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Abstract. We obtain a Poisson Limit for return times to small sets for prod-
uct systems. Only one factor is required to be hyperbolic, while the second
factor is only required to satisfy polynomial deviation bounds for ergodic sums.
In particular, the second factor can be elliptic or parabolic. As an application

of our main result, several maps of the form Anosov map × another map are
shown to satisfy a Poisson Limit Theorem at typical points, some even at

all points. The methods can be extended to certain types of skew products,
including T, T−1-maps of high rank.

Part 1. Results

1. Introduction. One of the prominent limit theorems in classical probability the-
ory is the Poisson Limit Theorem. (PLT). Due to the PLT, a variety of probabilistic
models describing waiting times until unlikely events occur are well approximated
by exponentially distributed variables. It has been a great discovery that many
deterministic systems satisfy the same kind of limit theorems for rare events.

Limit distributions of waiting times are most classical for mixing Markov chains,
where one considers returns to small cylinders, for example, see [37, Theorem A]. As
remarked there, this result can be immediately generalized to systems with a Markov
partition, the only caveat being that the sets are still cylinders, so geometrically not
the most intuitive class. Nonetheless, waiting time limits for returns to small balls
can be shown in concrete settings; for example hyperbolic toral automorphisms [12,
Theorem 2.3] or more general hyperbolic maps [40, Theorem 2.8], Rychlik-maps
and unimodal maps [7, Theorem 3.2 and 4.1], partially or nonuniformly hyperbolic
maps [13, Theorem 8] [35, Theorem 3.3] [10, Theorem 3.3], open billiard systems [9,
Theorem 1], some intermittent interval maps [11, Main Theorem], and many more.
It is sometimes interesting to also ask for explicit rates of convergence, this can
be shown under strong mixing properties, see [28, Theorem 2.1], [1, Theorem 7],
[26, Theorem 8]. Interestingly enough, in [40, Theorem 2.8] and [8, Theorem 5.11]
novel techniques have been used to obtain rates in certain billiard systems without
strong mixing assumptions. We do not make any claims on completeness of the list
of references given above, for a more complete picture see [32].

2020 Mathematics Subject Classification. Primary: 28D05, 37A50, 37C05; Secondary: 37A25,
60F05.

Key words and phrases. Ergodic theory, hyperbolic dynamical system, limit distribution, Pois-
son process, rare events.

The author thanks the University of Maryland for their hospitality.

1454



POISSON LIMIT THEOREMS FOR SYSTEMS WITH PRODUCT STRUCTURE 1455

Some related topics are extreme value laws [22], [23], spatiotemporal limits [36],
[43] or Borel-Cantelli like Lemmas [29], [25], [16].

Similar questions can be asked for flows as well, this topic has not been studied
as thoroughly as the question for maps. As shown in [34] for suspension flows, this
reduces to the study for maps. Moreover, the Poisson Limit Theorem for flows can
be reduced to the Poisson Limit Theorem for time 1 map with the target being the
set of points that visit B(x, r) within the next unit of time.

From the list above, we see that the PLT is often associated with strong mix-
ing properties of the system. In the present work, we construct systems that are
not even weakly mixing but nevertheless satisfy the PLT (a precise definition is
given beneath). The systems will have a special structure S = T × R, where T is
hyperbolic, but R is not.

We will develop a machinery to show the PLT for such systems. This will be
used to construct systems satisfying the PLT, but otherwise exhibiting properties
uncharacteristic of chaotic systems - like non weak mixing, or zero entropy1. This
suggests that the PLT is much more common than it was believed before. In fact,
discovering the most flexible conditions for the validity of the PLT is a promising
direction of future research.

2. Preliminaries.

Definition 2.1. Given a probability-preserving ergodic dynamical system (X,A, µ,
T ) and a measurable set A ∈ A, we will define the first entry time to A as

ϕA(x) = min(n g 1 | Tn(x) ∈ A),

the restriction ϕA|A to the set A itself shall be referred to as the first return time to
A. The first return map shall be denoted by TA(x) = TϕA(x)(x), and the sequence
of consecutive return times by

ΦA = (ϕA, ϕA ◦ TA, ϕA ◦ T 2
A, ...).

In the following, for some measurable set A ∈ A with µ(A) > 0, the measure

conditional on A shall be given as µA(B) = µ(A∩B)
µ(A) , B ∈ A∩A. The first important

result in the study of ϕA, was Kac’s formula, which calculates the expectation as
∫

A

ϕA dµA =
1

µ(A)
.

Hence, it is natural to study limits of µ(A)ϕA as µ(A) → 0. More explicitly let
(Al)lg1 be a sequence of rare events, that is each Al is measurable with µ(Al) → 0,
we want to find weak limits of the form

µ(Al)ΦAl

µ
⇒ Φ as l → ∞,

or

µ(Al)ΦAl

µAl⇒ Φ̃ as l → ∞,

where ⇒ denotes convergence in distribution. In the above situation, we shall
call Φ the hitting time limit and Φ̃ the return time limit. An important fact is
that the hitting and return time limits are intimately related, this relation was first
formulated in [24, Main Theorem] (albeit only for the first marginal). The analogous
relation for the entire process is shown in [42, Theorem 3.1]. For exponential returns,
which is what we are concerned with, the result is as follows.

1This cannot be done with products, since h(T ×R) = h(T )+h(R), where h denotes the metric
entropy of a system. We extend our methods to skew-products of a certain form (Theorem 3.4.)
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Theorem 2.2. Let (X,A, µ, T ) be an ergodic probability preserving dynamical sys-

tem, and let (Al)lg1 be a sequence of rare events. Then Φ
d
= ΦExp is equivalent to

Φ̃
d
= ΦExp, where ΦExp is a process of iid standard exponentially distributed random

variables.

This suggests that we should expect exponential hitting and return time limits
for geometrically sensible sequences of rare events.

In the following, let X be a Cr Riemannian manifold with dim(X) = d and

assume µ j mX the volume on X, with continuous density, say dµ
dmX

= ρ. Most
of the statements can be reformulated to hold for arbitrary invariant µ, but for the
sake of simplicity, we shall keep this assumption.

Definition 2.3. (i) Let x∗ ∈ X and, for r > 0, denote by Br(x
∗) the geodesic

ball of radius r centred at x∗. We will say that T satisfies the PLT at x∗ if

µ(Br(x
∗))ΦBr(x∗)

µ
⇒ ΦExp as r → 0.

(ii) Let

PLT := {x∗ ∈ X | T satisfies the PLT at x∗}.

If µ(PLT ) = 1 we say that T satisfies the PLT almost everywhere, and if
PLT = X we will say that T satisfies the PLT everywhere.

If T is Lipschitz-continuous along the (finite) orbit of a periodic point, then it
does not satisfy the PLT at that point. To see this, note first that the PLT at x∗

in particular implies, via Theorem 2.2, that, for each N g 1,

µBr(x∗)(ϕBr(x∗) f N) → 0 as r → 0.

Now suppose x∗ is a point with period p, and say ρ(x∗) > 0, and |T p(x)−T p(y)| f
C|x− y| near x∗ then2

µBr(x∗)(ϕBr(x∗) f p) g µBr(x∗)(B r
C
(x∗)) =

1

Cd
+ o(1)

as r → 0.
Situations where x∗ is a periodic point are more delicate, and the limiting dis-

tribution is not exponential any more (due to immediate returns). For example,
in [43, Theorem 3.3 and Theorem 10.1] this question was studied for expanding
interval maps.

The main goal is to prove the PLT (almost) everywhere for some (skew-) product
systems.

In the following we will consider return times in different systems - namely, we
will have three different maps T : X → X (or Ty : X → X) which is usually assumed
hyperbolic, R : Y → Y which is parabolic or elliptic, and S = T×R : X×Y → X×Y
- in an attempt to keep notation simple we will (by slight abuse of notation) always

2Assuming C > 1, we have that Br(x∗) is diffeomorphic via the exponential map expx∗ to a
ball in Rd. W.l.o.g. assume that X ¢ RN

µ(Br(x
∗)) =

∫

Br(x∗)
ρ(x) dmX(x) = (ρ(x∗) + o(1))mX(Br(x

∗))

= (ρ(x∗) + o(1))

∫

(Br(0))

√

| detDuexpx∗ (Duexpx∗ )t dλd(u)

= (ρ(x∗)
√

| detD0expx∗ (D0expx∗ )t + o(1))λd(Br(0)),

where λd is the d-dimensional Lebesgue measure.
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denote the return times by ϕ. Which map is meant will always be clear by the
specified set.

3. The PLT for (skew-)products. In this paper, we study the PLT for systems
that can be written as a product (or skew product of a special type). Therefore, let

Y be another Riemannian Cr′ -manifold with dim(Y ) = d′, and assume R : Y → Y
preserves a probability measure ν j mY with continuous density. Instead of T :
X → X, consider now some3 T : X × Y → X. We will prove the PLT for certain
systems of the form S(x, y) = (T (x, y), R(y)). The case of direct products can be
recovered if T (x, y) = T (x) is independent of y (which will be the case for most
of our examples). Denote also Ty(x) = T (x, y). We will assume that Ty preserves
a probability measure µ (independent of y). For measurable A ¢ X we introduce
analogously the consecutive fiberwise return times as

ϕA×Y (x, y) = min(j g 1 | Sj(x, y) ∈ A× Y ),

ΦA×Y = (ϕA×Y , ϕA×Y ◦ SA×Y , ϕA×Y ◦ S2
A×Y , . . . ),

where SA×Y = SϕA×Y is the first return map to A × Y , note that we only fix a
small target in the fiber.

For our purposes, it is convenient to think of y as fixed. For n g 1 denote
Tn
y (x) = TRn−1(y)(TRn−2(y)(...(Ty(x)))), and define

ϕA,y(x) = ϕ
(1)
A,y(x) = min(j g 1 | T j

y (x) ∈ A),

ϕ
(n+1)
A,y (x) = min(j g 1 | T

ϕ
(1)
A,y

(x)+ϕ
(2)
A,y

(x)+···+ϕ
(n)
A,y

(x)+j
y (x) ∈ A),

ΦA,y = (ϕ
(1)
A,y, ϕ

(2)
A,y, · · · ).

Clearly the definitions coincide and ΦA,y(x) = ΦA×Y (x, y).
We will list here the main assumptions4 we make in order to prove the PLT.

• (MEM) We will say T is multiple exponentially mixing there are constants
r > 0, C > 1 and γ > 0 such that, for almost all y ∈ Y ,

∣

∣

∣

∣

∫

X

n−1
∏

j=0

fj ◦ T
kj
y dµ−

n−1
∏

j=0

∫

X

fj dµ

∣

∣

∣

∣

∣

∣

f Ce−γ min0fj1<j2fn−1 |kj1−kj2 |
n−1
∏

j=0

||fj ||Cr ,

(1)

for n g 1, f0, ..., fn−1 ∈ Cr and 0 f k0 f ... f kn−1.
• (EE) There are r′ > 0 and δ < 1 such that

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

N−1
∑

n=0

f ◦Rn −N

∫

f dν

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2(ν)

f C||f ||Cr′N δ ∀f ∈ Cr′ , ∀N g 1. (2)

• (LR(y∗)) There is a c > 0 such that, for r > 0 and ν-a.e y ∈ Br(y
∗), we have

ϕBr(y∗)(y) g c| log(r)|. (3)

3X × Y is considered as a Riemannian manifold with the natural (Euclidean) product metric

d((x, y), (x′, y′)) =
√

d(x, x′)2 + d(y, y′)2. Analogously, one could consider different metrics, e.g.
the box metric d((x, x′), (y′, y)) = max(d(x, y), d(x′, y′)), where many of the proofs become easier.
However, we will use here the Euclidean product metric as the most natural choice.

4We often only assume a subset of these, most commonly (MEM), (EE), and (BR(x∗, y∗)).
But we will always state the current assumptions.
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• (SLR(y∗)) There is a ψ : (0,∞) → (0,∞) with | log(r)| = o(ψ(r)) as r → 0
such that, for r > 0 and ν-a.e y ∈ Br(y

∗), we have

ϕBr(y∗)(y) g ψ(r). (4)

• (LR’(x∗)) For ν-a.e y ∈ Y there is a c = cy > 0 such that, for r > 0 and µ-a.e
x ∈ Br(x

∗), we have

ϕBr(x∗),y(x) g c| log(r)|. (5)

• (NSR(x∗)) There is a ξ : (0,∞) → (0,∞) with | log(r)| = o(ξ(r)) as r → 0
such that, for ν-a.e y ∈ Y , we have

µBr(x∗)(ϕBr(x∗),y f ξ(r)) → 0 as r → 0. (6)

• (BR(x∗, y∗)) One of the following is satisfied
– (SLR(y∗)),
– (NSR(x∗)) AND (LR(y∗)),
– or (NSR(x∗)) AND (LR’(x∗)).

Colloquially, we will also refer to (MEM) as multiple exponential mixing, and
to (EE) as the Quantitative Ergodic Theorem or effective ergodicity. Both are
standard assumptions and have been studied for many classes of systems.

Conditions (LR), (LR’), (SLR), and (NSR) all are concerned with the fact that
points in a small ball B cannot return to B too quickly. Sometimes in literature, the
center x∗ or y∗ is referred to as a slowly recurrent point. For technical reasons, we
need to distinguish different versions of slow recurrence, (SLR) being the strongest.
The abbreviations (LR), (SLR), (NSR), and (BR) stand for ‘large returns’, ‘strong
large returns’, ‘no short returns’, and ‘big returns’ respectively.

Remark 3.1. (i) In the case T (x, y) = Gτ(y)(x), where G is a flow satisfying (a

continuous version of) (MEM)5 and τ is bounded, the condition (NSR(x∗))
is satisfied at almost every x∗. Indeed, it was shown in [16, Lemma 4.13],
albeit for maps instead of flows, that condition (NSR(x∗)) is satisfied6 for G
at almost every x∗. Since τ is bounded, T also has this property.

