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ABSTRACT. We investigate a class of Vlasov-type kinetic flocking models fea-
turing nonlinear velocity alignment. Our primary objective is to rigorously
derive the hydrodynamic limit leading to the compressible Euler system with
nonlinear alignment. This study builds upon the work by Figalli and Kang
[8], which addressed the scenario of linear velocity alignment using the relative
entropy method. The introduction of nonlinearity gives rise to an additional
discrepancy in the alignment term during the limiting process. To effectively
handle this discrepancy, we employ the monokinetic ansatz in conjunction with
the relative entropy approach. Furthermore, our analysis reveals distinct non-
linear alignment behaviors between the kinetic and hydrodynamic systems,
particularly evident in the isothermal regime.

1. Introduction. In this paper, we consider the following Vlasov-type of kinetic
flocking model

OWf+v-Vaf + V- (F(f)f) =0, (1)

where f = f(t,x,v) with (¢,x,v) € Ry x © x RZ. The spatial domain 2 can be
either the whole space R? or the periodic domain T¢. The alignment force F is
defined as

PUNExY) = [ o= y)Blw =)ty w) dy dw. )
X
Here, ¢ is the communication protocol, representing the strength of pairwise align-
ment interaction. Throughout the paper, we assume that ¢ is radially symmetric,
bounded, Lipschitz, and non-increasing along the radial direction. Typical choices
are:
o(x) =1+ x)™ a=0.
The mapping ® : R? — R? describes the type of alignment. One classical choice
is the linear mapping
b(z) = z. (3)
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The corresponding system (1)-(3) is often referred as the Viasov-alignment system.
It is a kinetic representation of the Cucker-Smale dynamics [5] that models the
flocking phenomena in interacting particle systems.

A generalization of the Cucker-Smale dynamics was introduced in [9]:

Xi = Vi,
N d
1 (Xi,Vi)EQXR . (4)
Vi = ;q’)(xl x;)®(v; — Vi),

The system features a nonlinear velocity alignment, where the mapping ® takes the
form

®(z) = [z[" %z, p>2. (5)

When p = 2, the mapping ® is linear, and (4) reduces to the Cucker-Smale dynam-
ics. For p # 2, the nonlinearity lead to different asymptotic flocking behaviors, as
explored in various studies [32, 21, 15, 1]. The system (1)-(2) was derived in [2] as a
kinetic representation of (4). The global well-posedness theory was also established
in the same work.

A macroscopic representation of the system (1)-(2) is the following compressible
Euler system with alignment interactions:

{8tp+ Vx - (pu) =0,

at(pu) + vx . (pU® u) = pA[p,uL (6)

where the alignment force A[p, u] is defined as
Alpul(t,x) = | d(x—y)@(ult,y) —ult, x))o(t,y) dy- (7)
R

With the linear mapping (3), the system (6)-(7) is known as the Fuler-alignment
equations. The system has been extensively investigated in the last decade, see e.g.
[29, 3, 26, 27, 6, 16, 30, 22, 31, 17, 18, 19]. For more results on the Euler-alignment
system, we refer to the recent book by Shvydkoy [25].

We are interested in the connection between the kinetic equations (1)-(2) and
macroscopic system (6)-(7). The formal derivation was first established in [10] when
the mapping @ is linear (3). The Euler-alignment equations were derived by taking
zeroth and first moments of f on v, and formally apply the mono-kinetic ansatz

f(t7 X, V) = p(t, X)(sv:u(t,x)a (8)

where ¢ denotes the Dirac delta function.
The rigorous justification of the hydrodynamic limit is discussed by Figalli and
Kang in [8]. The starting point of their analysis is the kinetic flocking equation:

8tfa +v- foe +Vy - (F(fe)fa) = évv ' ((V - ue)fs)- (9)

In addition to the alignment interaction (2), there is another linear relaxation term
on the right-hand side of (9). As the parameter ¢ tends to zero, the relaxation
term enforces the mono-kinetic ansatz (8). This relaxation term was introduced in
[13, 11], viewed as local alignment.

The macroscopic density and momentum associated with f. are denoted by p.
and p.u. respectively. These are defined as the zeroth and first moments of f. with
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respect to velocity v, expressed as:

pe(t,x) = /d fe(t,x,v)dv, p.uc(t,x)= /dvfg(tx, v)dv. (10)
R R
Hence, the velocity v is relaxed to the macroscopic velocity u. given by:

 Ja VIt x,v)dv
u.(t,x) := ?;dj;@,x,v)dv : (11)

From (9) with (2) and (3), the dynamics of p. and p.u. can be derived, resulting
in the following system:

atpe + Vx : (paue) = 07

at(peus) + Vx - (peus du. + Re) = pe(x) /Q ¢(X - Y)(UE(Y) - ua(x))pe(y)dy,
(12)

where R. represents the Reynold’s stress tensor
Re(t,x) = / (v—u.)®(v—u.)f(t,x,v)dv. (13)
Rd

Formally applying the mono-kinetic ansatz (8) to (13) results in R. = 0. Conse-
quently, (12) transforms into the pressure-less Euler-alignment equations (6) with

The rigorous derivation of the hydrodynamic limit, however, is non-trivial. In
[8], a relative entropy method is employed to rigorously establish the limit:

fE(tv X, V) - f(t7X’ V) = p(tax)év:u(ttx)
in an appropriate sense. Here, (p, pu) constitutes the solution to the Euler-alignment
equations.

In this paper, our primary objective is to generalize the findings on the hydro-
dynamic limit to the case of nonlinear velocity alignment described by (5) with
p> 2.

The formal derivation for the hydrodynamic limit involving general choices of p
has recently been undertaken by Tadmor in [28]. The alignment force (7) with ®
in (5) is referred as p-alignment. The limiting system (6) has been less thoroughly
understood compared to the Euler-alignment equations (when p = 2), primarily
due to the introduced nonlinearity. Recent investigations, as reported in [28, 20, 1],
have shed light on intriguing asymptotic behaviors stemming from the nonlinear
nature of p-alignment.

One significant challenge in rigorously justifying this limit arises from the non-
linearity, which introduces an additional term in the momentum equation:

Oh(peis) + V- (Pt ©U. +Re) = pa(x) /Q 6(x— y)®(uc(y) — ue (x))pe (y)dy + Ge.

