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Abstract. We investigate a class of Vlasov-type kinetic flocking models fea-
turing nonlinear velocity alignment. Our primary objective is to rigorously

derive the hydrodynamic limit leading to the compressible Euler system with
nonlinear alignment. This study builds upon the work by Figalli and Kang
[8], which addressed the scenario of linear velocity alignment using the relative
entropy method. The introduction of nonlinearity gives rise to an additional
discrepancy in the alignment term during the limiting process. To effectively
handle this discrepancy, we employ the monokinetic ansatz in conjunction with

the relative entropy approach. Furthermore, our analysis reveals distinct non-
linear alignment behaviors between the kinetic and hydrodynamic systems,

particularly evident in the isothermal regime.

1. Introduction. In this paper, we consider the following Vlasov-type of kinetic
flocking model

∂tf + v · ∇xf +∇v ·
(
F(f)f

)
= 0, (1)

where f = f(t,x,v) with (t,x,v) ∈ R+ × Ω × R
d. The spatial domain Ω can be

either the whole space R
d or the periodic domain T

d. The alignment force F is
defined as

F(f)(t,x,v) =

∫

Ω×Rd

ϕ(x− y)Φ(w − v)f(t,y,w) dy dw. (2)

Here, ϕ is the communication protocol, representing the strength of pairwise align-
ment interaction. Throughout the paper, we assume that ϕ is radially symmetric,
bounded, Lipschitz, and non-increasing along the radial direction. Typical choices
are:

ϕ(x) = (1 + |x|)−α, ³ g 0.

The mapping Φ : Rd → R
d describes the type of alignment. One classical choice

is the linear mapping

Φ(z) = z. (3)
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The corresponding system (1)-(3) is often referred as the Vlasov-alignment system.
It is a kinetic representation of the Cucker-Smale dynamics [5] that models the
flocking phenomena in interacting particle systems.

A generalization of the Cucker-Smale dynamics was introduced in [9]:




ẋi = vi,

v̇i =
1

N

N∑

j=1

ϕ(xi − xj)Φ(vj − vi),
(xi,vi) ∈ Ω× R

d. (4)

The system features a nonlinear velocity alignment, where the mapping Φ takes the
form

Φ(z) = |z|p−2z, p > 2. (5)

When p = 2, the mapping Φ is linear, and (4) reduces to the Cucker-Smale dynam-
ics. For p ̸= 2, the nonlinearity lead to different asymptotic flocking behaviors, as
explored in various studies [32, 21, 15, 1]. The system (1)-(2) was derived in [2] as a
kinetic representation of (4). The global well-posedness theory was also established
in the same work.

A macroscopic representation of the system (1)-(2) is the following compressible
Euler system with alignment interactions:

{
∂tÄ+∇x · (Äu) = 0,

∂t(Äu) +∇x · (Äu¹ u) = ÄA[Ä,u],
(6)

where the alignment force A[Ä,u] is defined as

A[Ä,u](t,x) =

∫

Rd

ϕ(x− y)Φ(u(t,y)− u(t,x))Ä(t,y) dy. (7)

With the linear mapping (3), the system (6)-(7) is known as the Euler-alignment

equations. The system has been extensively investigated in the last decade, see e.g.
[29, 3, 26, 27, 6, 16, 30, 22, 31, 17, 18, 19]. For more results on the Euler-alignment
system, we refer to the recent book by Shvydkoy [25].

We are interested in the connection between the kinetic equations (1)-(2) and
macroscopic system (6)-(7). The formal derivation was first established in [10] when
the mapping Φ is linear (3). The Euler-alignment equations were derived by taking
zeroth and first moments of f on v, and formally apply the mono-kinetic ansatz

f(t,x,v) = Ä(t,x)¶v=u(t,x), (8)

where ¶ denotes the Dirac delta function.
The rigorous justification of the hydrodynamic limit is discussed by Figalli and

Kang in [8]. The starting point of their analysis is the kinetic flocking equation:

∂tfε + v · ∇xfε +∇v ·
(
F(fε)fε

)
=

1

ε
∇v ·

(
(v − uε)fε

)
. (9)

In addition to the alignment interaction (2), there is another linear relaxation term
on the right-hand side of (9). As the parameter ε tends to zero, the relaxation
term enforces the mono-kinetic ansatz (8). This relaxation term was introduced in
[13, 11], viewed as local alignment.

The macroscopic density and momentum associated with fε are denoted by Äε
and Äεuε respectively. These are defined as the zeroth and first moments of fε with
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respect to velocity v, expressed as:

Äε(t,x) =

∫

Rd

fε(t,x,v) dv, Äεuε(t,x) =

∫

Rd

vfε(t,x,v) dv. (10)

Hence, the velocity v is relaxed to the macroscopic velocity uε given by:

uε(t,x) :=

∫
Rd vfε(t,x,v) dv∫
Rd fε(t,x,v) dv

. (11)

From (9) with (2) and (3), the dynamics of Äε and Äεuε can be derived, resulting
in the following system:



∂tÄε +∇x · (Äεuε) = 0,

∂t(Äεuε) +∇x · (Äεuε ¹ uε +Rε) = Äε(x)

∫

Ω

ϕ(x− y)(uε(y)− uε(x))Äε(y)dy,

(12)
where Rε represents the Reynold’s stress tensor

Rε(t,x) =

∫

Rd

(v − uε)¹ (v − uε)fε(t,x,v) dv. (13)

Formally applying the mono-kinetic ansatz (8) to (13) results in Rε ≡ 0. Conse-
quently, (12) transforms into the pressure-less Euler-alignment equations (6) with
(3).

The rigorous derivation of the hydrodynamic limit, however, is non-trivial. In
[8], a relative entropy method is employed to rigorously establish the limit:

fε(t,x,v) → f(t,x,v) = Ä(t,x)¶v=u(t,x)

in an appropriate sense. Here, (Ä, Äu) constitutes the solution to the Euler-alignment
equations.

In this paper, our primary objective is to generalize the findings on the hydro-
dynamic limit to the case of nonlinear velocity alignment described by (5) with
p > 2.

The formal derivation for the hydrodynamic limit involving general choices of p
has recently been undertaken by Tadmor in [28]. The alignment force (7) with Φ
in (5) is referred as p-alignment. The limiting system (6) has been less thoroughly
understood compared to the Euler-alignment equations (when p = 2), primarily
due to the introduced nonlinearity. Recent investigations, as reported in [28, 20, 1],
have shed light on intriguing asymptotic behaviors stemming from the nonlinear
nature of p-alignment.

One significant challenge in rigorously justifying this limit arises from the non-
linearity, which introduces an additional term in the momentum equation:

∂t(Äεuε)+∇x · (Äεuε¹uε+Rε) = Äε(x)

∫

Ω

ϕ(x−y)Φ(uε(y)−uε(x))Äε(y)dy+Gε.

(14)
The discrepancy term Gε = Gε(t,x) takes the form
∫

Ω×R2d

ϕ(x−y)
(
|w−v|p−2 − |uε(y)−uε(x)|p−2

)
(w−v)fε(y,w)fε(x,v) dydvdw.

(15)
We refer to Section 3.1 for a formal derivation of the discrepancy Gε. It is noteworthy
that when the mapping Φ is linear (p = 2), the discrepancy Gε does not exist, i.e.,
Gε ≡ 0. Conversely, when p > 2, obtaining additional control over the term Gε

becomes imperative.
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Formally inserting the mono-kinetic ansatz (8) into (15) results in Gε ≡ 0. Con-
sequently, the expectation is that the discrepancy vanishes as ε → 0. However,
achieving a rigorous limit requires delicate control of Gε through the relative en-
tropy and the linear relaxation. This undertaking will be thoroughly investigated
in the course of this paper.

We are ready to state our main result on the rigorous derivation of the hydrody-
namic limit.

