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Abstract. We propose e!cient numerical schemes for implementing the natural gradient descent
(NGD) for a broad range of metric spaces with applications to PDE-based optimization problems.
Our technique represents the natural gradient direction as a solution to a standard least-squares
problem. Hence, instead of calculating, storing, or inverting the information matrix directly, we
apply e!cient methods from numerical linear algebra. We treat both scenarios where the Jacobian,
i.e., the derivative of the state variable with respect to the parameter, is either explicitly known
or implicitly given through constraints. We can thus reliably compute several natural NGDs for a
large-scale parameter space. In particular, we are able to compute Wasserstein NGD in thousands
of dimensions, which was believed to be out of reach. Finally, our numerical results shed light on
the qualitative di""erences between the standard gradient descent and various NGD methods based
on di""erent metric spaces in nonconvex optimization problems.
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1. Introduction. In this paper, we are interested in solving optimization prob-
lems of the form

inf
\omega 

f(\omega (\varepsilon )),(1.1)

where f is the objective/loss function and \omega (\varepsilon ) is the state variable parameterized
by \varepsilon . We mainly consider \omega (\varepsilon ) as a PDE-based forward model, and f is a suitable
discrepancy measure between the output of the forward model and the data. In-
verse problems, such as the full waveform inversion (FWI), are classical examples of
(1.1). More recent examples are machine learning–based PDE solvers where \omega (\varepsilon ) is
a neural network with weights \varepsilon that approximates the solution to the PDE [42].
They are typical large-scale optimization problems either due to fine grid parame-
terization of the unknown parameter or large networks employed to approximate the
solutions.
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A1622 LEVON NURBEKYAN, WANZHOU LEI, AND YUNAN YANG

First-order methods, especially in neural network training, are workhorses of high-
dimensional optimization tasks. One such approach is the gradient descent (GD)
method, whose continuous analogue is the following gradient flow equation:

\varepsilon =\rightarrow \vargamma \omega f(\omega (\varepsilon )).

Although reasonably e!ective and computationally e""cient, GD might su!er from
local minima trapping, slow convergence, and sensitivity to hyperparameters. Conse-
quently, first-order methods and some of their (stochastic and deterministic) variants
are not robust and require a significant hyperparameter tuning on a problem-by-
problem basis [51]. Such performance is often explained by the lack of curvature infor-
mation in the parameter updates. Many optimization algorithms have been developed
to improve the convergence speed, such as Newton-type methods [48], quasi-Newton
methods [37], and various acceleration techniques [36] including momentum-based
methods [41].

Recently, there has been a revival of second-order methods in the machine learn-
ing community [48]. Significant developments include the AdaHessian [51] and NGD
[1, 31]. Both techniques incorporate curvature information into the parameter update.
AdaHessian preconditions the gradient with an adaptive diagonal approximation to
the Hessian [51]. The diagonal approximation is estimated by an adaption of Hutchin-
son’s trace estimator [17]. Consequently, one obtains an optimization method for (1.1)
with a similar observed convergence rate to Newton’s method with a computational
cost comparable to first-order methods. AdaHessian shows state-of-the-art perfor-
mance across a range of machine learning tasks and is observed to be more robust
and less sensitive to hyperparameter choices compared to several stochastic first-order
methods [51].

A di!erent approach is the natural gradient descent (NGD) method [1, 2, 38, 23,
24, 30, 31, 45], which preconditions the gradient with the information matrix instead
of the Hessian; see (1.2). NGD performs the steepest descent with respect to the
\omega -space, the natural manifold where \omega (\varepsilon ) resides, instead of the parameter \varepsilon -space
[1, 2]. A Riemannian structure is imposed on the parameterized subset {\omega (\varepsilon )} and
then pulled back into the \varepsilon -space. NGD is sometimes also regarded as a generalized
Gauss–Newton method [44, 38, 31], which has a faster convergence rate than GD.
In particular, NGD can be interpreted as an approximate Netwon method when the
manifold metric and the objective function f are compatible [31]. Other properties
of NGD include local invariance with respect to the reparameterization, robustness
with respect to hyperparameter choices, ability to progress with large step-sizes, and
enforcing a state-dependent positive semidefinite preconditioning matrix. Inspired by
the success of NGD in machine learning, we aim to extend and apply it to PDE-based
optimization problems, which are mostly formulated in proper functional spaces with
rich flexibility in choosing the metric.

Mathematically, continuous-time NGD is the preconditioned gradient flow

\varepsilon =\rightarrow G(\varepsilon )\rightarrow 1
\vargamma \omega f(\omega (\varepsilon )),(1.2)

where G(\varepsilon ) is the pull-back of a (formal) Riemannian metric in the \omega -space. It is
often referred to as an information matrix and will be discussed in detail in section 2.
There are two options to discretize (1.2): explicit and implicit. An explicit Euler
discretization of (1.2) is

\varepsilon 
l+1 = \varepsilon 

l
\rightarrow \varpi 

l
G(\varepsilon l)\rightarrow 1

\vargamma \omega f(\omega (\varepsilon 
l)), l= 0,1, . . . ,(1.3)
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EFFICIENT NATURAL GRADIENT DESCENT METHODS A1623

where \varpi 
l
> 0 is the step-size or learning rate. An implicit Euler discretization of (1.2)

gives rise to

\varepsilon 
l+1 = argmin

\omega 

\Biggr) 
f(\omega (\varepsilon )) +

\uparrow G(\varepsilon l)(\varepsilon \rightarrow \varepsilon 
l), (\varepsilon \rightarrow \varepsilon 

l)\downarrow 

2\varpi l

\Biggl[ 
,(1.4)

where \uparrow ·, ·\downarrow is the Euclidean inner product. If we denote by d\varepsilon the divergence or dis-
tance generating G(\varepsilon ), the second term in (1.4) is the leading-order Taylor expansion
of 1

2\vargamma d\varepsilon (\omega (\varepsilon ),\omega (\varepsilon 
l))2 at \varepsilon l. Thus, the solution of (1.4) agrees with

\varepsilon 
l+1 = argmin

\omega 

\Biggr) 
f(\omega (\varepsilon )) +

d\varepsilon (\omega (\varepsilon ),\omega (\varepsilon l))2

2\varpi l

\Biggl[ 
,(1.5)

up to the first order. Note that (1.5) captures the underlying idea of the NGD: taking
advantage of the geometric structure to find a direction with a maximum descent in
the \omega -space. In contrast, finding a maximum descent in the \varepsilon -space as done by the
“standard” implicit GD is

\varepsilon 
l+1 = argmin

\omega 

\Biggr) 
f(\omega (\varepsilon )) +

d\omega (\varepsilon ,\varepsilon l)2

2\varpi l

\Biggl[ 
,(1.6)

where d\omega is the chosen metric for the \varepsilon -space. In this work, we focus on di!erent d\varepsilon 
and consider d\omega as the Euclidean distance for simplicity. Intuitively, one may interpret
it as a shift from the parametric \varepsilon -space to the more “natural” \omega -space. Thus, the
infinitesimal decrease in the value of f and the direction of motion for \omega on M at
\omega = \omega (\varepsilon ) are invariant under reparameterizations [31].

NGD has been proven to be advantageous in various problems in machine learning
and statistical inference, such as blind source separation [3], reinforcement learning
[39], and neural network training [44, 33, 38, 32, 21, 31, 45, 25]. Further applications
include solution methods for high-dimensional Fokker–Planck equations [22, 28]. De-
spite its success in statistical inferences and machine learning, the NGD method is far
from being a mainstream computational technique, especially in PDE-based applica-
tions. A major obstacle is its computational complexity. In (1.3), explicit discretiza-
tion of NGD reduces to preconditioning the standard gradient by the inverse of an
often dense information matrix. The numerical computation is often intractable.

Existing works in the literature focused on explicit formulae [49], fast matrix-
vector products [44, 33, 38, 31], and factorization techniques [32] for natural gradi-
ents generated by the Fisher–Rao metric in the \omega -space, where \omega is the output of
feed-forward neural networks. These methods exploit the structural compatibility of
standard loss functions and the Fisher metric by interpreting the Fisher NGD as a
generalized Gauss–Newton or Hessian-free optimization [31, sec. 9.2]. The compu-
tational aspects of feed-forward neural networks are also utilized since computations
through the forward and backward passes are recycled. Thus, to the best of our knowl-
edge, the neural network community focuses on the Hessian approximation aspect in
the context of feed-forward neural network models rather than the geometric proper-
ties of the forward-model-space. For the Wasserstein NGD (WNGD), [21, 7] rely on
implicit Euler discretization, but their methods still su!er from accuracy issues due
to the high dimensionality of the parameter space [45, sec. 2]. A regularized WNGD
was considered in [45]. Unfortunately, by design, the method blows up when the reg-
ularization parameter decreases to zero, so it cannot compute the original WNGD. In
[52], compactly supported wavelets were used to diagonalize the information matrix,
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A1624 LEVON NURBEKYAN, WANZHOU LEI, AND YUNAN YANG

which is limited to the periodic setting with strictly positive \omega (\varepsilon ) and also certain
smoothness assumptions for \omega (\varepsilon ).

There are three main contributions in our work. First, we depart from the Hessian
approximation framework and adopt a more general geometric formalism of the NGD.
Our approach applies to a general metric for the state space, which can be independent
of the choice of the objective function. As examples, we treat Euclidean, Wasserstein,
Sobolev, and Fisher–Rao natural gradients in a single framework for an arbitrary loss
function. We focus on the standard least-squares formulation of the NGD direction.
Second, we streamline the general NGD computation and develop two approaches
to whether the forward model \varepsilon \updownarrow \nearrow \omega (\varepsilon ) is explicit or implicit. When the Jacobian
\vargamma \omega \omega is analytically available, we utilize the (column-pivoting) QR decomposition for
which a low-rank approximation can be directly applied if necessary [16]. When \vargamma \omega \omega 

is only implicitly available through the optimization constraints, we employ iterative
solution procedures such as the conjugate gradient method [34] and utilize the adjoint-
state method [40]. This second approach shares the same flavor with the method of
the fast matrix-vector product for the Fisher–Rao NGD for neural network training
[44, 33, 38, 31], but it allows one to apply the general NGD to large-scale optimization
problems (see subsection 4.3, for example). In particular, our method can perform
high-dimensional Wasserstein NGD, which was believed to be out of reach in the
literature [45, sec. 1]. Last but not least, we use a few representative examples to
demonstrate that the choice of metric in NGD matters as it not only quantitatively
a!ects the convergence rate but also qualitatively determines which basin of attraction
the iterates converge to.

The rest of the paper is organized as follows. In section 2, we first present the
general mathematical formulations of the natural gradient based on a given metric
space (M, g) and how it contrasts with the standard gradient. We then discuss a few
common natural gradient examples and how they can all be reduced to a standard
L
2-based minimization problem on the continuous level. In section 3, we demonstrate

our general computational approaches under a unified framework that applies to any
NGD method. The strategies concentrate on two scenarios regarding whether the
Jacobian \vargamma \omega \omega is explicitly given or not, followed by section 4, where we apply the
proposed numerical strategies for NGD methods to optimization problems under these
two scenarios. Conclusions and further discussions follow in section 5.

2. Mathematical formulations of NGD. We begin by discussing the NGD
method in an abstract setting before focusing on the common examples.

Assume that \omega is in a Riemannian manifold (M, g), and \varepsilon is in an open set \#\searrow Rp.
Furthermore, assume that the correspondence \varepsilon \simeq \# \updownarrow \nearrow \omega (\varepsilon ) \simeq M is smooth so that
there exist tangent vectors

\Biggr] 
\vargamma 
g

\omega 1
\omega (\varepsilon ),\vargamma g

\omega 2
\omega (\varepsilon ), . . . ,\vargamma g

\omega p
\omega (\varepsilon )

\Biggl\lfloor 
\searrow T\varepsilon M.(2.1)

The superscript g in \vargamma 
g highlights the dependence of tangent vectors on the choice of

the Riemannian structure (M, g). Furthermore, assume that f :M \updownarrow \nearrow R is a smooth
function and denote by \vargamma 

g

\varepsilon 
f \simeq T\varepsilon M its metric gradient; that is, for all smooth curves

t \updownarrow \nearrow \omega (t), we have

df(\omega (t))

dt
=
\Biggr\rfloor 
\vargamma 
g

\varepsilon 
f(\omega (t)),\vargamma g

t
\omega (t)

\Biggl\lceil 
g(\varepsilon (t))

.

Tangent vectors {\vargamma g

\omega i
\omega }

p

i=1 incorporate fundamental information on how \omega (\varepsilon ) tra-
versesM when \varepsilon traverses\#. Indeed, an infinitesimal motion of \varepsilon along the coordinate
\varepsilon i-axis in \# induces an infinitesimal motion of \omega along \vargamma 

g

\omega i
\omega in M. More generally, if
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EFFICIENT NATURAL GRADIENT DESCENT METHODS A1625

d\varepsilon 

dt
= \varepsilon = \varrho = (\varrho 1, . . . ,\varrho p)

\uparrow 
,

then

\vargamma 
g

t
\omega (\varepsilon ) = \varrho 1\vargamma 

g

\omega 1
\omega + · · ·+ \varrho p\vargamma 

g

\omega p
\omega .

Consequently, we have that

df(\omega (\varepsilon ))

dt
=
\Biggr\rfloor 
\vargamma 
g

\varepsilon 
f,\vargamma 

g

t
\omega (\varepsilon )

\Biggl\lceil 
g(\varepsilon (\omega ))

=

\Biggr\rceil 
\vargamma 
g

\varepsilon 
f,

p\Biggl\{ 

i=1

\varrho i\vargamma 
g

\omega i
\omega 

\Biggr\} 

g(\varepsilon (\omega ))

.

Intuitively, to achieve the largest descent in the loss f(\omega (\varepsilon )), we want to choose
\varrho = (\varrho 1, . . . ,\varrho p)\uparrow such that \vargamma g

\varepsilon 
f is as negatively correlated with

\Biggl\langle 
p

i=1 \varrho i\vargamma 
g

\omega i
\omega as possible

in terms of the given metric g. Thus, the NGD direction corresponds to the best
approximation of \rightarrow \vargamma 

g

\varepsilon 
f by {\vargamma 

g

\omega i
\omega } in T\varepsilon M:

\varrho 
nat = argmin

\varpi 

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle \vargamma 
g

\varepsilon 
f +

p\Biggl\{ 

i=1

\varrho i\vargamma 
g

\omega i
\omega 

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle 
2

g(\varepsilon (\omega ))

.(2.2)

In other words, the NGD corresponds to the evolution of \varepsilon that attempts to follow the
manifold GD of f on M as closely as possible. Since (T\varepsilon M, g) is an inner-product
space where g may depend on \omega , and \omega depends on \varepsilon , (2.2) implies that under the
natural gradient flow, the direction of motion for \omega on M is given by the g(\omega (\varepsilon ))-
orthogonal projection of \rightarrow \vargamma 

g

\varepsilon 
f onto span{\vargamma g

\omega 1
\omega , . . . ,\vargamma 

g

\omega p
\omega }:

\vargamma 
g

t
\omega =

p\Biggl\{ 

i=1

\varrho 
nat

i
\vargamma 
g

\omega i
\omega =: P\vargamma 

g

\varepsilon 
f.(2.3)

Since span{\vargamma g

\omega 1
\omega , . . . ,\vargamma 

g

\omega p
\omega } is invariant under smooth changes of coordinates \varepsilon = \varepsilon (\varsigma ),

we obtain that (2.3) is also invariant under such transformations. Additionally, the
infinitesimal decay of the loss function is also invariant under smooth changes in the
coordinates. Indeed,

df(\omega (\varepsilon ))

dt
=\rightarrow \Leftarrow P\vargamma 

g

\varepsilon 
f\Leftarrow 

2
g(\varepsilon (\omega )).

