes); red boxes denote areas of the 3D visualisations. (d) Traced and dated (38, 48, 90,
160 ka) isochronal structure around Dome C from Winter et al. (2019a) and (e) Cavitte et al. (2021).
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973 reflectivity (Matsuoka et al., 2012; MacGregor et al., 2015b; Chu et al., 2021; Dawson et al., 2022). This
974  approach assumes that thermomechanical models can estimate the ice temperature field to high confidence.
975 Additionally, 1D age-depth models that incorporate a thermomechanical component (Parrenin et al., 2017;
976 Passalacqua et al., 2017; Obase et al., 2023) have been used to infer basal melt rates in Antarctica close to
977  domes. Temperature modelling, however, can be challenging in fast-flowing areas where heat production by
978  viscous dissipation is substantial, such as along shear margins or ice streams. As efforts to reduce ambiguity
979  in the direct inference of temperature from RES reflection strength develop, it will become possible to
980  assimilate RES measurements of temperature to improve model performance, as has been done with other
981 direct and indirect observations of subsurface temperature (Pattyn, 2010; Van Liefferinge and Pattyn, 2013).
982  While a combined evaluation of model temperature and velocity data from RES data has been performed
983  qualitatively (Holschuh et al., 2019), there is a growing desire to incorporate both radiometric and structural

984  information in a formal modelling framework.
985 6 Future directions

986 In this review, we have considered how the internal architecture of the Antarctic ice sheets, and in particular
987  their radiostratigraphy, is increasingly being exploited to elucidate ice and climate history. The ultimate aim
988  of these endeavours is to constrain in ever finer detail the rates, locations and underlying processes of past
989  ice-sheet changes in response to climate forcing. This is crucial to inform and reduce uncertainties in models
990 projecting future ice-sheet changes and concomitant global sea-level rise. Yet, despite the progress reported
991 above, Antarctica’s internal architecture remains an underutilised resource for this purpose. In this final
992  section, we set out recommendations for future research activities to be underpinned by an expanded and
993  accessible database of Antarctica’s internal architecture. Firstly (Sect. 6.1), we present a pathway towards
994  expanding the volume of radiostratigraphy across Antarctica towards the goal of building a 3-D age-depth
995 model of the ice; secondly (Sect. 6.2), we set out a number of future science challenges that a comprehensive
996  database of Antarctica’s englacial architecture can help to address; and finally (Sect. 6.3), we make some

997 recommendations for community actions to facilitate the delivery of these goals.
998 6.1 Pathway to expanding Antarctic radiostratigraphy

999 We have identified throughout this review a clear need to expand significantly the traced radiostratigraphy
1000 across the Antarctic ice sheets, covering both more area and a greater depth range through the ice. To

1001 achieve this requires the following steps:
1002 6.1.1 Numerical modelling to guide where radiostratigraphic constraints are most needed

1003  We recommend that future targets for tracing radiostratigraphy across different regions of Antarctica, from

1004  existing RES data or guiding new RES surveys, are informed directly by the needs of the ice-sheet modelling
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1005  community to benchmark and constrain their models. Modelling can guide location-based suggestions (e.g.
1006  torecover more radiostratigraphy away from ice divides and into more dynamic regions where simple model
1007 heuristics may misrepresent englacial conditions), or require targeting of particular time periods (e.g.
1008  targeting older isochrones that could advance understanding of glacial-interglacial transitions, amongst

1009  others).
1010  6.1.2 Systematic assessment of the potential of existing data for tracing radiostratigraphy

1011 For this review, we have compiled the spatial coverage of existing published RES data across Antarctica that
1012 have high-quality (GNSS) navigation and were acquired digitally, and often coherently (Figure 3l). In principle,
1013  this demonstrates the present coverage of RES data from which radiostratigraphy could be extracted and
1014 mapped, and indicates that RES datasets range and interconnect widely across both the East and West
1015  Antarctic ice sheets. While this presents a positive message of the potential for pan-Antarctic tracing of
1016 radiostratigraphy, whether and how much radiostratigraphy can be extracted so widely across the ice sheets
1017  from all of these profiles remains unknown. Not all of the RES tracks necessarily contain traceable
1018 radiostratigraphy, for reasons that range from inherent RES-system limitations upon data acquisition,
1019  decisions made in the processing of the data that are available (see Sect. 4), to the presence of physical
1020 phenomena in the ice that disrupt radiostratigraphy or steeply sloping basal topography that makes

1021 isochrones too steep to be traced (Sect. 5).