(14)
The discrepancy term G. = G.(t,x) takes the form

| oy =y = () = )P w = ) e W ) dydvie

(15)
We refer to Section 3.1 for a formal derivation of the discrepancy G.. It is noteworthy
that when the mapping @ is linear (p = 2), the discrepancy G. does not exist, i.e.,
G. = 0. Conversely, when p > 2, obtaining additional control over the term G.
becomes imperative.
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Formally inserting the mono-kinetic ansatz (8) into (15) results in G. = 0. Con-
sequently, the expectation is that the discrepancy vanishes as ¢ — 0. However,
achieving a rigorous limit requires delicate control of G. through the relative en-
tropy and the linear relaxation. This undertaking will be thoroughly investigated
in the course of this paper.

We are ready to state our main result on the rigorous derivation of the hydrody-
namic limit.

Theorem 1.1. Let f. and (p,u) be the solutions to (9) and (6) respectively in the
time interval [0, Ty], with well-prepared initial data. Then

ft‘(ta X, V) - f(tv X, V) - p(tv X)évzu(t,x)a ase — 0.

Remark 1.2. The complete details of the theorem, including the definitions of
solutions to the systems, the interpretation of well-prepared initial data, and the
notation of convergence, will be presented later in the main context. Refer to
Theorem 3.2 for the comprehensive results.

Remark 1.3. In this paper, we primarily focus on the p-alignment nonlinearity
given by (5). However, it is worth noting that Theorem 1.1 remains valid for a
more general class of nonlinearities of the form

®(2) = h(|z|)z, (16)

where h is an increasing function on Ry such that h(0) = 0, and h € C?(R;) for
q € (0,1]. For details on how Holder/Lipschitz continuity on b is incorporated into
our argument, refer to Remark 4.3.

It is crucial to underscore that the mono-kinetic ansatz (8) plays a pivotal role
in establishing the same nonlinearity ® in the resulting system (6). Notably, the
alignment interaction within the limiting system does not necessarily conform to the
same nonlinearity in general. We illustrate this aspect in the subsequent discussion.

One commonly considered equilibrium state is the Gaussian function

v—u(t,x)|?
F(tx,v) = p(tx) - (2m) " Fem THEE (17)
known as the isothermal ansatz. Plugging in this ansatz to (13) would yield
Re(t,x) = pe(t,x) Ly,

where I; denotes the d-by-d identity matrix. In the case of a linear mapping P,
the limiting system corresponds to the Euler-alignment equations with isothermal
pressure. Specifically, the momentum equation takes the form

Bi(pu) + Vi (pu® ) + Vap = pe(x) /Q B(x — ¥)(Ue(y) — e (x))pe () dy.

The rigorous derivation of this type of hydrodynamic limit has been explored in
[14], stemming from the following Vlasov-Fokker-Planck equation with alignment

atfs +v- vxfe + Vv : (F(fe)fe) = évv : ((V - ue)fa) + éAvfm (18)

where the right-hand side enforces the isothermal ansatz (17) as ¢ — 0.

For a nonlinear mapping ® in (5) with p > 2, a crucial observation is that G.
does not tend to zero as € — 0. Consequently, the alignment interaction in the
limiting system is not p-alignment. We present the isothermal hydrodynamic limit
in Section 5, leaving the rigorous justification for future investigation.
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We would also like to highlight a distinct type of communication protocol ¢,
known as singular communications, where ¢ is unbounded at the origin. For in-
stance, ¢(x) = |x|7* with @ > 0. The kinetic equation (1)-(2) with singular
communication ¢ and linear mapping ® has been investigated in [23, 4]. A recent
paper [7] suggests that singular communications enforce mono-kinetic ansatz (8).
A rigorous study of the hydrodynamic limit in this context would be interesting.
Some relevant studies have been conducted by Poyato and Soler in [24].

The rest of the paper is organized as follows. Section 2 presents some preliminary
results on the kinetic flocking equation (9). Section 3 consists of a formal derivation
of the hydrodynamic limit from (9) to (6), a local well-posedness theory for the
limiting system (6), and the complete statement of our main result, Theorem 1.1.
The proof of the theorem is furnished in Section 4, leveraging the relative entropy
method. The key innovation lies in controlling the discrepancy G. through the mono-
kinetic structure enforced by the linear relaxation. Finally, Section 5 discusses the
hydrodynamic limit with the isothermal ansatz (17). Notably, the limiting system
has an alignment force that is different from the p-alignment.

2. The Vlasov-alignment system. In this section, we state a collection of pre-
liminary results on the Vlasov-alignment system (9). Recall the dynamics

Ofe +v - Vxfe +Vy- (F(fs)fs) = %Vv : ((V - us)fs)7
fE(O,X,V) :fz?(x7v)7

where the alignment force F is defined in (2).
We assume non-negative and compactly supported initial data

f2(x,v) >0, diam(supp, f2) < 8% < oo, and diam(supp, f°) <V’ < oo, (20)

(19)

where (8%, V0) are finite numbers that are independent with . For simplicity, we
assume unit total mass

/ f2(x,v)dxdv = 1. (21)
QxR4
Note that the total mass is preserved in time.

2.1. Local and global well-posedness. The global well-posedness theory for
classical solutions to (1) follows from standard argument for Vlasov-type equa-
tions. It requires Lipschitz continuity in (x,v) of the forcing terms F(f.). See [10,
Theorem 3.3] for the case p = 2, and [2] for more general discussions.

For equation (19) with the linear relaxation term, additional a priori control of

VU, is required to ensure Lipschitz continuity of the term %(v —u.).

Proposition 2.1. Let f0 € (C* N W1>)(Q x R?) and satisfies (20). There exists
a unique classical solution f. € C*([0,T) x Q x R?) to equation (19), provided
||qu€HLoo([07T)><Q) < +00. (22)

In [12], the authors construct weak solutions to (19) with p = 2 by regularizing
u. and obtaining uniform control analogous to (22). We state the following version
of their theorem for general p-alignment.

Proposition 2.2. Let f0 € L>=(Q x RY) and satisfies (20). Then there ezists a
weak solution f. € L>=([0,T) x QxR%) to equation (19) in the sense of distribution,
that 1is,
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T
1
/ / f- (at@ FV-Vep + F(f) - Veg + —(ue — v) - Vv<p) dxdvdt  (23)
0 QOxR4 €

+ / ffg@(O, ) dxdv = 0,
QxR4

for any p € C°([0,T) x Q x RY).

