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Dedicated to Boris Zilber on the occasion of his 75th birthday.

We develop a family of simple rank one theories built over quite arbitrary se-
quences of finite hypergraphs. (This extends an idea from the recent proof that
Keisler’s order has continuum many classes, however, the construction does not
require familiarity with the earlier proof.) We prove a model-completion and
quantifier-elimination result for theories in this family and develop a combinato-
rial property which they share. We invoke regular ultrafilters to show the strength
of this property, showing that any flexible ultrafilter which is good for the random
graph is able to saturate such theories.

It is our pleasure to dedicate this to Boris for all the wonderful discoveries in
model theory and its interaction with the rest of mainstream mathematics.

Recently, we proved that Keisler’s order has continuum many pairwise incompa-
rable classes, within the simple rank one theories [7]. A surprising point of that
proof is that the theories built to obtain the continuum many incomparable classes
can be very well understood, and are close to the random graph in various precise
ways. So we can analyze carefully how their types are realized and omitted; this
understanding helps in proving incomparability. Briefly, those theories were built
over template sequences of growing finite graphs, and aspects of the combinatorics
of the template graphs such as edge densities played a role in the behavior of
types in the associated theories. This was a very nice interaction of the finite and
the infinite, where the role of graphs seemed central; we should ask whether this
understanding applies to a larger, significant family of simple theories. See also [2]
and [9, Chapter VI] for context on Keisler’s order.

In the present paper, we indeed find a way to extend ideas from the construction of
the theories in [7] to build a nontrivial family of theories close to the random graph.
Informally, the previous idea of using templates of sequences of growing finite
graphs can be extended to templates of sequences of growing finite hypergraphs of
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any arity. We also indicate modifications of the construction involving equivalence
relations rather than trees. Although we have found these theories in the context of
investigating Keisler’s order, indications are that they may be of general interest.
Hence we have taken care to present them in a hopefully easily accessible way.

Meanwhile, an interesting aspect of Keisler’s order on simple unstable theories is
that it seems to be pointing the way towards isolating and analyzing an interesting
family of theories “near” the random graph, which includes the incomparable
theories of [7], and now the more general family developed here. We do not
yet have indications whether this is the family. We do intend to look at whether
the incomparability via ultraproducts can be carried out at the generality of these
theories, and to consider other related questions in a future manuscript.

1. Templates and theories

To define our theories we first need to define a template, which is a growing sequence
of finite hypergraphs, all of the same fixed arity k, satisfying certain mild conditions
on the number of nodes and of edges. Our main case is k > 2, but the construction
also makes sense for k = 2 (graphs) and so generalizes a slight variant1 of the
construction from [7]. The construction a priori makes sense without the conditions
in Definition 1.4, but the model completion and quantifier elimination arguments
use them. Given any such template, we then build a theory in a natural way.

Definition 1.1. Given a hypergraph (H, E), where E is a relation of arity k, say
that k is the arity of the hypergraph.

Definition 1.2. Call a hypergraph (H, E) of arity k a k-full hypergraph if we can
partition E = E

→

↑ E
<k such that (H, E

→) is a k-uniform hypergraph, meaning the
edge relation is symmetric and irreflexive and holds only on tuples of k distinct
elements, and E

<k holds on all tuples with < k distinct elements.

Informally, k-full hypergraphs are those obtained by starting with a k-uniform
hypergraph, where the edge is symmetric and irreflexive and holds only on tuples
of k distinct elements, and then extending it by setting the edge relation to hold
on all tuples with repetition. (This is a technical help since nonedges in template
hypergraphs indicate inconsistency in the related theory.) Note that it still is well
defined to call k the arity of the hypergraph.

Definition 1.3. Given a hypergraph (H, E) of arity k, a k-full-clique is a set2 A ↓ H

where every sequence of k elements of A belongs to E , and a k-independent set is
1The reader familiar with the earlier paper will remember that the theories there were built on

bipartite graphs, which had certain advantages for the ultrapower analysis. In order to extend to
hypergraphs, rather than solving the problem of extending the bipartition to a multipartition, the
problem was solved in a more satisfying way by eliminating the bipartition; then the extension to
higher arities is even more natural.
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a set A ↓ H with ↔ k members such that no sequence of k distinct elements of A

belongs to E .

Definition 1.4. A template of arity k, 2 ↗ k < ω, consists of a sequence H =
¯h =

↘hn : n < ω≃ and a function fH : ω ⇐ ω \ {0} such that:

(0) limn⇐⇒
fH(n) = ⇒, meaning that for every N < ω there is n < ω such that

m ↔ n =⇑ fH(m) ↔ N .

(1) for all n < ω, hn = (Hn, En) is a finite k-full hypergraph, Hn = ⇓hn⇓ is a finite
cardinal and so we identify the set of vertices Hn with the set {0, . . . , Hn ⇔ 1}.

Moreover, for all n < ω:

(2) fH(n) ↗ Hn < ↖0.

(3) (extension) Let t = fH(n). For every i
0
0 , . . . , i

0
k⇔2, . . . , i

t⇔1
0 , . . . , i

t⇔1
k⇔2 from Hn ,

there exists s ↙ Hn such that ↘s, i
ε
0, . . . , i

ε
k⇔2≃ ↙ En for all ε < t .

We say H is a template if (H, f ) is for some f .

Remark 1.5. For notational simplicity in Definition 1.4, we fix k. We could also
have defined a parameter kn for each n measuring the fullness.