1022 A community effort is therefore required to investigate the full potential for mapping radiostratigraphy
1023  through these existing datasets. A useful first step, which was beyond the scope of this paper, would be to
1024 apply the ILCI to all of the modern datasets presented in Figure 3| to assess their viability for tracing
1025 isochrones across different regions, i.e., to produce a more comprehensive version of Figure 6 expanded to

1026  all the datasets discussed in Sect. 3.
1027  6.1.3 Reprocessing of existing datasets to accentuate internal architecture

1028 While the visibility of internal architecture is partly determined by the initial acquisition parameters and
1029  varies across Antarctica (Sect. 3), the information visible in RES data is also influenced significantly by the
1030 processing applied to the data after they have been acquired (Sect. 4.1). Where the raw data exist, the data
1031 can be reprocessed, which may significantly enhance the value of some existing datasets for tracing their
1032 radiostratigraphy. For much of Antarctica’s RES data, the only processing that has been applied was
1033 implemented to emphasise and pick the bed echo. In some cases, the same processing accentuated
1034 radiostratigraphy in parallel but, in others, it has suppressed the imaging of isochrones or induced artefacts
1035 in the radargrams that have hampered or precluded any tracing of radiostratigraphy. Therefore, where
1036  existing data lack distinct isochrones in locations identified by numerical modelling as optimal candidates for
1037 radiostratigraphy, we recommend, where feasible, firstly reprocessing the raw data to enhance internal
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1038  architecture. Such an initiative is currently being trialled as part of the Open Polar Radar project using AWI,

1039 BAS and USA-acquired RES data across Antarctica (Paden et al., 2021).
1040  6.1.4 New data acquisition

1041 Importantly, new RES data for radiostratigraphic constraints need only be acquired where the processes
1042  described above have highlighted that existing data cannot provide the radiostratigraphic constraints

1043 required by modelling applications. Such areas will fall into three categories:

1044  (a) Regions that are still unsurveyed or undersurveyed. Clear examples of this situation, from Figure 3l,

1045 comprise data gaps > 100 km wide in East Antarctica in Enderby Land; between South Pole and Vostok;
1046 and between Wilkes and Kemp lands; and we also note that the Filchner-Ronne Ice Shelf does not have
1047 dense survey cover.

1048  (b) Regions where RES surveys have occurred but where the existing data — even after reprocessing — do not

1049 contain any internal architecture. These regions typically comprise those last surveyed by RES several
1050 decades ago with less sophisticated RES systems. From Figure 3, we identify the Siple Coast region of West
1051 Antarctica as one such data gap. Although this region was intensively studied and surveyed during the
1052 1980s and 1990s, its last major RES surveys predate widespread use of coherent RES systems.

1053  (c) Regions where RES surveys have occurred but where the existing data — even after reprocessing — contain

1054 some internal architecture, but which does not meet modelling needs. Likely scenarios here are that age-
1055 depth information is needed at finer resolution than is retrievable in the existing data, or there is a
1056 requirement to recover radiostratigraphy deeper into the ice than has been imaged by the existing survey.
1057 This situation is common amongst existing datasets that were acquired for projects focussed on other
1058 scientific priorities. For example, where some airborne RES datasets have been acquired in combination
1059 with potential-field data (gravity and magnetics), the requirement to fly the aircraft at a stable elevation
1060 has sometimes led to poor-quality radiostratigraphy where the range from aircraft to ice surface was too
1061 large.

