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ABSTRACT

Compound graphs are networks in which vertices can be grouped
into larger subsets, with these subsets capable of further grouping,
resulting in a nesting that can be many levels deep. In several ap-
plications, including biological workflows, chemical equations, and
computational data flow analysis, these graphs often exhibit a tree-
like nesting structure, where sibling clusters are disjoint. Common
compound graph layouts prioritize the lowest level of the group-
ing, down to the individual ungrouped vertices, which can make the
higher level grouped structures more difficult to discern, especially
in deeply nested networks. Leveraging the additional structure of
the tree-like nesting, we contribute an overview-+detail layout for
this class of compound graphs that preserves the saliency of the
higher level network structure when groups are expanded to show
internal nested structure. Our layout draws inner structures adjacent
to their parents, using a modified tree layout to place substructures.
We describe our algorithm and then present case studies demon-
strating the layout’s utility to a domain expert working on data flow
analysis. Finally, we discuss network parameters and analysis situ-
ations in which our layout is well suited.

Index Terms: compound graphs, network layout, graph drawing,
ntework visualization, graph visualization

1 INTRODUCTION

Compound graphs are networks in which additional grouping in-
formation is available regarding the vertices. A group may contain
other groups of vertices, leading to a hierarchical nesting of net-
work contents [23]. These networks with grouping structures arise
frequently in multi-step processes. For example, vertices relating to
a biological process may be grouped into a compound node repre-
senting that process [25, 12]. Larger, more complicated processes
may be composed of these compound nodes. Thus, the compound
graph may have many levels of grouping to navigate.

A common way to visualize graphs is with a node-link diagram,
which promotes tracing paths through the network. With compound
graphs, the initial depiction of the graph may show only the higher
level groupings, reducing clutter by allowing the user to interac-
tively expand the groups to see their members [24]. Visually, the
groups are often expanded in place, resulting in a layout that fo-
cuses on lower levels but can obsucre higher level structure, as
shown in Figure 1(b).

For compound graphs where sibling clusters are disjoint, e.g.,
those with tree-like hierarchies like the multi-step process graphs
discussed above, we can balance the display of both high level and
low level structure through an overview+detail approach. We pro-
pose a layout (Figure 1(a)) that perserves the higher level structure
while still supporting examination of lower level structure, placing
the two near each other so users can simultaneously explore both
the internal details of a group and how that group interacts with its
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peers at the higher level. We use two strategies to achieve this lay-
out. First, we explicitly route edges that traverse group membership
through “ports” that isolate the inner group layout while preserving
path tracing. Second, we adapt the Flexible RT algorithm [21] to
draw expanded groups near their collapsed representations within a
group.

We present our contributed layout in section 3. We then demon-
strate the utility of the layout through a collection of case studies
in analyzing data flow graphs. We conclude with a discussion of
situations in which our layout is appropriate. Specifically, we con-
sider our layout most appropriate for directed compound networks
that have multiple levels of nesting, especially when analysis tasks
benefit from a strong understanding of higher level contexts along
with expanded detail.
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Figure 1: An overview+detail layout (a) vs. focus+context layout
(b) of the same compound graph. The graph depicts the data flow of
a small Python program. In our case study, a domain expert looks
at compound networks of larger, more complicated programs.

2 RELATED WORK

A common way to visualize compound graphs is with Sugiyama-
style algorithms [7, 10, 19, 17]. Sugiyama and Misue [19] initially
proposed an algorithm to create a compound layout for directed
graphs. Their method generates a layered layout within each clus-
ter. Extending this approach, Sander [17] introduced global par-
titioning and then drew borders around each cluster. Despite em-
ploying various techniques to reduce edge crossings, the layout be-
comes cluttered as the size of the graph increases. To mitigate this
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issue, Wongsuphasawat et al.[24] applied edge bundling to com-
pound graphs, routing edges between clusters so that they connect
only nodes that are siblings within the hierarchy. This strategy also
aids in maintaining layout stability during interaction, such as ex-
panding groups [14]. However, edge bundling complicates the trac-
ing of edges and the graph’s appearance still changes significantly
if an expanded group is large. Yoghourdjian et al. [26] proposed
a grid layout method, designed for small compound graphs, that
produces compact layouts with edges routed between grid cells.
Deriving compound graphs, such as through clustering, is a com-
mon approach for visualizing overviews of large and complex undi-
rected graphs. Balzer and Deussen [5] proposed a level-of-detail
technique for visualizing clustered graphs in both 2D and 3D. They
employ implicit surfaces and edge bundling to simplify the vi-
sual representation of these graphs. Additionally, Ham and van
Wijk [22] proposed a method to interactively inspect local struc-
tures of small-world graphs, while maintaining a global overview
of the entire structure. Abello et al. [1] proposed an interactive
system for large scale compound graphs that allows users to nav-
igate through the hierarchies by expanding clusters. Archambault
et al. [2] combined a tree view and a graph view to aid exploration
of compound graphs. The tree view offers a clear representation of
the graph hierarchy, while the graph view displays the current cut
of the graph hierarchy, selected via the tree view. The same com-
bined views [3] is also used to modify graph hierarchy. Our layout
combines tree and graph notions, thereby providing both a clear
hierarchy and the detailed graph structure within the same view.

