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Abstract
We introduce and study the problem of balanced districting, where given an undirected graph
with vertices carrying two types of weights (different population, resource types, etc) the goal is to
maximize the total weights covered in vertex disjoint districts such that each district is a star or
(in general) a connected induced subgraph with the two weights to be balanced. This problem is
strongly motivated by political redistricting, where contiguity, population balance, and compactness
are essential. We provide hardness and approximation algorithms for this problem. In particular,
we show NP-hardness for an approximation better than n1/2−δ for any constant δ > 0 in general
graphs even when the districts are star graphs, as well as NP-hardness on complete graphs, tree
graphs, planar graphs and other restricted settings. On the other hand, we develop an algorithm
for balanced star districting that gives an O(

√
n)-approximation on any graph (which is basically

tight considering matching hardness of approximation results), an O(log n) approximation on planar
graphs with extensions to minor-free graphs. Our algorithm uses a modified Whack-a-Mole algorithm
[Bhattacharya, Kiss, and Saranurak, SODA 2023] to find a sparse solution of a fractional packing
linear program (despite exponentially many variables) which requires a new design of a separation
oracle specific for our balanced districting problem. To turn the fractional solution to a feasible
integer solution, we adopt the randomized rounding algorithm by [Chan and Har-Peled, SoCG 2009].
To get a good approximation ratio of the rounding procedure, a crucial element in the analysis is
the balanced scattering separators for planar graphs and minor-free graphs – separators that can be
partitioned into a small number of k-hop independent sets for some constant k – which may find
independent interest in solving other packing style problems. Further, our algorithm is versatile –
the very same algorithm can be analyzed in different ways on various graph classes, which leads to
class-dependent approximation ratios. We also provide a FPTAS algorithm for complete graphs and
tree graphs, as well as greedy algorithms and approximation ratios when the district cardinality is
bounded, the graph has bounded degree or the weights are binary. We refer the readers to the full
version of the paper for complete set of results and proofs.
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4:2 Hardness and Approximation Algorithms for Balanced Districting Problems

1 Introduction

In this paper we study the problem of balanced districting, where we are given an undirected
graph where vertices carry two types of weights (population, resource types, etc) and the
goal is to find vertex disjoint districts such that each district is a connected induced subgraph
with the total weights to be c-balanced – each type of weight is at least 1/c of total weight of
the district. We aim to maximize the total weights of the vertex disjoint balanced districts.

This problem is an abstraction of many real world scenarios of districting where contigu-
ity/connectivity, population/resource type balance and compactness are desirable properties.
For example, in political redistricting, several towns are grouped into a state legislative
district or a congressional district. Balancedness requires that each district maintains a
sufficient fraction of each (political or demographic) group, which is essential for several
reasons. First, voter turnout rates sharply increase if the anticipated election outcome is
expected to be a close tie. [14] Thus a balanced district would motivate and raise voter turnout
rates. Additionally, balancedness ensures that each political group has the opportunity to
elect a candidate of their choice, in compliance with the Voting Rights Act of 1965 [41]
and other amendments [25]. This principle also helps to prevent the tipping point in racial
segregation, where residents of one demographic group start to leave a district once their
population falls below a certain threshold. [56, 52] Connectivity or contiguity, on the other
hand, demands that each district be geographically contiguous, – in the language of graph
theory that the vertices corresponding to the towns form an induced connected subgraph.
This requirement is enforced by most state laws and is a standard practice in general. Many
states also have a compactness rule [2], which refers to the principle that the constituents
residing within an electoral district should live as near to one another as possible. It often
manifests into a preference for regular geometric shapes or high roundness (small ratio of
circumference and total area).

The problem of redistricting also appears in many other scenarios such as districting for
public schools, sales and services, healthcare, police and emergency services [13], and logistics
operations [46]. In addition, the balanced districting problem is of interest in a broader range
of applications for resource allocation. For example modern computing infrastructure such
as cloud computing provides services to a dynamic set of customers with diverse demands.
Customer applications may have a variety of requirements on the combination of different
resources (such as CPU cycles, memory, storage, or access of special hardware) that can be
summarized by the balanced requirement.

Due to the importance of the problem, redistricting has been studied in a computational
sense for schools and elections, that dates back to the 1960s. [42] Since then, an extensive line
of work (see [8] for a survey) has formulated the redistricting task as an optimization problem
with a certain set of objectives. A lot of existing work considers the geographical map as input
and comes up with practical methods and software implementations that generate feasible
districting plans. We will survey such work in Section 1.2. However, most previous works
focus on optimizing a single desirable property alone (e.g., connectivity [1], or balance [38]),
or optimizing average aggregated scores combining multiple objectives of the districts [31].
In contrast, our problem formulation takes these objectives as hard constraints and optimizes
the total population that satisfies them. There are several merits of this formulation. First,
it offers interpretable, fair, worst-case guarantees for the identified districts. Districting
problem is a multi-faceted one. With multiple criteria taken into consideration, it feels
ill-fit if only one criterion is singled out as the optimization objective. Furthermore, an
average quality guarantee does not provide meaningful utility at the individual district
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level, and aggregated scores offer limited insight into each objective. Second, a districting
solution has a consequential nature and should be taken with a dynamic and time-evolving
perspective. Once a new districting plan is in place, residents naturally respond to the
algorithm output, resulting in changes in the population distributions. One prominent
example is the tipping point theory in racial segregation mentioned above. Optimizing a
single balancedness score can still lead to many districts falling below such a tipping point,
exacerbating segregation. With this in consideration it is important to keep balancedness
as a hard constraint, which hopefully facilitates district stability and integration. With
c-balanced property as a requirement, a graph partitioning into vertex disjoint c-balanced
districts is not always possible. For example, if the total weight is not c-balanced, some
districts have to be unbalanced no matter how the districts are defined. Therefore, we aim
to maximize the total weights in balanced districts.

In this paper we focus on the graph theoretic perspective of the redistricting problem. We
abstract the input as a graph where vertices represent natural geographical entities/blocks
(e.g., townships) and edges of two vertices represent geographical adjacency/contiguity. We
focus on two important quality considerations namely connectivity and balanceness, and
we maximize coverage, i.e., the total weight (population) covered by balanced districts. In
addition, we also consider compactness, which in our setting leads to preference of districts
as low-diameter subgraphs. An important case studied in this paper is to consider a balanced
star district, which consists of a center vertex v as well as a set of neighboring blocks all
adjacent to v. We also consider districts of bounded rank k for a constant k – where a district
has at most k vertices.

1.1 Our Results and Technical Overview
We report a systematic study of the balanced districting problem on both hardness results
and approximation algorithms. Our goal is to dissect the problem along different types of
input graph topologies (general graphs, planar graphs, bounded degree graphs, complete
graphs, tree graphs, etc), district types (e.g., arbitrarily connected districts, star districts,
or bounded rank-k), and weight assumptions (arbitrary weights, binary weights). A brief
summary of our results can be found in Table 1.

Complexity and Challenges

There are three elements in the balanced districting problem that make it challenging and
interesting, from a technical perspective: 1) connectivity – the induced subgraph of a district
is connected 2) packing and coverage maximization – no vertex belongs to two districts and
we maximize the total weights of included vertices; 3) balancedness – the two types of weights
in a district need to be roughly balanced. These elements are shared with a number of well
known hard problems, suggesting that our problem is also computationally challenging. For
example, the exact set cover problem asks if there is a perfect coverage and packing in a
set cover instance. The packing element is shared with maximum independent set problem –
a vertex included will forbid its neighbors to be included. And the balancedness is shared
with subset sum problem. Therefore by using the hardness of these problems we can show
hardness and hardness of approximation of the balanced districting problem for a variety of
graph classes. The hardness of the balanced districting problem is immediately shown by
a reduction from exact set cover problem. By a reduction from maximum independent set
problem, we can show that the balanced districting problem does not have an approximation
of n1/2−δ for any constant δ > 0 in a general graph of n vertices unless P = NP and is
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Table 1 A summary of hardness and approximation results on the balanced districting problem.
δ, ε > 0 are constants. Tight results are highlighted in bold. We only provide a subset of these
results in this version, please refer to the full version for the complete set of results.

