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Abstract—The limiting factor in the application of high-
accuracy quantum molecular simulations to large systems has
been the associated high computational costs in terms of both
compute power and memory. In this paper we explore the
use of various BLAS precision modes (BF16, TF32, and Com-
plex 3M) in DCMESH (divide-and-conquer Maxwell-Ehrenfest-
surface hopping), a framework utilized for the study of light-
matter interaction. On a single stack of the Intel® Data Center
GPU Max Series 1550, we are able to achieve a speedup of 1.35x
while retaining accuracy in key output parameters such as the
number of excited electrons, current density, and kinetic energy.
For large problem sizes, we observe speed-ups of up to 3.91x for
individual BLAS calls. Switching between BLAS precision modes
requires no source code changes (only environment variables),
and so the approach we demonstrate here could be readily
applied to other High Performance Computing (HPC) workloads
that spend a significant amount of time in BLAS calls.

Index Terms—precision, cgemm, blas, performance modeling

I. INTRODUCTION

The United States Department of Energy procured 1.8 billion
dollars in 2018 for the delivery of three exascale high perfor-
mance computing (HPC) clusters representing an exponential
increase in memory, storage, and compute power. Concurrent
with this was the accompanying effort for software modern-
ization needed in order to be able to harness thousands of
GPUs. Furthermore, exascale computing has also encouraged
increased effort to be placed on converting traditional software
frameworks to alternative precisions of FP32 or lower.

Alternative precision types such as BF16, TF32, or FP8
have become important in recent years with the explosion of
Artificial Intelligence (AI) codebases [1]. For example, large
language models (LLMs) such as Llama3 [2] or GPT-4 [3]
have emerged as widely used generative AI models that are
trained on a very large number of GPUs and then utilized
for inference purposes. The training element of LLMs which
can contain up to hundreds of billions of parameters produce
enormous demands on computing systems in terms of both
compute power and memory. If either FP64 or FP32 were
to be used for LLMs of this size, training and inference
would become impractical [4]. As a result, BF16 and FP8
precisions are used to partially alleviate these demands. The

resultant precision studies can see less than 5% accuracy loss
for some models [5]. In this paper, we explore the application
of alternative precision methods to some aspects of traditional
HPC applications.

One of the pressing issues within the domain of materi-
als modeling, and one that is fundamental to the nature of
computing in general, is the trade-off between accuracy and
performance. For the molecular dynamics (MD) community,
this is particularly important when we consider extremely large
simulations. In addition, the selection of which precision to
utilize in an MD study is contingent upon the nature of the
problem being studied. For example, in simple cases where
atomic structure is determined based on a straightforward set
of equations, single precision is likely to be sufficient [6].
However, for systems containing higher order calculations
there is a higher probability of round-off errors, and so it may
be advisable to utilize mixed or double precision [7]. In the
case of mixed precision, all important state vectors such as
particle coordinates, velocities and forces are computed and
stored in single precision, and other critical variables such
as the virial are stored in double precision, striking a balance
between improved time to solution, reduced memory footprint,
and simulation accuracy.

The key contributions of this paper are:
• We introduce the various BLAS precision models

(aka “alternative compute modes”) available in the In-
tel® Math Kernel Library (Intel® oneMKL) and the
expected performance improvement offered by each.

• We measure the impact of different BLAS precision
modes upon the accuracy of DCMESH as represented
by the number of excited electrons, current density, and
kinetic energy.

• We demonstrate the impact of each BLAS precision
mode upon the performance of DCMESH when run on
Intel® Data Center GPU Max Series hardware.

II. RELATED WORK

A. Quantum Dynamical Frameworks
While DCMESH introduces certain novel features (see Sec-
tion II-C), there are a few other frameworks which are well-
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established and widely used: Quantum Espresso (QE) [8],
the Vienna Ab-Initio Simulation Package (VASP) [9] and
QMCPACK [10].

Quantum Espresso implements plane wave density func-
tional theory in conjunction with a wide variety of pseu-
dopotentials in order to allow for the nanoscale modeling
of materials. While similar to VASP in its general function,
Quantum Espresso is open source and used within the MD
community for a wide variety of functions. While VASP is
not open source, it offers a somewhat broader assortment of
pseudopotentials which in turn enable a broader set of material
studies.

QMCPACK is a highly performant electronic structure
framework which implements a wide variety of Quantum
Monte Carlo (QMC) algorithms. By virtue of directly solving
the Schrödinger equation, QMC methods offer much greater
accuracy than traditional algorithms such as density functional
theory (as found in both QE and VASP). While this comes at
much greater computational cost, certain applications such as
electronic structure calculations require it [10].

All these frameworks support GPUs, but at the time of
writing only QMCPACK supports the Intel® Data Center
GPU Max Series – ports of VASP and QE are underway.
QMCPACK supports both mixed precision and FP64, while
VASP and QE only support FP64.

B. Reduced and Mixed Precision

Many historical explorations of FP32 were driven by large dif-
ferences in theoretical throughput on early Nvidia GPUs [11].
This transition to lower precision from traditional FP64 draws
parallels to the efforts underway today with the transition to
FP16, BF16, FP8 and below. With LLMs, high memory usage
is traditionally the bottleneck. This has been a major driving
force in transitioning to FP8 and lower for inference as a
means to greatly reduce memory demands. Furthermore, FP8
compute is often twice that of BF16 so even compute bound
workloads, such as inference with LLMs, on very large batch
sizes can benefit [1].

The utilization of lower precision for molecular dynamics
simulations has been of interest for some time. LAMMPS [7],
for example, contains a series of accelerator packages that
support specific pair styles which allow for the use of al-
ternative algorithms, precision modes, and data layouts in
order to achieve optimum performance on specific hardware.
The INTEL and GPU packages both include build options
to support single, mixed, and double floating point precision
modes. GROMACS [6] can also be compiled in either mixed
or double precision.

A new field within molecular dynamics is that of using AI
accelerated potential models trained using data derived from
Density Functional Theory (DFT) to be used in conjunction
with classical MD frameworks such as LAMMPS or GRO-
MACS to perform the scientific simulations. Two such models
are DeePMD [12], which can use FP32 or BF16 [13], and
Allegro [14], which uses FP32.