Definition 1.6. A template is a template of arity k for some k < ω.

For example, the sequence of hypergraphs given by Hn = n + 1 and En =
k
Hn

is a template of arity k. For a more interesting example, choose the hn to be a
sequence of finite random hypergraphs, with size and edge probability sufficient to
give the extension condition Definition 1.4(3). For a similar sufficient calculation
in the original case of graphs, see [7, §6].

As the next definition suggests, it will be useful to think of trees naturally
associated to paths through the template hypergraphs.

Definition 1.7. Given a template H, and recalling Hn from Definition 1.4, define

XH := {ϑ : ϑ ↙
ω>ω, 0 ↗ ϑ(n) < Hn for all n < lgn(ϑ)}

to be, informally, the set of finite sequences of choices of vertices from initial
segments of our hypergraph sequence, naturally forming a tree. Define

leaves(XH) = {ϑ ↙
ωω : ϖi ↭ n ↙ XH for all n < ω}

to be the “limit points” of this set.

Definition 1.8. We define a theory T0 = T0(H) based on the template H to be the
following universal theory in the following language.

2In the interesting case, a set with ↔ k members, but this hypothesis is not strictly needed as the
sequences can contain repetitions. In the case of the independent set, we need |A| ↔ k and could have
asked |A| > k.
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(1) L = LH contains equality, a k-place relation R, and countably many unary
predicates

{Qϖ : ϖ ↙ XH}.

(2) T0 contains universal axioms stating that R is a symmetric k-uniform hypergraph,
i.e., R holds only on distinct k-tuples and if it holds on some k-tuple it holds on all
its permutations.3

(3) If ϖ ↫ ϱ ↙ XH then T0 contains the axiom

(∝x)(Q
↘ ≃

(x)) ′ (∝x)(Qϱ(x) =⇑ Qϖ(x))

saying that Q
↘ ≃

names everything, and Qϱ refines Qϖ.

(4) If ϖ ↙ XH, lgn(ϖ) = m and i ∞= j < ⇓hm⇓ then T0 contains the axiom

(∝x)
(
¬(Qϖ↭↘i≃(x) ′ Qϖ↭↘ j≃(x))

)
.

Moreover, T0 contains the axiom (∝x)
(
Qϖ(x) =⇑

∨
i

Qϖ↭↘i≃(x)
)
, so the predicates

↘Qϖ↭↘i≃ : i < ⇓hm⇓≃ partition Qϖ.

(5) For every ϖ0, . . . , ϖk⇔1 from XH and n < min{lgn(ϖ0), . . . , lgn(ϖk⇔1)}, if
↘ϖ0(n), . . . , ϖk⇔1(n)≃ /↙ En then T0 contains the axiom

(∝x0, . . . , xk⇔1)(Pϖ0(x0) ′ · · · ′ Pϖk⇔1(xk⇔1) =⇑ ¬R(x0, . . . , xk⇔1))

forbidding any edges across these predicates.

Discussion 1.9. Informally, the unary predicates give a model M |∈ T0 the (hard-
coded) structure of a tree. We have ∝x Q

↘≃
(x). The model is first partitioned into

predicates Q
↘i≃ for i < ⇓h0⇓. By induction on m ↔ 1, each predicate Qϖ (where

lgn(ϖ)=m, i.e., ϖ is a function with domain {0, . . . , m⇔1}) is partitioned into ⇓hm⇓

disjoint pieces, the Qϖ↭↘i≃. So any a ↙ M will be in some concentric sequence of
predicates ↘Qϑ↭n :ϑ ↙ leaves(XH), n <ω≃. Call ϑ the leaf of a (see Definition 1.10).
Note that we have arranged our indexing so that, in this notation, if ϑ(n)= i we have

a ↙ Q(ϑ↭n)↭↘i≃,

in other words, that its predicate at level n corresponds to the i-th element of Hn .
The final condition on edges amounts to the following. Given a0, . . . , ak⇔1 in a
model M |∈ T0, each element ai belongs to some leaf ϑi , and an edge R cannot
occur on ↘a0, . . . , ak⇔1≃ unless for every n < ω, ↘ϑi (n) : i < k≃ is an edge in En .
(Since T0 is a universal theory, of course, it records here just what is forbidden, and
remains agnostic about whether edges do occur if permitted; a model completion,
such as we shall construct soon, would have more information.)

3Note that R, the hypergraph relation in the theory, is symmetric irreflexive, while En , the
hypergraph relations in the templates, need not be irreflexive by the definition of “k-full”.
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Notice the “sparsification” of edges, or rather the accumulation of rules for-
bidding edges, as we go deeper into the “tree”. If ϖ0, . . . , ϖk⇔1 are elements of
XH of length m + 1, and ↘ϖ0(m), . . . , ϖk⇔1(m)≃ /↙ Em , then in M we know there
can be no R-edges spanning elements chosen from the predicates Qϖ0, . . . , Qϖk⇔1

regardless of how these elements sit in subsequent predicates. If on the other hand
↘ϖ0(ε), . . . , ϖk⇔1(ε)≃ ↙ Eε for ε ↗ m, then a priori there may be edges spanning
some elements from the predicates Qϖ0, . . . , Qϖk⇔1 , but it may depend a priori on
how those elements sit in subsequent predicates and what the templates say there.

The following auxiliary objects may clarify the picture.

Definition 1.10. Fix a template H of arity k. Let T0 = T0(H) and let M |∈ T0.