Graph Type District Type Result
General arbitrary/star NP-hard for n1/2−δ-approx

Max degree ∆ arbitrary/star
APX-hard for ∆ = O(1)

NP-hard for ∆/2O(
√

∆)-approx
UGC-hard for O(∆/ log2 ∆)-approx

Planar with ∆ = 3 star with rank-3 NP-hard
Complete or Tree arbitrary/star NP-hard

Planar star O(log n)-approx
H-Minor-Free star O(h2 log n)-approx, h = |H|
Outerplanar star O(1)-approx

General star Θ(
√

n)-approx
Complete graph arbitrary/star FPTAS (1 + ε)-approx

Tree arbitrary/star FPTAS (1 + ε)-approx
General rank-2 polynomially solvable
General rank-k, k > 2 k-approx

Bounded degree ∆ star (∆ + 1
∆ )-approx

General (binary weights) star c-approx

APX-hard for bounded degree graphs. From a reduction from the planar 1-in-3SAT problem,
the balanced districting problem is NP-hard for a planar graph, and even if each district
has at most three vertices – a crucial condition since the problem can be solved exactly by
maximum weighted matching if each district is only allowed to have two vertices. If the input
graph is a tree or a complete graph – extremely simple topologies for which many NP-hard
problems can be solved in polynomial time, the balanced districting problem is still NP-hard
due to the balancedness requirement by a reduction from subset sum. All of the hardness
proofs hold even if we limit the output districts to be only of a star topology. This set of
hardness results can be seen from the Top section of Table 1.

Greedy Methods on Special Cases

On the positive side, it is natural to ask if existing techniques for solving or approximating
these related problems can be borrowed for the balanced districting problem. The answer
turns out to be often “not really”, even if we only look for balanced star districts. The
additional requirements in our problem often break some crucial steps. For example, the
problem of maximum independent set has an easy Ω(n) lower bound if the input graph is
sparse (or planar) – thus a simple random greedy algorithm with conflict checking gives an
easy constant approximation algorithm. But such lower bound no longer holds true for our
problem if the weights are not balanced. Even for star districts, when the maximum degree
is not bounded by a constant, the number of potential balanced districts can be exponential
in n, the size of the network.

We show in Section 6 of the full version that ideas using a greedy approach and local
search method give us approximation algorithms, but only for very special cases. Namely,
if the districts have rank-k, we can try the greedy maximum hypergraph matching to have
a k-approximation to the optimal solution. When all weights are binary (1 or 0), we can
use a greedy algorithm with local search to get a c approximation to the optimal c-balanced
star districting solution. Similarly, if the graph has maximum degree ∆, we can get a
(∆ + 1

∆ )-approximation for c-balanced star districting.
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LP Framework and Rounding

To really tackle the problem with arbitrary weights, for districts that are not limited by rank
and graphs beyond constant bounded degree, we first examine what we can do with complete
graphs or tree graphs – here the topology is made some of the simplest possible, and we
would like to address the challenge from packing and balancedness. In this setting we can
obtain FPTAS for both complete graphs and tree graphs (Section 5)– although the algorithm
is much more involved due to the additional requirements of packing and connectivity (for
tree graphs, as connectivity is trivial for complete graphs). Our FPTAS uses a dynamic
programming technique that maintains one district’s possible weights and introduces a new
prioritized trimming method to approximate weights while ensuring that the resulting district
satisfies the c-balanced constraint and approximates the optimal weight. The FPTAS for the
complete graph is later used as a subroutine for solving the relaxed LP formulation for other
graph settings.

Beyond complete graphs and tree graphs, we develop a general framework (Section 4)
that produce approximation algorithms for star districts on different types of graphs. All
these algorithms start from a relaxed linear program where we formulate a variable xS for
each potential balanced star district S, which can take non-integer values and for all districts
that share the same vertex, the sum of their variables is at most 1. Despite potentially
exponentially many variables (and constraints in the dual program) that preclude standard
solutions, we adapt the whack-a-mole framework [9], which can be seen as a lazy multiplicative
weight update algorithm, on dual variables, and we design a “separation oracle” that selects a
violating constraint in the dual program in time polynomial in n and 1/ε that can significantly
improve the solution. Consequentially, the linear program can be solved in time polynomial
in n and 1/ε up to any precision 1− ε and the number of non-zero primal variables (i.e., the
candidate balanced star districts) is also polynomial. Intriguingly, our separation oracle is
based on our FPTAS on compute graphs for balanced districting.

Now we will round the fractional solution to an integer solution and in the process we
may lose an approximation factor. We use a simple randomized rounding method where we
sort the districts with non-zero values in decreasing order of total weight, and flip a coin
with probability proportional to xS to include a potential district S, if S does not overlap
with any districts already included. In order to bound the loss of quality in the rounding
process, we need to upper bound the correlation of the variables, namely, sum of xA · xB for
all pairs of overlapping districts A, B. These are the (fractional) districts that have to be
dropped due to conflict. To establish the approximation factor, we wish to bound the total
sum of correlation by a factor multiplied with the total sum over all possible districts

∑
S xS

– exactly the optimal LP solution. We show that this ratio is O(
√

n), which immediately
gives an O(

√
n)-approximate solution for star districts on a general graph. Notice that this

is tight due to the hardness of approximation results.
Due to the strong motivation from political redistricting and resource allocation consid-

ering geographical proximity/constraints, the planar graph is of particular interest to us.
One of the main technical contributions is a polylogarithmic-approximation algorithm for
balanced star districting on planar graphs and related algorithms for minor-free graphs and
outer planar graphs. For a planar graph we now adopt a balanced planar separator and use a
divide-and-conquer analysis. Namely, we only need to analyze the overlapping districts with
at least one of them including vertices in the separator. Now a crucial observation is, if we
can partition the planar separator into k 5-hop independent sets, then we can decompose the
total sum of correlation by the independent sets – fix an 5-hop independent set X, two star
districts that touch different vertices in X are disjoint and star districts that share the same

FORC 2025
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vertex in X have their total district value bounded by 1 due to the primal constraint. This
allows us to upper bound the correlation term for the star districts touching the separator
by a factor of k of the sum of xS with districts S on the separator. Recursively, this gives an
O(log n) factor loss in the final approximation.

We remark that the above analysis asks for a new property of a balanced separator – one
that can be decomposed into a small number of 5-hop independent sets (called a “scattering”
separator) – and we do not care about the size of the separator. This is possible for a planar
graph if we use the fundamental cycle separator, which is composed of two shortest paths,
and thus at most 10 5-hop independent sets. For a H-minor-free graph with H as a graph
of h vertices, we show the existence of a similar separator, which can be decomposed into
O(h2) 5-hop independent sets. Thus the final approximation ratio for H-minor-free graphs
is O(h2 log n). For outer planar graphs, we can skip the recursive step and work with graph
partitions with 5-hop independent sets and get O(1)-approximation. We believe that this
technique of using balanced scattering separators is interesting in its own and may find
additional applications in other problems with some packing (non-overlapping) requirement
on the solution.

On general graphs, the formulated linear program could have an integrality gap as large
as Ω(

√
n). Since our rounding algorithm turns an fractional solution into an integral one, this

barrier unavoidably blends into our analysis to the proposed rounding algorithm, producing
an provable O(

√
n) bound. However, by thinking about this argument contrapositively, an

upper bound to our rounding algorithm leads to the integrality gap of the formulated LP,
which could be an interesting takeaway. On the other hand, we also show that there are
planar graphs (specifically grid graphs) such that our rounding algorithm produces a > 1
constant approximation ratio. This observation suggests that we cannot hope for a PTAS
using this approach, even on planar graphs.