1062  These cases should fundamentally guide the locations, nature and platforms of any new RES data acquisition
1063 for internal architecture. As reviewed in Sect. 3, modern airborne RES systems and processing algorithms are
1064  adept at detecting multiple isochrones over large regions. In some cases, such as through regions of complex
1065  topography, complex flow dynamics or a requirement for very fine resolution of isochrones over regional
1066  scales, ground-based RES systems that can typically sound more IRHs and deeper into the underlying ice may
1067  still represent the optimal tool and justify the resources required to emplace deep-field parties. However,
1068 uncrewed aerial vehicles capable of carrying RES systems (Arnold et al., 2020; Teisberg et al., 2022), when

1069 routinely operationalised, may offer a cheaper and safer solution over remote and challenging terrains.
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1070  6.1.5 Advances in deep learning to expedite the extraction of internal architecture from RES data

1071 As reviewed in Sect. 4, all of the present radiostratigraphy mapped across Antarctica (Fig. 7) has been
1072 generated in the absence of a fully automated isochrone-picking algorithm. Although substantial progress
1073 has been made, the need for frequent manual intervention has slowed the generation of pan-Antarctic
1074 radiostratigraphy. The greatest promise for a step-change in our ability to trace radiostratigraphy significantly
1075  faster lies in the application of deep-learning methods to the challenge. As we discussed in Sect. 4.2, deep
1076 learning has so far only been implemented to tracing shallow isochrones in the first few hundred metres of
1077 ice, which are typically more continuous over many 100s of km. Tracing isochrones deeper in the ice column
1078 s challenged by IRH fading, unconformities, and/or merging and splitting of isochrones as ice flows over or
1079 around large bedrock obstacles. However, the significant volume of traced radiostratigraphic data now
1080 assembled to date across Antarctica (Fig. 7) can now contribute training data to facilitate the advance and

1081 wider application of deep learning to tracing Antarctica's deeper isochrones.
1082 6.2 Recommendations for future scientific deliverables using internal architecture
1083  6.2.1 Identification of optimal areas for retrieving new palaeoclimate records

1084  As outlined in Sect. 5.1, Antarctica’s deep ice cores have provided invaluable palaeoclimate records from
1085 both West and East Antarctica and yet there remain two outstanding directives in the quest for augmenting
1086 these existing datasets. One, presently the primary focus of the SCAR IPICS Oldest Ice programme, is to
1087 identify where a potential climate record extending further back in time than Antarctica’s current record
1088  (back to ~800,000 k.a. from Dome C; Bouchet et al., 2023) can be sampled. This would address the substantial
1089  unknown of whether Antarctica’s ice holds a direct continuous record of the mid-Pleistocene transition
1090  switch from 41-kyr to 100-kyr glacial-interglacial cycles that is inferred to have occurred between ~1.25-0.8
1091 M k.a. from marine-sediment oxygen-isotope records (Hays et al., 1976; Clark et al., 2006; Legrain et al.,
1092  2023). A second requirement is to locate sites in the Antarctic ice sheets that preserve higher-resolution
1093 palaeoclimate records of epochs than are currently represented in the already-sampled sites. In particular,
1094 regions with relatively high present or past accumulation rates can potentially preserve high-resolution
1095  climate records of the last millenia. We contend that the development of a pan-continental radiostratigraphy

1096  could form a crucial tool for identifying most future ice-core locations around Antarctica.

1097  We further recommend that attention is placed on tracing radiostratigraphy around Antarctica’s blue-ice
1098 zones which, as discussed in Sect. 5.1, have and can represent sites for retrieving ice older than 800 k.a.
1099  Targeted studies on their radiostratigraphy could improve understanding of how ice deforms to produce the
1100  sampled structures, and hence better contextualise how the ice outcropping in such regions is related to ice

