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Abstract—This paper investigates properties of polar-polar
concatenated codes and their potential applications. We start by
reviewing previous work on stopping set analysis for conventional
polar codes, which we extend in this paper to concatenated
architectures. Specifically, we present a stopping set analysis for
the factor graph of concatenated polar codes, deriving an upper
bound on the size of the minimum stopping set. To achieve this
bound, we propose new bounds on the size of the minimum
stopping set for conventional polar code factor graphs. The
tightness of these proposed bounds is investigated empirically
and analytically. We show that, in some special cases, the exact
size of the minimum stopping set can be determined with a
time complexity of O(N), where N is the codeword length.
The stopping set analysis motivates a novel construction method
for concatenated polar codes. This method is used to design
outer polar codes for two previously proposed concatenated
polar code architectures: augmented polar codes and local-global
polar codes. Simulation results with BP decoding demonstrate
the advantage of the proposed codes over previously proposed
constructions based on density evolution (DE).

Index Terms—Polar codes, concatenated polar codes, local-
global decoding, stopping sets, belief propagation.

I. INTRODUCTION

OLAR codes, introduced by E. Arkan [1], occupy a
Punique place in the history of error correction codes as
the first family of codes to achieve the Shannon capacity
of arbitrary binary symmetric memoryless channels (BSMs).
The code construction starts from a channel transformation,
where N synthesized bit-channels Wz(vl)’ 1=0,1,..., N—1 are
obtained by applying a linear transformation to NV independent
copies of a BSM channel W. As the block length N goes to
infinity, the synthesized bit-channels become either noiseless
or completely noisy. A polar code carries information on the
least noisy bit-channel positions and freezes the remaining
ones to a predetermined value, usually chosen to be zero.
Arikan [2] also introduced the concept of systematic polar
encoding, achieved through the solution of linear encoding
equations that ensure the codewords contain the information
bits at designated positions.
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Code concatenations have been proposed to improve the
error correction performance of polar codes. In particular,
polar codes have been concatenated with various auxiliary
codes, including parity-check codes [3], CRC codes [4], low-
density parity-check (LDPC) codes [5], and Reed-Solomon
codes [6]. Expanding upon the enhanced belief propagation
construction of Guo et al. [7], Elkelesh et al. [8] introduced an
augmented polar code architecture that concatenates two polar
codes, using an outer auxiliary polar code to further protect
the semipolarized bit-channels within the inner polar code.
Compared to other augmented polar codes, such as polar-
LDPC codes, polar-polar augmented codes provide greater
flexibility in both code design and hardware implementation.
For instance, adjusting the code rate is simpler with polar
codes than with LDPC codes. In polar-polar codes, one can
simply modify the frozen positions of the outer codes, inner
codes, or both. In contrast, changing the rate of polar-LDPC
codes requires redesigning the outer LDPC codes, resulting in
different hardware implementations. In the same work [8], they
also suggested connecting several inner polar codes through a
single auxiliary polar code, offering the flexibility of codeword
lengths other than a power of two. Motivated by practical
applications in data storage and low-latency communication
systems, Zhu et al. [9] proposed an architecture for polar codes
offering local-global decoding. In this scheme, a codeword
comprising several inner polar codes is concatenated with a
systematic outer polar code, thus enabling both local decoding
of the inner codes and global decoding of the codeword.

The belief propagation (BP) decoder for polar codes was
introduced to increase throughput through a pipelined decod-
ing process [10]. While the BP decoder surpasses the error
rate performance of the original successive-cancellation (SC)
decoder, it falls short of the SC-list (SCL) decoder [4]. To im-
prove the performance of BP decoding, a method is proposed
in [11] to sparsify the dense parity check matrix. Simulation
results show that the BP decoding based on the sparsified
Tanner graph is particularly effective for short code lengths.
The BP-list (BPL) decoder [12], which incorporates different
permutation patterns of BP decoding units, significantly en-
hances error rate performance, bridging the performance gap
between BP-based and SC-based decoders. However, how to
select the optimal permutation list is still an open problem. It
was shown in [13] that better performance can be obtained by
selecting L permutations from those with the smallest error
probability bound.

Polar codes and Reed-Muller (RM) codes share the same
basic encoding matrix before selecting the information set:
RM codes select rows according to their Hamming weights,



while polar codes select rows by comparing their associated
Bhattacharyya parameters [1]. Another frozen set selection
method, introduced by Mori et al. [14], uses density evolution
(DE) to analyze BP results for each decoding tree corre-
sponding to the SC decoding process. The high computational
complexity of DE motivated the Gaussian approximation (GA)
algorithm [15], which assumes that the log-likelihood ratio
(LLR) distribution corresponding to each variable node is a
Gaussian with mean m and variance 02 = 2m, thus reducing
the convolution of densities to a one-dimensional computation
of mean values. In [16], Dai et al. proposed a modification to
GA to address the performance loss incurred when applying
GA to long polar codes.

