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Abstract

Let W → R2 be a planar polygonal environment (i.e., a polygon potentially with holes) with a total of n
vertices, and let A,B be two robots, each modeled as an axis-aligned unit square, that can translate inside
W. Given source and target placements sA, tA, sB , tB ↑ W of A and B, respectively, the goal is to compute a
collision-free motion plan ω→, i.e., a motion plan that continuously moves A from sA to tA and B from sB to tB
so that A and B remain inside W and do not collide with each other during the motion. Furthermore, if such a
plan exists, then we wish to return a plan that minimizes the sum of the lengths of the paths traversed by the
robots. Given W, sA, tA, sB , tB and a parameter ω > 0, we present an n2ω↑O(1) log n-time (1+ ω)-approximation
algorithm for this problem. We are not aware of any polynomial-time algorithm for this problem, nor do we
know whether the problem is NP-Hard. Our result is the first polynomial-time (1+ ω)-approximation algorithm
for an optimal motion-planning problem involving two robots moving in a polygonal environment.

1 Introduction

The basic motion-planning problem is to decide whether a robot (i.e., a rigid or multi-link moving object) can move
from a given start position to a given target position without colliding with obstacles on its way, and avoiding
collision of di!erent parts of the robot. If the answer is positive, we also want to plan such a motion. With the
advancement of robotics, we witness the growing deployment of teams of robots in logistics, wildlife monitoring,
buildings and bridges inspection and more. Motion planning for many robots requires that, in addition to not
colliding with obstacles, the robots should not collide with one another, which in turn necessitates studying
the problem in high-dimensional configuration spaces. Furthermore, we wish to ensure a good quality of the
motion, such as being short or having a small makespan. Already for two simple robots, such as unit squares
or discs, translating in a planar polygonal environment, little is known when it comes to optimizing the robot
motion. Although polynomial-time algorithms are known for computing a collision-free motion plan of two simple
robots [35], no polynomial-time algorithm is known for computing a plan such that the sum (or the maximum) of
the path lengths of the two robots is minimized, nor is the problem known to be NP-hard. Even a polynomial-time
constant-factor approximation algorithm is not known for this problem (without further restrictions).

Problem statement. Let ↭ = {x → R2 | ||x||→ ↑ 1} denote the unit-radius axis-aligned square centered at the
origin, referred to as a unit square for short. For a point p → R2 and a real value ω ↓ 0, we use p+ ω↭ to denote
the axis-parallel square of radius ω centered at p. Let A and B be two robots, each modeled as a unit square, that
can translate inside the same closed planar polygonal environment (a connected polygon possibly with holes) W
with n vertices. A placement of A or B is represented by a point in W — the position of its center. For such a
placement to be free of collision with εW, the boundary of W, the representing point should be at L→-distance
at least 1 from εW. We denote by F, the free space of a single robot, the subset of W consisting of such points.
Note that the robots may be at L→-distance 1 from εW and hence they are allowed to make contact with the
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obstacles. A (joint) configuration of A and B is represented as a pair (pA, pB) → W↔W, where pA (resp., pB) is
the placement of A (resp., B). We also represent a configuration as a point p → R4, where the first (resp., last)
pair of coordinates represent the placement of A (resp., B). The configuration space, called C-space for short,
namely the set of all configurations, is thus represented as W↔W ↗ R4. A configuration p = (pA, pB) → R4 is
called free if pA, pB → F, that is, pA +↭, pB +↭ ↘ W, and ||pA ≃ pB ||→ ↓ 2. Such a free configuration is called a
kissing configuration if ||pA ≃ pB ||→ = 2, i.e., the robots touch each other (but their interiors remain disjoint). Let
F := F(W) denote the (four-dimensional) free space, namely the set of all free configurations. Clearly, F ↗ F ↔ F.

Two free configurations s, t → F are reachable if they lie in the same connected component of F, i.e., there is a
path contained in F from s to t. For two reachable free configurations s := (sA, sB), t := (tA, tB) → F, a path
ω ↘ F from s to t is called a (feasible) plan of A and B from s to t, or an (s, t)-plan for brevity. With a slight
abuse of notation, we also use ω as a (continuous) parameterization ω : [0, 1] ⇐ F, with ω(0) = s and ω(1) = t.
For a path ω ↘ F, let ϑA (resp., ϑB) be the projection of ω onto the two-dimensional plane spanned by the first
(resp., last) two coordinates, which specifies the path followed by A (resp., B) that ω induces; we have ϑA,ϑB ↗ F.
Let ¢(ϑA), ¢(ϑB) denote the (Euclidean) arc length of the paths ϑA,ϑB , respectively, in R2. We define ¢(ω), the
cost of ω, to be the sum of the lengths of ϑA and ϑB , i.e., ¢(ω) = ¢(ϑA) + ¢(ϑB). Let ω↑(s, t) denote an optimal
(s, t)-plan, i.e., a plan that minimizes the sum of the lengths of the two paths.1 If s and t are not reachable, i.e.,
they lie in di!erent connected components of F, then ω↑(s, t) does not exist. We refer to the problem of computing
ω↑(s, t) as the (optimal) min-sum motion-planning problem. In this paper we study the min-sum motion-planning
problem for two translating axis-aligned unit squares, and present a (1 + ϖ)-approximation algorithm that runs in
n
2
ϖ
↓O(1) log n time.

Related work. Algorithmic motion planning has been studied for well over fifty years in computer science and
beyond. The rigorous study of algorithmic motion planning dates back to the work of Schwartz and Sharir [33]
and Canny [10]. See [17, 18, 27, 29] for a review of key relevant results. We mention here only a small sample of
these results—the ones that are most closely related to the problem at hand.

When only one square robot translates, or more generally when only one convex polygonal robot of a constant
description complexity (that is, with a constant number of vertices) translates, the problem is equivalent—through
C-space formulation—to moving a point robot amid polygonal obstacles with O(n) vertices, and it can be solved
in O(n log n) time [11, 20, 43]. Interestingly, the analogous problem in 3D, namely finding the shortest path for
a point robot amid polyhedral obstacles, is NP-hard [9] and fast (1 + ϖ)-approximation algorithms are known
[9, 34]. Note that this hard problem has only three degrees of freedom of motion, and there are other optimal
motion-planning problems for robots with three degrees of freedom that are NP-hard [5, 6]. Our two-square
problem has four degrees of freedom, which suggests it might be NP-hard as well, though, as we have remarked
earlier, this is an open problem.

Computing a feasible (not necessarily optimal) plan for a team of translating unit square robots in a polygonal
environment is PSPACE-hard [38] (see also [7, 8, 19, 21, 40, 46] for related intractibility results). Notwithstanding
a rich literature on multi-robot motion planning in both continuous and discrete setting (robots moving on a graph
in the latter setting), see, e.g., [12, 23, 24, 32, 36, 41, 42], little is known about algorithms producing paths with
provable quality guarantees. Approximation algorithms for minimizing the total path-length are given in [2, 37, 39]
for a set of unit-disc robots assuming a certain separation between the start and goal positions, as well as from the
obstacles. The separation assumption makes the problem considerably easier. A feasible plan always exists, and
one can first compute an optimal path for each robot independently, ignoring other robots and then locally modify
them so that the robots do not collide with each other during their motion. An O(1)-approximation algorithm
was proposed in [14] for computing a plan that minimizes the makespan for a set of unit discs (or squares) in
the plane without obstacles, again assuming some separation. Computing the min-sum motion plan for two unit
squares/discs even in the absence of obstacles is non-trivial [15, 25]. We are unaware of any constant-factor
approximation algorithms for the min-sum motion-planning problem even for two unit squares/discs in a planar
polygonal environment without any assumptions on the work environment or on the start/final configurations.

Quite a few of the algorithmic results for teams of robots distinguish between the labeled and unlabeled
versions: In the labeled version, like in the two-square problem studied here, each robot is designated its own
unique target position. In the unlabeled case, each robot can finish at any of the (collective) target positions, as
long as at the end of the motion all the target position are occupied by robots. For a team of unlabeled unit discs,

1
The existence of ω→

can be proved using a simple compactness argument, since F and F are closed.
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an approximate solution for the minimum total path length is given in [39], assuming a certain separation between
the start and goal positions of the robots, as well as from the obstacles. A similar result has also been obtained
for a team of labeled unit discs in [37], using the slightly more relaxed requirement of the existence of revolving
areas around the start and target positions. In both cases the approximation bounds are crude, and we omit them
here. The latter result for labeled unit discs has recently been improved [2], to give an O(1)-approximation of the
optimal total length of the paths, under exactly the same conditions as in [37].

The central and prevalent family of practical motion-planning techniques in robotics is based on sampling of
the underlying C-space; see, e.g., [22, 24, 27, 28, 30], and [32] for a recent review. Another major line of work
on optimizing multi-robot motion plans addresses a discrete version of the problem, where robots are moving on
graphs. In this setting the robots are often referred to as agents, and the problem is called Multi Agent Path
Finding (MAPF). There is a rich literature on MAPF, and we refer the reader to the recent survey [41]. A
commonly used optimization criterion (particularly in the study of MAPF, but elsewhere as well) is makespan,
where we wish to minimize the time by which all the robots reach their destination, assuming they move in some
prespecified maximum speed; see, e.g., [14, 46].

There are a variety of additional optimization criteria in robot motion planning. A common one, related to
motion safety, is requiring high clearance, namely, requiring that the robot stays far from the obstacles in its
environment—this can be obtained using Voronoi diagrams (e.g., [30]). In the context of multi-robot planning we
may also require that the robots stay su”ciently far from one another (e.g., [12]). A natural requirement is to
produce paths that are at once short and far away from obstacles, which is a more intricate task even for a single
robot translating in the plane; see, e.g., [1, 44, 45].

Our contributions. We consider the following simple case of min-sum motion-planning for two unit-square
robots. Let W be a polygonal environment, i.e., a polygon possibly with holes. As already stated, we assume that
the two robots A and B are axis-parallel squares of side-length 2. Given a source and a target free configurations
(sA, sB), (tA, tB) → W, the goal is to compute a collision-free motion plan for A from sA to tA and B from sB to
tB , such that the sum of the lengths of the two tours traversed by the robots is minimized, or otherwise report that
there is no such collision-free motion plan. Our main result is the following theorem, which provides an e”cient
ϖ-approximation algorithm for this problem.2

Theorem 1.1. Let W be a closed polygonal environment with n vertices, let A,B be two axis-parallel unit-square
robots translating inside W, and let s, t be source and target configurations of A,B. For any ϖ → (0, 1), a motion
plan ω from s to t with ¢(ω) ↑ (1 + ϖ)¢(ω↑), if there exists a such a motion, can be computed in n

2
ϖ
↓O(1) log n

time, where ω↑ is an optimal (s, t)-plan.

