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Abstract. We propose efficient numerical schemes for implementing the natural gradient descent
(NGD) for a broad range of metric spaces with applications to PDE-based optimization problems.
Our technique represents the natural gradient direction as a solution to a standard least-squares
problem. Hence, instead of calculating, storing, or inverting the information matrix directly, we
apply efficient methods from numerical linear algebra. We treat both scenarios where the Jacobian,
i.e., the derivative of the state variable with respect to the parameter, is either explicitly known
or implicitly given through constraints. We can thus reliably compute several natural NGDs for a
large-scale parameter space. In particular, we are able to compute Wasserstein NGD in thousands
of dimensions, which was believed to be out of reach. Finally, our numerical results shed light on
the qualitative differences between the standard gradient descent and various NGD methods based
on different metric spaces in nonconvex optimization problems.

Key words. natural gradient, constrained optimization, least-squares method, gradient flow,
inverse problem

MSC codes. 65K10, 49M15, 49M41, 90C26, 49Q22

DOI. 10.1137/22M1477805

1. Introduction. In this paper, we are interested in solving optimization prob-
lems of the form

(1.1) inf f(p(9)),

where f is the objective/loss function and p(f) is the state variable parameterized
by 6. We mainly consider p(f) as a PDE-based forward model, and f is a suitable
discrepancy measure between the output of the forward model and the data. In-
verse problems, such as the full waveform inversion (FWI), are classical examples of
(1.1). More recent examples are machine learning—based PDE solvers where p(f) is
a neural network with weights 6 that approximates the solution to the PDE [42].
They are typical large-scale optimization problems either due to fine grid parame-
terization of the unknown parameter or large networks employed to approximate the
solutions.
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First-order methods, especially in neural network training, are workhorses of high-
dimensional optimization tasks. One such approach is the gradient descent (GD)
method, whose continuous analogue is the following gradient flow equation:

0=—05f(p(0)).

Although reasonably effective and computationally efficient, GD might suffer from
local minima trapping, slow convergence, and sensitivity to hyperparameters. Conse-
quently, first-order methods and some of their (stochastic and deterministic) variants
are not robust and require a significant hyperparameter tuning on a problem-by-
problem basis [51]. Such performance is often explained by the lack of curvature infor-
mation in the parameter updates. Many optimization algorithms have been developed
to improve the convergence speed, such as Newton-type methods [48], quasi-Newton
methods [37], and various acceleration techniques [36] including momentum-based
methods [41].

Recently, there has been a revival of second-order methods in the machine learn-
ing community [48]. Significant developments include the AdaHessian [51] and NGD
[1, 31]. Both techniques incorporate curvature information into the parameter update.
AdaHessian preconditions the gradient with an adaptive diagonal approximation to
the Hessian [51]. The diagonal approximation is estimated by an adaption of Hutchin-
son’s trace estimator [17]. Consequently, one obtains an optimization method for (1.1)
with a similar observed convergence rate to Newton’s method with a computational
cost comparable to first-order methods. AdaHessian shows state-of-the-art perfor-
mance across a range of machine learning tasks and is observed to be more robust
and less sensitive to hyperparameter choices compared to several stochastic first-order
methods [51].

A different approach is the natural gradient descent (NGD) method [1, 2, 38, 23,
24, 30, 31, 45], which preconditions the gradient with the information matriz instead
of the Hessian; see (1.2). NGD performs the steepest descent with respect to the
p-space, the natural manifold where p(6) resides, instead of the parameter 6-space
[1, 2]. A Riemannian structure is imposed on the parameterized subset {p(f)} and
then pulled back into the f-space. NGD is sometimes also regarded as a generalized
Gauss—Newton method [44, 38, 31], which has a faster convergence rate than GD.
In particular, NGD can be interpreted as an approximate Netwon method when the
manifold metric and the objective function f are compatible [31]. Other properties
of NGD include local invariance with respect to the reparameterization, robustness
with respect to hyperparameter choices, ability to progress with large step-sizes, and
enforcing a state-dependent positive semidefinite preconditioning matrix. Inspired by
the success of NGD in machine learning, we aim to extend and apply it to PDE-based
optimization problems, which are mostly formulated in proper functional spaces with
rich flexibility in choosing the metric.

Mathematically, continuous-time NGD is the preconditioned gradient flow

(1.2) 6=—G(0)"' D f(p(0)),

where G(0) is the pull-back of a (formal) Riemannian metric in the p-space. It is
often referred to as an information matrix and will be discussed in detail in section 2.
There are two options to discretize (1.2): explicit and implicit. An explicit Euler
discretization of (1.2) is

(1.3) o't =0' —7'G(0") 10 f(p(8Y)), 1=0,1,...,
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where 7! > 0 is the step-size or learning rate. An implicit Euler discretization of (1.2)
gives rise to

(1.4 o141 —aguin { (6)) +

(G(0')(0—0").(0 —0") }

27!

where (-,-) is the Euclidean inner product. If we denote by d, the divergence or dis-
tance generating G(#), the second term in (1.4) is the leading-order Taylor expansion
of £d,(p(0),p(6"))* at 6'. Thus, the solution of (1.4) agrees with

dy(p(6), p(6"))* }
27!

(1.5) 0"+ = argmin {f(p(@)) + ,
0

up to the first order. Note that (1.5) captures the underlying idea of the NGD: taking

advantage of the geometric structure to find a direction with a maximum descent in

the p-space. In contrast, finding a maximum descent in the #-space as done by the

“standard” implicit GD is

wosr)

(1.6) o't = argmin {f (p(9)) + —5 3

where dp is the chosen metric for the #-space. In this work, we focus on different d,
and consider dy as the Euclidean distance for simplicity. Intuitively, one may interpret
it as a shift from the parametric 6-space to the more “natural” p-space. Thus, the
infinitesimal decrease in the value of f and the direction of motion for p on M at
p=p(0) are invariant under reparameterizations [31].

NGD has been proven to be advantageous in various problems in machine learning
and statistical inference, such as blind source separation [3], reinforcement learning
[39], and neural network training [44, 33, 38, 32, 21, 31, 45, 25]. Further applications
include solution methods for high-dimensional Fokker—Planck equations [22, 28]. De-
spite its success in statistical inferences and machine learning, the NGD method is far
from being a mainstream computational technique, especially in PDE-based applica-
tions. A major obstacle is its computational complexity. In (1.3), explicit discretiza-
tion of NGD reduces to preconditioning the standard gradient by the inverse of an
often dense information matrix. The numerical computation is often intractable.

Existing works in the literature focused on explicit formulae [49], fast matrix-
vector products [44, 33, 38, 31|, and factorization techniques [32] for natural gradi-
ents generated by the Fisher—-Rao metric in the p-space, where p is the output of
feed-forward neural networks. These methods exploit the structural compatibility of
standard loss functions and the Fisher metric by interpreting the Fisher NGD as a
generalized Gauss—Newton or Hessian-free optimization [31, sec. 9.2]. The compu-
tational aspects of feed-forward neural networks are also utilized since computations
through the forward and backward passes are recycled. Thus, to the best of our knowl-
edge, the neural network community focuses on the Hessian approximation aspect in
the context of feed-forward neural network models rather than the geometric proper-
ties of the forward-model-space. For the Wasserstein NGD (WNGD), [21, 7] rely on
implicit Euler discretization, but their methods still suffer from accuracy issues due
to the high dimensionality of the parameter space [45, sec. 2]. A regularized WNGD
was considered in [45]. Unfortunately, by design, the method blows up when the reg-
ularization parameter decreases to zero, so it cannot compute the original WNGD. In
[52], compactly supported wavelets were used to diagonalize the information matrix,
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which is limited to the periodic setting with strictly positive p(f) and also certain
smoothness assumptions for p().

There are three main contributions in our work. First, we depart from the Hessian
approximation framework and adopt a more general geometric formalism of the NGD.
Our approach applies to a general metric for the state space, which can be independent
of the choice of the objective function. As examples, we treat Euclidean, Wasserstein,
Sobolev, and Fisher—Rao natural gradients in a single framework for an arbitrary loss
function. We focus on the standard least-squares formulation of the NGD direction.
Second, we streamline the general NGD computation and develop two approaches
to whether the forward model 8 — p(6) is explicit or implicit. When the Jacobian
Opp is analytically available, we utilize the (column-pivoting) QR decomposition for
which a low-rank approximation can be directly applied if necessary [16]. When 9yp
is only implicitly available through the optimization constraints, we employ iterative
solution procedures such as the conjugate gradient method [34] and utilize the adjoint-
state method [40]. This second approach shares the same flavor with the method of
the fast matrix-vector product for the Fisher—-Rao NGD for neural network training
[44, 33, 38, 31], but it allows one to apply the general NGD to large-scale optimization
problems (see subsection 4.3, for example). In particular, our method can perform
high-dimensional Wasserstein NGD, which was believed to be out of reach in the
literature [45, sec. 1]. Last but not least, we use a few representative examples to
demonstrate that the choice of metric in NGD matters as it not only quantitatively
affects the convergence rate but also qualitatively determines which basin of attraction
the iterates converge to.

The rest of the paper is organized as follows. In section 2, we first present the
general mathematical formulations of the natural gradient based on a given metric
space (M, g) and how it contrasts with the standard gradient. We then discuss a few
common natural gradient examples and how they can all be reduced to a standard
L2-based minimization problem on the continuous level. In section 3, we demonstrate
our general computational approaches under a unified framework that applies to any
NGD method. The strategies concentrate on two scenarios regarding whether the
Jacobian Jyp is explicitly given or not, followed by section 4, where we apply the
proposed numerical strategies for NGD methods to optimization problems under these
two scenarios. Conclusions and further discussions follow in section 5.

2. Mathematical formulations of NGD. We begin by discussing the NGD
method in an abstract setting before focusing on the common examples.

Assume that p is in a Riemannian manifold (M, g), and 6 is in an open set © C RP.
Furthermore, assume that the correspondence 6 € © — p(f) € M is smooth so that
there exist tangent vectors

(2.1) {98,0(0).08,0(6)......05,p(0)} < ToM.

