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Abstract—The flourishing development of neural networks that
require exponentially growing amounts of data has presented
an elevated demand for memory footprint. To address this,
researchers have been exploring hardware accelerators with
innovative memory architectures like 3D memory. These 3D
memory architectures offer enhanced storage capacity and pro-
cessing capabilities, at a cost of rising on-chip temperature during
operation. Hafnium Zirconium Oxide (HZO) based Ferroelectric
Random Access Memory (FeRAM) is a promising nonvolatile
memory candidate in neural network hardware accelerators for
its outstanding write performance and reliability. However, its
implementation in the architecture regarding the temperature-
dependent ferroelectric switching behavior has not been well
studied. In this work, we study the thermal impacts on polar-
ization switching through experimental devices and simulation
results. We conduct the circuit and architecture-level simulations
to showcase that one can exploit this temperature rise to reduce
FeRAM’s write voltage and write energy due to its unique
temperature-activated polarization switching mechanisms. As the
on-chip temperature increases to 351K (ambient temperature at
300K) due to neural network workloads, the access energy per
bit can be reduced by 27.6% when a dynamic write voltage is
applied.

Index Terms—FeRAM, 3D memory, DNN hardware accelera-
tor, temperature dependence, thermal-aware floor plan

I. INTRODUCTION

Neural networks have been widely adopted in various fields
due to their advancements. These deeper models with billions
of parameters have a cost and a very high memory footprint
[1]. By offloading intensive computations from central pro-
cessing units (CPUs) to specialized hardware, such as graphics
processing units (GPUs), field-programmable gate arrays (FP-
GAs), or application-specific integrated circuits (ASICs), these
accelerators can significantly speed up the inference process
while reducing power consumption. This is especially critical
in applications requiring real-time processing and low latency,
such as autonomous driving and real-time language translation
[2], [3]. ASICs, such as Google’s Tensor Processing Units
(TPUs) [4], are specially fabricated to execute neural network
operations with optimal efficiency, demonstrating significant
performance gains and energy savings over conventional hard-
ware [5]. Researchers have also explored various approaches to
manage power and accuracy trade-offs, including approximate
computing during inference phases using quantization and
fixed-point multipliers [6].

Alongside the advancements in hardware accelerators, there
is a pressing need to enhance the underlying memory archi-
tectures, including 3D memories, to support these advanced
neural network models’ extensive memory footprint. And as
we push the limits of memory architectures to meet the de-
mands of advanced neural networks, the resulting higher power
densities introduce significant thermal challenges. While there
is extensive research on using 3D memory for hardware
accelerators [7]-[9], these studies often overlook the thermal
characteristics of these memory systems, necessitating sophis-
ticated thermal management strategies to maintain system re-
liability and performance [10]-[12]. Studies by Liu et al. [13]
have demonstrated the severe implications of not addressing
thermal issues, with inference loss reaching up to 90% under
high temperatures. Another study by A. Abdurrob et al. [14]
implies that DRAM, when used in a 3D hardware accelerator,
can reach an extremely high peak temperature of 170°C'. The
refresh overhead, in this case, can be increased 4 times.

Given the significant impact of thermal issues on system
performance and reliability, there is a crucial need to integrate
innovative thermal management strategies to not only mitigate
the risks associated with high temperatures but also pave the
way for exploring new design paradigms that balance thermal
effects with energy efficiency and computational accuracy.
Layer-wise approximation and thermal-aware floor plan design
have been developed to enhance energy efficiency [7], [15]. A
particular focus on heat management by Zervakis et al. [16]
illustrates a methodology to prioritize energy efficiency while
managing thermal impacts effectively. However, these methods
can lead to some loss in computational accuracy and often do
not effectively capitalize on the potential benefits of increased
temperatures within the system.

