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ABSTRACT. We obtain a Poisson Limit for return times to small sets for prod-
uct systems. Only one factor is required to be hyperbolic, while the second
factor is only required to satisfy polynomial deviation bounds for ergodic sums.
In particular, the second factor can be elliptic or parabolic. As an application
of our main result, several maps of the form Anosov map X another map are
shown to satisfy a Poisson Limit Theorem at typical points, some even at
all points. The methods can be extended to certain types of skew products,
including T, T~ '-maps of high rank.

Part 1. Results

1. Introduction. One of the prominent limit theorems in classical probability the-
ory is the Poisson Limit Theorem. (PLT). Due to the PLT, a variety of probabilistic
models describing waiting times until unlikely events occur are well approximated
by exponentially distributed variables. It has been a great discovery that many
deterministic systems satisfy the same kind of limit theorems for rare events.

Limit distributions of waiting times are most classical for mixing Markov chains,
where one considers returns to small cylinders, for example, see [37, Theorem A]. As
remarked there, this result can be immediately generalized to systems with a Markov
partition, the only caveat being that the sets are still cylinders, so geometrically not
the most intuitive class. Nonetheless, waiting time limits for returns to small balls
can be shown in concrete settings; for example hyperbolic toral automorphisms [12,
Theorem 2.3] or more general hyperbolic maps [40, Theorem 2.8], Rychlik-maps
and unimodal maps [7, Theorem 3.2 and 4.1], partially or nonuniformly hyperbolic
maps [13, Theorem 8] [35, Theorem 3.3] [10, Theorem 3.3], open billiard systems [9,
Theorem 1], some intermittent interval maps [11, Main Theorem], and many more.
It is sometimes interesting to also ask for explicit rates of convergence, this can
be shown under strong mixing properties, see [28, Theorem 2.1], [1, Theorem 7],
[26, Theorem 8]. Interestingly enough, in [40, Theorem 2.8] and [8, Theorem 5.11]
novel techniques have been used to obtain rates in certain billiard systems without
strong mixing assumptions. We do not make any claims on completeness of the list
of references given above, for a more complete picture see [32].
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Some related topics are extreme value laws [22], [23], spatiotemporal limits [36],
[43] or Borel-Cantelli like Lemmas [29], [25], [16].

Similar questions can be asked for flows as well, this topic has not been studied
as thoroughly as the question for maps. As shown in [34] for suspension flows, this
reduces to the study for maps. Moreover, the Poisson Limit Theorem for flows can
be reduced to the Poisson Limit Theorem for time 1 map with the target being the
set of points that visit B(z,r) within the next unit of time.

From the list above, we see that the PLT is often associated with strong mix-
ing properties of the system. In the present work, we construct systems that are
not even weakly mixing but nevertheless satisfy the PLT (a precise definition is
given beneath). The systems will have a special structure S = T x R, where T is
hyperbolic, but R is not.

We will develop a machinery to show the PLT for such systems. This will be
used to construct systems satisfying the PLT, but otherwise exhibiting properties
uncharacteristic of chaotic systems - like non weak mixing, or zero entropy'. This
suggests that the PLT is much more common than it was believed before. In fact,
discovering the most flexible conditions for the validity of the PLT is a promising
direction of future research.

2. Preliminaries.
Definition 2.1. Given a probability-preserving ergodic dynamical system (X, A, p,
T) and a measurable set A € A, we will define the first entry time to A as

pa(z) =min(n >1|T"(x) € A),

the restriction @44 to the set A itself shall be referred to as the first return time to
A. The first return map shall be denoted by T (z) = T¥4®)(z), and the sequence
of consecutive return times by

Dy = (wAa $YA© Ty, PA© Tia )
In the following, for some measurable set A € A with pu(A) > 0, the measure
conditional on A shall be given as 4 (B) = ”(;22?), B € ANA. The first important

result in the study of ¢4, was Kac’s formula, which calculates the expectation as

/so dp !
AdHA = ——=.
A n(A)

Hence, it is natural to study limits of u(A)pa as pu(A) — 0. More explicitly let
(A;)i>1 be a sequence of rare events, that is each A; is measurable with p(4;) — 0,
we want to find weak limits of the form

WA)®A, B D asl — oo,

or
(AP 4, '2'd asl— oo,

where = denotes convergence in distribution. In the above situation, we shall
call ® the hitting time limit and ® the return time limit. An important fact is
that the hitting and return time limits are intimately related, this relation was first
formulated in [24, Main Theorem)] (albeit only for the first marginal). The analogous
relation for the entire process is shown in [42, Theorem 3.1]. For exponential returns,
which is what we are concerned with, the result is as follows.

I This cannot be done with products, since h(T x R) = h(T) +h(R), where h denotes the metric
entropy of a system. We extend our methods to skew-products of a certain form (Theorem 3.4.)
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Theorem 2.2. Let (X, A, u,T) be an ergodic probability preserving dynamical sys-
tem, and let (A;);>1 be a sequence of rare events. Then ® 4 Ppap 15 equivalent to

L Dpyp, where Py, is a process of itd standard exponentially distributed random
variables.

This suggests that we should expect exponential hitting and return time limits
for geometrically sensible sequences of rare events.

In the following, let X be a C" Riemannian manifold with dim(X) = d and
assume pu < mx the volume on X, with continuous density, say dfri‘x = p. Most
of the statements can be reformulated to hold for arbitrary invariant p, but for the

sake of simplicity, we shall keep this assumption.

Definition 2.3. (i) Let z* € X and, for r > 0, denote by B,(z*) the geodesic
ball of radius r centred at z*. We will say that T satisfies the PLT at x* if

(B (27)) P, (a+) £ dp,, asr—0.
(ii) Let
PLT :={z* € X | T satisfies the PLT at =" }.

If W(PLT) = 1 we say that T satisfies the PLT almost everywhere, and if
PLT = X we will say that T satisfies the PLT everywhere.

If T is Lipschitz-continuous along the (finite) orbit of a periodic point, then it
does not satisfy the PLT at that point. To see this, note first that the PLT at x*
in particular implies, via Theorem 2.2, that, for each N > 1,

MB,.(x*)(@B,,.(z*) <N)—=0 asr—0.

Now suppose z* is a point with period p, and say p(z*) > 0, and |T?(z) — T?(y)| <
C|z — y| near x* then”

N 1
MBT(m*)(SOBT(z*) <p) > MBT(x*)(B% (z%)) = ol +o(1)

as r — 0.

Situations where z* is a periodic point are more delicate, and the limiting dis-
tribution is not exponential any more (due to immediate returns). For example,
in [43, Theorem 3.3 and Theorem 10.1] this question was studied for expanding
interval maps.

The main goal is to prove the PLT (almost) everywhere for some (skew-) product
systems.

In the following we will consider return times in different systems - namely, we
will have three different maps 7' : X — X (or T), : X — X)) which is usually assumed
hyperbolic, R : Y — Y which is parabolic or elliptic, and S = Tx R : X XY — X xY
- in an attempt to keep notation simple we will (by slight abuse of notation) always

2Assuming C' > 1, we have that B;,(z*) is diffeomorphic via the exponential map expz+ to a
ball in R¢. W.l.o.g. assume that X C RY

w(Br(z")) = / p(x) dmx (x) = (p(z*) 4 o(1))mx (Br(z"))

By (a*)

= (e el /<B ©)) VI det Duexpy+ (Duewpg+)t dX? (u)

= (p(z*)y/] det Doexpy (Doexpy+)t + o(1))A4(B,(0)),

where A% is the d-dimensional Lebesgue measure.
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denote the return times by . Which map is meant will always be clear by the
specified set.

3. The PLT for (skew-)products. In this paper, we study the PLT for systems
that can be written as a product (or skew product of a special type). Therefore, let
Y be another Riemannian C" -manifold with dim(Y) = d’, and assume R:Y — Y
preserves a probability measure v < my with continuous density. Instead of T :
X — X, consider now some® T : X x Y = X. We will prove the PLT for certain
systems of the form S(z,y) = (T(x,y), R(y)). The case of direct products can be
recovered if T(x,y) = T(x) is independent of y (which will be the case for most
of our examples). Denote also T, (z) = T(x,y). We will assume that T, preserves
a probability measure p (independent of y). For measurable A C X we introduce
analogously the consecutive fiberwise return times as

@AXY(Z,y) = Il’lll’l(] Z 1 | Sj(l',y) € Ax Y),

(I>A><Y = (@AXY7 PAxYy © SA><Y7 PAxY © 5124><Ya cee )7
where Saxy = S§¥4xY ig the first return map to A X Y, note that we only fix a
small target in the fiber.
For our purposes, it is convenient to think of y as fixed. For n > 1 denote
Ty"(a:) = TR'rLfl(y) (TRnfz(y)(...(Ty($)))), and define

pay(@) = oY) () =min(j > 1| T} (z) € A),

e @ (a0 .
PP (@) = min(j > 1| Ty TR 4 € g,

1 2
‘I)A,y = (410547)3/, 3054,)1/7 e )

Clearly the definitions coincide and ® 4 4(x) = ®axy (z,y).
We will list here the main assumptions® we make in order to prove the PLT.

o (MEM) We will say T is multiple exponentially mizing there are constants
r >0, C > 1 and v > 0 such that, for almost all y € Y,

n—1 n—1
‘/ Hijqude—H/ fidp
X i i—o/X

n—1
< Cemrmiosnnsm b bal I Ifjller,
§=0
for n 2 ]-7 f07 "'7fn71 € C"and 0 S ]f() S S knfl.
e (EE) There are ' > 0 and § < 1 such that
<C|fllewN° VfeC”,YN>1.  (2)

N-1

> foR"-N / fdv

n=0 L2(v)

e (LR(y*)) There is a ¢ > 0 such that, for r > 0 and v-a.e y € B,.(y*), we have

©B,(y)(y) = c|log(r)]. (3)

3X x Y is considered as a Riemannian manifold with the natural (Euclidean) product metric
d((z,y), (z',y")) = /d(z,2')2 + d(y,y’)?. Analogously, one could consider different metrics, e.g.
the box metric d((z,z’), (v',y)) = max(d(z,y),d(z’,y’)), where many of the proofs become easier.
However, we will use here the Euclidean product metric as the most natural choice.

4We often only assume a subset of these, most commonly (MEM), (EE), and (BR(z*,y*)).
But we will always state the current assumptions.