A critical benefit of these invariance properties is mitigating potential negative e!ects
of a poor choice of parameterization by filtering them out (since the corresponding
decrease in the loss function is parameter-invariant) and reaching argmin\varepsilon \downarrow M f(\omega ) as
quickly and as closely as possible. For the analysis of NGD based on this insight, we
refer the reader to [31, 28] for more details.

Remark 2.1. When {\vargamma 
g

\omega i
\omega } are linearly dependent, the \varrho nat in (2.2) is not unique,

and we pick the one with the minimal length for computational purposes; that is,
we replace G\rightarrow 1(\varepsilon ) by the Moore–Penrose pseudoinverse G(\varepsilon )† in (1.2) and elsewhere.
It is worth noting that this choice is crucial to guarantee convergence and general-
ization properties of the NGD method in some applications; see [54] for example.
Alternatively, one may consider a damping variant of G; see subsection 3.5.1.

To compare the natural gradient with the standard gradient \vargamma \omega f(\omega (\varepsilon )), first note
that

df(\omega (\varepsilon ))

dt
=

\Biggr\rceil 
\vargamma 
g

\varepsilon 
f,

p\Biggl\{ 

i=1

\varrho i\vargamma 
g

\omega i
\omega 

\Biggr\} 

g(\varepsilon (\omega ))

=
p\Biggl\{ 

i=1

\Biggr\rfloor 
\vargamma 
g

\varepsilon 
f,\vargamma 

g

\omega i
\omega 
\Biggl\lceil 
g(\varepsilon (\omega ))

\varrho i = \vargamma \omega f(\omega (\varepsilon )) · \varrho .
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A1626 LEVON NURBEKYAN, WANZHOU LEI, AND YUNAN YANG

Therefore, in a form similar to (2.2), the GD direction is the solution to

\varrho 
std = argmin

\varpi 

\Leftarrow \vargamma \omega f(\omega (\varepsilon )) + \varrho \Leftarrow 
2
.

In other words, GD is the steepest descent in the \varepsilon -space, whereas NGD is an approxi-
mation of the steepest descent in the \omega -space based on a given metric g. Furthermore,
GD leads to

\vargamma 
g

t
\omega =

p\Biggl\{ 

i=1

\varrho 
std

i
\vargamma 
g

\omega i
\omega =\rightarrow 

p\Biggl\{ 

i=1

\Biggr\rfloor 
\vargamma 
g

\varepsilon 
f,\vargamma 

g

\omega i
\omega 
\Biggl\lceil 
g(\varepsilon (\omega ))

\vargamma 
g

\omega i
\omega ,

df(\omega (\varepsilon ))

dt
=\rightarrow \Leftarrow \vargamma \omega f(\omega (\varepsilon ))\Leftarrow 

2
2 =\rightarrow 

p\Biggl\{ 

i=1

\Bigg/ \Bigg/ \Bigg/ 
\Biggr\rfloor 
\vargamma 
g

\varepsilon 
f,\vargamma 

g

\omega i
\omega 
\Biggl\lceil 
g(\varepsilon (\omega ))

\Bigg/ \Bigg/ \Bigg/ 
2
,

which are not necessarily invariant under coordinate transformations.
When {\vargamma 

g

\omega i
\omega } are linearly independent, we obtain that

\varrho 
nat =\rightarrow G(\varepsilon )\rightarrow 1

\vargamma \omega f(\omega (\varepsilon )) =G(\varepsilon )\rightarrow 1
\varrho 
std

,(2.4)

where G(\varepsilon ) is the information matrix whose (i, j)th entry is

Gij(\varepsilon ) =
\Biggr\rfloor 
\vargamma 
g

\omega i
\omega ,\vargamma 

g

\omega j
\omega 
\Biggl\lceil 
g(\varepsilon (\omega ))

, i, j = 1, . . . , p.(2.5)

Thus, an NGD direction is a GD direction preconditioned by the inverse of the infor-
mation matrix.

Since the information matrix G(\varepsilon ) is often dense and can be ill-conditioned, direct
application of (2.4) is prohibitively costly for high-dimensional parameter space, that
is, large p. Our goal is to calculate \varrho 

nat via the least-squares formulation (2.2), cir-
cumventing the computational costs from assembling and inverting the dense matrix
G directly.

2.1. L
2 natural gradient. In this subsection, we embed \omega in the metric space

(M, g) = (L2(Rd), \uparrow ·, ·\downarrow L2(Rd)). In this case, the tangent space T\varepsilon M= L
2(Rd) for any

\omega \simeq M, and

\Biggr\rfloor 
\varphi , \varphi 

\Biggl\lceil 
g(\varepsilon )

=

\Bigg\backslash 

Rd

\varphi (x)\varphi (x)dx \Rightarrow \varphi , \varphi \simeq T\varepsilon M.

The linear structure of L2(Rd) is advantageous for developing di!erential calcu-
lus, and many finite-dimensional concepts generalize naturally. Indeed, the tangent
vectors (2.1) for a smooth mapping \varepsilon \simeq \# \updownarrow \nearrow \omega (\varepsilon , ·) \simeq L

2(Rd) are {\varphi 1, \varphi 2, . . . , \varphi p} given
by

\varphi i(x) = \vargamma \omega i\omega (\varepsilon , x), i= 1, . . . , p.(2.6)

The information matrix in (2.5) is given by

G
L

2

ij
(\varepsilon ) =

\Bigg\backslash 

Rd

\vargamma \omega i\omega (\varepsilon , x)\vargamma \omega j\omega (\varepsilon , x)dx, i, j = 1,2, . . . , p.

Next, for f : L2(Rd) \updownarrow \nearrow R, we obtain that the L
2-derivative at \omega is \vargamma \varepsilon f(\omega ) \simeq L

2(Rd)
such that

lim
t\updownarrow 0

f(\omega + t\varphi )\rightarrow f(\omega )

t
=

\Bigg\backslash 

Rd

\vargamma \varepsilon f(\omega )(x) \varphi (x)dx \Rightarrow \varphi \simeq L
2(Rd).(2.7)
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EFFICIENT NATURAL GRADIENT DESCENT METHODS A1627

Thus, \vargamma \varepsilon f is the commonly known derivative in the sense of calculus of variations.
Finally, for smooth \omega :\#\nearrow L

2(Rd) and f :L2(Rd)\nearrow R, formula (2.2) leads to the L
2

natural gradient

\varrho 
nat

L2 = argmin
\varpi \downarrow Rp

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle \vargamma \varepsilon f +
p\Biggl\{ 

i=1

\varrho i\varphi i

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle 
2

L2(Rd)

.(2.8)

The L
2 metric is not a typical choice for the NGD. Nevertheless, this metric is

important as a basis for computing more complex NGDs. Additionally, see section 2.6
for the connection between L

2-based NGD and the Gauss–Newton method.

2.2. H
s natural gradient. In this subsection, we assume that \omega is embedded

in the L
2-based Sobolev space H

s(Rd) for s \simeq Z (we return to the L
2 case if s = 0).

The metric space (M, g) = (Hs(Rd), \uparrow ·, ·\downarrow Hs(Rd)). Since this is also a Hilbert space,
T\varepsilon M=H

s(Rd) for all \omega \simeq M, and

\uparrow \varphi , \varphi \downarrow g(\varepsilon ) = \uparrow \varphi , \varphi \downarrow Hs(Rd) =

\Big/ \Big\backslash 
Rd Ds

\varphi ·Ds
\varphi dx, s\Uparrow 0,\Big\backslash 

Rd D\rightarrow s
\leftharpoonup ·D\rightarrow s

\̂leftharpoonup dx, s < 0,
\varphi , \varphi \simeq T\varepsilon M,

where Ds is the linear operator whose output is the vector of all the partial deriv-
atives up to order s for s \Uparrow 0. For s < 0, we define \leftharpoonup = ((D\rightarrow s)\nearrow D\rightarrow s)\rightarrow 1

\varphi and
\̂leftharpoonup = ((D\rightarrow s)\nearrow D\rightarrow s)\rightarrow 1

\varphi . For example, (D\rightarrow s)\nearrow D\rightarrow s = I \rightarrow \Downarrow if s = \rightarrow 1 and I \rightarrow \Downarrow +\Downarrow 
2

if s = \rightarrow 2 [50]. Note that D\rightarrow s((D\rightarrow s)\nearrow D\rightarrow s)\rightarrow 1 = ((D\rightarrow s)\nearrow )† for s < 0, where † is the
notation for pseudoinverse. Thus, we can rewrite

\uparrow \varphi , \varphi \downarrow Hs(Rd) = \uparrow D\rightarrow s
\leftharpoonup ,D\rightarrow s

\̂leftharpoonup \downarrow L2(Rd) =
\Biggr\rfloor 
((D\rightarrow s)\nearrow )†\varphi , ((D\rightarrow s)\nearrow )†\varphi 

\Biggl\lceil 
L2(!)

\Rightarrow \varphi , \varphi \simeq T\varepsilon M.

For a smooth \omega : \# \nearrow H
s(Rd), the tangent vectors are still {\varphi i} in (2.6) but

now are considered as elements of Hs(Rd). This means that the information matrix
G

H
s

(\varepsilon ) defined in (2.5) is given by

G
H

s

ij
(\varepsilon ) = \uparrow \vargamma \omega i\omega ,\vargamma \omega j\omega \downarrow Hs(Rd)

=

\Big/ \Big\backslash 
Rd Ds

\vargamma \omega i\omega (\varepsilon , x) ·D
s
\vargamma \omega j\omega (\varepsilon , x) dx, s\Uparrow 0,\Big\backslash 

Rd((D\rightarrow s)\nearrow )†\vargamma \omega i\omega (\varepsilon , x) · ((D
\rightarrow s)\nearrow )†\vargamma \omega j\omega (\varepsilon , x) dx, s < 0,

for i, j = 1, . . . , p. Note that GH
s

is di!erent from G
L

2

due to the inner product.
Next, we calculate the Hs gradient of smooth f :Hs(Rd)\nearrow R. For s\Uparrow 0, we have

that

lim
t\updownarrow 0

f(\omega + t\varphi )\rightarrow f(\omega )

t
= \uparrow \vargamma 

H
s

\varepsilon 
f, \varphi \downarrow Hs(Rd) =

\Bigg\backslash 

Rd

Ds
\vargamma 
H

s

\varepsilon 
f ·Ds

\varphi dx

=

\Bigg\backslash 

Rd

(Ds)\nearrow Ds
\vargamma 
H

s

\varepsilon 
f \varphi dx,

and so from (2.7) we obtain

\vargamma 
H

s

\varepsilon 
f = ((Ds)\nearrow Ds)\rightarrow 1

\vargamma \varepsilon f, s\Uparrow 0.

When s < 0, under analogous assumptions with the case s\Uparrow 0, we have that

lim
t\updownarrow 0

f(\omega + t\varphi )\rightarrow f(\omega )

t

= \uparrow \vargamma 
H

s

\varepsilon 
f, \varphi \downarrow Hs(Rd) =

\Bigg\backslash 

Rd

((D\rightarrow s)\nearrow )†\vargamma H
s

\varepsilon 
f · ((D\rightarrow s)\nearrow )†\varphi dx

=

\Bigg\backslash 

Rd

(D\rightarrow s)†((D\rightarrow s)\nearrow )†\vargamma H
s

\varepsilon 
f · \varphi dx=

\Bigg\backslash 

Rd

((D\rightarrow s)\nearrow D\rightarrow s)†\vargamma H
s

\varepsilon 
f \varphi dx.
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Thus, from (2.7), we have

\vargamma 
H

s

\varepsilon 
f = (D\rightarrow s)\nearrow D\rightarrow s

\vargamma \varepsilon f, s < 0.

Finally, for smooth \omega : \# \nearrow H
s(Rd) and f : Hs(Rd) \nearrow R, (2.2) leads to the H

s

natural gradient

\varrho 
nat

Hs = argmin
\varpi \downarrow Rp

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle \vargamma 
H

s

\varepsilon 
f +

p\Biggl\{ 

i=1

\varrho i\varphi i

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle 
2

Hs(Rd)

.(2.9)

For numerical implementation, we reduce this previous formulation into a least-
squares problem in L

2(Rd). More specifically, for s\Uparrow 0, (2.9) can be written as

\varrho 
nat

Hs = argmin
\varpi \downarrow Rp

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle D
s((Ds)\nearrow Ds)\rightarrow 1

\vargamma \varepsilon f +
p\Biggl\{ 

i=1

\varrho i D
s
\varphi i

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle 
2

L2(Rd)

.

Furthermore, for s < 0 we have that (2.9) can be written as

\varrho 
nat

Hs = argmin
\varpi \downarrow Rp

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle D
\rightarrow s

\vargamma \varepsilon f +
p\Biggl\{ 

i=1

\varrho i ((D
\rightarrow s)\nearrow )†\varphi i

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle 
2

L2(Rd)

.

Both cases share the same form (2.10) with L=Ds for s\Uparrow 0 and L= ((D\rightarrow s)\nearrow )† for
s < 0:

\varrho 
nat

Hs = argmin
\varpi \downarrow Rp

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle (L
\nearrow )†\vargamma \varepsilon f +

p\Biggl\{ 

i=1

\varrho i L\varphi i

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle 
2

L2(Rd)

.(2.10)

2.3. Ḣ
s natural gradient. Next, we consider the NGD with respect to the

Sobolev seminorm Ḣ
s. For simplicity, we assume that \omega is supported in a smooth

bounded domain \$ \searrow Rd. For s > 0, we define the space Ḣ
s(\$) = {\varphi \simeq H

s(\$) :\Big\backslash 
! \varphi = 0} with the inner product

\uparrow \varphi , \varphi \downarrow 
Ḣs(!) = \uparrow \left( Ds

\varphi , \left( Ds
\varphi \downarrow L2(!) =

\Bigg\backslash 

!

\left( Ds
\varphi · \left( Ds

\varphi dx \Rightarrow \varphi , \varphi \simeq Ḣ
s(\$),

where \left( Ds is the linear operator whose output is the vector of all partial derivatives
of positive order up to s. To consider the Ḣ

s natural gradient flows, we embed \omega in
(M, g), where

M=

\Biggr) 
\omega \simeq H

s(\$) :

\Bigg\backslash 

!
\omega = 1

\Biggl[ 
, T\varepsilon M= Ḣ

s(\$),

\uparrow \varphi , \varphi \downarrow g(\varepsilon ) = \uparrow \varphi , \varphi \downarrow 
Ḣs(!) \Rightarrow \varphi , \varphi \simeq T\varepsilon M.

For a smooth \omega :\#\nearrow M, we still have that the tangent vectors are {\varphi i} as defined in
(2.6). Since

\Big\backslash 
! \omega (\varepsilon , x)dx= 1 for all \varepsilon \simeq \#, we have that

\Bigg\backslash 

!
\varphi i(x)dx=

\Bigg\backslash 

!
\vargamma \omega i\omega (\varepsilon , x)dx= \vargamma \omega i

\Bigg\backslash 

!
\omega (\varepsilon , x)dx= 0, i= 1, . . . , p,

and thus {\varphi i}\searrow T\varepsilon M. The information matrix (2.5) for this case is GḢ
s

(\varepsilon ) given by

G
Ḣ

s

ij
(\varepsilon ) = \uparrow \vargamma \omega i\omega ,\vargamma \omega j\omega \downarrow Ḣs(!) =

\Bigg\backslash 

!