The superscript g in 3¢ highlights the dependence of tangent vectors on the choice of
the Riemannian structure (M, g). Furthermore, assume that f: M — R is a smooth
function and denote by 99 f € T, M its metric gradient; that is, for all smooth curves
t— p(t), we have

GO _ (050107, 080(0)) 0

Tangent vectors {97 p};_, incorporate fundamental information on how p(f) tra-
verses M when 6 traverses ©. Indeed, an infinitesimal motion of 8 along the coordinate
f;-axis in © induces an infinitesimal motion of p along 6gip in M. More generally, if
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o .
Z—bh=n=(n,....0,)"
7 n=...,m) ,

then

07 p(0) =mg p+ -+ mpd5 p.

Consequently, we have that

df (p(6 -

% = <8gfvatgp(9)>g(p(9)) = <3§f727h53i/)> .
i=1 9(p(9))

Intuitively, to achieve the largest descent in the loss f(p(6)), we want to choose

n=(m,...,mp) " such that 09 f is as negatively correlated with P niagip as possible

in terms of the given metric g. Thus, the NGD direction corresponds to the best

approximation of —94 f by {97 p} in T, M:

2

3gf+Zm@§’ p

=1

(2.2) Nt = argmln

9(p(9))

In other words, the NGD corresponds to the evolution of # that attempts to follow the
manifold GD of f on M as closely as possible. Since (T, M, g) is an inner-product
space where g may depend on p, and p depends on 6, (2.2) implies that under the
natural gradient flow, the direction of motion for p on M is given by the g(p(6))-
orthogonal projection of —d9 f onto span{dy p, ... ,8gpp}:

p
(2.3) ofp=> 't 95 p=:POI[.

i=1
Since span{dy p,.. ., 8gpp} is invariant under smooth changes of coordinates 6 = 6(v),
we obtain that (2.3) is also invariant under such transformations. Additionally, the
infinitesimal decay of the loss function is also invariant under smooth changes in the
coordinates. Indeed,

df (p(0
w = —|POLFI2 o)

A critical benefit of these invariance properties is mitigating potential negative effects
of a poor choice of parameterization by filtering them out (since the corresponding
decrease in the loss function is parameter-invariant) and reaching argmin,crq f(p) as
quickly and as closely as possible. For the analysis of NGD based on this insight, we
refer the reader to [31, 28] for more details.

Remark 2.1. When {8& p} are linearly dependent, the ™t in (2.2) is not unique,
and we pick the one with the minimal length for computational purposes; that is,
we replace G~1(6) by the Moore-Penrose pseudoinverse G(#)' in (1.2) and elsewhere.
It is worth noting that this choice is crucial to guarantee convergence and general-
ization properties of the NGD method in some applications; see [54] for example.
Alternatively, one may consider a damping variant of G; see subsection 3.5.1.

To compare the natural gradient with the standard gradient 9y f(p(8)), first note
that

» P
W:<aﬁﬂzm83m> =2 _(085,05,9) 4 (01 = 00 (p(0))

dt i=1 9(p(9)) =1
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Therefore, in a form similar to (2.2), the GD direction is the solution to
0 = argmin |5 (p(8)) + Ul
In other words, GD is the steepest descent in the #-space, whereas NGD is an approxi-

mation of the steepest descent in the p-space based on a given metric g. Furthermore,
GD leads to

P P
Op= m' 9 p=—2 (05£.05,0) (0, 0%.P
i=1 i=1
df (p(0)) _ 2 _ - g 2

which are not necessarily invariant under coordinate transformations.
When {97 p} are linearly independent, we obtain that

(24) 0" ==G(O)" 9a f(p(0)) = G(0) ' n*",
where G(0) is the information matriz whose (i,j)th entry is
(2.5) Gij(0)= <Bgip, 8gjp>g(p(9)), ,7=1,...,p.

Thus, an NGD direction is a GD direction preconditioned by the inverse of the infor-
mation matrix.

Since the information matrix G(0) is often dense and can be ill-conditioned, direct
application of (2.4) is prohibitively costly for high-dimensional parameter space, that
is, large p. Our goal is to calculate 1™ via the least-squares formulation (2.2), cir-
cumventing the computational costs from assembling and inverting the dense matrix
G directly.

2.1. L? natural gradient. In this subsection, we embed p in the metric space
(M, g) = (L*(R?), (-,-) 2(re))- In this case, the tangent space T, M = L*(R%) for any
pEM, and

(6O = |, C@)(@)dr v¢.CET,M.

The linear structure of L?(R%) is advantageous for developing differential calcu-
lus, and many finite-dimensional concepts generalize naturally. Indeed, the tangent
vectors (2.1) for a smooth mapping 6 € © — p(0,-) € L*(R?) are {(1,(2,...,(y} given
by

The information matrix in (2.5) is given by
aE (0) :/ o, p(0,2)09,p(0,2)dx, 1,j=1,2,....p.
R4

Next, for f: L?(R?) — R, we obtain that the L?-derivative at p is d,f(p) € L*(R?)
such that

(2.7) lim Flortd) = flp) = [ 0,f(p)(x) {(x)dx V(e L*(RY).

t—0 t R4
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Thus, 0, f is the commonly known derivative in the sense of calculus of variations.
Finally, for smooth p:© — L%(R%) and f: L?(R%) — R, formula (2.2) leads to the L?
natural gradient

P 2
apf + Z 1:Gs

i=1

(2.8) N8t = argmin
neRrp L2(R4)

The L? metric is not a typical choice for the NGD. Nevertheless, this metric is
important as a basis for computing more complex NGDs. Additionally, see section 2.6
for the connection between L?-based NGD and the Gauss-Newton method.

2.2. H? natural gradient. In this subsection, we assume that p is embedded

in the L2-based Sobolev space H*(R?) for s € Z (we return to the L? case if s = 0).

The metric space (M, g) = (H*(R?), (-, ) ie(ray). Since this is also a Hilbert space,
T,M = H*(R?) for all p € M, and

R . {fRd D*¢ - D*C d, $>0,

<C7<>g(p) = <C7<>H5(]Rd) = f D_SX'D_S)A( de s<0 CaéeTva
Rd ) )

where D? is the linear operator whose output is the vector of all the partial deriv-
atives up to order s for s > 0. For s < 0, we define x = (D~*)*D~%)~1( and
= ((D~*)*D~*)"1{. For example, (D~*)*D5 =1 — A if s=—1 and I — A + A2
if s = —2 [50]. Note that D~*((D~*)*D %)~ = ((D~*)*) for s <0, where T is the
notation for pseudoinverse. Thus, we can rewrite

(¢ Qmegay = D% D7*X) 2y = (D)) (D)) ) gy VCLETHM.
For a smooth p : © — H*(R?), the tangent vectors are still {¢;} in (2.6) but

now are considered as elements of H*(R%). This means that the information matrix
GH° () defined in (2.5) is given by
GZI (0) = (9o, p; 39j P>Hs(1Rd)
| JgaD#0g,p(0, ) - D0y, p(0, x) du, 5>0,
Jea((D=*)*) 10, p(0, ) - (D=°)*)10p, p(0, ) dz, 5 <0,
fori,j=1,...,p. Note that G is different from GL” due to the inner product.

Next, we calculate the H* gradient of smooth f: H*(R%) — R. For s >0, we have
that

i L0 F10 = (0)

_ H* _ saH?® s
tig LI L) — 011 1.C) gy = [ DO} D
— [ 0D 3l ¢ da
Rd
and so from (2.7) we obtain
9 f=((D*)'D*) " 0,f, s20.
When s < 0, under analogous assumptions with the case s >0, we have that

i £ (P10 = f(p)

t—0 t

= (05" £ Qo =/ (D™))19;" f- (D)) ¢dr
Rd
= [ D@0 o= [ (DD f G

Rd
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Thus, from (2.7), we have
M f=(D™)*'D*0,f, s<0.
Finally, for smooth p:© — H*(R?) and f: H*(RY) — R, (2.2) leads to the H*

natural gradient

2

;" f+ZmQ

i=1

(2.9) Nt = argmm
ne

HS(]Rd).
For numerical implementation, we reduce this previous formulation into a least-
squares problem in L?(R%). More specifically, for s >0, (2.9) can be written as

2

D*((D*)*D*)~ 10 f+z771D Gi

N = argmin

LZ(Rd).

neRe i=1
Furthermore, for s <0 we have that (2.9) can be written as
2
N = argmin || D~°0, f + Z m (D™*))1¢; :
neRp L2(RY)

Both cases share the same form (2.10) with L =D? for s >0 and L = ((D~*)*)' for
5<0:

P 2
(L0 f +> mi L

i=1

(2.10) N = argmin
neRrp

L2(R4)
2.3. H* natural gradient. Next, we consider the NGD with respect to the
Sobolev seminorm H?®. For simplicity, we assume that p is supported in a smooth

bounded domain © C R% For s > 0, we define the space H*(Q) = {¢ € H*(Q) :
Jo ¢ =0} with the inner product

(66 ey = (D€, D) o) = /Q Do DCdr ¥¢,Ee (),

where D* is the linear operator whose output is the vector of all partial derivatives
of positive order up to s. To consider the H® natural gradient flows, we embed p in
(M, g), where

Mz{peHs(Q):/pzl}, T,M = E*(),
S ~ Q/\
<<a C>g(ﬂ) = <<a <>HS(Q) v<7 C € TpM

For a smooth p: © — M, we still have that the tangent vectors are {(;} as defined in
(2.6). Since [, p(#,x)dx =1 for all 6 € ©, we have that

Ci(z)dx = / 09, p(0, x)dx = Oy, / p(0,z)de=0, i=1,...,p,
Q Q Q
and thus {(;} C T, M. The information matrix (2.5) for this case is GH’ (0) given by

G55(9)=<39ip,89jp>H5(Q)Z/f)sagip(e,x)~[~)869j,0(9,3;‘)dx, ij=1,....p.
Q

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/15/23 to 132.174.252.179 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

EFFICIENT NATURAL GRADIENT DESCENT METHODS A1629

On the other hand, for f: M — R, we have that 851§f € H*(Q) where V¢ € TyM,
i L2 €)= f(p)

t—0 t

:<afsf,C>Hs(Q)Z/Qf)safsf'f)SCdxz/Q(f)s)*f)safstd”

The adjoint (D*)* is taken with respect to the L%(£2) inner product. Hence, based on
(2.7),

(2.11) /(6,,ff(]55)*]~)safsf) Cdr=0 VCeT,M.
Q

Furthermore, denote by 1 the constant function that is equal to 1 on . We then
have that

T,M =span{1}* = ker(D*)* = Im((D*)*),

where 1 is again taken with respect to the L?(f2) inner product. Hence, using the
properties of adjoint operators, we obtain

8fsf:((f)s)*]55)T6pf, 5> 0.