1458 MAX AUER

e (SLR(y*)) There is a ¢ : (0,00) — (0,00) with |log(r)| = o(¢(r)) as r — 0
such that, for » > 0 and v-a.e y € B,.(y*), we have
©B,(y) (1Y) = »(r). (4)
o (LR’(z*)) For v-a.e y € Y there is a ¢ = ¢, > 0 such that, for » > 0 and p-a.e
x € B,(z*), we have
P8, (), (x) = c[log(r)|. (5)
e (NSR(z*)) There is a & : (0,00) — (0,00) with |log(r)| = o(¢(r)) asr — 0
such that, for v-a.e y € Y, we have
MB,.(I*)(@B,.(w*),y < f(T)) —0 asr—0. (6)
e (BR(z*,y*)) One of the following is satisfied
— (SLR(y")),

— (NSR(z")) AND (LR(y")),
— or (NSR(z*)) AND (LR’(z*)).

Colloquially, we will also refer to (MEM) as multiple exponential mixing, and
to (EE) as the Quantitative Ergodic Theorem or effective ergodicity. Both are
standard assumptions and have been studied for many classes of systems.

Conditions (LR), (LR’), (SLR), and (NSR) all are concerned with the fact that
points in a small ball B cannot return to B too quickly. Sometimes in literature, the
center x* or y* is referred to as a slowly recurrent point. For technical reasons, we
need to distinguish different versions of slow recurrence, (SLR) being the strongest.
The abbreviations (LR), (SLR), (NSR), and (BR) stand for ‘large returns’, ‘strong
large returns’, ‘no short returns’, and ‘big returns’ respectively.

Remark 3.1. (i) In the case T'(z,y) = G,(y)(x), where G is a flow satisfying (a
continuous version of) (MEM)® and 7 is bounded, the condition (NSR(z*))
is satisfied at almost every z*. Indeed, it was shown in [16, Lemma 4.13],
albeit for maps instead of flows, that condition (NSR(z*)) is satisfied® for G
at almost every x*. Since 7 is bounded, T" also has this property.

(ii) It is shown in [3, Lemma 5] that, for a map of positive entropy, condition (LR)
is satisfied at almost every point (In fact (3) is satisfied for all y € B,.(y*)).
This remains true for maps of the form T'(x,y) = G(,)(x), (in this case (LR’)
is satisfied) for bounded 7, where G has positive entropy.

(iii) Considering the previous remarks, it may seem unnecessary to state condition
(SLR). Note however that none of the conditions can be satisfied at periodic
points, and the maps we want to use for T will have plenty of periodic points.
(SLR) will be useful to show the PLT everywhere, if we can choose R without
periodic points.

5Tt is in fact enough to assume exponential mixing.
61t is shown that, for every fixed A, K > 0, we have

1B, (a) (Br(@*) NG Br(z*)) < [log(r)| ™" Vn < K|log(r)|. (7
For A > 1, summing over n € [1, K|log(r)|] yields
BB, () (@B, («*),q¢ < K|log(r)]) =0 asr—0.

Since this is true for all K > 0, we can easily replace K by some K(r) ' oo growing slowly
enough. This is a routine argument which is left to the reader.
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(iv) In most of the examples (see §4) we will have
n—1 )
ZfoRJ—n/de <C|fllgmn® YfeH™, Yn>1.
7= L2(v)

Since C™ < H™ and ||f]|;7» < ||f||g for f € O™, this implies condition
Theorem 3.2. Assume that S(z,y) = (T(x,y), R(y)) satisfies conditions (MEM),
(EE), and (BR(z*,y*)) for some (x*,y*) € X x Y. If

' +dé
1-94¢

d>

(8)
then S satisfies the PLT at (x*,y*).

Corollary 3.3. If T'(z,y) = T(x) preserves a smooth measure and satisfies (MEM),
and R satisfies (EE), then S =T x R satisfies the PLT almost everywhere.

If T preserves a smooth measure, then, by [17], T is Bernoulli, in particular, it
has positive entropy. (NSR(z*)) and (LR’(z*)) are satisfied almost everywhere by
Remark 3.1.

For some applications it will be useful to choose T'(z,y) = G, (z), where
Jy 7dv = 0. However, in this case, T will not satisfy condition (MEM). Fortunately,
we can apply similar techniques if ergodic averages of 7 grow faster than logarith-
mically. More explicitly denote 7, = Z?;Ol 70 RJ, assume there is a ¢ : N — (0, 00)
with log(n) = o({(n)) and a k > 0 such that

V(|| < ((n)) < O(n™"). (BA)

Theorem 3.4. Assume that S(z,y) = (T'(x,y), R(y)), where T'(x,y) = G (x),
satisfies conditions (MEM) with G instead of T'. Suppose that R satisfies (EE), and
T satisfies (BA). Let ©* € X, y* € Y. If there is a d3 > 0 such that for small
enough p > 0 we have

PB,) =P % on By(y"), 9)
and
' +dé d
—. 1
d> T and /<a>52 (10)

then S satisfies the PLT at (x*,y*).

Remark 3.5. Let us remark here, that hitting times for skew product, say S :
X XY — X xY with S(z,y) = (T'(x,y), R(y)), have previously been investigated
by other authors, for example, [27] and [38]. The main differences between [27] and
our results are;

e In [27] the system is viewed from the standpoint of random dynamics, therefore
the relevant target sets are of the form B,(z*) x Y. In contrast, we focus on
geometric balls B, (z*, y*).

e In [27], R is a full shift. This is needed to prove a “no short return” property
akin to (NSR(z*)), which for us, is one of the assumptions. This allows
different choices of R, namely, for us, R need not be hyperbolic or even mixing.
This is the main novelty of our approach.
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4. Examples. The definitions of the maps in Examples 4.1, 4.5, and Lemma 4.4
are given in §11. For most of the examples we present, the choice of R is more
interesting than the choice of T'; mostly because (MEM) implies chaotic behavior
and so the PLT in that setting is not surprising. We will thus not focus too much
on T for this section. We only present some examples here, there are many others
one can verify using Theorem 3.2.

Example 4.1. Let T be a map satisfying (MEM) on a manifold of sufficiently high”
dimension then

(i) if R is a Diophantine rotation, then T' x R satisfies the PLT everywhere;
(ii) if R is the time 1 map of a horocycle flow on I'\'S Ly (R) where I" is a cocompact
lattice, then T x R satisfies the PLT everywhere;
(iii) if R is a skew-shift, then T x R satisfies the PLT everywhere.

Remark 4.2. (i) In §11 we will show that the map R from example 4.1(i)-(iii)
satisfies (EE) and (SLR(y*)) for every y*. The conclusion then follows from
Theorem 3.2.

(ii) The PLT almost everywhere can be shown more readily. By Corollary 3.3,
we just have to check (EE) for the map R, which holds for a big class of maps,
examples will be given in §11.5.

Example 4.3. At this point, let us point out that, while 7" and R act on manifolds
and preserve smooth measure, T" and R themselves need not be smooth maps (not
even continuous). For example, if 7' : (0,1] — (0, 1] is the Gauss map (or a more
general mixing, expanding interval map as in [39])

T) =1 - H

then T preserves the density p(z) = m. It is standard to show that T
is multiple exponentially mixing, in fact, a fortiori, the Perron-Frobenius transfer
operator has a spectral gap. Now if R, is an irrational rotation on T, and « is of
bounded type, then, as shall be demonstrated in §11, Theorem 3.2 applies to show

that T' x R,, satisfies the PLT everywhere.

Theorem 3.4 can be used to construct 7, T~! transformations of zero entropy
that satisfy the PLT. All that remains to do is to construct a 7 satisfying (BA),
this can be done with the construction given in [14, Proposition 3.9].

Lemma 4.4. Let Ry : T — T be a Diophantine rotation, i.e
(k,a) — 1| > Clk|™ VkeZ? k+0,l€Z, (D)
for some X\ > d'. For § < p < d' thereis a d > 1 and a function T € CP (T4 | RY)
such that v(T) = 0, while
v(||7all < log*(n)) = o(n™®).
Note that in order to apply Theorem 3.4 we can always make d as big as we

want.

Example 4.5. Let R = R,, be a Diophantine rotation with d’ = 2 and A = 2, 7 be
the function from Lemma 4.4, and let G be the Weyl Chamber flow on SL(d,R)/T,
where T is a uniform lattice. If d > 2 then S(z,y) = (G, (z), Ra(y)) satisfies the
PLT everywhere.

"Sufficient bounds are given in §11.
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5. The delayed PLT. The main step in the proof will be to show a generalised
version of the PLT (for fiberwise returns), along a subsequence, this is what we will
call a delayed PLT.

This ‘delayed PLT’ in itself is of independent interest, so let us make a more
general statement.

Definition 5.1. Let (X,.A,pu,T) be a probability-preserving ergodic dynamical
system and o = (a(”))nzl be a sequence of natural numbers, we will refer to a as
the delay sequence, and denote &™) = 2?21 o™, For measurable A C X we define
the delayed consecutive return times to A along « as
o 5
Paa(@) =i (@) = min( > 1| T (2) € 4)

e’

G @+e @ @ e ) @4

P (@) = min(j > 1| 75 (@) ea) (1)

1 2
Dy o= (gpi‘_’)a, 3054,)04, o).

Like for classical return times, we will consider delayed return times for different
systems. In an attempt to keep notation simple, we will not specify the underlying
map, only the target set A.

The main example in this paper will be a(™ = pp(R%(y)) for some y € Y and
B C Y®, however other choices are of interest, for example a(™ = g(n), where g is
a polynomial, or (™ = p,,, where p,, is the nth prime.

Given a rare sequence (A4;);>1, we will distinguish between two cases

1) the delay sequence is fixed in [,

2) the delay sequence is allowed to vary with .

Definition 5.2. (i) Let z* € X and, for r > 0, denote by B, (z*) the geodesic
ball of radius r centred at z*. Let a = (a(™),>; be a sequence of natural
numbers. We will say that T' satisfies the delayed PLT along o at x* if

(B (")) ®p, (2%),a £ Spyp asr — 0.

(ii) Let PLT (o) = {z* € X | T satisfies the delayed PLT along « at z*}.
If 2* € PLT(«) for all sequences of natural numbers «, then we say that T
satisfies the delayed PLT at x*.

