
Tiers, Paths, and Syntactic Locality: The View from Learning

Kenneth Hanson

Department of Linguistics

Stony Brook University

Stony Brook, NY 11794, USA

kenneth.hanson@stonybrook.edu

Abstract

Many long-distance linguistic dependencies

across domains can be modeled as tier-based

strictly local (TSL) patterns (Graf, 2022a).

Such patterns are in principle efficiently learn-

able, but known algorithms require unreal-

istic conditions. In contrast, Heuser et al.

(2024) present an empirically-grounded algo-

rithm which learns syntactic islands by tracking

bigrams along movement paths, but does not

involve tiers. I combine the advantages of both

approaches by adapting the latter algorithm to

produce a TSL grammar. This method is capa-

ble of learning other syntactic blockers besides

islands, and augments the typological predic-

tions of the TSL model with a version of the

Height-Locality Connection (Keine, 2019).

1 Introduction

The tier-based strictly local (TSL) languages are a

restrictive class of subregular languages over strings

or trees which model a wide range of long-distance

linguistic dependencies, from consonant and vowel

harmony to movement and case licensing (cf. Heinz,

2018; Graf, 2022a). Elements which are irrelevant

to a given dependency are treated as invisible, and

those remaining are treated as adjacent, forming

a structure called a tier. From this perspective, a

syntactic or phonotactic grammar consists of many

intersecting TSL patterns with different tiers. For

syntax, these include tiers for wh-movement, EPP-

movement, č-agreement, etc., plus a tier including

all elements to regulate local dependencies.

Generally speaking, linguistic dependencies are

subject to various blocking effects, including local-

ity restrictions such as the lack of raising out of

finite clauses in English (known as hyperraising)

as well as the well-known island constraints (see

Belletti 2018 for an overview). Exactly which ele-

ments block which dependencies varies somewhat

across languages, though there are some general

tendencies (Keine, 2019). Roughly speaking, it is

assumed in the TSL model that dependent elements

must be adjacent on a tier; if any other elements

intervene on the tier then blocking effects result.

Thus, variation in blockers across languages and

phenomena equates to differences in the relevant set

of tier elements. For example, all C heads appear

on the EPP-movement tier in English, but not in a

language which allows hyperraising (Graf, 2022b).

While this parameter of the model allows good

empirical coverage, it also presents a learning diffi-

culty due to the large number of logically possible

tiers, which grows exponentially with the number

of elements (segments or syntactic heads). There

exist efficient algorithms for learning TSL string

patterns, but they either require the tier elements

to be fixed in advance (Lambert et al., 2021) or

they are not robust against interaction with other

constraints (Jardine and McMullin, 2017; Lambert,

2021). The problem is particularly acute for syntax,

for even if we can reduce the problem to learning of

TSL string languages, the number of tiers and the

size of a syntactic lexicon make exhaustive search

completely impractical.

A solution may be found by looking to

empirically-motivated models of child language

acquisition. Heuser et al. (2024) present a model

for learning island constraints which constructs a

grammar of local bigrams from attested movement

paths, supplemented by generalization by the Tol-

erance Principle (Yang, 2016). They also show

that this model makes correct generalizations based

on a realistic input distribution. This approach is

interesting in that it circumvents the difficulties of

tier detection, but only because it lacks tiers alto-

gether: the resulting grammar is strictly local (SL)

rather than TSL. This brings several limitations,

particularly that it can only recognize movement

paths which have been delimited in advance.

Ideally, we would like to combine the generality

and typological success of the TSL model with

an efficient, linguistically-motivated learning algo-

rithm such as that in Heuser et al. (2024). Towards

this end, I adapt their algorithm to produce TSL

grammars as used in subregular syntax. I also

draw attention to several linguistically interesting

aspects of the model, which derives a version of the

Height-Locality Connection—the observation that

higher categories in the clausal spine are subject to

fewer locality restrictions—similar to that given in

Keine (2019). It is also equally applicable to other

pairwise dependencies such as agreement.

The remainder of this paper is laid out as follows.

§2 presents a model of syntactic dependencies

based on ancestor strings (Shafiei and Graf, 2020),

whose grammars will be our learning target. §3

adapts the algorithm from Heuser et al. (2024) to

the subregular framework, and §4 modifies it to

produce a TSL grammar. §5 shows how this model

derives a version of the Height-Locality Connection.

§6 concludes.

2 Subregular syntax with ancestor strings

This section introduces the class of TSL string

languages along with a model of syntactic depen-

dencies based on ancestor strings (a-strings, Shafiei

and Graf 2020). We begin with the more restric-

tive class of strictly local or SL languages, which

model local linguistic dependencies, before moving

on to the TSL languages. Examples of string-like

constraints from syntax are provided. From there,

we discuss the syntactic framework which provides

the relevant strings, and the limits of this model.

2.1 Strictly local languages

Many classes of subregular languages, including

SL and TSL, are defined in terms of ġ-factors,

which for these classes are substrings, i.e. discrete

ġ-grams. The definitions here follow Mayer (2021).

Let Σ be a fixed alphabet, let ĩ be a string over Σ∗,

and let ì,ë ∉ Σ be the left and right edge markers.

The set Ĝġ (ĩ), the ġ-factors of ĩ, consists of all

the length-ġ substrings of ìġ−1ĩëġ−1 where ġ g 1.