TABLE I
THEORETICAL PEAK THROUGHPUT FOR A SINGLE STACK.

Precision Theoretical Peak Engines
FP64 26 TFLOP/s Vector
FP32 26 TFLOP/s Vector
TF32 209 TFLOP/s Matrix
BF16 419 TFLOP/s Matrix
FP16 419 TFLOP/s Matrix
INT8 839 TOP/s Matrix

C. DCMESH Overview

DCMESH [15] is a novel MD framework used to perform
quantum molecular studies of light-matter interaction. The
most unique characteristic of DCMESH is its implementa-
tion of a globally-sparse and locally-dense electronic solver
with multiple time-scale splitting, and shadow dynamics in
order to achieve high scalability. DCMESH consists of a
Local Field Dynamics (LFD) portion to describe light-electron
interaction, and a Quantum Excitation Molecular Dynamics
(QXMD) portion to describe electron-atom coupling. In the
latest implementation, LFD runs on the GPU and QXMD
runs on the CPU, and CPU-GPU data transfers are minimized
through the use of shadow dynamics.

III. BACKGROUND

A. Intel® Data Center GPU Max Series

The Intel® Data Center GPU Max Series 1550 is based on
the micro-architecture previously code named “Ponte Vec-
chio” [16]. Each GPU consists of two stacks (or tiles), and
each stack consists of multiple Xe cores. Each Xe core features
eight 512-bit vector engines designed to accelerate traditional
graphics, compute and local memory. In addition, they contain
eight matrix engines that can be programmed using Intel® Xe
Matrix Extensions (Intel® XMX).

Table I [16] shows the theoretical peak for a single stack us-
ing six different levels of precision. The FP32 and FP64 peaks
are achievable using the vector engines, but achieving peak
throughput at lower precision requires use of Intel® XMX.
Making use of the dedicated matrix hardware thus provides
an opportunity for significant speed-ups: in theory, switching
from FP32 to FP16 could deliver a speed-up of 16x for matrix
operations (alongside a 2x reduction in memory footprint and
bandwidth requirements).

B. Intel® MKL Precision Configuration

Intel® MKL supports several alternative compute modes for
BLAS level-3 routines that can offer improved performance in
exchange for reduced accuracy or different numerical behavior.
Alternative modes include several low precision accelerated
modes (leveraging BF16 or TF32 computation) and 3M
complex multiplication. By default, MKL does not enable
any alternative modes; they are enabled either via dedicated
APIs or the MKL_COMPUTE_MODE environment variable. The
environment variable provides a quick means for application
developers to evaluate whether any of the alternative compute
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TABLE II
AVAILABLE BLAS COMPUTE MODES. PEAK THEORETICAL SPEEDUP IS

QUOTED RELATIVE TO FP32.

Compute Mode Environment Variable Peak Theoretical
BF16 FLOAT_TO_BF16 16x
BF16x2 FLOAT_TO_BF16X2 (16/3)x
BF16x3 FLOAT_TO_BF16X3 (8/3)x
TF32 FLOAT_TO_TF32 8x

Complex_3m COMPLEX_3M (4/3)x

modes offer performance benefits and acceptable accuracy for
the application at hand. Table II provides an overview of the
currently available alternative compute modes in MKL.

In the float_to_{BF16,BF16x2,BF16x3} modes,
MKL internally converts single precision input data to sums of
1, 2, or 3 BF16 values, then uses the fast systolic arrays avail-
able on recent discrete GPUs to multiply the resulting BF16
component matrices and accumulate in single precision. As
the number of BF16 components increases, so does expected
accuracy, to the point that BF16x3 accuracy is comparable to
standard single-precision arithmetic. The float_to_TF32
mode works similarly, with TF32 in place of BF16.

Finally, the complex_3M mode enables 3M complex
multiplication, reducing the four real multiplications within
a standard complex multiplication to three multiplications
at the expense of extra additions. This improves theoretical
peak performance for level-3 BLAS routines by 4

3 , subject to
memory/cache bandwidth restrictions. In general 3M accuracy
is comparable with standard complex arithmetic, but with
different numeric cancellation behavior.

An element of importance relating to our study in this paper
is the percentage of peak performance we observe as it relates
to performance speedup. In Table II, the peak theoretical
speedups for each of the compute modes is shown, with
the maximum being 16x. Actual speedups are more modest,
limited by power and bandwidth considerations, and vary by
matrix size.

IV. EXPERIMENTAL SETUP AND PRECISION LEVELS

In this section, we describe the hardware and software setup
used in our experiments. We also discuss how the varying
BLAS precision modes were altered in the application.

A. Hardware Setup

All runs were performed using a dual-card node containing
two Intel® Data Center GPU Max Series 1550 [17]. Each
GPU has Intel® XMX [18] enabled and contains 128 GB of
High Bandwidth Memory (HBM). We ran all experiments on a
single stack to avoid Non-Uniform Memory Access (NUMA)
effects. Each stack contains 448 EUs at up to 1.6 GHz
frequency. At the core of the GPU is the Xe HPC Stack, which
is comprised of various tiles stacked on each other as part of a
single package. The stack includes the Xe-core Tile (compute
tile), L2 cache tile, base tile, high memory bandwidth tile,

Xe link tile for scaling, as well as the embedded multi-
die interconnect bridge (EMIB) for communication between
different Xe HPC Stacks.

Intel® Xe architecture consists of one of three possible
micro-architectures: the Xe LP which provides a low power
solution, the Xe HPG which is optimized for high fidelity
graphical imaging, or the Xe HPC which is optimized for
HPC and AI acceleration. The Intel® Data Center GPU Max
Series used in this paper is built upon the Xe HPC micro-
architecture [19].

Each compute tile in Xe HPC comprises multiple Xe cores.
Each Xe core has eight vector engines supporting FP64, FP32,
and FP16 precisions, as well as Intel® XMX to support
systolic numerics such as TF32, FP16, BF16, and Int8. Integer
and floating-point operations execute on separate ports to
improve instruction throughput.