(ii) It is shown in [3, Lemma 5] that, for a map of positive entropy, condition (LR)
is satisfied at almost every point (In fact (3) is satisfied for all y ∈ Br(y

∗)).
This remains true for maps of the form T (x, y) = Gτ(y)(x), (in this case (LR’)
is satisfied) for bounded τ , where G has positive entropy.

(iii) Considering the previous remarks, it may seem unnecessary to state condition
(SLR). Note however that none of the conditions can be satisfied at periodic
points, and the maps we want to use for T will have plenty of periodic points.
(SLR) will be useful to show the PLT everywhere, if we can choose R without
periodic points.

5It is in fact enough to assume exponential mixing.
6It is shown that, for every fixed A,K > 0, we have

µBr(x∗)(Br(x
∗) ∩G−nBr(x

∗)) f | log(r)|−A ∀n f K| log(r)|. (7)

For A > 1, summing over n ∈ [1,K| log(r)|] yields

µBr(x∗)(ϕBr(x∗),G f K| log(r)|) → 0 as r → 0.

Since this is true for all K > 0, we can easily replace K by some K(r) · ∞ growing slowly

enough. This is a routine argument which is left to the reader.
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(iv) In most of the examples (see §4) we will have
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n−1
∑

j=0

f ◦Rj − n

∫

f dν

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2(ν)

f C||f ||Hr′nδ ∀f ∈ Hr′ , ∀n g 1.

Since Cr′ ¢ Hr′ and ||f ||Hr′ f ||f ||Cr′ for f ∈ Cr′ , this implies condition
(EE).

Theorem 3.2. Assume that S(x, y) = (T (x, y), R(y)) satisfies conditions (MEM),
(EE), and (BR(x∗, y∗)) for some (x∗, y∗) ∈ X × Y . If

d >
r′ + d′δ

1− δ
(8)

then S satisfies the PLT at (x∗, y∗).

Corollary 3.3. If T (x, y) = T (x) preserves a smooth measure and satisfies (MEM),
and R satisfies (EE), then S = T ×R satisfies the PLT almost everywhere.

If T preserves a smooth measure, then, by [17], T is Bernoulli, in particular, it
has positive entropy. (NSR(x∗)) and (LR’(x∗)) are satisfied almost everywhere by
Remark 3.1.

For some applications it will be useful to choose T (x, y) = Gτ(y)(x), where
∫

Y
τ dν = 0. However, in this case, T will not satisfy condition (MEM). Fortunately,

we can apply similar techniques if ergodic averages of τ grow faster than logarith-
mically. More explicitly denote τn =

∑n−1
j=0 τ ◦R

j , assume there is a ζ : N → (0,∞)

with log(n) = o(ζ(n)) and a κ > 0 such that

ν(|τn| < ζ(n)) f O(n−κ). (BA)

Theorem 3.4. Assume that S(x, y) = (T (x, y), R(y)), where T (x, y) = Gτ(y)(x),
satisfies conditions (MEM) with G instead of T . Suppose that R satisfies (EE), and
τ satisfies (BA). Let x∗ ∈ X, y∗ ∈ Y . If there is a δ2 > 0 such that for small
enough ρ > 0 we have

ϕBρ(y∗) g ρ−δ2 on Bρ(y
∗), (9)

and

d >
r′ + d′δ

1− δ
and κ >

d′

δ2
. (10)

then S satisfies the PLT at (x∗, y∗).

Remark 3.5. Let us remark here, that hitting times for skew product, say S :
X × Y → X × Y with S(x, y) = (T (x, y), R(y)), have previously been investigated
by other authors, for example, [27] and [38]. The main differences between [27] and
our results are;

• In [27] the system is viewed from the standpoint of random dynamics, therefore
the relevant target sets are of the form Bρ(x

∗)× Y . In contrast, we focus on
geometric balls Bρ(x

∗, y∗).
• In [27], R is a full shift. This is needed to prove a “no short return” property
akin to (NSR(x∗)), which for us, is one of the assumptions. This allows
different choices of R, namely, for us, R need not be hyperbolic or even mixing.
This is the main novelty of our approach.
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4. Examples. The definitions of the maps in Examples 4.1, 4.5, and Lemma 4.4
are given in §11. For most of the examples we present, the choice of R is more
interesting than the choice of T , mostly because (MEM) implies chaotic behavior
and so the PLT in that setting is not surprising. We will thus not focus too much
on T for this section. We only present some examples here, there are many others
one can verify using Theorem 3.2.

Example 4.1. Let T be a map satisfying (MEM) on a manifold of sufficiently high7

dimension then

(i) if R is a Diophantine rotation, then T ×R satisfies the PLT everywhere;
(ii) if R is the time 1 map of a horocycle flow on Γ\SL2(R) where Γ is a cocompact

lattice, then T ×R satisfies the PLT everywhere;
(iii) if R is a skew-shift, then T ×R satisfies the PLT everywhere.

Remark 4.2. (i) In §11 we will show that the map R from example 4.1(i)-(iii)
satisfies (EE) and (SLR(y∗)) for every y∗. The conclusion then follows from
Theorem 3.2.

(ii) The PLT almost everywhere can be shown more readily. By Corollary 3.3,
we just have to check (EE) for the map R, which holds for a big class of maps,
examples will be given in §11.5.

Example 4.3. At this point, let us point out that, while T and R act on manifolds
and preserve smooth measure, T and R themselves need not be smooth maps (not
even continuous). For example, if T : (0, 1] → (0, 1] is the Gauss map (or a more
general mixing, expanding interval map as in [39])

T (x) =
1

x
−

⌊

1

x

⌋

,

then T preserves the density ρ(x) = 1
log 2·(1+x) . It is standard to show that T

is multiple exponentially mixing, in fact, a fortiori, the Perron-Frobenius transfer
operator has a spectral gap. Now if Rα is an irrational rotation on T, and α is of
bounded type, then, as shall be demonstrated in §11, Theorem 3.2 applies to show
that T ×Rα satisfies the PLT everywhere.

Theorem 3.4 can be used to construct T, T−1 transformations of zero entropy
that satisfy the PLT. All that remains to do is to construct a τ satisfying (BA),
this can be done with the construction given in [14, Proposition 3.9].

Lemma 4.4. Let Rα : Td′

→ Td′

be a Diophantine rotation, i.e

|ïk, αð − l| > C|k|−λ ∀k ∈ Zd′

, k ̸= 0, l ∈ Z, (D)

for some λ g d′. For n
2 < ρ < d′ there is a d g 1 and a function τ ∈ Cρ(Td′

,Rd)
such that ν(τ) = 0, while

ν(||τn|| < log2(n)) = o(n−5).

Note that in order to apply Theorem 3.4 we can always make d as big as we
want.

Example 4.5. Let R = Rα be a Diophantine rotation with d′ = 2 and λ = 2, τ be
the function from Lemma 4.4, and let G be the Weyl Chamber flow on SL(d,R)/Γ,
where Γ is a uniform lattice. If d > 2 then S(x, y) = (Gτ(y)(x), Rα(y)) satisfies the
PLT everywhere.

7Sufficient bounds are given in §11.
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5. The delayed PLT. The main step in the proof will be to show a generalised
version of the PLT (for fiberwise returns), along a subsequence, this is what we will
call a delayed PLT.

This ‘delayed PLT’ in itself is of independent interest, so let us make a more
general statement.

Definition 5.1. Let (X,A, µ, T ) be a probability-preserving ergodic dynamical
system and α = (α(n))ng1 be a sequence of natural numbers, we will refer to α as

the delay sequence, and denote α̃(n) =
∑n

j=1 α
(n). For measurable A ¢ X we define

the delayed consecutive return times to A along α as

ϕA,α(x) := ϕ
(1)
A,α(x) := min(j g 1 | T α̃(j)

(x) ∈ A)

ϕ
(n+1)
A,α (x) := min(j g 1 | T α̃

(ϕ
(1)
A,α

(x)+ϕ
(2)
A,α

(x)+···+ϕ
(n)
A,α

(x)+j)

(x) ∈ A)

ΦA,α := (ϕ
(1)
A,α, ϕ

(2)
A,α, ...).

(11)

Like for classical return times, we will consider delayed return times for different
systems. In an attempt to keep notation simple, we will not specify the underlying
map, only the target set A.

The main example in this paper will be α(n) = ϕB(R
n
B(y)) for some y ∈ Y and

B ¢ Y 8, however other choices are of interest, for example α(n) = g(n), where g is
a polynomial, or α(n) = pn, where pn is the nth prime.

Given a rare sequence (Al)lg1, we will distinguish between two cases

1) the delay sequence is fixed in l,
2) the delay sequence is allowed to vary with l.

Definition 5.2. (i) Let x∗ ∈ X and, for r > 0, denote by Br(x
∗) the geodesic

ball of radius r centred at x∗. Let α = (α(n))ng1 be a sequence of natural
numbers. We will say that T satisfies the delayed PLT along α at x∗ if

µ(Br(x
∗))ΦBr(x∗),α

µ
⇒ ΦExp as r → 0.

(ii) Let PLT (α) = {x∗ ∈ X | T satisfies the delayed PLT along α at x∗}.
If x∗ ∈ PLT (α) for all sequences of natural numbers α, then we say that T

satisfies the delayed PLT at x∗.

The analogous definition for varying α is

Definition 5.3. (i) Let x∗ ∈ X and, for r > 0, denote by Br(x
∗) the geodesic

ball of radius r centred at x∗. Let α = ((α
(n)
r )ng1)r>0 be a collection of

sequences of natural numbers. We will say that T satisfies the varying delayed
PLT along α at x∗ if

µ(Br(x
∗))ΦBr(x∗),αr

µ
⇒ ΦExp as r → 0.

(ii) Let PLT (α) = {x∗ ∈ X | T satisfies the varying delayed PLT along α at x∗}.
If x∗ ∈ PLT (α) for all sequences of natural numbers α, then we say that T
satisfies the delayed PLT at x∗.

In case 1) the main result is a straightforward modification of Theorems 3.2 and
3.4.

8As in §7, see especially (13).
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Theorem 5.4. Let α be a sequence of positive integers. Assume the conditions of
Theorem 3.2 or 3.4 hold replacing (EE) in both cases by

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n−1
∑

j=0

f ◦Rα̃(j)

− n

∫

f dν

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2(ν)

f C||f ||Cr′nδ ∀f ∈ Cr′ , ∀n g 1.

Then S satisfies the delayed PLT along α at (x∗, y∗).

The proof is analogous to the proof of Theorem 3.2 resp. 3.4 (with ΦBl
replaced

by ΦBl,α and Lemma 7.1 replaced by Lemma 12.1). Therefore, no detailed proof
will be given 9.

In case 2) the main result is a special case of Proposition 8.4(III), however it is
worth stating by itself.

Theorem 5.5. Suppose T satisfies conditions (MEM), (SLR(x∗)) and (NSR(x∗)),
then T satisfies the varying delayed PLT at x∗.

Part 2. Proofs

6. Cumulative return times. Most of the statements (and proofs) below are
much more convenient to state in terms of cumulative return times. For a measur-
able set A ¢ X (or B ¢ Y,C ¢ X × Y ) the sequence of cumulative return times to
A is given by10

σ
(n)
A =

n−1
∑

j=0

ϕA ◦ T j
A, n g 1

ΣA = (σ
(1)
A , σ

(2)
A , . . . ),

and similar notation for delayed returns.
When studying distributional convergence of ΦA, one can equivalently study for

distributional convergence of ΣA.
Indeed, let ι : [0,∞)N → [0,∞)N be the map

ι(x1, x2, x3, ...) = (x1, x1 + x2, x1 + x2 + x3, . . . ).

Since ι is a homeomorphism, standard theory shows that

µ(Al)ΦAl

µ
⇒ Φ if and only if µ(Al)ΣAl

µ
⇒ ι(Φ), (12)

where we use the obvious extension of ι to [0,∞]N. Denote ΣExp = ι(ΦExp).

7. Idea of the proof. Let us first outline the strategy of proving Theorem 3.2.
Say we want to show the PLT for the geodesic balls (Ql) converging to (x∗, y∗),

then, for every ε > 0, we find suitable rectangles11 approximating Ql in the sense

that
⋃K

k=1A
(k)
l ×B

(k)
l ¢ Ql and

(µ× ν)Ql

(

Ql \

K
⋃

k=1

A
(k)
l ×B

(k)
l

)

< ε.

9Note however that there is no relation of delayed hitting times to delayed return times as in
Theorem 2.2.

10Recall from Definition 2.1 that ϕA(x) = min(n g 1 | Tn(x) ∈ A) is the first entry/return
time to A, and TA = TϕA is the first return map.

11Using the exponential map, this is a simple exercise in Rd+d′ . Here we use continuity of the

densities of µ resp. ν!
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Denote Q′
l :=

⋃K
k=1A

(k)
l × B

(k)
l . We will use Proposition 8.4 to show the PLT for

Q′
l, i.e

(µ× ν)(Q′
l)ΣQ′

l

(µ×ν)
⇒ ΣExp as l → ∞.

Letting ε→ 0, the next Lemma will help us conclude that

(µ× ν)(Ql)ΣQl

(µ×ν)
⇒ ΣExp as l → ∞.

The critical approximation here is the following Lemma - see [42, Theorem 4.4]
for a qualitative version, and the following statement can be easily deduced from
the proof - for convenience we give a proof of this quantitative version in §12.

Lemma 7.1. There is a metric D defined on the space of probability measures on
[0,∞]N and modelling weak convergence of measures12 such that

D
(

law(µ×ν)Q((µ× ν)(Q)ΦQ), law(µ×ν)Q′ ((µ× ν)(Q′)ΦQ′

)

f 4(µ× ν)Q(Q \Q′),

for measurable Q′ ¢ Q ¢ X × Y .