Although our result falls short of answering whether the min-sum problem for two robots is in P, it is a
significant contribution to the theory of optimal multi-robot motion planning. First, as mentioned above, a
polynomial-time algorithm was not known, even for constant-factor approximation, and we present an FPTAS
for this problem. Second, we prove several structural properties of an optimal plan, which could lead to a
polynomial-time algorithm in some special cases, e.g., when W is rectilinear and we consider the L1-length of a
path. Note that our FPTAS does not rule out the possibility of the problem being NP-hard because, as in other
NP-hard optimal motion-planning problems, the construction might use a polynomial number of bits (see, e.g., [9]).
Finally, our algorithm is very simple and follows the widely-used sampling paradigm. More precisely, we sample a
finite set V ↗ F of free configurations that contains s, t. We connect a pair of configurations p := (pA, pB) and
q := (qA, qB) in V by an edge if there is a simple (feasible) plan from p to q, namely, we can move A from pA

to qA (not necessarily along a straight segment) while keeping B parked at pB and then move B from pB to qB

while A is parked at qA, or vice-versa. The cost of the edge (p, q) is the minimum cost of such a plan. We then
compute a shortest path in this graph. The question is, of course, how we (e”ciently) choose a small number
of free configurations (linear in n) so that the resulting graph is guaranteed to contain a path from s to t that
corresponds to a near-optimal (s, t)-plan. Most of this paper is about answering this question. We note that the
runtime of our algorithm nearly matches that of the best known algorithm for finding any (s, t)-plan for two unit
squares in a planar polygonal environment, which takes O(n2) time [35].

2
In principle, our approach extends to two identical centrally-symmetric regular convex polygons, but the analysis becomes even

more technical, so for simplicity we only focus on unit squares.
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There are four main technical contributions of this paper. First, we prove a few key properties of an optimal
plan (Section 3). Concretely, we show that there is always an optimal plan in which only one robot moves at any
given time while the other robot is parked (remains stationary). Thus an optimal plan can be represented as
a sequence of moves, where each move is specified as a 3-tuple (R,ϑ, p), where R → {A,B} is the robot that is
moving along a path ϑ ↘ W and the other robot is parked at p → F, where ϑ ↔ {p} or {p} ↔ ϑ is in F (ϑ also
encodes the starting and terminating placements of R in this move). We refer to such a plan as a decoupled plan.3

Second, we show that among all decoupled plans, there exists one in which for each move (R,ϑ, p), except
possibly the first and the last moves, there is a point q → ϑ such that (p, q) (or (q, p) as the case might be) is a
kissing configuration. We refer to such a plan as a kissing plan. We use the kissing property to prove that there
exists an optimal, kissing plan ω↑ composed of O(¢(ω↑) + 1) moves. Our usage of kissing configurations is di!erent
from earlier work (see, e.g., [4, 16, 22]) in a few ways. First, the focus of these works is on motion in contact. For
example, Aronov et al . [4] use a continuum of kissing configurations to reduce the dimension of the underlying
joint configuration space of a pair or of a triple of robots, under various extra conditions. In contrast, kissing
configurations in this paper arise as part of individual robot moves, often a singular/discrete configuration, in a
(possibly long) alternating sequence of moves. Second, earlier work deals with feasible motion, while we show that
there exists optimal plans in which almost every move contains a kissing configuration.

Finally, we prove that there is always a kissing plan in which neither of the robots is ever parked deep inside
corridors. A formal definitions of corridors is given in Section 2, but intuitively a corridor is a (narrow) region of F
bounded by two of its edges that is far from all vertices of F and not wide enough to let one robot pass the other.

Next, using these three properties of an optimal plan, we show that we can deform an optimal kissing plan to
a tame plan, at a slight increase of its cost, in which (roughly speaking) a robot is always parked near a vertex
of W or of a corridor at each move. Furthermore, the deformed plan ω̃ is composed of O(¢(ω) + 1) moves and
remains a kissing plan (Section 5). Ensuring the kissing property in this deformation is delicate and requires a
rather involved argument, so we first prove the existence of a tame plan without ensuring the kissing property
(Section 5). This weaker property already leads to an n

3
ϖ
↓O(1) log n-time (1 + ϖ)-approximation algorithm. A

key ingredient in computing these deformations is the notion of revolving areas within F, the two-dimensional
free space with respect to one robot, roughly a unit square inside F (again see below for a precise definition). We
can show that if each of sA, sB , tA, tB lies in a revolving area, then there is an (s, t)-plan ω composed of O(1)
moves with cost ¢(ω) ↑ ϱ(sA, sB) + ϱ(tA, tB) +O(1), where ϱ(·, ·) is the geodesic distance between two points in
F. The notion of revolving areas was used in [2, 37] to make a strong separation assumption on each of the start
and target configurations, which was exploited to compute a near-optimal plan. Here, we prove the existence of
revolving areas in the neighborhood of a non-tame plan and use them for auxiliary parking spots to convert the
plan into a near-optimal tame plan.

The existence of an kissing, tame, near-optimal (s, t)-plan ω↑ enables us to choose a set V of nϖ↓O(1) (nearly)
kissing configurations and to build a graph G over them so that ω↑ can be retracted to a path in G at a slight
increase in its cost, thereby reducing the problem to computing a shortest path in G. Ensuring that the two robots
do not collide with each other in the retracted path requires care and thus the retraction map is somewhat involved.
This retraction step introduces O(ϖ) additive error, so we need a separate procedure to handle the case when ¢(ω↑)
is small, say, at most 1/4. By exploiting the topology of F, we describe an O(n log2 n)-time O(1)-approximation
algorithm for computing an optimal (s, t)-plan when ¢(ω↑) ↑ 1/4 (Section 8). We then plug it into the above
algorithm to obtain a (1 + ϖ)-approximation algorithm for all values of ¢(ω↑).

2 Preliminaries

Definitions. Let F be the free space of one robot as defined above. Throughout the paper, we regard sA, sB , tA, tB

as additional vertices of F. For a point p → W, let F[p] := {x → F | ||x≃ p||→ ↓ 2} be the set of all placements
x → F of A such that A does not collide with B if B is placed at p, i.e., int(x+↭) ⇒ int(p+↭) = ⊋. It is well
known that F and F[p] are polygonal and have O(n) vertices, and that they can be computed in O(n log2 n)
time [13]. See Figure 1. For p, q → F, let ϱ(p, q) denote the geodesic distance between p and q in F. We call
a configuration (a, b) → F x-separated if |x(a) ≃ x(b)| ↓ 2 and y-separated if |y(a) ≃ y(b)| ↓ 2. (a, b) is always
x-separated or y-separated (or both) since ||a≃ b||→ ↓ 2.

3
We note that the notion of decoupled has been used in multiple ways in the context of multi-robot motion planning [26].
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sB = p1

p2

tA = p2
tB = p3

⇡1
⇡3

⇡2

sA = p0

W

F

⇡3 �⇤

Figure 1. An (s, t)-plan ω with →ω↑ = (A,ω1, sB), (B,ω2, p2), (A,ω3, tB). (sA, sB) is x-separated and not y-separated.

p

sA tAsB tB

p+ 2⇤

Figure 2. The optimal (s, t)-plan moves A from sA to p, then moves B from sB to tB , and then moves A from p to tA. This example

is adapted from [31].

Given source and target configurations s, t → F, we call an (s, t)-plan ω : [0, 1] ⇐ F decoupled if only one
robot moves at any time while the other robot is parked at some point in F, and if there is only a finite number of
switches between the moving and parking robots. A decoupled plan can be represented as a finite sequence

(R1,ϑ1, p1), (R2,ϑ2, p2), . . . , (Rk,ϑk, pk),

where, for each i, (Ri,ϑi, pi) is called a move, with Ri → {A,B}, pi → F, and ϑi ↘ F[pi]. At such a move, Ri moves
along ϑi and the other robot is parked at pi. The plan ω is the concatenation of Cartesian products of the form
ϑi ↔ {pi} or {pi}↔ ϑi, depending on which robot is moving and which is parked. If R1 is A (resp., B), then we set,
for completeness, p0 := sA (resp., p0 := sB). If Ri ⇑= Ri↓1, then the initial point of ϑi is pi↓1 and pi is the final
point of ϑi↓1. Otherwise Ri = Ri↓1 and the initial point of ϑi is the final point of ϑi↓1 and pi = pi↓1. We call a
move-sequence minimal if Ri ⇑= Ri↓1 for all 1 < i ↑ k. If Ri = Ri↓1, we can replace (Ri↓1,ϑi↓1, pi↓1), (Ri,ϑi, pi)
with (Ri,ϑi↓1⇓ϑi, pi), and obtain a shorter sequence (recall that in this case pi↓1 = pi). Most of the time we will
be working with a minimal sequence, but sometimes, when we deform a plan, it will be convenient to describe a
non-minimal sequence, which can then be compressed as above. For a given plan ω, there is a unique minimal
move sequence into which ω can be compressed, which we represent as ⇔ω↖, and we define ς(ω) := |⇔ω↖| to be the
number of moves in ω.

For a path ϑ ↗ F and two values ω,ω↔ → [0, 1], ω < ω
↔, we denote by ϑ(ω,ω↔) the pathlet of ϑ between times ω

and ω
↔, which itself is a path (with a suitable reparameterization). It will be convenient to specify the portion of a

path ϑ between two points p, p↔ → ϑ using the notation ϑ[p, p↔]. We define the distance between closest points in a
pair of sets using either the L2-distance or the L→-distance. For any pair of subsets X,Y ↗ R2, set

dω(X,Y) := min
x↗X,y↗Y

||x≃ y||ω, for φ → {2,↙}.

Lastly, throughout the paper, we refer to the robots A and B by their centers: we say that a robot is “in” a
region R (at some time ω) if its center lies in R. Similarly, we say that a robot “enters” (resp., “exits”) a region
R (at some time ω) when its center point is crossing into (resp., out of) R. To describe that the entire robot is
contained in R, we say p+↭ ↘ R where p is the placement of its center.
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ei

ej

uij

uij

vi

vj
�L

�R

S
S

ei

ej
vj

vi

�L

�R
uij uij uij

uij

g
g

Figure 4. Two examples of corridors K (shaded) with blockers ei, ej that contains squares S ↓ F with radii strictly less than 2 since

their centers lie in the interiors of the corridors. The left (resp., right) corridor has direction vector uij with angle ω/4 (resp., 0). Both

examples are maximal since the portals εL have L↓-length 2 and εR contain a vertex g of F.

Optimal plan for W = R2. Suppose the work environment is the entire plane R2, i.e., there are no obstacles. In
this case, Esteban et al . [15] proved that an optimal plan is a piecewise-linear decoupled plan consisting of at most
three moves, and each move consists of at most three line segments. See Figure 2 for an example. Note that the
parking position in some cases (such as the one in Figure 2) is not necessarily near the initial/final placements,
which is one of the challenges in developing an e”cient algorithm for computing an optimal plan.

Revolving area. A revolving area is a unit(-radius) square p+↭, for some p → F,

p

q

RA(p)

r

1

Figure 3. Example of a kiss-

ing configuration (q, r) ↔ F with

q, r ↔ ϑRA(p).

that is contained in F; we denote it by RA(p) (Figure 3). For pA, pB → εRA(p)
with ||pA ≃ pB ||→ = 2, (pA, pB) is a kissing configuration, and we say that this
kissing configuration lies in the revolving area RA(p). In Section 4 we give useful
lemmas regarding revolving areas, which play a key role in deforming an optimal
path into a near-optimal tame plan (defined later in Section 5) that is easier to
compute.