1101 buried at depth in interior Antarctica.
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1102  These initiatives may be complemented by the strategic deployment of rapid-access drilling techniques that
1103  could be deployed, alongside intersections with ice cores (discussed in Sect. 5.1), to date and validate the
1104 radiostratigraphy. Rapid-access drilling (e.g., Goodge and Severinghaus, 2016; Rix et al., 2019; Goodge et al.,
1105  2021; Schwander et al., 2023) can provide borehole access into the ice for deploying sensors to record
1106 physical characteristics that correlate with RES isochrones (IceCube Collaboration, 2013; Goodge et al., 2021;
1107  Schwander et al., 2023). Additionally, rapid-access drilling allows direct sampling of ice that can be used for
1108 radiometric-age dating that can validate the radiostratigraphy (e.g., Bender et al., 2008; Rowell et al., 2023).
1109 A dedicated programme of rapid-access ice drilling coordinated with AntArchitecture could therefore both
1110 help to validate radiostratigraphic age-depth models, and provide a relatively quick and cost-effective

1111 methodology for targeting potential future sites for both vertical and horizontal ice coring.
1112 6.2.2 Reconstruction of surface mass balance — millennial timescales

1113 In Sect. 5.2, we discussed that tracing deep (>200 m below the ice surface) isochrones across the Antarctic
1114 ice sheets enables reconstruction of changes in surface mass balance over the past several millenia. While
1115  the few existing studies have mostly focussed at or near ice divides, where horizontal flow and its associated
1116  complexities can mostly be neglected, an expanded pan-continental radiostratigraphy that more
1117  comprehensively spans and connects all of Antarctica’s central divide regions will enable these simple
1118  applications to be expanded, and can provide a spatially widespread record of how surface mass balance has
1119 varied regionally at millennial timescales. Such a record would help us to understand the pervasiveness of
1120  synoptic snow-accumulation patterns (e.g., Le Meur et al., 2018; Pauling et al., 2023), and could inform
1121 scenarios of future plausible surface-mass-balance variability to be incorporated into model projections (see
1122 Lenaerts et al., 2019, for a review). In turn, such refined surface-mass-balance reconstructions would greatly
1123  improve the climate forcings employed by palaeo-ice-sheet-modelling studies and increase confidence in

1124 their conclusions.
1125  6.2.3 Reconstruction of surface mass balance — historical timescales

1126  To reduce uncertainties in near-term (i.e., “next 200 years) projections of Antarctica’s future evolution, and
1127  thereby improve global sea-level projections, there is a critical need to constrain further the regional climate
1128 models (e.g., Pratap et al., 2022) that are fundamental to forcing ice-sheet models. Important validation for
1129 these models comes from the historical record provided primarily by ice cores, but also by radiostratigraphy
1130  sounded in the upper few 100 m of the ice sheet, hereafter termed shallow radiostratigraphy. Neither this
1131 review, nor the AntArchitecture community to date, has focussed on shallow IRHs. However, the majority of
1132 RES surveys depicted in Figure 3 also detected shallow radiostratigraphy, and many additional surveys have
1133 been undertaken over the past decades across Antarctica using a range of airborne and ground-based
1134 platforms that focussed on detecting shallow isochrones, often for local, but sometimes also for more

1135 regional, scientific applications (e.g., Medley et al., 2013; Medley et al., 2014; Konrad et al., 2019; Kowalewski
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1136 et al., 2021; Cavitte et al., 2022). We therefore propose that an important future deliverable should be a
1137  “shallow” of pan-Antarctic radiostratigraphy complementary to the deeper version that has primarily formed
1138 the focus of this review. In parallel with the techniques and philosophy we have discussed for dating deep
1139  isochrones across Antarctica, shallow radiostratigraphy can be dated from intersections with shallow-ice-
1140  core records; and the product could be progressively refined by using it to identify where future shallow-ice
1141 cores should be drilled to provide finer dating control. It is likely that the overall task of tracing shallow
1142  isochrones across Antarctica could benefit from the application of machine learning to isochrone tracing
1143 sooner than for deeper isochrones, as the former are typically less disrupted by ice dynamics and are more
1144 continuous. Indeed, shallow isochrones have already been traced with deep learning with some success in

1145 several studies (e.g., Dong et al., 2021; Rahnemoonfar et al., 2021; Yari et al., 2021).
1146 6.2.4 Estimate geothermal heat flux from radiostratigraphy