Remark 2.3. Shvydkoy [25] studied the hydrodynamic limits from (1) with a
regularized local relaxation term 1V, - ((v — u?)f.), so that condition (22) holds
for any fixed 6 > 0. Applying Proposition 2.1, the kinetic equation has a unique
classical solution f°. The hydrodynamic limit can then be studied by letting e, — 0
appropriately. For (19), there is no uniqueness guaranteed for the weak solution.
We will show the hydrodynamic limit starting from any weak solutions f. that
satisfy (23).
We define the kinetic energy (or entropy)
1

E(t) = 5/9 o [v|?f-(t,x, V) dxdv. (24)

The energy is dissipated by the alignment force F, as well as the local relaxation.
Define the kinetic enstrophy

1
Dls (t) - 5 \/('22 2 ¢(X - y)|W - V|pf6 (t7 X, V)fs (ta Y, W) dXddedW, (25)
Do (t) = /Q y |v — u.|?fo(t,x, V) dxdv. (26)

We have the following bound on the energy dissipation.

Proposition 2.4. For any e > 0, let f. be a weak solution to (19). We have

d 1

%gs(t) < _Dls(t) - EIDQE(t)a (27)
where the energy E. and enstropy Di., Do are defined in (24), (25) and (26),
respectively.

Proof. Suppose f¢ is a classical solution to (19). We utilize (19) and get

d 1 ,
ﬁf,’g(t) _E/Qx]Rd [v|“0; fo dxdv

_ / |V|2V : vxfa dxdv — / wvv . (F(fa)fe) dxdv
QxR

2 QxRd 2

1 2
+ 7/ ﬂvv (v =) fe) dxdv
QxR4 2

/QXRdv~F(f5)fsdxdv—é/ v (v —u.)f.dxdv

QxR4
= / Px—y)v-(wW—v)w-— v|p*2fs(x, v) fe(y, w) dxdydvdw
Q2 xR24

1
_,/ (v —u) - (v — u.)fe dxdv
€ Joxrd
1
= - Dle - 7’D25-
3
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Here, we have used the identity f]Rd (v —u.)fe dv = 0 in the penultimate equality,
and symmetrized in (v, w) for the last equality.

For weak solutions, we apply the calculation above to a sequence of smooth
approximations, and pass to the limit to obtain the inequality (27). O

2.2. Asymptotic flocking behavior. In this part, we present several properties
of the solution f. to (19) concerning its support in (x,v). We define the variation
of position and velocity as follows:

S.(t) = diam(suppy fe(t)), Ve(t) = diam(suppy, f=(t)). (28)
We begin by stating a maximum principle that will be utilized throughout this
paper.

Proposition 2.5. Suppose f. is a weak solution to (19), with initial data f° sat-
isfying (20). Then we have

V.(t) <V, and S-(t) <S°+1V°, (29)
for anye >0 and t € [0,T).

The maximum principle (29) holds for general nonlinearity (16). For p-alignment
(5), refined estimates can be obtained. Indeed, a similar argument as in [1] yields
the following system of inequalities on (S¢, Ve ):

SL(t) < Ve(t), _ S.(0) < 8°,
{Vé<t> < —2gsvap, {vs(o) <V, (30)

The analysis of (30) reveals asymptotic alignment and flocking behavior in the
system. For instance, assuming ¢ has a positive lower bound ¢ > 0, we obtain

VI(t) < =227PgV(¢)P7h, V.(0) <)V,

which implies velocity alignment with an algebraic decay rate for p > 2. Specifically,

we have
1
1

Vo) < (00) 0 4 220 (p—2)9t) T ST

This is notably different from the case of linear mapping (p = 2), where the decay
rate is exponential.

A more interesting setup occurs when Q = R¢ and ¢ decays to zero like ¢(r) ~
r~%. The system (19) exhibits different asymptotic behaviors for various choices of
p and «. Detailed discussions are provided in [1].

3. Hydrodynamic limit.

3.1. A formal derivation. We start with a formal derivation of the hydrodynamic
limit from the kinetic system (9) to the Euler-alignment system (6). The derivation
was first established in [10] for the linear alignment case p = 2, and in [28] for
general nonlinear alignment with p > 2. For the sake of completeness, we present a
formal derivation in this paper, under our notations.

We start with computing the zeroth and first moments of f.. Integrating (9) in
v yields the continuity equation

Ope + Vx - <p5u5> =0.
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Multiplying (9) by v and integrating in v, we obtain the momentum equation

Oi(peus) + Vg - | vV edv = / F(fe)fedv. (31)
R R4

We rewrite the second moment by

/ V®Vf5dV = psu6®u6+R57
Rd
where R. is the Reynold’s stress tensor defined as

Re= [ (v—u.)®(v—u.)fdv.
R4

For the alignment term on the right hand side of (31), if p = 2, it can be
represented by the macroscopic quantities (pe, u.). Indeed, in this case, we have

/ F(f.)/. dv = / B(x — ¥)(W — V) 12 (%, V) foly, W) dydvdw
Rd

OxRIxR2
- / $(x — ¥)(Ue(y) — 1 (3))pe(x)p () dy = peAper ).

When p > 2, the alignment term depends on higher moments of f.. We decompose
F into two parts

F(fo)(x,v)

- / 6(x — y)[uc(y) — ue ()P 2(w — V) - (t, y, w) dydw
QxR

+ / d(x —y)(Iw = v[P7? = Juc(y) —w(x)"?)(w = v) fe(t,y, w) dydw
QxR
= F1(f)(x,v) + F2(fo)(x,v).

The first term F; is linear in v. Hence, we have

/ Fi(fo)fedv =/ P(x — y)|u(y) — ue(x)[P 7 (uc(y) — ue(x))pe(x)pe(y) dy
R4 Q

=pe(x) /Q ¢(x = y)@(u:(y) — us(x))p=(y) dy = p=A(pz, uc).

For the remaining term Fs, we denote

Ge(t,x) := /]Rd Fo(f(t,x,v))fe(t,x,v)dv

- / o(x — Y)W — VP2 — Juc(y) — ()P 2) (w — )
QxR24

fe(x,v) fe(y, w)dydvdw.
We summarize the above computation and obtain the following dynamics of
(pe,ue):

{@pe + Vi (pSUE) =0, (32)

at(peus) + Vi - (peus @ us) +Vx - Re = PEA[Pe, 115] +G..