(1) For a ↙ M , define leaf(a) to be the unique ϑ ↙ leaves(XH) such that

M |∈ a ↙ Qϑ↭n for all n < ω.

(2) Let h
⇒

be the k-uniform hypergraph with vertex set H
⇒

:= leaves(XH) and
with edge relation E

⇒
given by

↘ϑ0, . . . , ϑk⇔1≃ ↙ E
⇒

∋⇑ ↘ϑ0(n), . . . , ϑk⇔1(n)≃ ↙ En for all n < ω.

Of course h
⇒

= h
⇒

(H).

Observation 1.11. Definition 1.8(5) implies that if M |∈ T0, a0, . . . , ak⇔1 ↙ M , we
can have M |∈ R(a0, . . . , ak⇔1) only if ↘leaf(a0), . . . , leaf(ak⇔1)≃ ↙ E

⇒
.

Example 1.12. Suppose that k = 3, ↘0, 1, 2≃ ↙ E0 and ↘3, 4, 5≃ ↙ E1. Then R-
edges are not a priori forbidden in T0 between Q

↘03≃
, Q

↘14≃
, Q

↘25≃
, nor between

Q
↘04≃

, Q
↘15≃

, Q
↘23≃

remembering symmetry of E1, nor between Q
↘01≃

, Q
↘10≃

, Q
↘20≃

remembering E1 is k-full.

2. Model completion and quantifier elimination

Convention 2.1. For the entirety of this section, fix a template H, fH of arity k ↔ 2,
and thus h

⇒
and T0 as in Definitions 1.10 and 1.8, respectively.

Claim 2.2. For any ϑ ↙ H
⇒

there are continuum many tuples ϑ0, . . . , ϑk⇔2 ↙ H
⇒

such that ↘ϑ, ϑ0, . . . , ϑk⇔2≃ ↙ E
⇒

, i.e., each leaf in this graph is contained in

continuum many edges.

Proof. By extension (Definition 1.4(3)). ↬

The next claim is a key use of Definition 1.4(3): in some sense, it shows that
consistency in the template at large enough finite levels can be extended to full
consistency.
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Claim 2.3 (completion to a type). For any 1 ↗ t < ω and any choice of t k-

tuples ϑ0
0 , . . . , ϑ0

k⇔2, . . . , ϑ
t⇔1
0 , . . . , ϑt⇔1

k⇔2 from H
⇒

, if there exists ϱ ↙ XH such that

lgn(ϱ) > min{m : f (n) ↔ t for all n ↔ m} and

↘ϱ(ε), ϑi

0(ε), . . . , ϑ
i

k⇔2(ε)≃ ↙ Eε for all i < m and ε < lgn(ϱ),

then we can choose ϱ
→

such that ϱ ↫ ϱ
→
↙ H

⇒
and

↘ϱ
→
(ε), ϑi

0(ε), . . . , ϑ
i

k⇔2(ε)≃ ↙ E
⇒

for all i < m and ε < ω.

Proof. Let n := lgn(ϱ). By induction on r < ω let us prove that we can find ϱr ↙ XH

of length n + r such that ϱ ↫ ϱr and

↘ϱr (ε), ϑ
i

0(ε), . . . , ϑ
i

k⇔2(ε)≃ ↙ Eε for all i < m and ε < n + r .

For ε = 0 take ϱt = ϱ. For ε > 0, apply extension (Definition 1.4(3)) to the tuples

ϑ0
0(n + r ⇔ 1), . . . , ϑ0

k⇔2(n + r ⇔ 1), . . . , ϑt⇔1
0 (n + r ⇔ 1), . . . , ϑt⇔1

k⇔2(n + r ⇔ 1)

in the hypergraph hn+r⇔1 and let b be the appropriate element of Hn+r⇔1 returned
by that axiom. Then ϱr := ϱr⇔1

⊜
↘a≃ fits the bill. ↬

Definition 2.4. For any m < ω, define T
m

0 to be the restriction of T0 to the language
with equality, a k-place relation R, and unary predicates

{Qϖ : ϖ ↙ XH, lgn(ϖ) ↗ m}.

Claim 2.5. For each m < ω, the model completion T
m

of T
m

0 exists.

Proof. Just as in the case of graphs [7, Observation 2.16], each T
m

0 is a universal
theory in a finite relational language. The class of its models has the joint embedding
property JEP for any two M1, M2 with |M1| △ |M2| = ⊋, and the amalgamation
property AP when we have models M1, M2 and M0 with M0 |∈ T

m

0 and M0 ↓ Mε

for ε = 1, 2 and |M1|△ |M2| = |M0|. To see this in both cases, the model N whose
domain is |M1| ↑ |M2|, such that Q

N
= Q

M1
↑ Q

M2 for each unary predicate Q

and R
N

= R
M1

↑ R
M2 for the edge relation R, will be a model of T

m

0 . Thus T
m

exists. ↬
Remark 2.6. Regarding the model completion, if M |∈ T

m , then M is infinite, and
indeed for each unary predicate Q ↙ ς (T

m), Q
M is infinite. Moreover,4 for any

ϖ0, . . . , ϖk⇔1 ↙ XH with lgn(ϖε) = m for ε < k:
(a) If (ϖ0(i), . . . , ϖk⇔1(i)) ↙ Ei for all i < m, then R

M on Q
M

ϖ0
▽ · · · ▽ Q

M

ϖk⇔1

“is a random hypergraph” in the sense of first-order logic, meaning that if

A ↓ Q
M

ϖ1
▽ · · · ▽ Q

M

ϖk⇔1
and B ↓ |M |

k and5 “A △ B = ⊋” in the strong sense

4We can extend case (a) to {ϖ0, . . . , ϖε⇔1} for some larger finite ε which form a k-full-clique in
the same strong hereditary sense.