3 PROPOSED COMPOUND GRAPH LAYOUT

The primary goal of the proposed layout is to preserve the orig-
inal graph representations at each level of the hierarchy, thereby
enabling viewers to understand the network at multiple levels si-
multaneously. Thus, we aim to have little-to-no distortion at each
level, even when expanding down the hierarchy. Before introducing
the algorithm, we first introduce the concept of ports that we have
employed when visualizing compound graphs.

3.1

Often in compound graphs, edges crossing into a compound node
either are routed directly to their neighbor within the compound
node or are represented as terminating at the compound node
boundary, with the explicit connections elided, often to remove
clutter. For example, TensorFlow graphs [24] bundle edges entering
a compound node.

Several layouts have used a concept of ‘ports’ to guide the rout-
ing of edges. For example, in the dot algorithm implementation in
GraphViz [8], ports specify which side of a node the edge should
be routed to. Our layout draws explicit ports, shown in our figures
as small squares (Figure 2). Edges crossing the border of a com-
pound node are routed through ports for clarity, with one direction
(“top”) indicating ‘in’ ports and othe opposed direction (“bottom”)
‘out’ ports. Our layout allows for any numer of ports per compound
node. This choice allows us to layout the members of the compound
node independently of its outer context, except for the direction in
which the outer edges come (i.e., the direction of the ports).

Explicit boundary crossing ports has relevance in several do-
mains. In computational graphs, operations (nodes) can receive
data variables as inputs and produce new variables as outputs [24].
Similarly, chemical equations may have similar input and output
semantics [4]. Note that our ports are agnostic to layout methods,
meaning that the proposed technique is applicable to graphs both
with and without an explicit presentation of ports.

We employ Dagre, a JavaScript library, to compute a Sugiyama-
style layout for each expanded group [20]. We treat the ports as
child nodes within the variable boxes and add dummy nodes be-
tween the input and output ports to separate them.

Ports and Inner Layout for Expanded Groups
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(a) (b)

Figure 2: Compared to (a), we explicitly incorporate ports into
the design in (b) to increase the clarity of links through compound
graphs and isolate the the layout within compound nodes.
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Figure 3: (Top) The Reingold-Tilford algorithm can produce poor
results when the compound node is oblong in the direction of tree
growth. Even growing the layout vertically, the internal view would
be placed in the middle of the oblong compound node rather than
near its counterpart. (Bottom) The ideal layout would place ex-
panded nodes near their collapsed counterparts.

3.2 Overview+Detail Metaphor for Compound Graphs

The overview+detail design in visualization context refers to “the
simultaneous display of both an overview and detailed view of an
information space, each in a distinct presentation space” [6]. Exist-
ing compound graph visualizations focus on “focus+context” [18,
11] and “semantic zooming” [24], both which distort the higher lev-
els around the focus level. The zooming techniques also cause the
structure of the pre-zoomed graph (the overview) to be less salient,
making it difficult to maintain a sense of higher level connectivity
and structure when viewing the internals of compound nodes.

To address this issue, we propose a new layout for compound
graphs based on the overview+detail metaphor in interface design.
This layout creates a distinct view of the subgraph at each cluster
expansion, instead of expanding selected node and re-laying out the
graph containing it. The nesting relationship between the original
graph and the subgraphs enables us to employ tree layout meth-
ods to arrange these distinct views. However, traditional tree layout
algorithms like Reingold-Tilford (RT) algorithm [16] cannot be di-
rectly applied for two main reasons: i) the boxes of different view
frames have siginificant size and aspect ratio differences, and ii)
placing child nodes at the center of one compound (parent) node
direction, as is the RT default, may result in layouts where the col-
lapsed and expanded representations are far from each other. Below
we discuss our customized variant of the RT algorithm to address
these two issues.