1147  The studies mentioned in Sect. 5.3 speak to the significant potential for Antarctica’s radiostratigraphy to be
1148 used as a resource for constraining variations to the continent’s geothermal heat flux, which remains
1149  enigmatic (Burton-Johnson et al., 2020). As exemplified by Fahnestock et al. (2001b) across the Greenland
1150 Ice Sheet, and more locally in Antarctica by Jordan et al. (2018), it is possible to quantify basal melt with
1151 isochrones by calculating how much melting is required to draw isochrones down towards the base. However,
1152  the relationship between isochrone geometry and basal melting is complex, multi-dimensional and partly
1153 controversial (Leysinger Vieli et al., 2007; Carter et al., 2009; Bons et al., 2021; Wolovick et al., 2021b;
1154  Wolovick et al., 2021a). For a continental-scale application of this technique, a more detailed pan-Antarctic
1155 radiostratigraphy is needed. The optimal data product to invert for geothermal heat flux would be the most
1156  widespread tracings of the deepest undisrupted isochrones across the ice sheets, which is challenging
1157 because deeper isochrones are harder to image and significant drawdown of isochrones where basal melting
1158 is high can prohibit widespread tracing (e.g., Ross and Siegert, 2020). Nevertheless, there is significant
1159 potential to use deep isochrone geometry as further calibration for numerical models seeking to invert

1160  geothermal heat flux (Pattyn, 2010; Van Liefferinge and Pattyn, 2013; Burton-Johnson et al., 2020).
1161 6.2.5 Comprehensive mapping of basal-ice units and deep-isochrone geometry

1162 In Sect. 5.5, we noted that in some regions of the Antarctic ice sheets, RES data indicate that the deeper ice
1163 has distinctive physical characteristics compared with the ice above, i.e., where this deeper ice obscures or
1164 precludes imaging of IRHs, and where distinct basal-ice units exist around which the overlying IRHs have
1165 become folded or warped. An improved understanding of the distribution of these features across Antarctica
1166  is important for several reasons. Firstly, it would identify where deep-ice palaeoclimate records would be
1167 compromised by ice deformation or basal melting, thus critically informing ice-core site identification.
1168 Secondly, it would act as an observationally-informed broad-scale indicator of which areas of the ice sheet

1169  are prone to basal melting and hence inform mapping of geothermal heat flux. Thirdly, it would provide
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1170  information towards a better understanding of how the rheology of Antarctica’s ice varies, what are the
1171 causes of this variation, and how these effects impact on Antarctica’s ice dynamics. Some of these issues
1172 would be informed by some specific rapid-access drilling into basal-ice units, and a comprehensive mapping
1173  exercise of basal-unit distribution would inform which targets might be most easily accessed. In addition to
1174 mapping basal units themselves, a complementary deliverable could be to map the degree to which deep-
1175  ice radiostratigraphy follows or diverges from the ice-bed interface across Antarctica. This exercise would
1176  inform modelling aimed to deconvolve how much isochrone geometry is affected by basal topography versus
1177  ice dynamics versus basal melt. This, in turn, will better inform projections of the ice sheets’ future with

1178 radiostratigraphic constraints.
1179 6.2.6 Advance knowledge of volcanic activity and fallout across Antarctica

1180 Given that most isochrones traced across the Antarctic ice sheets manifest changes to acidity, and that some
1181 of the brightest have been linked to precipitated fallout from volcanic eruptions within and beyond Antarctica,
1182  there is significant potential to use isochrones across Antarctica more comprehensively to trace the spatial
1183  distribution of volcanic fallout from the numerous past eruptions that have been identified by chemical
1184  analyses of Antarctica’s ice cores (Narcisi and Petit, 2021). Despite many tephra and cryptotephra
1185  (microscopic layers of volcanic ash) having been detected in Antarctica’s ice cores, few have explicitly been
1186  traced widely beyond the ice cores using radiostratigraphy, and most isochrones that have been linked to
1187 past volcanic events have been used as time markers for other purposes, e.g. calculating past accumulation,
1188 rather than having been traced to focus on the origins and properties of the volcanic events themselves (e.g.,
1189  Jacobel and Welch, 2005; Bodart et al., 2023). There is therefore significant potential, already with existing
1190  data, to use Antarctica’s radiostratigraphy to trace the geographical distribution of volcanic fallout from
1191 numerous eruptions that have been detected in ice-core records, and this information may be used to help
1192 trace further the origins and nature of past eruptions beyond that which can be gleaned solely from the ice-
1193  core chemistry. This objective would complement the ongoing activities and recent recommendations for