Corridor and sanctum. Intuitively, a corridor K is a (narrow) trapezoid in F
bounded by two edges of F, so that if one robot is parked inside K, the other one
cannot pass around it (within K). This implies that when both robots are in the
same corridor, their motions are constrained in ways that we will later explore. We now give a formal definition.
Let ei, ej be a pair of edges of F that support an axis-aligned square (of any size) contained in F, i.e., there exists
an axis-aligned square S ↗ F such that ei (resp., ej) touches a vertex of S, say vi (resp., vj), but does not intersect
int(S). Let uij → [0,ϑ) be a direction normal to the segment vivj ; uij = kϑ/4 for some 0 ↑ k ↑ 3. 4 A corridor
K bounded by ei, ej is a trapezoid such that (i) two of the edges of K are portions of ei, ej , called blockers; (ii)
the other edges of K, called portals, are normal to the direction uij ; (iii) the L→-length of each portal (i.e., the
L→-distance between its endpoints) is at most 2; and (iv) no vertex of F (including sA, tA, sB , tB) lies in the
interior of K. See Figure 4. We refer to uij as the direction of the corridor. The following lemma directly follows
from condition (iii).

Lemma 2.1. Let K be a corridor with direction vector u. For any segment vw ↗ int(K) normal to u, ||v≃w||→ < 2.
Furthermore, ||v ≃ w||2 < 2 if u is axis-parallel, otherwise ||v ≃ w||2 < 2

∝
2.

A corridor K is maximal if there is no other corridor that contains K. If K is maximal, condition (iv) is “tight”
for at least one portal ↼ of K in the sense that there is a vertex of F (not necessarily an endpoint of ei or ej) on ↼.
In particular, there is a vertex of F on the shorter portal of K; if both portals have the same length, both contain
such vertices. Let K be the set of all maximal corridors in F, and let X be the set of vertices of F (including
sA, sB , tA, tB) and the vertices of corridors in K. We charge each corridor K → K to a vertex of F or sA, tA, sB , tB
on its shorter portal. It can be shown that each such vertex is charged O(1) times. Since there are O(n) vertices
of F, we have |K|, |X| = O(n).

Let φL, φR be the lines supporting the portals ↼L,↼R of K, and let len(K) be the L→-distance between φL, φR.
Let uL (resp., uR) be the inner normal of ↼L (resp., ↼R), i.e., pointing toward the interior of K; uL = ≃uR. For
D = L,R and any value ↽ ↓ 0, let φD

(ε) be the line φD shifted in direction uD at L→-distance ↽ from φD, let ↼D
(ε)

4
If vi or vj is not unique, i.e., when ei or ej are axis-aligned, we can choose vi or vj (or both) so that uij ↔ {0,ω/2}.
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K(10)

�L

�R

�L
(2)

`L
(2) `L

(10) `R
(10)

= KS

K

Figure 5. Illustrations of various portal-parallel lines supporting segments in K, and the sanctum KS
of K.

u

⇡B(�1)

⇡A(�1)

⇡A(�2)

⇡B(�2)

⇡A(�0)

⇡B(�0)

g(�0) = 0 g(�2) < 1g(�1) > 0

Figure 6. Illustration of the proof of Lemma 2.2.

be the segment K ⇒ φD
(ε), and let K(ε) ↘ K be the (possibly empty) trapezoid bounded by the blockers of K and

segments ↼L
(ε)

,↼R
(ε). (We assume here that ↽ is su”ciently small so as to guarantee the shifts from φL to φ

(ε)

and from φR to φ
(ε)
R

do not collide.) Note that K = K
(0). Similarly, we define portal-parallel lines and segments

by points that they contain: For any point p → K, let φp be the line normal to uL (and uR) containing p, and
let ↼p := K ⇒ φp. For any corridor K → K with len(K) ↓ 20, we define its sanctum to be K

S := K
(10) ↗ K. See

Figure 5. A corridor K → K with len(K) < 20 has an empty sanctum. The following two lemmas capture the
essence of a corridor.

Lemma 2.2. Let K → K be a maximal corridor, and let u its direction, i.e., one of the unit vectors normal to
the portals of K. Let I be a time interval in a plan ω of A and B, during which both robots are in K, i.e.,
ϑA(ω),ϑB(ω) → K for all ω → I. Then the sign of g(ω) := ⇔ϑA(ω)≃ ϑB(ω), u↖ is the same for all ω → I, where ⇔·↖
is the inner product.

Proof. Suppose to the contrary that there exist two time instances ω1,ω2 → I, with ω1 < ω2, such that
g(ω1) < 0 and g(ω2) > 0 (or the other way around). Since ϑA,ϑB are continuous functions, there exists
ω0 → (ω1,ω2) with g(ω0) = 0. But then ϑA(ω0) and ϑB(ω0) lie on a segment parallel to the portals of K and thus
||ϑA(ω0)≃ϑB(ω0)||→ < 2, which means that the robots intersect at these placements, contradicting the assumption
that ω is a feasible plan. Hence, g(·) has the same sign over the entire interval I. See Figure 6.

The following lemma describes a crucial relationship between revolving areas and corridors, whose proof is
found in the full version [3].

Lemma 2.3. Suppose p → F is a point such that p does not lie in any corridor of K and d→(p,X) ↓ 2. Then there
is a revolving area q +↭ ↘ F, for some q → F, that contains p.

3 Well-structured Optimal Plans

We present a sequence of transformations for optimal plans, which leads to the existence of an optimal plan with
certain desirable properties. A few auxiliary lemmas and the proofs of the stated lemmas are found in the full
version [3]. Using the easily established fact that F is polyhedral, it can be shown that an optimal plan is piecewise
linear with its breakpoints lying on 2-faces of εF. We show that there always exists a piecewise-linear, decoupled
plan such that a robot is never parked in the sanctum of a corridor, and the moving robot kisses the parked robot
in each move, except possibly in the first and the last moves.
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pi

pi+1

pi+2

⇡i+2

⇡i+1

⇡i

p0i+1

Figure 7. Example of three moves, ωi and ωi+2 of robot A and ωi+1 of robot B, in a plan ω. By modifying ωi,ωi+2 so that A parks

at p↔
i+1 instead of pi+1, B kisses A during move ωi.

We first observe that each facet (three-dimensional face) of εF corresponds to a maximal connected set of
placements at which some vertex (resp., edge) of one of the robots touches some edge (resp., vertex) of εW or of
the other robot. This implies that each connected component of εF is a polyhedral region in R4. The distance
between two points a, b → F is the sum of the Euclidean length of the projections of b≃ a onto the 2-planes formed
by the first and the last pairs of coordinates, so it is the L1-distance of two L2-distances. Still, we claim that an
optimal path (in F) must be piecewise linear, with bends only at 2-faces (or faces of lower dimension) of εF. This
follows since both the L2 and L1-distances satisfy the triangle inequality, and since paths that bend at the relative
interior of some 3-face of F can be shortened. Hence, from now on we only consider piecewise-linear plans.

3.1 Decoupled optimal plans
We begin by proving that there always exists an optimal (piecewise-linear) plan that is decoupled, i.e., only one
robot moves at any given time. Such decoupled plans are desirable, as during the motion of the moving robot, the
parked robot can be treated as an additional obstacle that is part of the environment. Thus, given the start and
target placements, s and t, of the moving robot, at some single move in the plan, and the position p of the parked
robot, the optimal motion for the moving robot is the shortest path from s to t in F[p].

Lemma 3.1. Given reachable configurations s, t → F, there is always a decoupled, optimal (s, t)-plan.

We sketch the proof here and refer the reader to the full version [3] for the rest of the details. We begin with
a (piecewise-linear) optimal (s, t)-plan ω = ⇔s = x

0
, x

1
, . . . , x

k = t↖ in F, where ωi = x
i↓1

x
i, for 1 ↑ i ↑ k, is a

line segment in F. Let ϑi

A
(resp., ϑi

B
) be the line segment in F along which A (resp., B) moves during ωi. We

show that ωi can be decoupled by either moving A along ϑ
i

A
and then moving B along ϑ

i

B
, or vice-versa. In

particular, we show that if neither of these decoupled plans were feasible, there would exist a time ω
↑ → [0, 1] for

which ||ϑA(ω↑)≃ ϑB(ω↑)||→ < 2, i.e., ωi(ω↑) /→ F, so ωi is not a feasible plan, which is a contradiction.

3.2 Kissing plans
We call a decoupled plan ω a kissing plan if the robots kiss on all but possibly the first and the last moves.
Formally, let ⇔ω↖ = (R1,ϑ1, p1), . . . , (Rk,ϑk, pk) be the move sequence of ω. Then ω is a kissing plan if, for all
1 < i < k, there exists a point qi → ϑi such that (pi, qi) is a kissing configuration. We show that a decoupled plan
can be converted into a kissing plan, without changing the images of the paths traveled by A and B in the plan,
by reducing the number of moves and adjusting the parking places (Figure 7). We obtain the following:

Lemma 3.2. Let ω be a decoupled, optimal plan with the minimum number of moves. There exists a decoupled,
kissing, optimal plan ω↔ with the same number of moves, such that the first move is made by the same robot as in
ω, and the pathlet of the first move in ω↔ contains that of ω.

Proof. The proof is by induction on k. Let ⇔ω↖ = (R1,ϑ1, p1), . . . , (Rk,ϑk, pk). If k = 2, the claim holds
trivially, that is, vacuously, so assume k > 2. Without loss of generality, A moves first, i.e., R1 = A. Then
(p1 = sB), p3, p5, . . . are the parking placements of B; (p0 = sA), p2, p4, . . . are the parking placements of A;
pk = tA, pk+1 = tB if k is odd, and pk = tB , pk+1 = tA if k is even; ϑ1 := ϑA[sA, p2] is the motion of A in the first
move and ϑ2 := ϑB [sB , p3] is the motion of B in its first move. There are two cases to consider.
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1. If (ϑ3 ′↭) ⇒ (ϑ2 ′↭) = ⊋ then

ω↔ :=

{
(A,ϑ1⇓ϑ3, p1), (B,ϑ2⇓ϑ4, p4), (R5,ϑ5, p5), . . . , (Rk,ϑk, pk) if k > 3

(A,ϑ1⇓ϑ3, sB), (B,ϑ2, tA) if k = 3

is a decoupled, optimal plan with fewer than k moves, which contradicts the assumption that ω has the
fewest moves among all decoupled, optimal plans.

2. If (ϑ3 ′↭) ⇒ (ϑ2 ′↭) ⇑= ⊋, let p↔ be the first point reached on ϑ3 such that (p↔ +↭) ⇒ (ϑ2 ′↭) ⇑= ⊋; note
that p↔ may be p2. By the choice of p↔, the interior of p↔ +↭ is disjoint from ϑ2 ′↭, so B kisses A at that
placement when moving along ϑ2. Define ϑ3< := ϑ3[p2, p↔] and ϑ3> := ϑ3[p↔, p4]. Again, the choice of p↔ also
implies that ϑ3< ′↭ is interior disjoint from ϑ2 ′↭. Then

ω↔ := (A,ϑ1⇓ϑ3<, sB), (B,ϑ2, p
↔), (A,ϑ3>, p3), (R4,ϑ4, p4), . . . , (Rk,ϑk, pk)

is a decoupled, optimal (s, t)-plan in which B kisses A, parked at p↔, as it moves along ϑ2.