Nonvolatile memories, such as resistive random access
memories (ReRAM) and ferroelectric random access memo-
ries (FERAM), consume less energy than their DRAM equiv-
alents. HfO, based FeRAM sharing a similar cell structure
to DRAM but being nonvolatile, is preferable as memo-
ries in neural network hardware accelerators for its CMOS
compatibility and excellent write performance, such as low
operating voltage and high reliability [17], [18]. Recently,
Ramaswamy et al. have presented a two-tier stacked FeERAM
array [19] to enable the high-density, high-performance re-
quirements for a near-DRAM memory solution. Despite the



excellent read/write performance, managing thermal effects
in such stacked FeRAM is crucial, as it directly impacts
device reliability and energy efficiency. Chen et al. study
the ferroelectricity and polarization-switching behavior in
Hfy5Zry 50, films from 25°C to 150°C [20]. It is revealed
that a strong thermal activation of oxygen vacancies causes the
temperature dependent leakage current in Hf(s5ZrosO, films.
Hur et al. investigate the polarization switching of ferroelectric
Hfy 571950, (HZO) thin film in wide-ranging temperatures
from 4K to 400K regarding the reliability effects such as
endurance, retention, and small-signal response [21]. A strong
temperature dependence is demonstrated with these character-
istics. Ali et al. report the temperature-dependent operation for
fluorite-structure-based ferroelectric FET (FeFET) [22], where
the study of memory window (MW) indicates a strong depen-
dence on temperature intrinsic to the ferroelectric polarization.
While these works primarily focus on ferroelectrics’ electrical
characteristics and suggest techniques to mitigate the impact
of temperature differences, our work provides a perspective
to leverage the temperature-dependent polarization switching
behavior and their integration in advanced memory systems.
The major contributions of this paper are as follows:

o We fabricate a 10-nm-thick HZO thin film capacitor and
measure its characteristics at different temperatures to
show the temperature dependence of polarization switch-
ing.

o We propose a revised multi-domain Monte Carlo model to
capture the temperature impact on ferroelectric switching
behavior.

o We exploit the temperature rise as a resource that can
reduce the FeRAM’s write voltage and write energy and
validate in circuit simulations.

o We perform a case study of the FeERAM-based hardware
accelerator to demonstrate the rise in temperature on-chip
for DNN workloads.

The rest of the paper is organized as follows. Section II de-
tails device fabrication and experimentation setup. Section III
provides in-detail explanation of our proposed design followed
by discussion on experimental results in section IV. Finally,
we conclude our work in section V.

II. DEVICE FABRICATION AND EXPERIMENTAL DETAILS

The Metal-Ferroelectric-Metal (MFM) capacitor under mea-
surements is fabricated on low-resistivity silicon substrate.
The top and bottom metal electrodes are two 100-nm-thick
tungsten (W) layers, and are sputtered by DC sputter under 300
W. The 10-nm-thick Hf(5ZrysO, layer is deposited through
atomic layer deposition (ALD) at temperatures of 250°C. Post-
metallization annealing (PMA) is carried out in N, atmosphere
at 500°C for 1 minute to facilitate the crystallization of the
ferroelectric material. The cross-sectional transmission elec-
tron microscopy (TEM) image of the fabricated HfysZry50,
capacitor is shown in Fig. 1(a).

To measure the characteristics of the fabricated MFM, its
top and bottom electrode are connected to two pulse measure
units (PMU), which apply voltage pulses shown in Fig. 1(b)
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Fig. 1. (a) Cross-sectional TEM image of the fabricated HfsZrys50,
capacitor. (b) The electrical sequence applied on the MFM. The test sequence
are repeated 3 times under the ambient temperature at 300K, 330K and 360K.
(c) The measured P-V curves under different temperature settings.
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Fig. 2. The experimental P-V curves at 300K, 330K and 360K when the
applied voltage amplitude is (a) 1.4V and (b) 3V.

on the MFM and measure the current. The applied electrical
sequence is composed of multiple symmetrical triangular
pulses whose amplitude gradually increases from 1V to 3V
with a step of 0.4V. The pulse width of one triangular pulse
is 20 ps. Then, the polarization versus voltage (P-V) curves
can be derived by integrating the current data collected by
PMUs over time. By varying the wafer chuck temperature,
the temperature-dependent ferroelectric switching behavior is
studied. Fig. 1(c) demonstrates the P-V loops of all 3 temper-
atures (300K, 330K and 360K) implemented in this article.
Fig. 2 compares the P-V curves under different temperature
settings with 1.4V/3V applied voltage. When 1.4V is applied
on the MFM, the remnant polarization (F,) at 300K, 330K
and 360K are 2.5, 3.7 and 5.8 uC/cm? respectively. However,
when 3V is applied, P, at 300K, 330K and 360K are all 21
uClem?.