For example, Ĝ2(ėĘėĘėę) = {ìė, ėĘ, Ęė, ėę, ęë}.

An SL grammar is just a set of forbidden ġ-

factors of fixed width, and its language consists

of all strings which do not contain any of these

ġ-factors. Formally:

Definition 1 A strictly ġ-local (SL-ġ) grammar is

a set ă ¦ (Σ ∪ {ì,ë})ġ . A language Ĉ ¦ Σ∗ is

SL-ġ iff there exists an SL-ġ grammar ă such that

Ĉ = {ĩ ∈ Σ∗
: Ĝġ (ĩ) ∩ ă = ∅}.

Alternatively, an SL-ġ grammar can be defined

in terms of permitted ġ-factors. A set of forbidden

factors is a negative grammar; its complement,

the set of permitted factors, is a positive grammar.

There are circumstances where either form may

be more convenient. When necessary, these will

be disambiguated using a superscript: ă+ for a

positive grammar and ă− for a negative grammar.

Example 1 Consider the hierarchy of functional

categories in a typical English clause. In the sen-

tence The pizza has been eaten, it consists of the

sequence of categories T ·Perf ·Prog · v. Let us

assume that the general form of the hierarchy is

T > (Perf) > (Prog) > (Pass) > v

where categories in parentheses are optional.

The set of licit sequences in a functional hierarchy

can be encoded using an SL-2 grammar. Though

modeled as a string, in the syntactic framework to

be developed in §2.3, it represents a path through

part of the tree. The positive grammar is as follows

(ignoring edge markers for simplicity):

ă+ =





T Perf,

T Prog, Perf Prog,

T Pass, Perf Pass, Prog Pass,

T v, Perf v, Prog v, Pass v





The corresponding negative grammar is:

ă− =





T T, Perf T, Prog T, Pass T, v T,

Perf Perf, Prog Perf, Pass Perf, v Perf,

Prog Prog, Pass Prog, v Prog,

Pass Pass, v Pass,

v v





Every 2-factor in our example string appears only

in the positive grammar.1 @

2.2 Tier-based strictly local languages

A TSL language is similar to an SL language except

that certain symbols are ignored. LetĐ ¦ Σ be a tier

alphabet. The string ÿĐ (ĩ) is the tier projection

of ĩ, the result of deleting all Ă in ĩ such that

Ă ∉ Đ , and concatenating those that remain. For

example, if Σ = {Į, ė, Ę, ę} and Đ = {ė, Ę, ę} then

ÿĐ (ėĮĮĘĮĮę) = ÿĐ (ĮĮĮėĘęĮĮĮ) = ėĘę.

Definition 2 A tier-based strictly ġ-local (TSL-ġ)

grammar is a tuple (Đ, ă), whereĐ is a tier alphabet

and ă is an SL-ġ grammar over Đ . A language

Ĉ ¦ Σ∗ is TSL-ġ iff there exists a TSL-ġ grammar

such that Ĉ = {ĩ ∈ Σ∗
: Ĝġ (ÿĐ (ĩ)) ∩ ă = ∅}.

1It is not necessary for every functional head to always
be present. If syntax includes SL computations then it can
implement functional hierarchies just as easily as category
selection. See Hanson (2023) for details.

By definition, all symbols not in Đ may be freely

inserted and deleted without affecting the well-

formedness of a given string w.r.t. a given TSL

grammar, a fact that will be important to the discus-

sion of tier identification in §4.2.

Example 2 DP subjects in English are thought to

move to Spec-TP, whether from inside vP or an

embedded non-finite TP (the raising construction);

they cannot move from a finite CP (hyperraising).

Examples are given in (1) below. This dependency—

call it EPP-movement—can be encoded with a TSL-

2 grammar which requires the mover and landing

site (marked with an “EPP” subscript) to be adjacent

on a tier. In anticipation of the syntactic framework

to be developed, we model this dependency with a

string which encodes each head along the movement

path, projecting a tier that contains only the relevant

elements (movers, landing sites, and blockers).2

(1) a. We [vP have a problem].

Path: ì ·Depp · v · Tepp ·ë

Tier: ì ·Depp · Tepp ·ë

b. We seem [TP to have a problem].

Path: ì ·Depp · v · T ·V · v · Tepp ·ë

Tier: ì ·Depp · Tepp ·ë

c. *We seem [CP that have a problem].

Path: ì ·Depp · v · T ·C ·V · v · Tepp ·ë

Tier: ì ·Depp ·C · Tepp ·ë

Depp and Tepp are adjacent on the tier in the licit

examples (tier ì ·Depp · Tepp ·ë) but not in the hy-

perraising example (tier ì ·Depp ·C · Tepp ·ë). As

will be discussed shortly, we aim only to ensure that

the mover is immediately followed by the landing

site. Accordingly, we only need to ban substrings

which consist of a mover followed by anything else.

Thus, we have the following grammar:

(2) Grammar for EPP-movement

Đ = { Depp, Tepp, C }

ă− = { Depp ·Depp, Depp ·C, Depp ·ë }

The reader may confirm that the tier for the hyper-

raising example contains the illicit 2-factor Depp ·C,

while the tiers for the grammatical examples con-

tains no illicit 2-factors. @

Essentially, a TSL grammar allows us to ignore

elements like VP, NP, etc., which are irrelevant to

the long-distance dependency in question. The next

subsection introduces a syntactic framework which

provides the strings assumed in the above examples.