Set s→ := (p↔, sB). Let ω↔
0 be the decoupled (s→, t)-plan composed of all but the first move of ω↔. Then

ς(ω↔
0) = ς(ω↔)≃ 1 = ς(ω)≃ 1. Furthermore, ω↔

0 is a decoupled, optimal (s→, t)-plan. We apply the induction
hypothesis to ϑ

↔
0 to obtain a decoupled, kissing, optimal (s↔, t)-plan ω↔↔

0 satisfying the lemma, with B making
the first move (B,ϑ

↔
2, p

↔). Since the lemma guarantees that ϑ2 ↗ ϑ
↔
2, B kisses A (parked at p↔) during the

first move of ω↔↔
0 . Set ω

↔↔ := (A,ϑ1⇓ϑ3<, sA)⇓ω↔↔
0 . Then the robots kiss on all moves of ω↔↔ except possibly in

the first and the last moves. Furthermore

ς(ω↔↔) = ς(ω↔↔
0 ) + 1 = ς(ω↔

0) + 1 = ς(ω),

and ϑ1 ↘ ϑ1⇓ϑ3<. Hence ω↔↔ satisfies the lemma, which establishes the induction step and thus completes
the proof of the lemma.

3.3 Bounding alternations
In a sequence of lemmas, we show that for any s, t → F, there exists a decoupled, kissing, optimal (s, t)-plan ω
with ς(ω) = O(¢(ω) + 1). We begin with a simple observation whose proof is omitted.

Lemma 3.3. Let e be a horizontal or vertical segment of length at most 2. Then e ⇒ F is a connected (possibly
empty) interval.

For any region ∞ ↘ F and any two points p, q → ∞, let ϱ↘(p, q) be the length of the shortest (p, q)-path in
∞⇒ F. Note that ϱ(p, q) = ϱF(p, q). The proof of the following lemma is found in the full version [3].

Lemma 3.4. Let S be any axis-aligned unit-radius square. (i) S ⇒ F is composed of xy-monotone components
(without holes). (ii) At most two components intersect εS. (iii) For any p, q that lie in the interior of a common
component of S ⇒ F, there exists an xy-monotone (p, q)-path P such that |P | = ϱS(p, q) = ϱ(p, q).

The next lemma shows that there is a simple optimal motion between configurations as long as they are
su”ciently close and both x-separated or both y-separated.

Lemma 3.5. Let QA, QB be axis-aligned unit-radius squares. For s = (sA, sB), t = (tA, tB) → F such that sA, tA
(resp., sB , tB) lie in a common component of int(QA) ⇒ F (resp., int(QB) ⇒ F) and s and t are both x-separated
or both y-separated, there exists an optimal (and trivially kissing) plan ω with ¢(ω) = ϱ(sA, tA) + ϱ(sB , tB) and
ς(ω) ↑ 2.

Proof. Without loss of generality, the configurations are x-separated. Using standard transformations as necessary,
we can assume x(sA)≃ x(sB) ↓ 2. Then x(sA)≃ 2 < x(tA) < x(sA) + 2 (resp., x(sB)≃ 2 < x(tB) < x(sB) + 2)
since sA, tA (resp., sB , tB) lie in the interior of QA (resp., QB). (tA, tB) is x-separated so |x(tA)≃ x(tB)| ↓ 2. If
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sA

tA

sB

tB
sA

tA

tB

sB

QA

QB

QA

QB

Figure 8. Examples of x-separated configurations s, t and squares QA, QB that satisfy Lemma 3.5, sA is left of sB . (left) sA, sB are

both left of their respective target placements, tA, tB . B moves first from sB to tB and then A moves from sA to tA. (right) sA is left

of tA but sB is right of tB , so both 2-move plans are feasible.

x(tA) ≃ x(tB) ↑ ≃2 then x(tA) < x(sB) ↑ x(sA) ≃ 2, which is a contradiction. Hence x(tA) ≃ x(tB) ↓ 2. Let
PA be the xy-monotone (sA, tA)-path in QA ⇒ F and let PB be the xy-monotone (sB , tB)-path in QB ⇒ F from
Lemma 3.4. There are two cases.

First, suppose x(sA) ≃ x(tA) and x(sB) ≃ x(tB) are zero or their signs are the same, say, non-negative for
concreteness. See Figure 8(left). Then PB lies to the right of line x = sA + 2 and hence PB ↗ F[sA]. Similarly, PA

lies to the left of line x = tB ≃ 2 and hence PA ↗ F[tB ].
Otherwise, x(sA)≃x(tA) and x(sB)≃x(tB) are non-zero and their signs are di!erent; for concreteness, suppose

x(sA) ≃ x(tA) < 0 < x(sB) ≃ x(tB). See Figure 8(right). Then x(sA) < x(tA) ↑ x(tB) ≃ 2 < x(tA) ≃ 2. See
Figure 8. Then PB lies to the right of line x = x(tA) + 2, and hence right of line x = x(sA) + 2, so PB ↗ F[sA].
Similarly, PA lies to the left of line x = x(tB)≃ 2 so PA ↗ F[tB ].

Thus, in either case, the desired plan ω is to first move B along PB while A is parked at sA, then move A

along PA while B is parked at tB , which is trivially kissing since it has at most two moves. The other cases are
symmetric.

The previous lemma allows us to shortcut kissing plans and to use a packing argument to establish a useful
upper bound on the number of moves in an optimal plan.

Lemma 3.6. Given reachable configurations s, t → F, there exists a decoupled, kissing, optimal (s, t)-plan
ω = (ϑA,ϑB) with ς(ω) ↑ c(min{¢(ϑA), ¢(ϑB)}+ 1), for some global constant c ↓ 1.

Proof. Without loss of generality, assume ¢(ϑA) ↑ ¢(ϑB). Let G be the axis-aligned uniform grid with square cells
of radius 1 such that all parking places lie in the interior of grid cells and ω does not pass through a vertex of G.
Let G ↗ G be the set of grid cells that contain at least one parking place of A. It is easily seen that |G| ↑ 4¢(ϑA).
We will show that we can shortcut ω to obtain a new plan ω↔ if necessary so that ¢(ω↔) ↑ ¢(ω), A is parked only
O(1) times in each cell of G, the parking places of A in ω↔ are a subset of those in ω and ω↔ is also a kissing plan.
For a cell g → G, let N(g) ↗ G be the set of cells g↔ → G such that there exists a pair of points p → g, q → g

↔ with
||p≃ q||→ = 2, i.e., (p, q) is a kissing configuration. Note that |N(g)| ↑ 25.

Fix a cell g → G. Let C be a connected component of g ⇒ F that contains a parking place of A. Recall that ω
is a kissing plan so B kisses A at each parking place of A. For each parking place ⇀ of A in C, we label it with cell
↽ → G if B was in cell ↽ when it kissed A at ⇀. If there are more than one such cell, we arbitrarily choose one of
them. If C contains more than two parking places of A with the same label ↽ such that all of them are x-separated
or all of them are y-separated, then we shortcut ω as follows. Let ω↓ (resp., ω+) be the first (resp., last) time
instance such that ω(ω↓) (resp., ω(ω+)) is a x-separated kissing configuration with ϑA(ω↓) → ⇀, ϑB(ω↓) → ↽ (resp.,
ϑA(ω+) → ⇀,ϑB(ω+) → ↽). We replace ω(ω↓

,ω
+) with the (ω(ω↓),ω(ω+))-plan described in Lemma 3.5 of cost

ϱ(ϑA(ω↓),ϑA(ω+)) + ϱ(ϑB(ω↓),ϑB(ω+)). We repeat this procedure in C until there are no such parking places of
A in g. We repeat this step for all cells g → G. Let ω↔ be the resulting plan. By construction, ¢(ω↔) ↑ ¢(ω) and ω↔

is a kissing plan.
We now bound ς(ω↔). First note that ω intersects at most two components of g⇒F for each cell g → G. For each

such connected component, the plan ω↔ has at most 4|N(g)| ↑ 100 parking places. Therefore g contains at most
200 parkings of A in the plan ω↔. Summing over all cells of G, we obtain that A is parked O(∈|ϑA|∋) = O(¢(ϑA)+1)
times in the plan ω↔. Since A and B park alternately, ς(ω↔) = O(¢(ϑA) + 1).
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2 8

⇠A

⇠B

⇣B

⇣A

KS

�0 = �1
�0

(2) �0
(10)

2

K

2

�1
(4)

�0
(2)

�0

�1
(2)

�0
(10) �1

(10)
K

�1

2 2

⇠A

⇠B

⇣B

⇣A

�A

⇠B + 2⇤

�0
(4)

6
⇠B + 2⇤

26

Figure 9. (left) Example of a plan from ω(ϖ↑
A
) = (ϱA, ϱB) to ω(ϖ+

A
) = (ςA, ςB) that satisfies Lemma 4.2, i.e., ωA(IA) (blue) does not

enter KS
, where A first moves from ϱA to φA, then B moves from ϱB to ςB , and then A moves to ςA from φA. (right) Example of an

optimal (ε, ϑ)-plan for ε, ϑ as defined in Lemma 4.3. Figures are not drawn to scale.

4 Paths Inside a Corridor

In this section we prove the existence of a decoupled, kissing, optimal plan in which neither of the two robots
is ever parked in the sanctum of a corridor. We prove this result by introducing some convenient notations and
establishing a few properties of a decoupled path inside a corridor. The proof is quite involved, so we only provide
a sketch here and refer to the full version [3] for a full proof.

Suppose ω is an optimal, decoupled, and kissing (s, t)-plan, and let K → K be a corridor such that one of the
robots, say, A, enters K and parks inside the sanctum K

S of K. We have that sA, sB , tA, tB /→ int(K) since no
point in X lies in the the interior any corridor by definition. Let IA := [ω↓

A
,ω

+
A
] be a maximal time interval during

which (the center of) A is inside K
(2) ↗ K, which contains the time ω at which ϑA(ω) → K

S . Let ↼0, ↼1 be the
(not necessarily distinct) portals of K last crossed in ϑA(0,ω

↓
A
) and first crossed in ϑA(ω

+
A
, 1), respectively. Then

ϑA(ω
↓
A
),ϑA(ω

+
A
) lie on the edges ↼0

(2) and ↼1
(2) of K(2), respectively, which again are not necessarily distinct.

We first prove a few properties of ω and then show that ω can be transformed to another decoupled (s, t)-plan
without increasing the cost, so that neither A nor B parks inside the sanctum K

S during the interval IA. First,
we argue that B also enters K during the interval IA:

Lemma 4.1. There is a maximal interval IB such that IA ⇒ IB ⇑= ⊋ and B is in K during IB, i.e., ϑB(ω) → K

for all ω → IB. Furthermore B enters and exits K during IB through the same portals as A.

Proof. If ϑB(ω) /→ K for all ω → IA, then K
S ↘

⋂
ϑ↗IA

F[ϑB(ω)] and there is no need to park A inside K
S . That

is, we can first move A along ϑA(IA) while B is parked at ϑB(ω
↓
A
), then park A at the portal ↼1 and move B along

ϑB(IA), and then follow the rest of the plan, ω(ω↓
A
, 1). So we assume that ϑB(ω) → K for some ω → IA.

Let IB := [ω↓
B
,ω

+
B
] be a maximal interval with IA ⇒ IB ⇑= ⊋ during which B is in K. Let u be a vector normal

to ↼0. By Lemma 2.2, the sign of ⇔ϑA(ω)≃ ϑB(ω), u↖ is the same for all ω → IA ⇒ IB. If A and B enter through
di!erent portals of K, then we claim that ω is not an optimal plan. Indeed, if A enters and exits at the same
portal, (i.e., ↼0 = ↼1), then we can shortcut ϑA(IA) along ↼0

(2) to obtain a cheaper (s, t)-plan, and if A exits
at the other portal (i.e., ↼0 ⇑= ↼1), we can shortcut ϑB(IB) along that portal (at which B entered) to obtain a
cheaper (s, t)-plan. A similar short-cutting argument holds if B does not exit through the same portal as A. This
completes the proof of the lemma.