For returns to rectangles, say Al × Bl, for fixed y ∈ Y , we can ignore all the
times j where Rj(y) ̸∈ Bl. Hence, denoting αl(y) = ΦBl

(y), we first show that for
ν-a.e y ∈ Y

µ(Al)ΣAl,αl(y)
µ
⇒ ΣExp as l → ∞. (13)

To show this, the idea is that, due to assumption (BR), the times13 α̃
(j)
l (y) are

sufficiently far apart to use (MEM), we apply Proposition 8.4. Since (13) is now
true for ν-a.e y ∈ Y , we also have

µ(Al)ΣAl,ΦBl

µ×ν
⇒ ΣExp as l → ∞, (14)

where ΣAl,ΦBl
(x, y) = ΣAl,ΦBl

(y),y(x).

These are not quite the returns that we wanted to consider. However, notice
that, in every step, we skip exactly ϕBl

steps, thus we have the following relation

σAl×Bl
(x, y) =

σAl,ΦBl
(y),y(x)−1
∑

j=0

ϕBl
◦Rj

Bl
(y). (15)

We now use (EE) to control the ergodic sums of ϕBl
and show that

µ(Al)ν(Bl)ΣAl×Bl

µ×ν
⇒ ΣExp as l → ∞.

The same idea works for unions of rectangles
⋃K

k=1A
(k)
l × B

(k)
l , however, in (13),

we will have to slightly modify the definition of return times, which shall be done
at the beginning of §8.2.

8. PLT along varying subsequences.

8.1. Approximation. In our work, we often need to apply the mixing condition
(MEM), and the quantitative ergodicity (EE), for indicator functions, hence we

have to approximate them by functions in Cr resp. Cr′ .

Definition 8.1. Let M be a Cr manifold with dimension dim(M) = d, λ be a
measure on M .

12In the sense that λl ⇒ λ if and only if D(λl, λ) → 0.
13It can be recalled from Definition 5.1 that α̃

(n)
l

=
∑n

j=1 α
(j)
l

=
∑n−1

j=0 ϕBl
◦Rj .
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Let Bα ¢M be measurable subsets for α in some index set. We say that {Bα} is
regularly approximable in Cr if there is a constant B > 0 such that, for each α and
for 0 < ε < 1

10λ(Bα)
1
d , there are h, h ∈ Cr with h f 1Bα

f h and for h ∈ {h, h}

λ(1Bα
̸= h) f λ(Bα)

d−1
d ε, while ||h||Cr f Bε−r. (16)

We call the least such constant B > 0 the approximant of B and denote it by
app({Bα}).

Lemma 8.2. Let M , r, d and λ be as in Definition 8.1. Assume in addition
that λ is absolutely continuous w.r.t volume with bounded density. Suppose that
⋃

αBα is relatively compact, and there is an open U £
⋃

αBα £
⋃

αBα and a
Cr-diffeomorphism ι : U → V for some open set V ¢ Rd such that each ι(Bα) is a
ball. Then {Bα} is regularly approximable in Cr.

Proof. (i) We may assume that M = Rd and λ is Lebesgue measure, otherwise
we pick up another constant, which can be absorbed into C. Furthermore, we can
assume that all Bα are balls centered at the origin. In the following fix α and,
dropping the α from our notation, let B = Bt(0). We have λ(B) = C1t

d, where C1

is the volume of the d-dimensional unit ball.
(ii) Let θ : R → [0, 1] be a smooth function with θ(x) = 1 if x < 0, and θ(x) = 0

if x > 1. For t > ε > 0 consider

θ̂(x) = θ(ε−1(x− t))

then θ̂ is still smooth and ||θ̂||Cr = ε−r||θ||Cr . Consider h : Rd → [0, 1] given by

h(x) = θ̂(|x|), then

• h is smooth, away from the origin because it is the composition of smooth
functions, and near the origin, it is constant 1,

• h(x) = 1 if |x| < t and h(x) = 0 if |x| > t+ ε,
• and ||h||Cr f C3ε

−r where C3 = rC2||θ||Cr and C2 is the Cr norm of the
smooth function x 7→ |x| on {t f |x| f t+ ε}.

Furthermore, we have

λ(h ̸= 1B) = λ(t f |x| f t+ ε) = C1((t+ ε)d − td)

f C1dt
d−1ε f dC

1
d

1 λ(B)
d−1
d ε,

all the constants can be absorbed in the constant C from the claim, the constant
only depends on r, d.

For h repeat the calculations with θ̂ = θ(ε−1(x− (t− ε))) instead.

8.2. Proof of the PLT along varying subsequences. For our purposes it will
not be enough to consider the delayed PLT for a single rare sequence (Al)lg1,

rather let K g 1, and A
(1)
l , ..., A

(K)
l be subsets of X such that {A

(k)
l } is regularly

approximable in Cr. Assume that there are ω(1), ..., ω(K) > 0 and rl → 0 such that

µ(A
(k)
l ) = ω(k)rdl + o(rdl ). (17)

Given κ
(j)
l ∈ {1, ...,K}, for l, j g 1, define the cumulative return times by

σ(1)
κl,αl,y

(x) = min(j g 1 | T
α̃

(j)
l

y (x) ∈ A
(κ

(j)
l

)

l ),

σ(n+1)
κl,αl,y

(x) = min(j g τ (n)κl,αl,y
(x) + 1 | T

α̃
(j)
l

y (x) ∈ A
(κ

(j)
l

)

l ),

Σκl,αl,y = (σ(1)
κl,αl,y

, σ(2)
κl,αl,y

, ...).
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Denote the frequency with which A
(κl)
l = A

(k)
l by

p
(k)
l,t :=

1

t
#{j = 1, ..., tl | κ

(j)
l = k}.

For now suppose that there are positive constants θ(k) > 0 such that, for all
k = 1, ...,K, and for all tl · ∞ with tl = O(r−d

l ),

p
(k)
l,tl

→
θ(k)

∑K
j=1 θ

(j)
=: p(k) as l → ∞. (18)

Later on, when we prove PLT in product systems, we will choose κ and θ in a
specific way14 and (18) will be satisfied by Lemma 9.4.

The main estimate of mixing rates for regularly approximable sets is the following.

Lemma 8.3. Suppose T satisfies (MEM), and let y ∈ Y be such that (1) is satisfied.
Let m g 1, A(1), ..., A(k) ¢ X be regularly approximable in Cr, and 1 f n1 < ... <
nk, then

∣

∣

∣

∣

∣

µ

(

k
⋂

i=1

T−ni
y A(i)

)

−

k
∏

i=1

µ(A(i))

∣

∣

∣

∣

∣

f K max
i=1,...,k

µ(A(i))
d−1
d

kr
kr+1 e−

γp
kr+1 ,

where p = min
i=1,...,k−1

|ni+1 − ni| and the constant K > 0 only depends on k and

app({A(1), ..., A(k)}).

Proof. Let C = app({A(1), ..., A(k)}). By Lemma 8.2, for every ε > 0, there are
h(i) ∈ Cr such that 0 f h(i) f 1A(i) and

µ(1A(i) ̸= h(i)) f µ(A(i))
d−1
d ε, while ||h(i)||Cr < Cε−r.

We estimate
∣

∣

∣

∣

∣

µ

(

k
⋂

i=1

T−niA(i)

)

−

k
∏

i=1

µ(A(i))

∣

∣

∣

∣

∣

f

∣

∣

∣

∣

∣

µ

(

k
⋂

i=1

T−niA(i)

)

−

∫

X

k
∏

i=1

h(i) ◦ Tni dµ

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

X

k
∏

i=1

h(i) ◦ Tni dµ−

k
∏

i=1

∫

X

h(i) ◦ Tni dµ

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

k
∏

i=1

∫

X

h(i) ◦ Tni dµ−
k
∏

i=1

µ(A(i))

∣

∣

∣

∣

∣

f 4k max
i=1,...,k

µ(A(i))
d−1
d ε+ Cke−γpε−kr.

This bound is optimised for

ε∗ =

(

Ckr

4k
max

i=1,...,k
µ(A(i))−

d−1
d e−γp

)

1
kr+1

,

so
∣

∣

∣

∣

∣

µ

(

k
⋂

i=1

T−niA(i)

)

−

k
∏

i=1

µ(A(i))

∣

∣

∣

∣

∣

f Ĉ max
i=1,...,k

µ(A(i))
d−1
d (1− 1

kr+1 )e−p ,γ
kr+1

+ C̄ max
i=1,...,k

µ(A(i))
kr

kr+1
d−1
d e−γp(1− kr

kr+1 )

14Say we want to prove a PLT for the system T ×R and sets of the form Br(x∗)×Br(y∗) then

we choose K = 1 and θ > 0 such that ν(Br(y∗)) = θrd
′
+ o(rd

′
).
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f K max
i=1,...,k

µ(A(i))
d−1
d

kr
kr+1 e−

γ
kr+1p,

where the constants Ĉ, C̄,K > 0 only depend on k and on C.

In the following Proposition, we shall demonstrate exponential limit distribu-
tions for fiberwise return times (compare (13)). The proof is standard and uses
multiple exponential mixing and the method of moments, however, due to having
multiple sets, the notations are quite cumbersome. We will present a proof for the
convenience of the reader.

Proposition 8.4. Suppose that T satisfies (MEM), (A
(1)
l ), ..., (A

(K)
l ) are sequences

of rare events with µ(A
(k)
l ) = ω(k)rdl + o(rdl ), for K g 1, κl satisfy (18) for some

p(k) > 0 with
∑K

k=1 p
(k) = 1, and let αl = (α

(n)
l )ng1 be sequences of natural num-

bers. Denote Al =
⋃K

k=1A
(k)
l and suppose that either

(I) αl grows faster than | logµ(Al)| in the sense that

| logµ(Al)| = o(min
ng2

|α
(n)
l |), (19)

(II) short returns to Al are rare in the sense that

µAl
(ϕAl

f al) → 0 as l → ∞, (20)

for some sequence (al)lg1 with | log(µ(Al))| = o(al), and αl grows at least as
fast | logµ(Al)| in the sense that

| logµ(Al)| = O(min
ng2

|α
(n)
l |), (21)

(III) or short returns to Al are rare in the sense that

µAl
(ϕAl

f al) → 0 as l → ∞, (22)

for some sequence (al)lg1 with | log(µ(Al))| = o(al), and returns are at least
logarithmically large, i. e there exists c > 0 such that

ϕAl
(x) g c log(µ(Al)) µ− a.e x ∈ Al. (23)

Then for ν-a.e y ∈ Y

Ωrdl Σκl,αl,y
µ
⇒ ΣExp as l → ∞,

where Ω =
∑K

k=1 ω
(k)p(k).

Proof. Fix y as in (MEM) and denote Tn = Tn
y .

(i) Taking a subsequence if necessary, we may assume that there is a [0,∞]-valued
process Σ = (σ(1), σ(2), ...) such that

Ωrdl Σκl,αl

µ
⇒ Σ as l → ∞.

For J g 1 and 0 < t1 < ... < tJ we show

P

(

σ(j) f tj , j = 1, . . . , J
)

= P

(

σ
(j)
Exp f tj , j = 1, . . . , J

)

. (24)

The trick is to look at the “dual” object

S(n)
κl,αl

=
n
∑

j=1

1
A

κ
(j)
l

l

◦ T α̃
(j)
l .

The important relation here is the following

S(n)
κ,αl

g N ⇐⇒ σ(N)
κ,αl

f n. (25)
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Indeed, evaluating both sides at some x ∈ X, the left side says that there are at least

N different times 1 f j1 < ... < jN f n such that T α̃
(j)
l (x) ∈ A

κ
(j)
l

l . The right-hand

side expresses that, if 1 f j1 < ... < jN are the first N times that T α̃
(j)
l (x) ∈ A

κ
(j)
l

l ,

then j1 +
∑N

i=2(ji − ji−1) f n. Let (Pt)tg0 be a Poisson process, such that ΣExp

are the cumulative waiting times of (Pt), i.e. (Pt) and ΣExp are related by

Pt g N ⇐⇒ σ
(N)
Exp f t.

The right side of (24) is equal to

P

(

σ
(k)
Exp f tk, k = 1, ..., J

)

= P(Ptk g k, k = 1, ..., J).

Due to (25) it is enough to show


S

⌊

t1
Ωrd

l

⌋

κl,αl , S

⌊

t2
Ωrd

l

⌋

κl,αl , ..., S

⌊

tJ

Ωrd
l

⌋

κl,αl





µ
⇒ (Pt1 , ..., PtJ ) as l → ∞.

(ii) Taking a further subsequence if necessary, there are [0,∞]-valued P̃t1 , ..., P̃tJ

such that


S

⌊

t1
Ωrd

l

⌋

κl,αl , S

⌊

t2
Ωrd

l

⌋

κl,αl , ..., S

⌊

tJ

Ωrd
l

⌋

κl,αl





µ
⇒ (P̃t1 , ..., P̃tJ ) as l → ∞.

We will show that

(A) P̃tk − P̃tk−1
is Poisson distributed with intensity tk − tk−1 for k = 1, ..., d,

(B) and (P̃t1 − P̃t0 , P̃t2 − P̃t1 , ..., P̃tJ − P̃tJ−1
) is an independent vector, where t0 =

0.15

Clearly P0 = P̃0 = 0.

For j = 1, . . . , J denote Stj ,l = S

⌊

tj

Ωrd
l

⌋

Al,κl
. Assertions (A) and (B) will follow16

once we show that, for all m1, ...,md g 1,

∫

X

J
∏

j=1

(

Stj ,l − Stj−1,l

mj

)

dµ =

J
∏

j=1

(tj − tj−1)
mj

mj !
+ o(1) as l → ∞.

