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Abstract—The flourishing development of neural networks that
require exponentially growing amounts of data has presented
an elevated demand for memory footprint. To address this,
researchers have been exploring hardware accelerators with
innovative memory architectures like 3D memory. These 3D
memory architectures offer enhanced storage capacity and pro-
cessing capabilities, at a cost of rising on-chip temperature during
operation. Hafnium Zirconium Oxide (HZO) based Ferroelectric
Random Access Memory (FeRAM) is a promising nonvolatile
memory candidate in neural network hardware accelerators for
its outstanding write performance and reliability. However, its
implementation in the architecture regarding the temperature-
dependent ferroelectric switching behavior has not been well
studied. In this work, we study the thermal impacts on polar-
ization switching through experimental devices and simulation
results. We conduct the circuit and architecture-level simulations
to showcase that one can exploit this temperature rise to reduce
FeRAM’s write voltage and write energy due to its unique
temperature-activated polarization switching mechanisms. As the
on-chip temperature increases to 351K (ambient temperature at
300K) due to neural network workloads, the access energy per
bit can be reduced by 27.6% when a dynamic write voltage is
applied.

Index Terms—FeRAM, 3D memory, DNN hardware accelera-
tor, temperature dependence, thermal-aware floor plan

I. INTRODUCTION

Neural networks have been widely adopted in various fields

due to their advancements. These deeper models with billions

of parameters have a cost and a very high memory footprint

[1]. By offloading intensive computations from central pro-

cessing units (CPUs) to specialized hardware, such as graphics

processing units (GPUs), field-programmable gate arrays (FP-

GAs), or application-specific integrated circuits (ASICs), these

accelerators can significantly speed up the inference process

while reducing power consumption. This is especially critical

in applications requiring real-time processing and low latency,

such as autonomous driving and real-time language translation

[2], [3]. ASICs, such as Google’s Tensor Processing Units

(TPUs) [4], are specially fabricated to execute neural network

operations with optimal efficiency, demonstrating significant

performance gains and energy savings over conventional hard-

ware [5]. Researchers have also explored various approaches to

manage power and accuracy trade-offs, including approximate

computing during inference phases using quantization and

fixed-point multipliers [6].

Alongside the advancements in hardware accelerators, there

is a pressing need to enhance the underlying memory archi-

tectures, including 3D memories, to support these advanced

neural network models’ extensive memory footprint. And as

we push the limits of memory architectures to meet the de-

mands of advanced neural networks, the resulting higher power

densities introduce significant thermal challenges. While there

is extensive research on using 3D memory for hardware

accelerators [7]–[9], these studies often overlook the thermal

characteristics of these memory systems, necessitating sophis-

ticated thermal management strategies to maintain system re-

liability and performance [10]–[12]. Studies by Liu et al. [13]

have demonstrated the severe implications of not addressing

thermal issues, with inference loss reaching up to 90% under

high temperatures. Another study by A. Abdurrob et al. [14]

implies that DRAM, when used in a 3D hardware accelerator,

can reach an extremely high peak temperature of 170◦C. The

refresh overhead, in this case, can be increased 4 times.

Given the significant impact of thermal issues on system

performance and reliability, there is a crucial need to integrate

innovative thermal management strategies to not only mitigate

the risks associated with high temperatures but also pave the

way for exploring new design paradigms that balance thermal

effects with energy efficiency and computational accuracy.

Layer-wise approximation and thermal-aware floor plan design

have been developed to enhance energy efficiency [7], [15]. A

particular focus on heat management by Zervakis et al. [16]

illustrates a methodology to prioritize energy efficiency while

managing thermal impacts effectively. However, these methods

can lead to some loss in computational accuracy and often do

not effectively capitalize on the potential benefits of increased

temperatures within the system.