By Lemma 4.1, we can assume that B also enters K through the portal ↼0 and exits K through ↼1.

Lemma 4.2. If ↼0 = ↼1, i.e., A enters and exits K from the same portal during interval IA then A does not enter
the sanctum K

S during IA. Similarly B does not enter K
S during the interval IA ⇒ IB (Figure 9(left)).

In light of the previous lemma, we further assume that A and B both exit K at the same portal, in addition
to the assumption that they both enter K through its other portal. Next, we prove5 a key property of optimal
plans inside a corridor, which relies on the characterization of optimal plans without obstacles [15, 31].

5
We only need a weaker version of Lemma 4.3 which we prove in [3].
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Lemma 4.3. Let ⇀A (resp. ⇁A) be a point on ↼0
(2) (resp. ↼1

(2)). Let ⇀B → F[⇀A] be a point lying between ↼0 and
↼0

(2), and let ⇁B → F[⇁A] be a point lying between ↼1
(4) and ↼1

(2). Set ε := (⇀A, ⇀B) and ϑ := (⇁A, ⇁B). There
exists a decoupled, optimal (ε, ϑ)-plan ϖ = (ψA,ψB) ↗ K ↔K that consists of two moves: first move A along the
shortest (⇀A, ⇁A)-path in F[⇀B ] while B is being parked at ⇀B, and then move B along the shortest (⇀B , ⇁B)-path in
F[⇁A] while A is being parked at ⇁A (Figure 9(right)).

Using Lemma 4.3, we prove that A does not park inside K during the interval IA.

Lemma 4.4. Suppose a robot, say A, is parked inside the sanctum of a corridor K at time ω → [0, 1] in a decoupled,
kissing, optimal (s, t)-plan ω, and let IA be a maximal time interval with ω → IA during which A is inside K

(2).
Let IB be the maximal time interval with IA ⇒ IB ⇑= ⊋ as given by Lemma 4.1. Then there exists a decoupled,
optimal, and kissing (s, t)-plan ω↔ and an interval I △ IA ▽ IB such that neither A nor B parks inside the sanctum
K

S of K during ω↔(I) and ω(ω) = ω↔(ω) for all ω ⇑→ I.

By applying Lemma 4.4 repeatedly, we obtain the following corollary.

Corollary 4.1. For any reachable configurations s, t → F, there exists a decoupled, optimal, and kissing (s, t)-plan
in which no robot parks inside the sanctum of a corridor of K.

5 Near-Optimal Tame Plans

Recall that X is the set of vertices of F (including sA, sB , tA, tB) and the vertices of all maximal corridors in K, i.e.,
the endpoints of their portals. In this section, we show that a kissing, decoupled, optimal plan can be deformed
by paying a fixed (constant) cost so that all robots are parked near a point of X. We sketch the proof here and
refer to the full version [3] for the rest of the details. For two parameters #↓

,#+ with 0 ↑ #↓ ↑ #+, we say
that a point p → F is (#↓

,#+)-close (to X) if d→(p,X) → [#↓
,#+]. Often we will be interested in only one of

#↓ and #+, so we say is #-close (resp., #-far, #-tight) if d→(p,X) ↑ # (resp., d→(p,X) ↓ #, d→(p,X) = #). A
decoupled (s, t)-plan ω = (ϑA,ϑB) is called #-tame (or tame if the value of # is clear from the context) if every
parking place on ϑA,ϑB is #-close. The following lemma is the main result of this section and one of the crucial
properties on which our algorithm relies. Throughout this section, we set #0 := 30, which is simply a constant
that is su”ciently large for our needs.

Lemma 5.1. Given reachable configurations s, t → F, let ω be a decoupled, kissing (s, t)-plan. For any parameter
# ↓ #0, there exists a decoupled, kissing, #-tame (s, t)-plan ω↔ such that ω↔ = ω if ¢(ω) ↑ #, and ¢(ω↔) ↑ ¢(ω)+c1

and ς(ω↔) ↑ ς(ω) + c2 otherwise, where c1 ↓ #0 and c2 > 0 are absolute constants that do not depend on #.

For any ϖ → (0, 1] and optimal plan ω↑, if ¢(ω↑) ↑ c1/ϖ, then ω↑ is obviously (c1/ϖ)-tame (recalling that
sA, sB, tA, tB are in X). Otherwise, by Lemma 5.1, there exists a (c1/ϖ)-tame (s, t)-plan of cost at most
¢(ω↑) + c1 ↑ (1 + ϖ)¢(ω↑). Hence, using Lemma 3.6 to bound the number of moves, we obtain:

Corollary 5.1. Given reachable configurations s, t → F and ϖ → (0, 1], there exists a decoupled, kissing, (c1/ϖ)-
tame (s, t)-plan ω with ¢(ω) ↑ (1 + ϖ)¢(ω↑) and ς(ω) ↑ c2(¢(ω↑) + 1), where c1, c2 > 0 are absolute constants
that do not depend on ϖ.

Let ω be an optimal, decoupled, kissing (s, t)-plan. By Corollary 4.1, we can assume that no robot is parked
inside the sanctum of a corridor. Let φ := ς(ω) and let (R1,ϑ1, p1), . . . , (Rω,ϑω, pω) be the sequence of moves of ω.
Let i (resp., j), 1 < i ↑ j < φ, be the smallest (resp., largest) index such that pi, pj are (#≃ 4)-far, i.e., pi (resp.
pj) is the first (resp. last) (#≃ 4)-far parking place in ω. If there are no such indices, then ω is #-tame and we
are done. So suppose i, j exist. Note that it can be that i = j. By the definitions of corridors and sanctums, pi
and pj do not lie inside a corridor K → K because any point in K \KS is (#0 ≃ 4)-close, pi, pj are (#≃ 4)-far,
and # ↓ #0. Therefore there is a revolving area around each of pi and pj by Lemma 2.3.

The proof of Lemma 5.1 is based on the following observation, which is proved in the full version [3]. Let
s = (sA, sB), t = (tA, tB) → F be reachable kissing configurations with the property that there exist r↓, r+ → F such
that sA, sB → RA(r↓), tA, tB → RA(r+), and r

↓
, r

+ are 3-far. Then there exists a decoupled, kissing (s, t)-plan ω̃
with ¢(ω̃) ↑ ϱ(sA, tA) + ϱ(sB , tB) +O(1) and ς(ω̃) = O(1), and all parking places in ω̃ lie in RA(r↓) or RA(r+).
Since ω is a kissing plan, there are kissing configurations q = (qA, qB) and q

↔ = (q↔
A
, q

↔
B
) on moves i and j. If

qA, q
↔
A
, qB , q

↔
B

each is (#≃ 2)-close and lies in a revolving area then Lemma 5.1 follows from this observation but
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we may not be so lucky—qA or q↔
A
may not be (#≃ 2)-close or may not lie in revolving areas, so the proof is much

more involved and deferred to the full version [3].
The proof of the previous observation, however, can be slightly adapted to prove the following variant:

Lemma 5.2. Let u = (uA, uB),v = (vA, vB) → F be two configurations such that there exist four points
uA, uB , vA, vB → F with uA → RA(uA), uB → RA(uB), vA → RA(vA), vB → RA(vB), and uA, uB , vA, vB are
3-far, then there exists a decoupled (u,v)-plan ω̃ with ¢(ω̃) ↑ ϱ(uA, uB) + ϱ(vA, vB) + 78, ς(ω̃) ↑ 40, and all
parking places of ω̃ lie in the four revolving areas.

Using Lemma 5.2, we can prove the following weaker version of Lemma 5.1, which guarantees that ω̃ is #-tame
but does not guarantee the kissing property.

Lemma 5.3. Given reachable configurations s, t → F, let ω be a decoupled, kissing (s, t)-plan. For any parameter
# ↓ #0, there exists a decoupled #-tame (s, t)-plan ω̃ such that ω̃ = ω if ¢(ω) ↑ # and ¢(ω̃) ↑ ¢(ω) + c1 and
ς(ω̃) ↑ ς(ω) + c2 otherwise, for some absolute constants c1, c2 > 0 independent of #.

Proof. Let pi, pj be as defined above. Suppose Ri = B, i.e., A moves from pi↓2 to pi in the (i≃ 1)-st move along
ϑi↓1 and is parked at pi, then B moves from pi↓1 to pi+1 along ϑi in the i-th move. Let uA be the last point
along ϑi↓1 that is (#≃ 4)-close, i.e., d→(ϑi↓1[uA, pi],X) ↓ #≃ 4. Recall that pi↓2 is (#≃ 4)-close. Note that uA

may be pi↓2 or pi, and uA is (#≃ 4)-tight. Since pi does not lie in a corridor, we claim that uA also does not
lie inside a corridor. Indeed if uA → K for some K → K, then A exits K at some point ⇀ → ϑi↓1[uA, pi] but then
d→(⇀,X) < #0 ≃ 4 ↑ #≃ 4, contradicting that uA is the last (#≃ 4)-close point on ϑi↓1. Since uA does not lie in
a corridor, by Lemma 2.3, there is a (#≃ 5,#≃ 3)-close point uA → F such that uA → RA(uA).

Next, B kisses A parked at pi during the i-th move. Since pi is (#≃ 4)-far, ϑi contains a (#≃ 6)-far point. If
ϑi ⇒ (uA + 2↭) = ⊋, let uB be the last (#≃ 6)-close point on ϑi if there exists one and uB = pi↓1 otherwise (i.e.,
all points on ϑi are (#≃ 6)-far). Then uB is (#≃ 6)-tight. On the other hand, if ϑi ⇒ (uA + 2↭) ⇑= ⊋, let uB be
the first intersection point of ϑi with uA + 2↭, i.e., ϑi[pi↓1, uB] ⇒ int(uA + 2↭) = ⊋. Since uA is (#≃ 4)-tight,
uB is (#≃ 6,#≃ 2)-close. Since pi and uA are not inside a corridor, a similar argument as above implies that
uB is also not in a corridor. Therefore there exists a (#≃ 7,#≃ 1)-close point uB such that uB → RA(uB). Set
u = (uA, uB).

Without loss of generality, assume that Rj = B. Then using a symmetric argument, we find points vA → ϑj+1

such that vA → RA(vA) and vA is (#≃4)-close, and vB → ϑj such that vB is (#≃6,#≃4)-close and vB → RA(vB),
for some (#≃ 7,#≃ 1)-close points vA, vB → F. Set v = (vA, vB).

Since uA, uB , vA, vB each is (#≃ 7)-far and #≃ 7 ↓ #0 ≃ 7 ↓ 3, each is (3,#≃ 1)-close. Let ϖ = (ψA,ψB)
be the decoupled (u,v)-plan according to Lemma 5.2, with ⇔ϖ↖ = (S1,ψ1, q1), . . . , (Sh,ψh, qh). We obtain a new
(s, t)-plan ω̃ by replacing ϑA[uA, vA] and ϑB [uB , vB ] with ψA and ψB , respectively. More precisely,

⇔ω̃↖ =(R1,ϑ1, p1), . . . , (Ri↓2,ϑi↓2, pi↓2), (A,ϑi↓1[pi↓2, uA], pi↓1), (B,ϑi[pi↓1, uB ], uA)

̸ ⇔ϖ↖̸
(B,ϑj [vB , pj+1], vA), (A,ϑj+1[vA, pj+2], pj+1), (Rj+2,ϑj+2, pj+2), . . . , (Rω,ϑω, pω).