Next, we discuss the case s < 0. As the dual space of H~*(Q), the space H*(Q)
is equipped with the dual norm

161+ = 5up { (€. ) 16l g--(0 <1} -

Using the Poincaré inequality and the Riesz representation theorem, we obtain that
for every ¢ € span{1}*, the map ¢ fQ (¢ is a continuous linear operator on H ~*({2),
and there exists a unique x € H~°(Q) such that

/(gbdx:/ﬁ’sxﬁ’sgﬁdx Vo e H5(1).
Q Q

Hence, ( = (]5_5)*]5_5)( together with the homogeneous Neumann boundary condi-
tion. Therefore,

1€l g7+ @) = D" xllz2 = Xl -+ 0y

Using similar arguments for the s > 0 case, we obtain that
<Ca é>HS(Q) = <]5_SX7 ﬁ_S)AOLz(Q)
= {(D7))C(D))E) | e Eespan{1},

L2(Q)
For more details on H 5(02) where s < 0, we refer the reader to [4, Lecture 13].
Next, we embed p in space M = {p € L*(Q) : [, p = 1} with T, M = span{1}*+
and

€y = (D)D) | WCLeTM.

L2(Q)
Furthermore, for a smooth function f: M — R, we have that

i 1010 = (0)

t—0 t

(05" £,C) oy = / (D~)"D*)10" f ¢
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Together with (2.7), we have
/Q (apf - ((15*5)*15*3)*357) Cdz=0 Y(eT,M.
After performing analysis similar to the s > 0 case, we obtain that
o' f=(D*)*'D*9,f, s<0.

Finally, for both s >0 and s <0 cases, (2.2) leads to the H* natural gradient
2

12 (8)

(2.12) i = argmin
neRrp

. p
N F+D i
1=1

for smooth p: ©® - M and f: M — R. As before, we can rewrite (2.12) as a
least-squares problem

(213) 7} =argmin
neRrp

p
(L)' 0, f+ > mi L
1=1

2 L— ]55, s> 0,
L2() (D~#)")f, s<0.

Note that (2.13) shares the same form with (2.10).

H* and H* natural gradients proved extremely useful for obtaining fast algorithms
for solving the optimal transportation problem and related problems [20, 19, 18]. The
authors in these papers do not use the natural gradient descent formalism, but their
methods are indeed Sobolev NGDs.

2.4. Fisher—Rao—Hellinger natural gradient. Here, we assume that p is a
strictly positive probability density function. We embed p in (M,g) = (L'(R9),g)
where T,(M) = Li,l (R?) and

<<’6>g(p) = /Rd C(ﬁigm)dx ngée M.

This Riemannian metric is called the Fisher—-Rao metric, and the distance induced by
this metric is the Hellinger distance: dg(p1,p2) X ||\/p1 — /P2l L2 (ra)- Next, we will
derive the natural gradient flow based on the Fisher-Rao metric, first introduced by
Amari in [2].

For a smooth p: © — M, we have that the tangent vectors are {¢;} in (2.6) but
now considered as elements of Li,l (R9). Therefore, the information matrix in (2.5)
becomes GIE () € RP*P where

0o, p(0,)09, p(0, )
e :/ : 2 d
! ( ) R4 p(t‘),m)

As before, GFE(0) is in general different from el (), G"(0), and GH’ ().
Furthermore, for a smooth function f: M — R, we have that

o 21 = F(p) _ / 0" €,
t—0 t Rd P

r, 4,5=1,2,...,p.

)

and so from (2.7) we obtain

I f=p0,f.
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Finally, for smooth p:© — M and f: M — R, (2.2) leads to the Fisher-Rao natural
gradient

2

" f+ ng

i=1

(2.14) Nt = argmln

12, (r)

The L? least-squares formulation is

(2.15)
t orr zp: G I T P 2
NEp = argmin + > ni— =argmin ||(L*)'0,f + E :ni LG ’
neRrp VP = VPl way  mere ’ i=1 L2(R9)

where L{ = %C and (L*)70,f = VP O,f.

2.5. W natural gradient. We first revisit the WNGD method [23]. Denoting
by P(R?) the set of Borel probability measures on R?, we first introduce the Wasser-
stein metric on the space P(RY). Furthermore, for p € P(R?) and a measurable
function f:R%—R", we denote by fyp € P(R™) the probability measure defined by

(fsp)(B)=p(f~(B)) VBCR" Borel

and call it the pushforward of p under f. Next, for any pi,p2 € P(RY), we denote
['(p1, p2) as the set of all possible joint measures 7 € P(R??) such that

@@+ sw)aran = [ o+ [ v

for all (¢,1) € L*(p1) x L*(p2). The 2-Wasserstein distance is defined as

2
Walprope) = inf / & — y2dn(z,y) ) .
wel(p1,p2) JR2d

Denoting by P2(R?) the set of Borel probability measures with finite second mo-
ments, we have that (P2(R%),Ws) is a complete separable metric space; see more
details in [46, Chapters 7] and [5, Chapters 7]. More intriguingly, one can build a
Riemannian structure on (Pg(R?),W3). Our discussion is formal, and we refer the
reader to [46, Chapter 8] and [5, Chapter 8| for rigorous treatments.

In short, tangent vectors in (Py(R?),W5) are the infinitesimal spatial displace-
ments of minimal kinetic energy. More specifically, for a given p € Po(R?), we define
the tangent space, T,P2(R%), as a set of all maps v € Li(Rd;Rd) such that

(2.16) lv+ 'lUHLZ(Rd;Rd) > ||'U||L2(Rd;Rd) Yw € Lg(Rd;Rd) st. V- (wp)=0,

where LQ(Rd R?) denotes the p-weighted L? space. When p = 1, it reduces to the
standard L?. The divergence equation above is understood in the sense of distribu-
tions; that is,

/Rd Vo(z) - w(z) p(e)dz=0 Y¢e CP(R?).

If we think of p as a fluid density, then an infinitesimal displacement ‘fl—‘f =z =uv(x)
leads to an infinitesimal density change given by the continuity equation

dp

(2.17) o

=—V-(vp).
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Therefore, for a given w such that V - (wp) = 0, we have that both & = v(x) and
& =v(x)+w(x) lead to the same continuity equation (2.17). Therefore, the evolution
of the density is insensitive to the divergence-free vector fields, and we project them
out leaving only a unique vector field with the minimal kinetic energy. The kinetic
energy of a vector field v is then defined as

ol 30y = [ Io(@)Pola)da.

For a given evolution ¢+ p(t,-), such a “distilled” vector field v is unique and incor-
porates critical geometric information on the spatial evolution of p.
Next, we define a Riemannian metric by

(V,0)g(p) = /]Rd v(z) - 0(x) p(x)de, v,0€T,Pa(RY).

Furthermore, a mapping 6 € ©  p(0,-) € P(R?) is differentiable if for every 6 € ©,
there exists a set of bases {v;(0)} C T,P2(R?) such that

Wa (p(0 +tn), (I +t3°7_ nivi(0)) 4p(9))

. _ P
(2.18) tlg% ; =0 VneRP,
where [ is the identity map. Thus,

(2.19) {vl,vg,...,vp}:{3g‘fp,3gzp,...,agzp}

are the tangent vectors in (2.1) for the W5 metric. Thus, the information matrix in
(2.5) becomes G" (#) € RP*P | where

G (0)= [ (o) vy(a) pla)de, 17 =12...p
For f:Py(R?) — R, the Wasserstein gradient at p is then GZVf(p) € T,P>(RY),

such that

(2.20) nmf((”t“)ﬁp)_f(p):/ oW f(p)(x) - v(z) p(x)dz Vv e T,PRY).
t—0 t R

Thus, for a smooth p: © — Py(R?) and f: P2(RY) — R, the Wy NGD direction for 6
is given by

2

(2.21) Ny = argmin
neRrp

p
aprJanm
i=1

d.jd
L2 (R4RY)

As seen in (2.6), the L? derivatives and gradients are typically easier to calculate.
Here, we discuss the relations between the L? and W, metrics that are useful for
calculating the W5 derivatives and gradients, i.e., {v;} and 3;” f- We formulate the
main conclusions in Proposition 2.2.

PROPOSITION 2.2. Let {(;} and {v;} follow (2.6) and (2.19), respectively. The
Opf and {¢;} in (2.8) relate to the 8)Y f and {v;} in (2.21) as follows:

(2.22) 0 f=Vo,f,
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(2.23) vi(ﬁ):argvfnin{HvHLz (Rde):—V.(p(ﬁ)v)zg(ﬁ)}, i=1,...,p.

Informal derivation. Given a vector field v and a small ¢t > 0, we have that I 4 tv
is a first-order approximation of the trajectory below where I is the identity function.
Note that in Lagrangian coordinates, £ = v(z). Thus, from the continuity equation
(2.17), we have that

(2.24) (I+tw)tp=p—1tV-(pv)+o(t).

Recall that ¢; = 0p,p and v; = 63}%. Using this observation together with (2.6) and
(2.18), we have

p(0 +tn) = +thg ),

p(6 +tn) = —tzm v;(0)) + o(t)

for all n € RP. By comparing the above two equations, we have
(2.25) =V (p(0)vi(0)) =G(0), 1<i<p.

After taking (2.16) into account, we obtain (2.23).
Next, we establish a connection between d,f and GXVf. Combining (2.7), (2.20),
and (2.24)—(2.25), we obtain

Lo 1)@ - v@ple)ts == [ 2,06V (pa)o@)da
= [ ¥0,10)@) (@) pla)da

for all v € T,Po(R?). Hence, we obtain (2.22). 0

Similar to previous cases, we want to turn (2.21) into an unweighted L? formula-
tion. Using results in Proposition 2.2, we know that the Wasserstein tangent vectors
at p are velocity fields of minimal kinetic energy in L%(Rd;Rd). We first perform a
change of variables

ﬂi:\/ﬁvia i=1,...,p,

where the set of {v;} follows (2.19). As a result, for each i =1,...,p, (2.23) reduces
to

(2.26) ﬁi(ﬁ):argmin{HﬁH%z(Rd;Rd):BE:Q(G)}, where Bf):—V-( p(@)f}).