B. Software Setup

For all runs, we compiled the most recent release of
DCMESH with the Intel® oneAPI Base Toolkit 2024.2.0 and
the Intel® oneAPI Math Kernel Library (Intel® oneMKL)
2024.2. The Level Zero driver version used is 23.22.26516.34.
DCMESH was built from source using the Intel® DPC++/C++
compiler and the Intel® Fortran Compiler with SYCL and
OpenMP offload enabled. In all cases, the offload frameworks
are configured to use Level Zero [20]. The build flags used
for both FP64 and Mixed Precision versions are included in
the Appendix.

In order to determine performance over a set number of
quantum dynamical steps, we used the Profiling Tools Inter-
face for GPU (PTI-GPU) [21]. One particular tool within this
interface, called unitrace, was utilized in order to be able to
record kernel and other event timings using GPU-side timers.

C. Precision Levels Studied

The different portions of DCMESH either have fixed or
varying precision modes. The QXMD portion of the code,
which is run exclusively on CPU, is written entirely in Fortran.
In addition, it can only be run using FP64 precision as this
represents a critical portion of the simulation wherein the
wavefunction is initialized by the Self-Consistent Field (SCF)
method. The LFD portion of the code, which is offloaded to
the GPU, can be run in a range of modes. These include LFD
at FP64, FP32, and FP32 with varying BLAS precision levels.
The BLAS precision modes available include BF16, BF16X2,
BF16X3, TF32, and Complex 3M. Specifically, we are inter-
ested in understanding the effects that varying precisions used
in matrix multiplication within BLAS routines have on key
metrics determined by the LFD portion of DCMESH. Table II
contains a more detailed view of the varying BLAS precision
modes including the environmental variable which should be
set in order to implement the different compute modes.

D. Usage of BLAS in DCMESH

Among the most time-intensive portions of the entire LFD
portion of the DCMESH codebase is the nonlocal correction
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(a) Number of excited electrons.
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(b) Current density.
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(c) Kinetic energy.

Fig. 1. Accuracy of three output metrics, measured as the deviation from FP32 for BLAS calls using different compute modes.
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Fig. 2. Accuracy of current density, measured as the log of the deviation
from FP32 for BLAS calls using different compute modes.

for time propagation of electronic wave functions. While the
electronic wave functions are represented on a finite-difference
mesh for simple data parallelism in LFD, this representation
is not optimal for the nonlocal correction. We thus map
the nonlocal computation to the vector space spanned by
the Kohn-Sham electronic wave functions [22]. As a result,
this correction is cast into matrix operations by defining an
Ngrid × Norb wave-function matrix, where Ngrid and Norb are
the number of grid points to represent each wave function and
that of KS wave functions, respectively.

Ψ(t) = cΨ(0)Ψτ (0)Ψ(t) (1)

This can be performed as shown in Equation 1, where c is
a complex number and Ψτ denotes a Hermitian transpose

matrix. This operation is implemented in the code through use
of BLAS kernels. In addition to this, “BLASified” nonlocal
correction appears in two other functions in LFD. These
include the energy calculation (calc_energy) and the
remapping of the final wave functions to occupation numbers
(remap_occ).

Our study is concerned only with how varying the precision
of these specific BLAS calls affects performance and numer-
ical accuracy, and we do not consider varying the precision
outside of BLAS calls. Additionally, because the Intel® MKL
controls are environment variables affecting the library as a
whole, our study here is limited to configurations where all
BLAS calls are run at the same precision. The effects of
running different BLAS calls at different levels of precision is
left to future work.

E. DCMESH Configuration Details

Exposing a material such as lead titanate to laser-induced
excitation dynamics can be one step towards the development
of super capacitors. For the purposes of this study, we are
interested in observing the varying effects of precision modes
upon various calculated outputs such as the number of excited
electrons and the kinetic energy. In terms of the number
of atoms studied, we look at a 40 atom and 135 atom
systems with mesh grid sizes of 643 and 963, respectively.
For relevance towards the matrix operations within BLAS, the
135 atom system is defined by Ngrid × Norb. While Ngrid is
detailed by the mesh grid size, Norb for the 40 atom system
is 256 and is 1024 for the 135 atom system.

In addition to these system details, several more of interest
include the resolution of the MD simulation, measured in
terms of timesteps, as well as the total number of quantum
dynamical steps and the total simulation time in femtoseconds
(fs). These are detailed for both system sizes in Table III. Fur-
thermore, Table V contains the number of electronic orbitals
and mesh grid sizes for the different system sizes studied.
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TABLE III
KEY SIMULATION PARAMETERS.

Simulation Variable Value
Timestep 0.02

Total Number of QD Steps 21,000
Total Simulation Time (fs) 10

Ultimately, in order to determine the effect of using alter-
native precision modes upon the framework as a whole, we
have to look at the deviation from reference for the most
relevant calculated values impacted directly by the BLAS
computations. The reference precision, in order to understand
the effect of the BLAS calls directly, is FP32 for the LFD
portion of DCMESH.

V. ACCURACY RESULTS

In this section we discuss the accuracy of the results for some
of the key output metrics that are dependent upon BLAS
routines in the LFD portion of the code. The precision of the
BLAS routines are the only ones that change and therefore
influence the accuracy of the studied output metrics. Chief
among these are the kinetic energy and the number of excited
electrons, nexc. Nonlocal corrections are less pronounced
for the use case that we are studying in this paper. This
manifests itself computationally such that after every series
of 500 quantum dynamical steps (LFD portion at FP32), we
execute Self-Consistent Field (SCF) at FP64 to update the
wave function and then proceed to the next series of 500
QD steps. A wavefunction is the mathematical description
of the quantum state of a series of particles and defines a
system’s energy, momentum, position, and spin. Updating the
wavefunction with FP64 precision prevents the buildup of
truncation errors which may otherwise accumulate through the
use of lower precision calculations. This is the fundamental
reason why the code is able to run with alternative BLAS
precision modes.

A. Overall Accuracy

The first step in determining the effect of various precisions
in BLAS operations is to understand what these operations
influence. There are only a handful of BLAS calls within
the LFD portion of the DCMESH code, but their influence is
profound. The three primary functions which contain BLAS
calls are nlp_prop, calc_energy, and remap_occ.
While the time propagation of the electronic wave functions
are calculated in nlp_prop, BLASified nonlocal correction
appears in the energy calculation in calc_energy, and in
remapping the final wave functions to occupation numbers in
remap_occ.