III. PROPOSED DESIGN

To capture the temperature impact on ferroelectric switching
behavior, a revised model based on a reported multi-domain
Monte Carlo framework [23], [24] is proposed. In that frame-
work, the field-dependent nucleation-limited switching (NLS)
model [25] is generalized for arbitrary input waveforms by
calculating each domain’s switching probability at each time
step and simuating the switching event. Given a domain has
not switched until time ¢, the probability of its switching time
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Fig. 3. The P-V curves obtained by the proposed model can be well calibrated
with experimental data when applying (a) 1.4V and (b) 3V.
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where [ is the shape parameter of the Weibull process, and
h(t) is an auxiliary history parameter which is defined as:
t /
dt
wty= [ & 2)
to T
where t( is the time when the switching voltage is applied,
and 7 is the switching time constant of one domain which
describes the switching rate of that domain and is defined as:

mmn) e [() (2)] o

where FE, is the activation field, F is the local field, 1" is the
temperature, 7., i the time constant obtained for an infinite
applied field, and RT is the room temperature (300K). ¢ and o
are empirical parameters. The Arrhenius equation is included
in the calculation of 7 to capture the thermal activation of
polarization switching. Additionally, an empirical factor d is
used to reflect the exponential decay of saturated polarization
(Ps) as T increases [22] as following:

P(T) = Psexp [-d(T — RT)] (4)
IV. RESULTS AND DISCUSSION
A. Parametric Study of the Proposed Model
By exploiting equations (3) and (4), the temperature depen-
dence of both 7 and P is reflected, two dominant factors in
the ferroelectric switching behavior. The increase of P, with
temperature with 1.4 V applied voltage shown in Fig. 2(a) is
due to the reduction of 7 with temperature. When the applied
electric field is small, 7 decreases as the operating temperature
increases, so more domain switching occurs. However, for
large applied electric field, almost all reversible domains are
switched (i.e., characteristics in the saturated P-V loop), so
the impact of P, is more significant. Given the P-V curves
in Fig. 2(b) are identical, d in equation (4) is supposed to
be a small value. The parametric extraction shows that when
¢ =4.2,d = 0.000lK~!, our model can be well calibrated
with experimental data (Fig. 3). The parametric study of ¢ in
equation (3) (Fig. 4(a)(b)) and d in equation (4) (Fig. 4(c)(d))
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Fig. 4. The parametric study of (a)(b) ¢ in equation (3) and (c)(d) d in
equation (4) at 360K. ¢ changes from 0 to 10 with the step size of 2, and d
changes from 0 to 0.025 K ! with the step size of 0.005 K —!. The P-V
curves when applying (a)(c) +1.4V and (b)(d)+3V.

are then conducted. It is implied by equation (3) that as
c increases, the drop of 7 is more relevant to temperature
rise. The coercive field (F.) of ferroelectrics is the applied
field which enables the reversible dipole switching. Since it
is observed that F. decreases with ¢ in both cases, 7 can be
used to reflect E.. However, only for unsaturated P-V loops
(Fig. 4(a)), smaller E, results in higher P,, which means that
the increase of ¢ will have a stronger effect on P, under a
relatively smaller applied electric field. Equation (4) exhibits
the inverse correlation between d and P, as is verified in
Fig. 4(c)(d), and smaller P, causes the drop of P, for both
small and large applied voltage.

B. Circuit Simulation

The circuit-level simulation is implemented by Cadence
Spectre Simulator. The MFM capacitor is connected to an
access transistor and is programmed to positive P, (i.e., data
’1’) by applying a positive electric field (Fig. 5(a)). On the
contrary, when the applied electric field is negative (Fig. 5(b)),
the MFM is written to negative P, (i.e., data ’0’). Fig. 5(c)
shows the simulation waveform applied on word line (WL),
bit line (BL) and plate line (PL). It is indicated by the Prg
waveform in Fig. 5(d) that the charge memory window (MW)
at 300K/330K/360K is 4.7/7.2/10.6 puC/cm? when applying
+1.4V. The observed MW rise with temperature means that
for the conventional FeERAM write operation, the write voltage
(Vyrite) can be reduced and the MW is still above a certain
threshold for correct sensing. It is implied by Fig. 6(a) that
if the desired MW is about 4.7 pC/ch, Virite 18 supposed
to be 1.4V, 1.276V and 1.166V at 300K, 330K and 360K
respectively. Therefore, compared to 300K, the Vi reduction
at 330K/360K can reach 8.9%/16.7%. Thanks to the Ve
reduction, the write energy (Eyie) can be lowered from 2.57
fJ/bit at 300K to 2.24/1.74 fJ/bit at 330K/360K, which means
that the E,. reduction can be 13%/32.5% at 330K/360K