\left( Ds
\vargamma \omega i\omega (\varepsilon , x) · \left( Ds

\vargamma \omega j\omega (\varepsilon , x)dx, i, j = 1, . . . , p.
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EFFICIENT NATURAL GRADIENT DESCENT METHODS A1629

On the other hand, for f :M\nearrow R, we have that \vargamma Ḣ
s

\varepsilon 
f \simeq Ḣ

s(\$) where \Rightarrow \varphi \simeq T\varepsilon M,

lim
t\updownarrow 0

f(\omega + t\varphi )\rightarrow f(\omega )

t
= \uparrow \vargamma 

Ḣ
s

\varepsilon 
f, \varphi \downarrow 

Ḣs(!) =

\Bigg\backslash 

!

\left( Ds
\vargamma 
Ḣ

s

\varepsilon 
f · \left( Ds

\varphi dx=

\Bigg\backslash 

!
(\left( Ds)\nearrow \left( Ds

\vargamma 
Ḣ

s

\varepsilon 
f \varphi dx.

The adjoint (\left( Ds)\nearrow is taken with respect to the L2(\$) inner product. Hence, based on
(2.7),

\Bigg\backslash 

!

\right) 
\vargamma \varepsilon f \rightarrow (\left( Ds)\nearrow \left( Ds

\vargamma 
Ḣ

s

\varepsilon 
f

\left[ 
\varphi dx= 0 \Rightarrow \varphi \simeq T\varepsilon M.(2.11)

Furthermore, denote by 1 the constant function that is equal to 1 on \$. We then
have that

T\varepsilon M= span{1}\searrow =ker(\left( Ds)\searrow = Im((\left( Ds)\nearrow ),

where \searrow is again taken with respect to the L
2(\$) inner product. Hence, using the

properties of adjoint operators, we obtain

\vargamma 
Ḣ

s

\varepsilon 
f =

\right) 
(\left( Ds)\nearrow \left( Ds

\left[ †
\vargamma \varepsilon f, s > 0.

Next, we discuss the case s < 0. As the dual space of Ḣ\rightarrow s(\$), the space Ḣ
s(\$)

is equipped with the dual norm

\Leftarrow \varphi \Leftarrow 
Ḣs(!) = sup

\Biggr] 
\uparrow \varphi ,\leftharpoondown \downarrow : \Leftarrow \leftharpoondown \Leftarrow 

Ḣ\rightarrow s(!) \leftrightarrow 1
\Biggl\lfloor 
.

Using the Poincaré inequality and the Riesz representation theorem, we obtain that
for every \varphi \simeq span{1}\searrow , the map \leftharpoondown \updownarrow \nearrow 

\Big\backslash 
! \varphi \leftharpoondown is a continuous linear operator on Ḣ

\rightarrow s(\$),
and there exists a unique \leftharpoonup \simeq Ḣ

\rightarrow s(\$) such that
\Bigg\backslash 

!
\varphi \leftharpoondown dx=

\Bigg\backslash 

!

\left( D\rightarrow s
\leftharpoonup \left( D\rightarrow s

\leftharpoondown dx \Rightarrow \leftharpoondown \simeq Ḣ
\rightarrow s(\$).

Hence, \varphi = (\left( D\rightarrow s)\nearrow \left( D\rightarrow s
\leftharpoonup together with the homogeneous Neumann boundary condi-

tion. Therefore,

\Leftarrow \varphi \Leftarrow 
Ḣs(!) = \Leftarrow \left( D\rightarrow s

\leftharpoonup \Leftarrow L2 = \Leftarrow \leftharpoonup \Leftarrow 
Ḣ\rightarrow s(!).

Using similar arguments for the s > 0 case, we obtain that

\uparrow \varphi , \varphi \downarrow 
Ḣs(!) = \uparrow \left( D\rightarrow s

\leftharpoonup , \left( D\rightarrow s
\̂leftharpoonup \downarrow L2(!)

=
\right] 
((\left( D\rightarrow s)\nearrow )†\varphi , ((\left( D\rightarrow s)\nearrow )†\varphi 

 

L2(!)
\Rightarrow \varphi , \varphi \simeq span{1}\searrow .

For more details on Ḣ
s(\$) where s < 0, we refer the reader to [4, Lecture 13].

Next, we embed \omega in space M = {\omega \simeq L
2(\$) :

\Big\backslash 
! \omega = 1} with T\varepsilon M = span{1}\searrow 

and

\uparrow \varphi , \varphi \downarrow g(\varepsilon ) =
\right] 
((\left( D\rightarrow s)\nearrow )†\varphi , ((\left( D\rightarrow s)\nearrow )†\varphi 

 

L2(!)
\Rightarrow \varphi , \varphi \simeq T\varepsilon M.

Furthermore, for a smooth function f :M\nearrow R, we have that

lim
t\updownarrow 0

f(\omega + t\varphi )\rightarrow f(\omega )

t
= \uparrow \vargamma 

Ḣ
s

\varepsilon 
f, \varphi \downarrow 

Ḣs(!) =

\Bigg\backslash 

!
((\left( D\rightarrow s)\nearrow \left( D\rightarrow s)†\vargamma Ḣ

s

\varepsilon 
f \varphi dx.
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A1630 LEVON NURBEKYAN, WANZHOU LEI, AND YUNAN YANG

Together with (2.7), we have
\Bigg\backslash 

!

\right) 
\vargamma \varepsilon f \rightarrow ((\left( D\rightarrow s)\nearrow \left( D\rightarrow s)†\vargamma Ḣ

s

\varepsilon 
f

\left[ 
\varphi dx= 0 \Rightarrow \varphi \simeq T\varepsilon M.

After performing analysis similar to the s > 0 case, we obtain that

\vargamma 
Ḣ

s

\varepsilon 
f = (\left( D\rightarrow s)\nearrow \left( D\rightarrow s

\vargamma \varepsilon f, s < 0.

Finally, for both s > 0 and s < 0 cases, (2.2) leads to the Ḣ
s natural gradient

\varrho 
nat

Ḣs = argmin
\varpi \downarrow Rp

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle \vargamma 
Ḣ

s

\varepsilon 
f +

p\Biggl\{ 

i=1

\varrho i\varphi i

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle 
2

Ḣs(Rd)

(2.12)

for smooth \omega : \# \nearrow M and f : M \nearrow R. As before, we can rewrite (2.12) as a
least-squares problem

\varrho 
nat

Ḣs = argmin
\varpi \downarrow Rp

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle (L
\nearrow )† \vargamma \varepsilon f +

p\Biggl\{ 

i=1

\varrho i L\varphi i

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle 
2

L2(!)

, L=

\Big/ 
\left( Ds

, s > 0,

((\left( D\rightarrow s)\nearrow )†, s < 0.
(2.13)

Note that (2.13) shares the same form with (2.10).
H

s and Ḣ
s natural gradients proved extremely useful for obtaining fast algorithms

for solving the optimal transportation problem and related problems [20, 19, 18]. The
authors in these papers do not use the natural gradient descent formalism, but their
methods are indeed Sobolev NGDs.

2.4. Fisher–Rao–Hellinger natural gradient. Here, we assume that \omega is a
strictly positive probability density function. We embed \omega in (M, g) = (L1(Rd), g)
where T\varepsilon (M) =L

2
\varepsilon \rightarrow 1(Rd) and

\uparrow \varphi , \varphi \downarrow g(\varepsilon ) =

\Bigg\backslash 

Rd

\varphi (x)\varphi (x)

\omega (x)
dx \Rightarrow \varphi , \varphi \simeq T\varepsilon M.

This Riemannian metric is called the Fisher–Rao metric, and the distance induced by
this metric is the Hellinger distance: dH(\omega 1,\omega 2)\nwarrow \Leftarrow 

\swarrow 
\omega 1 \rightarrow 

\swarrow 
\omega 2\Leftarrow L2(Rd). Next, we will

derive the natural gradient flow based on the Fisher–Rao metric, first introduced by
Amari in [2].

For a smooth \omega :\#\nearrow M, we have that the tangent vectors are {\varphi i} in (2.6) but
now considered as elements of L2

\varepsilon \rightarrow 1(Rd). Therefore, the information matrix in (2.5)
becomes GFR(\varepsilon )\simeq Rp\simeq p where

G
FR

ij
(\varepsilon ) =

\Bigg\backslash 

Rd

\vargamma \omega i\omega (\varepsilon , x)\vargamma \omega j\omega (\varepsilon , x)

\omega (\varepsilon , x)
dx, i, j = 1,2, . . . , p.

As before, GFR(\varepsilon ) is in general di!erent from G
L

2

(\varepsilon ), GH
s

(\varepsilon ), and G
Ḣ

s

(\varepsilon ).
Furthermore, for a smooth function f :M\nearrow R, we have that

lim
t\updownarrow 0

f(\omega + t\varphi )\rightarrow f(\omega )

t
=

\Bigg\backslash 

Rd

\vargamma 
FR

\varepsilon 
f \varphi 

\omega 
dx,

and so from (2.7) we obtain

\vargamma 
FR

\varepsilon 
f = \omega \vargamma \varepsilon f.
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EFFICIENT NATURAL GRADIENT DESCENT METHODS A1631

Finally, for smooth \omega :\#\nearrow M and f :M\nearrow R, (2.2) leads to the Fisher–Rao natural
gradient

\varrho 
nat

FR
= argmin

\varpi \downarrow Rp

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle \vargamma 
FR

\varepsilon 
f +

p\Biggl\{ 

i=1

\varrho i\varphi i

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle 
2

L
2

\omega \rightarrow 1
(Rd)

.(2.14)

The L
2 least-squares formulation is

\varrho 
nat

FR
= argmin

\varpi \downarrow Rp

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle 
\vargamma 
FR

\varepsilon 
f

\swarrow 
\omega 

+
p\Biggl\{ 

i=1

\varrho i
\varphi i
\swarrow 
\omega 

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle 
2

L2(Rd)

= argmin
\varpi \downarrow Rp

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle (L
\nearrow )†\vargamma \varepsilon f +

p\Biggl\{ 

i=1

\varrho i L\varphi i

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle 
2

L2(Rd)

,

(2.15)

where L\varphi = 1\Leftarrow 
\varepsilon 
\varphi and (L\nearrow )†\vargamma \varepsilon f =

\swarrow 
\omega \vargamma \varepsilon f .

2.5. W2 natural gradient. We first revisit the WNGD method [23]. Denoting
by P(Rd) the set of Borel probability measures on Rd, we first introduce the Wasser-
stein metric on the space P(Rd). Furthermore, for \omega \simeq P(Rd) and a measurable
function f :Rd

\nearrow Rn, we denote by f\varrho \omega \simeq P(Rn) the probability measure defined by

(f\varrho \omega )(B) = \omega (f\rightarrow 1(B)) \Rightarrow B \searrow Rn Borel

and call it the pushforward of \omega under f . Next, for any \omega 1,\omega 2 \simeq P(Rd), we denote
\%(\omega 1,\omega 2) as the set of all possible joint measures \rightharpoonup \simeq P(R2d) such that

\Bigg\backslash 

R2d

(\leftharpoondown (x) + \varsigma (y))d\rightharpoonup (x, y) =

\Bigg\backslash 

Rd

\leftharpoondown (x)d\omega 1(x) +

\Bigg\backslash 

Rd

\varsigma (y)d\omega 2(y)

for all (\leftharpoondown ,\varsigma )\simeq L
1(\omega 1)\propto L

1(\omega 2). The 2-Wasserstein distance is defined as

W2(\omega 1,\omega 2) =

 
inf

\varsigma \downarrow ""(\varepsilon 1,\varepsilon 2)

\Bigg\backslash 

R2d

|x\rightarrow y|
2
d\rightharpoonup (x, y)

 1

2

.

Denoting by P2(Rd) the set of Borel probability measures with finite second mo-
ments, we have that (P2(Rd),W2) is a complete separable metric space; see more
details in [46, Chapters 7] and [5, Chapters 7]. More intriguingly, one can build a
Riemannian structure on (P2(Rd),W2). Our discussion is formal, and we refer the
reader to [46, Chapter 8] and [5, Chapter 8] for rigorous treatments.

In short, tangent vectors in (P2(Rd),W2) are the infinitesimal spatial displace-
ments of minimal kinetic energy. More specifically, for a given \omega \simeq P2(Rd), we define
the tangent space, T\varepsilon P2(Rd), as a set of all maps v \simeq L

2
\varepsilon 
(Rd;Rd) such that

\Leftarrow v+w\Leftarrow L2
\omega (Rd;Rd) \Uparrow \Leftarrow v\Leftarrow L2

\omega (Rd;Rd) \Rightarrow w \simeq L
2
\varepsilon 
(Rd;Rd) s.t. \prime · (w\omega ) = 0,(2.16)

where L
2
\varepsilon 
(Rd;Rd) denotes the \omega -weighted L

2 space. When \omega = 1, it reduces to the
standard L

2. The divergence equation above is understood in the sense of distribu-
tions; that is,

\Bigg\backslash 

Rd

\prime \leftharpoondown (x) ·w(x) \omega (x)dx= 0 \Rightarrow \leftharpoondown \simeq C
\Rightarrow 
c
(Rd).

If we think of \omega as a fluid density, then an infinitesimal displacement dx

dt
= ẋ= v(x)

leads to an infinitesimal density change given by the continuity equation

\vargamma \omega 

\vargamma t
=\rightarrow \prime · (v\omega ).(2.17)
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A1632 LEVON NURBEKYAN, WANZHOU LEI, AND YUNAN YANG

Therefore, for a given w such that \prime · (w\omega ) = 0, we have that both ẋ = v(x) and
ẋ= v(x)+w(x) lead to the same continuity equation (2.17). Therefore, the evolution
of the density is insensitive to the divergence-free vector fields, and we project them
out leaving only a unique vector field with the minimal kinetic energy. The kinetic
energy of a vector field v is then defined as

\Leftarrow v\Leftarrow 
2
L2

\omega (Rd;Rd) =

\Bigg\backslash 

Rd

|v(x)|2\omega (x)dx.

For a given evolution t \updownarrow \nearrow \omega (t, ·), such a “distilled” vector field v is unique and incor-
porates critical geometric information on the spatial evolution of \omega .

Next, we define a Riemannian metric by

\uparrow v, v̂\downarrow g(\varepsilon ) =

\Bigg\backslash 

Rd

v(x) · v̂(x) \omega (x)dx, v, v̂ \simeq T\varepsilon P2(Rd).

Furthermore, a mapping \varepsilon \simeq \# \updownarrow \nearrow \omega (\varepsilon , ·) \simeq P(Rd) is di!erentiable if for every \varepsilon \simeq \#,
there exists a set of bases {vi(\varepsilon )}\searrow T\varepsilon P2(Rd) such that

lim
t\updownarrow 0

W2 (\omega (\varepsilon + t\varrho ), (I + t
\Biggl\langle 

p

i=1 \varrho ivi(\varepsilon )) \rightharpoondown \omega (\varepsilon ))

t
= 0 \Rightarrow \varrho \simeq Rp

,(2.18)

where I is the identity map. Thus,
\Biggr] 
v1, v2, . . . , vp

\Biggl\lfloor 
=
\Biggr] 
\vargamma 
W

\omega 1
\omega ,\vargamma 

W

\omega 2
\omega , . . . ,\vargamma 

W

\omega p
\omega 

\Biggl\lfloor 
(2.19)

are the tangent vectors in (2.1) for the W2 metric. Thus, the information matrix in
(2.5) becomes GW (\varepsilon )\simeq Rp\simeq p, where

G
W

ij
(\varepsilon ) =

\Bigg\backslash 

Rd

vi(x) · vj(x) \omega (x)dx, i, j = 1,2, . . . , p.