1194  future research on volcanism presented by the SCAR AntVolc group (Geyer et al., 2023).
1195  6.2.7 Development of a new model benchmark for the Antarctic ice sheets

1196 As reviewed in Sect. 5.6, the vast majority of ice-sheet models presently employed for ice-sheet
1197 reconstruction and future projections are initialised with present-day snapshots of the ice-sheet state (e.g.,
1198  surface velocity, ice thickness). An Antarctic-wide radiostratigraphy would provide a much better
1199  initialisation and tuning target for ice-sheet models, as it inherently records both ice-flow history and the ice
1200  sheet’s response to changing external forcings (e.g., atmospheric and ocean conditions) — all within a tangible
1201 set of physical horizons that can be reproduced by existing models. The development of an Antarctic-wide

1202 radiostratigraphy is therefore a primary scientific objective for SCAR’s AntArchitecture community.
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1203 6.3 Community actions

1204  The greatest challenge for attaining the deliverables described above is how to foster and maintain
1205  engagement between scientists working across numerous different disciplines and operating at institutions
1206 spread across Earth. Even within the scientific community who self-describe as RES, radar, or even
1207 radioglaciology specialists, this challenge is innate. As we have reviewed, the history and ongoing practices
1208  of Antarctic RES surveying encompass multiple agencies whose foci are typically on medium-term projects of
1209  a few years’ duration. The intent of this review was to communicate to a wider audience (both within and
1210 beyond the radioglaciology community) the baseline availability and potential of the present archive of
1211 existing RES data spanning both East and West Antarctica’s ice sheets, and to showcase their value for

1212 tackling major science questions concerning Antarctica’s ice and climate history and future.

1213 A major challenge to greater progress in the study of Antarctica’s internal architecture has been the lack of
1214  acommon framework for archiving RES data and metadata between different operators and potential users.
1215  The establishment of the FAIR (Findable, Accessible, Interoperable, and Reusable; Wilkinson et al., 2016)
1216  data-exchange guidelines has provided a clear framework making possible the release of RES data in open-
1217  access repositories, facilitating open-access releases of some of the datasets discussed in Sect. 3. These
1218 releases have been accompanied by interactive data portals and FAIR-compliant data standards, including
1219 rich metadata relating to the acquisition, processing and quality of the data, and provide examples for
1220 releasing further data in the future. We recommend that the next significant community data focus should
1221 be on developing common protocols for processing RES data, formatting and sharing raw data files, and in
1222  some cases reprocessing existing data to facilitate much greater interoperability of the data moving into the
1223  future. This recommendation falls into the remit of the Open Polar Radar project currently being trialled with
1224 AWI, BAS and USA-acquired RES data (Paden et al., 2021) but, specifically with regards to publishing and
1225 sharing future radiostratigraphy datasets, there remains a need to set a common standard. We suggest a

1226 standardised structure here in Appendix 1.

1227 A core principle moving forwards with our science must also be on improving sustainability, given the
1228  significant resource and carbon impact of using aircraft and establishing deep-field camps in Antarctica.
1229  When proposing new Antarctic RES acquisition, we suggest that it first be demonstrated that it is needed,
1230  following the procedures laid out in Sect. 6.1. Although crewed airborne and ground-based RES platforms
1231 currently presently continue to provide the most reliable options, where new data are clearly needed n
1232 pathways for improving the sustainability of data collection are opening up with the development of

1233 uncrewed aerial vehicles capable of hosting RES systems (Arnold et al., 2020; Teisberg et al., 2022).