Nonvolatile memories, such as resistive random access

memories (ReRAM) and ferroelectric random access memo-

ries (FeRAM), consume less energy than their DRAM equiv-

alents. HfO2 based FeRAM sharing a similar cell structure

to DRAM but being nonvolatile, is preferable as memo-

ries in neural network hardware accelerators for its CMOS

compatibility and excellent write performance, such as low

operating voltage and high reliability [17], [18]. Recently,

Ramaswamy et al. have presented a two-tier stacked FeRAM

array [19] to enable the high-density, high-performance re-

quirements for a near-DRAM memory solution. Despite the



excellent read/write performance, managing thermal effects

in such stacked FeRAM is crucial, as it directly impacts

device reliability and energy efficiency. Chen et al. study

the ferroelectricity and polarization-switching behavior in

Hf0.5Zr0.5O2 films from 25◦C to 150◦C [20]. It is revealed

that a strong thermal activation of oxygen vacancies causes the

temperature dependent leakage current in Hf0.5Zr0.5O2 films.

Hur et al. investigate the polarization switching of ferroelectric

Hf0.5Zr0.5O2 (HZO) thin film in wide-ranging temperatures

from 4K to 400K regarding the reliability effects such as

endurance, retention, and small-signal response [21]. A strong

temperature dependence is demonstrated with these character-

istics. Ali et al. report the temperature-dependent operation for

fluorite-structure-based ferroelectric FET (FeFET) [22], where

the study of memory window (MW) indicates a strong depen-

dence on temperature intrinsic to the ferroelectric polarization.

While these works primarily focus on ferroelectrics’ electrical

characteristics and suggest techniques to mitigate the impact

of temperature differences, our work provides a perspective

to leverage the temperature-dependent polarization switching

behavior and their integration in advanced memory systems.

The major contributions of this paper are as follows:

• We fabricate a 10-nm-thick HZO thin film capacitor and

measure its characteristics at different temperatures to

show the temperature dependence of polarization switch-

ing.

• We propose a revised multi-domain Monte Carlo model to

capture the temperature impact on ferroelectric switching

behavior.

• We exploit the temperature rise as a resource that can

reduce the FeRAM’s write voltage and write energy and

validate in circuit simulations.

• We perform a case study of the FeRAM-based hardware

accelerator to demonstrate the rise in temperature on-chip

for DNN workloads.

The rest of the paper is organized as follows. Section II de-

tails device fabrication and experimentation setup. Section III

provides in-detail explanation of our proposed design followed

by discussion on experimental results in section IV. Finally,

we conclude our work in section V.

II. DEVICE FABRICATION AND EXPERIMENTAL DETAILS

The Metal-Ferroelectric-Metal (MFM) capacitor under mea-

surements is fabricated on low-resistivity silicon substrate.

The top and bottom metal electrodes are two 100-nm-thick

tungsten (W) layers, and are sputtered by DC sputter under 300

W. The 10-nm-thick Hf0.5Zr0.5O2 layer is deposited through

atomic layer deposition (ALD) at temperatures of 250◦C. Post-

metallization annealing (PMA) is carried out in N2 atmosphere

at 500◦C for 1 minute to facilitate the crystallization of the

ferroelectric material. The cross-sectional transmission elec-

tron microscopy (TEM) image of the fabricated Hf0.5Zr0.5O2

capacitor is shown in Fig. 1(a).

To measure the characteristics of the fabricated MFM, its

top and bottom electrode are connected to two pulse measure

units (PMU), which apply voltage pulses shown in Fig. 1(b)
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Fig. 1. (a) Cross-sectional TEM image of the fabricated Hf0.5Zr0.5O2

capacitor. (b) The electrical sequence applied on the MFM. The test sequence
are repeated 3 times under the ambient temperature at 300K, 330K and 360K.
(c) The measured P-V curves under different temperature settings.
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Fig. 2. The experimental P-V curves at 300K, 330K and 360K when the
applied voltage amplitude is (a) 1.4V and (b) 3V.

on the MFM and measure the current. The applied electrical

sequence is composed of multiple symmetrical triangular

pulses whose amplitude gradually increases from 1V to 3V

with a step of 0.4V. The pulse width of one triangular pulse

is 20 μs. Then, the polarization versus voltage (P-V) curves

can be derived by integrating the current data collected by

PMUs over time. By varying the wafer chuck temperature,

the temperature-dependent ferroelectric switching behavior is

studied. Fig. 1(c) demonstrates the P-V loops of all 3 temper-

atures (300K, 330K and 360K) implemented in this article.

Fig. 2 compares the P-V curves under different temperature

settings with 1.4V/3V applied voltage. When 1.4V is applied

on the MFM, the remnant polarization (Pr) at 300K, 330K

and 360K are 2.5, 3.7 and 5.8 μC/cm2 respectively. However,

when 3V is applied, Pr at 300K, 330K and 360K are all 21

μC/cm2.