5We could have asked that B ↓ Q
M
ϖ1 ▽ · · · ▽ Q

M
ϖk⇔1 , but the stronger statement is true.
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that no permutation of any (a1, . . . , ak⇔1) ↙ A belongs to B, then the set of
formulas

p(x) = {R(x, a1, . . . , ak⇔1) : (a1, . . . , ak⇔1) ↙ A}

↑ {¬R(a, b1, . . . , bk⇔1) : (b1, . . . , bk⇔1) ↙ B}

is a partial type in M , so in particular is realized if A, B are both finite.6

(b) If not, then (Q
M

ϖ0
▽ · · · ▽ Q

M

ϖk⇔1
) △ R

M
= ⊋.

Next we upgrade [7, Claim 2.17] to the context of hypergraphs.

Notation 2.7. For an ordered set X , let incε(X) be the set of strictly increasing
ε-tuples of elements of X .

Definition 2.8. Given T
m for some m < ω and M, N |∈ T

m , recall that

(1) a1, . . . , an ↙ |M | and b1, . . . , bn ↙ |N | have the same quantifier-free ς (T
m)-

type when they agree on equality, instances of R, and predicates Qϖ up to
lgn(ϖ) = m.

(2) ϕ(x, y1, . . . , yn) is a complete quantifier-free formula of ς (T
m) when

(a) for every unary predicate Q ↙ ς (T
m) and variable z ↙ {x, y1, . . . , yn},

either ϕ ̸ Q(z) or ϕ ̸ ¬Q(z);
(b) for every z0, z1 from {x, y1, . . . , yn}, either ϕ ̸ z0 = z1 or ϕ ̸ z0 ∞= z1;
(c) for every z0, . . . , zk⇔1 from {x, y1, . . . , yn}, either ϕ ̸ R(z0, . . . , zk⇔1) or

ϕ ̸ ¬R(z0, . . . , zk⇔1).
Recall that the language is finite so this is well defined.

Our next lemma says that for each m, the truth of sentences of ς (T
m

0 ) of length
↗ m soon stabilizes in the sequence of theories T

k as k goes to infinity.

Lemma 2.9. For every m < ω, the following holds. Let

m
→
↔ min{n : n

′

↔ n =⇑ fH(n′) ↔ m}.

If M |∈ T
m

→ , N |∈ T
m

→
+1

and ϕ is a sentence of ς (T
m) of length ↗ m, then

M |∈ ϕ ∋⇑ N |∈ ϕ.

Proof. To prove the lemma by induction on complexity of formulas, it suffices to
show the following:

6Note that by our assumption of the template hypergraphs being “k-full”, we are in case (a)
whenever |{ϖ0, . . . , ϖk⇔1}|< k. The hypergraph edge R is a k-uniform hypergraph in M , of course, so
any (a0, . . . , ak⇔1) ↙ R

M will be a tuple of distinct elements, but fullness of the template hypergraphs
means some of the elements in such a tuple are a priori allowed to come from the same predicate at
any given level. In particular, for each ϖ ↙ XH with lgn(ϖ) = m, (Q

M
ϖ , R

M ↭ Q
M
ϖ ) is a random k-ary

hypergraph in the usual sense of first-order logic.
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Suppose ϕ(x, y1, . . . , yn) is a complete quantifier-free formula of

ς (T
m) of length ↗ m, so note n < m. Suppose a1, . . . , an ↙ |M |

and b1, . . . , bn ↙ |N | have the same quantifier-free ς (T
m)-type. Then

there exists a ↙ |M | such that M |∈ ϕ(a, a1, . . . , an) if and only if there

exists b ↙ |N | such that N |∈ ϕ(b, b1, . . . , bn).

(∀)

Without loss of generality, the sequences a1, . . . , an and b1, . . . , bn are without
repetition.

For left to right, suppose that a ↙ |M | exists and a ↙ {a1, . . . , an}; otherwise it
is trivial. We will need notation to record edges and nonedges made by a. For ↼̄ any
sequence of elements of {1, . . . , n}, denote by ā↼̄ the sequence ↘a↼̄(ε) : ε< lgn(↼̄)≃. Let

C = {↼̄ = ↘i0, . . . , ik⇔2≃ : ↼̄ ↙ inck⇔1({1, . . . , n}), ↘a≃
⊜

ā↼̄ ↙ R
M

}

represent the set of R-edges made by a to {a1, . . . , an⇔1}. Note that |C | < n
k .

Correspondingly, let
D = inck⇔1({1, . . . , n}) \ C

represent the set of non-R-edges made by a to {a1, . . . , an⇔1}. If C = ⊋ finding a
corresponding b is immediate, so assume C ∞= ⊋.

Each element c of M belongs to a unique predicate Qϖ with lgn(ϖ) = m
→
; call it

“the m
→
-leaf of c” and write leafm

→

(c)= ϖ. Let ϑ = leafm
→

(a) and let ϑi = leafm
→

(ai )

for i = 1, . . . , n. The definition of T
m

→

0 and the existence of a tell us that necessarily

for every ↼ = ↘i0, . . . , ik⇔2≃ ↙ C , for every ε < m
→
,

↘ϑ(ε), ϑi0(ε), . . . , ϑik⇔2(ε)≃ ↙ Eε.