Now, we take a formal limit e — 0. The leading order O(e~!) term in (9) is the
local relaxation

1
EVV ((v—u.)f:) =0.
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This implies that the limiting profile f is mono-kinetic. More precisely, if
Pe = P, pellc = pu
in some appropriate sense, then we have
fe(t,x,v) = f(t,%x,v) = p(t,X)0y—u(t,x)
Moreover, the mono-kinetic structure of f implies that
R =0, G.—0.
Therefore, the limit quantities (p,u) solve the Euler-alignment system (6).

3.2. The Euler equations with p-alignment. For the Euler-alignment system
with p = 2, local and global well-posedness theories have been well-established for
smooth solutions in Sobolev spaces H*(2) x H5T1(Q), as discussed in, for example,
[29]. The theory is based on the following non-conservative form of the Euler-
alignment system:

{atp + Vx - (pu) = 0, (33)

Jru+u-Veu= Afp,u],

The systems (6) and (33) are equivalent if p stays away from zero. Moreover, any
smooth solution to (33) is also a solution to (6).

To be consistent with the conditions (20) and (21) for the kinetic equation (19),
we assume initial data (p°,u") satisfy

diam(suppp’) < S < 0o, diam(Range(u?)) < V° < oo, / x)dx =1. (34)

One crucial aspect of the global well-posedness theory to (33) is the control of
the Lipschitz bound on the velocity [u(t,-)]rip. Subsequently, the propagation of
higher Sobolev norms follows from energy estimates.

However, for the case of general nonlinear alignment, obtaining smooth solutions
is more challenging due to the non-smooth behavior of ® near the origin. Here, we
present a well-posedness theory for solutions in the space (LN L) () x W1 (Q).
Proposition 3.1. Suppose the initial data (p°,u°) satisfy (34) and

(p°,u°) € (L' N L®)(Q) x Whe(Q).

Then, there exists a time T such that the system (33) with (7) admits a unique
strong solution

(p,u) € C([0,T), (L' N L=)(Q)) x C([0,T), W ().
Moreover, the time span of the solution can be extended as long as
IVxull Lo 0,7y x0) < M, (35)
where M is a finite number.
Proof. From (33), we obtain the dynamics of the velocity
(O +u-Vx)u=Alp,ul. (36)
Applying gradient to the equation yields
(0 +u- Vi) Viu = —(Vyu)? + ViAlp, ul.

We estimate the p-alignment as follows:

IV Alpu]| < / IVo(x —y)| - |@(u(y) — u)| - ply) dy
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+ [ ox =) [V(uly) — uex)| - [Vuix)| - p(y) dy
<@l OO+ 9l - (o= DO [Vcul .

This leads to the estimate on Vyu:

d
Iult, )
< [Vxu(t, Ve + 10l - (0= DY [Vt + [6lip - ()7

Apply Cauchy-Lipschitz theorem, there exists a time T' > 0 such that | Vyu(t, )| L
is bounded for any ¢ € [0,T]. Furthermore, (35) holds.
Note that [|u(t,-)||r=~ < |[u’||z=~ by maximum principle (argued similarly as in
Proposition 2.5). Consequently, we obtain an a priori bound on u(t) in W1>°(Q).
For the density, ||p(t,)||z1 is conserved in time due to the conservation of mass.
Given a Lipschitz velocity field (35), ||p(¢, )|z has the a priori bound

t
ot Yz < [|p°]|zoeelo V=0l do < g0 poc M,

for any ¢ € [0, T].

Next, we turn to prove uniqueness. Let (p1,u;) and (pz,uz) be two solutions to
(33) with same initial data (p°,u"). Assume (35) holds for u; and uy. Then the
flow maps X;(t,x) and X (t,x) with

O X, (t,x) =u(t, X;(¢,x)), X;(0,x)=x%, i=1,2,
are well-defined on [0,T] x Q. Let us denote
ox(t) == suF2 X1 (t,x) — Xa(t,x)],  Ou(t) := suF2 Jus (¢, X1 (%)) — ua(t, Xao(t,%))].
pS pS

Clearly, we have for almost all ¢ € [0,T],

Sx(1) < bult), (37)

Applying (36) to (p;,u;) and evaluating at (¢, X;(¢,x)), we obtain
d

%ui(t, X (t,x)) = Alps, w)(t, X; (¢, %))

[ ot = 3) 8 (w:(1.3) = it Xi(0,2)) )i (6,7) 7
Q

[ 00%u(13) = Xu0.3)) @ (. X(1.3) = (6. Xel0:) ) () .
Here we change variable y = X;(¢,y) and apply the p-equation in (33) to get
pi(t,y)dy = p°(y) dy.

For simplicity, we suppress the t-dependence and use the following shortcut no-
tations:
Xi = Xz‘(t,X), Y,L = Xl(t,y)
Compute the difference

d

% (ul(Xl) — UQ(XQ))

= /Q (¢(X1 - Y1) - o(Xs — Y2)><I>(u1(Y1) — i (X,))p°(y) dy
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+ [ 6% = Ya) (B (Y1) ~ (X)) — B(ua(Ya) - walXa) )2 (y) dy
Q
= H, + Ho. (38)

We now estimate term by term. For Hi,
Hy| < /Q[¢]Lip|(x1 CXa) — (Y1 — o)l - B(w (Y1) — w(X1))py) dy

< [Blrip - 26x - (V0P L.
For Hs, we have
| Hs|

/Q¢(X2 -Yy)- V‘b(f)((m(Yl) —uy(Yy)) — (wi(Xy) - uz(Xz))>PO(Y) dYI
<l - (p = 1)(VO)P=2 - 26,

Here £ lies in between u;(Y71) — u1(X;) and uz(Ys) — up(Xs). From maximum
principle analogous to (29) (see [1]), we have |u;(Y;) — w;(X;)| <V, fori = 1,2.
Therefore, |¢| < VP, leading to the last inequality above.

Applying both estimates to (38), we deduce

@ 5ult) < O(ox(0) + 8u(1), (39)

for almost all ¢ € [0, T], where the constant C' depends on ¢, VY and p.
We put together (37) and (39), and obtain

S(0x(0) +8(0) < (€ +1)(3x(0) +8u(0).