1.2 Related work
To the best of our knowledge, this paper is the first to study the balanced districting problem.
Below, we briefly survey related problems and explore their potential connections to ours.

Districting

Our problem is connected to computational (re)districting for schools and elections, which
dates back to the 1960s. [42] Since then, an extensive line of work (see [8] for a survey)
has formulated the redistricting task as an optimization problem with a certain objective
and constraints, e.g,. balancedness, contingency, or compactness. Our redistricting problem
focuses on optimizing the population in balanced and contiguous districts. One concept
related to our notion of balance is competitiveness. Recent work introduces vote-band
metrics [30], which require a certain fraction of votes to fall within a specified range (e.g.,
45-55%) for competitive elections. Subsequently, [22] also adopt similar notions called δ-Vote-
Band Competitive which is equivalent to our c-balancedness by setting c = 2/(1− 2δ). While
related, our work diverges technically, offering both hardness and algorithmic results for
several common graphs. [30] empirically evaluates ensemble methods for district distributions.
[22] explored the hardness and heuristic algorithms for maximizing the number of districts
meeting the target competitiveness constraints, with additional requirements that all districts
have roughly the same population limited compactness consideration.

One approach treats contiguity as a transportation cost and designs linear programming
models to minimize this total cost [1, 34, 24]. Interestingly, the fair clustering problem
can also be viewed as optimizing contingency [12, 19, 44, 18]. Other research focuses on
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optimizing compactness scores [6, 45, 48, 43] or using Voronoi or power diagrams with some
variant of k-means [57, 26, 27, 35]. Finally, another line of work optimizes balance scores [38].
These approaches differ from ours in that they treat specific aspects of districting (contiguity,
compactness, balance, etc.) as objectives, rather than maximizing the population that meets
these criteria.

Besides the optimization approach, another popular approach uses sampling to generate
a distribution over districts and create a collection of district plans for selection. [3, 23] One
widely used method is ReCom [31], an MCMC algorithm. However, these approaches may
suffer from slow mixing times and lack formal guarantees. [51] Finally, several papers take
a fair division approach [49, 53, 29]. The problem is quite different, however, as fairness is
defined concerning parties (types) and the number of seats they would win (i.e., the number
of districts where they would have a majority) compared to other districts.

Algorithms

Beyond districting problems, as outlined in the technical overview, our problem connects
to several classical algorithm problems. If we only want to maximize the population of a
single connected and balanced district, the problem becomes a balanced connected subgraph
problem [10, 11, 50]. However, the previous work in this area typically considers unit weights
for either type, which does not adequately represent the districting problem that operates
in an aggregated block-level setting. Our problem can be seen as packing subgraphs on
graph [28], e.g., edges (maximum matching), triangles [47], circles [32]. Finally, we note a
line of work on a balanced, connected graph partition [17, 21], and balanced bin-packing
problem [33], which, however, aim to generate a partition where each component has similar
weights.

1.3 Open Problems
As the first work to formally study the balanced districting problem in this formulation, our
work leaves a number of interesting open problems for future work. Obviously it is good to
close the gap of approximation and hardness for different families of graphs. Our results
are tight for general connected districts on complete graphs and tree graphs, as well as
star districts on general graphs, but leave gaps for other settings. We conjecture that there
exists an algorithm with a constant approximation factor for c-balanced star districting on
planar graphs. It would also be interesting to develop algorithms to go beyond star districts,
i.e., k-hop graphs for a constant k or the more general setting of connected districts. We
remark that the scattering separator can be modified to handle k-hop graphs but we need an
efficient separation oracle. We consider two types of weights/populations and generalizing
the problem and solutions to three or more colors would be interesting and is currently
widely open. We remark that the PTAS algorithm for complete graphs is specific for two
weights/colors. Finally, an interesting future direction would be to develop algorithms that
also demand approximate population equality among districts.

2 Preliminaries

Let G = (V, E) be an undirected graph where we call the vertices blocks. A district T ⊆ V

is a subset of blocks where the induced subgraph G[T ] is connected. If there exists a block
x ∈ T that is a neighbor of every other block in T \{x}, then we say T is a star district and x

is a center of T . The rank of a district T is the number of blocks in T . A (partial) districting

FORC 2025
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T is a collection of disjoint districts. That is, T = {T1, T2, . . . , Tm} where Ti ∩ Tj = ∅
whenever i ̸= j. Notice that a districting is not necessarily a partitioning of the graph, i.e.,
not all blocks are included in the districts.

c-Balanced Districting Problems

There are two communities or commodities of interest. Let the functions p1, p2 : V → Z≥0
represent the population of each community or weight of each commodity on each vertex. The
weight of a block w(x) is defined to be p1(x) + p2(x). Let T ⊆ V be a district. By a natural
extension we define pi(T ) :=

∑
x∈T pi(x) for i ∈ {1, 2} and w(T ) := p1(T )+p2(T ) accordingly

as the weight of the district T . Finally, given a districting T , we define w(T ) :=
∑

T ∈T w(T )
to be the total weight.

Given a constant c ≥ 2, we say that a district T is c-balanced if

min{p1(T ), p2(T )} ≥ w(T )
c

. (1)

T is a c-balanced districting if all districts T ∈ T are c-balanced. Notice that if the total
weights in the graph are not c-balanced, we cannot hope to include all blocks in c-balanced
districts. Given c ≥ 2, a graph G, and functions p1 and p2, the problem c-Balanced-
Districting is subjected to find any c-balanced districting T that maximizes w(T ). That
is, we wish to maximize population covered in the c-balanced districts.

We will investigate several variants to the problem. A lot of our results concern restricting
the output districting to be star shaped, respecting the need for compactness of the districts.
We also consider districts of bounded rank k if every district has at most k vertices with k

assumed to be a constant. In general we consider the weights of the vertices to be arbitrary
integer values. A special case is when all weights are uniform (binary) – each vertex has only
one non-zero weight type, either p1(x) = 0, p2(x) = 1 or p1(x) = 1, p2(x) = 0.

Let X be any variant to the c-balanced districting problem. A districting T is said
to be feasible on X if T satisfies all districting type constraints, but not necessarily to
have its weight maximized. Any districting with the maximum possible total weight is
said to be optimal. We say that a feasible districting T is an f-approximated solution if
f · w(T ) ≥ w(TOPT), where TOPT is any optimal districting.

Graph Types

A graph G = (V, E) is said to be planar if there exists an embedding of all vertices to
the Euclidean plane such that all edges can be drawn without intersections other than the
endpoints. A face of an planar embedding is a connected region separated by the embedded
edges. G is said to be outerplanar if there exists an embedding of G such that there is a face
containing all vertices. Often this face is assumed to be the outer face. A graph H is said to
be a minor of G if H is isomorphic to the graph obtained by a sequence of vertex deletions,
edge contractions, and edge deletions from G. We say that G is H-minor-free if G does not
have H as its minor.

3 Hardness Results

We first present hardness results for a variety of c-balanced districting problems with
increasing restrictions on the parameters. The proof of Theorem 4 is deferred to Section A
while rest of the proofs appear in Appendix A of the full version.
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▶ Theorem 1. The c-balanced districting problem is NP-hard, for both the case when the
districts are connected subgraphs and when the districts are required to be stars.

Theorem 1 uses a reduction from the ExactSetCover problem. The ExactSetCover
problem remains NP-hard even when each set has exactly three elements and no element
appears in more than three sets [37], or when each element appears in exactly three sets [39].
Therefore, if we limit that each district has at most four blocks, the problem remains NP-hard.
In the following we show that the problem remains hard if each district has at most three
blocks and the graph is planar. Notice that if each district has at most two blocks, the
problem can be solved by maximum matching in polynomial time.