Meanwhile, each element d of N belongs to a unique predicate Qϖ with lgn(ϖ) =

m
→
+ 1; write leafm

→
+1(d) = ϖ. So let ϱi = leafm

→
+1(bi ) for i = 1, . . . , n. Note that

leafm
→

and leafm
→
+1 a priori depend on the models M and N , but by our assumption

that a1, . . . , an and b1, . . . , bn have the same quantifier-free ς (Tm)-type, necessarily
ϱi ↭ m

→
= ϑi for i = 1, . . . , n. Apply extension (Definition 1.4(3)) to the set of

(k⇔1)-tuples

{↘ϱi0(ε), . . . , ϱik⇔2(ε)≃ : ↼̄ = ↘i0, . . . , ik⇔2≃ ↙ C},

recalling our choice of m
→
, and let s be the element of Hm

→

returned. Define
ϱ = ϖ⊜

↘s≃. Now we have that

for every ↼ = ↘i0, . . . , ik⇔2≃ ↙ C , for every ε < m
→
+ 1,

↘ϱ(ε), ϱi0(ε), . . . , ϱik⇔2(ε)≃ ↙ Eε.

So by definition of T
m

→
+1

0 , ϕ(x, b1, . . . , bn) is consistent with N , and b exists
because N is model complete.
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The other direction, right to left, is simpler. Suppose that b ↙ |N | exists and
b /↙ {b1, . . . , bn}. As before, define C to be the set of representatives of edges.
Suppose leafm

→
+1(b) = ϱ and leafm

→
+1(bi ) = ϱi . Then since b exists and N is a

model of T
m

→
+1

0 , necessarily

for every ↼ = ↘i0, . . . , ik⇔2≃ ↙ C , for every ε < m
→
+ 1,

↘ϱ(ε), ϱi0(ε), . . . , ϱik⇔2(ε)≃ ↙ Eε.

A fortiori, then,

for every ↼ = ↘i0, . . . , ik⇔2≃ ↙ C , for every ε < m
→
,

↘ϱ(ε), ϱi0(ε), . . . , ϱik⇔2(ε)≃ ↙ Eε,

so by definition of T
m

→

0 , ϕ(x, a1, . . . , an) is consistent with M , and since it is
complete ϕ ̸ Q(ϱ↭m

→
)(x), and a exists because M is model complete. ↬

Corollary 2.10. “The limit theory of ↘T
m

: m <ω≃ is well defined and is a complete,
model complete theory which extends T0.” For every m < ω and every formula ϕ of

ς (T
m) in at least one free variable,7 for some quantifier-free formula ↽ of ς (T

m),
for every n large enough, we have that

(∝x̄)(ϕ(x̄) ∃ ↽(x̄)) ↙ T
n.

Lemma 2.11. The theory T is simple rank 1.

Proof. Assume for a contradiction that ↘āi : i < ⇀≃, ⇀ = cof(⇀) ↔ (2↖0)+ witnesses
that some formula ϕ(x̄, ȳ) n-divides, in a large ⇀-saturated model M |∈ T . Without
loss of generality, possibly adding dummy variables, lgn(x̄) = lgn(ȳ) =: m.

For each i < ⇀ , let ¯bi be such that M |∈ ϕ[
¯bi , āi ]. Since ⇀ is large enough (i.e.,

since cof(⇀) > 2↖0), for some U ↙ [⇀]
⇀ , for each ε < m there is ϱε ↙ H

⇒
such

that leaf( ¯bi,ε) is constantly equal to ϱε, and there is ϑε ↙ H
⇒

such that leaf(āi,ε) is
constantly equal to ϑε.

Let ϕ′ be an extension of ϕ which is complete for {=, R} (it will obviously
only contain information about unary predicates up to some finite level) such that
M |∈ ϕ′

[
¯bi , āi ] for i ↙ V ↙ [U]

⇀ . We may assume ϕ′ is quantifier-free. Without loss
of generality, ϕ′ does not imply any instances of equality among the x’s or between
the x’s and the y’s. In what follows, replace ϕ by ϕ′ and ↘āi : i < ⇀≃ by ↘āi : i ↙ V≃.

We would like to show that

⇁(x̄) = {ϕ(x̄, āi ) : i < ⇀} is consistent.

It suffices by induction on j < m to choose elements b j so that b j realizes the
set of formulas ⇁ j (b0, . . . , b j⇔1, x j ), where ⇁ j is the restriction of ⇁ to the

7Since we do not have constants in the language.
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variables x0, . . . , x j . In the case ε(x̄) = 1, write ϱ = leaf(x), and this case follows
from three simple observations:

• ϕ is without loss of generality quantifier-free; we assumed no instances of
equality between the x’s, and our theory has no algebraicity.

• The template hypergraphs contribute no restriction to this set of formulas, since
if R(x, a j0, . . . , a jk⇔2) is implied by ⇁ then we know by our construction that
(ϱ, ϑ j0, . . . , ϑ jk⇔2) ↙ E

⇒
.

• The indiscernibility of ↘āi : i < ⇀≃, transitivity of equality, and consistency
of each instance ϕ(x, āi ) together mean that if R(x, a j0, . . . , a jk⇔2) is implied
by ⇁ and ¬R(x, aε0, . . . , aεk⇔2) is implied by ⇁, then no permutation of
↘a j0, . . . , a jk⇔2≃ is equal to ↘aε0, . . . , aεk⇔2≃ (so the “positive” and “negative”
edges required by ⇁ cause no explicit contradiction).