III. PROPOSED DESIGN

To capture the temperature impact on ferroelectric switching

behavior, a revised model based on a reported multi-domain

Monte Carlo framework [23], [24] is proposed. In that frame-

work, the field-dependent nucleation-limited switching (NLS)

model [25] is generalized for arbitrary input waveforms by

calculating each domain’s switching probability at each time

step and simuating the switching event. Given a domain has

not switched until time t, the probability of its switching time
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Fig. 3. The P-V curves obtained by the proposed model can be well calibrated
with experimental data when applying (a) 1.4V and (b) 3V.

tS in the time interval [t, t+Δt] is:

P (tS < t+Δt|tS > t) = 1− exp
[
(h(t))β − (h(t+Δt))β

]
(1)

where β is the shape parameter of the Weibull process, and

h(t) is an auxiliary history parameter which is defined as:

h(t) =

∫ t

t0

dt′

τ
(2)

where t0 is the time when the switching voltage is applied,

and τ is the switching time constant of one domain which

describes the switching rate of that domain and is defined as:

τ(Ea, E, T ) = τ∞ exp

[(
RT

T

)c (
Ea

E

)α]
(3)

where Ea is the activation field, E is the local field, T is the

temperature, τ∞ is the time constant obtained for an infinite

applied field, and RT is the room temperature (300K). c and α
are empirical parameters. The Arrhenius equation is included

in the calculation of τ to capture the thermal activation of

polarization switching. Additionally, an empirical factor d is

used to reflect the exponential decay of saturated polarization

(Ps) as T increases [22] as following:

P ′
s(T ) = Ps exp [−d(T −RT )] (4)

IV. RESULTS AND DISCUSSION

A. Parametric Study of the Proposed Model

By exploiting equations (3) and (4), the temperature depen-

dence of both τ and Ps is reflected, two dominant factors in

the ferroelectric switching behavior. The increase of Pr with

temperature with 1.4 V applied voltage shown in Fig. 2(a) is

due to the reduction of τ with temperature. When the applied

electric field is small, τ decreases as the operating temperature

increases, so more domain switching occurs. However, for

large applied electric field, almost all reversible domains are

switched (i.e., characteristics in the saturated P-V loop), so

the impact of Ps is more significant. Given the P-V curves

in Fig. 2(b) are identical, d in equation (4) is supposed to

be a small value. The parametric extraction shows that when

c = 4.2, d = 0.001K−1, our model can be well calibrated

with experimental data (Fig. 3). The parametric study of c in

equation (3) (Fig. 4(a)(b)) and d in equation (4) (Fig. 4(c)(d))
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Fig. 4. The parametric study of (a)(b) c in equation (3) and (c)(d) d in
equation (4) at 360K. c changes from 0 to 10 with the step size of 2, and d
changes from 0 to 0.025 K−1 with the step size of 0.005 K−1. The P-V
curves when applying (a)(c) ±1.4V and (b)(d)±3V.

are then conducted. It is implied by equation (3) that as

c increases, the drop of τ is more relevant to temperature

rise. The coercive field (Ec) of ferroelectrics is the applied

field which enables the reversible dipole switching. Since it

is observed that Ec decreases with c in both cases, τ can be

used to reflect Ec. However, only for unsaturated P-V loops

(Fig. 4(a)), smaller Ec results in higher Pr, which means that

the increase of c will have a stronger effect on Pr under a

relatively smaller applied electric field. Equation (4) exhibits

the inverse correlation between d and Ps, as is verified in

Fig. 4(c)(d), and smaller Ps causes the drop of Pr for both

small and large applied voltage.