Considering where BLAS is implemented, we can examine
some of the key metrics that are computed by these functions.
Two include the number of excited electrons, nexc, and the
kinetic energy of the system as a whole. Figure 1 details
the effect of varying BLAS precision modes on these two
outputs. We also include current density in this set. The latter

TABLE IV
NUMBER OF EXPONENT AND MANTISSA BITS FOR EACH PRECISION

FORMAT STUDIED.

Precision Exponent Bits Mantissa Bits
FP64 11 52
FP32 8 23
TF32 8 10
BF16 8 7

is not directly computed through BLAS, but is still influenced
by computations within BLAS calls, and can be used as a
reference. All 5 precision modes were used for simulations of
roughly 10 fs for a system of 135 atoms and 1024 orbitals.
The exact same computations were performed in each, to
ensure a fair comparison. The difference in the value of the
outputs between the alternate precision and that of FP32 were
extracted and plotted over time.

We observe that the deviation increases over the course of
the simulation and increases most significantly for the three
variants where BF16 is used: BF16, BF16x2 and BF16x3.
These three variants allow a trade-off between accuracy and
performance, with BF16 being the fastest in terms of perfor-
mance and BF16x3 being the most accurate.

In Table IV, we show the formats for the different precision
types based on the number of exponent and mantissa bits.
TF32 has the same number of mantissa bits as FP16 but the
same exponent range of BF16. As a result, TF32 contains
slightly higher precision than BF16 and this is also revealed
in our results.

The maximum deviation from FP32 is revealed to be for the
case where BF16 is used in BLAS computations of kinetic
energy. The deviation is nearly 5 Hartree units which is
significant. Typically for a system of this size the energy
deviation should not exceed 2-3 Hartree units but given the
high dynamical nature of our problem, represented by the fact
that the kinetic energy of the system is increasing quickly,
it is acceptable. Furthermore, the energy of the entire, 135
atom system is in the order of 103 Hartree. The deviation
is seemingly much less striking for the case of the number of
excited electrons, and negligible for the case of current density
where deviation is measured in the order of 10-5 Atomic Units.

It should be noted, however, that these deviations must
also be understood within context. The deviations relative to
the absolute values of each metric are roughly equivalent to
each other, in the order of 1%. This indicates that, assuming
random data in a bounded range and the absence of numerical
cancellation, the relative error of BLAS compute in BF16
to the other modes is independent of matrix size. This lack
of significant relative deviation is something that will be
discussed further later in the paper.

Kinetic energy is computed through the BLAS call in
function calc_energy, and is based on a matrix-matrix
multiplication with tensor size Ngrid x Norb. Nexc is computed
through a BLAS call in function remap_occ and is based
on a matrix-matrix multiplication with a tensor size of Norb x
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Fig. 3. Performance results.

TABLE V
SYSTEM SIZES STUDIED. LARGEST SYSTEM THAT CAN FIT WITHIN THE

64GB MEMORY OF A SINGLE GPU STACK IS A 135 ATOM LEAD TITANATE
SUPERCELL OF MESH GRID 96X96X96 AND 1024 ELECTRONIC ORBITALS.

Number of Atoms Mesh Grid Size Norb
40 64x64x64 256
40 64x64x64 1024
40 64x64x64 2048
40 64x64x64 4096

135 96x96x96 864
135 96x96x96 1024

Norb.
Furthermore, these tensor sizes are also determined based

on the size of the system itself. Table V contains the sizes of
the mesh grids and number of orbitals studied in this work. As
the system size increases, the tensor sizes used in the matrix-
matrix multiplications within the BLAS calls also increase.

In Figure 2, we detail a logarithmic scale of the deviation
from FP32 for the different precision modes for current
density. Over the course of the simulation, BF16, TF32, and
BF16X3 track closely with one another and do not show any
signs of divergence.

B. BLAS Accuracy

Mentioned earlier, we do not observe that the relative error
for FLOAT_TO_BF16 compared with other modes is signifi-
cantly different when varying input matrix sizes to the BLAS
routines. This requires further explanation.

To understand the accuracy impact from MKL’s alternative
compute modes, we can consider a simple proxy model with
real-valued inputs, in which all but the lowest n mantissa
bits of the GEMM input matrices are rounded off. Except
for denormal inputs, this induces a maximum 2−n−1 relative

error in the inputs. Letting a, b represent a full (real) single-
precision input value and ∆a, ∆b the associated perturbations
due to rounding, the relative error in multiplication is:

∣∣∣∣ (a+∆a)(b+∆b)− ab

ab

∣∣∣∣ ≤ ∣∣∣∣a−∆a

a

∣∣∣∣+ ∣∣∣∣b−∆b

b

∣∣∣∣+ ∣∣∣∣∆a ·∆b

ab

∣∣∣∣
≤ 2−n + o(2−n).

Note this is independent of the input data a, b. Each entry of
the matrix product AB is a sum of such values, so the above
error bound is retained if all products have the same sign.

C. Performance

We measured the performance of individual BLAS calls
within DCMESH using unitrace and the environment variable
MKL_VERBOSE. Unitrace provides the time spent in each
kernel (as measured by Level Zero) while the latter gives
a breakdown of time for each BLAS call, in addition to
precision, matrix sizes, and other parameters. In this section,
we will often refer to the GEMM matrix dimensions, which
are traditionally labeled m, n, and k, where in the matrix
multiplication C ← AB, C is m rows by n columns, A is
m× k, and B is k × n.

In Figure 3, the log scale of the average time to completion
of 500 quantum dynamical steps for both a 40 and 135 atom
system are shown for each precision mode. The 40 atom
system size in Figure 3a is studied with Norb=256, while the
135 atom system contains Norb=1024. In the 40 atom system,
very little performance change is observed between FP32 and
the runs with different BLAS compute modes. Indeed, only
between the runs with FP64 and FP32 precisions do we ob-
serve any significant change in performance. If we now focus
on the 135 atom system, since it is the more computationally
demanding variant, the time to complete 500 QD steps is over
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TABLE VI
MAXIMUM OBSERVED SPEEDUP OF BLAS ROUTINES USING DCMESH

AND COMPARED WITH THE MAXIMUM THEORETICAL SPEEDUP OF BLAS
WHEN USING THE DIFFERENT COMPUTE MODES IN MKL.