▶ Theorem 2. The c-balanced districting problem is NP-hard, when G is a planar graph with
maximum degree 3, each district has rank-3 (i.e., with at most three blocks), and the districts
must be stars.

The proof of the above claim uses reduction from planar 1-in-3SAT. We show next that
the problem on a complete graph or a tree remains hard. This reduction uses the problem of
subset sum.

▶ Theorem 3. The c-balanced districting problem is NP-hard for any c ≥ 2, when G is a
complete graph or a tree. This holds for both the case when the the districts are connected
subgraphs and when the districts are required to be stars.

Last, we show hardness of approximation by a reduction from the maximum independent
set problem.

▶ Theorem 4. The c-balanced districting problem does not have an n1/2−δ-approximation
(for any constant δ > 0) in a general graph unless P = NP. On a graph with maximum degree
∆, one cannot approximate the c-balanced districting problem within a factor of ∆/2O(

√
∆)

assuming P ̸= NP, and O(∆/ log2 ∆) assuming the Unique Games Conjecture (UGC). Even
if ∆ is a constant, the problem is APX-hard. These statements hold when the districts must
be stars and when the centers of the stars are limited to a subset of vertices.

4 An Algorithm for c-Balanced Star Districting

In this section, we give an approximation algorithm to the c-balanced star districting problem.
The algorithm is based on a multiplicative weights update approach of solving packing-
covering linear programs [54, 4, 9] and then apply a randomized rounding procedure [15].
Interestingly, the same algorithm achieves different approximation guarantees on different
classes of the graphs, summarized in the following theorem.

▶ Theorem 5. Let G be a graph with weight functions p1 and p2. There exists a polynomial
time algorithm that computes a c-balanced star districting T , with the following guarantee:
(1) For any general graph G, T is an O(

√
n)-approximate solution.

(2) If G is planar, then T is an O(log n)-approximate solution.
(3) If G is an H-minor-free graph with |H| = h, then T is an O(h2 log n)-approximate

solution.
(4) If G is a tree or an outerplanar graph, then T is an O(1)-approximate solution.

In Section 4.1, we formulate the problem as a linear program. In Section 4.2 of the full
version, we describe how to apply the Whack-a-Mole algorithm [9] (with our own separation
oracle) that obtains an (1 + ε)-approximate solution to the linear program in polynomial
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4:10 Hardness and Approximation Algorithms for Balanced Districting Problems

time. In Section 4.2, we apply Chan and Har-Peled’s randomized rounding technique [15],
showing that bounding the pairwise product terms leads to the desired approximation
factors. We show that there is a bound of O(

√
n) on any graph in Section 4.3, To bound

the pairwise product terms, we introduce the scattering separators in Section 4.4. These
scattering separators are useful for analyzing the approximation ratios for planar graphs
and for minor-free graphs. For the graph classes that is a subclass to the planar graphs, we
provide tailored-but-better analysis for outerplanar graphs and for trees , which conclude the
proof of Theorem 5. We refer readers to the full version for complete details of these cases.

4.1 LP Formulation

We formulate the c-balanced districting problem as a linear program. For each c-balanced
star district S, we define a variable xS indicating whether or not this district is chosen. Thus,
the integer linear program for can be defined as:

maximize
∑

S

w(S)xS

subject to ∀v ∈ V,
∑
S∋v

xS ≤ 1

∀S, xS ∈ {0, 1}

(2)

To give an approximate solution to the above integer linear program, we follow the
standard recipe that solves the relaxed linear program first and then apply a randomized
rounding algorithm.

Equivalent Relaxed Linear Program

In order to solve the relaxed linear program of Equation (2), we use weighted variables: for
each district S, we define variable x′

S := w(S)xS . Hence, the equivalent linear program (and
its dual linear program) we will be solving can be described as follows.

(Primal) (Dual)

maximize
∑

S

x′
S

subject to ∀v ∈ V,
∑
S∋v

1
w(S)x′

S ≤ 1

x′
S ≥ 0

minimize
∑

v

y′
v

subject to ∀S,
∑
v∈S

1
w(S)y′

v ≥ 1

y′
v ≥ 0

We note that the total number of primal variables (i.e., the number of potential c-balanced
star districts) could be exponentially many in terms of the graph size. However, due to
the special structure of this problem, seeking for an approximate solution does not require
the participation of every variable. We summarize the result of solving the relaxed linear
program as Theorem 6 below.

▶ Theorem 6. Given a graph G and a precision parameter ε ∈ (0, min{ 1
2 , c−2

c }), there exists
an algorithm that returns an (1−ε)-approximate solution {x′

S , y′
v} to the above linear program

in poly(n, 1/ε, log(w(G))) time. Moreover, there are at most poly(n, 1/ε) non-zero terms
among the returned primal variables {x′

S}.
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Implementing the Separation Oracle

In order to have a polynomial time algorithm, we want an efficient separation oracle. The
following lemma (Lemma 7) reduces the task of finding a violating district to solving the
c-balanced star districting problem in a complete graph.

▶ Lemma 7. Given an input instance G = (V, E, (p1, p2)), re-weighted values w′ : V →
{0} ∪ [ 1

w(G) , w(G)], and dual variables y′
v ∈ [n−(1+1/ε), 1 + ε] for each vertex v ∈ V ,

there exists an algorithm that either reports that Sviolate = ∅, or returns a c-balanced
district S such that

∑
v∈S y′

v < (1 − ε/2)w′(S) and w′(S) ≥ 1
2 w′(Smax), where Smax =

arg maxS∈Sviolate w′(S) is a violating c-balanced district with the maximum value. The al-
gorithm runs in O(ε−6n6(log n)(log w(G))4) time.

4.2 The Randomized Rounding Algorithm

We use a randomized rounding technique modified from [15, Section 4.3]. Intuitively, the
algorithm maintains a set I of non-overlapping districts, which is initially empty, and keeps
adding districts into I.

The rounding algorithm is described as follows. Let {xS} be the output of an approximate
solution to LP. Let SLP = {S | xS ̸= 0} be the support of the solution. The algorithm first
sorts all non-zero valued districts according to their weights w(S), from the largest to the
smallest. Let τ ≥ 1 be a parameter to be decided later. For each district S, with probability
xS/τ , the algorithm adds S into I as long as there is no district in I overlapping with S. 1

The algorithm outputs I after all districts in SLP are considered. The necessity of scaling the
non-zero variables by τ comes from the analysis of expected total weight in I. In an actual
implementation of the algorithm, one can make the algorithm oblivious of τ , by iteratively
testing on different values of τ = (1 + ε)k for k = 0, 1, 2, . . . , O(ε−1 log n) and then picking
the largest weighted districting among the returned ones.

Analysis

The output I of the algorithm can be seen as a random variable. Let w(I) be the total
weight of the districts within I. A straightforward analysis (see Lemma 15) shows that

E[w(I)] ≥
∑

S∈SLP

w(S)xS

τ
−

∑
A,B∈SLP: A∩B ̸=∅

min(w(A), w(B))xAxB

τ2 .

The right hand side of the above expression contains a weighted correlation term. The
technique by Chan and Har-Peled [15] transforms the above weighted correlation terms into
unweighted ones. They mentioned that, a desired O(τ)-approximate solution can be achieved,
as long as for any δ-thresholded subset S≥δ := {S ∈ SLP | w(S) ≥ δ}, the total unweighted
correlation terms between overlapped districts can be upper bounded by the sum over all
primal variables within the subset:∑

A,B∈S≥δ:A∩B ̸=∅

xAxB ≤
τ

2 ·
∑

S∈S≥δ

xS ∀δ > 0 (3)

1 The randomization step appears to be necessary since there is an example where deterministic rounding
incurs a large approximation factor (examples and details in the full version).
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The above condition implies the following (see Lemma 16):

E[w(I)] ≥ 1
2τ

∑
S∈SLP

w(S) · xS ≥
1

2τ(1 + ε)OPTLP,

where OPTLP is the optimal value of the LP problem. Thus, I is an O(τ)-approximate
solution in expectation. We remark that due to the factor 2 appearing in the denominator,
this linear program with randomized rounding approach (although not contradicting) is
unlikely to achieve a PTAS.