We then have ©; = Bf¢; for i =1,...,p. Denote the adjoint operator of B as B*. Note
that B*n = ,/pVn. Combining these observations with Proposition 2.2, formulation
(2.21) becomes

(2.27)
P 2 2
77{}[/“; = argmm VpVOo,f+ Zmﬁi =argmin ||B*0,f + Z B¢
i=1 L2(R4RY)  mERP i=1 L2(R4RY)
P 2
=argmin ||(L*)10,f + > nL(; ., where L =B,
neERP i=1 L2(R4RE)

We have reformulated the Wo NGD as a standard L? minimization (2.27).
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~ Remark 2.3. Note that the Wasserstein natural gradient is closely related to the
H~! natural gradient presented in subsection 2.3. Indeed, taking s = —1 in (2.13),
we obtain that

2

771"1‘”1 = argmln ,

L2 (Q)

Vo f+Zm Gi

which matches (2.27) except that the weighted divergence operator B defined in (2.26)
is replaced with the unweighted divergence operator —V-=V*. When p(0) =1, these
two operators coincide.

In principle, one may consider NGDs generated by the generalized operator

Bio=-V-(p(0)"0), L=(Byf,

where the case k = 0 corresponds to the H~' natural gradient and k = 1/2 corre-
sponds to the Wy NGD. The term p” is often referred to as mobility in gradient flow
equations [26].

Remark 2.4. NGDs based upon the L? norm (2.8), the H® norm (2.9), the H®
norm (2.12), the Fisher-Rao metric (2.14), and the W5 metric (2.21) are similar in
form but equipped with different underlying metric space (M, g) for p. All of them
can be reduced to the same common form but with a different L operator; see (2.8),
(2.10), (2.13), (2.15), and (2.27), respectively. As a result, we expect that they may
perform differently in the optimization process as NGD methods, which we will see
later from numerical examples in section 4.

2.6. Gauss—Newton algorithm as an L? natural gradient. Next, we give
an example to show that the Gauss—Newton method, a popular optimization algorithm
[37], can be seen as an NGD method. More discussions on this connection can be found
in [31]. Assume that f measures the least-squares difference between the model p(z;6)
and the reference p*(x) distributions; that is,

(2.28) / |p(x;0) — p* ()| *dz,
where ) is the spatial domain. Thus, the problem of finding the parameter 6§ becomes
inf f(p(9))
—mf / |p(z;0) — p*(z)]? dm—mf / |7 (z;0)2dz, 7(x;0)=p(x;0) — p*(x).
We will denote p(x;0) as p(6) and r(z;0) as r(6).
The Gauss—Newton (GN) algorithm [37] is one popular computational method

to solve this nonlinear least-squares problem. In the continuous limit, the algorithm
reduces to the flow

P
(2.29) 0 =n&N = argmin ||r(0) + Z Op,1(0)
nery i=1 L2(2)
» 2
= argmin ||p(6) — p* + > _ Do, p(0)n :
nery i=1 L2(Q)
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where we choose a mininal-norm 7 if there are multiple solutions. The algorithm is
based on a first-order approximation of the residual term r(8 + n) = r(0) +
i1 00,7(0)n; + o(n).
A key observation is that (2.29) is precisely the L? natural gradient flow. Indeed,
we have that

o Fo+10) — £(p)

t—0 t

= [ 616) - "))
Q

and therefore 0, f(p) = p(0) — p*. As a result, (2.8) reduces to (2.29) precisely.

The convergence rate of the GN method is between linear and quadratic based
on various conditions [37]. Typically, the method is viewed as an alternative to
Newton’s method if one aims for faster convergence than GD but does not want
to compute/store the whole Hessian.

Remark 2.5. The L? natural gradient flow perspective of interpreting the GN
algorithm suggests that mature numerical techniques for the GN algorithm are also
applicable to general NGD methods, including those we introduced earlier in section 2.
For further connections between GN algorithms, Hessian-free optimization, and NGD,
see discussions and references in [44, 38, 32, 31].

Remark 2.6. All natural gradient methods introduced in this section can be for-
mulated as 7™ = argmin,ers || (L*)10, f+>%_; n; L(;||2 ., while different metric space
for p gives rise to different operator L. The computational complexity of approximat-
ing L and (L*)" determines the cost of implementing a particular NGD method. In
general, L2, H*, and H* NGDs are easier to implement as L and (L*)' do not depend
on p and thus can be reused from iteration to iteration once computed. On the other
hand, for Fisher—-Rao and Wasserstein NGDs, L is p-dependent. If we have access
to p directly, the Fisher-Rao information matrix only involves a diagonal scaling by
1/p compared to the L? information matrix. If we only have access to p through
an empirical distribution, there are also very efficient methods of estimating G¥%;
see [31]. In contrast, the WNGD is the most expensive among all examples discussed
in section 2. Next, in section 3, we will see that there are still efficient numerical
methods to mitigate the computational challenges.

3. General computational approach. In this section, we discuss our general
strategy to calculate the NGD directions. As mentioned earlier, our approach is based
on efficient least-squares solvers since the problem of finding the NGD direction can
be formulated as (2.2). In particular, we will introduce strategies for cases when the
tangent vector Jgp cannot be obtained explicitly, which is the case for large-scale
PDE-constrained optimization problems. We will first describe the general strategies
and then explain how to apply these techniques to different types of natural gradients
discussed in section 2. We will work in the discrete setting hereafter.

By slightly abusing the notation, we assume that p: © — R is a proper discretiza-
tion of 6+ p(f) while © C RP. Similarly, let f:R¥ — R be a suitable discretization
of pr f(p). Hence, the standard finite-dimensional gradient and Jacobian, 9, f € R¥
and Jgp € RFXP are discretizations of their continuous counterparts discussed in
subsection 2.1. In particular, we denote the Jacobian

(3.1) Z=(C1 G2 Cp)=0gp, where (j=0p,p.

Without loss of generality, we always assume k > p. That is, we have more data than
parameters.
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3.1. A unified framework. For numerical computation, our main proposal is
to translate the general formula (2.2) and (2.4) for the NGD direction into a discrete
least-squares formulation, given any Riemannian metric space (M, g).

Based on (2.8), the discrete L? natural gradient problem reduces to the least-
squares problem

""" = argmin |0, f + Zn|3.
neRrp

As we have seen in section 2, besides L2, the computation of the H*, H*, Fisher-Rao,
and WNGD directions can also be formulated as a least-squares problem,

(3.2)
Nt = argmin H(LT)Tapf + LZan = argmin H(LT)Tapf + Yn||§, where Y =LZ,
neRrp neRp

for a matrix L representing the discretization of the continuous operator L for different
metric spaces as discussed in section 2. We regard (3.2) as a unified framework since
changing the metric space for the natural gradient only requires changing L while the
other components remain fixed.

Note that one can compute the standard gradient 8y f = dpp' 0,f = Z'0,f by
the chain rule. From (3.2), we can also obtain the common formulation for the NGD
as

(3:3) m=—(ZTLTLZ) N (ZTLT(LT)19,f) = (YY) " (Z70,f)
=—(Y'Y) '0pf = ~GL' 00,

where G, =Y TY is the corresponding information matrix defined in (2.5).

Remark 3.1. The unified framework (3.2) is general and applies to cases beyond
NGDs discussed in section 2. For p in a metric space (M, g) with a corresponding
tangent space T, M, we have

T -
<<1a <2>g(p) ~ <1 Ai CQ v<17 CQ S TpM’

where G, CE denote the discretized (7, (5. A proper discretization that preserves the
metric structure should yield a symmetric positive definite matrix A9 that admits
decomposition A9 = LT L. As a result, the discretization of (2.4) turns into the same
formula as (3.2):

Nt =—(Z2"A3Z) N2 79, f) = —(ZTLTLZ) " (ZTLT(L")19,f)
= argmin H(LT)Tapf + Yn”i, where Y = LZ.
neRrp

The concrete form of L will depend on the specific metric space (M, g).

Next, we will first assume that L is given and discuss how to compute n7*

provided whether the Jacobian Z is available or not; see subsections 3.2 and 3.3.
Later in subsection 3.4, we will comment on obtaining the matrix L based on the
natural gradient examples in section 2.
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3.2. Z available. When Z is available, there are two main methods to compute
nat

L
One may follow (3.3) by first constructing the information matrix G, = Y'Y

and then computing its inverse. This is a reasonable method when the number of
parameters, i.e., p, is small, and G, is invertible. However, if G, is singular or has
bad conditioning, it is more advantageous to compute 77 following (3.2). Note that
the condition number of G, can be nearly the square of the condition number of L,
making it more likely to suffer from numerical instabilities.

The second and also our recommended approach is to solve the least-squares
problem (3.2). We may utilize the QR factorization to do so [14]. Assume that
Y = LZ has full column rank. Let Y = QR, where @) has orthonormal columns and
R is an upper triangular square matrix. Thus,

(3.4) it =-Y' L)1, f=-R7'QT(LT)9,f.

The additional computational cost of evaluating n}** after the QR decomposition is
the backward substitution to evaluate R~! instead of inverting R directly.

If the given model p(#) allows us to write down how p depends on 6 analytically,
then the Jacobian dyp is readily available. In such cases, we can directly solve (3.2)
using the QR decomposition to obtain the NGDs; see subsection 4.1 for a Gaussian
mixture example.

We summarize the algorithm when the Jacobian Z and the matrices L, (LT)f
are available; see subsection 3.4 for how to obtain L and (LT) for the examples
presented in section 2, and see Appendix B.2 for discussions of what to do when
Y = LZ is rank-deficient.

3.3. Z unavailable. Often, the model p(f) is not available analytically, but the
relationship between p and 6 is given implicitly via solutions of a system, e.g., a PDE
constraint,

(3.5) h(p,0) =0,

for some smooth h : R¥ x RP — R¥ such that det(8,h) # 0. In such cases, the Jacobian
Z = 0ypin (3.1) is not readily available and has to be computed or implicitly evaluated.

3.3.1. The implicit function theorem and adjoint-state method. Based
on the first-order variation of (3.5), the most direct option is to apply the implicit
function theorem

(3.6) (9,)}?, (99/) = @,h Z = —(%h.