Since dx(0) = §4(0) = 0, we conclude with
0x () + du(t) < (6x(0) + 64(0))el TV =0,
namely dx () = 0u(t) = 0 for any ¢ € [0, T]. Therefore,
Xi(t,x) = Xa(t,x) =: X,

and we conclude with uniqueness:

up (ta X) =u (tv X1 (ta X)) = U2 (tv X2 (ta X)) = u2 (t’ X)a

p1(t,X) = pO(X)efJ Vaeur (7,X1 (7,%))d7T _ pO(X)efJ Vaeg (7,Xo (7,%))dr _ p2(t, X),
for any ¢t € [0,7] and X € . O
3.3. Statement of the main result. Our main goal is to establish a rigorous
derivation of the hydrodynamic limit. We consider the following well-prepared
initial data f0 satisfying (20) where (S°, V?) are independent of e. Moreover, f0 is
close to the initial data (p°, u°) of the limiting system (33), in the sense

Wl( £7f0><57 (40)
where f© is defined as
fo (Xa V) = PO (X)dv:uo(x)v

and Wy is the 1-Wasserstein metric. It can be defined through the dual representa-
tion

Wi(f,g)= sup /X (@) (f(z) — 9(x)) da

[‘P]Lipgl



620 MCKENZIE BLACK AND CHANGHUI TAN

where f, g are arbitrary real-valued functions on X. In our context, X = Q x R<.
We now state our main result on the hydrodynamic limit.

Theorem 3.2. Assume the initial data O and (p°,u®) satisfy (20)-(21), (34), and
(40). Let f. be a weak solution to (19), and (p,u) be a strong solution to (33) up
to time T'. Denote

f(ta X, V) - p(t7x)5v=u(t,x)~
Then, we have

Je(t,x,v) = p(t,X)0v—y(t,x) 0 M((0,T) x Q x Rd), (41)

where M((0,T) x Q x R?) is the space of nonnegative Radon measures on (0,T) x
Q x R4,

More quantitative estimates to the limit (41) will be presented in (62) and (63).

4. Rigorous derivation. In this section, we present the proof of our main theorem
regarding the rigorous hydrodynamic limits, as outlined in Theorem 3.2. When the
velocity alignment is linear (p = 2), a framework has been established in [8]. Our
approach extends this framework to accommodate situations where the velocity
alignment is nonlinear (p > 2). It is worth noting that we must establish additional
controls to account for discrepancies generated by the nonlinearity, as detailed in
Sections 4.2 and 4.3.

4.1. Relative entropy method. Our principal approach for rigorously establish-
ing the hydrodynamic limit relies on the relative entropy method. We closely adhere
to the framework outlined in [8] and focus our efforts on analyzing the following
quantity:

w0 = 5 [ pet 0t~ ut. )P x (12)

Let us remark the meaning of .. Let U = (p, m) = (p, pu). A convex entropy
on U is defined as

lm[> _ pluf?
U) = = =
Then, we may define the relative entropy
n(U:|U) =n(Ue) = n(U) — Dn(U) - (U: = U)
_p5|u5|2 _ p|u|2 . _m o _ _1 _ul?
= D) D) 9 (pe P) +u (peue Pu) 9 pe'ue ll| .

Finally, the quantity 7. defined in (42) is the spatial integration of the relative
entropy n(U:|U).
We investigate the evolution of 7. through the following calculation:

d d ps‘us|2 p€|u|2 d
d _d - dx = LB 41411
at’ T Q< g MUt Ty X= e T

where FE. is the macroscopic energy

1
Eszi/ps|u5|2dx.
Q

In particular, for I we have

I :/ ( — O¢(peuc) - u — peu. - 8tu) dx
Q
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:/ (Vx - (peue ® ue + Re) — p-Afpe,uc] — Gc) - udx
Q
+ / peue - (u- Vyiu — Alp, u]) dx
Q

:/ Pelle @ (Ue —u) : Vyudx — / ps(u “Alpe,uc] +u. - Alp, uD dx
Q Q
—/ qu:Rgdx—/QE-udx
Q Q
=0 + I+ 13+ 14
Similarly, for II we have

1
II:f/atps |u|2dx+/p5u~5'tudx
2 Ja Q

1
:75/ Vx'(Peus) |u|2dX+/p5u~ (—u~vxu+A[p7U])dX
Q Q

:—/p€u®(ug—u):qudx+/p5u~A[p7u]dx
Q Q
=1II; + II,.

Next, we estimate all terms in I and IT. We start with two straightforward bounds

I + 10| = < |[[Vxull Lo e,

/ pe(ue —u) @ (ue —u) : Vyudx
Q

and

13| =

/ Veu: Reodx| < ||Vgullpe / f-(x,v)|v —u.* dxdv = ||Vul| L= D2,
Q QxR

where we recall the definition of Dy, in (26).
Then, we focus on the term

J =L +1I, = / pe(—u-Alp.,u] + (u—u.) - Afp,u]) dx. (43)
Q
Start with the first term in (43) and get

/ —peu- Alpe,u.]dx
Q

—pe(x)pe(y)d(x — y)u(x) - ®(u:(y) — us(x)) dxdy

5
M\b—\b\b\w

N~ N~

pe(X)pe(y)o(x — y)(u(y) — u(x)) - (u:(y) — uc(x)) dxdy

2

Pe (x)pE (Y)qb(x - y) (115 (Y) — Ue (X)) : (I)(U-e (y) — U (X)) dXdy

2

_|_

pe(x)pe(y)(x — y)(u(y) — u(x) — us(y) + u:(x)) - 2(u(y) — u-(x)) dxdy
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Here, we symmetrize x and y in the second equality, followed by splitting the
quantity into two parts. In particular, D. is the macroscopic enstrophy

De = %/QQ pe(X)pe(y)d(x — y)|ue(y) — us(x)[” dxdy.