For f : P2(Rd) \nearrow R, the Wasserstein gradient at \omega is then \vargamma 
W

\varepsilon 
f(\omega ) \simeq T\varepsilon P2(Rd),

such that

lim
t\updownarrow 0

f ((I + tv)\rightharpoondown \omega )\rightarrow f(\omega )

t
=

\Bigg\backslash 

Rd

\vargamma 
W

\varepsilon 
f(\omega )(x) · v(x) \omega (x)dx \Rightarrow v \simeq T\varepsilon P(Rd).(2.20)

Thus, for a smooth \omega :\#\nearrow P2(Rd) and f : P2(Rd)\nearrow R, the W2 NGD direction for \varepsilon 
is given by

\varrho 
nat

W2
= argmin

\varpi \downarrow Rp

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle \vargamma 
W

\varepsilon 
f +

p\Biggl\{ 

i=1

\varrho ivi

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle 
2

L2
\omega (Rd;Rd)

.(2.21)

As seen in (2.6), the L2 derivatives and gradients are typically easier to calculate.
Here, we discuss the relations between the L

2 and W2 metrics that are useful for
calculating the W2 derivatives and gradients, i.e., {vi} and \vargamma 

W

\varepsilon 
f . We formulate the

main conclusions in Proposition 2.2.

Proposition 2.2. Let {\varphi i} and {vi} follow (2.6) and (2.19), respectively. The
\vargamma \varepsilon f and {\varphi i} in (2.8) relate to the \vargamma 

W

\varepsilon 
f and {vi} in (2.21) as follows:

\vargamma 
W

\varepsilon 
f =\prime \vargamma \varepsilon f,(2.22)
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EFFICIENT NATURAL GRADIENT DESCENT METHODS A1633

vi(\varepsilon ) = argmin
v

\Biggr] 
\Leftarrow v\Leftarrow 

2
L

2

\omega (\varepsilon )
(Rd;Rd) : \rightarrow \prime · (\omega (\varepsilon )v) = \varphi i(\varepsilon )

\Biggl\lfloor 
, i= 1, . . . , p.(2.23)

Informal derivation. Given a vector field v and a small t > 0, we have that I + tv

is a first-order approximation of the trajectory below where I is the identity function.
Note that in Lagrangian coordinates, ẋ = v(x). Thus, from the continuity equation
(2.17), we have that

(I + tv) \rightharpoondown \omega = \omega \rightarrow t\prime · (\omega v) + o(t).(2.24)

Recall that \varphi i = \vargamma \omega i\omega and vi = \vargamma 
W

\omega i
\omega . Using this observation together with (2.6) and

(2.18), we have

\omega (\varepsilon + t\varrho ) = \omega (\varepsilon ) + t

p\Biggl\{ 

i=1

\varrho i\varphi i(\varepsilon ) + o(t),

\omega (\varepsilon + t\varrho ) = \omega (\varepsilon )\rightarrow t

p\Biggl\{ 

i=1

\varrho i\prime · (\omega (\varepsilon )vi(\varepsilon )) + o(t)

for all \varrho \simeq Rp. By comparing the above two equations, we have

\rightarrow \prime · (\omega (\varepsilon )vi(\varepsilon )) = \varphi i(\varepsilon ), 1\leftrightarrow i\leftrightarrow p.(2.25)

After taking (2.16) into account, we obtain (2.23).
Next, we establish a connection between \vargamma \varepsilon f and \vargamma 

W

\varepsilon 
f . Combining (2.7), (2.20),

and (2.24)–(2.25), we obtain
\Bigg\backslash 

Rd

\vargamma 
W

\varepsilon 
f(\omega )(x) · v(x)\omega (x)dx=\rightarrow 

\Bigg\backslash 

Rd

\vargamma \varepsilon f(\omega )(x)\prime · (\omega (x)v(x))dx

=

\Bigg\backslash 

Rd

\prime \vargamma \varepsilon f(\omega )(x) · v(x) \omega (x)dx

for all v \simeq T\varepsilon P2(Rd). Hence, we obtain (2.22).

Similar to previous cases, we want to turn (2.21) into an unweighted L
2 formula-

tion. Using results in Proposition 2.2, we know that the Wasserstein tangent vectors
at \omega are velocity fields of minimal kinetic energy in L

2
\varepsilon 
(Rd;Rd). We first perform a

change of variables

ṽi =
\swarrow 
\omega vi, i= 1, . . . , p,

where the set of {vi} follows (2.19). As a result, for each i = 1, . . . , p, (2.23) reduces
to

ṽi(\varepsilon ) = argmin
\Biggr] 
\Leftarrow ṽ\Leftarrow 

2
L2(Rd;Rd) :Bṽ= \varphi i(\varepsilon )

\Biggl\lfloor 
, where Bṽ=\rightarrow \prime ·

\right)  
\omega (\varepsilon ) ṽ

\left[ 
.(2.26)

We then have ṽi =B†
\varphi i for i= 1, . . . , p. Denote the adjoint operator of B as B\nearrow . Note

that B\nearrow 
\varrho =

\swarrow 
\omega \prime \varrho . Combining these observations with Proposition 2.2, formulation

(2.21) becomes

\varrho 
nat

W2
= argmin

\varpi \downarrow Rp

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle 
\swarrow 
\omega \prime \vargamma \varepsilon f +

p\Biggl\{ 

i=1

\varrho iṽi

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle 
2

L2(Rd;Rd)

= argmin
\varpi \downarrow Rp

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle B
\nearrow 
\vargamma \varepsilon f +

p\Biggl\{ 

i=1

\varrho iB
†
\varphi i

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle 
2

L2(Rd;Rd)

= argmin
\varpi \downarrow Rp

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle (L
\nearrow )†\vargamma \varepsilon f +

p\Biggl\{ 

i=1

\varrho iL\varphi i

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle 
2

L2(Rd;Rd)

, where L=B†.

(2.27)

We have reformulated the W2 NGD as a standard L
2 minimization (2.27).
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A1634 LEVON NURBEKYAN, WANZHOU LEI, AND YUNAN YANG

Remark 2.3. Note that the Wasserstein natural gradient is closely related to the
Ḣ

\rightarrow 1 natural gradient presented in subsection 2.3. Indeed, taking s = \rightarrow 1 in (2.13),
we obtain that

\varrho 
nat

Ḣ\rightarrow 1
= argmin

\varpi \downarrow Rp

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle \prime \vargamma \varepsilon f +
p\Biggl\{ 

i=1

\varrho i(\prime 
\nearrow )†\varphi i

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle 
2

L2(!)

,

which matches (2.27) except that the weighted divergence operator B defined in (2.26)
is replaced with the unweighted divergence operator \rightarrow \prime ·=\prime 

\nearrow . When \omega (\varepsilon )\infty 1, these
two operators coincide.

In principle, one may consider NGDs generated by the generalized operator

Bkṽ=\rightarrow \prime ·
\left\{ 
\omega (\varepsilon )kṽ

\right\} 
, L= (Bk)

†
,

where the case k = 0 corresponds to the Ḣ
\rightarrow 1 natural gradient and k = 1/2 corre-

sponds to the W2 NGD. The term \omega 
k is often referred to as mobility in gradient flow

equations [26].

Remark 2.4. NGDs based upon the L
2 norm (2.8), the H

s norm (2.9), the Ḣ
s

norm (2.12), the Fisher–Rao metric (2.14), and the W2 metric (2.21) are similar in
form but equipped with di!erent underlying metric space (M, g) for \omega . All of them
can be reduced to the same common form but with a di!erent L operator; see (2.8),
(2.10), (2.13), (2.15), and (2.27), respectively. As a result, we expect that they may
perform di!erently in the optimization process as NGD methods, which we will see
later from numerical examples in section 4.

2.6. Gauss–Newton algorithm as an L
2 natural gradient. Next, we give

an example to show that the Gauss–Newton method, a popular optimization algorithm
[37], can be seen as an NGDmethod. More discussions on this connection can be found
in [31]. Assume that f measures the least-squares di!erence between the model \omega (x;\varepsilon )
and the reference \omega 

\nearrow (x) distributions; that is,

f(\omega (\varepsilon )) =
1

2

\Bigg\backslash 

!
|\omega (x;\varepsilon )\rightarrow \omega 

\nearrow (x)|2dx,(2.28)

where \$ is the spatial domain. Thus, the problem of finding the parameter \varepsilon becomes

inf
\omega 

f(\omega (\varepsilon ))

= inf
\omega 

1

2

\Bigg\backslash 

!
|\omega (x;\varepsilon )\rightarrow \omega 

\nearrow (x)|2dx= inf
\omega 

1

2

\Bigg\backslash 

!
|r(x;\varepsilon )|2dx, r(x;\varepsilon ) = \omega (x;\varepsilon )\rightarrow \omega 

\nearrow (x).

We will denote \omega (x;\varepsilon ) as \omega (\varepsilon ) and r(x;\varepsilon ) as r(\varepsilon ).
The Gauss–Newton (GN) algorithm [37] is one popular computational method

to solve this nonlinear least-squares problem. In the continuous limit, the algorithm
reduces to the flow

\varepsilon = \varrho 
GN = argmin

\varpi \downarrow Rp

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle r(\varepsilon ) +
p\Biggl\{ 

i=1

\vargamma \omega ir(\varepsilon )\varrho i

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle 

2

L2(!)

(2.29)

= argmin
\varpi \downarrow Rp

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle \omega (\varepsilon )\rightarrow \omega 
\nearrow +

p\Biggl\{ 

i=1

\vargamma \omega i\omega (\varepsilon )\varrho i

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle 

2

L2(!)

,
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EFFICIENT NATURAL GRADIENT DESCENT METHODS A1635

where we choose a mininal-norm \varrho if there are multiple solutions. The algorithm is
based on a first-order approximation of the residual term r(\varepsilon + \varrho ) = r(\varepsilon ) +\Biggl\langle 

p

i=1 \vargamma \omega ir(\varepsilon )\varrho i + o(\varrho ).
A key observation is that (2.29) is precisely the L2 natural gradient flow. Indeed,

we have that

lim
t\updownarrow 0

f(\omega + t\varphi )\rightarrow f(\omega )

t
=

\Bigg\backslash 

!
(\omega (\varepsilon )\rightarrow \omega 

\nearrow ) \varphi (x)dx,

and therefore \vargamma \varepsilon f(\omega ) = \omega (\varepsilon )\rightarrow \omega 
\nearrow . As a result, (2.8) reduces to (2.29) precisely.

The convergence rate of the GN method is between linear and quadratic based
on various conditions [37]. Typically, the method is viewed as an alternative to
Newton’s method if one aims for faster convergence than GD but does not want
to compute/store the whole Hessian.

Remark 2.5. The L
2 natural gradient flow perspective of interpreting the GN

algorithm suggests that mature numerical techniques for the GN algorithm are also
applicable to general NGDmethods, including those we introduced earlier in section 2.
For further connections between GN algorithms, Hessian-free optimization, and NGD,
see discussions and references in [44, 38, 32, 31].

Remark 2.6. All natural gradient methods introduced in this section can be for-
mulated as \varrho nat = argmin\varpi \downarrow Rp\Leftarrow (L\nearrow )†\vargamma \varepsilon f+

\Biggl\langle 
p

i=1 \varrho i L\varphi i\Leftarrow 
2
L2 , while di!erent metric space

for \omega gives rise to di!erent operator L. The computational complexity of approximat-
ing L and (L\nearrow )† determines the cost of implementing a particular NGD method. In
general, L2, Hs, and Ḣ

s NGDs are easier to implement as L and (L\nearrow )† do not depend
on \omega and thus can be reused from iteration to iteration once computed. On the other
hand, for Fisher–Rao and Wasserstein NGDs, L is \omega -dependent. If we have access
to \omega directly, the Fisher–Rao information matrix only involves a diagonal scaling by
1/\omega compared to the L

2 information matrix. If we only have access to \omega through
an empirical distribution, there are also very e""cient methods of estimating G

FR;
see [31]. In contrast, the WNGD is the most expensive among all examples discussed
in section 2. Next, in section 3, we will see that there are still e""cient numerical
methods to mitigate the computational challenges.

3. General computational approach. In this section, we discuss our general
strategy to calculate the NGD directions. As mentioned earlier, our approach is based
on e""cient least-squares solvers since the problem of finding the NGD direction can
be formulated as (2.2). In particular, we will introduce strategies for cases when the
tangent vector \vargamma \omega \omega cannot be obtained explicitly, which is the case for large-scale
PDE-constrained optimization problems. We will first describe the general strategies
and then explain how to apply these techniques to di!erent types of natural gradients
discussed in section 2. We will work in the discrete setting hereafter.

By slightly abusing the notation, we assume that \omega :\#\nearrow Rk is a proper discretiza-
tion of \varepsilon \updownarrow \nearrow \omega (\varepsilon ) while \# \in Rp. Similarly, let f : Rk

\nearrow R be a suitable discretization
of \omega \updownarrow \nearrow f(\omega ). Hence, the standard finite-dimensional gradient and Jacobian, \vargamma \varepsilon f \simeq Rk

and \vargamma \omega \omega \simeq Rk\simeq p, are discretizations of their continuous counterparts discussed in
subsection 2.1. In particular, we denote the Jacobian

Z = (\varphi 1 \varphi 2 · · · \varphi p) = \vargamma \omega \omega , where \varphi j = \vargamma \omega j\omega .(3.1)

Without loss of generality, we always assume k > p. That is, we have more data than
parameters.
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A1636 LEVON NURBEKYAN, WANZHOU LEI, AND YUNAN YANG

3.1. A unified framework. For numerical computation, our main proposal is
to translate the general formula (2.2) and (2.4) for the NGD direction into a discrete
least-squares formulation, given any Riemannian metric space (M, g).

Based on (2.8), the discrete L
2 natural gradient problem reduces to the least-

squares problem

\varrho 
nat = argmin

\varpi \downarrow Rp
\Leftarrow \vargamma \varepsilon f +Z\varrho \Leftarrow 

2
2.

As we have seen in section 2, besides L2, the computation of the Hs, Ḣs, Fisher–Rao,
and WNGD directions can also be formulated as a least-squares problem,

\varrho 
nat

L
= argmin

\varpi \downarrow Rp

\Biggr\rangle \Biggr\rangle (L\uparrow )†\vargamma \varepsilon f +LZ\varrho 
\Biggr\rangle \Biggr\rangle 2
2
= argmin

\varpi \downarrow Rp

\Biggr\rangle \Biggr\rangle (L\uparrow )†\vargamma \varepsilon f + Y \varrho 
\Biggr\rangle \Biggr\rangle 2
2
, where Y =LZ,

(3.2)

for a matrix L representing the discretization of the continuous operator L for di!erent
metric spaces as discussed in section 2. We regard (3.2) as a unified framework since
changing the metric space for the natural gradient only requires changing L while the
other components remain fixed.

Note that one can compute the standard gradient \vargamma \omega f = \vargamma \omega \omega 
\uparrow 
\vargamma \varepsilon f = Z

\uparrow 
\vargamma \varepsilon f by

the chain rule. From (3.2), we can also obtain the common formulation for the NGD
as

\varrho 
nat

L
=\rightarrow (Z\uparrow 

L
\uparrow 
LZ)\rightarrow 1(Z\uparrow 

L
\uparrow (L\uparrow )†\vargamma \varepsilon f) =\rightarrow (Y \uparrow 

Y )\rightarrow 1(Z\uparrow 
\vargamma \varepsilon f)(3.3)

=\rightarrow (Y \uparrow 
Y )\rightarrow 1

\vargamma \omega f =\rightarrow G
\rightarrow 1
L

\vargamma \omega f,

where GL = Y
\uparrow 
Y is the corresponding information matrix defined in (2.5).