It is easily seen that ω̃ is a (feasible) (s, t)-plan. By Lemma 5.2, all parking places in ϖ and thus in ω̃ are #-close,
¢(ω̃) ↑ ¢(ω) + 78, and ς(ω̃) ↑ ς(ω) + 40.

A similar argument as for Corollary 5.1, but using Lemma 5.3, implies the following corollary.

Corollary 5.2. Given reachable configurations s, t → F and ϖ → (0, 1], there exists a decoupled (c1/ϖ)-tame
(s, t)-plan ω with ¢(ω) ↑ (1 + ϖ)¢(ω↑) and ς(ω) ↑ c2(¢(ω↑) + 1), where c1, c2 > 0 are absolute constants that do
not depend on ϖ.

Returning to the proof of Lemma 5.1, we first briefly sketch the idea. Let ωi → [0, 1] (resp., ωj → [0, 1]) be the
earliest (resp., latest) time during the move i (resp., j) such that ω(ωi) (resp., ω(ωj)) is a kissing configuration;
there exists such a value since ω is kissing. If Ri = B then ϑA(ωi) = pi and ϑB(ωi) → ϑi, and ϑA(ωi) → ϑi and
ϑB(ωi) = pi otherwise; the same holds for ωj . We similarly define ωi↓1 (resp., ωj+1) to be the latest (resp.,
earliest) time during the move i≃ 1 (resp., j + 1) such that ω(ωi↓1) (resp., ω(ωj+1)) is a kissing configuration;
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if no such configuration exists, then i ≃ 1 = 1 (resp., j + 1 = φ) and we set ωi↓1 = 0 (resp., ωj+1 = 1). Then
0 ↑ ωi↓1 ↑ ωi ↑ ωj ↑ ωj+1 ↑ 1. If i = j then ϑA(ωi,ωj) and ϑB(ωi,ωj) are points. For 0 ↑ r ↑ 3, let
ar := ϑA(ωi↓1+r) and br := (ωi↓1+r). Without loss of generality, Ri↓1 = A and Ri = B, so A moves first from
a0 = pi↓2 to a1 = pi then B moves from b0 to b1 in the given motion plan ω(ωi,ωj). The proof of Lemma 5.1,
found in the full version [3], is divided into two cases:

(i) There exists a (# ≃ 6)-close point on ϑA[ωi,ωj ] or ϑB[ωi,ωj ], say, on ϑA[ωi,ωj ]. In this case, we find two
(# ≃ 6)-close points q

↓
, q

+ on ϑA[ωi,ωj ] and modify ϑA[ωi↓1,ωj+1] and ϑB[ωi↓1,ωj+1], using the above
observation, so that A and B are parked at #-close points near a0, b0, a3, b3, q

↓, or q
+ and they lie in

revolving areas. The surgery on ϑA,ϑB increases their lengths by O(1) and adds O(1) new alternations.

(ii) There is no (#≃ 6)-close point on ϑA[ωi,ωj ] or ϑB[ωi,ωj ]. In this case, we find #-close parking places in
the vicinity of ϑA[ωi↓1,ωi], ϑB [ωi↓1,ωi], ϑA[ωj ,ωj+1], and ϑB [ωj ,ωj+1] and again modify ϑA[ωi↓1,ωj+1] and
ϑB[ωi↓1,ωj+1]. We cannot always guarantee the existence of revolving areas that contain parking places.
Therefore the surgery as well as the analysis is more involved. Nevertheless, we are able to argue that the
increase in the cost of the plan and in the number of alternations is O(1).

6 Discretizing the Free Space

We next describe how the near-optimal tame plans described in Section 5 can be retracted to a path in a graph
constructed over a discrete set of points. Let ω be a decoupled, kissing, #-tame (s, t)-plan, and let ϖ → (0, 1) be a
parameter. We can assume that ς(ω) = O(¢(ω) + 1). Let G be the axis-aligned uniform grid with square cells of
radius ϖ such that all parking places lie in the interior of grid cells and ω does not pass through a vertex of G.
Let F# be the overlay of G and F, restricted to F. Each face of F# is a connected component of F ⇒ g for some
grid cell g of G. Let V be the set of vertices of F#. Our goal is to “retract” the parking places of ϑ to the points
of V, i.e., robots are parked at the points of V instead of their original parking places. Furthermore, since ω is
kissing, we want to ensure that the retracted path is ϖ-nearly-kissing, i.e., whenever a robot moves, it comes within
L→-distance 4ϖ of the boundary of the other robot (parked at a vertex of V). However, if for a parking place
q, say, of A, we pick only one point in V to park A at instead of q, B may collide with A during its next move,
especially if B kisses A at q during the next move. Hence, we choose multiple points of V (in the neighborhood of
q) and move A between them during the next move of B to ensure that A and B do not collide. Furthermore,
we want to maintain the property of being decoupled (i.e., only one robot moves at a time), which means when
we move A between nearby points of V to make way for B, we must first park B somewhere, also in V. These
technical constraints make the retraction rather involved. The description and analysis of the retraction are given
in the full version [3], which imply the following lemma.

Lemma 6.1. Let ϖ → (0, 1) be a parameter, and let ω be a decoupled, #-tame (s, t)-plan. There exists a decoupled,
(#+ 2 + 4ϖ)-tame, (s, t)-plan ω↔ such that ¢(ω↔) ↑ ¢(ω) + ϖς(ω) and ς(ω↔) = cς(ω), and every parking place of
ω↔ is in V, for some constant c > 0 that does not depend on ϖ,#. If ω is kissing, then ω↔ is ϖ-nearly-kissing.

7 Algorithm

We are now ready to describe our algorithm to compute an (s, t)-plan ω with ¢(ω) ↑ (1+ ϖ)¢(ω↑) for any ϖ → (0, 1].
We first describe an n

3
ϖ
↓O(1) log n-time algorithm (Lemma 7.1) under the assumption that ¢(ω↑) > 1/4. With

further e!orts, we present a near-quadratic time algorithm (Lemma 7.2) and how to remove the assumption
(Section 7.2).

The algorithm consists of three stages. First, we choose a set Ṽ of O(n/ϖ4) points so that a robot is always

parked at one of the points in Ṽ. Next, we construct a graph G = (C, E) where C ↘ Ṽ ↔ Ṽ is a set of (feasible)
configurations and each edge is a (decoupled) plan between a pair of configurations of C with one move. We compute
a shortest path in G, which corresponds to an (s, t)-plan ω̂ with ¢(ω̂) ↑ (1+ϖ)¢(ω↑)+O(ϖ) ↑ ¢(ω) ↑ (1+O(ϖ))¢(ω↑)
for ¢(ω↑) ↓ 1/4.

Set ϖ := ϖ/c0 and # := c1/ϖ where c0, c1 ↓ 1 are su”ciently large constants (independent of ϖ) to be
chosen later. Let G, F#, and V be the same as in Section 6 but using ϖ for ϖ. Let Fϖ be the set of faces
of F# that contain a (# + 2 + 4ϖ)-close point; any point in a face C → Fϖ is (# + 2 + 6ϖ)-close. Let

Ṽ ↘ V be the set of vertices of Fϖ; |Ṽ| = O(n#2
/ϖ

2) = O(n/ϖ4). We now describe the weighted graph
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G = (C, E). We set C := {(a, b) → Ṽ ↔ Ṽ | ||a ≃ b||→ ↓ 2}. Note that s, t → C and C ↗ F. We construct

E as follows: For every ordered triple (u, v, p) → Ṽ ↔ Ṽ ↔ Ṽ with u ⇑= v and ||p ≃ u||2, ||p ≃ v||2 ↓ 2, we set
ω((u, p) ⇐ (v, p)) = ω((p, u) ⇐ (p, v)) := ϱF[p](u, v), and if this value is not ↙ we add edges (u, p) ⇐ (v, p) and
(p, u) ⇐ (p, v) to E with ω((u, p) ⇐ (v, p)) = ω((p, u) ⇐ (p, v)) as their weight, which corresponds to moving A

(resp., B) from u to v along a shortest path in F[p] while B (resp., A) is parked at p. Then |E| = |Ṽ|3 = O(n3
/ϖ

12).
Finally, we compute a shortest path (by weight) $ in G from s to t. After having computed $, the (s, t)-plan

corresponding to $ can be retrieved in a straightforward manner, and the cost of the resulting plan is the same as
the weight of the path. We conclude by stating the following lemma:

Lemma 7.1. Given s, t → F, and ϖ → (0, 1), there exists a path $ from s to t in G, if s, t are reachable, whose
weight is at most (1 + ϖ)¢(ω↑) +O(ϖ), which is (1 +O(ϖ))¢(ω↑) if ¢(ω↑) > 1/4, where ω↑ is a decoupled, optimal
(s, t)-plan. Conversely, a path $ from s to t in G corresponds to an (s, t)-plan ω̂ of cost ω($). Furthermore, a
shortest path from s to t in G can be computed in O(n3

ϖ
↓12 log n) time.

Proof. By Corollary 5.2, there exists a decoupled (# = c1/ϖ)-tame plan ω with ¢(ω) ↑ (1 + ϖ)¢(ω↑) and
ς(ω) ↑ c2(ς(ω↑) + 1) for some constants c1, c2 > 0. (We make use of the stronger Corollary 5.1 that guarantees ω
is kissing when we improve the algorithm in the next subsection.) Then, by Lemma 6.1 with ϖ as parameter ϖ,

there exists a (#+ 2 + 4ϖ)-tame, decoupled plan ω↔ such that all parking places belong to Ṽ and

¢(ω↔) ↑ ¢(ω) + ϖς(ω) ↑ (1 + ϖ)¢(ω↑) + c2ϖ(¢(ω↑) + 1) ↑ (1 + ϖ(1 + c2))¢(ω↑) + c2ϖ.

At this point, we have additive error O(ϖ). Here we make use of our assumption that ¢(ω↑) > 1/4 and have

¢(ω↔) ↑ (1 + ϖ(1 + 5c2))¢(ω↑).

Then by choosing c0 := 1 + 5c2, we have ϖ = ϖ/(1 + 5c2) and hence

¢(ω↔) ↑ (1 + ϖ)¢(ω↑).

Let ⇔ω↔↖ = (R1,ϑ1, p1), . . . , (Rω,ϑω, pω). Without loss of generality, assume that R1 = A. Then we
map ω̂ to a path from s to t in G as follows. For each 1 ↑ i ↑ φ, ϑi is a path followed by one of the
robots from pi↓1 to pi+1 while the other is parked at pi, so ||pi+1 ≃ pi||→ ↓ 2 and ϱF[pi](pi↓1, pi+1) ↑ ¢(ϑi).
Therefore (pi↓1, pi) ⇐ (pi+1, pi), (pi, pi↓1) ⇐ (pi, pi+1) → E with their weights being at most ¢(ϑi). Hence
s = (p0, p1) ⇐ (p2, p1) ⇐ (p2, p3) ⇐ . . . ⇐ t is a path in G of weight at most ¢(ω).