(Fig. 6(b)).
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Fig. 5. The schematics and applied voltages of circuit simulation for write
(a) positive P (i.e., data ’1’) and (b) negative P, (i.e., data ’0’). (c) The
waveform of applied voltages for 1.4 V programming. (d) The simulated
Pr g waveform at 300K, 330K and 360K.
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Fig. 6. Compared to 300K, (a) the Vi reduction at 330K/360K can reach
8.9%/16.7%, and (b) the Ey;iie reduction can reach 330K/360K is 13%/32.5%
with similar MW.
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Fig. 7. Effect of temperature on switching delay and propagation delay.

C. Case Study

A study has been developed to gain insight into the impact
of temperature fluctuations in a hardware accelerator with
ferroelectric memory. A deep neural network (DNN) is em-
ployed for this purpose as 3D memory technologies provide
significant advantages for these data-centric workloads. A Yolo
DNN model [26] is selected as the workload for machine
learning. This benchmark offers a rigorous evaluation of DNN
efficiency, replicating fundamental neural network operations.
The structural attributes of the accelerator are modified from
Google Tensor Processing Unit [4]. It comprises a process-
ing unit, buffer memory, and peripheral components, which
include an input-output unit, memory management unit, and
control unit. A 256 by 256 systolic array matrix-multiply unit
within the DNN accelerator functions as the processing core.
Three 64 MiB FeRAM buffers are employed for holding input,
filter weights and activations, and accumulators.

The DNN model must be mapped to a systolic array to as-
sess the thermal characteristics of a DNN accelerator running
a specific workload. Assuming an output-stationary data flow
i.e. each processing element computes a pixel of the output
feature map by accumulating inputs and weights provided
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Fig. 8. Block level diagram of processing element [14].
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Heat sink material Aluminium 6061
Heat sink thermal conductivity 167 W/(m-K)
Heat sink specific heat capacity | 8.9 x 10° J/(m>K)
Heat sink thickness 6.9 mm
Heat sink side 25 mm
Heat spreader thickness 3 mm
Ambient temperature 300K

TABLE 1
CONFIGURATION FOR THERMAL SIMULATION.
each cycle, we use SCALE-Sim [27] tool to get cycle-accurate
simulation for systolic array-based CNNs. It provides insights
into compute cycles, systolic array utilization, and memory
accesses per layer, which is crucial for estimating power traces
for thermal analysis.

The CMOS-based processing element Fig. 8 from [14] is
used to derive power traces for the processing core. The
average dynamic and static power consumption per processing
element is approximately 3704W and 13uW, respectively, at
a supply voltage of 0.9V and a clock frequency of 700MHz.
These values are utilized to calculate the total energy dissi-
pated during the execution of each DNN layer, which, divided
by the total number of cycles, gives us a power trace for
the processing element. To get the power trace for memory
modules, we multiply the read and write energy per access
per bit by the number of bytes read and written obtained from
SCALE-Sim, respectively.

We use hotspot [28] for thermal analysis. The 2D floor plan,
resembling a conventional 2D technology similar to TPU [4],
is depicted in Fig. 9 (a). For the 3D stack, apart from the buffer
memories, we have a 4GB on-chip main memory similar to
NVDRAM [19] with a chip density of 0.42Gb/mm?. The floor
plan for the monolithic 3D stack with stack O close to the heat
sink is shown in Fig. 9 (b). Tab. I shows the cross-sectional
information of the chip, ambient temperature and heat sink
parameters for the simulation.

Fig. 9(c) illustrates the steady-state temperatures in Kelvin,
of our 2D floor plan. The processing unit and the FeRAM
buffers have steady-state temperatures of 314.7K and 314.1K,
respectively. The on-chip memory access energy, representing
the energy consumed during data transfer between the buffer
and systolic array for a single inference cycle, is 65.47mlJ.