Remark 3.1. The unified framework (3.2) is general and applies to cases beyond
NGDs discussed in section 2. For \omega in a metric space (M, g) with a corresponding
tangent space T\varepsilon M, we have

\uparrow \varphi 1, \varphi 2\downarrow g(\varepsilon ) \ni 
\lhook \varphi 1

\uparrow 
A

g

\varepsilon 
\lhook \varphi 2 \Rightarrow \varphi 1, \varphi 2 \simeq T\varepsilon M,

where \lhook \varphi 1, \lhook \varphi 2 denote the discretized \varphi 1, \varphi 2. A proper discretization that preserves the
metric structure should yield a symmetric positive definite matrix A

g

\varepsilon 
that admits

decomposition A
g

\varepsilon 
=L

\uparrow 
L. As a result, the discretization of (2.4) turns into the same

formula as (3.2):

\varrho 
nat

L
=\rightarrow (Z\uparrow 

A
g

\varepsilon 
Z)\rightarrow 1(Z\uparrow 

\vargamma \varepsilon f) =\rightarrow (Z\uparrow 
L
\uparrow 
LZ)\rightarrow 1(Z\uparrow 

L
\uparrow (L\uparrow )†\vargamma \varepsilon f)

= argmin
\varpi \downarrow Rp

\Biggr\rangle \Biggr\rangle (L\uparrow )†\vargamma \varepsilon f + Y \varrho 
\Biggr\rangle \Biggr\rangle 2
2
, where Y =LZ.

The concrete form of L will depend on the specific metric space (M, g).

Next, we will first assume that L is given and discuss how to compute \varrho 
nat

L

provided whether the Jacobian Z is available or not; see subsections 3.2 and 3.3.
Later in subsection 3.4, we will comment on obtaining the matrix L based on the
natural gradient examples in section 2.
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EFFICIENT NATURAL GRADIENT DESCENT METHODS A1637

3.2. Z available. When Z is available, there are two main methods to compute
\varrho 
nat

L
.
One may follow (3.3) by first constructing the information matrix GL = Y

\uparrow 
Y

and then computing its inverse. This is a reasonable method when the number of
parameters, i.e., p, is small, and GL is invertible. However, if GL is singular or has
bad conditioning, it is more advantageous to compute \varrho 

nat

L
following (3.2). Note that

the condition number of GL can be nearly the square of the condition number of L,
making it more likely to su!er from numerical instabilities.

The second and also our recommended approach is to solve the least-squares
problem (3.2). We may utilize the QR factorization to do so [14]. Assume that
Y = LZ has full column rank. Let Y = QR, where Q has orthonormal columns and
R is an upper triangular square matrix. Thus,

\varrho 
nat

L
=\rightarrow Y

†(L\uparrow )†\vargamma \varepsilon f =\rightarrow R
\rightarrow 1

Q
\uparrow (L\uparrow )†\vargamma \varepsilon f.(3.4)

The additional computational cost of evaluating \varrho 
nat

L
after the QR decomposition is

the backward substitution to evaluate R
\rightarrow 1 instead of inverting R directly.

If the given model \omega (\varepsilon ) allows us to write down how \omega depends on \varepsilon analytically,
then the Jacobian \vargamma \omega \omega is readily available. In such cases, we can directly solve (3.2)
using the QR decomposition to obtain the NGDs; see subsection 4.1 for a Gaussian
mixture example.

We summarize the algorithm when the Jacobian Z and the matrices L, (L\uparrow )†

are available; see subsection 3.4 for how to obtain L and (L\uparrow )† for the examples
presented in section 2, and see Appendix B.2 for discussions of what to do when
Y =LZ is rank-deficient.

3.3. Z unavailable. Often, the model \omega (\varepsilon ) is not available analytically, but the
relationship between \omega and \varepsilon is given implicitly via solutions of a system, e.g., a PDE
constraint,

h(\omega ,\varepsilon ) = 0,(3.5)

for some smooth h :Rk
\propto Rp

\nearrow Rk such that det(\vargamma \varepsilon h) \bigtriangleup = 0. In such cases, the Jacobian
Z = \vargamma \omega \omega in (3.1) is not readily available and has to be computed or implicitly evaluated.

3.3.1. The implicit function theorem and adjoint-state method. Based
on the first-order variation of (3.5), the most direct option is to apply the implicit
function theorem

\vargamma \varepsilon h \vargamma \omega \omega = \vargamma \varepsilon h Z =\rightarrow \vargamma \omega h.(3.6)

The above equation consists of p linear systems in k variables. If \vargamma \varepsilon h has a simple
format, or the size of \varepsilon is not too large, it could still be computationally feasible to
first obtain Z = \vargamma \omega \omega by solving (3.6), and then follow strategies in subsection 3.2 to
compute the NGD.

However, if p is large, a more e""cient option is to use methods based on the so-
called adjoint-state method [40]. Note that Z is the rate of change of the full state \omega 

with respect to \varepsilon . Thus, if we only need the rate of change of \omega along a specific vector
\rhook \simeq Rk, we do not need the whole Z; instead, we need \rhook 

\uparrow 
Z, which can be calculated

by solving only one linear system for each \rhook .
Indeed, for a given \rhook \simeq Rk, let us consider the adjoint equation

 \triangleleft 
\uparrow 
\varphi 
\vargamma \varepsilon h= \rhook 

\uparrow 
\bigtriangledown \not (\vargamma \varepsilon h)

\uparrow 
 \triangleleft \varphi = \rhook .(3.7)
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A1638 LEVON NURBEKYAN, WANZHOU LEI, AND YUNAN YANG

Combining (3.6) and (3.7), we obtain that

Z
\uparrow 
\rhook =Z

\uparrow (\vargamma \varepsilon h)
\uparrow 
 \triangleleft \varphi =\rightarrow \vargamma \omega h

\uparrow 
 \triangleleft \varphi .(3.8)

The vector  \triangleleft \varphi in (3.7) is called the adjoint variable corresponding to the given
vector \rhook .

Here is an important example where we do not need the full Z. If we choose
\rhook = \vargamma \varepsilon f \simeq Rk, then (3.8) gives the standard gradient

\vargamma \omega f(\omega (\varepsilon )) = \vargamma \omega \omega 
\uparrow 
\vargamma \varepsilon f =Z

\uparrow 
\vargamma \varepsilon f =\rightarrow \vargamma \omega h

\uparrow 
 \triangleleft \varphi ,(3.9)

where  \triangleleft \varphi is the solution to (3.7) with \rhook = \vargamma \varepsilon f \simeq Rk. This is a widely used method to ef-
ficiently evaluate the gradient of a large-scale optimization in solving PDE-constrained
optimization problems originated from optimal control and computational inverse
problems [40].

Next, we will explain in detail how to harness the power of the adjoint-state
method to evaluate the general NGD directions through iterative methods.

3.3.2. Krylov subspace methods. Given an arbitrary vector \varrho \simeq Rp, we may
evaluate

GL \varrho =Z
\uparrow 
L
\uparrow 
LZ \varrho (3.10)

through the adjoint-state method even if we cannot access the information matrix GL

since the Jacobian Z is unavailable directly. Let  \omega \simeq Rk be an arbitrary vector, and
consider the following constrained optimization problem [34]:

min
\omega 

J(\omega (\varepsilon )) = \omega 
\uparrow  \omega , s.t. h(\omega (\varepsilon ),\varepsilon ) = 0.(3.11)

Note that this objective function J(\omega (\varepsilon )) in (3.11) is di!erent from the main objective
function (1.1) but has the same constraint (3.5). A direct calculation reveals that the
gradient of J(\omega (\varepsilon )) with respect to the parameter \varepsilon is Z

\uparrow  \omega . Therefore, if we set
 \omega =L

\uparrow 
LZ\varrho , the gradient

\vargamma \omega J(\omega (\varepsilon )) =Z
\uparrow  \omega =Z

\uparrow 
L
\uparrow 
LZ \varrho =GL \varrho ,

which is exactly what we aim to compute in (3.10).
From the constraint h(\omega (\varepsilon ),\varepsilon ) = 0 and its first-order variation (3.6), we have

\vargamma \varepsilon h Z \varrho + \vargamma \omega h \varrho = 0.

Thus, Z \varrho can be obtained as the solution to a linear system with respect to  \triangleright :

\vargamma \varepsilon h  \triangleright =\rightarrow \vargamma \omega h \varrho .(3.12)

Based on the adjoint-state method introduced in section 3.3.1, we can compute the
gradient as

\vargamma \omega J(\omega (\varepsilon )) =\rightarrow \vargamma \omega h
\uparrow 

 \triangleleft ,

where  \triangleleft satisfies the adjoint equation below with a given  \triangleright that solves (3.12):

\vargamma \varepsilon h
\uparrow 
 \triangleleft = \vargamma \varepsilon J =  \omega =L

\uparrow 
LZ\varrho =L

\uparrow 
L \triangleright .(3.13)

To sum up, with a fixed \varepsilon and the corresponding \omega (\varepsilon ), we have an e""cient way to
evaluate the linear action \varrho \updownarrow \nearrow GL\varrho for any given \varrho by three steps; see Algorithm 3.2.
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EFFICIENT NATURAL GRADIENT DESCENT METHODS A1639

Algorithm 3.1. Compute the NGD direction given Z, L, (L\uparrow )†, and \vargamma \varepsilon f .

1: Compute Y =LZ.
2: Perform economy-size QR factorization: [Q,R] = qr(Y ).
3: Compute the NGD direction \varrho 

nat

L
=\rightarrow R

\rightarrow 1
Q

\uparrow (L\uparrow )†\vargamma \varepsilon f .

Algorithm 3.2. Evaluate the linear action \varrho \updownarrow \nearrow GL\varrho given an arbitrary vector \varrho .

1: Given the implicit constraint h, solve the linear system \vargamma \varepsilon h  \triangleright =\rightarrow \vargamma \omega h \varrho and
obtain  \triangleright .

2: Given linear actions based on L and L
\uparrow , solve the linear system \vargamma \varepsilon h

\uparrow 
 \triangleleft =L

\uparrow 
L \triangleright 

and obtain  \triangleleft .
3: Evaluate \rightarrow \vargamma \omega h

\uparrow 
 \triangleleft , which equals to GL \varrho .

Algorithm 3.3. Compute the NGD direction when Z is not explicitly available.

1: Given the constraint h, solve the linear system (\vargamma \varepsilon h)\uparrow  \triangleleft = \vargamma \varepsilon f and obtain  \triangleleft .
2: Compute the parameter gradient \vargamma \omega f(\omega (\varepsilon )) = \vargamma \omega \omega 

\uparrow 
\vargamma \varepsilon f =\rightarrow \vargamma \omega h

\uparrow 
 \triangleleft .

3: Obtain the linear action \varrho \updownarrow \nearrow GL\varrho following steps in Algorithm 3.2.
4: Use the conjugate gradient method to solve for \varrho nat

L
where GL \varrho 

nat

L
=\rightarrow \vargamma \omega f(\omega (\varepsilon )).

Table 1
The number of propagations among di!erent optimization methods.

GD NGD Newton’s method

Forward propagation \omega \rightarrow \uparrow \varepsilon (\omega ) 1 1 1
Backward propagation \vargamma \rightarrow \uparrow \varpi \omega \varepsilon \rightarrow \vargamma 1 1 2
Linearized forward propagation \varrho \rightarrow \uparrow \varpi \omega \varepsilon \varrho 0 1\uparrow 1
\uparrow For NGD, di\#erent choice of metric a\#ects the complexity of the linearized forward solve.

Given the linear action \varrho \updownarrow \nearrow GL\varrho , we need to solve the linear system

GL \varrho 
nat

L
=\rightarrow \vargamma \omega f(\omega (\varepsilon ))(3.14)

to find the NGD direction \varrho 
nat

L
. As seen in (3.9), we can obtain the right-hand side

\rightarrow \vargamma \omega f(\omega (\varepsilon )) through the adjoint-state method. One may then solve for \varrho nat
L

through
iterative linear solvers based on the Krylov subspace methods [43], e.g., the conjugate
gradient method. We summarize all the steps above in Algorithm 3.3.

One may use Algorithm 3.3 instead of Algorithm 3.1 when Z is available but
the QR factorization of Y = LZ is too costly, for instance, in some machine learning
applications. Since “wall-clock” time can be highly a!ected by the implementation
and the computer specification, in Table 1, we summarize the number of propagations
per iteration among di!erent methods [48]. For di!erent NGDs, the cost of the linear
action  \triangleright \updownarrow \nearrow L

\uparrow 
L \triangleright varies, which we will discuss in subsection 3.4.

3.4. Computation for natural gradient examples in section 2. In sub-
sections 3.2 and 3.3, we have shown how to compute the NGD direction \varrho 

nat

L
given

whether Z is easily available or not. Both strategies require the matrix L, which
depends on the particular metric space for the natural gradient. Next, we specify the
form of L based on cases discussed in section 2.

The L2 case in subsection 2.1 corresponds to L= I, the k\propto k identity matrix, while
the Fisher–Rao–Hellinger natural gradient discussed in subsection 2.4 corresponds to

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/1

5/
23

 to
 1

32
.1

74
.2

52
.1

79
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



A1640 LEVON NURBEKYAN, WANZHOU LEI, AND YUNAN YANG

L = diag(1/
\swarrow 
\omega ) \simeq Rk\simeq k, which incurs O(k) more flops per iteration compared to

the L
2 NGD method. For the H

s natural gradient discussed in subsection 2.2, L
corresponds to proper discretization of Ds (for s > 0) and ((D\rightarrow s)\nearrow )† (for s < 0).
Next, we give a few concrete examples. When s = 1, L = D1 = [I,\prime ]\uparrow and (L\nearrow )† =
D1((D1)\nearrow D1)\rightarrow 1 = [I,\prime ]\uparrow (I\rightarrow \Downarrow )\rightarrow 1. When s=\rightarrow 1, L= ((\left( D\rightarrow 1)\nearrow )† = [I,\prime ]\uparrow (I\rightarrow \Downarrow )\rightarrow 1

while (L\nearrow )† = [I,\prime ]\uparrow . Similarly, for the Ḣ
s natural gradient discussed in subsection

2.3, L should correspond to proper discretization of \left( Ds (for s > 0) and ((\left( D\rightarrow s)\nearrow )†

(for s < 0). For instance, when s = 1, L = \left( D1 = \prime , and (L\nearrow )† = \left( D1((\left( D1)\nearrow \left( D1)\rightarrow 1 =
\prime (\rightarrow \Downarrow )\rightarrow 1; when s=\rightarrow 1, L= ((\left( D\rightarrow 1)\nearrow )† =\prime (\rightarrow \Downarrow )\rightarrow 1 while (L\nearrow )† =\prime . The symmetry
between the cases of Hs/Ḣs and the cases of H\rightarrow s/Ḣ\rightarrow s

\Rightarrow s > 0 comes from the fact
that they are dual Sobolev spaces. The computation of the natural gradient based
on the H

s and Ḣ
s metric can be e""ciently computed. This is because there are fast

algorithms for discretizing and computing the actions of the gradient and (inverse)
Laplacian operators for periodic, Dirichlet, and zero-Neumann boundary conditions
in L and (L\nearrow )† [12, 55].