The analogous definition for varying « is

Definition 5.3. (i) Let * € X and, for » > 0, denote by B,(z*) the geodesic

ball of radius r centred at z*. Let a = ((a&"))nzl)wo be a collection of
sequences of natural numbers. We will say that T satisfies the varying delayed
PLT along a at z* if

(B ()P B, (2+),a, £ dp,, asr—0.

(ii) Let PLT () = {z* € X | T satisfies the varying delayed PLT along « at *}.
If 2 € PLT(«) for all sequences of natural numbers «, then we say that T'
satisfies the delayed PLT at x*.

In case 1) the main result is a straightforward modification of Theorems 3.2 and
3.4.

8As in §7, see especially (13).
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Theorem 5.4. Let o be a sequence of positive integers. Assume the conditions of
Theorem 3.2 or 3.4 hold replacing (EE) in both cases by

n—1
ZfoRd(])fn/fdy < C|Ifllgrn® VfeC”, ¥n>1.
7= 12(v)

Then S satisfies the delayed PLT along a at (z*,y*).

The proof is analogous to the proof of Theorem 3.2 resp. 3.4 (with ®p, replaced
by ®p,,o and Lemma 7.1 replaced by Lemma 12.1). Therefore, no detailed proof
will be given 7.

In case 2) the main result is a special case of Proposition 8.4(IIT), however it is

worth stating by itself.

Theorem 5.5. Suppose T' satisfies conditions (MEM), (SLR(z*)) and (NSR(z*)),
then T satisfies the varying delayed PLT at z*.

Part 2. Proofs

6. Cumulative return times. Most of the statements (and proofs) below are
much more convenient to state in terms of cumulative return times. For a measur-
able set A C X (or BCY,C C X xY) the sequence of cumulative return times to
A is given by!"

n—1
01(411) :Z@AOTZ}’ n>1
=0

Ya= (0541),0542),...),

and similar notation for delayed returns.

When studying distributional convergence of ® 4, one can equivalently study for
distributional convergence of ¥ 4.

Indeed, let ¢ : [0,00)N — [0,00)Y be the map

(x1, e, 3,...) = (1,21 + T2, 21 + 22 + 23,...).
Since ¢ is a homeomorphism, standard theory shows that
W(A)® A, £ @ if and only if (A4, 2 (D), (12)

where we use the obvious extension of ¢ to [0, 00]N. Denote Sg.p = t(Ppyp)-

7. Idea of the proof. Let us first outline the strategy of proving Theorem 3.2.

Say we want to show the PLT for the geodesic balls (Q;) converging to (z*, y*),
then, for every € > 0, we find suitable rectangles'! approximating Q; in the sense
that Ule Al(k) X Bl(k) C @ and

K
(1% V), <Ql \ U 4 % Bf’”) <e.

k=1

9Note however that there is no relation of delayed hitting times to delayed return times as in
Theorem 2.2.

10Recall from Definition 2.1 that w4 (z) = min(n > 1 | T"(x) € A) is the first entry/return
time to A, and T4 = T¥A is the first return map.

HUsing the exponential map, this is a simple exercise in R4+’ Here we use continuity of the
densities of p resp. v!
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Denote Q] := Uszl Al(k) X Bl(k). We will use Proposition 8.4 to show the PLT for
Q) ie

(1 xv)(Q)Eq; (rx) Ygep asl — oo.
Letting € — 0, the next Lemma will help us conclude that

(% ) (Q)Zg, S Tpep as | — .
The critical approximation here is the following Lemma - see [42, Theorem 4.4]

for a qualitative version, and the following statement can be easily deduced from
the proof - for convenience we give a proof of this quantitative version in §12.

Lemma 7.1. There is a metric D defined on the space of probability measures on
[0, 0] and modelling weak convergence of measures*> such that

D (10 (0 % 1)(@)BQ). L (1 % 1)(@)0g) < A x 1)@\ Q).
for measurable Q' C Q C X xY.

For returns to rectangles, say A; x By, for fixed y € Y, we can ignore all the
times j where R?(y) ¢ B;. Hence, denoting a;(y) = ®p,(y), we first show that for
v-aey ey

,LL(AZ)EAl,al(y) £> EEmp as | — oo. (13)
To show this, the idea is that, due to assumption (BR), the times'? &l(j)(y) are

sufficiently far apart to use (MEM), we apply Proposition 8.4. Since (13) is now
true for v-a.e y € Y, we also have

WADZ A, @5, = YEap asl— 00, (14)

where ZAMI’B[ ('rv y) = EAMI)B[ (y)’y(l‘).
These are not quite the returns that we wanted to consider. However, notice
that, in every step, we skip exactly ¢p, steps, thus we have the following relation
UAlv‘I’Bl (y),y(z)71
OA x B (LE, y) = Z ¥B; © RJBZ (y) (15)
j=0

We now use (EE) to control the ergodic sums of pp, and show that

,U/(Al>V(Bl)EAZ><BZ #:><>V EE:Ep as | — oo.
The same idea works for unions of rectangles Ule Al(k) X Bl(k), however, in (13),
we will have to slightly modify the definition of return times, which shall be done

at the beginning of §8.2.

8. PLT along varying subsequences.

8.1. Approximation. In our work, we often need to apply the mixing condition
(MEM), and the quantitative ergodicity (EE), for indicator functions, hence we
have to approximate them by functions in C" resp. cr.

Definition 8.1. Let M be a C” manifold with dimension dim(M) = d, X be a
measure on M.

12Tn the sense that A\; = X if and only if D(\;, \) — 0.

13Tt can be recalled from Definition 5.1 that dl(n) =200 ocl(j> = ;L;Ol B, o RJ.
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Let B, C M be measurable subsets for « in some index set. We say that {B,} is
regularly approzimable in C™ if there is a constant B > 0 such that, for each o and
for 0 <e< %)\(Ba)é, there are h,h € C" with h <1p_, < h and for h € {h,h}

A(1p, #h) < A(Ba) T e, while ||h|lcr < Be™". (16)

We call the least such constant B > 0 the approzimant of B and denote it by
app({Ba})-

Lemma 8.2. Let M, r, d and X be as in Definition 8.1. Assume in addition
that A is absolutely continuous w.r.t volume with bounded density. Suppose that
U, Ba is relatively compact, and there is an open U O |J,Ba O U, Ba and a
C"-diffeomorphism v : U — V for some open set V. C R? such that each 1(By,) is a
ball. Then {By} is reqularly approzimable in C”.

Proof. (i) We may assume that M/ = R? and ) is Lebesgue measure, otherwise
we pick up another constant, which can be absorbed into C'. Furthermore, we can
assume that all B, are balls centered at the origin. In the following fix a and,
dropping the o from our notation, let B = B;(0). We have \(B) = C;t¢, where C,
is the volume of the d-dimensional unit ball.

(ii) Let 6 : R — [0,1] be a smooth function with 6(z) =1if x < 0, and 6(x) =0
if x > 1. For t > ¢ > 0 consider

0(z) = 0(c " (z —t))

then 6 is still smooth and ||||c+ = £~ "||0]|c-. Consider & : R4 — [0,1] given by
T(x) = 0(|z]), then
e h is smooth, away from the origin because it is the composition of smooth
functions, and near the origin, it is constant 1,
o h(z) =1if |[z| <tand h(z) =0 if |2| > t +¢,
e and ||h||cr < C3e™" where C3 = 7C5||0||c- and Cy is the C" norm of the
smooth function = — |z| on {t < |z| <t +e}.
Furthermore, we have

AR #1p) = At < |z| <t+e) = Ci((t+e)? —t)
< Cdt?le < dOFA(B) T,

all the constants can be absorbed in the constant C' from the claim, the constant
only depends on 7,d.
For h repeat the calculations with § = (e ~!(z — (t — ¢))) instead. O

8.2. Proof of the PLT along varying subsequences. For our purposes it will
not be enough to consider the delayed PLT for a single rare sequence (A4;);>1,

rather let > 1, and Al(l), ey Al(lc) be subsets of X such that {Al(k)} is regularly
approximable in C”. Assume that there are w™®,...,w®) > 0 and r;, — 0 such that

k
w(A) = w®rf 1 o(rf). (17)
Given nl(j) e {1,...,K}, for 1,5 > 1, define the cumulative return times by

~(4) <)
o1, (@) =min(j > 1| Ty (z) € A™ ),

5@ (D
o™ (2 =min(j > 7", (2) + 1| To0 () € AT

Ki,00,Y KRi,op,y

1) (2)

Loy = (Unz,auy’gm,az,y’ )

),
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Denote the frequency with which Al('”) = Al(k) by

k 1 . ,
pl(,t) = g#{] =1t | & = k).

For now suppose that there are positive constants #*) > 0 such that, for all
k=1,..,K, and for all ; / co with t; = O(rl_d)7

o(k)

S 00
Later on, when we prove PLT in product systems, we will choose x and 6 in a
specific way'? and (18) will be satisfied by Lemma 9.4.

The main estimate of mixing rates for regularly approximable sets is the following.

Lemma 8.3. Suppose T satisfies (MEM), and lety € Y be such that (1) is satisfied.
Letm > 1, AN . A®) ¢ X be regularly approzimable in C”, and 1 < ny < ... <
ng, then

(k)

Py, — = p® asl— oo, (18)

N d=1_kr_ _ _p
< K max N(A(Z)) a Frfle kil
i=1,...k

k k
[ <n TymA(i)> _ HM(A(i))
i=1 i=1

where p = 1min . |niv1 — ng| and the constant K > 0 only depends on k and
i=1.. k—

app({AD), ..., AW)}).

Proof. Let C = app({A®M,..., A1), By Lemma 8.2, for every ¢ > 0, there are
K@) € O™ such that 0 < h() < 140 and

1(1 g £ hD) < w(ANT e, while [|hD||cr < Ce™.