Compute Modes Measured Speedup Theoretical Speedup
BF16 3.91x 16x
TF32 3.76x 8x

BF16X2 2.41x (16/3)x
BF16X3 1.69x (8/3)x

Complex 3M 1.12x (4/3)x

TABLE VII
M, N, AND K INDICES BASED ON INCREASING ORBITAL SIZES FOR THE

GEMM ROUTINE IN REMAP_OCC . MESH GRID SIZE REMAINS THE SAME
AND ORBITAL SIZE INCREASE IS REPRESENTED BY AN INCREASE IN THE

VALUE FOR INDEX N.

Number of Atoms Norb m n k
40 256 128 128 262144
40 1024 128 896 262144
40 2048 128 1920 262144
40 4096 128 3978 262144

2800 seconds at FP64 precision, 1472 seconds at FP32, and
972 seconds when using the BF16 compute mode.

With the FP32 run as the reference, we see significant
performance speedup for the LFD code, with the peak per-
formance observed using BF16, resulting in a roughly 1.35x
speedup. TF32 provides the next best performance benefit and
Complex 3M providing the least performance speedup. As we
previously noted for the 40 atom system, there is very little
difference in time to completion between the varying BLAS
compute modes. This indicates that performance speedup
using the different compute modes is directly influenced by
the size of the matrices used within BLAS routines.

Figure 3b details a case study for a series of Norb sizes
including 256, 1024, 2048, and 4096 and the subsequent
effects on the BLAS performance at alternative precisions.
This case study allows us to gain a deeper understanding
into the impact of matrix size upon efficiency, and hence
the relative speed-up achievable at larger matrix sizes. The
case with the smallest number of orbitals provides the least
degree of improvement while the largest case translates into
the greatest speedup between FP32 and alternative precisions.

Table VI compares the maximum observed speedups mea-
sured with the theoretical speedups. The maximum speedup
we achieved was 3.91x when using the BF16 compute mode,
despite the peak theoretical speedup for a BF16 BLAS routine
being 16x. There are a number of factors that limit per-
formance relative to theoretical maximum speedups, partic-
ularly memory and cache bandwidth limitations and power
limitations. The bandwidth limitations stem primarily from
the relatively small m = 128 dimension, while the power
limitations are tied to hardware design.

Previously in Figure 3b we described the BLAS speedup
factors for 40 atom systems based on different orbital sizes. In
order to more properly understand how the orbital size affects

BLAS performance, Table VII contains information regarding
the values of m, n, and k for the GEMM call in remap_occ.
Here, we observe that the value of m remains constant at 128.
Similarly, value of k is 643, which is the size of the mesh grid
for a 40 atom system. The index n is directly based on norb.

VI. CONCLUSIONS

In this paper, we examined the potential of applying alter-
native precision modes (BF16, TF32, and Complex 3M) to
the execution of BLAS calls in DCMESH and weighed the
performance benefits against loss in accuracy for key output
parameters.

On a single stack of an Intel® Data Center GPU Max Series
1550, we observed speedups of up to 1.35x while retaining
accuracy of key output parameters such as the number of
excited electrons, current density, and kinetic energy. For
large problem sizes, we observe speed-ups of up to 3.91x for
individual BLAS calls.

In future work, we intend to explore the use of alternative
BLAS precision modes in other workloads such as QMC-
PACK. Furthermore, we would like to continue our work with
DCMESH in the analysis of how alternative BLAS precision
modes impact accuracy and performance in multi-stack and
multi-node runs.
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APPENDIX

A. Hardware Specifications

Intel® Data Center GPU Max Series : 1-node,
Total Memory 128 GB, kernel 5.14.21-150500.55.52-
default, compiler gcc 7.5.0 20210514, Intel® oneAPI
2024.2.0, DC-MESH (Git Commit Version: a47575

2232fdedfcc0ec5aefed79ce555ecb3960), Intel® oneMKL
2024.2.0, Intel® pti-gpu.

B. Build Flags

Mixed Precision Build Flags
-DCMAKE CXX COMPILER=icpx
-DCMAKE Fortran COMPILER=ifx
-DLFD ENABLE OFFLOAD=ON
-DDCMESH ENABLE MPI=OFF
-DDCMESH ENABLE SYCL=ON
-DOFFLOAD ARCH=pvc
-DCMAKE CXX FLAGS=”-march=native -g”
-DCMAKE Fortran FLAGS=”-march=native -g”
-DLFD ENABLE MIXED PRECISION=ON
Double Precision Build Flags
-DCMAKE CXX COMPILER=icpx
-DCMAKE Fortran COMPILER=ifx
-DLFD ENABLE OFFLOAD=ON
-DDCMESH ENABLE MPI=OFF
-DDCMESH ENABLE SYCL=ON
-DOFFLOAD ARCH=pvc
-DCMAKE CXX FLAGS=”-march=native -g”
-DCMAKE Fortran FLAGS=”-march=native -g”
-DLFD ENABLE MIXED PRECISION=OFF
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Appendix: Artifact Description/Artifact Evaluation
Artifact Description (AD)

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS

A. Paper’s Main Contributions

C1 Improve performance of DCMESH through the in-
troduction of alternative precisions for the various
BLAS routines in the code.

C2 Show that the resultant 1.35x speedup for the time
to solution of the simulation does not result in a
precipitous decline in accuracy for 3 key metrics.

C3 Examine the improved BLAS routine performance
for large problem sizes and compare to peak theo-
retical improvement on the GPU.

B. Computational Artifacts

Computational Artifact and respective DOI.
A1 DOI:10.1109/IPDPSW63119.2024.00176
A2 DOI:10.1109/IPDPSW63119.2024.00176
A3 DOI:10.1109/IPDPSW63119.2024.00176

Artifact ID Contributions Related
Supported Paper Elements

A1 C1 Tables 1-2
Figure 3

A2 C2 Tables 3-5
Figures 1-2

A3 C3 Tables 6-7
Figures 3

II. ARTIFACT IDENTIFICATION

A. Computational Artifact A1

Relation To Contributions

In order to reproduce all elements described in C1, it is
important to recognize that the artifact A1 contains the basis
for how to set up and run the code, DCMESH. Upon this,
we then are able to introduce alternative BLAS precisions in
order to ascertain the improved performance observed in the
paper.