2Following MG convention, intermediate landing sites are
not modeled directly.

Tpres :: epp+

v

seem

to

v

we :: epp− have

a

problem

Tpres :: epp+

v

seem

that

Tpres

v

we :: epp− have

a

problem

Figure 1: Dependency trees for We seem to have a

problem (left) and *We seem that have a problem (right)

showing a-strings for moving elements. In the latter

structure, that intervenes, preventing movement.

2.3 Dependency trees and ancestor strings

Following recent work in subregular syntax (Shafiei

and Graf, 2020; Graf, 2022b, a.o.), I use MG depen-

dency trees for the syntactic representation. Exam-

ples for sentences (1b) and (1c) are given in Figure 1.

In these trees each node is a lexical item; compared

to X-bar trees, each head and its projections are col-

lapsed into a single node. The daughters of a node

are its arguments, ordered from right to left in order

of first merge, such that the rightmost daughter is

the complement and all others are specifiers. For

example, the right daughter of embedded v is the

head of the complement VP, and the left daughter

is the head of the DP subject (its specifier). In

addition, each node is annotated with MG features

guiding the Merge and Move operations (cf. Stabler,

1997, 2011). Since we are not concerned with local

dependencies here, only Move features are shown.

Positive features mark landing sites, and negative

features mark moving elements. For example, finite

T bears epp+ and the subject D head bears epp−.

Note that all elements appear in their base positions

only, as in standard MG derivation trees.

Let us now implement a string-based model of

movement constraints in which we extract the path

from each mover to the root of the tree. Essen-

tially, we take the order imposed by the (inverted)

dominance relation and ignore the sibling relation.

Shafiei and Graf (2020) call such paths ancestor

strings, or a-strings, which they used to model

a subset of the island constraints, including the

wh-island constraint and the complex NP island

constraint. First, we will see how this works for

EPP-movement, then briefly discuss wh-movement.

Example 3 In order to keep the notation concise, I

substitute most lexical items with their categories,

and place the movement features as subscripts with-

out the +/− diacritic, as before. Thus, the a-strings

for the EPP movers in the structures in Figure 1 are:

Raising (6): Depp · v · T ·V · v · Tepp

Hyperraising (:): Depp · v · T ·C ·V · v · Tepp

These are exactly the same strings as before, so

we can continue to use the grammar in (2). @

Example 4 The wh-island constraint can be de-

scribed as a ban on A′-movement paths (including

but not limited to wh-movement) which are inter-

rupted by an interrogative CP, as illustrated by the

difference between (3a) and (3b). Movement paths

(a-strings) and their wh-tiers are included below

each example, and the full structures are shown in

Figure 2. For simplicity, we abstract away from

EPP-movement and model only wh-movement.

(3) a. What did you think that John ate ?

Path: Dwh ·V · v · T · that ·V · v · T ·Cwh

Tier: Dwh ·Cwh

b. *What did you wonder whether John ate

?

Path: Dwh ·V · v · T ·whether ·V · v · T ·Cwh

Tier: Dwh ·whether ·Cwh

We can construct a very similar grammar to the

previous one which captures this blocking effect:

(4) Grammar for wh-island constraint

Đ = { Dwh, Cwh, whether }

ă− = { Dwh ·Dwh, Dwh ·whether, Dwh ·ë }

As before, the tier projection for the island violation

contains the illicit 2-factor Dwh ·whether, while the

non-island structure contains no such 2-factors. @

Cwh :: wh+

Tpast

v

you think

that

Tpast

v

John eat

what :: wh−

Cwh :: wh+

Tpast

v

you wonder

whether

Tpast

v

John eat

what :: wh−

Figure 2: Dependency trees for What did you think that

John ate? (left) and *What did you wonder whether John

ate? (right). In the latter structure, whether intervenes.

Note that because the a-string of a node extends to

the root of the tree, it may contain fragments of other

movement paths as well as nodes that are not part

of any movement path. Our grammar is constructed

in such a way that this does not pose an issue.

However, the approach does have several limitations,

as discussed below. Additionally, applying Heuser

et al.’s algorithm to a-strings requires this extra

material to be removed, as discussed in §3.

Also note that TSL grammars such as those in

(2) and (4) enforce only these constraints and no

others. As alluded to in the introduction, we must

intersect these and other constraints, including local

constraints, to produce a multi-TSL (MTSL) gram-

mar. This is just a set of pairs of tier alphabets and

associated constraints (grammars with the same tier

alphabet can be intersected directly); see De Santo

and Graf (2019) for details.

2.4 The strengths and limitations of a-strings

A-strings encode only enough information to en-

force constraints base on containment (dominance)

from the perspective of the mover. Shafiei and Graf

(2020) use them to model island constraints, and as

we have seen, certain other blockers can be handled

in the same manner. We can also ensure that the

mover has a landing site and capture some cases of

relativized minimality, namely those where a mover

contains another mover of the same type.

So, what can a-strings not do? Notably, they

do not allow us to ensure that every landing site

has exactly one mover. This requires tree tiers,

as in Graf (2022b). They also cannot handle all

cases of relativized minimality, as c-commanding

specifiers do not appear in an a-string; this requires

the command strings (c-strings) of Graf and Shafiei

(2019). Additionally, to model specifier islands,

information encoding left branches must be added

to the string. See Shafiei and Graf (2020) for further

discussion. The focus of this paper is on learning

the tier alphabet; for this the a-string model will

suffice, and the results should in principle extended

to more complete models.