An important characteristic of polar codes is that the bit-
channel orderings are channel-dependent. Although no general
rule is known for completely ordering the bit-channels of
a general BSM channel, some partial orders (POs) that are
independent of the underlying channel have been found for
selected bit-channels [14], [17], [18]. In [14], an ordering
applicable to bit-channels with different Hamming weights
was presented. The Hamming weight of W](\;) is defined as
the number of ones in the binary expansion of ¢. The ordering
states that a bit-channel W](\f ) is stochastically degraded with

mance of BP decoders, we focus on analyzing stopping sets
within these architectures. The analysis of stopping sets in the
concatenated factor graph suggests a novel code construction
method that identifies promising information sets for the outer
code. Error rate simulations demonstrate that the proposed
method can improve the performance of augmented and local-
global polar codes. Portions of this paper were presented
in [21], [22].

The paper is organized as follows. Section II briefly reviews
background results and notation used in the rest of the paper.
In Section III, we provide the stopping set analysis for
concatenated polar codes, and we emphasize the importance
of finding the minimum stopping set within the conventional
polar code factor graph that includes certain information
nodes. Section IV presents lower and upper bounds on the
size of these minimum stopping sets, while Section V provides
exact calculations for specific information node choices on the
leftmost stage of the polar code factor graph. In Section VI,
we propose an outer code design method based on stopping
set analysis for concatenated polar code architectures. Finally,
Section VII concludes the paper.

II. PRELIMINARIES

respect to WJ(\f) if the positions of 1 in the binary expansion of 4 p,iur Codes and Systematic Polar Codes

7 are a subset of the positions of 1 in the binary expansion of
i. The ordering in [17] and [18] compared bit-channels with
the same Hamming weight. It was based on the observation
that a bit-channel WI(\?) is stochastically degraded with respect
to W](\;) if j is obtained by swapping a more significant 1 with
a less significant O in the binary expansion of 7. Both of these
orderings are partial, in the sense that not all bit-channel pairs
(W](\;), W](\f )) are comparable. A more general investigation of
POs for polar codes can be found in [19].

In [20], the hybrid RM-polar code construction and stable
permutation set were jointly optimized for BP list decoding.
The code construction selectively exchanges bit-channels with
lower Hamming weight indices and relatively high polarization
weight with bit-channels having higher Hamming weight in-
dices and relatively low polarization weight. Taking advantage
of bit-channel POs, the construction complexity is shown to be
sublinear. The stable permutations, inspired by the selection
criterion in [13], preserve a specified information set and
preserve the error probability upper bound.

While design methods based on the Bhattacharyya param-
eters, DE, and GA were originally used in the context of
SC decoding, they have also been applied to code design
for BP decoding. Eslami et al. [5] introduced a construction
method based on stopping sets in the sparse polar code
factor graph, aimed at increasing the stopping distance of
the polar code. They provided empirical evidence showing
improved performance under BP decoding, compared with the
conventional code design.

Iterative decoding is naturally suited for concatenated polar
codes, as it leverages the decoding capability of the outer codes
to correct errors in the inner codes. In this paper, we investigate
BP decoders for concatenated polar code architectures. Since
stopping sets are well-established for evaluating the perfor-

In conventional polar code design, IV independent copies
of a channel W are combined in a recursive manner into
a vector channel Wy, which is then split into N channels
W](\;), 0 <4< N —1, referred to as bit-channels. The Bhat-
tacharyya parameter Z (W](\;)) is used to identify the quality
of bit-channel 7. A polar code of rate R:% selects the K
most reliable bit-channels (with the smallest Z (WJ(VZ))) to input
information bits, and the remaining bit-channel inputs are
frozen to zero. We use A to denote the set of information
indices, and F=A¢ to denote the frozen indices. Let G=F®™"
be the NxN matrix that is the n-th Kronecker power of
o { 10

11
is specified by r=uG, where z,u € FN G € FN*¥V,

Arikan [2] showed that a systematic encoder can be realized
that maps information bits to positions in the set 5=.A in the
codeword z. To be specific, u 4. is set to 0, xp is set to the
information vector, and u4 and xp- are found by solving a
system of equations.

] , where n=1og, N. The polar encoding process

B. Concatenated Polar Codes

Our focus in this paper is on concatenated code architectures
in which all component codes are polar codes. The augmented
and flexible length architectures were introduced in [8].