Expected Results

After importing the DCMESH codebase and building it,
the simulation will progress over the course of many series
of quantum dynamical steps. For this specific contribution
being studied, each simulation will take roughly 30 minutes
to complete. The principal outputs relevant for C1 are given
by the the use of Intel®Unitrace. In order to gauge the
speedup factor when using DCMESH with alternative BLAS
precisions, we can use this tool for a test simulation over
several hundred quantum dynamical tests.

The larger the matrix size, the more impact alternative
BLAS precisions will have. For a 135 atom system, the fastest

simulation is for the case when BLAS precision is BF16,
followed by TF32, BF16X2, BF16X3, Complex 3M, FP32,
and then FP64.

Expected Reproduction Time (in Minutes)

The expected time to reproduce the results for C1 is about
30 minutes for each simulation on the GPU.

Artifact Setup (incl. Inputs)

Hardware: The hardware to be used is the Intel®Data
Center GPU Max Series 1550. To reproduce results, only a
single tile is needed. Each card has 2 tiles.

Software: The principal software package that is to be
used is the Intel®oneAPI Base Toolkit 2024.2.0 and the
Intel®oneAPI Math Kernel Library (oneMKL) 2024.2. The
L0 driver version used is 23.22.26516.34. DCMESH was
built from source using the Intel®DPC++/C++ compiler icpx
CXX and the Intel®Fortran Compiler ifx with SYCL and
OpenMP offload enabled. In all cases the offload frameworks
are configured to use Level Zero. The build flags used for
both FP64 and Mixed Precision versions are included in
the Disclaimers section of this paper. In order to determine
performance over a set number of quantum dynamical steps,
we use the Profiling Tools Interface for GPU (PTI-GPU). The
particular tool that is relevant is called Unitrace, which is
used to record kernel and other event timings using GPU-side
timers.

Please note that DCMESH is a private repository and
requires access to be granted prior to being able to build the
code.

Datasets / Inputs: The datasets to be used in the codebase in
order to reproduce the results can be provided by the authors
of the paper. These include PTOquick.dc, CONFIG, and lfd.in.
There are different input files for the various 135 and 40 atom
system sizes.

Installation and Deployment: In order to install and then
build the workflow in your workspace of choice, please follow
these steps.

git clone https://github.com/USCCACS/DCMESH.git
cd DCMESH/configs
sh build ortce.sh

cd build intel oneapi offload sycl debug/Sources/tests/dcehd-
quick-PTO-p1

Use appropriate PTOquick.dc and CONFIG files under
folder /control Use appropriate lfd.in file under folder /con-
trol lfd.

At this point, the code can be executed using the steps
outlined in the next section.

Artifact Execution

Table 1 and 2 do not require execution of the code to
determine. These can be calculated based on the hardware
specifications. These include the number of EUs, peak fre-
quency, and the precision in question. Figure 3, however, is
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directly determined based on the execution of the simulation.
This section will detail how to run the code. Figure 3a
details performance improvements for both 40 and 135 atom
systems. Figure 3b represents the speedup factor for a 40 atom
system at varying number of orbitals which is controlled in
PTOquick.dc. Using the appropriate input data, which can
be provided by the authors, you execute the code from the
following folder:

cd /some/workspace/DCMWESH/build intel oneapi offload
sycl debug/Sources/tests/dcehd-quick-PTO-p1

Run the following command at this point for 500 QD steps
to test performance for FP32 precision:

export KMP BLOCKTIME=0
unitrace -k ../../../bin/dcehd

Run the following command at this point for 500 QD steps
to test performance for BF16 BLAS Precision:

export KMP BLOCKTIME=0
export MKL BLAS COMPUTE MODE=FLOAT TO BF16
unitrace -k ../../../bin/dcehd

Run the following command at this point for 500 QD steps
to test performance for BF16X2 BLAS Precision:

export KMP BLOCKTIME=0
export MKL BLAS COMPUTE MODE=FLOAT TO BF16X2

unitrace -k ../../../bin/dcehd

Run the following command at this point for 500 QD steps
to test performance for BF16X3 BLAS Precision:

export KMP BLOCKTIME=0
export MKL BLAS COMPUTE MODE=FLOAT TO BF16X3

unitrace -k ../../../bin/dcehd

Run the following command at this point for 500 QD steps
to test performance for TF32 BLAS Precision:

export KMP BLOCKTIME=0
export MKL BLAS COMPUTE MODE=FLOAT TO TF32
unitrace -k ../../../bin/dcehd

Run the following command at this point for 500 QD steps
to test performance for COMPLEX 3M BLAS Precision:

export KMP BLOCKTIME=0
export MKL BLAS COMPUTE MODE=COMPLEX 3M
unitrace -k ../../../bin/dcehd

Artifact Analysis (incl. Outputs)

With each of the above executions, you will obtain an
L0 time that will represent the total wall time on the GPU.
Comparing these times between the various precision types

forms the basis for Figure 3a. Figure 3b is determined by
a separate computational method and will be described in
another section.

B. Computational Artifact A2

Relation To Contributions

In order to reproduce all elements described in C2, it is
important to recognize that the artifact A2 contains the basis
for how to set up and run the code, DCMESH. Upon this,
we then are able to introduce alternative BLAS precisions in
order to ascertain the accuracy determined in the paper by
comparing alternative precisions with FP32.

Expected Results

After importing the DCMESH codebase and building it, the
simulation will progress over the course of many series of
quantum dynamical steps. For this specific contribution being
studied, each simulation will take roughly 2 days to complete.
In order to gauge the accuracy of specific outputs when using
DCMESH with alternative BLAS precisions, we can simply
run the code with the appropriate input files.

Expected Reproduction Time (in Minutes)

The expected time to reproduce the results for C2 is about
2 days for each simulation on the GPU.

Artifact Setup (incl. Inputs)

Hardware: The hardware to be used is the Intel®Data
Center GPU Max Series 1550. To reproduce results, only a
single tile is needed. Each card has 2 tiles.