B. Circuit Simulation

The circuit-level simulation is implemented by Cadence

Spectre Simulator. The MFM capacitor is connected to an

access transistor and is programmed to positive Pr (i.e., data

’1’) by applying a positive electric field (Fig. 5(a)). On the

contrary, when the applied electric field is negative (Fig. 5(b)),

the MFM is written to negative Pr (i.e., data ’0’). Fig. 5(c)

shows the simulation waveform applied on word line (WL),

bit line (BL) and plate line (PL). It is indicated by the PFE

waveform in Fig. 5(d) that the charge memory window (MW)

at 300K/330K/360K is 4.7/7.2/10.6 μC/cm2 when applying

±1.4V. The observed MW rise with temperature means that

for the conventional FeRAM write operation, the write voltage

(Vwrite) can be reduced and the MW is still above a certain

threshold for correct sensing. It is implied by Fig. 6(a) that

if the desired MW is about 4.7 μC/cm2, Vwrite is supposed

to be 1.4V, 1.276V and 1.166V at 300K, 330K and 360K

respectively. Therefore, compared to 300K, the Vwrite reduction

at 330K/360K can reach 8.9%/16.7%. Thanks to the Vwrite

reduction, the write energy (Ewrite) can be lowered from 2.57

fJ/bit at 300K to 2.24/1.74 fJ/bit at 330K/360K, which means

that the Ewrite reduction can be 13%/32.5% at 330K/360K

(Fig. 6(b)).
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Fig. 7. Effect of temperature on switching delay and propagation delay.

C. Case Study

A study has been developed to gain insight into the impact

of temperature fluctuations in a hardware accelerator with

ferroelectric memory. A deep neural network (DNN) is em-

ployed for this purpose as 3D memory technologies provide

significant advantages for these data-centric workloads. A Yolo

DNN model [26] is selected as the workload for machine

learning. This benchmark offers a rigorous evaluation of DNN

efficiency, replicating fundamental neural network operations.

The structural attributes of the accelerator are modified from

Google Tensor Processing Unit [4]. It comprises a process-

ing unit, buffer memory, and peripheral components, which

include an input-output unit, memory management unit, and

control unit. A 256 by 256 systolic array matrix-multiply unit

within the DNN accelerator functions as the processing core.

Three 64 MiB FeRAM buffers are employed for holding input,

filter weights and activations, and accumulators.

The DNN model must be mapped to a systolic array to as-

sess the thermal characteristics of a DNN accelerator running

a specific workload. Assuming an output-stationary data flow

i.e. each processing element computes a pixel of the output

feature map by accumulating inputs and weights provided

Fig. 8. Block level diagram of processing element [14].

Heat sink material Aluminium 6061
Heat sink thermal conductivity 167 W/(m-K)
Heat sink specific heat capacity 8.9× 105 J/(m3K)

Heat sink thickness 6.9 mm
Heat sink side 25 mm

Heat spreader thickness 3 mm
Ambient temperature 300K

TABLE I
CONFIGURATION FOR THERMAL SIMULATION.

each cycle, we use SCALE-Sim [27] tool to get cycle-accurate

simulation for systolic array-based CNNs. It provides insights

into compute cycles, systolic array utilization, and memory

accesses per layer, which is crucial for estimating power traces

for thermal analysis.

The CMOS-based processing element Fig. 8 from [14] is

used to derive power traces for the processing core. The

average dynamic and static power consumption per processing

element is approximately 370μW and 13μW, respectively, at

a supply voltage of 0.9V and a clock frequency of 700MHz.

These values are utilized to calculate the total energy dissi-

pated during the execution of each DNN layer, which, divided

by the total number of cycles, gives us a power trace for

the processing element. To get the power trace for memory

modules, we multiply the read and write energy per access

per bit by the number of bytes read and written obtained from

SCALE-Sim, respectively.

We use hotspot [28] for thermal analysis. The 2D floor plan,

resembling a conventional 2D technology similar to TPU [4],

is depicted in Fig. 9 (a). For the 3D stack, apart from the buffer

memories, we have a 4GB on-chip main memory similar to

NVDRAM [19] with a chip density of 0.42Gb/mm2. The floor

plan for the monolithic 3D stack with stack 0 close to the heat

sink is shown in Fig. 9 (b). Tab. I shows the cross-sectional

information of the chip, ambient temperature and heat sink

parameters for the simulation.

Fig. 9(c) illustrates the steady-state temperatures in Kelvin,

of our 2D floor plan. The processing unit and the FeRAM

buffers have steady-state temperatures of 314.7K and 314.1K,

respectively. The on-chip memory access energy, representing

the energy consumed during data transfer between the buffer

and systolic array for a single inference cycle, is 65.47mJ.