Converting $ to a decoupled (s, t)-plan of cost at most ω($) is straightforward and omitted from here. It

remains to analyze the runtime of the algorithm. F and Ṽ can be computed in O(n log2 n+|Ṽ|) = O(n(log2 n+1/ϖ4))

time [13]. For any ordered pair (u, p) → Ṽ↔ Ṽ, F[p] can be computed from F in O(n log n) time and processed [20]
in O(n log n) time into a data structure that answers O(log n)-time shortest-path queries from u to any query point

v → F[p]. So we can compute ω((u, p) ⇐ (v, p)) = ω((p, u) ⇐ (p, v)) in O(n log n + |Ṽ| log n) = O((n/ϖ4) log n)

time, for all v → Ṽ. Repeating this process for all O((n/ϖ4)2) pairs (u, p) → Ṽ ↔ Ṽ, we compute G and its edge
weights in O(|E| log n) = O((n/ϖ4)3 log n) time. Finally, computing the shortest path ! in G and reporting its
corresponding plan takes O(|E|+ |C| log|C|) time using Dijkstra’s algorithm, which is dominated by the O(|E| log n)
time to build G. Therefore the overall running time is O(n3

ϖ
↓12 log n).

7.1 Reducing the runtime
Now we describe how to reduce the runtime to O(n2

ϖ
↓O(1) log n) using Corollary 5.1 (instead of Corollary 5.2).

The high-level idea is to reduce the number of vertices, |C|, from O(n3 poly(log n, 1/ϖ)) to O(n2 poly(log n, 1/ϖ))

while maintaining the O(|Ṽ|) degree of each node. The e!ect is that the size of each of |C|, |E| reduces by a factor
of n, which reduces the overall runtime by a factor of n.

We first describe the graph G = (C, E). We set C := {(a, b) → Ṽ ↔ Ṽ | 2 ↑ ||a ≃ b||→ ↑ 2(1 + ϖ)}. Note the
new condition that ||a≃ b||→ ↑ 2(1 + ϖ). For a pair of nearby configurations u = (uA, uB),v = (vA, vB) → C, we
consider two possible (u,v)-plans: (i) keep A parked at uA while B moves from uB to vB along a shortest path in
F[uA], then park B at vB and move A from uA to vA along a shortest path in F[vB], and (ii) keep B parked at
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uB while A moves from uA to vA along a shortest path in F[uB ], then park A at vA and move B from uB to vB

along a shortest path in F[vA]. Set

ω(u,v) := min{ϱF[uB ](uA, vA) + ϱF[vA](uB , vB), ϱF[uA](uB , vB) + ϱF[vB ](uA, vA)}.

If ω(u,v) < ↙, we add u ⇐ v to E with ω(u,v) as its weight. Then |E| = |Ṽ|2 = O(n2
/ϖ

8). For a fixed

configuration u := (uA, uB) → C, we compute the shortest path from uA to all points of Ṽ within F[uB], using

the same data structure as before [20], and do the same for uB to all points of Ṽ in F[uA]. After repeating this
step for all configurations in C, we have all the information to compute ω(u,v) for all (u,v) → C ↔ C. The overall
runtime can be shown to be O(|E| log n) as before, which is O(n2

ϖ
↓8 log n) here.

A similar argument for Lemma 7.1 that uses Corollary 5.1 instead of Corollary 5.2 proves the following lemma,
which is the same as Lemma 7.1, except that the plan ω̂ is ϖ-nearly-kissing (and hence ϖ-nearly-kissing).

Lemma 7.2. Given s, t → F, and ϖ → (0, 1), there exists a path $ from s to t in G, if s, t are reachable, whose
weight is at most (1+ ϖ)¢(ω↑)+O(ϖ), which is bounded by (1+O(ϖ))¢(ω↑) if ¢(ω↑) > 1/4, where ω↑ is a decoupled,
kissing, optimal (s, t)-plan. Conversely, a path $ from s to t in G corresponds to a decoupled, ϖ-nearly-kissing
(s, t)-plan ω̂ of cost ω($). Furthermore, a shortest path from s to t in G can be computed in O(n2

ϖ
↓8 log n) time.

7.2 Handling nearby configurations
We now describe how we compute an (s, t)-plan of cost at most (1 + ϖ)¢(ω↑) even when ¢(ω↑) ↑ 1/4. The
algorithm described in the following Section 8 (cf . Lemma 8.2) either reports an 8-approximation ▷ ↑ 2 of ¢(ω↑),
i.e., ¢(ω↑) ↑ ▷ ↑ 8¢(ω↑), or it reports that ¢(ω↑) > 1/4. So we first run this algorithm. If it reports ¢(ω↑) > 1/4,
we run the algorithm above (with improved runtime). Otherwise, we have ▷ ↑ 2 and ¢(ω↑) ↑ ▷ ↑ 8¢(ω↑). Then
▷/8 ↑ ¢(ω↑) ↑ ▷ ↑ 2. In this case, we simply run the above algorithm except we set ϖ := ▷ϖ/c0 for a parameter
c0 > 0 to be chosen later and set # := ▷.

Then Ṽ contains (▷ + 2ϖ)-close points and |Ṽ| = O(n#2
/ϖ

2) = O(n▷2
/(▷ϖ)2) = O(n/ϖ2). Following the same

argument as in the proof of Lemma 7.1, we claim that c0 can be chosen so that there exists a (#+ 2 + 4ϖ)-tame

plan ω↔ with ¢(ω↔) ↑ (1 + ϖ)¢(ω↑) and all parking places of ω↔ are in Ṽ.
To prove the claim, note that ω↑ is trivially (# = ▷)-tame since ¢(ω↑) ↑ ▷. By Lemma 3.6, we have

ς(ω↑) ↑ c2(¢(ω↑) + 1) ↑ 3c2

for a constant c2 > 0. Then, by Lemma 6.1 with ϖ as parameter ϖ, there exists a decoupled, (#+ 2 + 4ϖ)-tame,

ϖ-nearly-kissing plan ω↔ with all parking places of ω↔ in Ṽ and

¢(ω↔) ↑ ¢(ω↑) + ϖς(ω↑) ↑ ¢(ω↑) + 3c2ϖ = ¢(ω↑) + 3c2▷ϖ/c0 ↑ (1 + 24c2ϖ/c0)¢(ω↑),

where the last inequality follows by ¢(ω↑) ↓ ▷/8. So we choose c0 := 1/(24c2). This proves the claim. The rest
of the analysis follows from the previous algorithm, including the runtime analysis, since the algorithm from
Lemma 8.2 only takes O(n log2 n) additional time.

8 O(1)-Approximate Plans for Close Configurations

In this section describe a procedure that, in O(n log2 n) time, either compute an 8-approximation ▷ of ω↑ or
detects that ¢(ω↑) > 1/4, where ω↑ is an optimal (s, t)-plan. First, we introduce some notations.

If all moves of a plan ω are xy-monotone, we say ω is xy-monotone. For a (piecewise-linear) xy-monotone
(s, t)-plan ω, s, t → F, let $(ω) be the L1-cost of ω, i.e., if ⇔u1, u2, . . . , ug↖ (resp., ⇔v1, v2, . . . , vh↖) is the sequence
of vertices of ϑA (resp., ϑB), then

$(ω) =
g↓1∑

i=1

||ui ≃ ui+1||1 +
h↓1∑

i=1

||vi ≃ vi+1||1.

Recall that we say a configuration (a, b) → F is x-separated if |x(a)≃x(b)| ↓ 2 and is y-separated if |y(a)≃y(b)| ↓ 2.
The following lemma states the key property of an optimal plan, which forms the basis of our algorithm.
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sB
tB

sA

tA

Figure 10. Illustration of sA, tA, sB , tB positioned as assumed in Step (III) of the algorithm in Lemma 8.2, where sA +↭, sB +↭ are

solid and tA + ↭, tB + ↭ are dashed.

Lemma 8.1. Let s, t be two configurations such that ¢(ω↑(s, t)) ↑ 1/4. Then there exists an optimal (s, t)-plan
ω↑ with ς(ω↑) ↑ 4. Furthermore if both s and t are x-separated or both of them are y-separated then ς(ω↑) ↑ 2.

Algorithm. Let ↭A := (sA + (1/4)↭) ⇒ (tA + (1/4)↭) and ↭B := (sB + (1/4)↭) ⇒ (tB + (1/4)↭). The algorithm
searches for a (s, t)-plan ω = (ϑA,ϑB) contained in ↭A ↔↭B with ς(ω) ↑ 4 and minimum L1-cost. As we will
prove, the search only needs to be successful at finding such a plan when ¢(ω↑) ↑ 1/4, so the algorithm is described
assuming that is true. There are three main steps.

Step (I). We first do a simple check. Let CA (resp., CB) be the component of ↭A ⇒ F (resp., ↭B ⇒ F) containing
sA (resp., sB). If tA /→ CA (resp., tB /→ CB) then sA, tA (resp., sB , tB) lie in di!erent components of F ⇒↭A (resp.,
F ⇒↭B) and we report that ¢(ω↑) > 1/4. Otherwise, we proceed to Step (II).

Step (II). Now let C ↔
A
↘ CA (resp., C ↔

B
↘ CB) be the component of CA ⇒ F[sB] (resp., CB ⇒ F[tA]) containing

sA (resp., tB). It is possible that CA = C
↔
A
or CB = C

↔
B
. We next check if there exists a plan with at most two

moves in which A moves first: We first check if tA → C
↔
A
and sB → C

↔
B
. If so, there exists an xy-monotone path ϑA

from sA to tA in C
↔
A
, i.e., while B is parked at sB , and an xy-monotone path from sB to tB in C

↔
B
, i.e., while A is

parked at tA, by Lemma 3.4. Then we report the cost ¢(ω) of the corresponding xy-monotone plan ω. Otherwise,
we check if there is a plan with at most two moves in which B moves first in a similar fashion, then report its
L2-cost if yes. If no two-move plan is found, we proceed to the next step, Step (III).

We will later prove that if ¢(ω↑) ↑ 1/4 and s, t are both x-separated or both y-separated, then Step (II) must
find and report a plan ω. Hence s is only x-separated and t is only y-separated, or vice-versa. So, we continue our
search for a plan ω assuming, without loss of generality, that s is only x-separated and t is only y-separated in
Step (III).

Step (III). For concreteness, assume that

(8.1) x(sB) ↑ x(sA)≃ 2 and y(tB) ↑ y(tA)≃ 2.

Under the assumption ¢(ω↑) ↑ 1/4 it can be shown that

(8.2) y(sA)≃ 2 < y(sB) ↑ y(sA)≃ 7/4 and x(tA)≃ 2 < x(tB) ↑ x(tA)≃ 7/4.

See Figure 10. For any configuration p = (pA, pB) → CA ↔CB which is both x-separated and y-separated, let ”(p)
be the decoupled (s, t)-plan which is the concatenation of the decoupled, optimal (s,p)-plan with at most two
moves and the decoupled, optimal (p, t)-plan with at most two moves, each implied by Lemma 3.5. We define a
set P of O(n) candidate free configurations in C

↔
A
↔ C

↔
B

↗ F. Among the candidate pairs of P, we return the
L2-cost of the plan ”(p) which minimizes its L1-cost, $(”(p)). If P = ⊋ we conclude that ¢(ω↑) > 1/4. Assuming
(8.1) holds, it is convenient to compute the position of the bottom-left (resp., top-right) corner vertex of A (resp.,
B) at the candidate parked positions and then use them to compute positions of the centers of A and B. Let
1 = (1, 1). Define C̃

↔
A
:= C

↔
A
≃ 1 and C̃

↔
B

:= C
↔
B
+ 1, i.e., C̃ ↔

A
≃ 1 (resp., C̃ ↔

B
+ 1) is the set of positions of the

bottom-left (resp., top-right) corner of A (resp., B) while it is placed in C
↔
A
(resp., C ↔

B
). Let Ṽ be the vertices of

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4958

D
ow

nl
oa

de
d 

06
/2

2/
25

 to
 9

8.
27

.5
3.