3 Distributional learning of syntactic

blockers

I now describe the algorithm from Heuser et al.

(2024), adapted to the syntactic framework pre-

sented in the previous section. We then discuss

the ways in which the algorithm can do more than

it was originally intended to, but being essentially

an SL learner rather than a TSL learner, is not a

complete solution on its own.

3.1 Preliminaries

The algorithm assumes that the learner has already

parsed the input and identified both moved elements

and their initial positions. Now, they must deter-

mine the licit paths from the mover to the landing

site for each type of movement. This can be cast

as the learning an SL-2 grammar over (truncated)

a-strings for each movement dependency. It is also

assumed that the learner will generalize to unseen

paths via the Tolerance Principle (TP, Yang 2016).

The equates to a procedure for adding some but not

all missing ġ-factors to the grammar.

While some readers may worry about taking the

tree structure as a given, this essentially reduces

to the assumption that long-distance syntactic de-

pendencies are parasitic on local constituent struc-

ture, which must be learned regardless. Similarly,

some other mechanism is responsible for identify-

ing moved elements. It is conceivable that each

of these can be learned distributionally with the

TP, though such work is still in its infancy. See,

e.g., Liang et al. (2022) regarding the learning of

syntactic categories, and Li and Schuler (2023)

regarding recursive embedding.

3.2 Tracking bigrams

Consider the wh-object question in (5), assumed

to be in the input. The learner gathers from this

that what · eat · v · Tpast ·Cwh is a licit movement

path, but does not know (yet) that every sequence

of categories Dwh ·V · v · T ·Cwh is a licit path.

(5) a. What did John eat ?

b. C :: wh+

Tpast

v

John eat

what :: wh−

c. a-string: what · eat · v · Tpast ·Cwh

The learner begins memorizing the attested 2-

factors from each path, which is just the proce-

dure for learning a (positive) SL-2 string grammar

(Heinz, 2010). From the current example, they

learn that { what · eat, eat · v, v ·Tpast, Tpast ·Cwh }

are all licit 2-factors.3 Heuser et al. show that

because functional categories like v and T are few

3I continue to ignore edge markers for simplicity.

in number and frequent in the input, the learner

will discover that all combinations may occur. For

example, they will learn that wh-movement may

occur over transitive and intransitive v, past and

present tense, and so on.

Note that we must truncate of the a-string at

the landing site when it is not the root, since the

portion beyond the landing site may contain bigrams

which cannot occur along the movement path. For

example, in the sentence Who wonders what John

ate?, the full a-string for what contains the bigram

Cwh ·wonder. If not excluded, the learner would

conclude that movement over interrogative C is

permitted. We will return to this issue in §3.5.

3.3 Generalizing with the Tolerance Principle

With regard to lexical categories such as verbs, the

learner needs to invoke the TP. Given a class of Ċ

items and a proposed generalization, the TP states

that the learner will adopt the generalization iff the

number of items ĉ in this class which are known to

fit the generalization exceeds a threshold ĂĊ , where

ĂĊ = Ċ/ĢĤ(Ċ)

In this case, Ċ is the total number of verbs they

have learned, and ĉ is the number that have been

attested with wh-movement. Heuser et al. show

that for English, wh-movement of objects occurs

with a large proportion of the most frequent verbs

in child-directed speech—the number of exceptions

far below the threshold—so the learner will adopt

the generalization that wh-movement is permitted

across all verbs. This is equivalent to adding all

missing 2-factors of the form Dwh ·V and V · v to

the grammar.4

This brings us to islands. Once the learner ob-

serves cross-clausal movement from an embedded

declarative such as (3a), they will add Tpast · that

and that · think to the grammar. But if movement

across a certain structure, such as the wh-island

violation in (3b), is not attested, and the TP does not

permit generalization, then the relevant 2-factors

will never be added to the grammar. Heuser et al.

(2024) show that this is indeed what we expect for

“strong islands” in English. They also show how

this derives the fact that not all verbs which take

CP complements allow wh-movement, forming so-

called “selective islands”. Although the learner

4The TP does not provide the class of possible generaliza-
tions, only whether a given generalization is “good enough”.
For present purposes, I assume that syntactic categories such
as V/A/N/P/T/C are the only conditioning factors.

observes wh-movement across verbs like think and

say, they do not observe movement across verbs

such as complain and quip, and there are too many

such verbs for the TP to permit generalization to

the full class of verbs which select for a CP.

3.4 Beyond islands

To briefly summarize, the algorithm constructs a

positive SL-2 grammar encapsulating the crucial

information about licit and illicit movement paths

where blockers are effectively encoded as missing

2-factors. Although not discussed by Heuser et al.

(2024), the approach is equally applicable to other

restrictions on movement such as those discussed

by Keine (2019), which are the focus of §5.

It is also applicable to non-movement dependen-

cies, to the extent that pairs of dependent items can

be identified. Shafiei and Graf (2020) note that

constraints on long-distance linguistic patterns tend

to take involve a domain and blockers within that

domain. For movement, the domain elements are

movers and their landing sites, while for agreement

we have, in Minimalist terms, elements with unval-

ued and valued features of the same type. Indeed,

Keine’s version of the Height-Locality Connec-

tion treats movement and agreement equally. If

these are learned in the same way, then we have an

explanation for this close correspondence.