The above analysis to the rounding algorithm enables the approach of seeking a suitable
τ value, such that Equation (3) holds. The rest of the section focuses on providing upper
bounds of τ on various classes of input graphs.

4.3 An O(
√

n)-Approximation Analysis for General Graphs
In this section, we show that the algorithm achieves an O(

√
n)-approximate ratio on any

graph, by giving an upper bound τ = O(
√

n) for the randomized rounding algorithm (with
proof in the full version).

▶ Lemma 8. Let G be any graph. Let {xS} be any feasible solution to the linear program.
Then, ∑

A,B: A∩B ̸=∅

xAxB ≤
√

n ·
∑

S

xS .

Remarks: Integrality Gap

We remark that this algorithm is achieving nearly the best approximation factor since it is
NP-hard to have approximation factor of n1/2−δ for any constant δ > 0. Related to this, we
would like to examine the potential loss in different steps of our algorithm. In the first step,
we relax the integer linear program to a linear program with variables taking real numbers,
the integrality gap refers to the ratio of the optimal fractional solution to the optimal integer
solution (since we consider maximization problem the optimal fractional solution is no smaller
than the optimal integer solution). In the second step of our algorithm, we use randomized
rounding to turn the fractional solution back to a feasible integer solution. We call the ratio
between the sum of products between overlapping districts’ primal variables and the sum of
all variables to be the rounding gap, i.e.,

∑
A,B:A∩B ̸=∅ xAxB/

∑
S xS . The rounding gap can

be used to upper bound the loss of solution quality when we turn the fractional solution to a
feasible integer solution using the randomized rounding algorithm.

Necessarily, a large integrality gap implies a large rounding gap for sure. Specifically, let
τ be the rounding gap. The analysis to our rounding algorithm guarantees the existence of
an integral solution within a factor of 4(1 + ε)τ from the optimal fractional solution, which
implies an integrality gap of at most 4τ when setting ε→ 0. Thus if the integrality gap is
large, we cannot have a small rounding gap. Interestingly, the above discussion, combined
with Lemma 8 implies that the integrality gap of the natural LP formulation for the star
districting problem is at most O(

√
n).

Next we show that our LP relaxation could have a large integrality gap of Ω(
√

n) for a
general graph. We use a reduction from k-uniform hypergraph matching problem to our c-
balanced star districting problem. Let H = (VH , EH) be the given k-uniform hypergraph – a
hypergraph such that all its hyperedges have size k. We construct a graph G = (VH∪EH , EG)
by creating additional vertices for each hyperedge. These vertices have heavy weights, say
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p2(e) := (c− 1)k and vertices from VH have weights p1(v) := 1. For each hypergraph e ∈ EH

(which is a subset of vertices), we connect all vertices v ∈ e to the corresponding vertex e in G.
It ensures that there is an one-to-one correspondence between hyperedges of H to c-balanced
star districts on G. Now, the relaxed linear program for (G, p1, p2) will be equivalent (with
an extra ck-factor in the objective function) to a fractional hypergraph matching. Thus, the
(k + 1− 1/k) integrality gap of k-uniform hypergraph matching [36, 16] can be transferred
to our LP formulation – specifically, the construction in [16] via projective planes leads to an
Ω(
√

n) integrality gap.
On the other hand, we do observe planar graph instances with a constant > 1 rounding

gap with an at most 1 + o(1) integrality gap (refer the full version). Again, this does not
eliminate the possibility of achieving PTAS, but it suggests a conjecture that we are unlikely
to obtain a PTAS for planar graphs using the current analysis.

4.4 Scattering Separators
Let us now introduce the scattering separators, which is useful for the divide and conquer
framework for upper bounding the approximation ratio of the randomized rounding procedure.

▶ Definition 9. Let G = (V, E) be a graph and let X ⊆ V be any subset. We say that X is:
(k, t)-scattered, if X can be partitioned into at most k subsets X = X1 ∪X2 ∪ · · · ∪Xk

with each Xi being a t-hop independent set2;
(k, t)-orderly-scattered, if there exists a way to partition X into a sequence of at most
k subsets X = X1 ∪X2 ∪ · · · ∪Xk, where each Xi is a t-hop independent set after the
removal of all previous subsets G− ∪j<iXj.

▶ Definition 10. Let G be a graph, k, t ∈ N, and δ ∈ (0, 1). A (k, t, δ)-scattering separator is
a subset of vertices X ⊆ V such that (1) X is (k, t)-orderly-scattered, and (2) X is a balanced
separator of G, that is, the largest connected component of G−X has at most δn vertices.

We remark that a (k, t)-scattered set is also (k, t)-orderly-scattered. This orderly-scattered
definition are useful when we remove subsets of vertices sequentially – they are used in
the analysis of, for example, planar graphs and minor-free graphs. On the other hand, for
some graph class such as outerplanar graphs it suffices to use (k, t)-scattered sets within the
analysis.

The scattering separators are useful in the c-balanced districting problem for t ≥ 5. To
justify this, suppose that we have a 5-hop independent set Y . Any star district contains at
most one vertex in Y . If two star districts contain different vertices of Y , the two districts
must be disjoint. Thus we partition the pairs of overlapping districts by whether they overlap
with Y or not, and if so, which vertex of Y . The following fact can be easily verified.

▶ Fact 11. Let Y be a 5-hop independent set. Consider a fixed district A ∈ S. Assume
there is a district B ∈ S that overlaps with A and A ∪ B touches Y , i.e., A ∩ B ̸= ∅ and
(A∪B)∩Y ̸= ∅. Since the diameter of G[A∪B] is at most 4, we know that |(A∪B)∩Y | = 1.
Further, if A overlaps with two other star districts B, C with both centers of B, C in Y , then
B, C have the same center.

Fix a district A ∈ S. Since all other districts that overlap with A contains (at most)
the same vertex in Y , these primal variable values add up to at most 1. This implies that,
removing Y from G charges at most one copy of

∑
xS . If we are able to show that the

2 We say that X is a t-hop independent set (with respect to the graph G) if for all pairs of distinct vertices
u, v ∈ X and u ̸= v, the shortest distance between u and v is at least t on G.
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entire vertex set is a (k, 5)-orderly-scattered, then we obtain a desired τ = O(k) value for
Equation (3). However, we do not know if such a constant k can be achieved for planar graphs.
Fortunately, using the idea of balanced separators, we are able to achieve a polylogarithmic
approximate solution.

▶ Lemma 12. If G and all its subgraphs have a (k, 5, δ)-scattering separator, then the
districting obtained from executing the algorithm on G is a (2k log1/δ n)-approximated solution.

Proof. Let X = X1 ∪X2 ∪ · · · ∪Xk be a (k, 5, δ)-scattering separator of G. Let S be the set
of all districts. Then, all summands of the form xAxB where A, B ∈ S and A ∩B ̸= ∅ can
be also split into three parts:
(1) X ∩ {cA, cB} ≠ ∅: one of the centers cA or cB is in X.
(2) X ∩ {cA, cB} = ∅ but X ∩A ∩B ̸= ∅: one of their common vertices is in X.
(3) None of the above.
For j ∈ {1, 2, 3}, we denote costj the sum of products of those overlapping districts of case
(j). For case (1), using the given constraint that X is (k, 5)-orderly-scattered, we consider
removing each set Xi one at a time from the graph in the increasing order of i. For each Xi,
without loss of generality, we may swap the role of A and B such that for each summand we
have cB ∈ X. By applying Fact 11 (with Y = Xi), we know that for each district A ∈ S, all
districts B that overlap with A with cB ∈ Xi are actually centered at the same vertex. This
implies that the sum of all such xB values will be at most 1 by the primal constraint. Hence,
the contribution of any district A ∈ S under case (1) for Xi in the graph G− ∪j<iXj is at
most ∑

B:A∩B ̸=∅ and cB∈Xi

xAxB ≤ xA.