Software: The principal software package that is to be
used is the Intel®oneAPI Base Toolkit 2024.2.0 and the
Intel®oneAPI Math Kernel Library (oneMKL) 2024.2. The
L0 driver version used is 23.22.26516.34. DCMESH was built
from source using the Intel®DPC++/C++ compiler icpx CXX
and the Intel®Fortran Compiler ifx with SYCL and OpenMP
offload enabled. The build flags used for both FP64 and Mixed
Precision versions are included in the Disclaimers section of
this paper.

Datasets / Inputs: The datasets to be used in the codebase in
order to reproduce the results can be provided by the authors
of the paper. These include PTOquick.dc, CONFIG, and lfd.in.
There are different input files for the various 135 and 40 atom
system sizes.

Installation and Deployment: In order to install and then
build the workflow in your workspace of choice, please follow
these steps.

git clone https://github.com/USCCACS/DCMESH.git
cd DCMESH/configs
sh build ortce.sh

cd build intel oneapi offload sycl debug/Sources/tests/dcehd-
quick-PTO-p1

Use appropriate PTOquick.dc and CONFIG files under
folder /control Use appropriate lfd.in file under folder /con-
trol lfd.

At this point, the code can be executed using the steps
outlined in the next section.
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Artifact Execution
Tables 3, 4, and 5 do not require execution of the code

to determine. Table 3 is obtained directly from the input
file, Table 4 is commonly known exponent and mantissa bit
information regarding different precision types, and Table 5
contains information directly available from the input data
scripts. Figures 1 and 2, however, are directly determined
based on the execution of the simulation. This section will
detail how to run the code. Figure 1 regards the accuracy
measurements determined as the deviation from FP32 for
the various BLAS precision modes. Figure 1a concerns the
number of excited electrons, Figure 1b concerns the current
density, and Figure 1c concerns the kinetic energy of the
system. Figure 2 shows the accuracy measurement for current
density as the deviation from FP32 for the various BLAS
precision modes in log scale. Use the following steps in order
to reproduce these results:

cd /some/workspace/DCMWESH/build intel oneapi offload
sycl debug/Sources/tests/dcehd-quick-PTO-p1

Run the following command at this point for the full
simulation to test performance for FP32 precision:

export KMP BLOCKTIME=0
../../../bin/dcehd

Run the following command at this point for the full
simulation to test performance for BF16 BLAS Precision:

export KMP BLOCKTIME=0
export MKL BLAS COMPUTE MODE=FLOAT TO BF16
../../../bin/dcehd

Run the following command at this point for the full
simulation to test performance for BF16X2 BLAS Precision:

export KMP BLOCKTIME=0
export MKL BLAS COMPUTE MODE=FLOAT TO BF16X2
../../../bin/dcehd

Run the following command at this point for the full
simulation to test performance for BF16X3 BLAS Precision:

export KMP BLOCKTIME=0
export MKL BLAS COMPUTE MODE=FLOAT TO BF16X3

../../../bin/dcehd

Run the following command at this point for the full
simulation to test performance for TF32 BLAS Precision:

export KMP BLOCKTIME=0
export MKL BLAS COMPUTE MODE=FLOAT TO TF32
../../../bin/dcehd

Run the following command at this point for the full
simulation to test performance for COMPLEX 3M BLAS
Precision:

export KMP BLOCKTIME=0
export MKL BLAS COMPUTE MODE=COMPLEX 3M
../../../bin/dcehd

Artifact Analysis (incl. Outputs)

In each of the above simulations, it is advisable to pipe the
output into a respective text file. The main portions of the
simulations which are of concern regard the main LFD loops.
Each successive MD step will contain a series of QD steps.
These QD steps are what is of interest and contain all of the
important output variables. In order from left to right, these are
ekin, epot, etot, eexc, nexc, Aext, and javg. For the purposes
of this section, we are concerned with ekin, nexc, and javg.
These are the kinetic energy, number of excited electrons, and
the current density.

C. Computational Artifact A3

Relation To Contributions

In order to reproduce all elements described in C3, it is
important to recognize that the artifact A3 contains the basis
for how to set up and run the code, DCMESH. Upon this,
we then are able to introduce alternative BLAS precisions in
order to ascertain the improved performance observed in the
paper for the specific BLAS functions.

Expected Results

After importing the DCMESH codebase and building it, the
simulation will progress over the course of 50 QD steps. For
this specific contribution being studied, each simulation will
take roughly 5 minutes to complete. In order to determine the
runtime for each BLAS call, we can use a command within
MKL to print these times.

Expected Reproduction Time (in Minutes)

The expected time to reproduce the results for C2 is about
10 minutes for each simulation on the GPU.

Artifact Setup (incl. Inputs)

Hardware: The hardware to be used is the Intel®Data
Center GPU Max Series 1550. To reproduce results, only a
single tile is needed. Each card has 2 tiles.

Software: The principal software package that is to be
used is the Intel®oneAPI Base Toolkit 2024.2.0 and the
Intel®oneAPI Math Kernel Library (oneMKL) 2024.2. The
L0 driver version used is 23.22.26516.34. DCMESH was built
from source using the Intel®DPC++/C++ compiler icpx CXX
and the Intel®Fortran Compiler ifx with SYCL and OpenMP
offload enabled. The build flags used for both FP64 and Mixed
Precision versions are included in the Disclaimers section of
this paper.

Datasets / Inputs: The datasets to be used in the codebase in
order to reproduce the results can be provided by the authors
of the paper. These include PTOquick.dc, CONFIG, and lfd.in.
There are different input files for the various 40 atom system
sizes.
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Installation and Deployment: In order to install and then
build the workflow in your workspace of choice, please follow
these steps.

git clone https://github.com/USCCACS/DCMESH.git
cd DCMESH/configs
sh build ortce.sh

cd build intel oneapi offload sycl debug/Sources/tests/dcehd-
quick-PTO-p1

Use appropriate PTOquick.dc and CONFIG files under
folder /control Use appropriate lfd.in file under folder /con-
trol lfd.

At this point, the code can be executed using the steps
outlined in the next section.