Transitioning from a 2D to a 3D floor plan introduces
significant benefits in terms of latency and throughput for
hardware accelerators. The 3D architecture integrates on-chip
main memory more effectively, considerably reducing data
transfer distances compared to traditional 2D layouts. The
steady-state temperatures in Kelvin of our 3D-floor plan are
shown in Fig. 9 (d). The processing unit and the buffer memory
on the bottom stack close to the heat sink reach a steady state
temperature of 352.18K and 350K, respectively. The FeERAM
buffers on stack one and the on-chip main memory operate at
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Fig. 9. (a) Floor plan of 2D Stack: 100mm? 2D floor plan with 1.21mm? ferroelectric buffer memories with the proposed design. (b) Floor plan of 3D
Stack: In addition to the buffer memory, we also have an on-chip main memory. It is similar to nvdram [19] with the proposed model (c) Steady state thermal
map of 2D and (d) 3D Stack with maximum temperature 314.78 and 351.77 respectively.

351K steady-state temperature.

These temperatures are well below the rated operating
condition of NVDRAM at 368.15K, where the bit error ratio
(BER) is 3 x 10! [19]. We also investigate the effect of
temperature variations on switching and propagation delays by
the circuit-level simulation implemented in Cadence Spectre
Simulator. The readout circuitry for measuring propagation de-
lay is provided in the supplementary material. Our simulation
show that the propagation delay remains largely unaffected,
while the switching delay only increases by about 1.5% (refer
Fig. 7).

Thus, at 351K, we can reduce the access energy per bit from
2.57 1] to 1.86 fJ. As a result, the memory access energy for
one deep neural network inference cycle on our 3D hardware
accelerator reduces from 92.04 mlJ to 66.63 mlJ, i.e., 27.56 %
less memory access energy.

The HotSpot tool [28], while useful for thermal estimations,
may not achieve the precision of direct measurements obtained
through experimental methods using thermal sensors. This in-
accuracy is attributed to its inability to account for the limited
number of thermal sensors available on the chip. To address
the discrepancies in experimental and estimated temperature
profiles, methods described by Zhang et al. can be adopted
[29]. Depending on the grid size, placement and density of on-
chip thermal sensors, and workload characteristics, the error
in the on-chip thermal profile ranges from 0.01K to 1.05K.
Even when considering a temperature discrepancy of 1.05K
for conservative estimations, we still observe a reduction in
memory access energy by 26.83%.

In the hardware accelerator architecture being examined in
the use case, the compute unit inherently induces a rise in
temperature due to its operational demands. This temperature
increase is a characteristic challenge independent of memory
technology. As we observe, adopting FeRAMs facilitated

with the proposed thermal-dependent ferroelectric switching
as memory modules within these accelerators offers a promis-
ing approach to effectively leveraging the elevated thermal
conditions to reduce the energy consumption associated with
memory accesses. Additionally, transitioning from 2D to 3D
memory can significantly reduce the energy required for on-
chip memory transfers, even when employing an on-chip main
memory. Furthermore, the presence of on-chip main memory
also reduces inference latency. Furthermore, the integration of
higher-density ferroelectric memories can reduce the physical
footprint of the 3D hardware accelerator. However, in this
paper, we focus exclusively on demonstrating performance
gains in terms of access energy and plan to address area
optimization in future work.

V. CONCLUSION

Our study has systematically analyzed the temperature-
dependent switching behavior of HfO,-based FeRAM within a
3D memory architecture, emphasizing its application in neural
network hardware accelerators. Experiments and simulations
reveal that by dynamically adjusting write voltages in response
to temperature variations, we can significantly reduce the
access energy per bit while maintaining the reliability and
performance of these memory systems under elevated temper-
atures. This work contributes to the theoretical understanding
of ferroelectric behavior under varying thermal conditions
and provides practical insights for developing more efficient
and thermally resilient memory solutions in next-generation
hardware accelerators. Our findings underscore the importance
of incorporating temperature-aware strategies in designing
memory architectures for advanced computing systems, which
will be critical in maintaining system robustness and energy
efficiency with ever-increasing computational loads. In the
future, we would like to study the thermal profile of these
memory systems and leverage temperature-dependent switch-



ing behavior at more granularity, such as a bank, channel, or
sub-array level.
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