1234 Finally, we call for continued efforts to build and enhance the inclusion and diversity of researchers involved
1235 inacquiring and analysing RES datasets towards understanding better Antarctica’s past and future. This paper

1236 has benefitted immeasurably from including perspectives from authors spread across the world, navigating
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1237  different stages of their careers, and identifying as different genders, ethnicities, nationalities and religions;
1238  and from including the expertise of field- and data-focussed scientists in the same space as the expertise of
1239 practitioners whose focus is on applying the data and integrating them into numerical models. We conclude
1240 by reiterating our core scientific ambitions for AntArchitecture above: to build a pan-Antarctic database of
1241 isochrones that are accessible, sustainable over the long term, and useful for multiple scientific applications
1242 across multiple users, for example ice-sheet modellers and the substantial ice-core community. Alongside
1243  this, and of equal importance, the community that is active both in acquiring and analysing Antarctica’s

1244  internal architecture must continue to diversify.
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2183  Appendix: Suggested standardised structure for the publication of traced IRHs across Antarctica

2184 For publishing future radiostratigraphy datasets, we recommend scientists to follow the structure and
2185 naming convention specified in Table Al for the first ten columns, after which additional columns may be

2186  added at the discretion of the scientists.
2187 In the metadata, we recommend that authors also provide at least the following information:

2188  (a) Name(s), version(s) and frequency of RES system(s) used.
2189  (b) Value for speed of radar wave in ice used to convert IRH depths to metres below the ice surface.
2190  (c) Value for any firn correction applied.

2191 (d) The coordinate system(s) used following the World Geodetic System 1984 datum and appropriate
2192 projection (i.e., EPSG:3031 for Antarctica).

2193  (e) If applicable, the type of radar product (e.g. waveform) on which the IRHs were traced.

2194  (f) The uncertainties associated with either the IRH age or depth based on RES system resolution and IRH
2195 picking, amongst others. Ideally, if the metadata vary throughout the dataset, then such information should

2196 be attached to each data point as additional columns to those shown in Table Al.

2197  (g) The source of age control (i.e., ice-core age scale, model).

2198  Additional information may also be added to the metadata, such as the type of processing used to extract
2199  the IRHs (if different from the processing used to trace the bed); the distance in the along-track direction
2200  along the RES transect for each data point; a flag number indicating whether the ice thickness, surface and
2201 bed elevations come directly from the along-track radar or from an interpolated gridded product, if
2202  applicable; the spatial resolution (or spacing distance between each data point); the dating method (s) used
2203  to provide an age for each IRH; and the type of software and tools used to pick the IRHs. Missing values in
2204  the float data should be set to NaN and specified in the metadata. We also recommend the use of open-
2205 access and FAIR data formats for storing the data, such as CSV or tabular data file (or netcdf if CSV or tabular
2206  data file is not suitable) where metadata can be easily embedded together with the data. Finally, we
2207 recommend scientists to publish their data in open-access repositories alongside the paper publication, with
2208  a DOI that can be linked back to the original paper. Together, these suggested protocols will ensure the
2209 longevity of the data products for future applications and enable faster retrieval thereof, particularly with

2210 regards to the large data volumes expected from automatic IRH tracking algorithms in the future.
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2211
2212

2213

2214

2215

2216

2217

EGUsphere\

Table Al. Suggested standardised structure for the publication of IRH datasets associated with the
AntArchitecture community effort following FAIR data standards.

(For EGUsphere formatting, this 12-column table is presented across two rows.)

Table rows 1-6:

Line ID or | Trace Longitude Latitude | X coordinate | Y coordinate
transect | timestamp | (decimal (decimal | (EPSG:3031; | (EPSG:3031;
name (GPS time) | degrees) degrees) | metres) metres)
Table rows 7-12
IRH IRH (two- IRH depth | Ice Surface Bed
name way travel- | below ice thickness | elevation elevation
time surface (metres) | (metres (metres
through ice | (metres) a.s.l.) a.s.l.)
only)
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