3.3 Orthogonal Non-layered Reingold-Tilford Algorithm

As shown in Figure 3 (Top), simply applying RT algorithm can
yield poor results. Placing the expanded node far from its collapsed
counterpart creates visual edge clutter and presents difficulties in
simultaneously comprehending the node in both its collapsed and
expanded states. Although changing the tree layout direction in
RT can alleviate the issue in this case, it is not a viable solution
because (1), even if centered vertically, the expanded node would
still be some distance from its collapsed representation, and (2) the
graph may contain elements that are optimized for left-to-right and
top-to-bottom layouts seperately. Below we discuss our customized
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Figure 4: An illustration of our proposed variant of RT algorithm.
The input data is shown in both our layout and a simplified tree
view. Then in each step, we follow the RT bottom-up placement.
We frist place group parents with respect to expanded children
based on the position of their corresponding internal nodes, and
then make separation passes in both directions of tree expansion.

variant of RT, which mitigates these issues. An implementation of
this algorithm can be found on Github'.

The primary design goal of our method is to minimize the dis-
tance between the selected node and its expanded view. We
base our algorithm on the “Flexible Reingold-Tilford (Flexible
RT)”algorithm [21], a non-layered variant of the traditional RT al-
gorithm. Compared to the traditional RT, the Flexible RT achieves a
higher space utilization rate and helps reduce edge length. We em-
ploy the non-layered RT because layers do not encode critical in-
formation in our use cases. For applications requiring a clear layer
structure, traditional RT can be re-employed, albeit at the expense
of space utilization and edge length.

Our proposed method adopts a bottom-up approach similar to
both RT algorithms, as shown in Figure 4. The primary distinction
of our algorithm is that it lays out the tree in two directions. As
illustrated in Figure 4 stepl, the children (nodes 4 and 6) are po-
sitioned to the right and bottom, respectively, based on their prox-
imity to the corresponding boundaries of the parent boxes (nodes 3
and 5). This strategy effectively reduces the distance between the
node and its expanded view.

Another notable difference from previous methods is our initial-
ization of each child node’s position. At each step, we initialize the
position of the child according to its location within the parent box.
For instance, in step2, before separation, the x-coordinates of the
two subtrees (3-4 and 5-6) are set to align with their location in the
parent box. Following this initialization, the algorithm checks for
overlaps and applies a separation operation as necessary, utilizing

lhttps ://github.com/ml4ai/moviz-client
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Figure 5: Duplicate structures within one group are drawn with
edges from the collapsed copies to the expanded form. In this ap-
plication, we choose lightweight dashed edges to depict this rela-
tionship. Users of our layout can choose to suppress these edges
and/or the expansion of duplicate siblings as layout parameters..

the same separation technique as described in the Flexible RT al-
gorithm [21]. Subsequently, the parent node adjusts to the average
displacement of all child nodes, minimizing the total displacement
of child nodes.

Note that this separation is performed for child subtrees that are
oriented in the same direction (bottom or right). In some scenar-
ios, as shown in Figure 4 step3 (left), the children oriented in the
left-right direction may overlap with those in the top-down direc-
tion. Because the contours of these groups can form non-convex
polygons, resolving their overlap becomes a problem of finding the
Minimum Translation Vector (MTV) to separate overlapping non-
convex geometric shapes, a challenge commonly addressed in col-
lision detection within computer graphics [9]. Although optimal
solutions typically require complex algorithms, we find a simpli-
fied approach with linear running time to be good enough in our
application: We perform the same separation operation as in step2
but execute it twice: initially, we separate the polygons by moving
them along the y-axis, and then repeat the process along the x-axis.
We compare the two results and take the approach that results in the
shortest total distance moved as the final choice. The parent node
then adjusts to the average displacement of all child nodes. For in-
stance, in Figure 4 step3, the two subtrees of node 1 are effectively
separated by moving along the x-axis.

We provide two methods for drawing duplicate members of the
same group. They can be individually expanded or shown as a
single subgroup with additional edges. Figure 5 illustrates the lat-
ter case where all duplicate groups are connected to the expanded
group with dashed lines, eliminating the need for drawing each ex-
pansion as required in the focus+context layout. This reduction of
drawn elements is another benefit of the overview+detail approach.

4 CASE STUDIES

We discuss the use of our layout for debugging and understand-
ing compound networks generated during automated extraction of
computations from source code. These case studies arose from de-
ployed use of our layout by the author who was not involved in the
design of the layout or the implementation but was involved in pro-
viding feedback towards a visualization that used the layout as its
main view as well as in generating the datasets we used. We pro-
vide background for the use and visualization and then discuss how
it was used in practice.

4.1

Our layout was used in the context of project involving automated
extraction of computational models from source code and other
documents. These models can then be analyzed either computa-
tionally or manually, combined with other models, and transpiled
into new, more performant code. The models are stored in a custom
abstract format, known as a Function Network [15], that can be cast
as a compound network.