In the rest of the proof fix J g 1, 0 = t0 < t1 < · · · < tJ and m1, . . . ,mJ g 1.
(iii) First, for each j = 1, . . . , J , rewrite

Stj ,l − Stj−1,l =

⌊

tj

Ωrd
l

⌋

∑

i=

⌊

tj−1

Ωrd
l

⌋

+1

1
A

(κ
(i)
l

)

l

◦ T α̃
(i)
l .

So
J
∏

j=1

(

Stj ,l − Stj−1,l

mj

)

=

d
∏

j=1

∑

⌊

tj−1

Ωrd
l

⌋

+1fk1,j<...<kmj,j
f

⌊

tj

Ωrd
l

⌋

mj
∏

i=1

ξi,j (26)

15This is essentially Watanabe’s characterisation of Poisson-processes.
16Here we apply the method of moments, see eg [5, Theorem 30.2].
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where ξi,j = 1
A

(κ
(ki,j)

l
)

l

◦ T α̃
(ki,j)

l . To simplify notation we will also denote m =

(m1 + · · ·+mJ), ω = mink=1,...,K ω
(k), pl = 2mmr+1

γ

∣

∣log(ωrdl )
∣

∣,

∆l := {k = (ki,j) j=1,...,J
i=1,...,mj

∣

∣

∣

⌊

tj−1

Ωrdl

⌋

+1 f k1,j<. . .<kmj ,j f

⌊

tj
Ωrdl

⌋

for j = 1, ..., J}

and

∆′
l := {k ∈ ∆l | min

j=1,...,J, i=1,...,mj

j′=1,...,J, i′=1,...,mj′ , (j,i) ̸=(j′,i′)

|α̃
(ki,j)
l − α̃

(ki′,j′ )

l | f pl}.

We will split the sum in (26) into two terms

J
∏

j=1

(

Stj ,l − Stj−1,l

mj

)

=Ml +Rl,

where

Ml =M(tj),l,(mj) =
∑

k∈∆l\∆′
l

∏

j=1,...,J
i=1,...,mj

ξi,j , Rl = R(tj),l,(mj) =
∑

k∈∆′
l

∏

j=1,...,J
i=1,...,mj

ξi,j .

We will show that
∫

X

Ml dµ→

J
∏

j=1

(tj − tj−1)
mj

mj !
and

∫

X

Rl dµ→ 0 as l → ∞. (27)

(iv) Let us first treat Ml. For l g 1 and k ∈ ∆l, by Lemma 8.3 we have
∣

∣

∣

∣

∣

∣

∣

∣

µ









⋂

j=1,...,J
i=1,...,mj

T−α̃
(ki,j)

l A
(κ

(ki,j)

l
)

l









−
∏

j,i

µ

(

A
(κ

(ki,j)

l
)

l

)

∣

∣

∣

∣

∣

∣

∣

∣

f Kmax
j,i

µ

(

A
(κ

(ki,j)

l
)

l

)
d−1
d

mr
mr+1

e−
γ mini,j α

(ki,j)

l
mr+1 .

For k ∈ ∆l \∆
′
l, this yields

µ









⋂

j=1,...,J
i=1,...,mj

T−α̃
(ki,j)

l A
(κ

(ki,j)

l
)

l









= rmd
l

∏

j=1,...,J
i=1,...,mj

ω
(κ

ki,j
l

)

l + o(rmd
l ),

and the o-term does not depend on k. Summing over k ∈ ∆l \∆
′
l, and using (18),

yields
∫

X

Ml dµ =

∫

X

∑

k∈∆l\∆′
l

∏

j=1,...,J
i=1,...,mj

1
A

(κ
(ki,j)

l
)

l

◦ T α̃
(ki,j)

l dµ

= rmd
l

∑

k∈∆l\∆′
l

∏

j=1,...,J
i=1,...,mj

ω(κ
(ki,j)

l
) + o(1)

∗
= rmd

l

∑

k∈∆l

∏

j=1,...,J
i=1,...,mj

ω(κ
(ki,j)

l
) + o(1)
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= rmd
l

J
∏

j=1

1

mj !





K
∑

k=1

⌊

tj − tj−1

Ωrdl

⌋

p
(k)

l,

⌊

tj−tj−1

Ωrd
l

⌋ω(k)





mj

+ o(1)

= Ω−m
J
∏

j=1

(tj − tj−1)
mj

mj !

(

K
∑

k=1

p(k)ω(k)

)mj

+ o(1)

=

J
∏

j=1

(tj − tj−1)
mj

mj !
+ o(1),

for ∗ note that #∆′
l = O(r−md+1

l | log(rl)|). This shows the first assertion of (27).
(v) In order to treat Rl, first note that under assumption (I) we have Rl = 0 for

big enough l. In the following, we focus on assumptions (II) and (III). Note that
∫

X

Rl dµ =

∫

X

1Rl ̸=0Rl dµ f µ(supp(Rl))∥Rl∥L2

and

supp(Rl) ¢

⌊

tJ

Ωrd
l

⌋

⋃

j=1

T−α̃
(j)
l (Al ∩ {ϕAl

f 3pl}) =: Ul,

since pl = O(| log(rl)|), from (20) resp. (22), it follows that

µ(supp(Rl)) f µ(Ul) = O(r−d
l )µ(Al)o(1) = o(1).

Therefore, in order to show
∫

X
Rl dµ → 0, it is enough to show that (Rl)lg1 is

bounded in L2. Notice that

R2
l f

∑

1fk1,...,k2mf

⌊

tJ

Ωrd
l

⌋

m
∏

i=1

1
A

(κ
(ki)
l

)

l

◦ T α̃
(i)
l = S2m

tJ ,l.

We may write

S2m
tJ ,l =

2m
∑

k=1

{

2m

k

}(

StJ ,l

k

)

f Cm

2m
∑

k=1

(

StJ ,l

k

)

f Cm

2m
∑

k=1

(MtJ ,l,k +RtJ ,l,k),

where
{

2m
k

}

are the Stirling numbers of the second kind and Cm = maxk=1,...,2m

{

2m
k

}

.
Now the previous parts of the proof show that

∫

X

MtJ ,l,m dµ is bounded as l → ∞, ∀m g 1,

it remains to show that
∫

X

RtJ ,l,m dµ is bounded as l → ∞, ∀m g 1.

(vi) In order to bound
∫

X
RtJ ,l,m dµ for fixed m g 1 we first split up17 ∆′

l into

17Here the sets of sequences should be modified, i.e

∆l := {k = (ki)i=1,...,m

∣

∣

∣
1 f k1<. . .<km f

⌊

tJ

Ωrd
l

⌋

}

and

∆′
l := {k ∈ ∆l | min

i=1,...,m
i′=1,...,m, i ̸=i′

|α̃
(ki)
l

− α̃
(ki′ )

l
| f pl}
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∆
(j)
l :=















k = (k1, ..., km) ∈ ∆l

∣

∣

∣

∣

∣

∣

∣

∣

∃1 ≤ ii < ... < im−j ≤ m such that

|α̃
(ki+1)

l − α̃
(ki)
l | ≤ p̃l ∀i ∈ {1, ...,m} \ {i1, ..., im−j},

and |α̃
(kir+1)

l − α̃
(kir )

l | > p̃l ∀r = 1, ...,m− j















,

for j = 1, ...,m − 1, so that ∆′
l =

⋃m−1
j=1 ∆

(j)
l . Under assumption (II), because of

(21), there is a constant c > 0 such that for ρ = 2mmr+1
cγ and big enough l we have

#∆
(j)
l f

(

m

j

)(

⌊

t
Ωrd

l

⌋

m− j

)

ρj f mmtmρm(Ω−m + 1)r
−d(m−j)
l .

On the other hand, for k ∈ ∆
(j)
l , we can again use Lemma 8.3 to estimate

∫

X

m
∏

s=1

ξs dµ f

∫

X

∏

s∈{1,...,m}\{i1,...,ij}

ξs f Ωr
d(m−j)
l + o(r

d(m−j)
l ),

where the o-term does not depend on k, and

ξs = 1
A

κ
(ks)
l

l

◦ T α̃
(ks)
l .

Summing over k ∈ ∆′
l we obtain

∫

X

Rtj ,l,m dµ f 2mm+1tmρm(Ω−m+1 +Ω), ∀m g 1,

and we conclude
∫

X
Rl dµ→ 0 under assumption (II).

(vii) Finally assume (III). For fixed j = 1, ...,m − 1, l g 1 and 1 f i1 < ... <

ij f
⌊

t
Ωrd

l

⌋

with mins=1,...,j−1 |α̃
(is+1)
l − α̃

(is)
l | g pl set

Al,i1,...,ij =

j
⋂

s=1

T−α̃
(is)
l A

κ
(is)
l

l .

By Lemma 8.3

µ(Al,i1,...,ij ) f (ωrl)
dj + o(rdjl ),

and the o term doesn’t depend on (i1, ..., ij). For x ∈ Al,i1,...,ij consider

Kl,i1,...,ij (x)

=











k = (k1, ..., km) ∈ ∆
(j)
l

∣

∣

∣

∣

∣

∣

∣

∃r1, ..., rj such that krs = is ∀s = 1, ..., j,

and

m
∏

s=1

ξs(x) = 1











.

Then, since ϕAl
(x) g c log(µ(Al)), we have

#Kl,i1,...,ij (x) f

(

2
pl

dc log(rl)

)m−j

=: ρm−j ,

since pl = constant ∗ | log(rl)| this quantity doesn’t depend on l. At the same time
we have

supp

(

m
∏

s=1

ξs

)

¢ Al,i1,...,ij if k ∈ Kl,i1,...,ij (x) for some x.



POISSON LIMIT THEOREMS FOR SYSTEMS WITH PRODUCT STRUCTURE 1471

Also, every k ∈ ∆̃
(j)
l is in some Kl,i1,...,ij (x), therefore

∑

k∈∆̃
(j)
l

∫

X

m
∏

s=1

ξs dµ f
∑

1fi1<...<ijf

⌊

t

Ωrd
l

⌋

mins=1,...,j−1 |α̃
(is+1)

l
−α̃

(is)
l

|gpl

∫

Al,i1,...,ij

#Kl,i1,...,ij (x) dµ(x)

f
∑

1fi1<...<ijf

⌊

t

Ωrd
l

⌋

mins=1,...,j−1 |α̃
(is+1)

l
−α̃

(is)
l

|gp̃l

∫

Al,i1,...,ij

ρj dµ

f ρj
(

ωrdjl + o(rdjl )
)

(⌊

t

Ωrdl

⌋)j

f ρjtj
ω

Ωj
+ o(1).

Summing up over j we get
∫

X

Rl dµ f mmax(1, ρm)max(1, tm)
ω

max(1,Ωm)
+ o(1).

Following the argument in step (v) this shows
∫

X
Rl dµ→ 0, hence (27), in case of

assumption (III). This concludes the proof.

Remark 8.5. (i) Note that assumptions (I), (II), or (III) directly correspond to
the three possible cases of (BR(x∗, y∗))–(SLR(y∗)), (NSR(x∗)) AND (LR(y∗)), or
(NSR(x∗)) AND (LR’(x∗)) respectively.

(ii) In all of the examples we give in section 4, the αl will satisfy a condition
stronger than (I). In fact, in this set-up, there is a δ2 > 0 such that

min
ig2

|α
(i)
l | g µ(Al)

−δ2 ,

compare also (9)18. If this stronger condition is satisfied instead of (I), then we do
not need the full strength of exponential mixing in (MEM). Any superpolynomial
rate will be enough. Details are given in the proof of Theorem 3.4, but we shall
give a heuristic here.

When using mixing of all orders with indicators of the form 1Brl
(x∗), the error

term will contain a term coming from the Cr norm in the definition of regularly
approximable. In this case, using (16), this term will be of order Cr−drm

l . To
compensate, say the rate of mixing is ψ, since the gaps αl are large we can multiply

with ψ(minig2 |α
(i)
l |). So we want to show

r−drm
l ψ(r−dδ2

l ) = o(1),

for all m g 1, thus ψ should decay superpolynomially.

9. The PLT for rectangles.

9.1. Quantitative Ergodic Theorem. In section 9.2, it will be convenient to use
a pointwise (almost everywhere) Quantitative Ergodic Theorem instead of the L2

bound we assume in (EE). Furthermore, using a Borel-Cantelli argument, we will
show such bounds simultaneously along a sequence of functions (fl)lg1.

18The constant δ2 given there is not exactly the same. In the notation there, we have to use

δ2
d′

d
.
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Proposition 9.1. Assume (EE) is satisfied, and let (fl)lg1 be a sequence of func-

tions in Cr′ . Then, for every ε > 0, ε′ > 0, there are, for ν-a.e y ∈ Y , Ly g 1 such
that
∣

∣

∣

∣

∣

∣

n
∑

j=1

fl ◦R
j(y)− n

∫

Y

fldν

∣

∣

∣

∣

∣

∣

f ||fl||Cr′nδ+ε for ν-a.e y ∈ Y, ∀n g lε
′

, l g Ly,

Proof. The proof of19 [8, Theorem 3.1] shows that there is a constant K > 0 such
that

∣

∣

∣

∣

∣

∣

∣

∣

sup
ngN

1

n

∣

∣

∣

∣

Sn(f)− n

∫

Y

f dν

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2

f K||f ||Cr′N−(1−δ) N g 1, f ∈ Cr′ , (28)

where Sn(f) =
∑n

j=1 fl ◦R
j .