We will control D, later by the kinetic enstrophy Di..
Now we work on the second term in (43). Split the term into two parts:

/ pe(u—u.) - Alp,u]dx
Q

= / pe(x)p(y)d(x — y)(u(x) — u.(x)) - ©(u(y) — u(x)) dxdy

We further symmetrize x and y in J; and obtain

Ja= 5 [ pp(3)0x ~3)(ax) — u(y) ~ () + 1. (3) - (uy) - ulx) dxdy.
QQ

Combing J; and Jo, we get
Bt g = [ ppay)ox — y)(aly) - ux) - ucly) + ()
QQ

(@(ue(y) — us(x) — @(u(y) — u(x))) dxdy.
Observe that since ® is monotone increasing, we have
(z1 — 22) - (P(z1) — P(2z2)) >0, V z1,20.
This yields
Ji+J2 <0.
For the remaining term Js:

1= [ G060~ 060) | [ (65) = pely)1otx — ¥)2(0(y) - ux)ay | i

we obtain the point-wise bound on the inner integral

/Q (P(y) — p=(¥))b(x — ¥)®(u(y) — u(x)) dy

SWip.pe) - |9x =) B(u() ~u()|
<Wi(p, p2) ([81Lip )" + 6]l = (0 = V)2 Vut] )
<C(1+ [|[Vxul[ ) Wi(p, pe),

for any x € Q. Here, we have used the maximum principle (29).
We then apply Hélder inequality and obtain

[ J3] < C(L+ [[Vxull=) Wilp, pe) - /e < C(L+ || Vieul[p=) (0 + Wi (p, pe)).
Collecting all the estimates, we conclude with
d

d
ane < %EE + De + [|Vzu|| oo Do + C(1 + Hvxu||L°°)(776 + W12(Pa Pe)) +14. (44)
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4.2. The control of macroscopic energy and enstrophy. In this part, we aim
to obtain a bound on J
—FE. 4+ D,
dt +
that appears on the right hand side of (44). We compare E. and D, with the kinetic
energy & and enstrophy Di., and apply (27) to obtain

d d 1
il < = — — — 2D,
P E.+D. < 7 (Be — &)+ (D: — D1e) 5D2€ (45)

Now, let us control the differences between kinetic and macroscopic energies and
enstrophies.

Lemma 4.1. The following inequalities hold:

E(t) < E(1), (46)
De(t) < Dle(t) + |A5(t>|a (47)
where the discrepancy A.(t) is defined as

Ac(t) =5 / ¢(x —y) (jw = v[F7? — Ju.(y) —u(x)[P7%) |w —v[*  (48)
Q2 xR2d
fe(t,x,v) fe(t,y, w) dxdydvdw.
Proof. The first inequality (46) follows directly from the Cauchy-Schwarz inequality

2 (fRd vfe dV /
d 49
peluc|” = fRd Fdv |V| Jedv. (49)
For the second inequality (47), we decompose D;. into two parts:

1
Dic= [ dbylu(y) sl e v oy, w) dxdydvae A
QZ XRQd

For the first part, we apply (49) and obtain

/]RZd [w— V|2f€(x’ V) fe(y, w) dvdw
= /de(lw‘? — 2w v + |v|2)f€(X, V) f(y, w) dvdw

= pe(x) /Rd (W fo(y, w) dw — 2p.(x)uc(x) - pe(y)uc(y) + p(y) /Rd V[? fo(x,v) dv

> pe(x)pe(y) (Jue(y)]? = 2uc(x) - ue(y) + [ue(x)[?) = pe(x)pe(¥)ue(x) — ue(y)|.
This leads to the bound

! / o(x —y)|ucly) — u(x)[P*|w = v|* f.(x, V) f-(y, W) dxdydvdw > D..
2 02 x[R2d

The inequality (47) follows as a direct consequence. O

When p = 2, the discrepancy A.(t) = 0. However, with the nonlinear alignment
p > 2, A, does not vanish unless f. is mono-kinetic. Therefore, we will use the
kinetic enstrophy Ds. to control the discrepancy.

Lemma 4.2. Let a,b € [0, R]. The following inequalities hold:
laP™? =P < |a— B[P, for2<p<3,
la?~2 =P < (p—2)RP?la—b|, forp>3.



624 MCKENZIE BLACK AND CHANGHUI TAN

Proof. For the first inequality, we assume b < a without loss of generality. If b =0,
the equality holds trivially. If b > 0, define z = a/b € [1,00). The inequality is
equivalent to
g(z) =22 —1—(z—-1)P2<0.
One can easily verify g(1) = 0 and ¢'(z) < 0 for z > 1. This leads to the desired
inequality.
The second inequality is a direct application of the mean value theorem. O

Now we apply Lemma 4.2 with a = |w — v| and b = |u.(y) — u.(x)|. Let
0 p=2,
g=min{p—2,1} <1, and ¢, =41 2<p<3,
(p=2)")* p>3.
We have

[l = VP2 — u(y) — w2 <

W vl = u(y) —u)l (50)

< e (Iv = w0+ Iw = we)]) " < o (Iv = ue Gl + fw = u.(y)]7).

Note that we have used triangle inequality in the second inequality, and concavity
of the function z? in the last inequality.

Remark 4.3. For general nonlinearity (16), Lemma 4.2 can be replaced by

[h(a) = h(b)| < Crla — 0|7,
where Cg is the Hoélder (or Lipschitz) coefficient on h on [0, R]. Then (50) follows
with ¢, = Cyo.

Utilizing the estimate (50) and Holder inequality, we can bound A, as follows:

A< e / B — VIV — n )W — V121 (%, V) (3, W) ddydvdw
Q2><]R2d

q

< (/Qx]Rd v — ue(x)]2fo(x,v) dxdv) :

2

(/Md </QR P = ylv = Wi ely, w) dydw) ) dxdv>

q C q
< Dy [l - (V) < P D (51)
where we defined the constant Cj, = 8¢, ||@|| 1= ||u’||% -
4.3. The control of the discrepancy I,. When p = 2, the term G. vanishes.
Hence we have Iy = 0. With the nonlinear alignment p > 2, G. does not vanish

unless f. is mono-kinetic. Therefore, we may treat I, similarly as the discrepancy
A

a < Jfull / B(x = y) [[w = vIP2 = fu.(y) — w02 [w — v
Q2 xR2d
fe(x,v) f-(y, w) dxdydvdw

<2 fuls [ o= y) v = Gl s VI () oy w) ddydvie
xR24
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a C.  _a
< 2¢[|p)| Lo VO 0| - D3, < 7179225- (52)

Collecting the estimates (45), (47), (51) and (52), the bound (44) becomes

d 1 2
—Me < <_€D2s + ||vxu||L°°D2€ + CPDQQE)

d
dt (Be — &)

T
+C(1+[[Vxull=) (e + Wi (p, pe)).-
Integrate in [0,¢] and apply (46). We end up with
1(t) < (1:(0) + £:(0) — E:(0))

“f t (- 202c06) + 1T D)+ €D () ) s

+C / (1+ [ Vxu(s, ) [) (ne(s) + WE(p(s, ), po(5,)) ) ds. (53)

4.4. The control of the relative entropy. Now, we proceed to demonstrate the
convergence of the relative entropy 7 (t) to zero as ¢ — 0. To achieve this, we will
estimate all three terms on the right-hand side of (53).