Theorem 1.1. Let fε and (Ä,u) be the solutions to (9) and (6) respectively in the

time interval [0, T∗], with well-prepared initial data. Then

fε(t,x,v) á f(t,x,v) = Ä(t,x)¶v=u(t,x), as ε → 0.

Remark 1.2. The complete details of the theorem, including the definitions of
solutions to the systems, the interpretation of well-prepared initial data, and the
notation of convergence, will be presented later in the main context. Refer to
Theorem 3.2 for the comprehensive results.

Remark 1.3. In this paper, we primarily focus on the p-alignment nonlinearity
given by (5). However, it is worth noting that Theorem 1.1 remains valid for a
more general class of nonlinearities of the form

Φ(z) = h(|z|)z, (16)

where h is an increasing function on R+ such that h(0) = 0, and h ∈ Cq(R+) for
q ∈ (0, 1]. For details on how Hölder/Lipschitz continuity on b is incorporated into
our argument, refer to Remark 4.3.

It is crucial to underscore that the mono-kinetic ansatz (8) plays a pivotal role
in establishing the same nonlinearity Φ in the resulting system (6). Notably, the
alignment interaction within the limiting system does not necessarily conform to the
same nonlinearity in general. We illustrate this aspect in the subsequent discussion.

One commonly considered equilibrium state is the Gaussian function

f(t,x,v) = Ä(t,x) · (2Ã)− d
2 e−

|v−u(t,x)|2

2 , (17)

known as the isothermal ansatz. Plugging in this ansatz to (13) would yield

Rε(t,x) = Äε(t,x) Id,

where Id denotes the d-by-d identity matrix. In the case of a linear mapping Φ,
the limiting system corresponds to the Euler-alignment equations with isothermal
pressure. Specifically, the momentum equation takes the form

∂t(Äu) +∇x · (Äu¹ u) +∇xÄ = Äε(x)

∫

Ω

ϕ(x− y)(uε(y)− uε(x))Äε(y)dy.

The rigorous derivation of this type of hydrodynamic limit has been explored in
[14], stemming from the following Vlasov-Fokker-Planck equation with alignment

∂tfε + v · ∇xfε +∇v ·
(
F(fε)fε

)
=

1

ε
∇v ·

(
(v − uε)fε

)
+

1

ε
∆vfε, (18)

where the right-hand side enforces the isothermal ansatz (17) as ε → 0.
For a nonlinear mapping Φ in (5) with p > 2, a crucial observation is that Gε

does not tend to zero as ε → 0. Consequently, the alignment interaction in the
limiting system is not p-alignment. We present the isothermal hydrodynamic limit
in Section 5, leaving the rigorous justification for future investigation.
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We would also like to highlight a distinct type of communication protocol ϕ,
known as singular communications, where ϕ is unbounded at the origin. For in-
stance, ϕ(x) = |x|−α with ³ > 0. The kinetic equation (1)-(2) with singular
communication ϕ and linear mapping Φ has been investigated in [23, 4]. A recent
paper [7] suggests that singular communications enforce mono-kinetic ansatz (8).
A rigorous study of the hydrodynamic limit in this context would be interesting.
Some relevant studies have been conducted by Poyato and Soler in [24].

The rest of the paper is organized as follows. Section 2 presents some preliminary
results on the kinetic flocking equation (9). Section 3 consists of a formal derivation
of the hydrodynamic limit from (9) to (6), a local well-posedness theory for the
limiting system (6), and the complete statement of our main result, Theorem 1.1.
The proof of the theorem is furnished in Section 4, leveraging the relative entropy
method. The key innovation lies in controlling the discrepancy Gε through the mono-
kinetic structure enforced by the linear relaxation. Finally, Section 5 discusses the
hydrodynamic limit with the isothermal ansatz (17). Notably, the limiting system
has an alignment force that is different from the p-alignment.

2. The Vlasov-alignment system. In this section, we state a collection of pre-
liminary results on the Vlasov-alignment system (9). Recall the dynamics




∂tfε + v · ∇xfε +∇v ·

(
F(fε)fε

)
=

1

ε
∇v ·

(
(v − uε)fε

)
,

fε(0,x,v) = f0
ε (x,v),

(19)

where the alignment force F is defined in (2).
We assume non-negative and compactly supported initial data

f0
ε (x,v) g 0, diam(supp

x
f0
ε ) f S0 < ∞, and diam(supp

v
f0
ε ) f V0 < ∞, (20)

where (S0,V0) are finite numbers that are independent with ε. For simplicity, we
assume unit total mass ∫

Ω×Rd

f0
ε (x,v) dxdv = 1. (21)

Note that the total mass is preserved in time.

2.1. Local and global well-posedness. The global well-posedness theory for
classical solutions to (1) follows from standard argument for Vlasov-type equa-
tions. It requires Lipschitz continuity in (x,v) of the forcing terms F(fε). See [10,
Theorem 3.3] for the case p = 2, and [2] for more general discussions.

For equation (19) with the linear relaxation term, additional a priori control of
∇xuε is required to ensure Lipschitz continuity of the term 1

ε (v − uε).

Proposition 2.1. Let f0
ε ∈ (C1 ∩W 1,∞)(Ω× R

d) and satisfies (20). There exists

a unique classical solution fε ∈ C1([0, T )× Ω× R
d) to equation (19), provided

∥∇xuε∥L∞([0,T )×Ω) < +∞. (22)

In [12], the authors construct weak solutions to (19) with p = 2 by regularizing
uε and obtaining uniform control analogous to (22). We state the following version
of their theorem for general p-alignment.

Proposition 2.2. Let f0
ε ∈ L∞(Ω × R

d) and satisfies (20). Then there exists a

weak solution fε ∈ L∞([0, T )×Ω×R
d) to equation (19) in the sense of distribution,

that is,
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∫ T

0

∫

Ω×Rd

fε

(
∂tφ+ v · ∇xφ+ F(fε) · ∇vφ+

1

ε
(uε − v) · ∇vφ

)
dxdvdt (23)

+

∫

Ω×Rd

f0
εφ(0, ·) dxdv = 0,

for any φ ∈ C∞
c ([0, T )× Ω× R

d).

Remark 2.3. Shvydkoy [25] studied the hydrodynamic limits from (1) with a
regularized local relaxation term 1

ε∇v · ((v − uδ
ε)fε), so that condition (22) holds

for any fixed ¶ > 0. Applying Proposition 2.1, the kinetic equation has a unique
classical solution fδ

ε . The hydrodynamic limit can then be studied by letting ε, ¶ → 0
appropriately. For (19), there is no uniqueness guaranteed for the weak solution.
We will show the hydrodynamic limit starting from any weak solutions fε that
satisfy (23).

We define the kinetic energy (or entropy)

Eε(t) =
1

2

∫

Ω×Rd

|v|2fε(t,x,v) dxdv. (24)

The energy is dissipated by the alignment force F, as well as the local relaxation.
Define the kinetic enstrophy

D1ε(t) =
1

2

∫

Ω2×R2d

ϕ(x− y)|w − v|pfε(t,x,v)fε(t,y,w) dxdydvdw, (25)

D2ε(t) =

∫

Ω×Rd

|v − uε|2fε(t,x,v) dxdv. (26)

We have the following bound on the energy dissipation.

Proposition 2.4. For any ε > 0, let fε be a weak solution to (19). We have

d

dt
Eε(t) f −D1ε(t)−

1

ε
D2ε(t), (27)

where the energy Eε and enstropy D1ε, D2ε are defined in (24), (25) and (26),
respectively.