Now let k, δ′ > 0 to be chosen later be such that 2(1− δ)k > 2δ′ + 1. Using the
Chebyshev inequality, from (28) it follows that

ν

(

sup
ngNk

1

n

∣

∣

∣

∣

Sn(f)− n

∫

Y

f dν

∣

∣

∣

∣

>
1

2
||f ||Cr′N−δ′

)

f 4K2N2δ′−2(1−δ)k N g 1, f ∈ Cr′ .

(29)

For l g 1, N = Nl = +l
2

2(1−δ)k−2δ′−1 , denote by Bl,N the set

Bl,N =

{

y ∈ Y | sup
ngNk

1

n

∣

∣

∣

∣

Sn(fl)(y)− n

∫

Y

fl dν

∣

∣

∣

∣

>
1

2
||fl||Cr′N−δ′

}

, (30)

then it holds that ν(Bl,N ) f N2δ′−2(1−δ)k and

∑

lg1,NgNl

ν(Bl,N ) f 4K2 1

2δ′ − 2(1− δ)k + 1

∑

lg1

N
2δ′−2(1−δ)k+1
l

f
4K2

2δ′ − 2(1− δ)k + 1

∑

lg1

l−2 <∞.

Hence, by Borel-Cantelli, for ν-a.e y ∈ Y there are only finitely many pairs (l, N)
with N < Nl such that y ∈ Bl,N , therefore, for such y, there is an Ly g 1 such
that y ̸∈ Bl,N whenever l g Ly, N g Nl. For such y, l and n g Nk

l , say N
k f n f

(N + 1)k and N g Nl, it holds that

1

n

∣

∣

∣

∣

Sn(fl)(y)− n

∫

Y

f dν

∣

∣

∣

∣

g sup
ngNk

1

n

∣

∣

∣

∣

Sn(f)(y)− n

∫

Y

f dν

∣

∣

∣

∣

f
1

2
||fl||Cr′N−δ′ f ||fl||Cr′n−

δ′

k .

Choosing k so big that 1
k <

εε′

2 , the claim follows by setting δ′ = k(1− δ− ε) (then

2(1− δ)k − 2δ′ − 1 = 2kε− 1 > 2
ε′ ).

19[8, Theorem 3.1] shows that (28) holds under the stronger assumption that Pn L2

−−→ Id

polynomially fast on L∞, where P denotes the Perron-Frobenius transfer operator. Note however
that Lemma 3.3 of that paper shows that, under this assumption, (EE) holds; the rest of the proof
only uses (EE), and not the stronger assumption on P .
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9.2. Uniform estimates. Let (Bl)lg1 be a sequence of rare events20 in Y , such

that (Bl)lg1 is regularly approximable in Cr′ . The goal of this section will be to
show that, after taking a subsequence if necessary21

sup
lg1

∣

∣

∣

∣

∣

∣

ν(Bl)

sNl

+sNl,
∑

j=1

ϕ
(j)
Bl

(y)− 1

∣

∣

∣

∣

∣

∣

→ 0 as s→ ∞, ν-a.e y ∈ Y, (31)

for some Nl > 0.

Lemma 9.2. Let R satisfy (EE) and let (Bl)lg1 be a sequence of rare events in Y ,

such that (Bl)lg1 is regularly approximable in Cr′ . Then, after taking a subsequence
if necessary, for ε > 0, there is a constant K > 0 only depending on app(Bl)lg1,
and, for ν-a.e y ∈ Y , Ny > 0 only depending on y and app((Bl)lg1) such that

∣

∣

∣

∣

∣

∣

n
∑

j=1

1Bl
◦Rj(y)− nν(Bl)

∣

∣

∣

∣

∣

∣

f Kν(Bl)
r′(d′−1)

d′(r′+1) n1−
1−δ−ε

r′+1 , ∀n g NyNl, l g Ly ν-a.e y ∈ Y,

(32)

where Nl = ν(Bl)
− r′+1

1−δ−ε .

Proof. Let B = app((Bl)lg1), then
22 for k > ν(Bl)

− 1
d′ there are hk,l, hk,l ∈ Cr′

with hk,l f 1Bl
f hk,l and

ν(1Bl
̸= hk,l) f ν(Bl)

d′−1
d′

1

k
, while ||hk,l||Cr′ f Bkr

′

,

for hk,l ∈ {hk,l, hk,l}. In particular

ν(Bl)− ν(Bl)
d′−1
d′

1

k
f

∫

Y

hk,l dν f

∫

Y

hk,l dν f ν(Bl) + ν(Bl)
d′−1
d′

1

k
.

By Proposition 9.1 there are Iy g 1 and Nl g 1 such that, for hk,l ∈ {hk,l, hk,l}, we
have

∣

∣

∣

∣

∣

∣

n
∑

j=1

hk,l ◦R
j(y)− n

∫

Y

hk,l dν

∣

∣

∣

∣

∣

∣

f ||hk,l||Cr′nδ+ε ∀n g (l + k)ε
′

, l + k g Iy, ν-a.e y ∈ Y.

Therefore, for such k, l, n,

n
∑

j=1

1Bl
◦Rj(y) g

n
∑

j=1

hk,l ◦R
j(y) g n

∫

Y

hk,l dν − Bkrnδ+ε

g nν(Bl)− nν(Bl)
d′−1
d′

1

k
− Bkr

′

nδ+ε.

20Later on in §9.3 we will take finitely many such sequences (B
(1)
l

)lg1, ...(B
(K)
l

)lg1, but the

same arguments apply.
21From this point on we will often take a subsequence of (Bl)lg1 to assume that l is sufficiently

small compared to ν(Bl)
−1. In an effort to keep notation simple, we will do so without explicitly

stating, accepting small imprecisions in exchange for simpler notation.
22By Definition 8.1.
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Likewise
n
∑

j=1

1Bl
◦Rj(y) f nν(Bl) + nν(Bl)

d′−1
d′

1

k
+ Bkr

′

nδ+ε.

Hence,
∣

∣

∣

∣

∣

∣

n
∑

j=1

1Bl
◦Rj(y)− nν(Bl)

∣

∣

∣

∣

∣

∣

f nν(Bl)
d′−1
d′

1

k
+ Bkr

′

nδ+ε. (33)

Let kn =

⌈

n
1−δ−ε

r′+1 ν(Bl)
d′−1

d′(r′+1)

⌉

and

Ny = (100Iy)
r′+1

1−δ−ε , and Nl = ν(Bl)
− r′+1

(1−δ−ε)d′
−

(d′−1)(r′+1)

d′(1−δ−ε) = ν(Bl)
r′+1

1−δ−ε .

We can apply (33) for n g NyNl, kn and l g 1 (since kn > Iy and23 kε
′

n < k
r′+1

1−δ−ε
n <

n) to obtain
∣

∣

∣

∣

∣

∣

n
∑

j=1

1Bl
◦Rj(y)− nν(Bl)

∣

∣

∣

∣

∣

∣

f Kν(Bl)
r′(d′−1)

d′(r′+1) n1−
1−δ−ε

r′+1 ,

where the constant K > 0 only depends on B.

Proposition 9.3. Suppose R satisfies (EE) and let (Bl)lg1 be a sequence of rare

events in Y , such that (Bl)lg1 is regularly approximable in Cr′ . Then for every
ε > 0 there is a constant K > 0 and, for ν-a.e y ∈ Y , there are Sy > 0 such that,
for s > Sy, we have

∣

∣

∣

∣

∣

∣

ν(Bl)

sMl

+sMl,−1
∑

j=0

ϕBl
◦Rj

Bl
(y)− 1

∣

∣

∣

∣

∣

∣

f Ks−
1−δ−ε

r′+1 (34)

where

Ml = ν(Bl)
1− d′+r′

d′(1−δ−ε) .

Proof. Let y ∈ Y be as in the conclusion of Lemma 9.2. By (32), for l g 1 and
n g NyNl we have

nν(Bl)−Kν(Bl)
r′(d′−1)

d′(r′+1) n1−
1−δ−ε

r′+1

f
n
∑

j=1

1Bl
◦Rj

Bl
(y) f nν(Bl) +Kν(Bl)

r′(d′−1)

d′(r′+1) n1− 1−δ−ε

r′+1 .

and thus

+nν(Bl)−Kν(Bl)
r′(d′−1)
d′(r′+1) n

1− 1−δ−ε
r′+1 ,−1

∑

j=0

ϕBl
◦Rj

Bl
(y) f n, (35)

as well as

n f

+nν(Bl)+Kν(Bl)
r′(d′−1)
d′(r′+1) n

1− 1−δ−ε
r′+1 ,−1

∑

j=0

ϕBl
◦Rj

Bl
(y).

23To be completely correct, one would have to consider kn + l instead of l, but by choosing a

subsequence and renumbering we can assume that l is very small compared to ν(Bl)
−1.
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For s > Sy with Sy = (100K)
r′+1

1−δ−εNy, let

n = ξν(Bl)
− d′+r′

d′(1−δ−ε) ,

where ξ > 0 is such that ξ −Kξ1−
1−δ−ε

r′+1 = s. Clearly

ξ ∈
(

s, s+ 2Ks1−
1−δ−ε

r′+1

)

in particular24 n > NyNl. Hence, using this n in the lower bound of (35) yields

+sν(Bl)
1− d′+r′

d′(1−δ−ε) ,−1
∑

j=0

ϕBl
◦Rj

Bl
(y) f n f (s+ 2Ks1−

1−δ−ε

r′+1 )ν(Bl)
− d′+r′

d′(1−δ−ε) ,

setting Ml = ν(Bl)
1− d′+r′

d′(1−δ−ε) we obtain

ν(Bl)

sMl

+sMl,−1
∑

j=0

ϕBl
◦Rj

Bl
(y) f 1 + 2Ks−

1−δ−ε

r′+1 .

The upper bound follows analogously by setting ξ +Kξ1−
1−δ−ε

r′+1 = s, and the claim
(making K a bit bigger) is proven.

9.3. PLT scaled by returns to {Bl}. For the rest of this exposition letK g 1, and

A
(1)
l , ..., A

(K)
l resp. B

(1)
l , ..., B

(K)
l be subsets of X resp. Y regularly approximable in

Cr resp. Cr′ . Suppose that there are rl ¸ 0, and positive constants ω(k), θ(k) > 0
such that

µ(A
(k)
l ) = ω(k)rdl + o(rdl ), and ν(B

(k)
l ) = θ(k)rd

′

l + o(rd
′

l ) ∀l g 1, k = 1, ...,K,

and, for each l, B
(1)
l , ..., B

(K)
l are disjoint. Denote Bl =

⋃K
k=1B

(k)
l , which, by

disjointness of B
(1)
l , ..., B

(K)
l , is also regularly approximable in Cr′ , and αl = ΦBl

.
Consider

κ
(n)
l (y) = k if Rn

Bl
(y) ∈ B

(k)
l ,

which is well-defined as the sets B
(k)
l are disjoint, and

σ(1)
κl,αl,y

(x) = min

(

n g 1 | T
α̃

(n)
l

)
y (x) ∈ A

(κ
(n)
l

)

l

)

,

σ(n+1)
κl,αl,y

(x) = min

(

k g σ(n)
κl,αl,y

(x) + 1 | T
α̃

(k)
l

y (x) ∈ A
(κ

(k)
l

)

l

)

,

Σκl,αl,y = (σ(1)
κl,αl,y

, σ(2)
κl,αl,y

, ...).

Following the steps outlined in §7 we will first show

Ωrd
′

l Σκl,αl,y
µ
⇒ ΣExp as l → ∞, ν − a.a y ∈ Y (36)

for Ω =
∑K

k=1 ω(k)θ(k)

∑K
k=1 θ(k) . Then use the relation

σ⋃K
k=1 A

(k)
l

×B
(k)
l

(x, y) =

σκl,ΦBl
(y)(x)−1
∑

j=0

ϕBl
◦Rj

Bl
(y) (37)

24Recall that Nl = ν(Bl)
− 1+r′

d′(1−δ−ε) .
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to obtain

(µ× ν)

(

K
⋃

k=1

A
(k)
l ×B

(k)
l

)

Σ⋃K
k=1 A

(k)
l

×B
(k)
l

µ×ν
⇒ ΣExp as l → ∞. (38)

Denote

p
(k)
l,t (y) :=

1

t
#{j = 1, ..., t | κ

(j)
l (y) = k} =

1

t

t
∑

j=1

1
B

(k)
l

(Rj
Bl
(y)).

We first show that, for each k, ν-a.e y ∈ Y , and tl = O(r−d
l ), we have

p
(k)
l,tl

(y) →
θ(k)

∑K
j=1 θ

(j)
=: p(k) as l → ∞. (39)

Lemma 9.4. Suppose R satisfies (EE) and

d >
r′ + d′δ

1− δ

Then κl satisfies (39).

Proof. Let ε > 0 be small enough that

d >
r′ + d′(δ + ε)

1− δ − ε
.

(i) Using Lemma 9.2, and disjointness we obtain a constant K > 0 and Ny g 1
such that, for ν-a.e y ∈ Y , we have

∣

∣

∣

∣

∣

∣

n
∑

j=1

1
B

(k)
l

◦Rj(y)− nν(B
(k)
l )

∣

∣

∣

∣

∣

∣

f Kr
r′(d′−1)

r′+1

l n1− 1−δ−ε

r′+1 , and

∣

∣

∣

∣

∣

∣

n
∑

j=1

1Bl
◦Rj(y)− nν(Bl)

∣

∣

∣

∣

∣

∣

f Kr
r′(d′−1)

r′+1

l n1−
1−δ−ε

r′+1

for all n g Ny, l g 1 and k = 1, ...,K. On the other hand25, for s > Ny, Proposition
9.3 yields

∣

∣

∣

∣

∣

∣

ν(Bl)

sMl

+sMl,−1
∑

j=0

ϕBl
◦Rj

Bl
(y)− 1

∣

∣

∣

∣

∣

∣

f Ks−
1−δ−ε

r′+1 .

where

Ml = ν(Bl)
1− d′+r′

d′(1−δ−ε) .