By summing over all A ∈ S and over all the k sets X1, . . . , Xk, we have cost1 ≤ k ·(
∑

S xS).
For case (2), the terms can be partitioned according to the common vertex c:

cost2 ≤
k∑

j=1

∑
c∈Xj

∑
c∈A∩B

xAxB ≤
k∑

j=1

∑
c∈Xj

(∑
c∈A

xA

)2

≤
k∑

j=1

∑
c∈Xj

∑
c∈A

xA ≤ k ·

(∑
S

xS

)
.

Again here we use the property that for any fixed vertex c, the sum of the primal variables
for star districts containing c sum up to be at most 1, i.e.,

∑
c∈A xA ≤ 1. Further, fix an Xi,

any star district includes at most one vertex from Xi.
For case (3) we can delegate the cost to the recursion. Notice that, all districts whose

centers are in X will not participate in case (3). Hence, when considering each of the
connected component in G−X, all the districts (after chopping off vertices in X) are still
connected and are star-shaped.

Since X is a balanced separator, the divide and conquer analysis has at most log1/δ n

layers. Thus, the sum over all products of overlapping districts is bounded by at most
2k log1/δ n times the sum

∑
S xS . ◀

5 FPTAS for General Districting on Complete Graphs and Trees

In this section, we present FPTAS for complete graphs and trees with weighted blocks. The
algorithms here find c-balanced, connected districts that can be more than a star graph.
Further, for complete graphs and trees, the LP-based algorithm in the previous section
achieves O(1)-approximation ratio while the algorithms in this section achieves a ratio of
1 + ε.
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5.1 Complete Graph
Let G be a complete graph with functions of weights p1 and p2. Because we can merge
two adjacent c-balanced districts on G into a single c-balanced district as shown in Fact 13,
the c-balanced districting problem on complete graphs can be reduced to obtaining one
c-balanced district, described as the following:

▶ Fact 13 (Mergeable Property). Assume T1 and T2 are disjoint districts and G[T1 ∪ T2] is
connected. If T1 and T2 are both c-balanced, then T1 ∪ T2 is also a c-balanced district.

Complete-Graph-c-Balanced-Districting
Input: Let G = (V, E) be a complete graph of n blocks and function of weights p1 and
p2.
Goal: Obtaining a subset S ⊆ V such that the total weight w(S) is maximized subjected
to the c-balanced condition:

(c− 1)p1(S)− p2(S) ≥ 0 and (c− 1)p2(S)− p1(S) ≥ 0. (4)

The following theorem gives an FPTAS using dynamic programming (Algorithm 1).

Algorithm 1 FPTAS on complete graphs.

Input: ε > 0, c > 2, a complete graph (V, E), V = {v1, . . . , vn}, functions of weights
p = (p1, p2)

Function Trim(L, ℓ, ε):
Sort L = {q1, . . . , qm} so that ℓ(q1) ≥ ℓ(q2) ≥ · · · ≥ ℓ(qm);
Set Lout = ∅;
for i = 1, . . . , m do

if qi is not marked then
Lout ← Lout ∪ {qi};
Mark all qj ∈ L that ε-approximates qi;

return Lout;
Set L0

1 = L0
2 = {(0, 0)};

for i = 1, . . . , n do
Li

1 ← Trim(Li−1
1 ∪ (Li−1

1 + p(vi)), ℓ1, ε/n);
Li

2 ← Trim(Li−1
2 ∪ (Li−1

2 + p(vi)), ℓ2, ε/n);
return the largest c-balanced districting in Ln

1 ∪ Ln
2 ;

▶ Theorem 14. There exists an FPTAS algorithm solving Complete-Graph-c-Balanced-
Districting so that for all c > 2, 0 < ε < 1

2 ln(c − 1), and complete graph (V, E) of n

nodes with functions of weights p = (p1, p2), the algorithm outputs an eε-approximation in
O
(
ε−4n6(ln w(V ))4) time where w(V ) =

∑
v∈V p1(v) + p2(v).

We defer a detailed proof of Theorem 14 to Section C and here give a high level idea.
One naive approach involves creating a complete list of potential subset sum values, denoted
as L(V ) and outputting the largest c-balanced one. While this approach finds an optimal
solution, it is not necessarily efficient, as L(V ) can be exponentially large. Similar to the
knapsack problem or subset sum problem, one may use a bucketing idea to trim the list,
keeping only one value when several are close to each other. However, the c-balanced
constraint posts a challenge for the algorithm – for example, if an trimming algorithm keeps
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partial districts during the iterations, these partial districts may not always remain c-balanced
resulting in a poor approximation ratio. To address this, we design a prioritized trimming
process that prioritizes subsets satisfying the c-balanced condition in Equation (4) such that
any c-balanced district in L(V ) would have an approximated district in our trimmed list.

Specifically, given ε ≥ 0, we say q is an ε-approximate of q′ if q1/q′
1, q2/q′

2 ∈ [e−ε, eε]
where 0/0 := 1. Let ℓ1(q) = (c− 1)q1 − q2 and ℓ2(q) = (c− 1)q2 − q1 be two linear functions
on q = (q1, q2) ∈ R2. We say q is ℓj-dominated by q′ if ℓj(q) ≤ ℓj(q′) for j = 1, 2, and
q, q′ ∈ R2, and L′ is a (ℓj , ε)-trimmed of L if L′ ⊆ L and for each q ∈ L there exists q′ ∈ L′

which ε-approximates and ℓj-dominates q. The key observation is that if q is c-balanced
satisfying Equation (4) with q2 ≥ q1 and q′ ℓ1-dominates q, q′ is also c-balanced. A similar
argument holds for q1 ≥ q2. This observation suggests that when trimming multiple nearby
values, we keep the one that optimizes ℓ1 (and ℓ2) that ensures the existence of c-balanced
approximated values. Therefore, we can find an eε-approximated solution if we can compute
(ℓj , ε)-trimmed of all possible subset sum values L(V ). Moreover, because ℓ1 and ℓ2 are
linear, we can use dynamic programming to sequentially and efficiently compute Li

1 and Li
2

that is (ℓ1, εi
n )-trimmed and (ℓ2, εi

n )-trimmed of all possible subset sum values on the first
i blocks Li = L({v1, . . . , vi}) respectively. While Algorithm 1 only returns the size of our
approximated solution q ∈ R2, we can use an additional n factor to store the set S for each
q in Li

1, Li
2 to recover our approximated optimal districting.

Finally, we note that our prioritized trimming that ensures both inequalities in Equa-
tion (4): one through prioritized ℓj the other through exhausting cases of q∗

2 ≥ q∗
1 or q∗

2 ≤ q∗
1 .

However, we cannot extend this approach to non-binary color settings. Instead, if we allow
relaxing c-balanced constraint to c′-balanced district with c′ slightly larger than c, the
standard bucketing algorithm mentioned above can directly work even for the non-binary
color setting.

Adapting to the Star Districting Setting

We note that this dynamic programming approach also works for star districts on tree graph
and yields an FPTAS. Similar to the arbitrary districts setting, we consider three cases for
each v: the absent case where v is not included in any district; the consolidating where v

is in a star district that is contained in its descendants; the incomplete case where v is the
center of a star district that is incomplete.
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A Omitted Proofs from Section 3

Throughout, we refer type-1 vertices as vertices that have non-zero weight p1 and zero weight
of p2 and type-2 vertices as vertices with non-zero weight p2 and zero weight of p1.