Observe that the inductive step, since we will have already chosen the earlier values
bε (ε < j), will reduce to the case lgn(x̄) = 1 (using lgn(ȳ) = m + j). This is
enough to deduce the consistency of ⇁, so there is no dividing. ↬
Conclusion 2.12. Given any template H, the universal theory T0 = T0(H) has a

model completion T = T (H) which is well defined, eliminates quantifiers, is simple

rank 1, and is equal to the limit of ↘T
m

: m < ω≃.

Discussion 2.13. We could have defined the theory to be “based on” predicates
naming classes of crosscutting finite equivalence relations, rather than levels of
trees, in the natural way. Alternatively, we could make En be a k-place relation
on

∏
ε↗n

Hε.

3. A combinatorial property

In this section we give Definition 3.1, which is supposed to capture what is simple
about the theories of Section 1, not necessarily what is complicated about them. In
Section 4 we shall use this to give a sufficient condition for ultrafilters to saturate
such theories. First let us motivate the property.

Suppose, with no assumptions on T or ϕ, we have a sequence of instances of ϕ

ϕ(x̄, ā0), . . . ,ϕ(x̄, ās⇔1)

forming a partial type, and suppose we replace each āi by a sequence ¯bi having the
same type over the empty set. (We don’t ask that āi and ā j have the same type for
i ∞= j , just that āi and ¯bi have the same type for each i .) Then a priori,

ϕ(x̄, ¯b0), . . . ,ϕ(x̄, ¯bs⇔1)

need not remain a partial type. An example is ϕ(x; y0, y1) = y0 < x < y1 in the
theory of dense linear orders: any two pairs of increasing elements have the same
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type over the empty set, but we can choose the ā’s to be a sequence of intervals
which are concentric, and the ¯b’s a sequence which are disjoint. Similar examples
arise whenever we have a tuple beginning two indiscernible sequences, one which
witnesses dividing of ϕ and one which does not.

An example of (T, ϕ) where such a substitution does remain a partial type, for
trivial reasons, is the theory T = Trg of the random graph, and ϕ(x, y) = R(x, y),
using only the positive instance. Note that ϕ(x; y, z) = R(x, y)′¬R(x, z) would
not work, however, since in changing from ā’s to ¯b’s we could introduce collisions
among the parameters. A less trivial example is the positive instance of the edge
relation in the theories of Section 1, which in fact satisfy a stronger condition, (as
does the random graph), as we shall now see.

Among the examples of (T, ϕ) where this does work, we can ask just how much
of each type we need to preserve when changing the parameters from āi ’s to ¯bi ’s.
Rather than preserving all formulas, perhaps it would be sufficient to enumerate
some formulas of the type of each parameter in some coherent way, and then
preserve some finite initial segment of each of these lists. It is reasonable that the
length of the initial segment needed would depend on s, the number of instances
we are dealing with. This is essentially what the next definition says.8

Definition 3.1. We say that (T, ϕ(x̄, ȳ)) has the pseudo-nfcp when T is countable
and we can assign to each type p ↙ P , where

P := {p : p ↙ Sε(ȳ)(⊋) and p contains the formula ¬x̄ ϕ(x̄, ȳ)},

a function f p : ω ⇐ ω such that

(1) (continuity) for each m < ω, if f p(m) = r , then for some ↽(ȳ) ↙ p, for any
other q ↙ P , if ↽ ↙ q , then fq(m) = r .

(2) For notational convenience, if p = tp(ā) ↙ P , we may write fā for f p.

(3) For every s ↔ 1 there is n < ω such that whenever ā0, . . . , ās⇔1, ¯b0, . . . , ¯bs⇔1
are sequences from CT , hence each realizing types in P , and

fāε ↭ n = f ¯bε
↭ n for all ε < s

and {ϕ(x̄, āε) : ε < s} is a partial type, then {ϕ(x̄, ¯bε) : ε < s} is also a partial
type. In the proofs that follow, we will refer to this by saying “(T, ϕ) is
(s, n)-compact.”

Discussion 3.2. (1) So Definition 3.1 is a kind of compactness demand, that is,
given (T, ϕ(x̄, ȳ)), to know if CT |∈ (¬x̄)

∧
ε<s

ϕ(x̄, ¯bε) we need to know just finite
approximations to the type of each ¯bε (not of ¯b

⊜
0 · · ·

¯bs⇔1!) and the size of “finite”,
represented here by n, depends just on s (and on T and ϕ).

8The provisional name is because it captures a key property of theories from [7].
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(2) We could have defined the range of each function f to be finite subsets of ω,
as would be convenient in Claim 3.4, or a more complicated set (of bounded, say
countable, size); or we could have used {0, 1}.

(3) We could extend the definition to uncountable theories with more work.

Remark 3.3. In the context of Definition 3.1, when that definition is satisfied, we
may define two functions F and G as follows.

(a) Define F : ω ⇐ ω by

s ∅⇐ min{n < ω : (T, ϕ) is (s, n)-compact}

which expresses that in order for s instances to remain consistent, their functions f

must be preserved at least up to F(s). This is well defined since we assume the
definition is satisfied. There are two cases:

(1) lims⇐⇒
F(s) ⇐ ⇒.

(2) lims⇐⇒
F(s) = N < ⇒.