The above equation consists of p linear systems in k variables. If d,h has a simple
format, or the size of 6 is not too large, it could still be computationally feasible to
first obtain Z = 9yp by solving (3.6), and then follow strategies in subsection 3.2 to
compute the NGD.

However, if p is large, a more efficient option is to use methods based on the so-
called adjoint-state method [40]. Note that Z is the rate of change of the full state p
with respect to 6. Thus, if we only need the rate of change of p along a specific vector
¢ € R*, we do not need the whole Z; instead, we need ¢ Z, which can be calculated
by solving only one linear system for each &.

Indeed, for a given & € R¥, let us consider the adjoint equation

(3.7) Moh=€6" = (9,h) A=¢
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Combining (3.6) and (3.7), we obtain that
(3.8) ZTe=27T(0,h)" Ae = —0ph" Ae.

The vector A¢ in (3.7) is called the adjoint variable corresponding to the given
vector &.

Here is an important example where we do not need the full Z. If we choose
£=0,f €R”, then (3.8) gives the standard gradient

(3.9) O0f (p(0)) = 0op” Opf = 27 8,f = —06h™ e,

where )¢ is the solution to (3.7) with ¢ = 9, f € R¥. This is a widely used method to ef-
ficiently evaluate the gradient of a large-scale optimization in solving PDE-constrained
optimization problems originated from optimal control and computational inverse
problems [40].

Next, we will explain in detail how to harness the power of the adjoint-state
method to evaluate the general NGD directions through iterative methods.

3.3.2. Krylov subspace methods. Given an arbitrary vector n € R, we may
evaluate

(3.10) Grn=Z"L"LZn

through the adjoint-state method even if we cannot access the information matrix G,
since the Jacobian Z is unavailable directly. Let p € R¥ be an arbitrary vector, and
consider the following constrained optimization problem [34]:

(3.11) rrbin J(p(0)=p"p, s.t. h(p(h),0)=0.

Note that this objective function J(p(6)) in (3.11) is different from the main objective
function (1.1) but has the same constraint (3.5). A direct calculation reveals that the
gradient of J(p(f)) with respect to the parameter @ is Zp. Therefore, if we set
p= LT LZn, the gradient

00 J(p(0)=Z"p=Z"L"LZ n=Gy n,

which is exactly what we aim to compute in (3.10).
From the constraint h(p(6),6) =0 and its first-order variation (3.6), we have

8ph Z n+ 0ph n=0.
Thus, Z 1 can be obtained as the solution to a linear system with respect to ~:
(3.12) Oph v=—0ph 1.

Based on the adjoint-state method introduced in section 3.3.1, we can compute the
gradient as

oJ (p(8)) = —0ph" A,
where A satisfies the adjoint equation below with a given « that solves (3.12):
(3.13) Oph'A\=0,] =p=L"LZn=L"Ln.

To sum up, with a fixed 8 and the corresponding p(#), we have an efficient way to
evaluate the linear action n— Gpn for any given n by three steps; see Algorithm 3.2.
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Algorithm 3.1. Compute the NGD direction given Z, L, (L"), and 9, f.

1: Compute Y =LZ.
2: Perform economy-size QR factorization: (@, R] =qr(Y).
3: Compute the NGD direction n7% = —R™1QT(LT)19,f.

Algorithm 3.2. Evaluate the linear action n+— Grn given an arbitrary vector 7.

1: Given the implicit constraint i, solve the linear system 0,h v = —0ph 1 and
obtain +.

2: Given linear actions based on L and LT, solve the linear system 8phT)\ =L"TLy
and obtain A.

3: Evaluate —9ph" A, which equals to G, 7.

Algorithm 3.3. Compute the NGD direction when Z is not explicitly available.

1: Given the constraint h, solve the linear system (6ph)T)\ =0, f and obtain A.
2: Compute the parameter gradient dp f(p(0)) = dpp' 0,f = —ph™ .
3: Obtain the linear action n — Gpn following steps in Algorithm 3.2.

nat

4: Use the conjugate gradient method to solve for n7* where G 7 = —08, f(p(9)).

TABLE 1
The number of propagations among different optimization methods.

GD NGD Newton’s method
Forward propagation 6 — p(6) 1 1 1
Backward propagation & +— gp | € 1 1 2
Linearized forward propagation w +— 9gpw 0 1* 1

*For NGD, different choice of metric affects the complexity of the linearized forward solve.

Given the linear action 1+ Grn, we need to solve the linear system

(3.14) Gr i ==, f(p(0))

to find the NGD direction n7*. As seen in (3.9), we can obtain the right-hand side
—dy f(p(8)) through the adjoint-state method. One may then solve for 77" through
iterative linear solvers based on the Krylov subspace methods [43], e.g., the conjugate
gradient method. We summarize all the steps above in Algorithm 3.3.

One may use Algorithm 3.3 instead of Algorithm 3.1 when Z is available but
the QR factorization of Y = LZ is too costly, for instance, in some machine learning
applications. Since “wall-clock” time can be highly affected by the implementation
and the computer specification, in Table 1, we summarize the number of propagations
per iteration among different methods [48]. For different NGDs, the cost of the linear
action v +— LT Ly varies, which we will discuss in subsection 3.4.

3.4. Computation for natural gradient examples in section 2. In sub-
sections 3.2 and 3.3, we have shown how to compute the NGD direction 77" given
whether Z is easily available or not. Both strategies require the matrix L, which
depends on the particular metric space for the natural gradient. Next, we specify the
form of L based on cases discussed in section 2.

The L? case in subsection 2.1 corresponds to L = I, the k x k identity matrix, while

the Fisher—-Rao—Hellinger natural gradient discussed in subsection 2.4 corresponds to
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L = diag(1/,/p) € R***, which incurs O(k) more flops per iteration compared to
the L2 NGD method. For the H® natural gradient discussed in subsection 2.2, L
corresponds to proper discretization of D* (for s > 0) and ((D~%)*)" (for s < 0).
Next, we give a few concrete examples. When s =1, L :~D1 =[I,V]" and (L*)f =
DY((DY*DY ' =[I,V]T(I-A)"'. Whens=—1,L=((D"Y)) =[,V]T(I-A)"!
while (L*)" = [I,V]T. Similarly, for the H* natural gradient discussed in subsection
2.3, L should correspond to proper discretization of D* (for s > 0) and ((D~*)*)1
(for s < 0). For instance, when s =1, L =D! =V, and (L*)! = D!((D!)*D*)~! =
V(-A) Y when s=—1, L= ((D1)*)T = V(- A)~! while (L*)" = V. The symmetry
between the cases of H*/H® and the cases of H*/H~* ¥s > 0 comes from the fact
that they are dual Sobolev spaces. The computation of the natural gradient based
on the H® and H* metric can be efficiently computed. This is because there are fast
algorithms for discretizing and computing the actions of the gradient and (inverse)
Laplacian operators for periodic, Dirichlet, and zero-Neumann boundary conditions
in L and (L*)f [12, 55].

Based on the unweighted reformulation (2.27), computing the Wy NGD discussed
in subsection 2.5 requires the discretization of L = Bf. We can first discretize the
differential operator B, denoted as B, and then compute L = B, which can be used
regardless of whether the Jacobian Z = Oyp is explicitly given or implicitly provided
through the constraint (3.5). As an example, we describe how to obtain the matrix
L for the WNGD (2.27) in Appendix B.1 based on a finite-difference discretization of
the differential operator. In Remark 2.3, we commented that when p(z) is constant,
WNGD reduces to H~!-based NGD. However, in general, the computation of the
WNGD is more expensive than the H®/ H* cases for two reasons. First, the infor-
mation matrix G and the operator L for the WNGD are p-dependent, so in every
iteration of the NGD method, one has to recompute them, which incurs extra com-
plexity. Second, as mentioned above, the computation of H®/H* NGD can be done
through fast Fourier or discrete cosine transforms (depending on the domain). It is,
however, inapplicable to the Wasserstein case since it involves solving a weighted dif-
ferential equation. In Appendix B.1, we use QR factorization to obtain L = Bt given
B. We approximate B using the finite-difference method, so BT is very sparse. Using
a multifrontal multithreaded sparse QR factorization [9], it has much better complex-
ity than the conventional O(k®). We summarize the observed computational costs of
obtaining L and (LT)T for different NGD methods in Table 2. See also Figure 1a for
the computational time comparison among different metrics.

After obtaining L and (LT)T, the QR factorization of Y = LZ followed by com-
puting the natural gradient direction 77% based on (3.4) will incur O(kp?) flops if
the Jacobian Z is available; see Figure 1b for an observed computational time to ob-
tain the NGD 7 among different metrics for a case where Z is analytically available
(see section 4.1). When Z is not analytic, such as from PDE (section 4.3) or neural
network models (section 4.2), we will see that the cost in computing NGDs among
different methods is no longer dominated by the cost of computing L and (LT)T.

TABLE 2
Summary of the observed computational costs for linear actions L and (LT)T in (3.2).

L? Fisher-Rao Hs/H*, s>0 H/H*, s<0 Wa
change over iteration X v X X v
computing v — Lv O(k) O(k) O(k) O(klogk) O(k1-2%)
computing v — (LT )t O(k) O(k) O(klogk) O(k) O(k)
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(a) Evaluate L and (LT)T linear actions (b) Compute NGD direction 7

FIG. 1. The observed wall clock time for evaluating v — Lv and v — (LT )tv linear actions
(left) and for computing one NGD direction n with a fized p (right) based on different metrics.

3.5. Extensions and variants. In this section, we briefly comment on several
practical variants of using the NGD method based on a particular choice of the data
metric space.

3.5.1. A damped information matrix. If the discretized information matrix
G, is rank deficient or ill-conditioned, one may consider rank-revealing QR factor-
ization; see Appendix B.2. As an alternative approach, a damped information ma-
trix in the form G, = A 4+ G, is often used for numerical stability and to avoid
extreme updates, where A is the damping parameter. One notable example is the
Levenberg-Marquardt method as a damped Gauss—Newton method [44], while the
latter is equivalent to the L? NGD in our framework; see subsection 2.6.