(ii) Rewrite

p
(k)
l,n =

1

n

∑n
j=1 ϕBl

◦Rj
Bl

(y)
∑

i=1

1
B

(k)
l

◦Ri.

Denote tl = slMl, since

Ml = ν(Bl)
1− d′+r′

d′(1−δ−ε) = O(r
d′+r′

1−δ−ε
−d′

l ) = o(rdl ),

we necessarily have sl → ∞ as l → ∞. Denote a = 1−δ−ε
r′+1 and let l be big enough

so that sl > Ny, then we have

25Making K and Ny bigger if needed.
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tlp
(k)
l,tl

(y) =

∑tl
j=1 ϕBl

◦Rj
Bl

−1
∑

j=1

1
B

(k)
l

◦Rj(y)

f

tlν(Bl)
−1(1+Ks−a

l
)−1

∑

j=1

1
B

(k)
l

◦Rj(y)

f tlν(Bl)
−1ν(B

(k)
l )(1 +Ks−a) +Kr

r′(d′−1)

r′+1

l

(

tlν(Bl)
−1(1 +Ks−a)

)1−a

f tl
ν(B

(k)
l )

ν(Bl)
(1 + o(s−a+a2

l )).

The lower bound is similar. So
∣

∣

∣

∣

∣

p
(k)
l,n (y)−

ν(B
(k)
l )

ν(Bl)

∣

∣

∣

∣

∣

= o(s−a+a2

l ) = o(1). (40)

9.4. Adding in the gaps. Now all that’s left to do is to add back in the gaps. As
mentioned in §9.3, having shown (36) (this is the content of Proposition 8.4), we
will now explain how to conclude

(µ× ν)

(

K
⋃

k=1

A
(k)
l ×B

(k)
l

)

Σ⋃K
k=1 A

(k)
l

×B
(k)
l

µ×ν
⇒ ΣExp, as l → ∞

using the relation

σ⋃K
k=1 A

(k)
l

×B
(k)
l

=

σκl,αl,y
(x)−1

∑

j=0

ϕBl
◦Rj

Bl
(y).

This is rather straightforward, given Proposition 9.3, and follows from a more
general principle in probability theory. As this principle finds use in various places
and has, to the author’s knowledge, not been formulated in generality, let us state
and prove a more general version than we need here.

Lemma 9.5. Let (Ω,P) be a probability space, and El : Ω → [0,∞) non-negative
real random variables, such that there are positive random variables µl : Ω → (0, 1)
with

µlEl
P
⇒ E as l → ∞,

for some non-negative random variable E with P(E = 0) = 0. Then for any Ml :
Ω → [0,∞) with

µlMl → 0 as l → ∞ pointwise P-a.e

we have

P(El fMl) → 0 as l → ∞.

Proof. Let ε > 0, there is a δ > 0 such that P(E f δ) < ε, and the distribution
function of E is continuous at δ. By Jegorow’s Theorem, there is a measurable
K ¢ Ω with P(Kc) < ε and

µlMl → 0 as l → ∞ uniformly on K.
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Choose L̃ g 1 so big that Ml f δµ−1
l on K for l g L̃. Now choose L g L̃ so big

that

P(µlEl f δ) f 2ε ∀l g L,

it follows that

P(El fMl) f P(µlEl f δ) + P(Kc) f 3ε,

for l g L.

Proposition 9.6. Let (Ω,P) be a probability space, and El : Ω → N be positive
integer valued observables. Assume there are positive real numbers ql ¸ 0, and a
[0,∞)-valued random variable E with P(E = 0) = 0 such that

qlEl
P
⇒ E as l → ∞,

Let α
(l)
j : Ω → [0,∞) be non-negative random variables, and assume there are

Ml : Ω → (0,∞) with qlMl → 0 as l → ∞ P-a.e and positive random variables
bl : Ω → (0,∞) such that

sup
lg1

∣

∣

∣

∣

∣

∣

1

sMlbl

+sMl,
∑

j=1

α
(j)
l (ω)− 1

∣

∣

∣

∣

∣

∣

→ 0 as s→ ∞, P-a.e. . (UC)

Then

ql
bl

El
∑

j=1

α
(j)
l

P
⇒ E as l → ∞.

Remark 9.7. In our context we use (Ω,P) = (X × Y, µ× ν), El = σAl,ΦBl
, α

(j)
l =

ϕBl
◦ Rj

Bl
, ql = µ(Al) and bl = 1

ν(Bl)
. The existence of Ml is the content of

Proposition 9.3.

Proof. (i) Let F be the distribution function of E and C = {t | F is continuous at t}
the set of its continuities. Let t ∈ C, and ε > 0 such that t

1+ε ,
t

1−ε ∈ C. We will
show

P





ql
bl

El
∑

j=1

α
(j)
l f t



→ F (t) as l → ∞.

(ii) By Jegorow’s Theorem, for l g 1, there is a measurable set K ¢ Ω with
P(Kc) < ε

sup
lg1

sup
ω∈K

∣

∣

∣

∣

∣

∣

1

sMlbl

+sMl,
∑

j=1

α
(j)
l (ω)− 1

∣

∣

∣

∣

∣

∣

→ 0 as s→ ∞.

(iii) Choose S > 0 so big that

(1− ε)bl f
1

sMl

+sMl,
∑

j=1

α
(j)
l f (1 + ε)bl on K, ∀s g S, l g 1,

and restricting to {El g SMl}, we obtain

(1− ε)qlEl f
ql
bl

El
∑

j=1

α
(j)
l (ω) f (1 + ε)qlEl on K ∩ {El g SMl}, ∀l g 1.
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We get

P





ql
bl

El
∑

j=1

α
(j)
l f t



− P(El f SMl)− P(Kc)

f P



K ∩ {El g SMl} ∩







ql
bl

El
∑

j=1

α
(j)
l f t









 f P

(

qlEl f
t

1− ε

)

,

and likewise

P





ql
bl

El
∑

j=1

α
(j)
l f t



 g P

(

K ∩ {El g SMl} ∩

{

qlEl f
t

1 + ε

})

g P

(

qlEl f
t

1 + ε

)

− P(El f SMl)− P(Kc).

Taking lim supl→∞ resp. lim inf l→∞ the above two equations, and using Lemma
9.5, we obtain

F

(

t

1 + ε

)

− ε f lim inf
l→∞

P





ql
bl

El
∑

j=1

α
(j)
l f t





f lim sup
l→∞

P





ql
bl

El
∑

j=1

α
(j)
l f t



 f F

(

t

1− ε

)

+ ε.

Since C ¢ (0,∞) is dense, we can let ε¸ 0 while t
1+ε ,

t
1−ε ∈ C, this yields

P





ql
bl

El
∑

j=1

α
(j)
l f t



→ F (t) as l → ∞.

Remark 9.8.

(i) We can extend this statement to sequences in the following manner: under

the assumptions of the proposition, let E
(n)
l : Ω → N be such that

ql(E
(1)
l , E

(2)
l , ...)

µ
⇒ (E(1), E(2), ...) as l → ∞,

for some E(n) : Ω → [0,∞) with P(E(n) = 0) = 0. Then

ql
bl





E
(n)
l
∑

j=1

α
(j)
l ,

E
(n)
l
∑

j=1

α
(j)
l , ...





P
⇒ (E(1), E(2), ...) as l → ∞.

The proof of this statement is almost the same as for the proposition, therefore
we won’t repeat it.

(ii) The probability measure P can be replaced by a sequence (Pl)lg1 by also
replacing (UC) with the following condition

∀ε > 0 there is are measurable sets Kl ¢ Ω with lim sup
l→∞

Pl(K
c
l ) < ε such that

sup
lg1

sup
ω∈Kl

∣

∣

∣

∣

∣

∣

1

sMlbl

+sMl,
∑

j=1

α
(j)
l (ω)− 1

∣

∣

∣

∣

∣

∣

→ 0 as s→ ∞.
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Proof of Theorem 3.2. (i) Let rl ¸ 0, and denote by Ql = Brl(x
∗, y∗) the geodesic

ball of radius rl centred at (x∗, y∗), and let ε > 0. W.l.o.g. r1 is small enough that
the exponential map at (x∗, y∗) is a diffeomorphism from the ball of radius 2r1 in

Rd+d′

onto B2r1(x
∗, y∗). Let ε > 0, it is easy to construct, for some K g 1, sets

A
(1)
l , ..., A

(K)
l and B

(1)
l , ..., B

(K)
l as in §8. Let ω(k), θ(k) > 0 be such that26

µ(A
(k)
l ) = ω(k)rdl + o(rdl ), and ν(B

(k)
l ) = θ(k)rd

′

l + o(rd
′

l ) ∀l g 1, k = 1, ...,K,

and set Ω =
∑K

k=1 ω(k)θ(k)

∑K
k=1 θ(k) .

Due to Lemma 8.2 all those sets can be chosen to be regularly approximable,

such that27 (µ× ν)Ql

(

Ql \
⋃K

k=1A
(k)
l ×B

(k)
l

)

< ε for all l g 1. Let Λ > 0 be such

that (µ× ν)(Ql) = Λrd+d′

l + o(rd+d′

l ), then
∣

∣

∣

∣

∣

Λ− Ω

K
∑

k=1

θ(k)

∣

∣

∣

∣

∣

< ε

(ii) Denote Bl =
⋃K

k=1B
(k)
l , and, for y as in assumption (MEM), consider αl(y) =

ΦBl
(y) and

κ
(n)
l (y) = k if Rn

Bl
(y) ∈ B

(k)
l ,

by disjointness κl(y) is well-defined. By Lemma 9.4, κl(y) satisfies (39), and p
(k) =

θ(k)
∑K

s=1 θ(s) . We can use Proposition 8.4 and Remark 8.5(i) to obtain

Ωrdl Σκl(y),αl(y),y
µ
⇒ ΣExp as l → ∞, ν-a.e y.

Since the convergence holds for ν-a.e y ∈ Y , it follows that

Ωrdl Σκl,αl

µ×ν
⇒ ΣExp as l → ∞,

where Σκl,αl
(x, y) = Σκl(y),αl(y),y(x).

(iii) By Proposition 9.3, αl satisfies (UC) with

bl =
1

ν(Bl)
=

1
∑K

k=1 θ
(k)
r−d′

l + o(r−d′

l )

and

Ml = ν(Bl)
1− d′+r′

d′(1−δ−ε) .

Note that, for Q′
l =

⋃K
k=1A

(k)
l ×B

(k)
l , we have

ΣQ′
l
=







σ(1)
κl,αl

−1
∑

j=0

ϕBl
◦Rj

Bl
,

σ(2)
κl,αl

−1
∑

j=σ
(1)
κl,αl

ϕBl
◦Rj

Bl
, ...






.

We can apply Proposition 9.6 resp. Remark 9.8(i)

Ω

(

K
∑

k=1

θ(k)

)

rd+d′

l ΣQ′
l

µ×ν
⇒ ΣExp as l → ∞.

26Choose x∗, y∗ such that the densities of µ, ν are positive at the respective points.
27Here we again use the continuity of the density.
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By disjointness

(µ× ν)(Q′
l) = Ω

(

K
∑

k=1

θ(k)

)

rd+d′

l + o(rd+d′

l )

hence

(µ× ν)(Q′
l)ΣQ′

l

µ×ν
⇒ ΣExp as l → ∞.

By the equivalence (12), we have

(µ× ν)(Q′
l)ΦQ′

l

µ×ν
⇒ ΦExp as l → ∞.

(iv) By Theorem 2.2 also

µ× ν)(Q′
l)ΦQ′

l

µ×νQ′
l⇒ ΦExp as l → ∞.

At the same time, taking a subsequence if necessary, there are [0,∞]-valued pro-

cesses Φ and Φ̃ such that

(µ× ν)(Ql)ΦQl

µ×ν
⇒ Φ as l → ∞, and

(µ× ν)(Ql)ΦQl

(µ×ν)Ql⇒ Φ̃ as l → ∞.

Hence

D
(

ΦExp, Φ̃
)

f 7ε,

whereD is given by Lemma 7.1. Since this is true for every ε > 0 we have Φ̃
d
= ΦExp,

and by Theorem 2.2 also Φ
d
= ΦExp.

10. The skewing time. Here we will prove Theorem 3.4, to do this we will verify
that the map T (x, y) = Gτ(y)(x) satisfies superpolynomial mixing of all orders, as
in Remark 8.5(ii).

Lemma 10.1. Under the assumptions of Theorem 3.4, suppose that
∑

lg1 r
1
2 (d

′−δ2κ)

l

<∞. Then, for each t > 0, there is a set Gt with ν(Gt) = 1 such that, for y ∈ Gt,

there are Ly,t > 0 and sets Bl,y,t ¢ {1, ...,
⌈

t
µ(Al)

⌉

} with #Bl,y,t = o(µ(Al)
−1) such

that

|τ
α̃

(n)
l

(y)− τ
α̃

(m)
l

(y)|

g ζ
(

α̃
(n)
l (y)− α̃

(m)
l (y)

)

∀l g Ly,t, 1 f n < m f

⌈

t

µ(Al)

⌉

, n ̸∈ Bl,y,t

where ζ is the function from condition (BA) and28 αl = ΦBl
.

Proof. Fix t > 0, to keep notation simple we assume µ(Al) = rdl + o(rdl ) and

ν(Bl) = rd
′

l + o(rd
′

l ), otherwise there is an extra constant in the estimates below.

(i) We call n ∈
{

1, ...,
⌈

t
µ(Al)

⌉}

a (l, y)-bad return (or simply (l, y)-bad) if there

is a m > n such that

|τ
α̃

(n)
l

(y)− τ
α̃

(m)
l

(y)| < ζ(α̃
(n)
l (y)− α̃

(m)
l (y)),

denote Bl,y = {n g 1 | n is a (l, y) − bad return}. Let ε1 > 0, we call y ∈ Y an

l-bad point if #Bl,y > r−d+ε1
l .