For the first term in (53), which concerns the initial data, we contend that it can
be effectively controlled by the Wasserstein-1 distance W1 (f2, f°). As a result, we
can establish its smallness, in accordance with the assertion in (40). More precisely,
we have the following bounds:

1 1
7e(0) + £-(0) — E.(0) = 5/9 (P2 —u®? — p2[u?}?) dx + 5/ [v|?f0 dxdv

QxR4
1
=2 /Md [v = w’ () £ (x, v) dxdv
1
=3 /QR v —u’x)(f2(x,v) — fO(x,v)) dxdv
= % (v =u’)F] Wi(f2.f%) < Ce. (54)

Lip(x,v)
— 10(x)[2
Note that [|v — u®(x)| ]Limx,v
Lipschitz. The constant C' may be taken as C' = (1 + [u%]1;,)V°.
Next, we discuss the second term in (53). When p = 2, we have Cy = 0 and

there is no discrepancy. We take ¢ small enough with ¢ < ﬁ Recall the a priori
bound (35). It implies that the second term in (53) is negative.

) is bounded as f is compactly supported, and u® is

When p > 2, we need to obtain an additional control to the discrepancy CpDQ%E.
Consider the function
F(z) = —ax + ba”
with a,b > 0 and v € (0,1). One can easily obtain the maximum
a1 N W T T T T
Iglcl%{F(x) =F(z.) = ('ylfv +71*v) a”T=7b77, where z, =yT-7a T-7bT-7.

Take € small enough such that € < ﬁ Apply the above estimate with

1 1
a= - = [Vau(t ) > 5

q
5o b=C, and T=75-

‘We have
1 g
_ED%(t) + ||qu(t7 ')||L°°D2€(t) + C’,,D;E(t)
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< (977 +(H)77) )70 < cem, (55)

where the constant C' depends only on p.
Applying (54) and (55) to (53), we deduce

ne(t) < Ce + Ce?at + c/o (n:(5) + WCols, ). pe(s ) ds. (56

The constant C' depends on initial data, the parameter p, and the a priori bound
M (see (35)).

To close the argument, we state the following control on W1 (p, p.) by the relative
entropy 7.

Lemma 4.4. There exist a constant C = C(T, M) > 0, such that

W2(o(t, ), pe(t, ) < C (Wf<p°,p2> T / 7e(s) ds> , (57)
for any t € [0,T].

Some versions of Lemma 4.4 have been developed in e.g. [8, Lemma 5.2] (control
Ws distance by 7.), and [25, Lemma 5.2] (control W; distance by kinetic relative
entropy). We include a proof of the Lemma here for self-consistency.

Proof of Lemma /.4. Consider the flow maps X, and X defined as
WX (t,x) = u(t, X (L, %)), and o X(t,x) = u(t, X(t,x)),
X:(0,x) = x, X(0,x) = x.

The solutions p. and p of the continuity equations can be viewed as the push-forward
of the initial measure

pe(t) = Xe(t)gpd, and p(t) = X(1)xp".

Note that since u. is not necessarily Lipschitz, X. is not uniquely defined. The
push-forward relation should be realized in the probabilistic sense, see e.g. [8,
Proposition 3.3]. Namely, there exists a probability measure 7., defined on I'r x Q,
where 't denotes the space of absolutely continuous curves from [0, 7] to €, such
that

(i) ne is concentrated on the set of pairs (y,x) such that v is a solution of

v (t) = us(t,y(t)), Vae te(0,T), withv(0) = x, (58)
(ii) p. satisfies
/ () pe (£, %) dx = / (v(1)) dn(y, %) = / (7 (8)) 1 (A, %) 2 () dx,
Q T xQ T xQ

for any test function ¢ € C2(2) and ¢ € [0,7]. Here n.(dv,x) is the (marginal)
probability distribution on functions in I'r that solves (58) with a given x.
Let us define another measure

pe(t) = X(t) oL,

and decompose

Wh (p(t, ')> ps(ta )) <W (p(t, ')7 ﬁs(tv )) + W (ﬁe(tv ')a ps(t7 )) (59)
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For the first part, p and p. shares the same flow. We obtain

Wi(p(t, ), pe(t,) = sup / 9(%)(p(t, %) — pe(t, %)) dx

[Q]Lip§1
= sup [ Xt 30)(6°0) - ) dx
l9]eip<1/Q
<IVX(E )z Walp®, p2) < ™ Wa(p®, p2).  (60)

For the second part, p. and p. shares the same initial data. We have

Wa(pe(t, ), pelt, ) = sup /Q 9(x)(7e(t, %) — pe(t,x)) dx

lglLip<1

- s [ (g<x<t,x>>— / Tg(v(t))ns(d%X))pS(X)dx

[9lLip<1
< [ X = 0] el ) - p200) dx = B0,
FTXQ

Clearly, B(t) is continuous, and differentiable for almost every t € [0,T]. Compute
the time derivative of B(t) and get

B() < / 1t X(130) = (A (0)] () - 2000
< / [t X(t, %)) — u(t,7(8))] 7 (dv,%) - p2(x) dx
I'rxQ
+/F Q|u(t,7(t))—ua (t, ()| ne(dv, %) - p2(x) dx
<|IVut, )~ / X (2, %) — 7(8)] e, ) - () dx
T xQ

—i—/Q|u(t,x) —u.(t,x)|pe(t,x) dx
SMB(t) + ns(t)'

Together with B(0) = 0, we apply Gronwall inequality and obtain

Wi (p=(t,-), pe(t; ) < B(t) < /Ot MU/ (s) ds < Ve (/Ot 1 (s) d5>% -

(61)
Finally, we apply (60) and (61) to (59), yielding
t
WEolt).pe(t.) < 20+ 0 (W20 ) + [ (o) ).
0
This finishes the proof of (57), with C = C(T, M) = 2(1 + T)e*MT. O

The initial distance WZ(p°, p?) is small due to the assumption (40). Indeed, we
have

Wa(e, %) = sup /Q 9(1)(P°(x) — (%)) dx

[glLip<1

= s [ g 6v) = v dxdv < W0 f2) < ¢

l9)Lip<1
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Adding (56) and (57), we arrive at the inequality
Wa(t)+ Wf(p(ta )a pe(tv ))

<ofevemtivery [ " (ne(6) + W2(o(s ), el ) ).