Since the fundamental difference between GD and NGD lies in how one measures
the distance between the potential next iterate and the current iterate, the damped
version corresponds to choosing the next iterate based on a mixed metric from the
f-domain and p-domain. Indeed, in the implicit form (1.5) and (1.6), the damped
version can be written as

L Ado (0,62 +2dp(p<0>,p(01)>2 }

(3.15) 0"t = argmin {f(p(@))
0

When dj is the Euclidean metric on §-domain, we obtain the identity matrix I in G},

but other choices of damping metric can also be considered.

Alternatively, one can use another p-space metric to regularize instead of any
metric on the f-space. For example, let d,, be the main natural gradient metric and
d,, be the regularizing natural gradient metric. The next iterate obtained in the
implicit Euler scheme is given by

Ady, (p(0), p(0"))* + dp, (p(6), p(6"))? }

(3.16) 0'*! = argmin {f (n(0)) + o

0
while the damping parameter A determines the strength of regularization. We com-
ment that the H' natural gradient can be seen as the H! natural gradient damped
by the L? natural gradient.

3.5.2. Mini-batch NGD. Similar to mini-batch GD, one can also use mini-
batch NGD by computing the natural gradient of the objective function with respect
to a subset of the data p. Consider a random sketching matrix S € R¥ ¥ k' < k.
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Each row of S has at most one nonzero entry 1. Thus, Sp € R* is the mini-batch
data. The objective function also becomes f(Sp(6)).
The mini-batch NGD can find the next iterate #+! implicitly through

dy(Sp(0), Sp(6"))° }

6!+ = argmin {f(Sp(@)) + 5
0 T

where d, is the p-space metric. It is equivalent to changing the data metric from
d,(+,+) to a random pseudo metric d,(S-,S+). The information matrix and the NGD
direction are

G=2"STL'LSZ, n=G 10y f(Sp(9)),

where L depends on d,(S-,S+) and Z is the Jacobian. Note that S changes over
iterations.

Also, we remark that SZ € RF'*P can be seen as a random sketching of the
Jacobian matrix Z. If Z is low-rank, the column space of SZ € R¥ %P can be a
close approximation to the column space of Z, but SZ is much smaller in size. See
Appendix B.4, where similar techniques from random linear algebra can help explore
the column space of Z and further reduce the computational cost.

4. Numerical results. In this section, we present three optimization examples
to illustrate the effectiveness of our computational strategies for NGD methods. We
first present the parameter reconstruction of a Gaussian mixture model where the
Jacobian Oyp is analytically given. Our second example is to solve the 2D Poisson
equation using physics-informed neural networks (PINN) [42], where the Jacobian
Ogp can be numerically obtained through automatic differentiation. We then present
a large-scale waveform inversion, a PDE-constrained optimization problem where the
Jacobian Oyp is not explicitly given. Using our computational strategy proposed in
subsection 3.3, we can efficiently implement the NGD method based on a general met-
ric space. The first example shows that various (N)GD methods converge to different
stationary points of a nonconvex objective function. The last two tests illustrate that
different (N)GD methods have various convergence rates. Both phenomena are inter-
esting as they indicate that one may achieve global convergence or faster convergence
by choosing a proper metric space (M, g) that fits the problem.

4.1. Gaussian mixture model. Consider the Gaussian mixture model, which
assumes that all the data points are generated from a mixture of a finite number
of normal distributions with unknown parameters. Consider a probability density
function p(z;0) : R+ R*, where

p(;0) =wiN (25 1, 510) + - - + wN (2 i, Bi) + - - - + wiN (25 pe, ).

The ith Gaussian, denoted as N (z;u;,Y;) with the mean vector p; € R? and the
covariance matrix ¥; € R¥? has a weight factor w; > 0. Note that Yo wp = 1.
Here, 6 could represent parameters such as {w;}, {u;}, and {3;}. We formulate the
inverse problem of finding the parameters as a data-fitting problem by minimizing
the least-squares loss f(p(f)) on a compact domain {2 where the objective function
follows (2.28). Here, p* is the observed reference density function. Note that the
dependence between the state variable p and the parameter 6 is explicit here. Thus,
we can compute the Jacobian Opp analytically, and the numerical scheme follows
subsection 3.2.
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(b) L2 NGD ( (e) H~1 NGD

F1G. 2. Gaussian mizture example: Level sets, vector fields, and convergent paths using GD
and different NGD methods to invert pi. All algorithms start from initial guess (5,3).

We consider reference p*(z) = 0.3N (x;(1,3),0.61) + 0.7N (z;(3,2),0.61) and the
domain Q = [-2.75,7.25]2. We fix uz and the weights to be incorrect and invert
0 = p1. That is, p(x;6) = 0.2N (2;6,0.61) + 0.8\ (z; (4,3),0.6I). Figure 2 shows the
convergence paths of GD and L2, Fisher-Rao, H', H~!, W5 NGD methods under the
initial guess (5,3), which is chosen since it belongs to different basins of attractions
for different optimization methods. We choose the largest possible step size such that
the objective function monotonically decays. They are 0.3, 0.04, 0.8, 0.2, 0.2, and 3
for methods in Figure 2 from left to right. WNGD converges to the global minimum,
while all other methods converge to local minima by taking different convergence
paths.

We aim to gain better a understanding of their different convergence behaviors.
Given a fixed [th iterate, different algorithms find the (I + 1)th iterate, but based on
different “principles” nicely revealed in the proximal operators (1.5) and (1.6). Here,
we use 01! 9%;;21, and 9551 to denote the next iterates based on GD, L? NGD, and

std
WNGD, respectively. We then have

1 _nl12
0l = 0" + argmin {ngTh + 2hTh} A argmin {f(p(@)) + M},
h T 0 2T

1
0'5t = 60" + argmin {ngTh + ?hTangﬁgp h}
h T

— IAYIR
~ arg;nin {f(p(e)) + HP(9)2T9(9>||2}7

1
9{;21 =0' + argmin {ngTh—i— 2—hT(]_Lﬁaep)T]_LgTa@p h}
h T

o W3 (p(6), p(6"))
<arguin { 1(p(0)) + TEADLED

The above equations show that, locally, different (N)GD methods solve different qua-
dratic problems given the same step size 7. In Figure 3, we illustrate the level set of
each quadratic problem for which the minimum is selected as the next iterate. The
level set of the same objective function f(p()) is shown in the background. Our
observation aligns with the example in [8, Figure 3].

4.2. Physics-informed neural networks. Physics-informed neural networks
(PINN) is a variational approach to solve PDEs with the solution parameterized by
neural networks [42]. Here, as an example, we use PINN to solve the 2D Poisson
equation on the domain Q= [—1,1]?

—Au=¢, with u=1 on 99,

where ¢(z) = 22 sin(mz1) sin(mag) + 1872 sin(37z;) sin(37z2) and ¢(x) = 3, whose
solution is u(z) = sin(nz;)sin(rrs) + sin(37z1)sin(37xs) + 3, = [r1,72] 7. The
training loss function is
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F1G. 3. The local quadratic models of GD, L?> NGD, and Wo NGD in the first several iterations.
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Fi1G. 4. (a) PINN ezample true solution; (b) loss function value decay in terms of the number
of iterations; (c) loss function value decay in terms of the wall clock time.

N1 N>
F(00) = 7 3 1 800+ 60 + 2L S ot ) — (e

where p(x,0) is a feed-forward neural network of shape (2,20,30,20,1) with the hy-
perbolic tangent tanh as the activation function. The parameters are the weights and
biases, denoted by 6. We use N; = 2304 collocation points in the domain interior
and Ny = 196 points on 02, both equally spaced. We set v = 0.01 to balance the
two terms in the loss function. For a weight matrix of size d;-by-ds, we initialize its
entries i.i.d. following the normal distribution N (0, ﬁ). All biases are initialized
as zero, except the one in the last layer, which is set to be 3. We fix the random seed
to ensure the same initialization for all optimization algorithms of interests.

We train PINN using GD and different NGDs based on metrics discussed in
section 2. We use backtracking line search to select the step size (learning rate) in
(N)GD algorithms. The true solution is shown in Figure 4a, while Figures 4b and 4c
show the loss value decay with respect to the number of iterations and the wall-clock
time, respectively. We can see that all NGD methods are faster than GD, while
H' and H'-based NGDs yield the fastest convergence in both comparisons. Neural
networks can suffer from slow convergence on the high-frequency parts of the residual
due to its intrinsic low-frequency bias [53]. The H'/H'-based NGDs enforce extra
weights on the oscillatory components of the Jacobian, giving faster convergence than
L? NGD. In contrast, H~'/H~! NGDs bias towards the smooth components of the
Jacobian, which delay the convergence of high-frequency residuals and thus the overall
convergence. As discussed in Remark 2.6, WNGD requires a p-dependent matrix L,
which increases the wall clock time per iteration. Interestingly, when the loss value
becomes small, WNGD has a faster decay rate than H—1/ H~! NGDs despite being

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/15/23 to 132.174.252.179 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

EFFICIENT NATURAL GRADIENT DESCENT METHODS A1645

asymptotically equivalent in spectral properties (see Remark 2.3), demonstrating the
potential benefits of having a state-dependent information matrix G(6).

4.3. Full waveform inversion. Finally, we present a full waveform inversion
(FWI) example where the Jacobian is not explicitly given. As a PDE-constrained
optimization, the dependence between the data and the parameter is implicitly given
through the scalar wave equation

(4.1) m(z)uw(z,t) + Au(z,t) = s(x, t),

where s(z,t) is the source term and (4.1) is equipped with the initial condition
u(x,0) =u(x,0) =0 and an absorbing boundary condition to mimic the unbounded
domain.

After discretization, the unknown function m(x) becomes a finite number of un-
knowns, which we denote by 6 for consistency. Unlike the Gaussian mixture model,
the size of 6 in this example is large as p = 36720. We obtain the observed data
pr = u(z,,t) at a sequence of receivers {z,} for » = 1,...,n,. The least-squares
objective function is

Ns  MNp

(42) Fo®)= 533 55— pie 013,

i=1r=1

where p* is the observed reference data, and 7 is the source term index to consider
inversions with multiple sources {s;(x,t)} as the right-hand side in (4.1). In our test,
ns =21 and n,. = 306.