We estimate

k k
M (m T—mA(i)> _ HM(A(i))
i=1 i=1

<

k k
u <ﬂ T—mAm) _/ [ 0T du
i=1 Xi=1
: @) o™i d : R o T d
(0] K — (@] K
/lellh m 1:[1/)( m
k k
H/ B9 o 7™ dp — T u(AD)
i=17X i=1

<4k max M(A(i))%s 4 Che=1Pe=hr,

=1,...,

+

+

This bound is optimised for

SO

< max u(A(i))%(lfﬁ)efpﬁL
i=1,...k

+C max M(A(i))%%e*w(k%)

yeeey

143ay we want to prove a PLT for the system T x R and sets of the form By (z*) x By (y*) then
we choose K = 1 and 6 > 0 such that v(B,(y*)) = ord’ + o(rd’).
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. d—1
< K max ,u/(A(l)) d k’?ileikr’yﬁ»lp,
- i=1,...,k

where the constants C, C, K > 0 only depend on k and on C. O

In the following Proposition, we shall demonstrate exponential limit distribu-
tions for fiberwise return times (compare (13)). The proof is standard and uses
multiple exponential mixing and the method of moments, however, due to having
multiple sets, the notations are quite cumbersome. We will present a proof for the
convenience of the reader.

Proposition 8.4. Suppose that T satisfies (MEM), (Al(l)), e (AZ(K)) are sequences
of rare events with ,u(Al(k)) = wBrd 4 o(ril), for K > 1, k; satisfy (18) for some
p*) > 0 with Z},f:l p*) =1, and let a; = (Oéz(n))nzl be sequences of natural num-
bers. Denote A; = U],le Al(k) and suppose that either
(I) oy grows faster than |log u(A;)| in the sense that
| og ja(A1)| = o(min |af")), (19)

(II) short returns to A; are rare in the sense that
pa,(pa, <a) >0 asl— oo, (20)

for some sequence (a;)i>1 with |log(pu(Ar))| = o(ar), and a; grows at least as
fast |log u(A;)| in the sense that

| log j(Ar)| = O(min o™, (21)
(III) or short returns to A; are rare in the sense that

pa,(pa, <a)) >0 asl— oo, (22)

for some sequence (a;);>1 with |log(1(A;))| = o(ar), and returns are at least
logarithmically large, i. e there exists ¢ > 0 such that

¢4, () > clog(u(Ar) p—aexe A (23)
Then for v-a.ey €Y

QIS vy = Lpap  as | — 00,
where Q) = Zle wkpk)

Proof. Fix y as in (MEM) and denote T" = T}
(i) Taking a subsequence if necessary, we may assume that there is a [0, oo]-valued
process ¥ = (oM, () .} such that

QI 0 &2 as | — 0.
For J>1and 0 < t; < ... <ty we show
IP((;U) <t j:l,...,J) :p(ag;p <t j= 1,...,J). (24)
The trick is to look at the “dual” object

n
~ ()
Sty =1 o TH
’ ° Al
]:1 1

The important relation here is the following

S >N = o) <n. (25)

R,0xp —
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Indeed, evaluating both sides at some x € X, the left side says that there are at least
G )
N different times 1 < j; < ... < jy < n such that 78" (z) € A]" . The right-hand

. . . . . ~(3) ()
side expresses that, if 1 < j; < ... < jy are the first N times that T’ (z) € Afl ,

then j; + Ei]iQ(ji —ji—1) < n. Let (P;)i>0 be a Poisson process, such that ¥ gy,
are the cumulative waiting times of (P,), i.e. (P;) and Xg,, are related by
P>N = o)) <t.

The right side of (24) is equal to

FExp

P (U(k) < tk, k= 17 sty J) = ]P(Ptk > k7 k= 17 o J)

Due to (25) it is enough to show

tq to ty
) gle)  glan])
Skiah ™Sy ™y Sk al = (Py,.... P;) asl— oo.

(ii) Taking a further subsequence if necessary, there are [0, co]-valued Ptl, P
such that

J

t1 ta tr
{QrdJ {QrdJ {nrdJ no~ ~
Sk ™y Skah 7y ey Sk o = (Py,...,Pr,) asl— oo.

We will show that

(A) Istk — ﬁtk—l is Poisson distributed with intensity ¢ — ty_1 for k =1,...,d,

(B) and (P, — P,,, P, — P,,,..., P,, — P,,_,) is an independent vector, where t, =
0.]5

Clearly Py = Py =0.

tj
For j = 1,...,J denote Sy, ; = SL?;J. Assertions (A) and (B) will follow!®
once we show that, for all mq,...,mq > 1,

/H(Sil Jl,l>dﬂzﬁw+o(l) s | — oo

j=1 )

In the rest of the proof fix J > 1,0 =1ty <ty <---<tyand my,...,my; > 1.
(iii) First, for each j = 1,...,J, rewrite

Stu=Su_ = Y, 1 @ oT"

So
J Il
i <Stj, - 17l> 1 ) [1¢4. (26)
=1 " ! Vé?;J+1Sk1,j<--~<’fmﬂﬁ W?J -

15This is essentially Watanabe’s characterisation of Poisson-processes.
16Here we apply the method of moments, see eg [5, Theorem 30.2].
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~ (k5

where & ; = 1 o T™ . To simplify notation we will also denote m =

(K;ki J)
l
(mi4---+my), w=ming=1, g w®) p=2m

met1 {log(urf)],

ti_ t; .
Ap =Lk = (kij) j=1,..7 ‘ hjz;J +1 < k<. <k, S{QidJ forj=1,...J}
=1, 1

1=1,...,m; L
and
p={keA  min & — a7 < .
j=1,...,J,i=1,....m;
F=end, i =1, myr, (5,02
We will split the sum in (26) into two terms
J
S S
H(tl t71l>Ml+Rl7
where
My = M(tj)yly(mj') = Z H iy, Ri= R(tj)J,(mj) = Z H &ij-
keAN\A) j=1,. keA] j=1,..,J
1=1,. ,mJ 1=1,. ,m]
‘We will show that
J (£ —t; 1)™
/Mlduﬁl_[L and /Rldu%O as | — oo. (27)
X 1 m;! X

(iv) Let us first treat M;. For [ > 1 and k € A;, by Lemma 8.3 we have

(kig)y

()

(ki,j) ( i 7)
l

1_mr

a—1 (kg +)
(% (ks ])) d mr+l yming j o "7
< Kmaxu A, " e mrtl
752

For k € A\ A, this yields

alkid) oK) i
u ﬂ AR A( M = rmd H wl( vy o(rmd),
] 1,...,J ] 1,...,J

1,. ,mJ 1,. 7m3

and the o-term does not depend on k. Summing over k € A; \ A}, and using (18),

yields
&(ki,j)
Mldu: 1 (H(km-)) o T d,u
X X . AT

kEAl\A' ] 1 1
amJ

kEANA] j=1,...,J

i=1,.. ,mJ

ot ST s o)

keA; j=1,...,J

i=1,...,mj
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T (&t -t *) "
_ omd i—ti-i| & (k)
=n Hi, Z {de e W +o(1)
Ve P e el LA D
J mJ )C 7”»]
C g [T )™ (50w} o)
j=1 mj: k=1

J m;
=11 = t=)™ g,

N
my:

for * note that #A] = O(r; ™ ! log(r;)|). This shows the first assertion of (27).
(v) In order to treat Ry, first note that under assumption (I) we have R; = 0 for
big enough [. In the following, we focus on assumptions (II) and (I1I). Note that

/ Rydp :/ Lr,zoRydp < pu(supp(Ry)) || Rl 2
X X

o

(J)
supp(R;) C U T (Ain{pa, <3pi}) = U,

and

since p; = O(]log(r)|), from (2() resp. (22), it follows that

u(supp(Ry)) < u(Uh) = O Hu(A)o(1) = o(1).
Therefore, in order to show fX R;dp — 0, it is enough to show that (R;);>1 is
bounded in L?. Notice that

m

R? < > H 1A(ﬁl<ki>) = S

=1 1
1<k, .., kam < {iJ

We may write

2 S, S,
StJl Z{]T}( t];’)<c Z(t"’><c ZMtJ7lk+RtJ,lk)

k=1 k=1

where { 2;”} are the Stirling numbers of the second kind and C,,, = maxx—1,_am {2,2”}
Now the previous parts of the proof show that
/ M, 1mdp  is bounded as | — oo, Vm > 1,
X
it remains to show that

/ Ry, 1mdp is bounded as I — oo, Vm > 1.

X

vi) In order to bound Ry, 1.m dp for fixed m > 1 we first split up'” A’ into
(vi) x Reyamdp plit up'” A;

I7Here the sets of sequences should be modified, i.e

t
Api={k = (ki)im1,m | 1< k1< <km S{QJ}
Qrj

and K,
Aj={keA| ; minm |a(k) ~( /)|<pl}

.....
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31 <43 < ... < im—j < m such that
. (ks ~(k; - . .
Agj) =k =(ki,....km) € Ay |al( ) _ a§ >| <peVie{l,...,mp\{i1, 0 im—j}, 3,
and |dl(k”+1) - dl(k”)| >pVr=1,..,m—j

for j =1,....,m—1, so that A} = Um_1 Al(j). Under assumption (I7), because of

j=1
mr—+1

(21), there is a constant ¢ > 0 such that for p = 2m™ 1= and big enough [ we have
2

_t .
#AZ(J) < <m) <{erd Jb>pj <m™"mpm(QT™ 4+ 1)Tl_d(m_J).
J m—J

On the other hand, for k € Al(j), we can again use Lemma 8.3 to estimate

/ H gs d/L S / H fs S erd(m—j) + O(Tld(m_j)),
X s=1 X

s€{l,....m\{i1,....i;}
where the o-term does not depend on k, and

~(ks)

Ee=1 uyoTH"
)
Al

Summing over k € A} we obtain
/ Ry, 1mdp < 2m™ (T 1 Q) Vm > 1,
X

and we conclude [, R;du — 0 under assumption (I7).
(vii) Finally assume (III). For fixed j =1,...m—1,1>1and 1 <i; < ... <

. . . ~(is ~(is
i < {Qirld with ming—q ;1 |al( +1) _ ozl(l )| > p; set

(is)
)

J
~(is)
—Q
Alﬂ'hm,ij = ﬂ r=* Al
s=1

By Lemma 8.3
1(Aiy,.i;) < (wr) +o(r(),

and the o term doesn’t depend on (iy,...,4;). For x € A;;, .. s, consider

Riiy,.i; ()

Ir1,...,7; such that k., =isVs=1,...,7],
=k = (k.. k) €AY i
(kr ) ! and H{“S(m)zl
s=1

Then, since @4, (x) > clog(u(A4;)), we have

m—j
D —J
K a(x) < [ 2—F— ="
#R, 17"‘7J(x) - < dclog(?“l)) g

since p; = constant x |log(r;)| this quantity doesn’t depend on . At the same time
we have

supp <H §S> C Ay, ifke R, i (x) for somex.

s=1
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Also, every k € Al(j) is in some Ry, ... i, (), therefore

> / mlésduﬁ > /

#R04,,.1; () dp(z)
keA® WX 5= 4 ' . g
1 1<ip<...<i; < {WJ
l

Lyig,eens ij
ming—1,..., j—1|5él(ts+1)*d515)\217l
J
< N / P dp
. Aljiq i
1§i1<...<i~§{—J
J QTld

. _(is41)  ~(is -
ming—1,. .., j71|al s+ 70(1(“)\21),

) ; , t i
< (o +0) (|5 )
Qrd
LW
J 4
< plt o + o(1).
Summing up over j we get
w

/};Rl d/,l/ S mmaX(l,pm) maX(l,tm)m +0(1)
Following the argument in step (v) this shows [ R;dp — 0, hence (27), in case of
assumption (III). This concludes the proof. O

Remark 8.5. (i) Note that assumptions (I), (IT), or (III) directly correspond to
the three possible cases of (BR(z*,y*))-(SLR(y*)), (NSR(z*)) AND (LR(y*)), or
(NSR(z*)) AND (LR’(z*)) respectively.