Artifact Execution

MKL VERBOSE=2 can be used as the environmental vari-
able to give detailed BLAS information. This feature will
provide the matrix size as well as synchronous timing. By
comparing the average BLAS time for the specific BLAS
call in question, we will be able to repeat this for all of the
precision modes. With this timing obtained, then Table 6 can
be reproduced. Furthermore, Table 7 can also be determined
by using this environmental variable for 40 atom systems at
varying number of orbitals. The BLAS matrix dimensions m,
n, and k are directly sourced from the outputs of the code.

Figures 3b is the speedup factor for 40 atom systems at
varying number of orbitals and can be plotted with informa-
tion directly obtained using the aforementioned environmental
variable. The timings for each BLAS call are printed on the
wall of the simulation when the main LFD loop initiates for
each MD step. In order to actually run and reproduce results,
using the correct input data, please follow these steps:

cd /some/workspace/DCMWESH/build intel oneapi offload
sycl debug/Sources/tests/dcehd-quick-PTO-p1

Run the following command at this point for the full
simulation to test performance for FP32 precision:

export KMP BLOCKTIME=0
export MKL VERBOSE=2
../../../bin/dcehd

Run the following command at this point for the full
simulation to test performance for BF16 BLAS Precision:

export KMP BLOCKTIME=0
export MKL VERBOSE=2
export MKL BLAS COMPUTE MODE=FLOAT TO BF16
../../../bin/dcehd

Run the following command at this point for the full
simulation to test performance for BF16X2 BLAS Precision:

export KMP BLOCKTIME=0
export MKL VERBOSE=2

export MKL BLAS COMPUTE MODE=FLOAT TO BF16X2

../../../bin/dcehd

Run the following command at this point for the full
simulation to test performance for BF16X3 BLAS Precision:

export KMP BLOCKTIME=0
export MKL VERBOSE=2
export MKL BLAS COMPUTE MODE=FLOAT TO BF16X3
../../../bin/dcehd

Run the following command at this point for the full
simulation to test performance for TF32 BLAS Precision:

export KMP BLOCKTIME=0
export MKL VERBOSE=2
export MKL BLAS COMPUTE MODE=FLOAT TO TF32
../../../bin/dcehd

Run the following command at this point for the full
simulation to test performance for COMPLEX 3M BLAS
Precision:

export KMP BLOCKTIME=0
export MKL VERBOSE=2
export MKL BLAS COMPUTE MODE=COMPLEX 3M
../../../bin/dcehd

Artifact Analysis (incl. Outputs)

In each of the above commands, the relevant information
is directly printed to the wall of the simulation. Please wait
for the main LFD loop to initiate. Each QD steps contains 9
BLAS calls and these are represented by 9 outputs when using
MKL VERBOSE=2.
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Artifact Evaluation (AE)

A. Computational Artifact A1

Artifact Setup (incl. Inputs)

All relevant information has been described in the AD
section regarding how to build and compile DCMESH on the
Intel®Data Center GPU Max Series 1550.

Artifact Execution

All relevant information regarding how to execute
DCMESH have been included in the AD portion.

Artifact Analysis (incl. Outputs)

Contributions included within C1 of this paper are obtained
using Intel®Unitrace. This tool, and how to execute it, have
been described in the AD portion, and the expectation is that
when utilized you will observe an output directly printed to
the wall of your application used to SSH into the respective
node containing the GPU. The most pertinent information is
obtained at the very top of this output block and contains
the Total L0 Time in nanoseconds. Please use this number to
determine the performance of your simulation. This data is
used to reproduce Figure 3a.

B. Computational Artifact A2

Artifact Setup (incl. Inputs)

All relevant information has been described in the AD
section regarding how to build and compile DCMESH on the
Intel®Data Center GPU Max Series 1550.

Artifact Execution

All relevant information regarding how to execute
DCMESH have been included in the AD portion.

Artifact Analysis (incl. Outputs)

Contributions included within C2 of this paper are obtained
by simply running the code in the manner outlined in the AD
portion. The expectation is that when utilized you will observe
an output directly printed to the wall of your application
used to SSH into the respective node containing the GPU.
It will take roughly 2 days to run the entire simulation using
a single tile of this GPU. The pertinent information utilized
to measure accuracy is printed in the LFD loop of each MD
step. Each MD step contains 500 QD steps. When running
your simulations, it is expected that you will obtain at least
40 MD steps in total. When the LFD loop initiates, please
plot nexc, ekin, and Javg over the course of all QD steps.
The results from the FP32 simulation are the reference. The
values for each variable, when using the alternative precisions
are also determined in the exact same way. Please note that
in Figure 1, the plots shown reflect the difference between the
outputs of a compute mode and FP32. Figure 2 represents the
log of the deviation from FP32 for the various BLAS precision
modes.

C. Computational Artifact A3

Artifact Setup (incl. Inputs)

All relevant information has been described in the AD
section regarding how to build and compile DCMESH on the
Intel®Data Center GPU Max Series 1550.

Artifact Execution

All relevant information regarding how to execute
DCMESH have been included in the AD portion.

Artifact Analysis (incl. Outputs)

Contributions included within C3 of this paper are obtained
by simply running the code in the manner outlined in the AD
portion. This includes the use of the environmental variable
MKL VERBOSE=2. The information that is desired forms
the basis for Tables 6, 7 and Figure 3b.

When using this environmental variable, the relevant infor-
mation is outputted directly to the wall of your software you
are using to SSH into the node containing the GPU. When the
main LFD loop initiates, please look for 9 outputs containing
all of the relevant information for each of the BLAS calls.
This information includes the dimensions of the matrix as
well as the timing to complete the matrix multiplication. This
information serves as the basis for Tables 6, 7 and Figure 3b.

Figure 3b contains the speedup factor for the BLAS times
at various precisions. FP32 is the reference. Please compare
the time to complete the BLAS operation at each alternative
precision mode to FP32 and you will be able to reproduce
Figure 3b. This data is also used in Table 6 which also serves
to compare your speedup against the peak theoretical speedup
possible. Table 7 contains the matrix sizes for each BLAS
operation and is directly printed by MKL VERBOSE.

With this, all of the results described in this paper can be
reproduced. Thank you very much for your interest in our
work!
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