Proof. Suppose fε is a classical solution to (19). We utilize (19) and get

d

dt
Eε(t) =

1

2

∫

Ω×Rd

|v|2∂tfε dxdv

= −
∫

Ω×Rd

|v|2v
2

· ∇xfε dxdv −
∫

Ω×Rd

|v|2
2

∇v · (F(fε)fε) dxdv

+
1

ε

∫

Ω×Rd

|v|2
2

∇v · ((v − uε)fε) dxdv

=

∫

Ω×Rd

v · F(fε)fε dxdv − 1

ε

∫

Ω×Rd

v · (v − uε)fε dxdv

=

∫

Ω2×R2d

ϕ(x− y)v · (w − v)|w − v|p−2fε(x,v)fε(y,w) dxdydvdw

− 1

ε

∫

Ω×Rd

(v − uε) · (v − uε)fε dxdv

= −D1ε −
1

ε
D2ε.
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Here, we have used the identity
∫
Rd(v − uε)fε dv = 0 in the penultimate equality,

and symmetrized in (v,w) for the last equality.
For weak solutions, we apply the calculation above to a sequence of smooth

approximations, and pass to the limit to obtain the inequality (27).

2.2. Asymptotic flocking behavior. In this part, we present several properties
of the solution fε to (19) concerning its support in (x,v). We define the variation
of position and velocity as follows:

Sε(t) = diam(supp
x
fε(t)), Vε(t) = diam(supp

v
fε(t)). (28)

We begin by stating a maximum principle that will be utilized throughout this
paper.

Proposition 2.5. Suppose fε is a weak solution to (19), with initial data f0
ε sat-

isfying (20). Then we have

Vε(t) f V0, and Sε(t) f S0 + tV0, (29)

for any ε > 0 and t ∈ [0, T ).

The maximum principle (29) holds for general nonlinearity (16). For p-alignment
(5), refined estimates can be obtained. Indeed, a similar argument as in [1] yields
the following system of inequalities on (Sε,Vε):

{
S ′
ε(t) f Vε(t),

V ′
ε(t) f −22−pϕ(Sε(t))Vε(t)

p−1,
with

{
Sε(0) f S0,

Vε(0) f V0.
(30)

The analysis of (30) reveals asymptotic alignment and flocking behavior in the
system. For instance, assuming ϕ has a positive lower bound ϕ > 0, we obtain

V ′
ε(t) f −22−pϕVε(t)

p−1, Vε(0) f V0,

which implies velocity alignment with an algebraic decay rate for p > 2. Specifically,
we have

Vε(t) f
(
(V0)−(p−2) + 22−p(p− 2)ϕ t

)− 1
p−2

≲ t−
1

p−2 .

This is notably different from the case of linear mapping (p = 2), where the decay
rate is exponential.

A more interesting setup occurs when Ω = R
d and ϕ decays to zero like ϕ(r) ∼

r−α. The system (19) exhibits different asymptotic behaviors for various choices of
p and ³. Detailed discussions are provided in [1].

3. Hydrodynamic limit.

3.1. A formal derivation. We start with a formal derivation of the hydrodynamic
limit from the kinetic system (9) to the Euler-alignment system (6). The derivation
was first established in [10] for the linear alignment case p = 2, and in [28] for
general nonlinear alignment with p > 2. For the sake of completeness, we present a
formal derivation in this paper, under our notations.

We start with computing the zeroth and first moments of fε. Integrating (9) in
v yields the continuity equation

∂tÄε +∇x · (Äεuε) = 0.
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Multiplying (9) by v and integrating in v, we obtain the momentum equation

∂t(Äεuε) +∇x ·
∫

Rd

v ¹ vfε dv =

∫

Rd

F(fε)fε dv. (31)

We rewrite the second moment by
∫

Rd

v ¹ vfε dv = Äεuε ¹ uε +Rε,

where Rε is the Reynold’s stress tensor defined as

Rε =

∫

Rd

(v − uε)¹ (v − uε)fε dv.

For the alignment term on the right hand side of (31), if p = 2, it can be
represented by the macroscopic quantities (Äε,uε). Indeed, in this case, we have

∫

Rd

F(fε)fε dv =

∫

Ω×Rd×Rd

ϕ(x− y)(w − v)fε(x,v)fε(y,w) dydvdw

=

∫

Ω

ϕ(x− y)(uε(y)− uε(x))Äε(x)Äε(y) dy = ÄεA(Äε,uε).

When p > 2, the alignment term depends on higher moments of fε. We decompose
F into two parts

F(fε)(x,v)

=

∫

Ω×Rd

ϕ(x− y)|uε(y)− uε(x)|p−2(w − v)fε(t,y,w) dydw

+

∫

Ω×Rd

ϕ(x− y)
(
|w − v|p−2 − |uε(y)− uε(x)|p−2

)
(w − v)fε(t,y,w) dydw

=: F1(fε)(x,v) + F2(fε)(x,v).

The first term F1 is linear in v. Hence, we have
∫

Rd

F1(fε)fε dv =

∫

Ω

ϕ(x− y)|uε(y)− uε(x)|p−2(uε(y)− uε(x))Äε(x)Äε(y) dy

=Äε(x)

∫

Ω

ϕ(x− y)Φ(uε(y)− uε(x))Äε(y) dy = ÄεA(Äε,uε).

For the remaining term F2, we denote

Gε(t,x) :=

∫

Rd

F2(fε(t,x,v))fε(t,x,v) dv

=

∫

Ω×R2d

ϕ(x− y)
(
|w − v|p−2 − |uε(y)− uε(x)|p−2

)
(w − v)

fε(x,v)fε(y,w) dydvdw.

We summarize the above computation and obtain the following dynamics of
(Äε,uε):

{
∂tÄε +∇x · (Äεuε) = 0,

∂t(Äεuε) +∇x · (Äεuε ¹ uε) +∇x · Rε = ÄεA[Äε,uε] + Gε.
(32)

Now, we take a formal limit ε → 0. The leading order O(ε−1) term in (9) is the
local relaxation

1

ε
∇v ·

(
(v − uε)fε

)
= 0.
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This implies that the limiting profile f is mono-kinetic. More precisely, if

Äε → Ä, Äεuε → Äu

in some appropriate sense, then we have

fε(t,x,v) → f(t,x,v) = Ä(t,x)¶v=u(t,x).

Moreover, the mono-kinetic structure of f implies that

Rε → 0, Gε → 0.

Therefore, the limit quantities (Ä,u) solve the Euler-alignment system (6).

3.2. The Euler equations with p-alignment. For the Euler-alignment system
with p = 2, local and global well-posedness theories have been well-established for
smooth solutions in Sobolev spaces Hs(Ω)×Hs+1(Ω), as discussed in, for example,
[29]. The theory is based on the following non-conservative form of the Euler-
alignment system: {

∂tÄ+∇x · (Äu) = 0,

∂tu+ u · ∇xu = A[Ä,u],
(33)

The systems (6) and (33) are equivalent if Ä stays away from zero. Moreover, any
smooth solution to (33) is also a solution to (6).

To be consistent with the conditions (20) and (21) for the kinetic equation (19),
we assume initial data (Ä0,u0) satisfy

diam(suppÄ0) f S0 < ∞, diam(Range(u0)) f V0 < ∞,

∫

Ω

Ä0(x) dx = 1. (34)

One crucial aspect of the global well-posedness theory to (33) is the control of
the Lipschitz bound on the velocity [u(t, ·)]Lip. Subsequently, the propagation of
higher Sobolev norms follows from energy estimates.

However, for the case of general nonlinear alignment, obtaining smooth solutions
is more challenging due to the non-smooth behavior of Φ near the origin. Here, we
present a well-posedness theory for solutions in the space (L1∩L∞)(Ω)×W 1,∞(Ω).

Proposition 3.1. Suppose the initial data (Ä0,u0) satisfy (34) and

(Ä0,u0) ∈ (L1 ∩ L∞)(Ω)×W 1,∞(Ω).