(i) In all of the examples we give in section 4, the a; will satisfy a condition
stronger than (I). In fact, in this set-up, there is a d > 0 such that

; (4) > —d2
min oy | = p(A) ™",

compare also (9)'®. If this stronger condition is satisfied instead of (I), then we do
not need the full strength of exponential mixing in (MEM). Any superpolynomial
rate will be enough. Details are given in the proof of Theorem 3.4, but we shall
give a heuristic here.

When using mixing of all orders with indicators of the form 1 By, (%) the error
term will contain a term coming from the C” norm in the definition of regularly
approximable. In this case, using (16), this term will be of order Crfdrm. To
compensate, say the rate of mixing is v, since the gaps «; are large we can multiply

l)|) So we want to show

re () = o(1),

for all m > 1, thus v should decay superpolynomially.

with ¢ (min;>o |al(

9. The PLT for rectangles.

9.1. Quantitative Ergodic Theorem. In section 9.2, it will be convenient to use
a pointwise (almost everywhere) Quantitative Ergodic Theorem instead of the L2
bound we assume in (EE). Furthermore, using a Borel-Cantelli argument, we will
show such bounds simultaneously along a sequence of functions (f;);>1.

18The constant d2 given there is not exactly the same. In the notation there, we have to use

dl
5
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Proposition 9.1. Assume (EE) is satisfied, and let (fi)i>1 be a sequence of func-

tions in C" . Then, for everye > 0,¢’ > 0, there are, for v-a.ey €Y, L, > 1 such
that

Zfl o Ri(y) — n/yfldl/ < |\fl||cr/n6+5 forv-a.ey € Y,Vn > lE/J > Ly,
j=1

Proof. The proof of'? [8, Theorem 3.1] shows that there is a constant K > 0 such
that

1 !
sup — SK|lfllgvN"070 N>1,fec”,  (28)

n>NT
where S, (f) = >21_, fio R/.

Now let k, 6" > 0 to be chosen later be such that 2(1 — §)k > 2§’ + 1. Using the
Chebyshev inequality, from (28) it follows that

Sn(f)—nfyfdv

L2

1 1 ,
v| sup —|Su(f 7n/fdl/ > | fllgw N7°
(Mk =18 =n [ far]> 3lIfllo o)
S 4K2N2§/—2(1—6)k) N 2 17f c C’I'/.
For{>1,N=N, = [l2<1*5>’62*25’*1] denote by By n the set
1 1 e
Bin=1SyeY | sup —|Su(fi)y) —n [ fidv|> S||fillew N , (30)
n>NFk n Y 2

then it holds that v(By y) < N20'=20=9k and

1 25" —2(1—6)k+1
B y) < 4K? N
Z v(Bin) < 25/_2(1—5)]6-1-12 !
I>1,N>N, =

AR
< -2 .
_26’—2(1—6)k+1;l =0

Hence, by Borel-Cantelli, for v-a.e y € Y there are only finitely many pairs (I, N)
with NV < N; such that y € By n, therefore, for such y, there is an L, > 1 such
that y ¢ By ny whenever [ > L,, N > N;. For such y,l and n > le, say NF <n <
(N +1)* and N > N, it holds that

1

1
— > sup —
n

n>NFk n

1 s _e
< 5l fllor N7 < I fillgen™.

SulF)(®) —n/y fdv

50()(w) —n/yfdv

Choosing k so big that % < %/, the claim follows by setting ¢’ = k(1 —§ —¢) (then
21 =0k —28 —1=2ke —1> 2). O

2
1918, Theorem 3.1] shows that (28) holds under the stronger assumption that P" L Id

polynomially fast on L°°, where P denotes the Perron-Frobenius transfer operator. Note however
that Lemma 3.3 of that paper shows that, under this assumption, (EE) holds; the rest of the proof
only uses (EE), and not the stronger assumption on P.
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9.2. Uniform estimates. Let (B;);>1 be a sequence of rare events?’ in Y, such

that (B;);>1 is regularly approximable in C"". The goal of this section will be to
show that, after taking a subsequence if necessary?!

Z/(Bl) rSNl-l ()
sup | ———= J -1 —>0 ass— o0, v-a.ey €Y, 31
N, jEZl e5, (Y) y (31)

for some N; > 0.

Lemma 9.2. Let R satisfy (EE) and let (B;);>1 be a sequence of rare events in'Y,
such that (By)1>1 is reqularly approxzimable in cr. Then, after taking a subsequence
if necessary, for € > 0, there is a constant K > 0 only depending on app(Bi)i>1,
and, for v-a.e y €Y, Ny > 0 only depending on y and app((By);>1) such that

1p, o R (y) — nv(B
]Z:; B (y) (B1) (32)

r/(d' —1) 1—5—

< Kv(B) 7 n'™ 751 | ¥n > N,N,l > L, v-a.ey €,
where N; = V(Bl)fli;lf.
Proof. Let B = app((Bi);>1), then®? for k > v(B;)” 7 there are By by € C”
a1
a7

oo while ||l o < BE"

v(1p, # hi) < v(Bp)

for hy,; € {Ek,l,ﬁm}' In particular
1

' —

a’ 1
d/

v(By) ~ v(B) T < /

Y

ﬁk,l dv < / Ek,l dv < I/(Bl) + I/(Bl)
Y

By Proposition 9.1 there are I, > 1 and N; > 1 such that, for hy; € {Ek,l,ﬁk’l}, we
have

Z hi o R (y) — n/ hy, dv
j=1 Y

<hgallgmn®*s Vn> (1 +k) 1+k>1, v-aecy€eY.

Therefore, for such k,1,n,

S 1m0 R) 2 S o RI) 20 [ hydv - B
j=1 j=1 Y

d'—1

1 ’
> nv(By) — m/(Bl)T% — Bk ndte,

20Later on in §9.3 we will take finitely many such sequences (Bl(l))th ~~~(Bl(]c))121, but the
same arguments apply.

21From this point on we will often take a subsequence of (B1)1>1 to assume that [ is sufficiently
small compared to v(B;)~!. In an effort to keep notation simple, we will do so without explicitly
stating, accepting small imprecisions in exchange for simpler notation.

22By Definition 8.1.
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Likewise

Zle oRi(y) < nV(Bl)—i—nu(Bl) E—I—Bk’”
Hence,
> 1p o Ri(y) —nw(B)| < nv(By) 57 % +Bk'n (33)

d'—1

Let k, = { e v(By) @ +1>—‘ and

o r/41 d' —1)(r'+1) '+1

N, = (1001, yioe = 57 and N, =v(B)) G-o@  a0-i-9 =y(B))T5=

+1

We can apply (33) for n > N, Ny, k, and [ > 1 (since k,, > I, and® kS < ki ° ° <
n) to obtain

n . Pl 1osee
> i o R(y) — nv(By)| < Kv(By) 76+ n! =7,

where the constant K > 0 only depends on B. O

Proposition 9.3. Suppose R satisfies (EE) and let (B;)i>1 be a sequence of rare
events in Y, such that (By);>1 is regularly approzimable in C™'. Then for every
€ > 0 there is a constant K > 0 and, for v-a.ey € Y, there are Sy > 0 such that,
for s > Sy, we have

[S]V[ﬂ 1

> ¢moRpy) — 1| < Ks (34)
7=0

SM[

where
- d’ '
M, = I/(Bl) a’(1=é—e)
Proof. Let y € Y be as in the conclusion of Lemma 9.2. By (32), for [ > 1 and
n > NyN; we have

'@ -1 1-6—¢

nwv(By) — Kv(B;) 77+t~ 7

r’(d —1) 1-6—¢

n
< Z 1p, © R%l (y) < nv(B)) + Kv(B;) 707+ nlT

and thus
r@d-1) . 1-s5-¢
[nv(Br)— Ku(Bl)d/(T/-Fl) n Tl -1
@B, o Ry, (y) <n, (35)
5=0
as well as
rd—1) 15—
[nu(Bl)+Ky(Bl)d/(T/+1)n 11
= Z ¥B,; © R]Bl (y)-

J=0

23To be completely correct, one would have to consider k, + ! instead of I, but by choosing a
subsequence and renumbering we can assume that [ is very small compared to v(B;)~!.
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For s > S, with 5, = (100K) 7= N,,, let
_ a4’ 4!
n = fV(Bl) d/(l—(i—a)’
—d—¢
where £ > 0 is such that £ — Kflflr’ﬂ = s. Clearly
£e (s, s+ 2Ks'™ 1;’?15)
in particular®* n > NyN,. Hence, using this n in the lower bound of (35) yields
1o dlgr’

Lsv(Br) 4'(=0-9) |1 _ 1-5- 't
B, 0 Rl (y) <n < (s+2Ks' ™ 750 Jy(By) 7059,
j=0

_ d/+7‘/
setting M; = v(B;)'~ 70--9 we obtain

V(Bl) ! i 1-5—¢
J —ize==
sM, ;0 ¢p, o R, (y) <142Ks™ 7+

The upper bound follows analogously by setting £ + K¢ -5 = s, and the claim
(making K a bit bigger) is proven. O