28It can be recalled from Definition 5.1 that α̃
(n)
l

=
∑n

j=1 α
(j)
l

=
∑n−1

j=0 ϕBl
◦Rj .
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(ii) Using Proposition 9.3 and Jegorov’s Theorem, for ε2 > 0, we can find a

measurable G = Gε2 ¢ Y with ν(Gc) < ε2 and an L̃ g 1 depending on G such that

α̃

(⌊

t
µ(Al

⌋)

l f 2tr
−(d+d′)
l ∀y ∈ G, l g L̃. (41)

(iii) For l g 1 denote Gl = {α̃

(⌊

t
µ(Al

⌋)

l f 2tr
−(d+d′)
l }, we have

ν(y ∈ Gl | y is l-bad) f

∫

Gl
#Bl,y dν

r−d+ε1
l

f rd−ε1
l

⌈

t
µ(Al)

⌉

∑

n=1

ν(y ∈ Gl | n is (l, y)-bad)

f rd−ε1
l

+2tr
−(d+d′)
l

,
∑

j=1

ν
(

∃i g 1 | |τ
j+α̃

(i)
l

− τj | < ζ
(

α̃
(i)
l

))

f rd−ε1
l

+2tr
−(d+d′)
l

,
∑

j=1

ν
(

R−j
(

∃i g 1 | |τ
α̃

(i)
l

| < ζ
(

α̃
(i)
l

)))

f rd−ε1
l

+2tr
−(d+d′)
l

,
∑

j=1

ν(∃i g r−δ2
l | |τi| < ζ(i))

f 2Ktrd−ε1−d−d′+δ2κ
l f 2Ktrδ2κ−d′−ε1

l ,

for some constant K > 0, for small enough ε1 this is summable. An application
of the Borel-Cantelli Lemma yields that for almost every y ∈ Y ; for big enough l,
either y ̸∈ Gl or

|τ
α̃

(n)
l

(y)− τ
α̃

(m)
l

(y)| g ζ(α̃
(n)
l (y)− α̃

(m)
l (y)) ∀1 f n < m f

⌈

t

µ(Al)

⌉

, n ̸∈ Bl,y,.

At the same time, by (41), we have Gl · Y . Thus ν-a.e y ∈ Y is in Gl for big
enough l, and the conclusion follows.

Proof of Theorem 3.4. In order to keep notation simple we will only show the PLT
for regularly approximable rectangles, this can be easily extended to geodesic balls,
by following the same arguments as in the proof of Theorem 3.2.

(i) For ν-a.e y ∈ Y and 0 = t0 < t1 < ... < tJ choose Ly = Ly,t1+...+tJ and
Bl,y = Bl,y,t1+...+tJ as in Lemma 10.1. For such a y and l g Ly (in the following we
suppress y from the notation) consider

Stj ,l =

⌈

tj
µ(Al)

⌉

∑

i=1

1Al
◦ T α̃

(i)
l = S′

tj ,l + S′′
tj ,l,

where

S′
tj ,l =

∑

i=1,...,
⌈

tj
µ(Al)

⌉

i ̸∈Bl

1Al
◦ T α̃

(j)
l .

As in Proposition 8.4, the first goal is to show
(

St1,l − St0,l, ..., StJ ,l − StJ−1,l

) µ
⇒
(

Pt1−t0 , ..., PtJ−tJ−1

)

as l → ∞,
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where (Pt) is a standard Poisson process. Since ||S′′
tj ,l

||L1 → 0 for all j = 1, ..., J , it

is equivalent to show
(

S′
t1,l − S′

t0,l, ..., S
′
tJ ,l − S′

tJ−1,l

)

µ
⇒
(

Pt1−t0 , ..., PtJ−tJ−1

)

as l → ∞.

For m1, ...,mJ g 1 it will be enough to show
∫

X

J
∏

j=1

(

S′
tj ,l

− S′
tj−1,l

mj

)

dµ =
J
∏

j=1

(tj − tj−1)
mj

mj !
. (42)

We have
J
∏

j=1

(

S′
tj ,l

− S′
tj−1,l

mj

)

=
∑

⌈

tj−1
µ(Al)

⌉

+1fkj,1<...<kj,mj
f
⌈

tj
µ(Al)

⌉

kj,i ̸∈Bl for j=1,...,J, i=1,...,mj

∏

i,j

1Al
◦ T α̃

(kj,i)

l . (43)

(ii) Due to assumption (MEM) for G, and Lemma 10.1, we have
∣

∣

∣

∣

∣

∣

∫

X

m
∏

j=1

fj ◦ T
α̃

(nj)

l dµ−

m
∏

j=1

∫

X

fj dµ

∣

∣

∣

∣

∣

∣

f Cyψ(min
j ̸=j′

|α̃
(nj)
l − α̃

(nj′ )

l |)

m
∏

j=1

||fj ||Cr ,

where ψ(x) = e−γζ(x) and ζ is as in assumption (BA), for f1, ..., fm ∈ Cr and

1 f n1 f ... f nm f
⌈

t1+...+tJ
rd
l

⌉

with ni ̸∈ Bl. Due to (9) and assumption (BA) we

have

ψ(min
j ̸=j′

|α̃
(nj)
l − α̃

(nj′ )

l |) = O(rwl

l ),

for some wl > 0 with wl → ∞ as l → ∞. Approximating 1Al
by functions in Cr it

is straightforward29 to show that
∣

∣

∣

∣

∣

∣

∫

X

∏

i,j

1Al
◦ T α̃

(kj,i)

l dµ− µ(Al)
m1+...+mJ

∣

∣

∣

∣

∣

∣

= o(µ(Al)
m1+...+mJ ),

for kj,i as in (43). The sum in (43) has

µ(Al)
−(m1+...+mJ )

J
∏

j=1

(tj − tj−1)
m
j

mj !
+ o(µ(Al)

−(m1+...+mJ ))

many terms, so (42) follows.

11. Examples. Here, we verify conditions (EE) and (BR) for the examples listed
in §4.

11.1. Diophantine rotations. Let α ∈ ((0, 1) \Q)
d′

satisfy a Diophantine condi-
tion, i.e. there are C > 0 and n g 1 such that

|ïk, αð − l| > C|k|−n ∀k ∈ Zd′

, k ̸= 0, l ∈ Z, (D)

and R = Rα : x 7→ x + α (mod 1), for x ∈ Td′

, the rotation by α. Almost all α
satisfy (D) for some n > d′ (this is a consequence of a higher dimensional version of
Khinchin’s Theorem, see e.g. [4]). If d′ = n = 1, then we say α is of bounded type.

Note that (D) implies that there is a constant C ′ > 0 such that
∣

∣

∣1− e2πiïk,αð
∣

∣

∣ g C ′|k|−n ∀k ∈ Zd′

\ {0}.

29The calculation is analogous to Lemma 8.3.
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Property (SLR(y∗)) follows directly from (D). Due to the self-symmetry of Rα

it is enough to consider returns of x = 0 to a rectangle (−r, r)d
′

, but

Rm
α (0) ∈ (−r, r)d

′

⇐⇒ |mα− k| < r for some k ∈ Zd′

.

Then, by (D), Cm−n < r, equivalently m > (C−1r)−
1
n . Hence, (4) is satisfied with

ψ(r) = (C−1r)−
1
n .

To show effective equidistribution (EE), we solve the homological equation. Let

f ∈ Hn(Td′

) with
∫

f = 0. Then

f(x) =
∑

k∈Zd′

ake
2πiïk,xð,

where
∑

k∈Zd′ |ak|
2
∑

j1+...+jd′=n

∏d′

i=1 |ki|
2ji <∞ and a0 = 0. To solve f = g− g ◦

Rα we write

g(x) =
∑

k∈Zd′

bke
2πiïk,xð.

By comparing coefficients, this is satisfied for bk = ak

1−e2πiïk,αð for k ̸= 0 and b0 = 0.

We have

∑

k∈Zd′

|bk|
2 f (C ′)2

∑

k∈Zd′

|ak|
2|k|2n f (C ′)2

∑

k∈Z

|ak|
2

∑

j1+...+jd′=n

d′
∏

i=1

|ki|
2ji <∞.

In particular ||g||L2 f C ′||f ||Hn .

Thus, for every30 h ∈ Hn(Td′

) we have
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

J
∑

j=1

h ◦Rj
α − J

∫

Td′
h dλd

′

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2

f C ′′||h||Hn ,

where λd
′

is the d′-dimensional Lebesgue measure on Td′

. Due to Remark 3.1(iii),
condition (EE) is satisfied with r = n and δ = 0.

We can apply Theorem 3.2 with

d > n.

11.2. Horocycle flows. Consider the classical horocycle flow ht on compact ho-
mogeneous space Γ\PSL(2,R) generated by

ht =

[

1 t
0 1

]

.

For fixed t > 0 we will consider the time t map R = ht.
Condition (SLR(y∗)) follows from the relation he2st = gs ◦ ht ◦ g−s, where gs is

the geodesic flow

gs =

[

es 0
0 e−s

]

.

Indeed, we will show that there is a constant c > 0 such that for small enough r > 0,
0 < |s| < cr−1, and y, y∗ ∈ Γ/PSL(2,R) with d(y, y∗) < c

2r
1
2 we have

d(hsy, y
∗) g

c

2
r

1
2 .

30If
∫
h ̸= 0 consider f = h−

∫
h.
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By the triangle inequality, it is enough to show d(hsy, y) g cr
1
2 . By compactness

choose c = infx d(h1x, x) > 0 (by Hedlund’s Theorem there are no periodic orbits).

Let t = log(|s|)
2 , then

d(hsy, y) = d(gthsgn(s)g−ty, gtg−ty) g e−|t|d(hsgn(s)g−ty, g−ty) g cr
1
2 .

For small enough r, gt contracts distances at most by a factor of e−|t|. Renaming
r = c

2r
1
2 we obtain (4) with ψ(r) = 2c3r−2.

In order to show effective ergodicity (EE), we combine [20, Corollary 2.8] and
[18, Theorem 1.5] to conclude that there is a constant C > 0 with
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n−1
∑

j=0

f(Rj(y))− n

∫

f dν

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f C||f ||W 15N
5
6+ε ∀f ∈W s, y ∈ Γ/PSL(2,R), N g 1,

(44)
for all ε > 0.

Indeed, for s > 3, [18, Theorem 1.5] yields
∣

∣

∣

∣

∣

∫ T

0

f(ht(y)) dt− T

∫

Γ/PSL(2,R

ϕ dν

∣

∣

∣

∣

∣

f C(s)||f ||W sT
1
2 log(T )

∀f ∈W s, y ∈ Γ/PSL(2,R), T > 0,

(45)

for some constant C(s) > 0.
A consideration involving twisted integrals as in [20, Corollary 2.8] yields, for

s > 14,
∣

∣

∣

∣

∣

N−1
∑

n=0

f(hn(y))−

∫ N

0

f(ht(y)) dt

∣

∣

∣

∣

∣

f C ′(s)||f ||W sN
5
6 log

1
2 (N)

∀f ∈W s, y ∈ Γ/PSL(2,R), N g 1,

(46)

for some constant C ′(s) > 0. Now (45) and (46) together imply (44).
Now, setting s = 15 in (46), Theorem 3.2 applies with

d > 6(15 +
5

3
) = 100.

11.3. Skew shifts. Let α ∈ (0, 1) \ Q satisfy the Diophantine condition (D) for
some n g 2 and R : T2 → T2 be given by

R(x, y) = (x+ α, y + x).

Since R has a Diophantine rotation as a factor (SLR(y∗)) is satisfied by §11.1.
For k = (k1, k2) ∈ Z2 denote ek(x) = e2πiïk,xð. Note that

ïek, ek′ ◦RjðL2(T2) = δ
(k1,k2)
(k′

1+jk′
2,k

′
2)
.

For f ∈ H2(T) we can write f =
∑

k∈Z2 akek. If a(k1,0) ≡ 0 (in particular
∫

f = 0)
then

∑

jg1

∣

∣ïf, f ◦RjðL2

∣

∣ =
∑

jg1

∣

∣

∣

∣

∣

∑

k∈Z2

a(k1,k2)a(k1+jk2,k2)

∣

∣

∣

∣

∣

f

(

∑

k∈Z2

|a(k1,k2)|

)2

f C||f ||2H2 ,
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where C > 0 does not depend on f . From this we obtain
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

J
∑

j=1

f ◦Rj

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

L2(T2)

=

J
∑

j=1

J
∑

j′=1

ïf ◦Rj′ , f ◦RjðL2(T2)

f
J−1
∑

j=0

(J − j)ïf, f ◦RjðL2(T2) f CJ ||f ||2H2(T2).

For general f ∈ Hn(T2) with
∫

f = 0, again write f =
∑

k∈Z2 akek and set

f1 =
∑

k∈Z2,k2 ̸=0

akek and f2 =
∑

k∈Z2,k2=0

akek.

Applying the above, and the analysis for Diophantine rotations, we find
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

J
∑

j=1

f ◦Rj

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

L2(T2)

f (CJ + C ′)||f ||2Hn(T2).

Thus, condition (EE) is satisfied with δ = 1
2 .

So we can apply Theorem 3.2 with

d > 2(n+ 1).

11.4. Example 4.5. Recall the definition of theWeyl Chamber flow on Γ\SL(d,R).
Let d g 3, and Γ be a uniform lattice. Denote by D+ the subgroup of diagonal
elements of SL(d,R) with positive entries. It is easy to see that D+ is isomorphic
to Rd−1. D+ acts on Γ\Sl(d,R) by right translation, giving us a Rd−1-action. By
[6, Theorem 1.1] the action G satisfies (a Rd−1 version of) (MEM).