(b) Define G : ω ⇐ ω ↑ {⇒} by n ∅⇐ ⇒ if (T, ϕ) is (s, n)-compact for all n < ω,
and otherwise by n ∅⇐ max{s < ω : (T, ϕ) is (s, n)-compact}, which expresses that
if the functions f are preserved up to n then G(n) instances can safely remain
consistent. Here

lim
n⇐⇒

G(n) = ⇒, (,)

possibly attaining the limit already at some finite n.

Claim 3.4. Let T be one of the theories from Section 1, built from H, fH of arity k.

Let ϕ(x, y0, . . . , yk⇔2) = R(x; y0, . . . , yk⇔2). Then (T, ϕ) has the pseudo-nfcp.

Proof. In this context, by quantifier elimination, the set of 1-types over the empty
set are the set of “leaves”, that is, each 1-type is specified by choosing some
ϖ ↙ leaves(XH) and considering {Qϖ↭n : n < ω}.

If k = 2, this also specifies P . Otherwise, specifying a type p(y0, . . . , yk⇔2) ↙ P

involves specifying the leaf of each yi , and if two elements share the same leaf,
whether they are equal.

Consider any enumeration ↘↽i : 1 ↗ i <ω≃ of the predicates Qϖ(y) of ς (T ) which
enumerates in nondecreasing order of lgn(ϖ̄). Fix also in advance an enumeration
of the subsets of (k ⇔ 2)▽ (k ⇔ 2), and of the subsets of k ⇔ 2. For each p ↙ P , let
f (0) code the instances of equality among y0, . . . , yk⇔2, and for 1 ↗ m < ω, let
f (m) code which subset of {y0, . . . , yk⇔2} has the m-th predicate as part of their
type. (Alternately, we could have enumerated the predicates with different variables
Q0(y0), Q0(y1), . . . , and let f take values in {0, 1}.)

Now, if we preserve initial segments of f , we clearly hold constant the types of
the parameters up to some level k in our hard-coded tree. Lemma 2.9 tells us that
m exists as a function of s, as desired.
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Unless H is very uncomplicated (for example, cliques all the way up) the theory
will normally be in case (a)(1) of Remark 3.3. For a question relating to the
pseudo-nfcp, see [8, 3.1.5]. ↬

4. A separation via flexibility

The theories built above are simple rank one (Lemma 2.11 above), and thus they are
low. In this section, we consider flexible ultrafilters, those which Kunen called “OK”,
which are necessary to saturate any nonlow theory in Keisler’s order (see [3]).

Definition 4.1. Recall that the ultrafilter D on I , |I | = λ, is flexible if it has a
regularizing family below any nonstandard integer, that is, for every sequence of
natural numbers ↘ni : i ↙ I ≃ such that

∏
i↙I

ni/D > ↖0, there is {X( : ( < λ} ↓ D

such that for all i ↙ I ,
|{( < λ : i ↙ X(}| ↗ ni .

Definition 4.2. Recall that a necessary and sufficient condition for a regular ultra-
filter D on I , |I | = λ, to be good for the random graph is that for any infinite M

and any A, B ↓ M
I /D such that |A|+ |B| ↗ λ and A △ B = ⊋, there is an internal

predicate P such that A ↓ P , whereas B △ P = ⊋.

Theorem 4.3. Suppose D is a regular ultrafilter on I , |I | = λ, which is flexible and

good for the random graph. Suppose (T, ϕ) has the pseudo-nfcp and M |∈ T . Then

M
I /D is λ+

-saturated for positive ϕ-types.

Proof. Let M |∈ T and let N = M
I /D. Consider a positive ϕ-type p(x), where

ϕ = ϕ(x̄, ȳ). Enumerate the type as ↘ϕ((x̄, ā() : ( < λ≃. Fix i
→
= ↘it : t ↙ I ≃/D a

nonstandard integer (so that “max” will be well defined). For a finite tuple ā from N ,
let fā mean ftp(ā,⊋,N ) and given in addition an index t ↙ I , let fā[t] mean ftp(ā[t],⊋,M).
For each ( < λ and each t ↙ I (i.e., for each formula and each index), define

• n((, t) to be the largest n ↗ it such that for all ε < m, the type of ā([t] aligns
with that of ā( up to level n as measured by f , that is,

n((, t) := max{n ↗ it : fā([t] ↭ n = fā( ↭ n}.

• s((, t) := G(n((, t)), using the notation of Remark 3.3.

The first is well defined since the condition is trivially true for 0. By !os’ theorem,
since the f ’s reflect formulas for each n < ω and each ( < λ,

{t ↙ I : n < n((, t)} ↙ D.

Hence, for each ( < λ, n( :=

∏
t
n((, t)/D is a nonstandard integer. It follows

from Remark 3.3(b)(,) that for each ( < λ, s( :=

∏
t
s((, t)/D is either “⇒” on a

large set, or a nonstandard integer.
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Since D is good for the random graph, lcf(ω,D) ↔ λ+, so there is a nonstandard
integer s = ↘s[t] : t ↙ I ≃/D such that for each ( < λ, s < s( mod D. Since D is
flexible and s is a nonstandard integer, we may choose {X( :( <λ}↓D regularizing
D and with the property that for each t ↙ I ,

|{( < λ : t ↙ X(}| ↗ s[t].

Define a map d : [λ]
1
⇐ D by

{(} ∅⇐ {t ↙ I : s[t] < s((, t)} △ X(.