9.3. PLT scaled by returns to {B;}. For the rest of this exposition let > 1, and
Al(l), e AZ(K) resp. Bl(l), e Bl(’c) be subsets of X resp. Y regularly approximable in
C" resp. cr. Suppose that there are r; \, 0, and positive constants w®, %) > 0
such that

M(Al(k)) = w(k)rf +o(rd), and V(Bl(k)) = 9(’“)7";1' + o(rd/) Vi>1,k=1,..K,

and, for each I, Bl(l),...,Bl(}C) are disjoint. Denote B; = Ule Bl(k), which, by
disjointness of Bl(l), ...,Bl(’C)7 is also regularly approximable in CT'/, and oy = ®p,.
Consider

"y) =k if R (y)e B,

which is well-defined as the sets Bl(k) are disjoint, and

5 () (n)
oM () = min (n >1| Ty )(x) € Al(ﬂl )> ,

Ri,a,Y

Ki,Q0,Y R,y

o™ () = min ( k> o z)+1 T&Ek) T GA(NEIC))
(z) > () +1]Ty" (z) € 4 :

= (M (2)
Enl,al,y - (chl,al,y’ Uﬁl,al,gﬁ )

Following the steps outlined in §7 we will first show

er’i/EHhahy L Ypy asl o0, v—aayeyY (36)
for Q = %. Then use the relation
Tny @, () (%) =1
TUE_, A® xB® (z,y) = Z ¥B; ° R%l () (37)

=0

__ 14t
24Recall that Ny = v(B;) 4(1-6-¢),
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to obtain

K
(M X U) (U Al(k) X Bl(k)> EU§71 A;k)XBL(k') #=X>V EEzp as | — oo. (38)
Pt} o=
Denote

1,
S#=1,..,t | D (y ZlB(k) Ry (y

k
pl( t) (y) P

We first show that, for each k, v-a.e y € Y, and #; = O(?“l_d)7 we have

9k
pz(? (y) » ——— =¥ asl — . (39)

Z;-C: L0
Lemma 9.4. Suppose R satisfies (EE) and
r +dé

d> -3

Then k; satisfies (39).
Proof. Let € > 0 be small enough that
' +d(6+¢)
1-6—-¢
(i) Using Lemma 9.2, and disjointness we obtain a constant X > 0 and N, > 1
such that, for v-a.e y € Y, we have

d >

r(d 1) 1—86—¢

ZlB;k) ORj(y) —m/(Bl(k)) < K, T I , and

' (d —
r(d’—1) 1-6—¢

Z 1p, o Ri(y) —nw(B)| < Kr, 770 p'= e

foralln > N,,l > 1and k =1,...,K. On the other hand*®, for s > N, Proposition
9.3 yields

( [SMI—‘ -1 LS.
le Z B o Ry, (y) — 1) < Ks™ 7+
where
1— d' 4!
M, = I/(Bl) a’(1-é—e)
(ii) Rewrite
1 o1 B,0RE, (¥)
(k) _ i
Pl = > 100 o I,

Denote t; = s; M, since

d' 4! /

__dl4r! A4 _g
My = v(By)' " 7079 = O(r) == ") = o(r),

we necessarily have s; — 0o as | — 0o. Denote a =
so that s; > N, then we have

TEE and let [ be big enough

25Making K and Ny bigger if needed.
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Zjl=1 ¥ B ORjBl -1
& )
tzpz(,tz (y) = > Lo o R (y)
j=1
tiwv(B) " (A+Ks;*)—1

= > Lo o R (y)

Jj=1
1,/ (k) S 1 l-a
<tw(B) 'w(B) 1+ Ks )+ Kr, " (tw(B) "1+ KsT%))
(k)
I/(Bl ) —a+ 2
<t 1 ATy,
>~ U I/(Bl) ( +0(8l ))
The lower bound is similar. So
(k)
(k V(Bl ) —a+a?
B Sl SAY =o(1). 40
P ) = S| = ol ) = o) (40)
O

9.4. Adding in the gaps. Now all that’s left to do is to add back in the gaps. As
mentioned in §9.3, having shown (36) (this is the content of Proposition 8.4), we
will now explain how to conclude

K
(,u X V) (U Al(k) X Bl(k)> EU’§71 Agk)XBl(k:) H=X>V ZEQ:p; as | — oo
k=1 -

using the relation

a,ﬁl,al,y(z)fl

US, a®p® = D ¢B o RE ().

Jj=0

g

This is rather straightforward, given Proposition 9.3, and follows from a more
general principle in probability theory. As this principle finds use in various places
and has, to the author’s knowledge, not been formulated in generality, let us state
and prove a more general version than we need here.

Lemma 9.5. Let (2,P) be a probability space, and E; : Q — [0,00) non-negative
real random variables, such that there are positive random variables p; : Q — (0,1)
with
,ulEléP;E as | — oo,
for some non-negative random variable E with P(E = 0) = 0. Then for any M :
Q — [0,00) with
wM; — 0 asl— oo pointwise P-a.e
we have
P(E, <M;)—=0 asl— 0.

Proof. Let € > 0, there is a 6 > 0 such that P(F < 0) < ¢, and the distribution
function of F is continuous at §. By Jegorow’s Theorem, there is a measurable
K C Q with P(K€) < ¢ and

wM; =0 asl— oo uniformly on K.
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Choose L > 1 so big that M; < 5/%_1 on K for [ > L. Now choose L > L so big
that

]P’(,ulEl S 5) S 2e Vi Z L,
it follows that
P(E < M) <P(uEp <6) +P(K°) < 3e,
for I > L. O
Proposition 9.6. Let (2,P) be a probability space, and E; : Q — N be positive

integer valued observables. Assume there are positive real numbers q; \( 0, and a
[0, 00)-valued random variable E with P(E = 0) = 0 such that

qlElgE as | — oo,

Let a : Q = [0,00) be non-negative random variables, and assume there are
1 Q % (0, o0) with ggM; — 0 as | — oo P-a.e and positive random variables
bl : Q — (0,00) such that

[SMZ“
1 )
su o (w)—1 =0 ass— o0, P-a.e. . ucC
lzll) SMlbl ; l ( ) ( )
Then
Zijzlalm £>E as | — oo.

Remark 9.7. In our context we use (2,P) = (X x Y, u xv), B} = 04,,0,,, @ l(j)

B, © R%,l, qa = n(4;) and b = u(]lEBL)' The existence of M; is the content of
Proposition 9.3.

Proof. (i) Let F be the distribution function of E and C' = {¢ | F is continuous at t}
the set of its continuities. Let ¢ € C, and £ > 0 such that l—ﬁ, ﬁ e C. We will
show

E,
P Z—jgal@gt — F(t) asl— oc.

(ii) By Jegorow’s Theorem, for { > 1, there is a measurable set K C Q with
P(K°) <e

sup sup
1>1 wek | sMby

Z al(j)(w)—l —0 ass— 0.
(ili) Choose S > 0 so big that
"SML—I
(1—5bg<—2a <(+e)b onK, Vs> S,1>1,
j=1

and restricting to {E; > SM;}, we obtain

(1—¢) qlEl<—Za <(+e)qE on Kn{E >SM}, Vil >1.
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We get

E,

P (L3 o <t) - P& < M) - B
[
]:1

E;
q () t
< > < t < <
P Kn{E > SM;} E o’ < <T (QlEl 1 5) )

and likewise

1+e¢

E;
: t
% Yo <t 2P<Kﬂ{El > SM;} N {qlEl < })
| =
Jj=1

t
> < ) = < — K°).
> P (leEl < 1+5) P(E; < SM;) —P(K°)

Taking lim sup,_, ., resp. liminf;,., the above two equations, and using Lemma
9.5, we obtain

t . a ()
_e < = <
F<1+€) 5_llg£fP 2 g a; <t

t
< limsupP qual < < (16)—&-5.

l—o0

Since C' C (0,00) is dense, we can let & N\, 0 while 1;, 1; € C, this yields
P qua3)<t — F(t) asl— oo.
j=1
O

Remark 9.8.
(i) We can extend this statement to sequences in the following manner: under
the assumptions of the proposition, let El(”) : 2 — N be such that

a(EM EP )L (EW E® ) asl— o,
for some E(™ : Q — [0,00) with P(E(™ = 0) = 0. Then

E(”) E("
‘Il Z () ZO‘ = (EW E® ) asl— oo.

The proof of this statement is almost the same as for the proposition, therefore
we won’t repeat it.

(ii) The probability measure P can be replaced by a sequence (P;);>1 by also
replacing (UC') with the following condition

Ve > 0 there is are measurable sets K; C Q with limsup Pi(K}) < e such that

l—o00
[sM;]
Z al(j)( )—1 =0 ass— oo.

1
sup sup
1>1 wek, | SMib
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Proof of Theorem 3.2. (i) Let r; \( 0, and denote by Q; = B, (z*,y*) the geodesic
ball of radius 7; centred at (z*,y*), and let € > 0. W.l.o.g. 71 is small enough that
the exponential map at (z*,y*) is a diffeomorphism from the ball of radius 2r; in
R+ onto B, (z*,y*). Let € > 0, it is easy to construct, for some K > 1, sets
AN A™ and BY, ., BM asin §8. Let w®) %) > 0 be such that2

,u(Al(k)) = w®rd L o(rl), and Z/(Bl(k)) = G(k)rld' + o(rld/) Vi>1,k=1,..,K,

W (k)

_ Zi
and set ) = W

Due to Lemma 8.2 all those sets can be chosen to be regularly approximable,
such that?” (u x v)q, (Ql \ Uszl Al(k) X Bl(k)> < e foralll>1. Let A > 0 be such

that (1 x v)(Q1) = Arf+? + o(r* ), then

K
A-Q) o)
k=1

(ii) Denote B; = U’kC:1 Bl(k), and, for y as in assumption (MEM), consider a;(y) =
®p,(y) and

<e€

") =k if Ry (y)eBY,

by disjointness ;(y) is well-defined. By Lemma 9.4, ;(y) satisfies (39), and p(®) =
(k) .

SK g0 We can use Proposition 8.4 and Remark 8.5(i) to obtain

erdEm(y))m(ym £ YEzp asl— 00, v-a.ey.