Finally, note that the same properties that al-

low learning of weak islands also allow for cross-

linguistic variation such as the availability of hyper-

raising (Charles Yang, p.c.). Specifically, it predicts

that hyperraising should only be allowed if robustly

attested in the input. This, of course, raises the

question of how such structures ever arise. But we

could just as easily ask the same of long-distance

wh-movement, which is by now known to be more

or less restrictive in different languages. For now,

we must set these diachronic questions aside.

3.5 Limitations of SL learning

The fact that the Heuser et al. (2024) algorithm is

essentially an SL learner means that the resulting

grammars cannot be applied to arbitrary a-strings,

only those which start with a mover and which are

truncated at the first landing site. This is because it

is in general not possible for an SL grammar to relate

two elements which do not occur in the same ġ-

factor. As a consequence, it is impossible to ensure

that there is exactly one landing site per mover,

nor to detect whether a blocker actually occurred

along a movement path and not somewhere else. In

contrast, our TSL grammars from §2 do not suffer

from either restriction.

Thus, truncating the a-string only creates the

illusion that SL is adequate. While this operation

is useful in the learning algorithm, including it in

the grammar would increase its power, producing

a class that is quite different from TSL.5 Instead,

what we want to do is to take the information that

was obtained using this technique and encode it

in a TSL grammar, which has the right formal

properties. This is the topic of the next section.

4 Constructing the tier

To review the discussion so far, we can frame our

learning problem as follows: given a corpus of MG

dependency trees, how do we discover the TSL

constraints on long-distance dependencies over a-

strings? In particular, how do we discover which

elements other than the dependent items are visible?

We have already seen how Heuser et al.’s path-

based algorithm forms the foundation of an appeal-

ing solution, but on its own is not enough. This

section begins with a more detailed summary of the

issues involved with TSL learning before attempt-

ing to bridge the gap by modifying the Heuser et al.

algorithm to produce a TSL grammar.

4.1 The problem of learning tiers

TSL languages are efficiently learnable given a fixed

tier alphabet and ġ-factor size(Lambert et al., 2021),

but this may not be a realistic assumption for natural

language. There is reason to think that the value

of ġ rarely exceeds 2 for long-distance constraints

(McMullin, 2016; Graf, 2022b; Hanson, 2024), but

it is far less clear that the tier alphabet can be

known in advance. Because the number of possible

tiers alphabets is exponential in the size of the

full alphabet (it is 2
|Σ |), we must avoid exhaustive

search of this space. While there exist efficient

(polynomial time) algorithms that determine the tier

alphabet from positive data (Jardine and McMullin,

2017; Lambert, 2021), these are not robust against

interaction with other constraints. Since natural

language almost always involves the interaction

of many constraints, this prevents such algorithms

from being used with real world data.

One way of tackling the problem is to find ways to

pare down the hypothesis space such that the brute

force method becomes practical. For example, we

5It would be a subclass of IBSP. Shafiei and Graf (2020)
also use IBSP, although in a very different manner.

could appeal to formal universals on the relations

between the alphabets of different tiers (Aksënova

and Deshmukh, 2018). Alternatively, we could

make use of substantive universals such as some

version of the Height-Locality Connection; Keine’s

(2019) version says that a “lower” category can be

a blocker for a “higher category”, e.g. v cannot be

a blocker for a landing site at T.

Another possibility, which I pursue here, is to

identify a set of heuristics which allows the learner

to discover the tier alphabet without ever engaging in

exhaustive search. In other words, the supposedly

impossible tiers are in fact perfectly valid, but

the learner will never posit them under normal

conditions due to the way in which they navigate

the hypothesis space. The crucial heuristic in this

case, taken from Heuser et al. (2024), is that by

restricting our attention to the path between two

dependent elements, we can identify its blockers,

which must appear on the same tier.

In this case, the Height-Locality Connection

becomes a side effect of the learning process rather

than a cause, and is also unified with the theory of

islands. As discussed earlier, the close similarity of

movement and agreement constraints is derived as

well. Yet another issue with existing TSL learners

is that they all involve exact identification in the

limit, whereas children must generalize from limited

data. Though orthogonal to our main focus, the

adoption of the TP largely solves this problem

as well. Altogether, the proposed approach not

only solves several major learnability problems for

the TSL model, but also adds several typological

predictions which are not inherent to the model.

4.2 From local to tier-based constraints

Existing TSL learners infer the tier alphabet by uti-

lizing a definitional property of a TSL-ġ language:

any symbol not on the tier can be freely inserted

and deleted without changing the well-formedness

of a string. As discussed by Lambert (2021), we

can do this by keeping track of just the sets of

attested local ġ-factors and (ġ+1)-factors. Since

the ġ-factors can themselves be obtained from the

(ġ+1)-factors, only the latter must be memorized.

Thus, in principle we can use the local 2-factors

discovered by Heuser et al. (2024)’s algorithm to

identify tier-based 1-factors, which are the blockers

themselves. By recombining these blockers with

the dependent items that bookend the path, we can

construct the desired TSL-2 grammar.