Then, there exists a time T such that the system (33) with (7) admits a unique

strong solution

(Ä,u) ∈ C([0, T ), (L1 ∩ L∞)(Ω))× C([0, T ),W 1,∞(Ω)).

Moreover, the time span of the solution can be extended as long as

∥∇xu∥L∞([0,T )×Ω) f M, (35)

where M is a finite number.

Proof. From (33), we obtain the dynamics of the velocity

(∂t + u · ∇x)u = A[Ä,u]. (36)

Applying gradient to the equation yields

(∂t + u · ∇x)∇xu = −(∇xu)
2 +∇xA[Ä,u].

We estimate the p-alignment as follows:
∣∣∇xA[Ä,u]

∣∣ f
∫

Ω

∣∣∇ϕ(x− y)
∣∣ ·
∣∣Φ(u(y)− u(x))

∣∣ · Ä(y) dy
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+

∫

Ω

ϕ(x− y) ·
∣∣∣∇Φ(u(y)− u(x))

∣∣∣ ·
∣∣∇u(x)

∣∣ · Ä(y) dy

f [ϕ]Lip · (V0)p−1 + ∥ϕ∥L∞ · (p− 1)(V0)p−2 · ∥∇xu∥L∞ .

This leads to the estimate on ∇xu:

d

dt
∥∇xu(t, ·)∥L∞

f ∥∇xu(t, ·)∥2L∞ + ∥ϕ∥L∞ · (p− 1)(V0)p−2 · ∥∇xu∥L∞ + [ϕ]Lip · (V0)p−1.

Apply Cauchy-Lipschitz theorem, there exists a time T > 0 such that ∥∇xu(t, ·)∥L∞

is bounded for any t ∈ [0, T ]. Furthermore, (35) holds.
Note that ∥u(t, ·)∥L∞ f ∥u0∥L∞ by maximum principle (argued similarly as in

Proposition 2.5). Consequently, we obtain an a priori bound on u(t) in W 1,∞(Ω).
For the density, ∥Ä(t, ·)∥L1 is conserved in time due to the conservation of mass.

Given a Lipschitz velocity field (35), ∥Ä(t, ·)∥L∞ has the a priori bound

∥Ä(t, ·)∥L∞ f ∥Ä0∥L∞e
∫

t

0
∥∇xu(s,·)∥L∞ ds f ∥Ä0∥L∞eMt,

for any t ∈ [0, T ].
Next, we turn to prove uniqueness. Let (Ä1,u1) and (Ä2,u2) be two solutions to

(33) with same initial data (Ä0,u0). Assume (35) holds for u1 and u2. Then the
flow maps X1(t,x) and X2(t,x) with

∂tXi(t,x) = ui(t,Xi(t,x)), Xi(0,x) = x, i = 1, 2,

are well-defined on [0, T ]× Ω. Let us denote

¶X(t) := sup
x∈Ω

∣∣X1(t,x)−X2(t,x)
∣∣, ¶u(t) := sup

x∈Ω

∣∣u1(t,X1(t,x))− u2(t,X2(t,x))
∣∣.

Clearly, we have for almost all t ∈ [0, T ],

d

dt
¶X(t) f ¶u(t). (37)

Applying (36) to (Äi,ui) and evaluating at (t,Xi(t,x)), we obtain

d

dt
ui(t,Xi(t,x)) = A[Äi,ui](t,Xi(t,x))

=

∫

Ω

ϕ
(
Xi(t,x)− ỹ

)
Φ
(
ui(t, ỹ)− ui(t,Xi(t,x))

)
Äi(t, ỹ) dỹ

=

∫

Ω

ϕ
(
Xi(t,x)−Xi(t,y)

)
Φ
(
ui(t,Xi(t,y))− ui(t,Xi(t,x))

)
Ä0(y) dy.

Here we change variable ỹ = Xi(t,y) and apply the Ä-equation in (33) to get

Äi(t, ỹ) dỹ = Ä0(y) dy.

For simplicity, we suppress the t-dependence and use the following shortcut no-
tations:

Xi := Xi(t,x), Yi := Xi(t,y).

Compute the difference

d

dt

(
u1(X1)− u2(X2)

)

=

∫

Ω

(
ϕ(X1 −Y1)− ϕ(X2 −Y2)

)
Φ
(
u1(Y1)− u1(X1)

)
Ä0(y) dy
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+

∫

Ω

ϕ(X2 −Y2)
(
Φ
(
u1(Y1)− u1(X1)

)
− Φ

(
u2(Y2)− u2(X2)

))
Ä0(y) dy

=: H1 +H2. (38)

We now estimate term by term. For H1,

|H1| f
∫

Ω

[ϕ]Lip|(X1 −X2)− (Y1 −Y2)| · Φ
(
u1(Y1)− u1(X1)

)
Ä0(y) dy

f [ϕ]Lip · 2¶X · (V0)p−1.

For H2, we have

|H2|

=

∣∣∣∣
∫

Ω

ϕ(X2 −Y2) · ∇Φ(À)
((

u1(Y1)− u2(Y2)
)
−
(
u1(X1)− u2(X2)

))
Ä0(y) dy

∣∣∣∣

f ∥ϕ∥L∞ · (p− 1)(V0)p−2 · 2¶u.
Here À lies in between u1(Y1) − u1(X1) and u2(Y2) − u2(X2). From maximum
principle analogous to (29) (see [1]), we have |ui(Yi) − ui(Xi)| f V0, for i = 1, 2.
Therefore, |À| f V0, leading to the last inequality above.

Applying both estimates to (38), we deduce

d

dt
¶u(t) f C

(
¶X(t) + ¶u(t)

)
, (39)

for almost all t ∈ [0, T ], where the constant C depends on ϕ,V0, and p.
We put together (37) and (39), and obtain

d

dt

(
¶X(t) + ¶u(t)

)
f (C + 1)

(
¶X(t) + ¶u(t)

)
.

Since ¶X(0) = ¶u(0) = 0, we conclude with

¶X(t) + ¶u(t) f
(
¶X(0) + ¶u(0)

)
e(C+1)t = 0,

namely ¶X(t) = ¶u(t) = 0 for any t ∈ [0, T ]. Therefore,

X1(t,x) = X2(t,x) =: X,

and we conclude with uniqueness:

u1(t,X) = u1(t,X1(t,x)) = u2(t,X2(t,x)) = u2(t,X),

Ä1(t,X) = Ä0(x)e
∫

t

0
∇x·u1(τ,X1(τ,x))dτ = Ä0(x)e

∫
t

0
∇x·u2(τ,X2(τ,x))dτ = Ä2(t,X),

for any t ∈ [0, T ] and X ∈ Ω.

3.3. Statement of the main result. Our main goal is to establish a rigorous
derivation of the hydrodynamic limit. We consider the following well-prepared
initial data f0

ε satisfying (20) where (S0,V0) are independent of ε. Moreover, f0
ε is

close to the initial data (Ä0,u0) of the limiting system (33), in the sense

W1(f
0
ε , f

0) < ε, (40)

where f0 is defined as

f0(x,v) = Ä0(x)¶v=u0(x),

and W1 is the 1-Wasserstein metric. It can be defined through the dual representa-
tion

W1(f, g) = sup
[ϕ]Lipf1

∫

X

φ(x)(f(x)− g(x)) dx
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where f, g are arbitrary real-valued functions on X. In our context, X = Ω× R
d.

We now state our main result on the hydrodynamic limit.

Theorem 3.2. Assume the initial data f0
ε and (Ä0,u0) satisfy (20)-(21), (34), and

(40). Let fε be a weak solution to (19), and (Ä,u) be a strong solution to (33) up

to time T . Denote

f(t,x,v) = Ä(t,x)¶v=u(t,x).