Transitioning from a 2D to a 3D floor plan introduces

significant benefits in terms of latency and throughput for

hardware accelerators. The 3D architecture integrates on-chip

main memory more effectively, considerably reducing data

transfer distances compared to traditional 2D layouts. The

steady-state temperatures in Kelvin of our 3D-floor plan are

shown in Fig. 9 (d). The processing unit and the buffer memory

on the bottom stack close to the heat sink reach a steady state

temperature of 352.18K and 350K, respectively. The FeRAM

buffers on stack one and the on-chip main memory operate at



Fig. 9. (a) Floor plan of 2D Stack: 100mm2 2D floor plan with 1.21mm2 ferroelectric buffer memories with the proposed design. (b) Floor plan of 3D
Stack: In addition to the buffer memory, we also have an on-chip main memory. It is similar to nvdram [19] with the proposed model (c) Steady state thermal
map of 2D and (d) 3D Stack with maximum temperature 314.78 and 351.77 respectively.

351K steady-state temperature.

These temperatures are well below the rated operating

condition of NVDRAM at 368.15K, where the bit error ratio

(BER) is 3 × 10−11 [19]. We also investigate the effect of

temperature variations on switching and propagation delays by

the circuit-level simulation implemented in Cadence Spectre

Simulator. The readout circuitry for measuring propagation de-

lay is provided in the supplementary material. Our simulation

show that the propagation delay remains largely unaffected,

while the switching delay only increases by about 1.5% (refer

Fig. 7).

Thus, at 351K, we can reduce the access energy per bit from

2.57 fJ to 1.86 fJ. As a result, the memory access energy for

one deep neural network inference cycle on our 3D hardware

accelerator reduces from 92.04 mJ to 66.63 mJ, i.e., 27.56 %

less memory access energy.

The HotSpot tool [28], while useful for thermal estimations,

may not achieve the precision of direct measurements obtained

through experimental methods using thermal sensors. This in-

accuracy is attributed to its inability to account for the limited

number of thermal sensors available on the chip. To address

the discrepancies in experimental and estimated temperature

profiles, methods described by Zhang et al. can be adopted

[29]. Depending on the grid size, placement and density of on-

chip thermal sensors, and workload characteristics, the error

in the on-chip thermal profile ranges from 0.01K to 1.05K.

Even when considering a temperature discrepancy of 1.05K

for conservative estimations, we still observe a reduction in

memory access energy by 26.83%.

In the hardware accelerator architecture being examined in

the use case, the compute unit inherently induces a rise in

temperature due to its operational demands. This temperature

increase is a characteristic challenge independent of memory

technology. As we observe, adopting FeRAMs facilitated

with the proposed thermal-dependent ferroelectric switching

as memory modules within these accelerators offers a promis-

ing approach to effectively leveraging the elevated thermal

conditions to reduce the energy consumption associated with

memory accesses. Additionally, transitioning from 2D to 3D

memory can significantly reduce the energy required for on-

chip memory transfers, even when employing an on-chip main

memory. Furthermore, the presence of on-chip main memory

also reduces inference latency. Furthermore, the integration of

higher-density ferroelectric memories can reduce the physical

footprint of the 3D hardware accelerator. However, in this

paper, we focus exclusively on demonstrating performance

gains in terms of access energy and plan to address area

optimization in future work.

V. CONCLUSION

Our study has systematically analyzed the temperature-

dependent switching behavior of HfO2-based FeRAM within a

3D memory architecture, emphasizing its application in neural

network hardware accelerators. Experiments and simulations

reveal that by dynamically adjusting write voltages in response

to temperature variations, we can significantly reduce the

access energy per bit while maintaining the reliability and

performance of these memory systems under elevated temper-

atures. This work contributes to the theoretical understanding

of ferroelectric behavior under varying thermal conditions

and provides practical insights for developing more efficient

and thermally resilient memory solutions in next-generation

hardware accelerators. Our findings underscore the importance

of incorporating temperature-aware strategies in designing

memory architectures for advanced computing systems, which

will be critical in maintaining system robustness and energy

efficiency with ever-increasing computational loads. In the

future, we would like to study the thermal profile of these

memory systems and leverage temperature-dependent switch-



ing behavior at more granularity, such as a bank, channel, or

sub-array level.
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