Applying Gronwall inequality, we end up with

e—0

ne(t) + W2(p(t, ), pe(t, ) < CeCl(em™ + e + %) =225 0, (62)

for any t € [0, T]. Here, the power ﬁ € (0

1

, 5] since ¢ € (0,1].

4.5. Proof of Theorem 3.2. Now we apply the estimate (62) to obtain our main
convergence result (41).
Let g = g(x,v) be a test function such that [g]rip,, < 1. In the following

calculation, we fix a time ¢ and suppress the t-dependence. Compute

[ ey = o) dxay

QxR

— [ gul) ()  f(x,v)) dxiv
QxR4

[ (axw) = gl ) (Fxv) = Fexov) v
xR
=: K; + K.
We estimate term by term. For K7, we have

K| = / 93, u(x))(p(x) — pe(x)) dx| < (1 + [u]1sp) W2 (01 pc).

For K5, note that

/ (9(x,v) — g(x,u(x))) f(x,v) dxdv

QxR

= [ (gbeutx) — gl uGx)))ot) dx = 0
QOxR4

Therefore,

Kol = | [ (aloxov) = glx.u(x)) o (. v) ddy

< / Vol e, v) v

1 1
< / |v — u.(x)| fe(x,v) dxdv + / |uc(x) — u(x)|pe(x) dx < DI +nZ.
QxRY Q
Combine the estimates above and take supreme over all test functions g. We obtain

1 1
Wl(f7f£) < (1 +M)W1(p7ps) +né +D225

From (27), we have the control
T
/ Dy (t)dt <& < Ce.
Together with (62), we deduce the bound

/'wq Lo(t)dt < C(e™5 4 +£2) =22, 0, (63)
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where the constant C' depends on p, 7T, M and initial data. Therefore, we conclude
with the convergence

Wl(f(t)a fe(t)) - 07 in L2(07T)'

This leads to the convergence result (41). To see this, we consider a test function
g = g(t,x,v) in C([0,T], Lip(2 x RY)). Thus computing,

T
/ / g(t,x,v)(f(t,x,v) — fo(t,x,V)) dxdvdt
0 Jaoxrd

< / O Lipe WL (F(1), £o(1)) dt

< H[g(t)]f?ipm HLZ(O,T)le(f(t)’ fa(t))HH(o,T) — 0.

Note that Lipschitz functions in a bounded domain are dense in the space of contin-
uous functions. From Proposition 2.5, we know that the measures f(¢) and f.(¢) are
compactly supported. Then we apply the density argument and obtain convergence
for any test function g € C.([0,7] x Q x R?).

Remark 4.5. We would like to mention another type of relative entropy, referred
to as the kinetic relative entropy:

1
nf(t) = - / |v — ul(t, X)\Qfs(t,x, v) dxdv.
2 QxR4

In [25], Shvydkoy applies the relative entropy method based on nX to derive the
hydrodynamic limit for the kinetic flocking model with linear velocity alignment
(p = 2). This approach can be adapted to the nonlinear case (p > 2), using a
similar argument to handle the discrepancy term.

5. Isothermal hydrodynamic limit. In this section, we discuss another type of
hydrodynamic limit, by isothermal ansatz (17). The main point we would like to
make is that the alignment force A[p, u] that appears in the limiting system

9(pu) + Vx - (pu®@u) + Vxp = pA[p, u

does not necessarily share the same mapping ® as the kinetic equation (18).
To illustrate this point, we perform the following formal calculation.
Multiplying (18) by v and integrating in v, we obtain the momentum equation
(31), with the right-hand side

Fitox)i= [ BUIfedv= [ ox—y) Bl =) 150ty w) dydvie

We suppress the t-dependency in the following calculation for simplicity. Applying
isothermal ansatz (17), we get

_lv—ue) 2 w—u)|?
2

Fo=@n [ s y)a(w - v)e p(x)p(y) dydvdw
QxR2d
B é(:))d | o= 318w =) + (aly) — uGx))e 5 F ply) dydvaw.
Substituting a = w — v and b = w + v yields
Fo0 =20 [ ok y)blact (uly) -~ uGe))e T ply) dydadb
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- <4p7r(;)/2 /md o(x —y)@(a+ (u(y) — ux))e” 5 ply) dyda

= p(x) /Q b(x — y) T (uly) — u(x))p(y) dy,

where the mapping ¥ is defined as
1

U(z) = W/R B(at et da= (@ M)(2), (64)

where * stands for convolution, and the function M is defined as

1 _l=l?
M) = G

One easy observation is that ¥ is an odd mapping like ®. When ®(z) = z is
linear, we have

U(z) = W/Rd(a—l—z)e_fda:O—i—l-z:z.
However, when @ is nonlinear, the mapping ¥ is not the same as ®. To illustrate
this point, we perform the following explicit calculate on ¥ in the case:
B(2) = |2|P7 2z = 2271,
where p = 2k is an even integer, and d = 1. Compute

w(2) :/R(Ha)?k*l/\/t(a) da:%i <2kj 1>z2k1j/RajM(a)da

§=0
k—1 29 (5 + L
2\ 25 )T
where we have used the following identity on moments of normal distribution:
2 k is even
/z’wt(z)dz: ) :
R 0 k is odd.

For example, when ®(z) = 23 (p =4, or k = 2), we have
U(z) = 2 + 62.

Unlike ®, the nonlinearity ¥ behaves like O(z) instead of O(z3) near z = 0. There-
fore, the hydrodynamic limit of (18) does not have the same p-alignment force.

The rigorous justification of the isothermal hydrodynamic limit will be left for
future investigation.
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