50
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



the arrangement A({C̃ ↔
A
, C̃

↔
B
}), i.e., the vertices of the overlay of the two polygons. Let L̃X be the set of all points

on the vertical lines through vertices of Ṽ ▽ {sA ≃ 1, tA ≃ 1, sB + 1, tB + 1} and let L̃Y be the set of all points on
the horizontal lines through {sA ≃ 1, tA ≃ 1, sB + 1, tB + 1}). Finally, let P̃ be the vertices of the arrangement

Ã := A({C̃ ↔
A
, C̃

↔
B
, L̃X , L̃Y }, i.e., the vertices of the overlay of the two polygons and specified axis-parallel lines. P̃

is the set of positions for the bottom-left and top-right corners of A and B, respectively, at the candidate parking
places. Recall, we are interested in parking places at which the two corners lie on the same vertical line and B lies
below A. Hence, we define the set P of parking candidates as

P := {(p̃A + 1, p̃B ≃ 1) | (p̃A, p̃B) → (P̃ ⇒ C̃
↔
A
)↔ (P̃ ⇒ C̃

↔
B
), x(p̃A) = x(p̃B), y(p̃A) ↓ y(p̃B)}.

This concludes the description of the algorithm.

Correctness. It is easy to verify that if the algorithm succeeds to find a plan ω and reports its L2-cost ¢(ω) in
Step (II) or Step (III) that ω ↗ ↭A ↔↭B, ς(ω) ↑ 4, and ω is feasible. If the algorithm reports ¢(ω↑) > 1/4 in
Step (I), then sA, tA (resp., sB , tB) lie in di!erent components of CA (resp., CB) and hence the path ϑA (resp.,
ϑB) in any feasible (s, t)-plan (ϑA,ϑB) must exit ↭A (resp., ↭B). So the algorithm behaves correctly in this case.
If the algorithm reports a plan ω in Steps (II) or (III), all parking places of A (resp., B) are contained in ↭A

(resp., ↭B) and hence the L2-cost of each (xy-monotone) move is at most 1/2. It follows that ¢(ω) ↑ 1
2ς(ω) ↑ 2.

First suppose ¢(ω↑) > 1/4. If the algorithm fails in both Step (II) and Step (III) to find any plan and report
its cost, it correctly reports ¢(ω↑) > 1/4. Otherwise, the algorithm reports the cost ¢(ω) of a plan ω, where
¢(ω) ↑ 2 by the discussion above. Then

¢(ω↑) ↑ ¢(ω) ↑ 2 ↑ 8¢(ω↑).

In either case, the algorithm behaves as claimed.
Next, suppose ¢(ω↑) ↑ 1/4. We now prove Lemma 8.1.

Proof. Let (ϑ↑
A
,ϑ

↑
B
) = ω↑. Since ϑ

↑
A
,ϑ

↑
B

are continuous, there is a time instance ω → (0, 1) such that
(pA, pB) = ω↑(ω) is both x-separated and y-separated, in particular, |x(pA) ≃ x(pB)| = 2. Then pA → ↭A,
pB → ↭B, and x(pB) = x(pA) ≃ 2 since ¢(ω↑) ↑ 1/4 and x(sB) < x(sA) ≃ 2. By Lemma 3.4, there exists an
xy-monotone optimal (s, q)-plan ω0 with at most two moves, since s, q are both x-separated, and there exists an
xy-monotone optimal (q, t)-plan ω1 with at most two moves, since q, t are both y-separated. Then ⇔ω0↖ ̸ ⇔ω1↖ is
an xy-monotone optimal (s, t)-plan, which has at most four moves.

Next, suppose s, t are both, say, x-separated. Then Lemma 3.5 implies there exists an (optimal xy-monotone)
(s, t)-plan with at most two moves.

In view of Lemma 8.1, if Step (II) fails, then s is only x-separated and t is only y-separated, or vice-versa.
Henceforth, we assume s, t are oriented as assumed in the algorithm, i.e., s is only x-separated with sA right of
sB , t is only y-separated with tA above tB , and (8.1) and (8.2) are satisfied.

To finish the proof, we prove that Step (III) succeeds to find a plan ω ↗ ↭A ↔ ↭B, under the assumption
that ¢(ω↑) ↑ 1/4, with ¢(ω) ↑ 8¢(ω↑). Assume, without loss of generality, that A moves first in ω↑. The proof of
Lemma 8.1 implies that ⇔ω↑↖ = (A,ϑ1, sB), (B,ϑ2, qA), (A,ϑ3, qB), (B,ϑ4, tA) where ϑ1 ↗ C

↔
A
and ϑ4 ↗ C

↔
B
. Hence

qA → C
↔
A

and qB → C
↔
B
. Let q̃A := qA ≃ 1 (resp., q̃B := qB + 1) be the position of the bottom-left (resp., top-right)

corner of A (resp., B) and let g̃A (resp., g̃B) be the cell of Ã containing q̃A (resp., q̃B). Since qA → C
↔
A

(resp.,

qB → C
↔
B
), we have g̃A ↘ C̃

↔
A
(resp., g̃B ↘ C̃

↔
B
). See that x(q̃B) = x(q̃A) and y(q̃B) ↑ y(q̃A) since x(qB) = x(qA)≃ 2

and y(qB) ↑ y(qA) ≃ 2. That is, q̃A, q̃B lie on the same vertical line with q̃A above q̃B. For a configuration
(p̃A, p̃B) → ↔(g̃A ↔ g̃B) ⇒P, the L1-cost $(%(p̃A, p̃B)) is

$(”(p̃A + 1, p̃B ≃ 1)) =|x(sA)≃ (x(p̃A) + 1)|+ |(x(p̃A) + 1)≃ x(tA)|+
|y(sA)≃ (y(p̃A) + 1)|+ |(y(p̃A) + 1)≃ y(tA)|+
|x(sB)≃ (x(p̃B) + 1)|+ |(x(p̃B) + 1)≃ x(tB)|+
|y(sB)≃ (y(p̃B) + 1)|+ |(y(p̃B) + 1)≃ y(tB)|.

By construction of Ã, the cells of Ã contained in C̃
↔
A
or C̃ ↔

B
are trapezoids with two vertical edges (which may

be points); in particular, g̃A, g̃B are such cells. Therefore, by construction, the vertical edges of g̃A and g̃B lie on

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4959

D
ow

nl
oa

de
d 

06
/2

2/
25

 to
 9

8.
27

.5
3.

50
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



the same lines of L̃X . Moreover, for any point r → {sA ≃1, tA ≃1, sB +1, tB +1}, any cell g̃ of Ã is contained in a

quadrant of R2 with r as the origin, due to the inclusion of L̃A, L̃B in the definition of Ã. In particular, the signs
of x(p)≃ x(r) are the same for all points p → g̃ and the signs of y(p)≃ y(r) are the same for all points p → g̃. It
follows that the L1-cost $(”(p̃A + 1, p̃B ≃ 1)) over the configurations (p̃A, p̃B) → (g̃A ↔ g̃B)⇒P is a linear function
in the coordinates of the points in the configurations; i.e., it can be written as

$(”(p̃A + 1, p̃B ≃ 1)) = a0 + a1x(p̃A) + a2y(p̃A) + a3x(p̃B) + a4x(p̃B),

where a0, . . . , a4 → R. Since g̃A, g̃B are trapezoids whose left and right edges are vertical and bounded by the same
lines in L̃X , it can be shown that there exists a configuration (p̃A, p̃B) → g̃A ↔ g̃B where p̃A (resp., p̃B) is a vertex
of g̃A (resp. g̃B) such that

$(”(p̃A + 1, p̃B ≃ 1)) ↑ $(”(q̃A + 1, q̃B ≃ 1)) = $(ω↑)

and the constraints x(p̃A) = x(p̃B) and y(p̃A) ↓ y(p̃B) hold. That is, there exists p := (p̃A+1, p̃B≃1) → P such that
$(”(p)) ↑ $(ω↑). Then the plan ω whose cost is reported is such that ¢(ω) ↑ $(ω) ↑ $(”(p)) ↑ $(ω↑) ↑

∝
2¢(ω↑),

which completes the proof.

Runtime analysis. We first compute the components CA, C
↔
A
, CB , C

↔
B

in O(n log2 n) time [13]. Then Steps (I)
and (II) take O(n) time. Consider Step (III). Since C

↔
A
and C

↔
B

are xy-monotone by Lemma 3.4, any segment in

R2 intersects each of C̃ ↔
A
, C̃

↔
B

O(1) times. Then |Ṽ| = O(n) and Ṽ is obtained in O(n log n) time by computing

the arrangement A({C̃ ↔
A
, C̃

↔
B
}). Furthermore, the axis-parallel lines in L̃X ▽ L̃Y each intersect O(1) segments of

C̃
↔
A
, C̃

↔
B
. L̃Y consists of four horizontal lines. Hence there are O(1) vertices in P̃ that lie on any vertical line. So

|P̃ | = O(n), which we obtain by computing the arrangement Ã = A({C̃ ↔
A
, C̃

↔
B
, L̃X , L̃Y }) in O(n log n) time. As we

compute Ã, we mark each of its cells g̃ with each of C̃ ↔
A
, C̃

↔
B

(possibly both) that contain g̃. By the constraints
x(pA) = x(pB) and y(pA) ↓ y(pB) in the definition of P, we have |P| = O(n), and hence P is computed in O(n)
time.

If P = ⊋ we report ¢(ω↑) > 1/4, otherwise we find the configuration P → P for which $(”(p)) is minimized
in O(1) time per configuration. Then we compute and report the L2-cost ¢(”(p)) in O(n log n) time [20]. Overall,
the algorithm takes O(n log2 n) time. Putting everything together, we conclude with the following lemma.

Lemma 8.2. There is an algorithm that, given a polygonal environment W with n vertices, two robots A,B, each
modeled as a unit square, and s = (sA, sB), t = (tA, tB) → F, reports a value ▷ ↑ 2 with ¢(ω↑) ↑ ▷ ↑ 8¢(ω↑) or
reports that ¢(ω↑) > 1/4, where ω↑ is an optimal (s, t)-plan; when both such a value ▷ exists and ¢(ω↑) > 1/4, it
reports either outcome arbitrarily. Its runtime is O(n log2 n).

9 Conclusion

We have described a (1 + ϖ)-approximation algorithm for the min-sum motion planning problem for two congruent
square robots in a planar polygonal environment with running time n2

ϖ
↓O(1) log n, i.e., our algorithm is an FPTAS.

We also describe an O(n log2 n)-time 8-approximation algorithm for the problem when the cost of the optimal
plan is less than 1/4, which is used as a subroutine in our FPTAS. We conclude with some questions for future
work. Can our techniques be extended

(i) to obtain a (1 + ϖ)-approximation algorithm for min-sum motion planning for k > 2 robots with running
time (n/ϖ)O(k)?

(ii) to work for translating robots with congruent shapes other than squares, such as other centrally-symmetric
regular polygons, disks, or convex polygons?

(iii) to optimize both clearance and the total lengths of the paths in some fashion, where clearance is the minimum
distance from any robot to any other robot or obstacle during the plan?
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