▶ Theorem 4. The c-balanced districting problem does not have an n1/2−δ-approximation
(for any constant δ > 0) in a general graph unless P = NP. On a graph with maximum degree
∆, one cannot approximate the c-balanced districting problem within a factor of ∆/2O(

√
∆)

assuming P ̸= NP, and O(∆/ log2 ∆) assuming the Unique Games Conjecture (UGC). Even
if ∆ is a constant, the problem is APX-hard. These statements hold when the districts must
be stars and when the centers of the stars are limited to a subset of vertices.
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Proof. We take an instance of maximum independent set problem and turn it into an instance
of c-balanced districting problem. Given a graph G = (V, E), n = |V | and m = |E|. Denote
by ∆ the maximum degree of G. For each vertex v ∈ V , we create a vertex v′ in graph G′

with type-1 weight of (c− 1)∆ and type-2 weight of 0. There are n = |V | = |V ′| such “type-1
vertices”. We also have a set of “type-2 vertices” V ′′ with type-2 weight of 1 and type-1
weight of 0. Each vertex v′ ∈ V ′ has exactly ∆ type-2 neighbors. If u, v has an edge in G,
in G′, u′ and v′ share one type-2 vertex, which corresponds to the edge between u, v in G.
See Figure 1. If the degree of u is less than ∆, the corresponding vertex in G′ may have
some dangling (degree-1) type-2 vertices. The total number of type-2 vertices is n∆ −m.
Thus the total number of vertices in G′ is n(∆ + 1)−m and the number of edges in G′ is
n∆. In order for a type-1 vertex u′ to be covered, all its type-2 neighbors must be used.
Thus a maximum independent set S in G means we can cover all corresponding vertices of S

in G′ as well as all their type-2 neighbors, leading to a total coverage population of |S|∆.
Similarly, if we can find a c-balanced districting problem in G′, the type-1 vertices that are
covered in c-balanced districts cannot share any common type-2 neighbors, and therefore the
corresponding vertices in G must be independent. This reduction works when the district
must be a star.

G G′

Figure 1 Graph G and G′. ∆ = 3 in this instance. The hallow vertices of G′ have type-1 weight
of 3(c − 1) and the solid vertices of G′ have type-2 weight of 1.

This reduction shows hardness of approximation, as an α-approximation for maximum
independent set means an α-approximation for c-balanced districting problem, for any c. The
maximum independent set cannot be approximated by a factor of n1−δ for any constant δ > 0
on general graph [7, 58]. If we have an approximation algorithm for the districting problem
with approximation factor O(N1/2−δ) with N as the number of vertices in the districting
graph G′, by the reduction N = O(n∆) and this gives an O((n∆)1/2−δ) = O(n1−2δ) for the
maximum independent set problem on G, since ∆ < n, which is impossible unless P = NP.

As the maximum degree in both G and G′ is ∆, approximating the balanced districting
problem in G′ with some factor depending on ∆ gives the same approximation factor for
the maximum independent set in G. For bounded degree graphs, the maximum independent
set has a constant approximation [40], but is APX-complete [20] and cannot expect an
approximation ratio better than ∆/2O(

√
∆) unless P = NP [55]. Further, assuming the

Unique Games Conjecture, one cannot approximate the maximum independent set problem
within a factor of O(∆/ log2 ∆) [5]. These (conditional) hardness results extend to balanced
star districting problem on graphs with maximum degree ∆. This finishes the argument. ◀

B Separation Oracle and Randomized Rounding

B.1 Separation Oracle: Proof of Lemma 7
▶ Lemma 7. Given an input instance G = (V, E, (p1, p2)), re-weighted values w′ : V →
{0} ∪ [ 1

w(G) , w(G)], and dual variables y′
v ∈ [n−(1+1/ε), 1 + ε] for each vertex v ∈ V ,

there exists an algorithm that either reports that Sviolate = ∅, or returns a c-balanced
district S such that

∑
v∈S y′

v < (1 − ε/2)w′(S) and w′(S) ≥ 1
2 w′(Smax), where Smax =

arg maxS∈Sviolate w′(S) is a violating c-balanced district with the maximum value. The al-
gorithm runs in O(ε−6n6(log n)(log w(G))4) time.
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Proof. We generalize Algorithm 1 to accommodate dual variables. In particular, we will
maintain a candidate list L with the following property: For any c-balanced district S,
there exists a district T ∈ L such that (1) (p1(S), p2(S)) is an (ε/10)-approximate of
(p1(T ), p2(T )), and (2)

∑
v∈S w′(v)/

∑
v∈T w′(v) ∈ [e−ε/10, eε/10]. Recall that from the proof

of Theorem 14 we defined that a pair of numbers (q1, q2) is an ε-approximate to (q′
1, q′

2) if
both q1/q′

1, q2/q′
2 ∈ [e−ε, eε]. The above property suggests that we add a third dimension for

y′
v to the list, and modify the trimming algorithm slightly – we will not trim the solution if

their
∑

v∈S y′
v values are too far from each other.

We now prove that the final list contains a c-balanced district that is a weakly violating
constraint. Consider the population of commodities (p1(Smax), p2(Smax)) of Smax. Without
loss of generality, assume that p1(Smax) ≥ p2(Smax). Then, by the property we stated above,
there exists a district S ∈ L that satisfies:

(c− 1)p2(S)− p1(S) ≥ (c− 1)p2(Smax)− p1(Smax) (maintained by Algorithm 1)
≥ 0, and

(c− 1)p1(S)− p2(S) ≥ (1− ε/10)(c− 1)p1(Smax)− (1 + ε/10)p2(Smax)
≥ ((1− ε/10)(c− 2)− (ε/5)) p2(Smax)
≥ 0 (whenever ε ≤ c−2

c )

The above inequality shows that S is indeed c-balanced. Furthermore, we have∑
v∈S y′

v/
∑

v∈Smax
y′

v ∈ [e−ε/10, eε/10]. Thus, we are able to show that S is a weakly
violating constraint:∑

v∈S

y′
v ≤ eε/10 ·

∑
v∈Smax

y′
v

≤ eε/10 · (1− ε) · w′(Smax) (Smax is strongly violating)

≤ eε/10 · (1− ε) · eε/10 · w′(S)

≤ eε/5 · (1− ε) · w′(S) ≤ (1− ε/2) · w′(S). (ε > 0)

On the other hand, we have

w′(S) ≥ e−ε/10 · w′(Smax) ≥ 1
2w′(Smax),

certifying that the output S satisfies all the constraints from the lemma statement.
Let us now analyze the runtime of the algorithm. It suffices to analyze the number of

scales at the new dimension. Since each value y′
v is at least n−(1+1/ε) and is at most 1 + ε,

the number of scales in the third dimension can be bounded by

logeε/10
1 + ε

n−(1+1/ε) = ln(1 + ε) + (1 + 1/ε) ln n

ε/10 = O(ε−2 ln n).