However, we have still not addressed the problem

of interaction with local constraints. Detecting free

insertion and deletion as described above requires

collecting every possible local (ġ +1)-factor in a

TSL language, but the existence of other constraints

means that this will never happen. For instance,

every permutation of every subset of a functional

hierarchy would have to occur in the input for these

elements to be removed from the tier.

I propose that we can solve this problem by using

the background grammar encoding local constraints

as the standard of comparison for free insertion and

deletion. Recall the behavior of our path-based

learner for wh-movement structures such as those

in (3a) and (5). After decomposing paths and

applying the TP, the resulting grammar will contain

a dense network of 2-factors of the form { Dwh ·V,

V · v, v ·T, T ·Cdecl, Cdecl ·V }, but not T ·whether

or whether ·V. All of these 2-factors are licit when

they do not occur along a wh-movement path, and

are therefore part of the local constraint grammar.

As a result, we can infer that whether is a blocker

due to the conspicuous absence of 2-factors which

contain it. In contrast, 2-factors like T · v (reverse

order) and V ·C (skipping T) are already missing

in the local constraint grammar, so their absence in

the movement path grammar can be ignored.

4.3 Algorithm

The proposed algorithm is as follows. Let ă2

Ĉ
be

the positive SL-2 grammar for local constraints

and ă2

ĉ
be the grammar for movement type ĉ.

Construct ă2

Ĉ
by collecting all 2-factors from all a-

strings, and construct ă2

ĉ
from truncated a-strings

as before. Add missing 2-factors to each where

permitted by the TP. Next, construct ă1

Ĉ
and ă1

ĉ

by decomposing the 2-factors in ă2

Ĉ
and ă2

ĉ
into

their constituent 1-factors.

Now we test for tier membership. Free deletion

is vacuous for TSL-1, since it is trivially true that

for every symbol, removing that symbol from an at-

tested 2-factor which contains it in a certain position

produces an attested 1-factor (this not necessarily

true for larger values of ġ).

The crucial test, corresponding to the free in-

sertion test, tests for factors missing from ă2

ĉ
but

present in ă2

Ĉ
. Let ă2

Ā
= ă2

Ĉ
\ ă2

ĉ
. For every

symbol, we ask if it can be added to either side

of 1-factor in ă1

ĉ
to produce a 2-factor in ă2

Ā
;

if so, then the symbol is a blocker. Finally, we

construct the target TSL-2 grammar, which consists

of 2-factors containing the mover followed by a

blocker, another mover, or the right edge marker.

Example 5 Given typical data, the grammar ă2

ĉ

for wh-movement will include all 2-factors of

the form { Dwh ·V, V · v, v ·T, T ·Cdecl, T ·Cwh }.

It also contains that · think and that · say but not

that · complain or that · quip. ă2

Ĉ
contains all of

these, so the difference ă2

Ā
includes that · complain

and that · quip. If we consider the elements com-

plain and quip, we could add that from ă1

ĉ
to

2-factors in ă2

Ā
, so they are blockers. In contrast,

even though that has containing 2-factors in ă2

Ā
,

these cannot be constructed by adding a symbol

from ă1

ĉ
, so they are not blockers. @

Based on examples like these, it would appear

that comparing just ă1

Ĉ
and ă1

ĉ
is sufficient, since

any element in ă1

Ĉ
but not ă1

ĉ
is guaranteed to

have a containing factor in ă2

Ā
. If this reasoning

is correct, it may be possible to simplify the above

procedure. However, it renders the relation to

Lambert (2021) opaque, and there may be corner

cases which have not been considered. Also, the

fact that movement paths are calculated from the

base position could affect the predictions of the

model when we look beyond EPP-movement and

wh-movement. I leave the investigation of such

details to future work.

4.4 Discussion

The reader may be wondering why we do not simply

track local 3-factors in order to directly infer tier-

based 2-factors. There are several problems with

this method, but first and foremost is that it greatly

increases data sparsity. Although Heuser et al.

(2024) found empirical success with local 2-factors,

it is not clear whether the TP will allow the same

generalizations when applied to 3-factors.

Next, I should describe how the model could

be extended beyond domain-based constraints on

movement. Handing agreement should be straight-

forward; we just need to add positive and negative

agreement features analogous to MG movement

features, as in Hanson (2024). Other dependencies

such as case assignment would require identification

of the relevant domain nodes (i.e. as in dependent

case theory), and we could in principle adapt the al-

gorithm to c-strings in order to identify constraints

on c-commanding elements.

Finally, I wish to briefly mention some alternative

approaches to learning long-distance syntactic de-

pendencies. Many of these are probabilistic models;

for example, the model in Pearl and Sprouse (2013)

tracks path trigram probabilities in order to learn

syntactic islands. This is not entirely dissimilar to

the present model, except that we do not attempt

to learn gradient constraints. It is, of course, possi-

ble to introduce gradience into subregular models;

see Mayer (2021) and Torres et al. (2023). The

present paper, by incorporating a TP-based model,

relegates the use of frequency/probability to a small

corner of the learning algorithm. In principle, we

could adapt it to produce a probabilistic TSL gram-

mar by comparing ġ-factor probabilities rather than

discrete ġ-factors.