Based on the unweighted reformulation (2.27), computing the W2 NGD discussed
in subsection 2.5 requires the discretization of L = B†. We can first discretize the
di!erential operator B, denoted as B, and then compute L=B

†, which can be used
regardless of whether the Jacobian Z = \vargamma \omega \omega is explicitly given or implicitly provided
through the constraint (3.5). As an example, we describe how to obtain the matrix
L for the WNGD (2.27) in Appendix B.1 based on a finite-di!erence discretization of
the di!erential operator. In Remark 2.3, we commented that when \omega (x) is constant,
WNGD reduces to Ḣ

\rightarrow 1-based NGD. However, in general, the computation of the
WNGD is more expensive than the H

s/Ḣs cases for two reasons. First, the infor-
mation matrix G and the operator L for the WNGD are \omega -dependent, so in every
iteration of the NGD method, one has to recompute them, which incurs extra com-
plexity. Second, as mentioned above, the computation of Hs/Ḣs NGD can be done
through fast Fourier or discrete cosine transforms (depending on the domain). It is,
however, inapplicable to the Wasserstein case since it involves solving a weighted dif-
ferential equation. In Appendix B.1, we use QR factorization to obtain L=B

† given
B. We approximate B using the finite-di!erence method, so B

\uparrow is very sparse. Using
a multifrontal multithreaded sparse QR factorization [9], it has much better complex-
ity than the conventional O(k3). We summarize the observed computational costs of
obtaining L and (L\uparrow )† for di!erent NGD methods in Table 2. See also Figure 1a for
the computational time comparison among di!erent metrics.

After obtaining L and (L\uparrow )†, the QR factorization of Y = LZ followed by com-
puting the natural gradient direction \varrho 

nat

L
based on (3.4) will incur O(kp2) flops if

the Jacobian Z is available; see Figure 1b for an observed computational time to ob-
tain the NGD \varrho among di!erent metrics for a case where Z is analytically available
(see section 4.1). When Z is not analytic, such as from PDE (section 4.3) or neural
network models (section 4.2), we will see that the cost in computing NGDs among
di!erent methods is no longer dominated by the cost of computing L and (L\uparrow )†.

Table 2
Summary of the observed computational costs for linear actions L and (L\rightarrow )† in (3.2).

L2 Fisher–Rao Hs/Ḣs, s > 0 Hs/Ḣs, s < 0 W2

change over iteration 8 3 8 8 3
computing v \rightarrow \uparrow Lv O(k) O(k) O(k) O(k logk) O(k1.25)
computing v \rightarrow \uparrow (L\rightarrow )†v O(k) O(k) O(k logk) O(k) O(k)
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EFFICIENT NATURAL GRADIENT DESCENT METHODS A1641

(a) Evaluate L and (L>)† linear actions (b) Compute NGD direction ⌘

Fig. 1. The observed wall clock time for evaluating v \rightarrow \uparrow Lv and v \rightarrow \uparrow (L\rightarrow )†v linear actions
(left) and for computing one NGD direction \varsigma with a fixed p (right) based on di!erent metrics.

3.5. Extensions and variants. In this section, we briefly comment on several
practical variants of using the NGD method based on a particular choice of the data
metric space.

3.5.1. A damped information matrix. If the discretized information matrix
GL is rank deficient or ill-conditioned, one may consider rank-revealing QR factor-
ization; see Appendix B.2. As an alternative approach, a damped information ma-
trix in the form G\leftharpoonup =  \triangleleft I + GL is often used for numerical stability and to avoid
extreme updates, where  \triangleleft is the damping parameter. One notable example is the
Levenberg–Marquardt method as a damped Gauss–Newton method [44], while the
latter is equivalent to the L

2 NGD in our framework; see subsection 2.6.
Since the fundamental di!erence between GD and NGD lies in how one measures

the distance between the potential next iterate and the current iterate, the damped
version corresponds to choosing the next iterate based on a mixed metric from the
\varepsilon -domain and \omega -domain. Indeed, in the implicit form (1.5) and (1.6), the damped
version can be written as

\varepsilon 
l+1 = argmin

\omega 

\Biggr) 
f(\omega (\varepsilon )) +

 \triangleleft d\omega (\varepsilon ,\varepsilon l)2 + d\varepsilon (\omega (\varepsilon ),\omega (\varepsilon l))2

2\varpi 

\Biggl[ 
.(3.15)

When d\omega is the Euclidean metric on \varepsilon -domain, we obtain the identity matrix I in G\leftharpoonup ,
but other choices of damping metric can also be considered.

Alternatively, one can use another \omega -space metric to regularize instead of any
metric on the \varepsilon -space. For example, let d\varepsilon 2

be the main natural gradient metric and
d\varepsilon 1

be the regularizing natural gradient metric. The next iterate obtained in the
implicit Euler scheme is given by

\varepsilon 
l+1 = argmin

\omega 

\Biggr) 
f(\omega (\varepsilon )) +

 \triangleleft d\varepsilon 1
(\omega (\varepsilon ),\omega (\varepsilon l))2 + d\varepsilon 2

(\omega (\varepsilon ),\omega (\varepsilon l))2

2\varpi 

\Biggl[ 
,(3.16)

while the damping parameter  \triangleleft determines the strength of regularization. We com-
ment that the H

1 natural gradient can be seen as the Ḣ
1 natural gradient damped

by the L
2 natural gradient.

3.5.2. Mini-batch NGD. Similar to mini-batch GD, one can also use mini-
batch NGD by computing the natural gradient of the objective function with respect
to a subset of the data \omega . Consider a random sketching matrix S \simeq Rk

\downarrow \simeq k, k\Uparrow < k.
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A1642 LEVON NURBEKYAN, WANZHOU LEI, AND YUNAN YANG

Each row of S has at most one nonzero entry 1. Thus, S\omega \simeq Rk
\downarrow 
is the mini-batch

data. The objective function also becomes f(S\omega (\varepsilon )).
The mini-batch NGD can find the next iterate \varepsilon 

l+1 implicitly through

\varepsilon 
l+1 = argmin

\omega 

\Biggr) 
f(S\omega (\varepsilon )) +

d\varepsilon (S\omega (\varepsilon ), S\omega (\varepsilon l))2

2\varpi 

\Biggl[ 
,

where d\varepsilon is the \omega -space metric. It is equivalent to changing the data metric from
d\varepsilon (·, ·) to a random pseudo metric d\varepsilon (S·, S·). The information matrix and the NGD
direction are

G=Z
\uparrow 
S
\uparrow 
L
\uparrow 
LSZ, \varrho =G

\rightarrow 1
\vargamma \omega f(S\omega (\varepsilon )),

where L depends on d\varepsilon (S·, S·) and Z is the Jacobian. Note that S changes over
iterations.

Also, we remark that SZ \simeq Rk
\downarrow \simeq p can be seen as a random sketching of the

Jacobian matrix Z. If Z is low-rank, the column space of SZ \simeq Rk
\downarrow \simeq p can be a

close approximation to the column space of Z, but SZ is much smaller in size. See
Appendix B.4, where similar techniques from random linear algebra can help explore
the column space of Z and further reduce the computational cost.

4. Numerical results. In this section, we present three optimization examples
to illustrate the e!ectiveness of our computational strategies for NGD methods. We
first present the parameter reconstruction of a Gaussian mixture model where the
Jacobian \vargamma \omega \omega is analytically given. Our second example is to solve the 2D Poisson
equation using physics-informed neural networks (PINN) [42], where the Jacobian
\vargamma \omega \omega can be numerically obtained through automatic di!erentiation. We then present
a large-scale waveform inversion, a PDE-constrained optimization problem where the
Jacobian \vargamma \omega \omega is not explicitly given. Using our computational strategy proposed in
subsection 3.3, we can e""ciently implement the NGD method based on a general met-
ric space. The first example shows that various (N)GD methods converge to di!erent
stationary points of a nonconvex objective function. The last two tests illustrate that
di!erent (N)GD methods have various convergence rates. Both phenomena are inter-
esting as they indicate that one may achieve global convergence or faster convergence
by choosing a proper metric space (M, g) that fits the problem.

4.1. Gaussian mixture model. Consider the Gaussian mixture model, which
assumes that all the data points are generated from a mixture of a finite number
of normal distributions with unknown parameters. Consider a probability density
function \omega (x;\varepsilon ) :Rd

\updownarrow \nearrow R+, where

\omega (x;\varepsilon ) =w1N (x;µ1,\&1) + · · ·+wiN (x;µi,\&i) + · · ·+wkN (x;µk,\&k).

The ith Gaussian, denoted as N (x;µi,\&i) with the mean vector µi \simeq Rd and the
covariance matrix \&i \simeq Rd\simeq d, has a weight factor wi \Uparrow 0. Note that

\Biggl\langle 
i
wi = 1.

Here, \varepsilon could represent parameters such as {wi}, {µi}, and {\&i}. We formulate the
inverse problem of finding the parameters as a data-fitting problem by minimizing
the least-squares loss f(\omega (\varepsilon )) on a compact domain \$ where the objective function
follows (2.28). Here, \omega \nearrow is the observed reference density function. Note that the
dependence between the state variable \omega and the parameter \varepsilon is explicit here. Thus,
we can compute the Jacobian \vargamma \omega \omega analytically, and the numerical scheme follows
subsection 3.2.
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Fig. 2. Gaussian mixture example: Level sets, vector fields, and convergent paths using GD
and di!erent NGD methods to invert µ1. All algorithms start from initial guess (5,3).

We consider reference \omega 
\nearrow (x) = 0.3N (x; (1,3),0.6I) + 0.7N (x; (3,2),0.6I) and the

domain \$ = [\rightarrow 2.75,7.25]2. We fix µ2 and the weights to be incorrect and invert
\varepsilon = µ1. That is, \omega (x;\varepsilon ) = 0.2N (x;\varepsilon ,0.6I) + 0.8N (x; (4,3),0.6I). Figure 2 shows the
convergence paths of GD and L

2, Fisher–Rao, H1, H\rightarrow 1, W2 NGD methods under the
initial guess (5,3), which is chosen since it belongs to di!erent basins of attractions
for di!erent optimization methods. We choose the largest possible step size such that
the objective function monotonically decays. They are 0.3, 0.04, 0.8, 0.2, 0.2, and 3
for methods in Figure 2 from left to right. WNGD converges to the global minimum,
while all other methods converge to local minima by taking di!erent convergence
paths.

We aim to gain better a understanding of their di!erent convergence behaviors.
Given a fixed lth iterate, di!erent algorithms find the (l+ 1)th iterate, but based on
di!erent “principles” nicely revealed in the proximal operators (1.5) and (1.6). Here,
we use \varepsilon 

l+1
std , \varepsilon l+1

W2
, and \varepsilon 

l+1
L2 to denote the next iterates based on GD, L2 NGD, and

WNGD, respectively. We then have

\varepsilon 
l+1
std = \varepsilon 

l + argmin
h

\Biggr) 
\prime \omega f

\uparrow 
h+

1

2\varpi 
h
\uparrow 
h

\Biggl[ 
\ni argmin

\omega 

\Biggr) 
f(\omega (\varepsilon )) +

|\varepsilon \rightarrow \varepsilon 
l
|
2

2\varpi 

\Biggl[ 
,

\varepsilon 
l+1
L2 = \varepsilon 

l + argmin
h

\Biggr) 
\prime \omega f

\uparrow 
h+

1

2\varpi 
h
\uparrow 
\vargamma \omega \omega 

\uparrow 
\vargamma \omega \omega h

\Biggl[ 

\ni argmin
\omega 

\Biggr) 
f(\omega (\varepsilon )) +

||\omega (\varepsilon )\rightarrow \omega (\varepsilon l)||22
2\varpi 

\Biggl[ 
,

\varepsilon 
l+1
W2

= \varepsilon 
l + argmin

h

\Biggr) 
\prime \omega f

\uparrow 
h+

1

2\varpi 
h
\uparrow (B†

\vargamma \omega \omega )
\uparrow 
B

†
\vargamma \omega \omega h

\Biggl[ 

\ni argmin
\omega 

\Biggr) 
f(\omega (\varepsilon )) +

W
2
2 (\omega (\varepsilon ),\omega (\varepsilon 

l))

2\varpi 

\Biggl[ 
.

The above equations show that, locally, di!erent (N)GD methods solve di!erent qua-
dratic problems given the same step size \varpi . In Figure 3, we illustrate the level set of
each quadratic problem for which the minimum is selected as the next iterate. The
level set of the same objective function f(\omega (\varepsilon )) is shown in the background. Our
observation aligns with the example in [8, Figure 3].

4.2. Physics-informed neural networks. Physics-informed neural networks
(PINN) is a variational approach to solve PDEs with the solution parameterized by
neural networks [42]. Here, as an example, we use PINN to solve the 2D Poisson
equation on the domain \$= [\rightarrow 1,1]2,

\rightarrow \Downarrow u= \leftharpoondown , with u=\varsigma on \vargamma \$,

where \leftharpoondown (x) = 2\rightharpoonup 2 sin(\rightharpoonup x1) sin(\rightharpoonup x2) + 18\rightharpoonup 2 sin(3\rightharpoonup x1) sin(3\rightharpoonup x2) and \varsigma (x) = 3, whose
solution is u(x) = sin(\rightharpoonup x1) sin(\rightharpoonup x2) + sin(3\rightharpoonup x1) sin(3\rightharpoonup x2) + 3, x = [x1, x2]\uparrow . The
training loss function is
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(a) Standard gradient descent
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(b) L
2 natural gradient
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(c) W2 natural gradient

Fig. 3. The local quadratic models of GD, L2 NGD, and W2 NGD in the first several iterations.

(a) True solution (b) Loss decay vs. iteration number (c) Loss decay vs. wall clock time

Fig. 4. (a) PINN example true solution; (b) loss function value decay in terms of the number
of iterations; (c) loss function value decay in terms of the wall clock time.

f(\omega (\varepsilon )) =
 \triangleright 

N1

N1\Biggl\{ 

i=1

|\Downarrow \omega (xi,\varepsilon ) + \leftharpoondown (xi)|
2 +

2\rightarrow  \triangleright 

N2

N2\Biggl\{ 

j=1

|\omega (xj ,\varepsilon )\rightarrow \varsigma (xj)|
2
,

where \omega (x,\varepsilon ) is a feed-forward neural network of shape (2,20,30,20,1) with the hy-
perbolic tangent tanh as the activation function. The parameters are the weights and
biases, denoted by \varepsilon . We use N1 = 2304 collocation points in the domain interior
and N2 = 196 points on \vargamma \$, both equally spaced. We set  \triangleright = 0.01 to balance the
two terms in the loss function. For a weight matrix of size d1-by-d2, we initialize its
entries i.i.d. following the normal distribution N (0, 2

d1+d2

). All biases are initialized
as zero, except the one in the last layer, which is set to be 3. We fix the random seed
to ensure the same initialization for all optimization algorithms of interests.