The author who performed these case studies is part of the ex-
traction team. They were interested in the visualization to help them

Layout Application Background
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Figure 6: The interface used in the case study has two linked views.
View A shows the raw JSON representing the Function Network.
View B is the main view of our compound networks.
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Figure 7: Undefined ports in the Function Network often signify
bugs. We add them if referenced in red to make them more salient.

understand the Function Networks to help them create and debug
steps further in the pipeline. As both the extraction and subsequent
steps were in development, their use also led to identification of
bugs in the extraction code.

The Function Networks encapsulate concepts like expressions,
functions, loops, and modules as a generic ‘box’ that can con-
tain other boxes. Each box can have multiple input and output
ports which represent values and can have names corresponding
to variables extracted from the source. Links between ports indi-
cate movement of values. In Function Networks, arrows point to a
value’s source rather than its destination. This abstraction is used
by other analyses in the pipeline.

To match the illustrations in the project’s documentation, we
use categorical color to differentiate concepts like expressions and
functions. We paired our layout with an auxiliary view showing the
raw JSON representing the Function Network (Figure 6). These
linked views enable seeking a particular box and expand the visu-
alization such that the internals of that box are visible.

A common bug in the Function Network extraction is referenc-
ing an undefined port. In this case, we created the port in our layout
but drew it in solid red to indicate it was our creation (Figure 7).

4.2 Use of Our Layout

These case studies were extracted from brief notes the performing
author wrote in a single month’s summary report from the entire
project. The first author followed up with the performing author for
more detail. Both the report and follow up occurred during design
of the multi-view visualizaiton, before publication was discussed.

Using Our Layout for Debugging. The author reported two in-
stances in which our layout helped with debugging. In the first,
they were able to determine a downstream error in running their
code was caused by an upstream error in defining the Function Net-
work. They noticed the solid red ports indicating missing defini-
tions in the Function Network. Due to the placement in the layout,
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they were able to narrow down what part of the extraction process
it was associated with. They said, “With the way the ports are laid
out, it’s easy to tell what kind of wires these are,” referring to the
implicit purpose of the links.

In the second instance, the author debugged their own code
which makes inferecnes about the computation performed by the
Function Network. They had made an assumption about the way
the Function Network represented vectors. Once they checked the
visualization, they understood their error, as well as the correct rep-
resentation, and fixed their code. They particularly noted the “cas-
cading” style of the layout helped them: “If you see it, you’ll see
a lot of those set operations going on. It’s kind of that cascading,
from the [internal name] visualization.”

Using Our Layout for Understanding. The author also used our
layout for understanding how Function Networks represent func-
tions as parameters to other functions. The author was aware that
other team members had added new specifications regarding func-
tion parameters. They used the layout with several test cases to
understand the new specifications, often tweaking the code and ex-
amining the changes. Prior to the introduction of the layout, they
would rely on documentation alone, which had a few hand-drawn
examples of small, isolated uses. They said, “It allowed me again,
to get a better understanding of the structure and pretty quickly be
able to update the code on my side.”

5 CONCLUSION AND FUTURE WORK

We have presented an overview+detail layout for compound graphs
and demonstrated its utility through case studies in debugging com-
pound graphs representing computation. The layout specifically
prioritizes displaying both the structure between higher level groups
as well as the detail within groups, placing the two depictions, ex-
panded and collapsed, near each other in the overall layout.

The impetus of our layout design was aiding in tracing through
compound graphs representing processes that can include nested
sub-processes, such as those found in biological processes, chem-
ical equations, and computational data flow. Thus, it is designed
primarily for directed networks. Specifically, we apply a conven-
tion of placing inputs on one side and outputs on the other through
our layout’s explicit ports.

We recommend this layout be used when the compound struc-
ture has several levels of nesting. In shallow networks or applica-
tions where higher levels are not as important, the limitations of
focus+context and/or semantic zooming approaches in showing the
higher-level behavior would have little effect on the analysis. We
do not claim that our method is a superior substitute for previous
methods, but rather an alternative choice in scenarios where un-
derstanding multiple levels simultaneously is crucial. Ultimately,
empirical studies would need to be performed to more definitively
and precisely understand the suitability of these methods to various
compound graph tasks.

We note our tree layout method restricts the layout direction to
right and down, which may still result in some long edges in some
cases when the parent group is large and many subgroups are ex-
panded. We made this compromise in our layout design for bet-
ter computational efficiency and a clearer overall direction (from
top-left to bottom-right). Alternatives placement algorithms, in-
cluding ones that conisder all directions, may further improve the
overview+detail layout approach. Another limitation of our ap-
proach, similar to the traditional RT algorithm, is that it may pro-
duce elongated layouts. To address this, we allow users to pan
and zoom within our application, as shown in Figure 6. Future
work could explore methods to partially collapse elongated nodes
or investigate creating area-adaptive layouts similar to Misue’s ap-
proach [13], but with plural layout directions and varied node sizes.
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