Then, we have

fε(t,x,v) á Ä(t,x)¶v=u(t,x) in M((0, T )× Ω× R
d), (41)

where M((0, T )×Ω×R
d) is the space of nonnegative Radon measures on (0, T )×

Ω× R
d.

More quantitative estimates to the limit (41) will be presented in (62) and (63).

4. Rigorous derivation. In this section, we present the proof of our main theorem
regarding the rigorous hydrodynamic limits, as outlined in Theorem 3.2. When the
velocity alignment is linear (p = 2), a framework has been established in [8]. Our
approach extends this framework to accommodate situations where the velocity
alignment is nonlinear (p > 2). It is worth noting that we must establish additional
controls to account for discrepancies generated by the nonlinearity, as detailed in
Sections 4.2 and 4.3.

4.1. Relative entropy method. Our principal approach for rigorously establish-
ing the hydrodynamic limit relies on the relative entropy method. We closely adhere
to the framework outlined in [8] and focus our efforts on analyzing the following
quantity:

¸ε(t) =
1

2

∫

Ω

Äε(t,x)|uε(t,x)− u(t,x)|2 dx. (42)

Let us remark the meaning of ¸ε. Let U = (Ä,m) = (Ä, Äu). A convex entropy
on U is defined as

¸(U) = ¸(Ä,m) :=
|m|2
2Ä

=
Ä|u|2
2

.

Then, we may define the relative entropy

¸(Uε|U) = ¸(Uε)− ¸(U)−D¸(U) · (Uε − U)

=
Äε|uε|2

2
− Ä|u|2

2
−
(
−|u|2

2
(Äε − Ä) + u · (Äεuε − Äu)

)
=

1

2
Äε|uε − u|2.

Finally, the quantity ¸ε defined in (42) is the spatial integration of the relative
entropy ¸(Uε|U).

We investigate the evolution of ¸ε through the following calculation:

d

dt
¸ε =

d

dt

∫

Ω

(
Äε|uε|2

2
− Äεuε · u+

Äε|u|2
2

)
dx =

d

dt
Eε + I + II,

where Eε is the macroscopic energy

Eε =
1

2

∫

Ω

Äε|uε|2 dx.

In particular, for I we have

I =

∫

Ω

(
− ∂t(Äεuε) · u− Äεuε · ∂tu

)
dx
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=

∫

Ω

(∇x · (Äεuε ¹ uε +Rε)− ÄεA[Äε,uε]− Gε) · u dx

+

∫

Ω

Äεuε ·
(
u · ∇xu−A[Ä,u]

)
dx

=

∫

Ω

Äεuε ¹ (uε − u) : ∇xu dx−
∫

Ω

Äε
(
u ·A[Äε,uε] + uε ·A[Ä,u]

)
dx

−
∫

Ω

∇xu : Rε dx−
∫

Ω

Gε · u dx

=I1 + I2 + I3 + I4.

Similarly, for II we have

II =
1

2

∫

Ω

∂tÄε |u|2 dx+

∫

Ω

Äεu · ∂tu dx

=− 1

2

∫

Ω

∇x · (Äεuε) |u|2 dx+

∫

Ω

Äεu ·
(
− u · ∇xu+A[Ä,u]

)
dx

=−
∫

Ω

Äεu¹ (uε − u) : ∇xu dx+

∫

Ω

Äεu ·A[Ä,u] dx

=II1 + II2.

Next, we estimate all terms in I and II. We start with two straightforward bounds

|I1 + II1| =
∣∣∣∣
∫

Ω

Äε(uε − u)¹ (uε − u) : ∇xu dx

∣∣∣∣ f ∥∇xu∥L∞ ¸ε,

and

|I3| =
∣∣∣∣
∫

Ω

∇xu : Rε dx

∣∣∣∣ f ∥∇xu∥L∞

∫

Ω×Rd

fε(x,v)|v−uε|2 dxdv = ∥∇xu∥L∞ D2ε,

where we recall the definition of D2ε in (26).
Then, we focus on the term

J := I2 + II2 =

∫

Ω

Äε
(
− u ·A[Äε,uε] + (u− uε) ·A[Ä,u]

)
dx. (43)

Start with the first term in (43) and get
∫

Ω

−Äεu ·A[Äε,uε] dx

=

∫

Ω2

−Äε(x)Äε(y)ϕ(x− y)u(x) · Φ(uε(y)− uε(x)) dxdy

=
1

2

∫

Ω2

Äε(x)Äε(y)ϕ(x− y)(u(y)− u(x)) · Φ(uε(y)− uε(x)) dxdy

=
1

2

∫

Ω2

Äε(x)Äε(y)ϕ(x− y)(uε(y)− uε(x)) · Φ(uε(y)− uε(x)) dxdy

+
1

2∫

Ω2

Äε(x)Äε(y)ϕ(x− y)(u(y)− u(x)− uε(y) + uε(x)) · Φ(uε(y)− uε(x)) dxdy

=: Dε + J1.
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Here, we symmetrize x and y in the second equality, followed by splitting the
quantity into two parts. In particular, Dε is the macroscopic enstrophy

Dε =
1

2

∫

Ω2

Äε(x)Äε(y)ϕ(x− y)|uε(y)− uε(x)|p dxdy.

We will control Dε later by the kinetic enstrophy D1ε.
Now we work on the second term in (43). Split the term into two parts:
∫

Ω

Äε(u− uε) ·A[Ä,u] dx

=

∫

Ω2

Äε(x)Ä(y)ϕ(x− y)(u(x)− uε(x)) · Φ(u(y)− u(x)) dxdy

=

∫

Ω2

Äε(x)Äε(y)ϕ(x− y)(u(x)− uε(x)) · Φ(u(y)− u(x)) dxdy

+

∫

Ω2

Äε(x)(Ä(y)− Äε(y))ϕ(x− y)(u(x)− uε(x)) · Φ(u(y)− u(x)) dxdy

=: J2 + J3.

We further symmetrize x and y in J2 and obtain

J2 =
1

2

∫

Ω2

Äε(x)Äε(y)ϕ(x−y)(u(x)−u(y)−uε(x)+uε(y)) ·Φ(u(y)−u(x)) dxdy.

Combing J1 and J2, we get

J1 + J2 =
1

2

∫

Ω2

Äε(x)Äε(y)ϕ(x− y)
(
u(y)− u(x)− uε(y) + uε(x)

)

·
(
Φ(uε(y)− uε(x))− Φ(u(y)− u(x))

)
dxdy.

Observe that since Φ is monotone increasing, we have

(z1 − z2) · (Φ(z1)− Φ(z2)) g 0, ∀ z1, z2.

This yields
J1 + J2 f 0.

For the remaining term J3:

J3 =

∫

Ω

Äε(x)(u(x)− uε(x)) ·
[∫

Ω

(Ä(y)− Äε(y))ϕ(x− y)Φ(u(y)− u(x)) dy

]
dx,

we obtain the point-wise bound on the inner integral
∫

Ω

(Ä(y)− Äε(y))ϕ(x− y)Φ(u(y)− u(x)) dy

fW1(Ä, Äε) ·
[
ϕ(x− ·) Φ(u(·)− u(x))

]

Lip

fW1(Ä, Äε)
(
[ϕ]Lip(V0)p−1 + ∥ϕ∥L∞(p− 1)(V0)p−2∥∇xu∥L∞

)

fC(1 + ∥∇xu∥L∞)W1(Ä, Äε),

for any x ∈ Ω. Here, we have used the maximum principle (29).
We then apply Hölder inequality and obtain

|J3| f C(1 + ∥∇xu∥L∞)W1(Ä, Äε) ·
√
¸ε f C(1 + ∥∇xu∥L∞)

(
¸ε +W 2

1 (Ä, Äε)
)
.