We train PINN using GD and di!erent NGDs based on metrics discussed in
section 2. We use backtracking line search to select the step size (learning rate) in
(N)GD algorithms. The true solution is shown in Figure 4a, while Figures 4b and 4c
show the loss value decay with respect to the number of iterations and the wall-clock
time, respectively. We can see that all NGD methods are faster than GD, while
H

1 and Ḣ
1-based NGDs yield the fastest convergence in both comparisons. Neural

networks can su!er from slow convergence on the high-frequency parts of the residual
due to its intrinsic low-frequency bias [53]. The H

1/Ḣ1-based NGDs enforce extra
weights on the oscillatory components of the Jacobian, giving faster convergence than
L
2 NGD. In contrast, H\rightarrow 1/Ḣ\rightarrow 1 NGDs bias towards the smooth components of the

Jacobian, which delay the convergence of high-frequency residuals and thus the overall
convergence. As discussed in Remark 2.6, WNGD requires a \omega -dependent matrix L,
which increases the wall clock time per iteration. Interestingly, when the loss value
becomes small, WNGD has a faster decay rate than H

\rightarrow 1
/Ḣ

\rightarrow 1 NGDs despite being
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EFFICIENT NATURAL GRADIENT DESCENT METHODS A1645

asymptotically equivalent in spectral properties (see Remark 2.3), demonstrating the
potential benefits of having a state-dependent information matrix G(\varepsilon ).

4.3. Full waveform inversion. Finally, we present a full waveform inversion
(FWI) example where the Jacobian is not explicitly given. As a PDE-constrained
optimization, the dependence between the data and the parameter is implicitly given
through the scalar wave equation

m(x)utt(x, t) +\Downarrow u(x, t) = s(x, t),(4.1)

where s(x, t) is the source term and (4.1) is equipped with the initial condition
u(x,0) = ut(x,0) = 0 and an absorbing boundary condition to mimic the unbounded
domain.

After discretization, the unknown function m(x) becomes a finite number of un-
knowns, which we denote by \varepsilon for consistency. Unlike the Gaussian mixture model,
the size of \varepsilon in this example is large as p = 36720. We obtain the observed data
\omega r = u(xr, t) at a sequence of receivers {xr} for r = 1, . . . , nr. The least-squares
objective function is

f(\omega (\varepsilon )) =
1

2

ns\Biggl\{ 

i=1

nr\Biggl\{ 

r=1

\Leftarrow \omega 
\nearrow 
i,r

\rightarrow \omega i,r(\varepsilon )\Leftarrow 
2
2,(4.2)

where \omega 
\nearrow is the observed reference data, and i is the source term index to consider

inversions with multiple sources {si(x, t)} as the right-hand side in (4.1). In our test,
ns = 21 and nr = 306.

The true parameter is presented in Figure 5a. We remark that minimizing (4.2)
with the constraint (4.1) is a highly nonconvex problem [47]. We avoid dealing with
the nonconvexity by choosing a good initial guess; see Figure 5b. One may also use
other objective functions such as the Wasserstein metric to improve the optimization
landscape [11]. We follow subsection 3.3 to carry out the implementation for various

0 2 4 6 8

0

0.5

1

1.5

2

2.5

3

(a) true parameter (b) initial, SSIM= 0.31 (c) GD, SSIM= 0.44 (d) L2 NGD, SSIM= 0.58

(e) Ḣ�1NGD, SSIM= 0.53 (f)W2 NGD, SSIM= 0.53 (g) Ḣ1 NGD, SSIM= 0.61 (h) convergence history

Fig. 5. FWI example: (a) ground truth; (b) initial guess; (c)–(g) inversion results using GD
and NGDs based on the L2, Ḣ\downarrow 1, W2, and Ḣ1 metrics after 400 PDE solves; (h) the history of the
objective function decay versus the number of propagations/PDE solves. SSIM denotes the structural
similarity index measure compared with (a). A bigger value means better similarity.
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A1646 LEVON NURBEKYAN, WANZHOU LEI, AND YUNAN YANG

NGD methods since the Jacobian \vargamma \omega \omega is not explicitly given, and the adjoint-state
method has to be applied based on (4.1). The step-size is chosen based on backtracking
linear search. We use the same criteria for all algorithms. The GD (see Figure 5c)
converges slowly compared to the NGD methods, while Ḣ

1, L2, Ḣ\rightarrow 1
, and W2 NGDs

are in descending order in terms of image resolution measured by both the objective
function and the structural similarity index measure (SSIM); see Figures 5d–5h. The
convergence history in Figure 5h shows the objective function decay with respect to
the number of propagations (see Table 1). For FWI, each propagation corresponds
to one wave equation (PDE) solve with di!erent source terms. Note that wavefields
are not naturally probability distributions. Thus, when we implement the W2 natural
gradient, we normalize the data to be probability densities following [10, 11]. As we
have discussed in Remark 2.3, the W2 and Ḣ

\rightarrow 1 natural gradients are closely related,
which are also reflected in this numerical example as the reconstructions in Figures 5e
and 5f are very similar. All the tests shown in Figure 5 directly demonstrate that
NGDs are typically faster than GD, and more importantly, the choice of the metric
space (M, g) for NGD (see (2.2)) also has a direct impact on the convergence rate.

5. Conclusions. Inspired by the natural gradient descent (NGD) method in
learning theory, we develop e""cient computational techniques for PDE-based opti-
mization problems for generic choices of the natural metric. NGD exploits the geomet-
ric properties of the state space, which is particularly appealing for PDE applications
that have rich flexibility in choosing the metric spaces.

Handling the high-dimensional parameter space and state space are the two main
computational challenges of NGD methods. Here, we propose numerical schemes to
tackle the high-dimensional parameter space when the forward model, with a relatively
low-dimensional state space, is discretized on a regular grid. Our approach relies on
reformulating the problem of finding NGD directions as standard L

2-based least-
squares problems on the continuous level. After discretization, the NGD directions
can be e""ciently computed by numerical linear algebra techniques. We discuss both
explicit and implicit forward models by taking advantage of the adjoint-state method.

The second computational challenge of high-dimensional state space stands out
for Sobolev and Wasserstein NGDs. In this work, we apply finite di!erences on reg-
ular grids for low-dimensional state space. On the one hand, when the state-space
dimension is high, discretization on a regular grid su!ers from the curse of dimen-
sionality, and other parameterizations have to be considered. On the other hand,
when the state variable is not given on a regular grid, there are other ways to dis-
cretize those di!erential operators, which require more careful attention. For exam-
ple, generative models are pushforward mappings, representing probability measures
in high-dimensional state spaces by point clouds (samples). Applying the Sobolev and
Wasserstein NGDs to state variables in the form of empirical distributions will most
likely require alternative discretization approaches for di!erential operators, such as
graph- or neural network-based methods.

A very interesting question is what the best “natural” metric in NGD should
be. Regarding this, we numerically investigated the convergence behaviors of GD
and various NGD methods based on di!erent metric spaces. The empirical results
indicate that the choice of the metric space in an NGD not only can change the
rate of convergence but also can influence the stationary point where the iterates
converge, given a nonconvex optimization landscape. A rigorous understanding of
the “best” metric choice for a given problem is an important research direction. For
maximum likelihood estimation problems, the Fisher–Rao NGD is asymptotically
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EFFICIENT NATURAL GRADIENT DESCENT METHODS A1647

Fisher-e""cient; Sobolev NGDs (e.g., H
1 and Ḣ

1) are suitable for solving optimal
transport and mean-field game problems [20, 18, 27, 29]; when the metric is induced by
f and suitable conditions are met, the corresponding NGD is asymptotically Newton’s
method [30, 8, 31]. Despite these results, to the best of our knowledge, there is no
general framework for a systematic derivation of the best natural gradient metric for
a given problem.

It is reasonable to believe that as the topic matures, there will be an increasing
necessity for e""cient techniques for computing NGD directions for a diverse set of
problems and metrics. Hence, in this paper, we choose to focus on a generic compu-
tational framework leveraging state-of-the-art optimization techniques. Nonetheless,
the geometric formalism considered here could be beneficial for the theoretical un-
derstanding of the “best” metric choice. Indeed, as mentioned in [31, sec. 15], local
approximation of the loss function cannot explain all global properties of NGD. The
metric in the \omega -space, on the other hand, can impact the global properties of f . More
specifically, it might convexify f [13, Appendix B] or make it Lipschitz, paving a way
towards the analysis of the NGD as a first-order method in the \omega -space. We find this
line of research an intriguing future direction.

Finally, the full potential of randomized linear algebra techniques remains to be
explored. We discuss a mini-batch version of our algorithm in subsection 3.5.2 and
several low-rank approximation techniques in Appendices B.2 to B.4. Nevertheless,
the success of randomized linear algebra techniques for very high-dimensional prob-
lems warrants a more thorough investigation of the theoretical and computational
aspects of these techniques adapted to our setting.

Appendix A. Symbols and notations. See Table 3 for all the notations in
sections 1 to 3.

Appendix B. Algorithmic details regarding numerical implementation.
This section presents more details on the numerical implementation of the NGD meth-
ods. In particular, we explain how to obtain the matrix L in (3.2) for the WNGD
(2.27) in Appendix B.1. We have proposed in subsection 3.2 that the QR factorization
could e""ciently solve the least-squares problem (3.2). In Appendix B.2, we discuss
how to handle rank deficiency in Y =LZ through the QR factorization.

The main di""culties of computing NGD for large-scale problems include no direct
access to the Jacobian Z (see subsection 3.3) and the computational cost of handling Z
even if it is directly available. Here, we present two interesting ideas that may mitigate
these challenges, although we have not thoroughly investigated them in the context
of NGD methods. We discuss in Appendix B.3 one strategy based on randomized
linear algebra if the Jacobian Z is unavailable. In Appendix B.4, we briefly comment
on an idea to further reduce the computational complexity of the NGD methods by
possibly obtaining a low-rank approximation of the Jacobian Z.

B.1. More discussions on computing the Wasserstein natural gradient.
As explained in subsection 2.5, the Wasserstein tangent vectors at \omega are velocity fields
of minimal kinetic energy in L

2
\varepsilon 
(Rd;Rd). After a change of variable, ṽi =

\swarrow 
\omega vi

and ṽi satisfies (2.26). We will discuss next how to solve this minimization problem
numerically.

Discretization of the divergence operator. To compute the Wasserstein nat-
ural gradient, the first step is to solve (2.26), which becomes (B.1) after discretization.

min
y

\Leftarrow y\Leftarrow 
2
2 s.t.By= \varphi i, i= 1, . . . , p.(B.1)
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A1648 LEVON NURBEKYAN, WANZHOU LEI, AND YUNAN YANG

Table 3
Table of notations in sections 1 to 3.

Section 1

\omega the unknown parameter
\varepsilon the state variable that depends on \omega 
f(\varepsilon ) the loss function that depends on \varepsilon 
(M, d\varepsilon ), (\#, d\omega ) the metric space of \varepsilon and \omega , respectively

Section 2

(M, g) the space M endowed with a Riemannian metric g
T\varepsilon M the tangent space of M
p the dimension of the parameter, \omega \downarrow \#\updownarrow Rp

\varpi g

\omega i
\varepsilon (\omega )\downarrow T\varepsilon M the tangent vector of \varepsilon (\omega ) with respect to \omega i based on

the Riemannian geometry (M, g), 1\nearrow i\nearrow p
\varpi g

\varepsilon f(\varepsilon )\downarrow T\varepsilon M the metric gradient of f(\varepsilon ) with respect to \varepsilon based on
the Riemannian geometry (M, g)

\varsigma nat, \varsigma std the natural and standard gradient directions for \omega 
\varpi \omega f(\varepsilon (\omega )) the gradient of f(\varepsilon (\omega )) with respect to \omega 
P\varpi g

\varepsilon f the \searrow ·, ·\simeq g(\varepsilon )-orthogonal projection of \Leftarrow \varpi g

\varepsilon f onto
span{\varpi g

\omega 1
\varepsilon , . . . ,\varpi g

\omega p
\varepsilon }

G(\omega ) the information matrix Gij(\omega ) = \searrow \varpi g

\omega i
\varepsilon ,\varpi g

\omega j
\varepsilon \simeq g(\varepsilon (\omega )), i, j = 1, . . . , p

\varphi , \varphi tangent vectors on T\varepsilon M
\varphi i = \varpi \omega i\varepsilon , i= 1, . . . , p tangent vectors on the Euclidean space (L2(Rd), \searrow ·, ·\simeq 

L2(Rd))

\varpi \varepsilon f the metric gradient of f(\varepsilon ) in (L2(Rd), \searrow ·, ·\simeq 
L2(Rd))

GL
2

,GH
s
,GḢ

s
,GFR,GW the information matrices for di""erent Riemannian metrics

D
s a di""erential operator that outputs a vector of all the

partial derivatives up to order s where s\Rightarrow 0
A\uparrow , A† the adjoint and the pseudoinverse of the linear operator A

\leftharpoonup , \̂leftharpoonup the tangent vectors in H\downarrow s mapped from \varphi , \varphi in Hs, s < 0
\Uparrow the Laplacian operator
\Biggr) Ds a di""erential operator that outputs a vector of all the

partial derivatives of positive order up to s where s > 0
P2(Rd) the set of Borel probability measures of finite second moments
f\vargamma \varepsilon the pushforward distribution of \varepsilon by f
\$(\varepsilon 1,\varepsilon 2) the set of all measure \leftharpoondown \downarrow P(R2d) with \varepsilon 1 and \varepsilon 2 as marginals
v, v̂,w,{vi}pi=1 the tangent vectors in T\varepsilon P2(Rd)\Downarrow L2

\varepsilon (Rd;Rd)
{ṽi}pi=1 the renormalized Wasserstein tangent vectors, ṽi =

\leftrightarrow 
\varepsilon vi

B the di""erential operator defined by Bṽ =\Leftarrow \nwarrow · (
\Biggl[ 

\varepsilon (\omega ) ṽ)
Bk a generalized version of B given by Bk ṽ =\Leftarrow \nwarrow · (\varepsilon (\omega )k ṽ)
L with di""erent choice of L, all natural gradient directions can be

formulated as \varsigma nat = argmin\varpi \updownarrow Rp\swarrow (L\uparrow )†\varpi \varepsilon f +
\Biggr] 

p

i=1 \varsigma i L\varphi i\swarrow 2L2(Rd)

Section 3

\varepsilon \downarrow Rk the discretized state variable
\varpi \varepsilon f , Z = \varpi \omega \varepsilon the finite-dimensional gradient and Jacobian in Euclidean space
L the discretization of the operator L for di""erent metric spaces
GL = Y \rightarrow Y the discretized information matrix, Y =LZ
\varsigma nat

L
the natural gradient direction in a unified framework (3.2)

h(\varepsilon ,\omega ) = 0 the implicit dependence of \varepsilon on \omega 
\rightharpoonup \varrho ,\rightharpoonup the adjoint variable, solutions to the adjoint equation

If the domain \$ is a compact subset of Rd (in terms of numerical discretization),
the divergence operator in (2.26) comes with a zero-flux boundary condition. That
is, ṽ = 0 on \vargamma \$. For simplicity, we describe the case d = 2 where \$ is a rectangular
cuboid. All numerical examples we present earlier in this paper belong to this scenario.
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EFFICIENT NATURAL GRADIENT DESCENT METHODS A1649

First, we discretize the domain [a,b]\propto [c,d] with a uniform mesh with spacing 'x

and 'y such that x0 = a, xnx = b, y0 = c, and yny = d. The left-hand side of the
linear constraint in (2.26) becomes a matrix

B =\rightarrow 
 
AxD AyD

 

in (B.1) where D = diag(
\swarrow 
\lhook \omega ), Ax = 1

2\$x
Cnx\rightarrow 1 \mapsto Iny\rightarrow 1 and Ay =

1
2\$y

Inx\rightarrow 1 \mapsto Cny\rightarrow 1.
Here, \lhook \omega is a vector-format discretization of the function \omega while skipping the boundary
points, \mapsto denotes the Kronecker product, In \simeq Rn\simeq n is the identify matrix, and
Cn \simeq Rn\simeq n is the central di!erence matrix with the zero-Dirichlet boundary condition.