Together with the analysis in Theorem 14, the runtime of this generalized algorithm for the
complete graph, including maintaining a solution, is O(ε−6n6(log n)(log w(G))4). ◀

B.2 Proof of Randomized Rounding
▶ Lemma 15. The randomized rounding algorithm from the fractional LP solution produces
an expected weight for output districting I as

E[w(I)] ≥
∑

S∈SLP

w(S)xS

τ
−

∑
A,B∈SLP: A∩B ̸=∅

min(w(A), w(B))xAxB

τ2 .
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Proof. Consider a district S with non-zero value xS , it is selected into I only if two events
happen: (1) the coin flip with probability xS/τ turns out to be true; and (2) all the districts
with value at least xS are not included in I – their coin flips are false. The probability of
both events happening is

xS

τ
·

∏
A∈SLP:A∩S ̸=∅,w(A)≥w(S)

(
1− xA

τ

)
≥ xS

τ
·
(

1−
∑

A∈SLP:A∩S ̸=∅,w(A)≥w(S)

xA

τ

)

Now, by linearity of expectation, we have

E[w(I)] ≥
∑

S∈SLP

w(S)xS

τ
·
(

1−
∑

A∈SLP:A∩S ̸=∅,w(A)≥w(S)

xA

τ

)
=
∑

S∈SLP

w(S) · xS

τ
−

∑
S,A∈SLP:A∩S ̸=∅,w(A)≥w(S)

w(S) · xSxA

τ2

=
∑

S∈SLP

w(S) · xS

τ
−

∑
A,B∈SLP: A∩B ̸=∅

min(w(A), w(B)) · xAxB

τ2 . ◀

For any δ ≥ 0, let S≥δ be the set of all districts S ⊆ SLP whose weight is at least δ. The
following lemma connects the unweighted correlation between overlapped districts and the
expected approximation ratio to the randomized rounding algorithm.

▶ Lemma 16. Let τ ∈ R>0 be a fixed value. Suppose that for all δ > 0,∑
A,B∈S≥δ:A∩B ̸=∅

xAxB ≤ (τ/2) ·
∑

S∈S≥δ

xS , (5)

then E[w(I)] ≥ 1
2τ

∑
S w(S) · xS.

Proof. We first sort all districts in SLP in the non-increasing order of weights. Let
S1, S2, . . . , St be such a list. For each district Si, its weight w(Si) can be written as

w(Si) =
t∑

j=i

(w(Sj)− w(Sj+1)).

Here for convenience we define w(St+1) = 0. Using the above expression, we are able to
establish that∑

A,B∈SLP: A∩B ̸=∅

min(w(A), w(B)) · xAxB

τ2

=
t∑

i=1

i−1∑
ℓ=1

I[Sℓ ∩ Si ̸= ∅] · w(Si) ·
xSi

xSℓ

τ2

=
t∑

i=1

i−1∑
ℓ=1

I[Sℓ ∩ Si ̸= ∅] ·

 t∑
j=i

(w(Sj)− w(Sj+1))

 · xSi
xSℓ

τ2

=
t∑

j=1

(
w(Sj)− w(Sj+1)

)
·

(
j∑

i=1

i−1∑
ℓ=1

I[Sℓ ∩ Si ̸= ∅] ·
xSi

xSℓ

τ2

)

=
t∑

j=1

(
w(Sj)− w(Sj+1)

)
·

 1
τ2 ·

∑
A,B∈S≥w(Sj ): A∩B ̸=∅

xAxB


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≤
t∑

j=1

(
w(Sj)− w(Sj+1)

)
·

 1
τ2 ·

τ

2 ·
∑

S∈S≥w(Sj )

xS

 (by (5))

= 1
2τ

t∑
j=1

j∑
i=1

(
w(Sj)− w(Sj+1)

)
· xSi

= 1
2τ

t∑
i=1

xSi
·

t∑
j=i

(
w(Sj)− w(Sj+1)

)

= 1
2τ

t∑
i=1

w(Si) · xSi

Finally, we have

E[w(I)] ≥
∑

S∈SLP

w(S)xS

τ
−

∑
A,B∈SLP: A∩B ̸=∅

min(w(A), w(B))xAxB

τ2 (by Lemma 15)

≥ 1
τ

∑
S∈SLP

w(S)xS −
1
2τ

∑
S∈SLP

w(S)xS

= 1
2τ

∑
S∈SLP

w(S)xS

as desired. ◀

C Omitted Proofs from Section 5

▶ Theorem 14. There exists an FPTAS algorithm solving Complete-Graph-c-Balanced-
Districting so that for all c > 2, 0 < ε < 1

2 ln(c − 1), and complete graph (V, E) of n

nodes with functions of weights p = (p1, p2), the algorithm outputs an eε-approximation in
O
(
ε−4n6(ln w(V ))4) time where w(V ) =

∑
v∈V p1(v) + p2(v).

Proof of Theorem 14. Given an arbitrary ordering on blocks, let Li be the set of all values
that can be obtained by selecting some subset of the first i blocks {v1, . . . , vi},

Li =

∃S ⊆ [i],
∑
j∈S

p(vj)

 ⊂ Z2
≥0.

We use induction to show that Li
1 in Algorithm 1 is an (ℓ1, εi

n )-trimmed of Li for all i. The
base case i = 0 is trivially holds as L0 = ∅. Suppose Li−1

1 is an
(

ℓ1, ε(i−1)
n

)
-trimmed of

Li−1. For any q + p(vi) ∈ Li \Li−1 with q ∈ Li−1, by the induction hypothesis, there exists
q′ ∈ Li−1

1 which ε(i−1)
n -approximates and ℓ1-dominates q. Because p1(vi), p2(vi) ≥ 0,

q′
1 + p1(vi)

q1 + p1(vi)
,

q′
2 + p2(vi)

q2 + p2(vi)
∈ [e

−ε(i−1)
n , e

ε(i−1)
n ] and ℓ1(q′ + p(vi)) ≥ ℓ1(q + p(vi)).

On the other hand, by the definition of Li
1, for any q′ + p(vi) ∈ Li−1

1 + p(vi) there exists
q′′ ∈ Li

1 so that

q′′
1

q′
1 + p1(vi)

,
q′′

2
q′

2 + p2(vi)
∈ [e

−ε
n , e

ε
n ] and ℓ1(q′′) ≥ ℓ1(q′ + p(vi))
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Combining these two proves that q′′ εi
n -approximates and ℓ1-dominates q + p(vi). The

identical argument holds for all q ∈ Li−1 ⊆ Li. Thus, we show Li
1 is an (ℓ1, εi

n )-trimmed of
Li for all i. Similar argument applies to Li

2.
Let q∗ be the optimal c-balanced value in Ln. Suppose q∗

2 ≥ q∗
1 . Since Ln

1 is (ℓ1, ε)-
trimmed to Ln, there exists q′ ∈ Ln

1 that ε-approximates and ℓ1-dominates q∗. Because q′

ε-approximates q∗, the approximation guarantee holds, q′
1 + q′

2 ≥ e−ε(q∗
1 + q∗

2). Now we show
q′ is also c-balanced. Because q∗ is c-balanced and q′ ℓ1-dominates q∗,

0 ≤ (c− 1)q∗
1 − q∗

2 = ℓ1(q∗) ≤ ℓ1(q′).

Moreover, because q∗
2 ≥ q∗

1 and q′ ε-approximates q∗, we have

(c− 1)q′
2 ≥ (c− 1)e−εq∗

2 ≥ (c− 1)e−εq∗
1 ≥ (c− 1)e−2εq′

1 ≥ q′
1

where the last inequality holds because 1
2 ln(c− 1) ≥ ε. Combining these two, we have ℓ1(q′)

and ℓ2(q′) ≥ 0 completing the proof. Similarly, if q∗
2 ≥ q∗

1 , there exists an ε-approximation
and c-balanced solution in Ln

2 .
The running time of i-th iteration is O(|Li

1|2 + |Li
2|2) which can be bounded as the

following. Consider a geometric grid with vertices in {(e
j
n ε, e

k
n ε) : j, k = 0, . . . , ⌈n

ε ln w(V )⌉}.
Because Li

1 ⊆ [w(V )]2 and no two points in can be in a same rectangle after trimming, the
size of Li

1 is bounded by the size of grid O(n2

ε2 (ln w(V ))2). Therefore, the running time of
Algorithm 1 is O( n5

ε4 (ln w(V ))4). The additional n in the theorem statement is to reconstruct
the set. ◀
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