Collecting all the estimates, we conclude with

d

dt
¸ε f

d

dt
Eε +Dε + ∥∇xu∥L∞D2ε +C(1 + ∥∇xu∥L∞)

(
¸ε +W 2

1 (Ä, Äε)
)
+ I4. (44)
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4.2. The control of macroscopic energy and enstrophy. In this part, we aim
to obtain a bound on

d

dt
Eε +Dε

that appears on the right hand side of (44). We compare Eε and Dε with the kinetic
energy Eε and enstrophy D1ε, and apply (27) to obtain

d

dt
Eε +Dε f

d

dt
(Eε − Eε) + (Dε −D1ε)−

1

ε
D2ε. (45)

Now, let us control the differences between kinetic and macroscopic energies and
enstrophies.

Lemma 4.1. The following inequalities hold:

Eε(t) f Eε(t), (46)

Dε(t) f D1ε(t) + |∆ε(t)|, (47)

where the discrepancy ∆ε(t) is defined as

∆ε(t) :=
1

2

∫

Ω2×R2d

ϕ(x− y) (|w − v|p−2 − |uε(y)− uε(x)|p−2) |w − v|2 (48)

fε(t,x,v)fε(t,y,w) dxdydvdw.

Proof. The first inequality (46) follows directly from the Cauchy-Schwarz inequality

Äε|uε|2 =

(∫
Rd vfε dv

)2
∫
Rd fε dv

f
∫

Rd

|v|2fε dv. (49)

For the second inequality (47), we decompose D1ε into two parts:

D1ε =
1

2

∫

Ω2×R2d

ϕ(x−y)|uε(y)−uε(x)|p−2|w−v|2fε(x,v)fε(y,w) dxdydvdw+∆ε.

For the first part, we apply (49) and obtain
∫

R2d

|w − v|2fε(x,v)fε(y,w) dvdw

=

∫

R2d

(|w|2 − 2w · v + |v|2)fε(x,v)fε(y,w) dvdw

= Äε(x)

∫

Rd

|w|2fε(y,w) dw − 2Äε(x)uε(x) · Äε(y)uε(y) + Äε(y)

∫

Rd

|v|2fε(x,v) dv

g Äε(x)Äε(y)
(
|uε(y)|2 − 2uε(x) · uε(y) + |uε(x)|2

)
= Äε(x)Äε(y)|uε(x)− uε(y)|2.

This leads to the bound
1

2

∫

Ω2×R2d

ϕ(x− y)|uε(y)− uε(x)|p−2|w − v|2fε(x,v)fε(y,w) dxdydvdw g Dε.

The inequality (47) follows as a direct consequence.

When p = 2, the discrepancy ∆ε(t) = 0. However, with the nonlinear alignment
p > 2, ∆ε does not vanish unless fε is mono-kinetic. Therefore, we will use the
kinetic enstrophy D2ε to control the discrepancy.

Lemma 4.2. Let a, b ∈ [0, R]. The following inequalities hold:
∣∣ap−2 − bp−2

∣∣ f |a− b|p−2, for 2 < p f 3,
∣∣ap−2 − bp−2

∣∣ f (p− 2)Rp−3|a− b|, for p > 3.
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Proof. For the first inequality, we assume b f a without loss of generality. If b = 0,
the equality holds trivially. If b > 0, define z = a/b ∈ [1,∞). The inequality is
equivalent to

g(z) := zp−2 − 1− (z − 1)p−2 f 0.

One can easily verify g(1) = 0 and g′(z) f 0 for z g 1. This leads to the desired
inequality.

The second inequality is a direct application of the mean value theorem.

Now we apply Lemma 4.2 with a = |w − v| and b = |uε(y)− uε(x)|. Let

q = min{p− 2, 1} f 1, and cp =





0 p = 2,

1 2 < p f 3,

(p− 2)(V0)p−3 p > 3.

We have∣∣∣|w − v|p−2 − |uε(y)− uε(x)|p−2
∣∣∣ f cp

∣∣∣|w − v| − |uε(y)− uε(x)|
∣∣∣
q

(50)

f cp

(
|v − uε(x)|+ |w − uε(y)|

)q
f cp

(
|v − uε(x)|q + |w − uε(y)|q

)
.

Note that we have used triangle inequality in the second inequality, and concavity
of the function xq in the last inequality.

Remark 4.3. For general nonlinearity (16), Lemma 4.2 can be replaced by

|h(a)− h(b)| f CR|a− b|q,
where CR is the Hölder (or Lipschitz) coefficient on h on [0, R]. Then (50) follows
with cp = CV0 .

Utilizing the estimate (50) and Hölder inequality, we can bound ∆ε as follows:

|∆ε| f cp

∫

Ω2×R2d

ϕ(x− y)|v − uε(x)|q|w − v|2fε(x,v)fε(y,w) dxdydvdw

f cp

(∫

Ω×Rd

|v − uε(x)|2fε(x,v) dxdv
) q

2

·

(∫

Ω×Rd

(∫

Ω×Rd

ϕ(x− y)|v −w|2fε(y,w) dydw

) 2
2−q

fε(x,v) dxdv

) 2−q
2

f cp · D
q
2
2ε · ∥ϕ∥L∞ · (V0)2 f Cp

2
D

q
2
2ε, (51)

where we defined the constant Cp = 8cp∥ϕ∥L∞∥u0∥2L∞ .

4.3. The control of the discrepancy I4. When p = 2, the term Gε vanishes.
Hence we have I4 = 0. With the nonlinear alignment p > 2, Gε does not vanish
unless fε is mono-kinetic. Therefore, we may treat I4 similarly as the discrepancy
∆ε.

|I4| f ∥u∥L∞

∫

Ω2×R2d

ϕ(x− y)
∣∣∣|w − v|p−2 − |uε(y)− uε(x)|p−2

∣∣∣ |w − v|

fε(x,v)fε(y,w) dxdydvdw

f 2cp∥u∥L∞

∫

Ω2×R2d

ϕ(x− y) |v − uε(x)|q |w − v|fε(x,v)fε(y,w) dxdydvdw
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f 2cp∥ϕ∥L∞V0∥u0∥L∞ · D
q
2
2ε f

Cp

2
D

q
2
2ε. (52)

Collecting the estimates (45), (47), (51) and (52), the bound (44) becomes

d

dt
¸ε f

(
−1

ε
D2ε + ∥∇xu∥L∞D2ε + CpD

q
2
2ε

)
+

d

dt
(Eε − Eε)

+ C(1 + ∥∇xu∥L∞)
(
¸ε +W 2

1 (Ä, Äε)
)
.

Integrate in [0, t] and apply (46). We end up with

¸ε(t) f
(
¸ε(0) + Eε(0)− Eε(0)

)

+

∫ t

0

(
−1

ε
D2ε(s) + ∥∇xu(s, ·)∥L∞D2ε(s) + CpD

q
2
2ε(s)

)
ds

+ C

∫ t

0

(1 + ∥∇xu(s, ·)∥L∞)
(
¸ε(s) +W 2

1 (Ä(s, ·), Äε(s, ·))
)
ds. (53)

4.4. The control of the relative entropy. Now, we proceed to demonstrate the
convergence of the relative entropy ¸ε(t) to zero as ε → 0. To achieve this, we will
estimate all three terms on the right-hand side of (53).