Cn =

 

      

0 1
\rightarrow 1 0 1

. . .
. . .

. . .

\rightarrow 1 0 1
\rightarrow 1 0

 

      

n\simeq n

.(B.2)

One may also use a higher-order discretization for the divergence operator in
(2.26). The discretization of the vector field ṽ = (ṽx, ṽy)\uparrow is y = (y\uparrow 1 , y

\uparrow 
2 )

\uparrow in (B.1),
where y1 and y2 are respectively the vector-format of ṽx and ṽy while skipping the
boundary points due to the zero-flux boundary condition. Note that B is full rank
if \omega is strictly positive, and nx, ny are odd. We remark that B and y remain very
similar structures if \$\searrow Rd with d> 2.

Z available. If Z = (\varphi 1 \varphi 2 . . . \varphi p) is available, we can solve (2.26) directly.
After discretization, these equations reduce to constrained minimum-norm problems
(B.1), where B is the discretization of the di!erential operator \rightarrow \prime · (

\swarrow 
\omega •) evaluated

at the current \varepsilon (and thus \omega (\varepsilon )). The solution to (B.1) can be recovered via the
pseudoinverse of B as

Y =B
†
Z, where Y = (ṽ1 ṽ2 . . . ṽp) and Z = (\varphi 1 \varphi 2 . . . \varphi p).(B.3)

In our case, B is underdetermined, and we assume it to have full row ranks. We could
perform the QR decomposition of B\uparrow in the “economic” size:

B
† =Q(R\uparrow )\rightarrow 1

, where B
\uparrow =QR.(B.4)

Since R
\uparrow is lower diagonal, ṽi =Q(R\uparrow )\rightarrow 1

\varphi i can be e""ciently calculated via forward
substitution. If p is not too large, and we have access to {\varphi i} directly, this is an
e""cient way to obtain {ṽi}.

Once we obtain Y , we can compute the W2 NGD direction since (2.21) reduces
to

\varrho 
nat

W2
= argmin

\varpi \downarrow Rp

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle 
\swarrow 
\omega \vargamma 

W

\varepsilon 
f +

p\Biggl\{ 

i=1

\varrho iṽi

\Biggr\rangle \Biggr\rangle \Biggr\rangle \Biggr\rangle 
2

L2(Rd;Rd)

=\rightarrow Y
† \left\{ \swarrow 

\omega \vargamma 
W

\varepsilon 
f
\right\} 
,(B.5)

where \vargamma W

\varepsilon 
f is related to \vargamma \varepsilon f based on (2.22), and Y

† is the pseudoinverse of Y , which
one can obtain by QR factorization; see details in subsection 3.2.

We can also compute the W2 information matrix based on B
† obtained via the

QR factorization (B.4). That is,

Gw2
= Y

\uparrow 
Y =Z

\uparrow (BB
\uparrow )†Z =Z

\uparrow (B†)\uparrow B†
Z.
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A1650 LEVON NURBEKYAN, WANZHOU LEI, AND YUNAN YANG

Therefore, if Y has full column ranks, the common approach is to invert the informa-
tion matrix Gw2

directly and obtain the NGD direction following (2.4) as

\varrho 
nat

W2
=\rightarrow G

\rightarrow 1
w2

\vargamma \omega f(\omega (\varepsilon )).

Discretization of the Wasserstein Gradient \bfitomega W
\bfitomega f . Based on (2.27), we need

to discretize the weighted Wasserstein Gradient, b\ni \rightarrow 
\swarrow 
\omega \vargamma 

W

\varepsilon 
f =\rightarrow 

\swarrow 
\omega \prime \vargamma \varepsilon f , such that

the WNGD \varrho 
nat

W2
= Y

†
b where Y = B

†
Z. We remark that the discretization of the

gradient operator in
\swarrow 
\omega \prime \vargamma \varepsilon f(\omega (\varepsilon )) needs to be the numerical adjoint with respect to

the matrix \rightarrow B, the discretization of the divergence operator. That is,

b\ni \rightarrow 
\swarrow 
\omega \prime (\vargamma \varepsilon f(\omega (\varepsilon ))) = (\rightarrow B)\uparrow \vargamma \varepsilon f.

This requirement is to ensure that

\vargamma \omega jf(\omega (\varepsilon ))\ni \vargamma \varepsilon f
\uparrow 
\varphi j = \vargamma \varepsilon f

\uparrow 
Byj

=
\left\{ 
B

\uparrow 
\vargamma \varepsilon f

\right\} \uparrow 
yj =\rightarrow b

\uparrow 
yj \ni \uparrow 

\swarrow 
\omega \prime \vargamma \varepsilon f,

\swarrow 
\omega vj\downarrow L2(Rd;Rd),

which is the discrete version of

lim
t\updownarrow 0

f(\omega + t\varphi )\rightarrow f(\omega )

t
=

\Bigg\backslash 

Rd

\vargamma \varepsilon f(\omega )(x) \varphi (x)dx

=

\Bigg\backslash 

Rd

\swarrow 
\omega \prime \vargamma \varepsilon f(\omega )(x) · ṽ(x)dx \Rightarrow \varphi \simeq L

2(Rd).

The equation above is the main identity used in the proof for Proposition 2.2.
For example, if we use the central di!erence scheme for the divergence operator

\rightarrow \prime · (
\swarrow 
\omega •), we also need to use central di!erence for the gradient operator \prime .

Similarly, if one uses forward di!erence for \rightarrow B, the backward di!erence should be
employed for the gradient operator \prime .

B.2. Dealing with rank deficiency. Note that in (3.2), we need to solve a
least-squares problem given the matrix Y = LZ to find the NGD direction based
upon a wide range of Riemannian metric spaces. For simplicity, we will consider the
problem in its general form: finding the least-squares solution \varrho to Y \varrho = b, where
b=\rightarrow (L\uparrow )†\vargamma \varepsilon f based on (3.2).

The standard QR approach only applies if Y has full column rank, i.e., rank(Y ) =
p while Y \simeq Rk\simeq p. Otherwise, if rank(Y ) = r < p, we are facing a rank-deficient
problem, and an alternative has to be applied. Even if Y is full rank, sometimes
we may have a nearly rank-deficient problem when the singular values of Y , {\oldstyle{0}i},
i = 1, . . . , p, decay too quickly such that \oldstyle{0}r+1, . . . ,\oldstyle{0}p \forall \oldstyle{0}r. A conventional way to
deal with such situations is via QR factorization with column pivoting.

In order to find and then eliminate unimportant directions of Y , essentially, we
need a rank-revealing matrix decomposition of Y . While SVD (singular value de-
composition) might be the most common choice, it is relatively expensive, which
motivated various works on rank-revealing QR factorization as they take fewer flops
(floating-point operations) than SVD. The column pivoted QR (CPQR) decomposi-
tion is one of the most popular rank-revealing matrix decompositions [16]. We remark
that CPQR can be easily implemented in MATLAB and Python through the standard
qr command, which is based upon LAPACK in both languages [6].

Applying CPQR to Y yields

Y P =QR,
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EFFICIENT NATURAL GRADIENT DESCENT METHODS A1651

where P is the permutation matrix. Thus, the linear equation Y \varrho = b becomes

Y PP
\uparrow 
\varrho =QRP

\uparrow 
\varrho =QR\varrho p = b, where \varrho p = P

\uparrow 
\varrho .

Now, we denote by \left( Q and \left( R the truncated versions of Q and R, respectively, by
keeping the first r columns of Q and the first r rows of R. We may solve the linear
system below instead:

\left( R\varrho p = \left( Q\uparrow 
b.

The least-squares solution is no longer unique since we have truncated R due to
the (nearly) rank deficiency of Y . By convention, one may pick the one with the
minimum norm among all the least-squares solutions. Since \Leftarrow \varrho \Leftarrow 2 = \Leftarrow \varrho p\Leftarrow 2 as P is
a permutation matrix, this is equivalent to finding a minimum-norm solution to the
above linear system. This can be done by an additional QR factorization. Let

\left( R\uparrow =Q1R1,

where Q1 \simeq Rp\simeq r has orthonormal columns and R1 \simeq Rr\simeq r is invertible. As a result,

\varrho p =Q1(R
\uparrow 
1 )

\rightarrow 1 \left( Q\uparrow 
b.

Finally, we may obtain the solution

\varrho = P\varrho p = PQ1(R
\uparrow 
1 )

\rightarrow 1 \left( Q\uparrow 
b.

Again, (R\uparrow 
1 )

\rightarrow 1 should be understood as forward substitution.
We may apply the same idea if B in (B.1) is (nearly) rank deficient, while we will

keep its dominant r ranks. Note that B is short-wide. Applying CPQR to B
\uparrow yields

B
\uparrow 
P =QR,

where P is the permutation matrix, Q has orthonormal columns, and R is a p \propto p

square matrix. Thus, the constraint in (B.1) becomes

PP
\uparrow 
By= PR

\uparrow 
Q

\uparrow 
y= \varphi i.

Again, we denote by \left( Q and \left( R the truncated version of Q and R by keeping the first
r columns of Q and the first r rows of R where r\leftrightarrow p. We may solve the linear system
below instead:

\left( R\uparrow 
yq = P

\uparrow 
\varphi i, where yq = \left( Q\uparrow 

y.

Since \left( R\uparrow is tall-skinny, we may select the least-squares solution to the above system.
We perform a QR decomposition in economic size for \left( R\uparrow such that \left( R\uparrow = Q2R2.
Therefore,

yq =R
\rightarrow 1
2 Q

\uparrow 
2 P

\uparrow 
\varphi i

and eventually leads to

ṽi = y= \left( Qyq = \left( QR
\rightarrow 1
2 Q

\uparrow 
2 P

\uparrow 
\varphi i.

Note that if \left( R = R and \left( Q=Q, i.e., r = p, the solution above coincides with the one
obtained from (B.3)–(B.4) since R

\rightarrow 1
2 Q

\uparrow 
2 = (R\uparrow )\rightarrow 1.
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To sum up, for a tall-skinny matrix Y , we compute the following by two QR
factorizations while eliminating the unimportant directions during the process:

Y P = \left( QR
\uparrow 
1 Q

\uparrow 
1 ,

where R1 is a invertible square matrix while \left( Q and Q1 have orthonormal columns.
Therefore,

Y
† = PQ1(R

\uparrow 
1 )

\rightarrow 1 \left( Q\uparrow 
.

Finally, \varrho = Y
†
b= PQ1(R\uparrow 

1 )
\rightarrow 1 \left( Q\uparrow 

b. For a short-wide matrix B, we compute

B
\uparrow 
P = \left( QR

\uparrow 
2 Q

\uparrow 
2 ,

where R2 is invertible while \left( Q and Q2 have orthonormal columns. Consequently,

B
† = \left( QR

\rightarrow 1
2 Q

\uparrow 
2 P

\uparrow 
.

Finally, ṽi =B
†
\varphi i = \left( QR

\rightarrow 1
2 Q

\uparrow 
2 P

\uparrow 
\varphi i for i= 1, . . . , p.

B.3. Z not available: The Hutchinson method. In this subsection, we
present some ideas for approximating Z using Hutchinson’s estimator [17, 35, 51],
a powerful technique from randomized linear algebra. Let \rhook \simeq Rk be a vector with
i.i.d. random coordinates of mean 0 and variance 1. Such random vectors serve as a
random basis. That is,

Z =E
 
\rhook \rhook 

\uparrow 
Z
 
.

Thus, if we have m such random vectors, \rhook 1, \rhook 2, . . . , \rhook m, then we can estimate

Hm(Z) =
1

m

m\Biggl\{ 

k=1

\rhook k\rhook 
\uparrow 
k
Z.

Furthermore, by introducing the adjoint variables  \triangleleft 1, \triangleleft 2, . . . , \triangleleft m such that

 \triangleleft 
\uparrow 
k
\vargamma \varepsilon h= \rhook 

\uparrow 
k
, 1\leftrightarrow k\leftrightarrow m,(B.6)

and using (3.8), we obtain

Hm(Z) =\rightarrow 
1

m

m\Biggl\{ 

k=1

\rhook k \triangleleft 
\uparrow 
k
\vargamma \omega h.

Hence, by replacing Z in (3.2) with its approximation Hm(Z), we obtain an approxi-
mated NGD direction as

\varrho 
nat

L
= argmin

\varpi \downarrow Rp

\Biggr\rangle \Biggr\rangle (L\uparrow )†\vargamma \varepsilon f +L Hm(Z) \varrho 
\Biggr\rangle \Biggr\rangle 2
2
.(B.7)

Once we obtain Hm(Z), the above least-squares problem can be solved by QR fac-
torization, similar to the framework presented in subsection 3.2 or Appendix B.2.
However, we remark here that the convergence behavior of Hm(Z)

m\updownarrow \Rightarrow 
\rightarrow \rightarrow \rightarrow \rightarrow \nearrow Z depends

on the spectral properties of Z.
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EFFICIENT NATURAL GRADIENT DESCENT METHODS A1653

B.4. Exploring the column space of Z implicitly. As discussed in Appendix
B.3, one way to reduce the complexity of implementing the NGD method is to find
a low-rank approximation to the Jacobian Z = \vargamma \omega \omega . For any \varphi , we have that \varphi =
E[\uparrow \varphi , \rhook \downarrow \rhook ] given any random vector \rhook whose covariance is the identity. Hence, by the
law of large numbers, for m large enough, we have that

P
\right) \Biggr\rangle \Biggr\rangle \Biggr\rangle \varphi \rightarrow \varphi 

\Biggr\rangle \Biggr\rangle \Biggr\rangle > \oldstyle{1}

\left[ 
< \oldstyle{2}, where \varphi =

1

m

m\Biggl\{ 

k=1

\uparrow \varphi , \rhook k\downarrow \rhook k,(B.8)

where {\rhook 1, \rhook 2, . . . , \rhook m} are i.i.d. random vectors. Therefore,
\Biggr\rangle \Biggr\rangle \Biggr\rangle L

\right) 
\varphi j \rightarrow \varphi j

\left[ \Biggr\rangle \Biggr\rangle \Biggr\rangle < \Leftarrow L\Leftarrow \oldstyle{1}, 1\leftrightarrow j \leftrightarrow p,

with high probability when m is large enough (depending on the spectral property
of Z). Here, L is the important linear operator in the unified framework (3.2). In
Appendix B.3, we approximate

Y =LZ \ni LHm(Z),

which is to compute the approximation matrix Hm(Z) directly. Next, we present
another way to obtain an approximated Y whether or not Z is explicitly available.

If we can find such {\rhook k} satisfying (B.8), our final approximation to each yj in
Y =LZ = (y1 . . . yj . . . , yp) could be written as

yj =L\varphi j \ni L\varphi j =
1

m

m\Biggl\{ 

k=1

\uparrow \varphi j , \rhook k\downarrow L\rhook k, 1\leftrightarrow j \leftrightarrow p.(B.9)

Note that the inner product \uparrow \varphi j , \rhook k\downarrow can be computed via the adjoint-state method
if there is no direct access to {\varphi j}; see section 3.3.1 for details. Therefore, to obtain
an approximated Y , we only need to evaluate Lhk and the inner products \uparrow \varphi j , \rhook k\downarrow for
each k and j, without directly accessing the Jacobian Z = (\varphi 1 . . . \varphi p). A similar idea
called randomized SVD could also apply here [15].
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[19] M. Jacobs and F. Léger, A fast approach to optimal transport: The back-and-forth method ,
Numer. Math., 146 (2020), pp. 513–544.
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