The Diophantine rotation Rα satisfies (EE) and (9) by §11.1. Hence, we can
apply Theorem 3.4.

11.5. Other systems satisfying (EE). From Example 4.1 it might seem like
(EE) is a very special property and only a few systems satisfy this. The opposite is
true, in fact, most classical systems have this property.

To convince ourselves of this, let us give some more examples and point out the
mechanisms.

Definition 11.1. The system (Y,R, ν) is called mixing of order α if, for each

f, g ∈ Cr′ with
∫

Y
f dν =

∫

Y
g dν = 0, we have

∣

∣

∣

∣

∫

Y

f ◦Rn · g dν

∣

∣

∣

∣

< ||f ||Cr′ ||g||Cr′α(n) ∀n g 1. (47)

We say that (Y,R, ν) is polynomially mixing if it is mixing with rate α(n) =
O(n−ε) for some ε > 0.

Lemma 11.2. Polynomial mixing implies (EE). More precisely, if (Y,R, ν) is mix-
ing of order α(n) = O(n−ε), for some ε > 0, then, for all ε′ > 0, it satisfies property
(EE) with

δ =











2−ε
2 if ε < 1

1
2 + ε′ if ε = 1
1
2 if ε > 1.

(48)
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Proof. For f ∈ Cr′ with
∫

Y
f dν = 0 we have, for N g 1,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

N−1
∑

n=0

f ◦Rn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

L2

f

N−1
∑

n1=0

N−1
∑

n2=0

∣

∣

∣

∣

∫

Y

f ◦Rn1f ◦Rn−2 dν

∣

∣

∣

∣

f 2N

N−1
∑

n=0

∣

∣

∣

∣

∫

Y

f ◦Rn · f dν

∣

∣

∣

∣

f K||f ||2
Cr′N

2δ

for some K > 0.

Remark 11.3. In fact, the proof above remains valid if (47) holds for all n f N
except for a subset of {1, ..., N} of size N1−ε̄ for some ε̄ > 0. We call such systems
polynomially weakly mixing.31

Many classical systems exhibit polynomial (or faster) mixing we list just a few
examples referring to [15, Section 8] for a more comprehensive list

• mixing piecewise expanding interval maps [7, Theorem 3.1] as well as expand-
ing interval maps with critical points and singularities [33, Theorem 1.5],

• uniformly hyperbolic systems [31, Theorem 3.9],
• some quadratic maps [41, Theorem 3],
• noncompact translations on finite volume homogeneous spaces of semisimple
Lie groups without compact factors [30, §2.4.3],

• time change of horocycle flow [21, Theorem 3].

For parabolic and elliptic systems, one can often use a harmonic analytic ar-
gument akin to (but more involved than) §11.1 or 11.3. Other concrete examples
include

• nilflows [19, Theorem 1.1],
• almost every interval exchange transformation [2, Theorem 7.1],
• time 1 map of certain smooth surface flows, this follows from a work in progress
by the author, where polynomial weak mixing is shown.

12. Robustness of return times. Lastly, we mention the proof for the delayed
PLT. All of the above proofs can be done using ΦBl,α instead of ΦBl

, this shows
(with the notation from the proof of Theorem 3.2)

(µ× ν)

(

K
⋃

k=1

A
(k)
l ×B

(k)
l

)

Φ⋃

K
k=1 A

(k)
l

×B
(k)
l

,α

µ
⇒ ΦExp.

To conclude, we only need a version of the approximation Lemma 7.1 for delayed
return times.

Let (M,dM ) be a compact metric space, let (ϑ̃n)ng1 be a sequence of Lipschitz

functions on M dense in C(M), and denote ϑn = ϑ̃n

||ϑ̃n||Lip
. The metric

DM (λ, λ′) =
∑

ng1

2−n

∣

∣

∣

∣

∫

M

ϑn dλ
′ −

∫

M

ϑn dλ

∣

∣

∣

∣

,

for probability measures λ and λ′, models distributional convergence32.

31In fact, a slight modification of the proof shows that if R1 is polynomially mixing and R2

satisfies (EE) then R1 ×R2 satisfies (EE).
32In the sense that λn ⇒ λ if and only if DM (λ, λn) → 0.
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Lemma 12.1. Let (X,µ, T ) be a probability-preserving dynamical system, α be
a sequence of natural numbers, (Al)lg1 be a sequence of rare events, and Φ =

(φ(1), φ(2), ...) be a random process in [0,∞). Assume that, for each δ > 0, there is

a sequence of rare events (A
(δ)
l )lg1 with A

(δ)
l ¢ Al and µAl

(Al \A
(δ)
l ) < δ such that

µ(A
(δ)
l )Φ

A
(δ)
l

,α

µ
⇒ Φ ; as l → ∞, ∀δ > 0.

Then

µ(Al)ΦAl,α
µ
⇒ Φ as l → ∞.

Proof. Taking a subsequence if necessary, we may assume that there is a [0,∞]-
valued random process Φ′ with

µ(Al)ΦAl,α
µ
⇒ Φ′ as l → ∞.

For s, t ∈ [0,∞] denote d[0,∞](s, t) = |e−s−e−t|, where by convention e−∞ = 0, then

([0,∞], d[0,∞]) is a compact metric space. Also, the infinite product ([0,∞]N, d[0,∞]N)

is a compact metric space with diam([0,∞]N) = 1, where

d[0,∞]N((sj), (tj)) =
∑

jg1

2−jd[0,∞](sj , tj).

We claim that for every ε > 0 there exist δ0 > 0 and an L g 1 such that

D[0,∞]N

(

lawµ(µ(A
(δ)
l )Φ

A
(δ)
l

,α
), lawµ(µ(Al)ΦAl,α)

)

< 5ε ∀l g L. (49)

Then taking l → ∞ shows D[0,∞]N(Φ,Φ
′) < 5ε and the conclusion follows by ε→ 0.

Let 1 > ε > 0. First, note that33

D[0,∞]N

(

lawµ(µ(A
(δ)
l )Φ

A
(δ)
l

,α
), lawµ(µ(Al)ΦA

(δ)
l

,α
)
)

< δ,

so it is enough to show that there exist ε > δ0 > 0 and an L g 1 such that

D[0,∞]N

(

lawµ(µ(Al)ΦA
(δ)
l

,α
), lawµ(µ(Al)ΦAl,α)

)

< 4ε ∀l g L. (50)

Denote ΦAl,α = (ϕ
(1)
Al,α

, ϕ
(2)
Al,α

, ...) and Φ
A

(δ)
l

,α
= (ϕ

(1)

A
(δ)
l

,α
, ϕ

(2)

A
(δ)
l

,α
, ...). Now choose

J g 1 so big that
∑

jgJ 2−j < ε, and T > 0 such that

P





J
∑

j=1

φ(j) > T



 < ε.

For δ = min
(

ε
2 ,

ε
2T

)

choose L g 1 so big that

µ





J
∑

j=1

µ(A
(δ)
l )ϕ

(j)

A
(δ)
l

,α
> T



 < 2ε ∀l g L.

Since
∑J

j=1 ϕ
(j)

A
(δ)
l

,α
>
∑J

j=1 ϕ
(j)
Al,α

and µ(A
(δ)
l ) > (1− δ)µ(Al) >

1
2µ(Al), in partic-

ular

µ





J
∑

j=1

µ(Al)ϕ
(j)
Al,α

> 2T



 < 2ε ∀l g L.

33For k g 1 and s, t ∈ [0,∞] we have d[0,∞](ks, kt) g d[0,∞](s, t) f |s− t|.
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Now, for j = 1, ..., J , we have

µ

(

ϕ
(j)
Al,α

̸= ϕ
(j)

A
(δ)
l

,α

)

f µ

(

ϕ
(J)
Al,α

̸= ϕ
(J)

A
(δ)
l

,α

)

f µ







⌊

2T
µ(Al)

⌋

⋃

i=1

T−α̃(i)

(Al \A
(δ)
l )






+ µ





J
∑

j=1

µ(Al)ϕ
(j)
Al,α

> 2T





f
2T

µ(Al)
µ(Al)δ + 2ε f 3ε.

Thus

D[0,∞]N

(

lawµ(µ(Al)ΦA
(δ)
l

,α
), lawµ(µ(Al)ΦAl,α)

)

=
∑

jg1

2−j

∫

X

d[0,∞](µ(Al)ϕ
(j)
Al,α

, µ(Al)ϕ
(j)

A
(δ)
l

,α
) dµ f 3ε

J
∑

j=1

2−j + ε f 4ε

proving (50).

To conclude, we give a

Proof of Lemma 7.1. Denote λ = µ× ν and M = [0,∞], with DMN as in the proof
of Lemma 12.1 we have

DMN(lawλQ
(λ(Q)ΦQ), lawλQ′ (λ(Q

′)ΦQ′)

f λQ(Q
′)DMN(lawλQ

(λ(Q)ΦQ), lawλQ
(λ(Q′)ΦQ′)

+ λQ(Q \Q′)DMN(lawλQ
(λ(Q)ΦQ), lawλQ′ (λ(Q

′)ΦQ′)

f DMN(lawλQ
(λ(Q)ΦQ), lawλQ

(λ(Q′)ΦQ′) + λQ(Q \Q′).

Furthermore

DMN(lawλQ
(λ(Q)ΦQ), lawλQ

(λ(Q′)ΦQ′)

f
∑

jg0

2−j−1

∫

Q

dM (λ(Q)ϕQ ◦ Sj
Q, λ(Q

′)ϕQ′ ◦ Sj
Q′) dλQ

f
∑

jg0

2−j−1

∫

Q

dM (λ(Q)ϕQ ◦ Sj
Q, λ(Q)ϕQ′ ◦ Sj

Q′) dλQ + λQ(Q \Q′).

For each j g 0 we have

λQ(ϕQ ◦ Sj
Q ̸= ϕQ′ ◦ Sj

Q′) f λQ

(

j
⋃

i=0

Si
Q(Q \Q′)

)

f (j + 1)λQ(Q \Q′).

The claim follows since
∑

jg1 j2
−j = 2.
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Math. Phys., 219 (2001), 443-463.

[4] V. Beresnevich, F. Ramı́rez and S. Velani, Metric Diophantine approximation: Aspects of
recent work, Dynamics and Analytic Number Theory, London Math. Soc. Lecture Note Ser.,

vol. 437, Cambridge Univ. Press, Cambridge, 2016, 1-95.
[5] P. Billingsley, Probability and Measure, John Wiley & Sons, 1995.
[6] M. Björklund, M. Einsiedler and A. Gorodnik, Quantitative multiple mixing, J. Eur. Math.

Soc. (JEMS), 22 (2020), 1475-1529.

[7] H. Bruin, B. Saussol, S. Troubetzkoy and S. Vaienti, Return time statistics via inducing,
Ergodic Theory Dynam. Systems, 23 (2003), 991-1013.

[8] L. A. Bunimovich and Y. Su, Maximal large deviations and slow recurrences in weakly chaotic

systems, Advances in Mathematics, 432 (2023), Paper No. 109267, 58 pp.
[9] L. A. Bunimovich and Y. Su, Back to boundaries in billiards, Comm. Math. Phys., 405

(2024), Paper No. 140, 74 pp.
[10] J.-R. Chazottes and P. Collet, Poisson approximation for the number of visits to balls in

non-uniformly hyperbolic dynamical systems, Ergodic Theory Dynam. Systems, 33 (2013),
49-80.

[11] P. Collet and A. Galves, Statistics of close visits to the indifferent fixed point of an interval
map, J. Statist. Phys., 72 (1993), 459-478.

[12] M. Denker, M. Gordin and A. Sharova, A Poisson limit theorem for toral automorphisms,
Illinois J. Math., 48 (2004), 1-20.

[13] D. Dolgopyat, Limit theorems for partially hyperbolic systems, Trans. Amer. Math. Soc.,

356 (2004), 1637-1689.
[14] D. Dolgopyat, C. Dong, A. Kanigowski and P. Nándori, Flexibility of statistical properties

for smooth systems satisfying the central limit theorem, Invent. Math., 230 (2022), 31-120.

[15] D. Dolgopyat, C. Dong, A. Kanigowski and P. Nándori, Mixing properties of generalized
T, T−1 transformations, Israel J. Math., 247 (2022), 21-73.

[16] D. Dolgopyat, B. Fayad and S. Liu, Multiple Borel-Cantelli lemma in dynamics and multilog
law for recurrence, J. Mod. Dyn., 18 (2022), 209-289.

[17] D. Dolgopyat, A. Kanigowski and F. Rodriguez Hertz, Exponential mixing implies Bernoulli,
Annals of Mathematics, 199 (2024), 1225-1292.

[18] L. Flaminio and G. Forni, Invariant distributions and time averages for horocycle flows, Duke
Math. J., 119 (2003), 465-526.

[19] L. Flaminio and G. Forni, Equidistribution of nilflows and applications to theta sums, Ergodic
Theory Dynam. Systems, 26 (2006), 409-433.

[20] L. Flaminio, G. Forni and J. Tanis, Effective equidistribution of twisted horocycle flows and
horocycle maps, Geom. Funct. Anal., 26 (2016), 1359-1448.

[21] G. Forni and C. Ulcigrai, Time-changes of horocycle flows, Journal of Modern Dynamics, 6
(2012), 251-273.

[22] A. C. M. Freitas, J. M. Freitas and M. Todd, Extreme value laws in dynamical systems for
non-smooth observations, J. Stat. Phys., 142 (2011), 108-126.

[23] A. C. M. Freitas, J. M. Freitas and S. Vaienti, Extreme value laws for non stationary processes
generated by sequential and random dynamical systems, Ann. Inst. Henri Poincaré Probab.
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