For the first term in (53), which concerns the initial data, we contend that it can
be effectively controlled by the Wasserstein-1 distance W1(f

0
ε , f

0). As a result, we
can establish its smallness, in accordance with the assertion in (40). More precisely,
we have the following bounds:

¸ε(0) + Eε(0)− Eε(0) =
1

2

∫

Ω

(
Ä0ε|u0

ε − u0|2 − Ä0ε|u0
ε|2
)
dx+

1

2

∫

Ω×Rd

|v|2f0
ε dxdv

=
1

2

∫

Ω×Rd

|v − u0(x)|2f0
ε (x,v) dxdv

=
1

2

∫

Ω×Rd

|v − u0(x)|2(f0
ε (x,v)− f0(x,v)) dxdv

f 1

2

[
|v − u0(x)|2

]
Lip(x,v)

W1(f
0
ε , f

0) f Cε. (54)

Note that
[
|v − u0(x)|2

]
Lip(x,v)

is bounded as f0
ε is compactly supported, and u0 is

Lipschitz. The constant C may be taken as C = (1 + [u0]Lip)V0.
Next, we discuss the second term in (53). When p = 2, we have C2 = 0 and

there is no discrepancy. We take ε small enough with ε < 1
M . Recall the a priori

bound (35). It implies that the second term in (53) is negative.

When p > 2, we need to obtain an additional control to the discrepancy CpD
q
2
2ε.

Consider the function
F (x) = −ax+ bxγ

with a, b > 0 and µ ∈ (0, 1). One can easily obtain the maximum

max
xg0

F (x) = F (x∗) =
(
µ

1
1−γ + µ

γ
1−γ

)
a−

γ
1−γ b

1
1−γ , where x∗ = µ

1
1−γ a−

1
1−γ b

1
1−γ .

Take ε small enough such that ε < 1
2M . Apply the above estimate with

a =
1

ε
− ∥∇xu(t, ·)∥L∞ >

1

2ε
, b = Cp and µ =

q

2
.

We have

−1

ε
D2ε(t) + ∥∇xu(t, ·)∥L∞D2ε(t) + CpD

q
2
2ε(t)
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f
((

q
2

) 2
2−q +

(
q
2

) q
2−q

)
(2ε)

q
2−q C

2
2−q
p f Cε

q
2−q , (55)

where the constant C depends only on p.
Applying (54) and (55) to (53), we deduce

¸ε(t) fCε+ Cε
q

2−q t+ C

∫ t

0

(
¸ε(s) +W 2

1 (Ä(s, ·), Äε(s, ·))
)
ds. (56)

The constant C depends on initial data, the parameter p, and the a priori bound
M (see (35)).

To close the argument, we state the following control on W1(Ä, Äε) by the relative
entropy ¸ε.

Lemma 4.4. There exist a constant C = C(T,M) > 0, such that

W 2
1 (Ä(t, ·), Äε(t, ·)) f C

(
W 2

1 (Ä
0, Ä0ε) +

∫ t

0

¸ε(s) ds

)
, (57)

for any t ∈ [0, T ].

Some versions of Lemma 4.4 have been developed in e.g. [8, Lemma 5.2] (control
W2 distance by ¸ε), and [25, Lemma 5.2] (control W1 distance by kinetic relative
entropy). We include a proof of the Lemma here for self-consistency.

Proof of Lemma 4.4. Consider the flow maps Xε and X defined as
{
∂tXε(t,x) = uε(t,Xε(t,x)),

Xε(0,x) = x,
and

{
∂tX(t,x) = u(t,X(t,x)),

X(0,x) = x.

The solutions Äε and Ä of the continuity equations can be viewed as the push-forward
of the initial measure

Äε(t) = Xε(t)#Ä
0
ε, and Ä(t) = X(t)#Ä

0.

Note that since uε is not necessarily Lipschitz, Xε is not uniquely defined. The
push-forward relation should be realized in the probabilistic sense, see e.g. [8,
Proposition 3.3]. Namely, there exists a probability measure ¸ε, defined on ΓT ×Ω,
where ΓT denotes the space of absolutely continuous curves from [0, T ] to Ω, such
that

(i) ¸ε is concentrated on the set of pairs (µ,x) such that µ is a solution of

µ′(t) = uε(t, µ(t)), ∀ a.e. t ∈ (0, T ), with µ(0) = x, (58)

(ii) Äε satisfies
∫

Ω

φ(x)Äε(t,x) dx =

∫

ΓT×Ω

φ(µ(t)) d¸(µ,x) =

∫

ΓT×Ω

φ(µ(t)) ¸ε(dµ,x)Ä
0
ε(x) dx,

for any test function φ ∈ C0
c (Ω) and t ∈ [0, T ]. Here ¸ε(dµ,x) is the (marginal)

probability distribution on functions in ΓT that solves (58) with a given x.
Let us define another measure

Ä̃ε(t) = X(t)#Ä
0
ε,

and decompose

W1(Ä(t, ·), Äε(t, ·)) f W1(Ä(t, ·), Ä̃ε(t, ·)) +W1(Ä̃ε(t, ·), Äε(t, ·)). (59)



HYDRODYNAMIC LIMIT OF A KINETIC FLOCKING MODEL 627

For the first part, Ä and Ä̃ε shares the same flow. We obtain

W1(Ä(t, ·), Ä̃ε(t, ·)) = sup
[g]Lipf1

∫

Ω

g(x)(Ä(t,x)− Ä̃ε(t,x)) dx

= sup
[g]Lipf1

∫

Ω

g(X(t,x))(Ä0(x)− Ä0ε(x)) dx

f∥∇X(t, ·)∥L∞ W1(Ä
0, Ä0ε) f eMtW1(Ä

0, Ä0ε). (60)

For the second part, Ä̃ε and Äε shares the same initial data. We have

W1(Ä̃ε(t, ·), Äε(t, ·)) = sup
[g]Lipf1

∫

Ω

g(x)(Ä̃ε(t,x)− Äε(t,x)) dx

= sup
[g]Lipf1

∫

Ω

(
g(X(t,x))−

∫

ΓT

g(µ(t))¸ε(dµ,x)

)
Ä0ε(x) dx

f
∫

ΓT×Ω

∣∣X(t,x)− µ(t)
∣∣ ¸ε(dµ,x) · Ä0ε(x) dx =: B(t).

Clearly, B(t) is continuous, and differentiable for almost every t ∈ [0, T ]. Compute
the time derivative of B(t) and get

B′(t) f
∫

ΓT×Ω

∣∣u(t,X(t,x))− uε(t, µ(t))
∣∣ ¸ε(dµ,x) · Ä0ε(x) dx

f
∫

ΓT×Ω

∣∣u(t,X(t,x))− u(t, µ(t))
∣∣ ¸ε(dµ,x) · Ä0ε(x) dx

+

∫

ΓT×Ω

∣∣u(t, µ(t))− uε(t, µ(t))
∣∣ ¸ε(dµ,x) · Ä0ε(x) dx

f∥∇u(t, ·)∥L∞

∫

ΓT×Ω

∣∣X(t,x)− µ(t)
∣∣ ¸ε(dµ,x) · Ä0ε(x) dx

+

∫

Ω

|u(t,x)− uε(t,x)|Äε(t,x) dx

fMB(t) +
√

¸ε(t).

Together with B(0) = 0, we apply Grönwall inequality and obtain

W1(Ä̃ε(t, ·), Äε(t, ·)) f B(t) f
∫ t

0

eM(t−s)
√
¸ε(s) ds f

√
teMt

(∫ t

0

¸ε(s) ds

) 1
2

.

(61)
Finally, we apply (60) and (61) to (59), yielding

W 2
1 (Ä(t, ·), Äε(t, ·)) f 2(1 + t)e2Mt

(
W 2

1 (Ä
0, Ä0ε) +

∫ t

0

¸ε(s) ds

)
.

This finishes the proof of (57), with C = C(T,M) = 2(1 + T )e2MT .

The initial distance W 2
1 (Ä

0, Ä0ε) is small due to the assumption (40). Indeed, we
have

W1(Ä
0, Ä0ε) = sup

[g]Lipf1

∫

Ω

g(x)(Ä0(x)− Ä0ε(x)) dx

= sup
[g]Lipf1

∫

Ω×Rd

g(x)(f0(x,v)− f0
ε (x,v)) dxdv f W1(f

0, f0
ε ) < ε.
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Adding (56) and (57), we arrive at the inequality

¸ε(t)+W 2
1 (Ä(t, ·), Äε(t, ·))

fC

[
ε+ ε

q
2−q + ε2 +

∫ t

0

(
¸ε(s) +W 2

1 (Ä(s, ·), Äε(s, ·))
)
ds

]
.