5 On the Height-Locality Connection

The Height-Locality Connection (HLC) is the obser-

vation that restrictions on long-distance syntactic

dependencies correlate with the category of the

“height” of the upper element (e.g. landing site)

such that higher categories can enter into more

distant dependencies (Keine, 2019). While sev-

eral distinct theories can be found in the literature

(Williams, 2002; Abels, 2012, a.o.), the present

approach is most directly comparable to Keine’s

theory of Probe Horizons, in which each type of

probe (i.e. a head that hosts a landing site or un-

valued feature) has a horizon beyond which no

dependencies can be formed. In TSL terms, a hori-

zon is simply a blocker on a tier, and in this sense

no different from an island, a bounding node in the

binding theory, or any other such element. I show

here that the learning algorithm from the previous

section predicts a version of the HLC which is

similar though not identical to Keine’s.

For Keine, the horizon for each combination

of major category and active feature is lexically

specified. For example, finite T in English bears

some feature (which we have been calling epp+)

which triggers movement of the subject. This probe

can see into a non-finite TP, but not a finite CP.

Thus, C is a horizon for this dependency in English,

but it need not be so in other languages. Keine

shows T is a horizon for analogous A-movement in

Hindi; in languages with hyperraising neither T nor

C is a horizon. As we have discussed, this variation

is a core prediction of the TSL model as well.

However, according to Keine, it is not the case

that any category is a possible horizon for any

probe, only those that are at least as high as the

category of the probe. This means that a probe on

T can never have v or V as a horizon, for example.6

6I refer the reader to Section 5 of Keine (2019) regard-
ing the derivation of this generalization, which is based on

Restricting our attention to the basic clausal spine,

this yields the typology of possible horizons shown

in (6). Thus, we might rephrase the HLC as saying

that higher categories must have a larger locality

domain; lower categories may see just as far, but

have smaller domains as a tendency.

(6)
Category Possible Horizons

C C

T C, T

v C, T, v

Let us consider how such a generalization could

arise from the learning algorithm outlined here.

In the case of EPP-movement, the learner ob-

serves movement from Spec-vP in simple transitive

clauses, and out of VP in the case of unaccusatives

and passives. When all is said and done, V and v

do not appear on the tier, and so are not horizons.

If the learner also observes raising out of TP (as in

English), T will be removed as well, as will C in a

language with hyperraising, but for V and v this is

all but guaranteed, since DPs in general originate

within these phrases. By the same logic, the learner

will remove C from the tier for wh-movement only

if cross-clausal movement is observed (as it is in

English), but the observation of wh-object move-

ment even in simplex clauses necessarily rules out

V, v, and T since all are below C.

To be fully explicit, the proposed algorithm pre-

dicts the HLC to be a tendency rather than a strict

rule in both directions: lower categories usually

have smaller locality domains, and higher cate-

gories usually have larger ones, but exceptions are

in principle possible in both directions. Again,

in our representative examples of EPP-movement

and wh-movement the relevant class of movers is

able to occur in the complement of VP, the lowest

possible position in the clausal spine; invisibility

of the entire functional sequence below the probe

follows as a result. Thus, to determine whether

Keine’s generalization is truly correct, we would

need to find a class of mover which originates only

in higher positions, that is, one which does not

include any DPs. At present, I do not know of a

good candidate class of movers to perform this test.

To close this section, I wish to reemphasize

the generality of the proposed learning algorithm,

which is equally relevant to islands and other kinds

of blockers. In his discussion of acquisition, Keine

the assumption that functional projections involve “feature
inheritance” of lower categories in the functional sequence.

notes that the implicational hierarchy imposed by

his theory provides the learner with a safe way of

navigating the space of possible horizons, starting

with the assumption that the category of the probe

is also the lowest horizons, and removing horizons

from the grammar as required by the input. This

is correct, and our algorithm works from a similar

principle. But Keine’s assumption that projections

lower than the probe cannot be horizons is not

necessary to achieve this.

6 Conclusion

In this paper, I proposed an algorithm which allows

for the creation of TSL grammars from the output

of Heuser et al.’s path-based algorithm, avoiding

the need to search the space of tier alphabets. This

approach combines the strengths of their algorithm

with those of the TSL model, and derives the Height-

Locality Connection as a byproduct of the learning

process. While this paper used a-strings and focused

on movement, the principle of inferring tier-based

constraints via comparison of SL grammars should

in principle extend to other TSL models of syntax

and other dependencies such as agreement and case.

I leave investigation of these to future research.

More broadly, this work represents the start of

integration between subregular syntax and acquisi-

tion theories based on the TP. I am aware only of

one other line of work which involves learning TSL

grammars with the TP, which is Belth’s (2023) al-

gorithm for learning long-distance harmony. Since

subregular linguistics has consistently shown a great

deal of formal similarity across domains, it would

be prudent to examine whether Belth’s algorithm

can be applied to the problem of learning syntactic

dependencies, and vice versa. Formal learnability

has long been central to subregular linguistics, but

as I hope to have shown, future progress may rely on

looking also to theories grounded in the empirical

facts of child language acquisition.

Acknowledgments

This work partly was supported by the National

Science Foundation under Grant No. BCS-1845344

and by an award from the Institute for Advanced

Computational Science at Stony Brook University. I

thank Jordan Kodner and Sarah Payne for reviewing

an early draft of the paper. I also thank three

anonymous reviewers for their detailed comments,

which helped to improve the clarity of several key

issues.