The true parameter is presented in Figure 5a. We remark that minimizing (4.2)
with the constraint (4.1) is a highly nonconvex problem [47]. We avoid dealing with
the nonconvexity by choosing a good initial guess; see Figure 5b. One may also use
other objective functions such as the Wasserstein metric to improve the optimization
landscape [11]. We follow subsection 3.3 to carry out the implementation for various

6 8

4
x (km) x (km)

(a) true parameter (b) initial, SSIM= 0.31 (c) GD, SSIM=0.44  (d) L? NGD, SSIM= 0.58

——GD
—— L* NGD
H' NGD
—— W, NGD
——— H' NGD

0 100 200 300 400 500
x (km) x (km) x (km) number of propagations

(e) H-INGD, SSIM= 0.53 (f) W2 NGD, SSIM= 0.53 (g) H' NGD, SSIM=0.61 (h) convergence history

normalized objective function

FiGc. 5. FWI exzample: (a) ground truth; (b) initial guess; (c)—(g) inversion results using GD
and NGDs based on the L2, H=1, Wa, and H' metrics after 400 PDE solves; (h) the history of the
objective function decay versus the number of propagations/PDE solves. SSIM denotes the structural
stmilarity index measure compared with (a). A bigger value means better similarity.
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NGD methods since the Jacobian Ogp is not explicitly given, and the adjoint-state
method has to be applied based on (4.1). The step-size is chosen based on backtracking
linear search. We use the same criteria for all algorithms. The GD (see Figure 5c¢)
converges slowly compared to the NGD methods, while Hl, L% H~', and W, NGDs
are in descending order in terms of image resolution measured by both the objective
function and the structural similarity index measure (SSIM); see Figures 5d-5h. The
convergence history in Figure 5h shows the objective function decay with respect to
the number of propagations (see Table 1). For FWI, each propagation corresponds
to one wave equation (PDE) solve with different source terms. Note that wavefields
are not naturally probability distributions. Thus, when we implement the W5 natural
gradient, we normalize the data to be probability densities following [10, 11]. As we
have discussed in Remark 2.3, the W5 and H ! natural gradients are closely related,
which are also reflected in this numerical example as the reconstructions in Figures 5e
and 5f are very similar. All the tests shown in Figure 5 directly demonstrate that
NGDs are typically faster than GD, and more importantly, the choice of the metric
space (M, g) for NGD (see (2.2)) also has a direct impact on the convergence rate.

5. Conclusions. Inspired by the natural gradient descent (NGD) method in
learning theory, we develop efficient computational techniques for PDE-based opti-
mization problems for generic choices of the natural metric. NGD exploits the geomet-
ric properties of the state space, which is particularly appealing for PDE applications
that have rich flexibility in choosing the metric spaces.

Handling the high-dimensional parameter space and state space are the two main
computational challenges of NGD methods. Here, we propose numerical schemes to
tackle the high-dimensional parameter space when the forward model, with a relatively
low-dimensional state space, is discretized on a regular grid. Our approach relies on
reformulating the problem of finding NGD directions as standard L2?-based least-
squares problems on the continuous level. After discretization, the NGD directions
can be efficiently computed by numerical linear algebra techniques. We discuss both
explicit and implicit forward models by taking advantage of the adjoint-state method.

The second computational challenge of high-dimensional state space stands out
for Sobolev and Wasserstein NGDs. In this work, we apply finite differences on reg-
ular grids for low-dimensional state space. On the one hand, when the state-space
dimension is high, discretization on a regular grid suffers from the curse of dimen-
sionality, and other parameterizations have to be considered. On the other hand,
when the state variable is not given on a regular grid, there are other ways to dis-
cretize those differential operators, which require more careful attention. For exam-
ple, generative models are pushforward mappings, representing probability measures
in high-dimensional state spaces by point clouds (samples). Applying the Sobolev and
Wasserstein NGDs to state variables in the form of empirical distributions will most
likely require alternative discretization approaches for differential operators, such as
graph- or neural network-based methods.

A very interesting question is what the best “natural” metric in NGD should
be. Regarding this, we numerically investigated the convergence behaviors of GD
and various NGD methods based on different metric spaces. The empirical results
indicate that the choice of the metric space in an NGD not only can change the
rate of convergence but also can influence the stationary point where the iterates
converge, given a nonconvex optimization landscape. A rigorous understanding of
the “best” metric choice for a given problem is an important research direction. For
maximum likelihood estimation problems, the Fisher-Rao NGD is asymptotically
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Fisher-efficient; Sobolev NGDs (e.g., H! and H?') are suitable for solving optimal
transport and mean-field game problems [20, 18, 27, 29]; when the metric is induced by
f and suitable conditions are met, the corresponding NGD is asymptotically Newton’s
method [30, 8, 31]. Despite these results, to the best of our knowledge, there is no
general framework for a systematic derivation of the best natural gradient metric for
a given problem.

It is reasonable to believe that as the topic matures, there will be an increasing
necessity for efficient techniques for computing NGD directions for a diverse set of
problems and metrics. Hence, in this paper, we choose to focus on a generic compu-
tational framework leveraging state-of-the-art optimization techniques. Nonetheless,
the geometric formalism considered here could be beneficial for the theoretical un-
derstanding of the “best” metric choice. Indeed, as mentioned in [31, sec. 15], local
approximation of the loss function cannot explain all global properties of NGD. The
metric in the p-space, on the other hand, can impact the global properties of f. More
specifically, it might convexify f [13, Appendix B] or make it Lipschitz, paving a way
towards the analysis of the NGD as a first-order method in the p-space. We find this
line of research an intriguing future direction.

Finally, the full potential of randomized linear algebra techniques remains to be
explored. We discuss a mini-batch version of our algorithm in subsection 3.5.2 and
several low-rank approximation techniques in Appendices B.2 to B.4. Nevertheless,
the success of randomized linear algebra techniques for very high-dimensional prob-
lems warrants a more thorough investigation of the theoretical and computational
aspects of these techniques adapted to our setting.

Appendix A. Symbols and notations. See Table 3 for all the notations in
sections 1 to 3.

Appendix B. Algorithmic details regarding numerical implementation.
This section presents more details on the numerical implementation of the NGD meth-
ods. In particular, we explain how to obtain the matrix L in (3.2) for the WNGD
(2.27) in Appendix B.1. We have proposed in subsection 3.2 that the QR factorization
could efficiently solve the least-squares problem (3.2). In Appendix B.2, we discuss
how to handle rank deficiency in Y = LZ through the QR factorization.

The main difficulties of computing NGD for large-scale problems include no direct
access to the Jacobian Z (see subsection 3.3) and the computational cost of handling Z
even if it is directly available. Here, we present two interesting ideas that may mitigate
these challenges, although we have not thoroughly investigated them in the context
of NGD methods. We discuss in Appendix B.3 one strategy based on randomized
linear algebra if the Jacobian Z is unavailable. In Appendix B.4, we briefly comment
on an idea to further reduce the computational complexity of the NGD methods by
possibly obtaining a low-rank approximation of the Jacobian Z.

B.1. More discussions on computing the Wasserstein natural gradient.
As explained in subsection 2.5, the Wasserstein tangent vectors at p are velocity fields
of minimal kinetic energy in LZ(R%R?). After a change of variable, ; = /p v;
and ¥; satisfies (2.26). We will discuss next how to solve this minimization problem
numerically.

Discretization of the divergence operator. To compute the Wasserstein nat-
ural gradient, the first step is to solve (2.26), which becomes (B.1) after discretization.

(B.1) min||y||3 st.By=¢, i=1,...,p.
y
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TABLE 3

Table of notations in sections 1 to 3.

Section 1

0 the unknown parameter

P the state variable that depends on 6

f(p) the loss function that depends on p

(M,d,), (©,dg) the metric space of p and 6, respectively

Section 2

(M,9) the space M endowed with a Riemannian metric g
TpM the tangent space of M

p
95 p(6) € Ty M

95 f(p) € TyM

nnat nstd
b

9 f(p(0))
POYf

G(0)

¢.¢

CiZa%Py i1=1,...,p

Opf

GL2 GHS GHS GFR gW
DS

the dimension of the parameter, § € © C RP

the tangent vector of p(6) with respect to 6; based on

the Riemannian geometry (M,g), 1<i<p

the metric gradient of f(p) with respect to p based on

the Riemannian geometry (M, g)

the natural and standard gradient directions for 6

the gradient of f(p(6)) with respect to 6

the (-, -)4(p)-orthogonal projection of —d3 f onto

span{ag1 Dy ,ng o}

the information matrix G;;(6) = <8§ip, 857‘ P g(p(0)),Hd=1,...,p
tangent vectors on T, M

tangent vectors on the Euclidean space (L2(R%), (-, VL2 (Rd))
the metric gradient of f(p) in (L?(R%), (., VL2 (Rd))

the information matrices for different Riemannian metrics

a differential operator that outputs a vector of all the
partial derivatives up to order s where s >0

A* At the adjoint and the pseudoinverse of the linear operator A
X X the tangent vectors in H ~° mapped from C,f in H®, s <0
AN the Laplacian operator
Ds a differential operator that outputs a vector of all the
partial derivatives of positive order up to s where s >0
Pa(RY) the set of Borel probability measures of finite second moments
fap the pushforward distribution of p by f
T'(p1,p2) the set of all measure 7= € P(R??) with p; and p2 as marginals
v, 0w, {v;}0_; the tangent vectors in T,P2(R%) C LZ(R%;R?)
{0:}5_4 the renormalized Wasserstein tangent vectors, 9; = \/pv;
B the differential operator defined by Bt = —V - (1/p(8) v)
B a generalized version of B given by B9 = —V - (p(0)*%)
L with different choice of L, all natural gradient directions can be
formulated as ™ = argmin, cgp |(L*)10,f + 3 5_ LQ||%2(Rd)
Section 3
p ERFE the discretized state variable
Opf, Z=0¢p the finite-dimensional gradient and Jacobian in Euclidean space
L the discretization of the operator L for different metric spaces
GL=YTY the discretized information matrix, Y =LZ
npat the natural gradient direction in a unified framework (3.2)
h(p,0) =0 the implicit dependence of p on 6
Ae, A the adjoint variable, solutions to the adjoint equation

If the domain € is a compact subset of R? (in terms of numerical discretization),
the divergence operator in (2.26) comes with a zero-flux boundary condition. That
is, v =0 on 0f). For simplicity, we describe the case d = 2 where () is a rectangular
cuboid. All numerical examples we present earlier in this paper belong to this scenario.
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First, we discretize the domain [a, b] x [c,?] with a uniform mesh with spacing Ax
and Ay such that zo = a, z,, = b, yo = ¢, and y,, = 0. The left-hand side of the
linear constraint in (2.26) becomes a matrix

B=-[4,D A,D]

in (B.1) where D = diag(\/p), Az = ﬁC’nm_l ® I, -1 and A, = Klylnm_l ® Cr,—1-
Here, p'is a vector-format discretization of the function p while skipping the boundary
points, ® denotes the Kronecker product, I, € R™*" is the identify matrix, and
C,, € R™*™ ig the central difference matrix with the zero-Dirichlet boundary condition.