Applying Grönwall inequality, we end up with

¸ε(t) +W 2
1 (Ä(t, ·), Äε(t, ·)) f CeCt(ε

q
2−q + ε+ ε2)

ε→0−−−−→ 0, (62)

for any t ∈ [0, T ]. Here, the power q
2−q ∈ (0, 1

2 ] since q ∈ (0, 1].

4.5. Proof of Theorem 3.2. Now we apply the estimate (62) to obtain our main
convergence result (41).

Let g = g(x,v) be a test function such that [g]Lipx,v
f 1. In the following

calculation, we fix a time t and suppress the t-dependence. Compute
∫

Ω×Rd

g(x,v)(f(x,v)− fε(x,v)) dxdv

=

∫

Ω×Rd

g(x,u(x))(f(x,v)− fε(x,v)) dxdv

+

∫

Ω×Rd

(g(x,v)− g(x,u(x)))(f(x,v)− fε(x,v)) dxdv

=: K1 +K2.

We estimate term by term. For K1, we have

|K1| =
∣∣∣∣
∫

Ω

g(x,u(x))(Ä(x)− Äε(x)) dx

∣∣∣∣ f (1 + [u]Lip)W1(Ä, Äε).

For K2, note that
∫

Ω×Rd

(g(x,v)− g(x,u(x)))f(x,v) dxdv

=

∫

Ω×Rd

(g(x,u(x))− g(x,u(x)))Ä(x) dx = 0.

Therefore,

|K2| =
∣∣∣∣
∫

Ω×Rd

(g(x,v)− g(x,u(x)))fε(x,v) dxdv

∣∣∣∣ f
∫

Ω×Rd

|v − u(x)|fε(x,v) dxdv

f
∫

Ω×Rd

|v − uε(x)|fε(x,v) dxdv +

∫

Ω

|uε(x)− u(x)|Äε(x) dx f D
1
2
2ε + ¸

1
2
ε .

Combine the estimates above and take supreme over all test functions g. We obtain

W1(f, fε) f (1 +M)W1(Ä, Äε) + ¸
1
2
ε +D

1
2
2ε.

From (27), we have the control
∫ T

0

D2ε(t) dt f ε E0
ε f Cε.

Together with (62), we deduce the bound
∫ T

0

W 2
1 (f(t), fε(t)) dt f C(ε

q
2−q + ε+ ε2)

ε→0−−−−→ 0, (63)
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where the constant C depends on p, T,M and initial data. Therefore, we conclude
with the convergence

W1(f(t), fε(t)) → 0, in L2(0, T ).

This leads to the convergence result (41). To see this, we consider a test function
g = g(t,x,v) in C([0, T ], Lip(Ω× R

d)). Thus computing,
∫ T

0

∫

Ω×Rd

g(t,x,v)(f(t,x,v)− fε(t,x,v)) dxdvdt

f
∫ t

0

[g(t)]Lipx,v
W1(f(t), fε(t)) dt

f
∥∥[g(t)]Lipx,v

∥∥
L2(0,T )

∥∥W1(f(t), fε(t))
∥∥
L2(0,T )

→ 0.

Note that Lipschitz functions in a bounded domain are dense in the space of contin-
uous functions. From Proposition 2.5, we know that the measures f(t) and fε(t) are
compactly supported. Then we apply the density argument and obtain convergence
for any test function g ∈ Cc([0, T ]× Ω× R

d).

Remark 4.5. We would like to mention another type of relative entropy, referred
to as the kinetic relative entropy :

¸Kε (t) =
1

2

∫

Ω×Rd

|v − u(t,x)|2fε(t,x,v) dxdv.

In [25], Shvydkoy applies the relative entropy method based on ¸Kε to derive the
hydrodynamic limit for the kinetic flocking model with linear velocity alignment
(p = 2). This approach can be adapted to the nonlinear case (p > 2), using a
similar argument to handle the discrepancy term.

5. Isothermal hydrodynamic limit. In this section, we discuss another type of
hydrodynamic limit, by isothermal ansatz (17). The main point we would like to
make is that the alignment force A[Ä,u] that appears in the limiting system

∂t(Äu) +∇x · (Äu¹ u) +∇xp = ÄA[Ä,u]

does not necessarily share the same mapping Φ as the kinetic equation (18).
To illustrate this point, we perform the following formal calculation.
Multiplying (18) by v and integrating in v, we obtain the momentum equation

(31), with the right-hand side

F(t,x) :=

∫

Rd

F(fε)fε dv =

∫

Ω×R2d

ϕ(x− y)Φ(w − v)f(t,x,v)f(t,y,w) dydvdw.

We suppress the t-dependency in the following calculation for simplicity. Applying
isothermal ansatz (17), we get

F(x) = (2Ã)−d

∫

Ω×R2d

ϕ(x− y)Φ(w − v)e−
|v−u(x)|2+|w−u(y)|2

2 Ä(x)Ä(y) dydvdw

=
Ä(x)

(2Ã)d

∫

Ω×R2d

ϕ(x− y)Φ
(
(w − v) + (u(y)− u(x))

)
e−

|v|2+|w|2

2 Ä(y) dydvdw.

Substituting a = w − v and b = w + v yields

F(x) =
Ä(x)

(4Ã)d

∫

Ω×R2d

ϕ(x− y)Φ
(
a+ (u(y)− u(x))

)
e−

|a|2+|b|2

4 Ä(y) dydadb
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=
Ä(x)

(4Ã)d/2

∫

Ω×Rd

ϕ(x− y)Φ
(
a+ (u(y)− u(x))

)
e−

|a|2

4 Ä(y) dyda

= Ä(x)

∫

Ω

ϕ(x− y)Ψ(u(y)− u(x))Ä(y) dy,

where the mapping Ψ is defined as

Ψ(z) =
1

(4Ã)d/2

∫

Rd

Φ(a+ z)e−
|a|2

4 da = (Φ ∗M)(z), (64)

where ∗ stands for convolution, and the function M is defined as

M(z) =
1

(4Ã)d/2
e−

|z|2

4 .

One easy observation is that Ψ is an odd mapping like Φ. When Φ(z) = z is
linear, we have

Ψ(z) =
1

(4Ã)d/2

∫

Rd

(a+ z)e−
|a|2

4 da = 0 + 1 · z = z.

However, when Φ is nonlinear, the mapping Ψ is not the same as Φ. To illustrate
this point, we perform the following explicit calculate on Ψ in the case:

Φ(z) = |z|p−2z = z2k−1,

where p = 2k is an even integer, and d = 1. Compute

Ψ(z) =

∫

R

(z + a)2k−1M(a) da =

2k−1∑

j=0

(
2k − 1

j

)
z2k−1−j

∫

R

ajM(a) da

=

k−1∑

j=0

(
2k − 1

2j

)
22jΓ(j + 1

2 )

Γ( 12 )
z2k−1−2j ,

where we have used the following identity on moments of normal distribution:

∫

R

zkM(z) dz =

{
2kΓ( k+1

2 )

Γ( 1
2 )

k is even,

0 k is odd.

For example, when Φ(z) = z3 (p = 4, or k = 2), we have

Ψ(z) = z3 + 6z.

Unlike Φ, the nonlinearity Ψ behaves like O(z) instead of O(z3) near z = 0. There-
fore, the hydrodynamic limit of (18) does not have the same p-alignment force.

The rigorous justification of the isothermal hydrodynamic limit will be left for
future investigation.
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