That is, we assign ( to an index set where we can be sure that the type of each
ā([t] is “correct” up to the level needed to handle s((, t) = G(n((, t)) instances,
thus a fortiori s[t] instances. The intersection with X( ensures, for each t ↙ I , the
set U (t) := {( : t ↙ d({(})} of instances assigned to index t has size ↗ s[t].

Now for each t ↙ I , in the ultrapower N , {ϕ(x̄, ā() : ( ↙ Ut } is a set of no more
than s[t] positive instances of ϕ, and by definition is a partial type. Also by our
definition, for each (, and in particular for each ( ↙ Ut ,

fā( ↭ n((, t) = fā([t] ↭ n((, t).

It follows that {ϕ(x̄, ā([t]) : ( ↙ Ut } remains a partial type in the index model M .
So we can realize the type at each index under this distribution, and thus in the
ultrapower N . ↬

Corollary 4.4. If T is a theory from Section 1, M |∈ T , and D is a regular ultrafilter

on I , |I | = λ, which is flexible and good for the random graph, then M
I /D is λ+

-

saturated.

Proof. We argue almost identically to [7, Definition 4.7, Claim 4.8, Fact 5.2 and
Conclusion 5.7] (changing just the arity of the edge relation, and eliminating the
bipartition from the case of graphs) that in regular ultrapowers which are good
for the theory of the random graph, for λ+-saturation it suffices to consider partial
types of the form

p(x) = {Qϱ(x)} ↑ {R(x, ā) : ā ↙
k⇔2

A}

for lgn(ϱ)<ω. (Briefly, those definitions and claims note that any regular ultrapower
has a certain weak saturation, for instance leaves are large, and instances of equality
in types can be safely ignored. Now use quantifier elimination to get a simple normal
form for types by specifying the leaf of x , a set of tuples it connects to, and a disjoint
set of tuples it does not connect to. Since saturation of ultrapowers reduces to satu-
ration of ϕ-types, it is sufficient to deal with only a finite amount of information on
the leaf of x . Finally, since “goodness for the random graph” allows us to internally
separate sets of size ↗ λ, it suffices to handle the positive part of the type.) ↬
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Definition 4.5. For the purposes of the next corollaries, call a theory T a pseudo-
nfcp theory if there is a set ⇁ of formulas of the language such that

(a) (T, ϕ) has the pseudo-nfcp for each ϕ ↙ ⇁, and

(b) given any regular ultrafilter D over λ and M |∈ T , whether M
λ/D is λ+-

saturated depends only on λ+-saturation for positive ϕ-types for ϕ ↙ ⇁.

Corollary 4.6. Let T be a pseudo-nfcp theory, and let ↫ denote Keisler’s order.

(a) Let T
→

be any nonlow simple theory. Then T ↫ T
→
.

(b) T ↫ Tfeq.

Thus, if T is a pseudo-nfcp theory and T
→

is any nonlow or nonsimple theory, T ↫ T
→
.

In particular, this is true for all the theories of Section 1 above.

Proof. Any regular ultrafilter on λ ↔ ↖0 which is good for some unstable theory is
necessarily good for the random graph, as the random graph is the ↫-minimum un-
stable theory. Any regular ultrafilter which is good for Tfeq is flexible [3, Lemma 8.8],
and indeed any regular ultrafilter D which is good for some nonlow simple theory
is flexible [3, Lemma 8.7]. The last line of the corollary now follows from the fact
that Tfeq is the Keisler-minimum nonsimple theory [4, Theorem 13.1] (as Tfeq is
minimum among theories with TP2, whereas SOP2 implies maximality). ↬
Discussion 4.7. The current instances of incomparability in Keisler’s order mostly
use one of two main ideas. The first is to say on one hand, changing the distance
in the alephs between λ and some smaller µ (the size of a maximal antichain in
a certain Boolean algebra used in building the ultrafilter) affects for which values
of k the theories Tk+1,k are saturated, and on the other, the “canonical simple
nonlow theory” (see appendix to [5]) requires the ultrafilter to be flexible; under
large cardinal assumptions, these two indicators can be varied independently; see
[10; 5]. In ZFC, this phenomenon can be scaled down to see an incomparability
between the Tk+1,k’s and a certain theory based on trees, which is low [6]. A second,
much larger scale of incomparability was produced in [7], with continuum many
simple rank one theories, the graph precursors of the hypergraph theories built
here. As this discussion suggests, and as the proofs of this section show, once the
ultrafilter becomes flexible, the noise of any differences in the present theories is
drowned out by the huge power of the regularizing families available. Do there
exist incomparable simple nonlow theories? Is incomparability mainly visible in
the absence of forking?

We also record that, as an interesting immediate consequence of earlier arguments
[10; 5], the theories built in Section 2 are (assuming a large cardinal) distinguishable
in Keisler’s order from the theories Tk+1,k , the higher analogues of the triangle-free
random graph from [1]. That is:
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Conclusion 4.8. Assuming a supercompact cardinal, for arbitrarily large λ and any

ε < ω there is a regular ultrafilter D on λ which is flexible and good for the random

graph, thus good for theories of Section 2, but not good for Tk+1,k for any 2 ↗ k < ε.

Proof. Claim 10.32 in [5] gives the existence of the needed ultrafilter and in clause
(a) shows it is not good for Tk+1,k for k < ε. Claim 10.30 in [5] shows this ultrafilter
is flexible and good for the random graph. So by Theorem 4.3 above it can handle
the theories of Section 2. ↬
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