References

Klaus Abels. 2012. The Italian left periphery: A view
from locality. Linguistic Inquiry, 43(1):229–254.

Alëna Aksënova and Sanket Deshmukh. 2018. Formal
restrictions on multiple tiers. In Proceedings of the
Society for Computation in Linguistics 2018, pages
64–73.

Adriana Belletti. 2018. Locality in syntax. In Oxford
Research Encyclopedia of Linguistics. Oxford Uni-
versity Press.

Caleb Belth. 2023. Towards a learning-based account
of underlying forms: A case study in Turkish. In Pro-
ceedings of the Society for Computation in Linguistics
2023, pages 332–342.

Aniello De Santo and Thomas Graf. 2019. Structure
sensitive tier projection: Applications and formal
properties. In Formal Grammar, pages 35–50, Berlin,
Heidelberg. Springer.

Thomas Graf. 2022a. Subregular linguistics: bridging
theoretical linguistics and formal grammar. Theoreti-
cal Linguistics, 48(3–4):145–184.

Thomas Graf. 2022b. Typological implications of tier-
based strictly local movement. In Proceedings of the
Society for Computation in Linguistics 2022, pages
184–193.

Thomas Graf and Nazila Shafiei. 2019. C-command de-
pendencies as TSL string constraints. In Proceedings
of the Society for Computation in Linguistics 2019,
pages 205–215.

Kenneth Hanson. 2023. Strict locality in syntax. In
Proceedings of CLS 59.

Kenneth Hanson. 2024. Tier-based strict locality and the
typology of agreement. Ms. Stony Brook University.

Jeffrey Heinz. 2010. String extension learning. In Pro-
ceedings of the 48th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 897–906,
Uppsala, Sweden. Association for Computational
Linguistics.

Jeffrey Heinz. 2018. The computational nature of phono-
logical generalizations. In Larry M. Hyman and Frans
Plank, editors, Phonological Typology, number 23 in
Phonetics and Phonology, pages 126–195. De Gruyter
Mouton.

Annika Heuser, Hector Vazquez Martinez, and Charles
Yang. 2024. The learnability of syntactic islands.
Presentation at NELS 54.

Adam Jardine and Kevin McMullin. 2017. Efficient
learning of tier-based strictly k-local languages. In
Language and Automata Theory and Applications,
pages 64–76, Cham. Springer International Publish-
ing.

Stefan Keine. 2019. Selective opacity. Linguistic In-
quiry, 50(1):13–62.

Dakotah Lambert. 2021. Grammar interpretations and
learning TSL online. In Proceedings of the Fifteenth
International Conference on Grammatical Inference,
volume 153 of Proceedings of Machine Learning
Research, pages 81–91. PMLR.

Dakotah Lambert, Jonathan Rawski, and Jeffrey Heinz.
2021. Typology emerges from simplicity in represen-
tations and learning. Journal of Language Modelling,
9(1):151–194.

Daoxin Li and Kathryn D. Schuler. 2023. Acquiring
recursive structures through distributional learning.
In BUCLD 47: Proceedings of the 47th Annual Boston
University Conference on Language Development.

Kevin Liang, Diana Marsala, and Charles Yang. 2022.
Distributional learning of syntactic categories. In
BUCLD 46: Proceedings of the 46th annual Boston
University Conference on Language Development.

Connor Mayer. 2021. Capturing gradience in long-
distance phonology using probabilistic tier-based
strictly local grammars. In Proceedings of the Society
for Computation in Linguistics 2021, pages 39–50.

Kevin McMullin. 2016. Tier-based locality in long-
distance phonotactics: learnability and typology.
Ph.D. thesis, University of British Columbia.

Lisa Pearl and Jon Sprouse. 2013. Syntactic islands and
learning biases: Combining experimental syntax and
computational modeling to investigate the language
acquisition problem. Language Acquisition, 20(1):23–
68.

Nazila Shafiei and Thomas Graf. 2020. The subregular
complexity of syntactic islands. In Proceedings of the
Society for Computation in Linguistics 2020, pages
421–430.

Edward P. Stabler. 1997. Derivational Minimalism. In
Christian Retore, editor, Logical Aspects of Compu-
tational Linguistics. Springer.

Edward P. Stabler. 2011. Computational perspectives
on Minimalism. In Cedric Boeckx, editor, Oxford
Handbook of Linguistic Minimalism, pages 617–643.
Oxford University Press.

Charles Torres, Kenneth Hanson, Thomas Graf, and
Connor Mayer. 2023. Modeling island effects with
probabilistic tier-based strictly local grammars over
trees. In Proceedings of the Society for Computation
in Linguistics 2023, pages 155–164.

Edwin Williams. 2002. Representation theory. MIT
Press.

Charles Yang. 2016. The price of linguistic productivity:
How children learn to break the rules of language.
MIT Press.

	Introduction
	Subregular syntax with ancestor strings
	Strictly local languages
	Tier-based strictly local languages
	Dependency trees and ancestor strings
	The strengths and limitations of a-strings

	Distributional learning of syntactic blockers
	Preliminaries
	Tracking bigrams
	Generalizing with the Tolerance Principle
	Beyond islands
	Limitations of SL learning

	Constructing the tier
	The problem of learning tiers
	From local to tier-based constraints
	Algorithm
	Discussion

	On the Height-Locality Connection
	Conclusion