Since the convergence holds for v-a.e y € Y, it follows that

d nxXv
Qri¥e, 0 = YEep asl— 0o,

where Yy, o, (7,y) = Xy, (y),00 (), (%)
(iii) By Proposition 9.3, «; satisfies (UC') with
ISR S
v(B) K ek !

b d o(rl_d,)

and
da’ +r’

My = (B T,
Note that, for Q] = Ulkczl Al(k) X Bl(k), we have

oM 1 @ 1

Ry Rpeq

Soi=| X ¢noRp. Y, ¢noRp...
=0

. 1
7=083

We can apply Proposition 9.6 resp. Remark 9.8(i)

K
) (Z 9<’“>> it S 'S Spay as l— .
k=1

26Choose z*, y* such that the densities of p, v are positive at the respective points.
2THere we again use the continuity of the density.
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By disjointness

(,u x I/ Ql (Z 0(1@)) d+d/ ( d+d')

hence
(1 x )(@Q)Sq; "2 Lpap asl— oo
By the equivalence (12), we have

(1 x )(@Q) g "2 Ppap asl— oo.
(iv) By Theorem 2.2 also

uXVQ/
pxv)(@Q)Pqg ="' Ppyy asl— oo
At the same time, taking a subsequence if necessary, there are [0, co]-valued pro-
cesses ® and @ such that
(e xv)(Q)®q, "2'® asl— oo, and

(e xv)(Q)Pq, (”X:I;)Ql ® asl— oo.

Hence
D (‘bElpvq)) < 76;

where D is given by Lemma 7.1. Since this is true for every £ > 0 we have ® 4 @ Eap,
and by Theorem 2.2 also ® 4 Prap- O

10. The skewing time. Here we will prove Theorem 3.4, to do this we will verify
that the map T'(z,y) = G,(,)(z) satisfies superpolynomial mixing of all orders, as
in Remark 8.5(ii).

Lemma 10.1. Under the assumptions of Theorem 3.4, suppose that Zl>1 T} 3 (d'=82r)

< 0o. Then, for each t > 0, there is a set B with v(&;) = 1 such that, for y € Gy,
there are Ly, > 0 and sets By, C {1, ..., [ﬁ—‘} with #B ¢ = o(u(A) ™) such
that

(7o (¥) = Ta0m ()

>g( M () — dl(m)(y)) Vl>Ly,t,1<n<m<{ & Buy.

ILL(‘ll)
’wh616 C 5 the ILMLCt’LO?L ”07”/ CO’I’Ld’LtZO’n (BA) C”Ld o] = CI)Bz'

Proof. Fix t > 0, to keep notation simple we assume u(4;) = 7 + o(rd) and

v(B) = + o(r{"), otherwise there is an extra constant in the estimates below.
(i) We call n € {1, e {ﬁ—‘} a (I,y)-bad return (or simply (I,y)-bad) if there
is a m > n such that

720 ) = 7o W] < C(@1" () — 6™ v),

denote B;,, = {n >1|nisa(l,y) — bad return}. Let e1 > 0, we call y € ¥ an
I-bad point if #B;, > rl_d+51.

28Tt can be recalled from Definition 5.1 that &l(n) =200 ozl(j> = Z;L o B, o R
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(ii) Using Proposition 9.3 and Jegorov’s Theorem, for e > 0, we can find a
measurable G = G., C Y with v(G°) < €3 and an L > 1 depending on G such that

dl( LﬁJ) < 2tr;(d+d/) Vy c G,l > .Z/ (41)

(iii) For [ > 1 denote G; = {dl(b(/A‘J) < 2tr, (CHCII)}7 we have

t
#B,.,, dv [ |
v(y € Gy |y isl-bad) < fGlr_d‘::i < g Z v(y € Gy | nis (I,y)-bad)
l n=1
[2tr; (44477

<rfo Z v (Hi >1| |Tj+&§i) —rl<¢ (dl(i)))

Jj=1
[2tr; (447
< rf%l Z v (R_j (Eli >1] \Tdm\ <( (d;”)))
l

=1
"ZtTL*(d+d')‘|

<rT Y wEiz e | nl < ()

j=1
< 2Kl dd o < g peppdandi=er
for some constant K > 0, for small enough ¢; this is summable. An application

of the Borel-Cantelli Lemma yields that for almost every y € Y; for big enough [,
either y ¢ G or

~(n ~(m t
oo 0) = Tager 0] 2 @700 = 7)) L <n<ms | ngby
l l 1(Ar)

At the same time, by (41), we have G; /Y. Thus v-a.e y € Y is in G; for big
enough [, and the conclusion follows. O

Proof of Theorem 3.4. In order to keep notation simple we will only show the PLT
for regularly approximable rectangles, this can be easily extended to geodesic balls,
by following the same arguments as in the proof of Theorem 3.2.

(i) For v-a.e y € Y and 0 = t9 < t; < ... < tj choose Ly = Ly 1. 4+, and
Biy = Biy.t,+...+t, as in Lemma 10.1. For such a y and [ > L, (in the following we
suppress y from the notation) consider

kzend

Sipa = Ly, oT% =), +5
ty,l = A, © =0 9.0
i=1

where
~(3)
r 2 : &
St]',l_ lAlOTl .

=Lk |
igB

As in Proposition 8.4, the first goal is to show

“w
(St1,l — Sto,l7 "'7Stj,l — StJ,l,l) = (Ptlfto, -~-7PtJ7tJ,1) asl — o0,
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where (F%) is a standard Poisson process. Since |[S} |[rr — 0 for all j =1,..., J, it
is equivalent to show

/ ! ! ! K
(Stl,l_ to o Pt g, _St‘],l,l) = (Ptl_to7""PtJ—tJ71) asl—>OO.

For mq,...,my > 1 it will be enough to show

J r_ J Lt m;
/ 11 (St” St“’l) ap = =t (42)
Xj:l m] j=1 m]

‘We have
J / /
-5 (k)
II < til T Pt > [T1a o™ (43)
.
j=1 J t tj %,J
[M(Al)1+l<k7 1< <kj, mJ—{M(Al)“

kji€Bi for j=1,...,J, i=1,...,m;
(i) Due to assumption (MEM) for G, and Lemma 10.1, we have

il _(n) i Y () A
J I sor™ au=T1 | fau < Cootminia™ - a™ DL -
X 55 S1)x J#3 i

where (x) = e77¢(*) and ¢ is as in assumption (BA), for fi,..., fm € C" and
1<n; <..<n,, < PH}%W with n; & B;. Due to (9) and assumption (BA) we
l
have ()
lmin|a™ - &™) = o@r),
J#3’

for some w; > 0 with w; — oo as | — co. Approximating 14, by functions in C” it
is straightforward?® to show that

~(kj5)
/ H 1g, 0T i dp — M(Al)m1+...+m1 _ O(M(Al)m1+'“+m"),
X 0
for k;; as in (43). The sum in (4 ) has

J
‘u(A —(mi+...4+my) H +0(H(Al)7(ml+”'+m‘]))
j=1

many terms, so (42) follows. O

11. Examples. Here, we verify conditions (EE) and (BR) for the examples listed
in §4.

11.1. Diophantine rotations. Let o € ((0,1) \Q)dl satisfy a Diophantine condi-
tion, i.e. there are C' > 0 and n > 1 such that
(ko) —1| > Clk|™ VkeZ¥ k#0,1€Z, (D)

and R = R, : & — x + a (mod 1), for € T? | the rotation by a. Almost all «

satisfy (D) for some n > d’ (this is a consequence of a higher dimensional version of

Khinchin’s Theorem, see e.g. [4]). If d’ =n =1, then we say « is of bounded type.
Note that (D) implies that there is a constant C’ > 0 such that

‘1 _ e2milk,a) > C’|k|7n Vk € Zd/ \{0}

29The calculation is analogous to Lemma 8.3.
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Property (SLR(y*)) follows directly from (D). Due to the self-symmetry of R,
it is enough to consider returns of x = 0 to a rectangle (—r, r)d/, but
R>(0) € (—r, N = |ma-— k| <r for somek € VAR

Then, by (D), Cm™"™ < r, equivalently m > (C’_lr)_%. Hence, (4) is satisfied with
Y(r) = (C~'r) 7.

To show effective equidistribution (EFE), we solve the homological equation. Let
f e H*(T%) with [ f = 0. Then

f(l'): Z akeQﬂ'i(k,x),

kezd

’ .
where 3%y car lar|* 351 1j,=n [T, [ki|* < oo and ag = 0. To solve f = g—go

R, we write
g(x) — Z bke2m‘(k,x).

kezd
By comparing coefficients, this is satisfied for by, = —¥z=y for k # 0 and by = 0.
We have

y
bl < (@)Yl < @P Y lan? Y TL kP < oo

kEZd' kGZd' kEZ J1t+...+jgr=ni=1

In particular ||g||rz < C'||f]|an.
Thus, for every®® h € H*(T%) we have

J
> hoRj - J/ haX® || < c”||hgn,
- Td’
j=1 L2
where A% is the d’-dimensional Lebesgue measure on T?. Due to Remark 3.1(iii),

condition (EE) is satisfied with » = n and 6 = 0.
We can apply Theorem 3.2 with

d > n.

11.2. Horocycle flows. Consider the classical horocycle flow h; on compact ho-
mogeneous space '\ PSL(2,R) generated by

1t
L

For fixed t > 0 we will consider the time t map R = h;.
Condition (SLR(y*)) follows from the relation h.2s; = gs o hy 0 g_s, where g is
the geodesic flow

Indeed, we will show that there is a constant ¢ > 0 such that for small enough r > 0,
0 < |s| <cr™t and y,y* € T/PSL(2,R) with d(y,y*) < %T% we have

W=

d(hsy,y*) > gr )

30Tf [ h % 0 consider f =h — [ h.
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By the triangle inequality, it is enough to show d(hsy,y) > crz. By compactness
choose ¢ = inf, d(hiz,z) > 0 (by Hedlund’s Theorem there are no periodic orbits).

Let t = %, then

Nl

d(hsyvy) = d(gthsgn(s)gftyagtgfty) > e_‘tld(hsgn(s)gfty7gfty) >cre.