(B.2) Cn =

One may also use a higher-order discretization for the divergence operator in
(2.26). The discretization of the vector field & = (9,,7,)" is y = (y{ ,y5 )" in (B.1),
where y; and y, are respectively the vector-format of ¥, and ¥, while skipping the
boundary points due to the zero-flux boundary condition. Note that B is full rank
if p is strictly positive, and n,, n, are odd. We remark that B and y remain very
similar structures if Q ¢ R? with d > 2.

Z available. If Z = ({1 {2 ... (p) is available, we can solve (2.26) directly.
After discretization, these equations reduce to constrained minimum-norm problems
(B.1), where B is the discretization of the differential operator —V - (,/p ®) evaluated
at the current 6 (and thus p(6)). The solution to (B.1) can be recovered via the
pseudoinverse of B as

(B.3) Y =B'Z, where Y = (o139 ...7,) and Z=((1Ca ... (p).

In our case, B is underdetermined, and we assume it to have full row ranks. We could
perform the QR decomposition of BT in the “economic” size:

(B.4) BY=Q(R")™!, where BT =QR.

Since R is lower diagonal, 7, = Q(R")~!¢; can be efficiently calculated via forward
substitution. If p is not too large, and we have access to {¢;} directly, this is an
efficient way to obtain {%;}.

Once we obtain Y, we can compute the Wy NGD direction since (2.21) reduces
to

2

=Y (Vpd) f),

(B.5) N = argmin
nerr L2(R%;R4)

p
VPO f+> mibi
=1

where agi is related to 0, f based on (2.22), and Y1 is the pseudoinverse of Y, which
one can obtain by QR factorization; see details in subsection 3.2.

We can also compute the W, information matrix based on Bt obtained via the
QR factorization (B.4). That is,

Guw,=Y'Y=2"(BB")1Z=2"(B""B'Z.
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Therefore, if Y has full column ranks, the common approach is to invert the informa-
tion matrix G, directly and obtain the NGD direction following (2.4) as

My =G, 9af(p(0)).

Discretization of the Wasserstein Gradient 8,‘)” f. Based on (2.27), we need
to discretize the weighted Wasserstein Gradient, b ~ —\/ﬁapW f=—y/pVO,f,such that
the WNGD n"}v“; = YTbh where Y = BfZ. We remark that the discretization of the
gradient operator in \/pV3, f(p(#)) needs to be the numerical adjoint with respect to
the matrix — B, the discretization of the divergence operator. That is,

b — oV (9,5 (p(6))) = (~B) T, .

This requirement is to ensure that

e, [(p(0)) = 8prCj = 5prByj
.
=(B0,f) yj=—b"y; = (VPO f,\/PVs) L2 (R RA)s

which is the discrete version of

iy OO _ [ g 0y

t—0 + ;
:/Rd VPV, f(p)(x) - v(x)dw VCELZ(RCI).

The equation above is the main identity used in the proof for Proposition 2.2.

For example, if we use the central difference scheme for the divergence operator
—V - (/p o), we also need to use central difference for the gradient operator V.
Similarly, if one uses forward difference for —B, the backward difference should be
employed for the gradient operator V.

B.2. Dealing with rank deficiency. Note that in (3.2), we need to solve a
least-squares problem given the matrix Y = LZ to find the NGD direction based
upon a wide range of Riemannian metric spaces. For simplicity, we will consider the
problem in its general form: finding the least-squares solution 7 to Yn = b, where
b=—(L")'9,f based on (3.2).

The standard QR approach only applies if Y has full column rank, i.e., rank(Y") =
p while Y € R¥*P. Otherwise, if rank(Y) = r < p, we are facing a rank-deficient
problem, and an alternative has to be applied. Even if Y is full rank, sometimes
we may have a nearly rank-deficient problem when the singular values of Y, {o;},
i=1,...,p, decay too quickly such that o,41,...,0p < 0,. A conventional way to
deal with such situations is via QR factorization with column pivoting.

In order to find and then eliminate unimportant directions of Y, essentially, we
need a rank-revealing matrix decomposition of Y. While SVD (singular value de-
composition) might be the most common choice, it is relatively expensive, which
motivated various works on rank-revealing QR factorization as they take fewer flops
(floating-point operations) than SVD. The column pivoted QR (CPQR) decomposi-
tion is one of the most popular rank-revealing matrix decompositions [16]. We remark
that CPQR can be easily implemented in MATLAB and Python through the standard
gqr command, which is based upon LAPACK in both languages [6].

Applying CPQR to Y yields

YP=QR,
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where P is the permutation matrix. Thus, the linear equation Y7 =b becomes
YPP'n=QRP n=QRn,=b, wheren,=P .

Now, we denote by @ and R the truncated versions of @ and R, respectively, by
keeping the first r columns of ) and the first r rows of R. We may solve the linear
system below instead:

Enp =Q"b.

The least-squares solution is no longer unique since we have truncated R due to
the (nearly) rank deficiency of Y. By convention, one may pick the one with the
minimum norm among all the least-squares solutions. Since ||n]l2 = [|npll2 as P is
a permutation matrix, this is equivalent to finding a minimum-norm solution to the
above linear system. This can be done by an additional QR factorization. Let

RT=QiR,
where Q1 € RP*" has orthonormal columns and R; € R"*" is invertible. As a result,
= QuRT) Q.
Finally, we may obtain the solution
n="Pn,=PQ:(R{)"'Q 0.

Again, (R{)~! should be understood as forward substitution.
We may apply the same idea if B in (B.1) is (nearly) rank deficient, while we will
keep its dominant 7 ranks. Note that B is short-wide. Applying CPQR to BT yields

BTP=QR,

where P is the permutation matrix, ¢} has orthonormal columns, and R is a p X p
square matrix. Thus, the constraint in (B.1) becomes

PP'"By=PR"Q"y=¢.

Again, we denote by é and R the truncated version of Q@ and R by keeping the first
r columns of @@ and the first  rows of R where r < p. We may solve the linear system
below instead:

}~%qu = PTCZ-, where y, = @Ty.

Since R is tall-skinny, we may select the least-squares solution to the above system.
We perform a QR decomposition in economic size for R such that RT = Q2 R;.
Therefore,

vo=Ry'Qz PTG
and eventually leads to
Ui=y=Qy,=QR;'Q; P" (.

Note that if R = R and é =(Q, i.e., r = p, the solution above coincides with the one
obtained from (B.3)-(B.4) since Ry 'QJ = (R")~".
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To sum up, for a tall-skinny matrix Y, we compute the following by two QR
factorizations while eliminating the unimportant directions during the process:

YP=QR{Q,

where R; is a invertible square matrix while @ and )1 have orthonormal columns.
Therefore,

Yi=PQiR)'QT.
Finally, n=YTb= PQl(RlT)*léTb. For a short-wide matrix B, we compute
B'P=QR; Qs
where R is invertible while @ and @2 have orthonormal columns. Consequently,
B'=QR;'Q; P".

Finally, 3; = Bi¢; = QR; '\QJ PT¢; for i=1,...,p.

B.3. Z not available: The Hutchinson method. In this subsection, we
present some ideas for approximating Z using Hutchinson’s estimator [17, 35, 51],
a powerful technique from randomized linear algebra. Let & € R* be a vector with
i.i.d. random coordinates of mean 0 and variance 1. Such random vectors serve as a
random basis. That is,

Z=E[¢"Z].

Thus, if we have m such random vectors, &1,&s,...,&n,, then we can estimate
H,(2)= 13 el 2
m = 2 kSk Z-
Furthermore, by introducing the adjoint variables A1, As, ..., A, such that

(B.6) M O,h=¢, 1<k<m,
and using (3.8), we obtain
1 m
H,(Z)=—— i Ogh.
m(Z) m Z ErAy, Ooh
k=1
Hence, by replacing Z in (3.2) with its approximation H,,(Z), we obtain an approxi-
mated NGD direction as

(B.7) npet :arggﬂginH(LT)Tapf—ﬁ-L H,,(2) nHz
77 p

Once we obtain H,,(Z), the above least-squares problem can be solved by QR fac-
torization, similar to the framework presented in subsection 3.2 or Appendix B.2.
m—0o0

However, we remark here that the convergence behavior of H,,(Z) —— Z depends
on the spectral properties of Z.
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B.4. Exploring the column space of Z implicitly. As discussed in Appendix
B.3, one way to reduce the complexity of implementing the NGD method is to find
a low-rank approximation to the Jacobian Z = Oyp. For any (, we have that ( =
E[{¢,£)€] given any random vector £ whose covariance is the identity. Hence, by the
law of large numbers, for m large enough, we have that

m

. ~ 1
sy (> es mae-L e,
(B3) (le=¢]>€) <o, where ¢ oG
where {£1,&2,...,&n} are 1.i.d. random vectors. Therefore,

l2(6=4)| <nzle, 1=i<p,

with high probability when m is large enough (depending on the spectral property
of Z). Here, L is the important linear operator in the unified framework (3.2). In
Appendix B.3, we approximate

Y =LZ~LH,(Z),

which is to compute the approximation matrix H,,(Z) directly. Next, we present
another way to obtain an approximated Y whether or not Z is explicitly available.

If we can find such {{} satisfying (B.8), our final approximation to each y; in
Y=LZ=(y1...y;...,Yp) could be written as

m

(B.9) b=LG~ LG =3 (G 6 L6, 1<j<p
k=1

Note that the inner product ((;,&x) can be computed via the adjoint-state method
if there is no direct access to {(;}; see section 3.3.1 for details. Therefore, to obtain
an approximated Y, we only need to evaluate Lhj, and the inner products (j, &) for
each k and j, without directly accessing the Jacobian Z = ((;...(p). A similar idea
called randomized SVD could also apply here [15].
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