For small enough r, g; contracts distances at most by a factor of e~ I*/. Renaming
r= %r% we obtain (4) with 9 (r) = 2¢3r—2.
In order to show effective ergodicity (EE), we combine [20, Corollary 2.8] and

[18, Theorem 1.5] to conclude that there is a constant C' > 0 with

n—1
S H(RIy) - n/fdu < Cllfllwie N3 Vf e Wy e T/PSL(2,R),N > 1,
7=0

(44)
for all € > 0.
Indeed, for s > 3, [18, Theorem 1.5] yields
T 1
| stna- [ g < Clllw T 08T)
0 I'/PSL(2,R (45)

VfeW?® yel/PSL(2,R), T > 0,

for some constant C(s) > 0.
A consideration involving twisted integrals as in [20, Corollary 2.8] yields, for
s> 14,

< C'(s)||f|lw+N¢ log? (N)

N—-1 N
;Jf(hn(y))— /O F(hy(y)) dt

(46)
VfeW?® yel/PSL(2,R),N > 1,

for some constant C’(s) > 0. Now (45) and (46) together imply (44).
Now, setting s = 15 in (46), Theorem 3.2 applies with

5
d > 6(15 + 3) = 100.

11.3. Skew shifts. Let « € (0,1) \ Q satisfy the Diophantine condition (D) for
some n > 2 and R : T? — T2 be given by

R(z,y) = (z + o,y + ).
Since R has a Diophantine rotation as a factor (SLR(y*)) is satisfied by §11.1.
For k = (ky, ko) € Z? denote ey, (z) = e2™%%) . Note that

(ersen o RY) ey = 5§:§f52;,kg>'
For f € H*(T) we can write f = 3, 72 agey. If a, o) = 0 (in particular [ f = 0)
then

Z ’<f7f o Rj>L2| = Z Z (ko ,k) U(k1+jk2,k2)

ji>1 i>1 |kez?

2
< (Z |a(k1,k2)|> < C‘|f||§—127

kezZ?
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where C' > 0 does not depend on f. From this we obtain

J
ZfoRj
j=1

2

(foRV fo RI) 2 (p2y

I
Mk
MK

51

1y

Il
-

r2(r2)
J—1 _

<> (T=){f foR) 2y < CIIfl 2 (p2y-

J

For general f € H"(T?) with [ f = 0, again write f = >_, _,» arey, and set

fi= Z ager and fo = Z arer.

kEZ2 ky#0 k€Z2 ky=0

Il
o

Applying the above, and the analysis for Diophantine rotations, we find
2

J
ZfoRJ < (CJ +CNIf11Fn (r2)-
Jj=1 L2(T2)

Thus, condition (EE) is satisfied with § = 1.
So we can apply Theorem 3.2 with

d>2(n+1).

11.4. Example 4.5. Recall the definition of the Weyl Chamber flow on I'\SL(d, R).
Let d > 3, and ' be a uniform lattice. Denote by D, the subgroup of diagonal
elements of SL(d,R) with positive entries. It is easy to see that D, is isomorphic
to R¥=1. D, acts on I'\SI(d,R) by right translation, giving us a R%~!-action. By
[6, Theorem 1.1] the action G satisfies (a R?~! version of) (MEM).

The Diophantine rotation R, satisfies (EE) and (9) by §11.1. Hence, we can
apply Theorem 3.4.

11.5. Other systems satisfying (EE). From Example 4.1 it might seem like
(EE) is a very special property and only a few systems satisfy this. The opposite is
true, in fact, most classical systems have this property.

To convince ourselves of this, let us give some more examples and point out the
mechanisms.

Definition 11.1. The system (Y, R,v) is called mizing of order a if, for each
f,g € C™" with Jy fdv = [, gdv =0, we have

/fOR”~gd1/
Y

We say that (Y, R,v) is polynomially mizing if it is mixing with rate a(n) =
O(n~*¢) for some € > 0.

<[ fllewllglleraln) vn = 1. (47)

Lemma 11.2. Polynomial mizing implies (EE). More precisely, if (Y, R,v) is mix-
ing of order a(n) = O(n™¢), for some e > 0, then, for all e’ > 0, it satisfies property
(EE) with

2 .

== ife<1
+e& ife=1 (48)

ife > 1.

N N[
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Proof. For f € C" with [y fdv =0 we have, for N > 1,
N-1N-1

N-1 2
D fer =X >
n=0

L2 n1=0n2=0
N-1
<2N
n=0

for some K > 0. O

/foRnlfoR”*Qdu
Y

/onR" fdv| < K||fI2, N%

Remark 11.3. In fact, the proof above remains valid if (47) holds for all n < N
except for a subset of {1,..., N} of size N1=¢ for some £ > 0. We call such systems
polynomially weakly mizing.>!

Many classical systems exhibit polynomial (or faster) mixing we list just a few
examples referring to [15, Section 8] for a more comprehensive list

e mixing piecewise expanding interval maps [7, Theorem 3.1] as well as expand-
ing interval maps with critical points and singularities [33, Theorem 1.5],

e uniformly hyperbolic systems [31, Theorem 3.9],

e some quadratic maps [41, Theorem 3],

e noncompact translations on finite volume homogeneous spaces of semisimple
Lie groups without compact factors [30, §2.4.3)],

e time change of horocycle flow [21, Theorem 3].

For parabolic and elliptic systems, one can often use a harmonic analytic ar-
gument akin to (but more involved than) §11.1 or 11.3. Other concrete examples
include

o nilflows [19, Theorem 1.1],

e almost every interval exchange transformation [2, Theorem 7.1],

e time 1 map of certain smooth surface flows, this follows from a work in progress

by the author, where polynomial weak mixing is shown.

12. Robustness of return times. Lastly, we mention the proof for the delayed
PLT. All of the above proofs can be done using ®p, , instead of ®p,, this shows
(with the notation from the proof of Theorem 3.2)

K
(b xv) (U Al(k) X Bl(k)> <I>U£<:1 AP X B o £ Prap.
k=1

To conclude, we only need a version of the approximation Lemma 7.1 for delayed
return times. ~
Let (M, da) be a compact metric space, let (J,,)n,>1 be a sequence of Lipschitz

functions on M dense in C(M), and denote ¥,, = I &éﬁ . The metric
n||Lip

/ﬁnd)\/—/ Iy dA
M M

for probability measures A and )\, models distributional convergence?®?.

)

Dy (W) = Z 2"

n>1

31Tn fact, a slight modification of the proof shows that if Ry is polynomially mixing and Ra
satisfies (EE) then Ry x Ry satisfies (EE).
321n the sense that A, => X if and only if Das(\, Ap) — 0.
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Lemma 12.1. Let (X,pu,T) be a probability-preserving dynamical system, o be
a sequence of natural numbers, (A;)i>1 be a sequence of rare events, and & =
(M), 03, ..) be a random process in [0,00). Assume that, for each 6 > 0, there is

a sequence of rare events (Al(é))lzl with Al(5) C A and pa, (4 \Al(é)) < 0 such that

,u(Al(é))(I) £ casl— o0,¥5>0.

Ag(”,a
Then
(AP a0 2 @ asl— oco.

Proof. Taking a subsequence if necessary, we may assume that there is a [0, co]-
valued random process ® with

AN A, 0 B B asl— co.

For s,t € [0, 00] denote djg ] (s,t) = |e”*—e~*|, where by convention e~>° = 0, then
(10, 0], do,00]) is & compact metric space. Also, the infinite product ([0, 0o]™, djg oo)
is a compact metric space with diam([O oY) = 1, where

d[ooo]N Sj Z? ]d0c>o] SJ, )
j>1

We claim that for every € > 0 there exist o > 0 and an L > 1 such that
Do, o) (lawﬂ(u(Al(é))q)Al((s)’a),lawu(,u(Al)(I)AhaD <5 VIi>L. (49)

Then taking | — oo shows Djg ocpu(®, ') < 5¢ and the conclusion follows by & — 0.
Let 1 > € > 0. First, note that33

Dig aep (latw (ALY 450 ), law, (1(A)® y0 ) < 6,

so it is enough to show that there exist € > dg > 0 and an L > 1 such that

Dig oo (1w, (u(A)® 450 ) law, (u(A)®Pa,0)) <4 VU= L. (50)
Denote ®4, o = ((pf;l)a,cpfl)a, ...) and <I>A§5> o= ((pfql()é) 7@(2()5) ,...). Now choose
s ! ,Q

J > 1 so big that ijJz J < ¢e,and T > 0 such that

J .

e >T| <

j=1
For § = min (% LT) choose L > 1 so big that

Zu A@) >T | <2 VI>L.

Since $37_, % > 3211 oY) and p(A”) > (1= 6)u(Ar) > Fu(Ay), in partic-
P

ular

J
S Ay > 21| <28 V> L.
j=1

33For k > 1 and s,t € [0, 00] we have djg o] (ks, kt) > djg o) (s,1) < |5 — 1.
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Now, for j =1,...,J, we have

J J
(a2 o) < (e 2000,

[u({{z)J 5 J
<p U T AN A | | Y wA)eY), > 2T
j=1
2T
< Ao + 2e < 3e.
M(Az)'u( 1)

Thus

Do, o0 (lawu(u(Al)éAl((s) ’a), lawu(u(Al)¢Al7a)>

J
=32 [ o (A (AN i <332 e < e

j>1 j=1

proving (50). O
To conclude, we give a

Proof of Lemma 7.1. Denote A = u x v and M = [0, c0], with Dy~ as in the proof
of Lemma 12.1 we have

Dyri(lawyg (MQ)®@q), lawy, (A(Q")Pq)
< AQ(Q")Dyp(lawy, (MQ)Pq), lawy, (MQ) Pg)
+2(Q\ Q) Dy (lawx, (A(Q)Pq), lawx, (A(Q') 2q)
< Dypi(lawyg (MQ)@q), lawy, (MQ")Pqr) + Ao (Q\ Q).

Furthermore
‘DMN (la’ka ()\(Q)(I)Q)v law}\@ (A(Ql)@Ql)

<Y 2m 1/ M@)¢pq 0 55, MQ")pqr 0 55) dAg

7>0
<32 /Q aa(MQ)pq © S N(@)vqr o Sh) dAg + (@ Q).
Jj=0

For each j > 0 we have

Aq(pq o S # g 0 Sh) < Ao (U Sé;(@\@’)) <G +DAQ\ Q).

=0

The claim follows since 3+, j277 = 2. O
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