In an augmented polar code, a short auxiliary outer polar
code Gy is connected to an inner polar code G;. The encoding
structure is illustrated in Fig. 1. The short auxiliary outer polar
encoder takes the information bits /K and the frozen bits Fj
as inputs, producing a codeword of length Ny. This codeword
is then passed through an interleaver 7, and the permuted
codeword serves as the information bits for the semipolarized
channels of the inner polar code. The inner polar encoder



receives three inputs: the information bits K assigned to the
good bit channels, the frozen bits F} assigned to the frozen bit
channels, and the interleaved codeword from the outer polar
encoder, which is assigned to the semipolarized bit channels.
The inner polar encoder outputs a codeword of length Ny,
which is then transmitted over the channel. The rate of the
outer code is given by Ry = %, while the overall rate of the

augmented structure is Rgqyg = K(’N#f{l
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Fig. 1: Encoder of the augmented code.

In the flexible length architecture, two inner codes G, G2
of length Nj, Ny are coupled through a rate Ry = %—g
auxiliary outer code G. Information words of length K7, Ko
are assigned to the good bit-channels of the two inner codes,
respectively. The outer codeword is divided into two parts
which are assigned to the semipolarized bit-channels of the
inner codes. The total encoding rate for the flexible length
structure is Ryer = W

1 2

Inspired by the flexible length architecture, the local-global
polar code architecture, introduced in [9], connects multiple
inner codes G1, ..., G through a systematic outer polar code.
We assume these codes have the same length N; = N,i =
1,..., M. A word of K} information bits is divided into M
parts of Ky, , ..., K}, bits that are assigned to the good bit-
channels within the inner codes. The K, outer information
bits are divided into M parts of K,,,...,K,,, bits that are
mapped to the semipolarized bit-channels of the M inner
codes, respectively. The P, parity bits of the outer codeword
are similarly partitioned into M parts of P, , ..., P,,, bits and
mapped to the remaining semipolarized bit-channels within
the inner codes. This architecture supports local decoding of
information bits K,,, K, within each inner code G;, with the
option of improved decoding of the M inner codewords via

global decoding using the outer code.

C. Stopping Set in Factor Graph

We briefly review the stopping set analysis of polar codes
as presented in [5], and we propose some new definitions that
will be used throughout the rest of the paper.

1) Notation from Eslami et al. [5]: A stopping set (SS) is
a non-empty set of variable nodes such that each neighboring
check node is connected to this set at least twice. In this paper,
we are particularly interested in the analysis of stopping sets
in the factor graph of polar codes. Fig. 2 shows an example
of a stopping set in the polar code factor graph, where we
also included the corresponding set of check nodes. Denote
the factor graph of a polar code of length N = 2" by T,,. A
key observation is the symmetric structure of this graph which
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Fig. 2: Normal realization of the factor graph for N = 8.
An example of a SS is shown with black variable and check
nodes.

reflects the recursive construction of the generator matrix: 7},
includes two factor graphs equivalent to 7}, as its upper and
lower halves, connected together via v(0,0), v(1,0), ..., v(N —
1,0) and ¢(0,0),¢(1,0), ...,¢(N —1,0). We denote these two
subgraphs by TV and T'L, as shown in Fig. 2.

A stopping tree (ST) is a SS that contains one and only
one information bit, i.e., variable node, on the leftmost stage
of the sparse polar code factor graph. For each information
bit 4, there is a unique stopping tree denoted by ST'(i). An
example of such a stopping tree is shown in Fig. 3 with black
variable nodes. We also included the corresponding set of
check nodes in order to visualize the structure of the tree. The
size of the leaf set (variable nodes on the rightmost stage) of
ST(i) is denoted by f(i). For example, f(5) = 4, with the
corresponding leaf set {xzg, z1, 4, 25}.

Only variable nodes on the rightmost stage are observed
nodes, with all other variable nodes hidden. The set of ob-
served variable nodes in a SS forms a variable-node SS (VSS).
Accordingly, we define a minimum VSS (MVSS) as a VSS
with a minimum number of observed variable nodes, among
all the VSSs. The size of a MVSS is the stopping distance
of the code. For any given index set J, we denote a SS
whose information nodes are precisely 7 as SS(7). The set of
observed variable nodes in a SS(J) is a VSS for J, denoted
VSS(J). A minimum size VSS among all the V.SS(J) is
called a minimum VSS for 7, denoted MV SS(J). Note that
SS(J), VSS(J) and MV SS(J) may not be unique for a
given index set J. The following theorem is taken from [5],
and we aim to extend it in Section IV.

Theorem 1. (Lower Bound I) Given any set J of information
bits, we have |MV SS(J)| > ml‘rylf(j)
JE
Proof. The proof can be found in the Appendix of [5]. W
Define SD(A) =

tance of a polar code with information set .4. Theorem 1 sets a
lower bound on the size of a MVSS for a set 7 of information

in | MVSS the stopping dis-
51163\ (J)| as the stopping dis



bits. It also implies that the size of a MVSS for a polar code
with information set A is at least equal to mij\l f(2). However,
1€

we already know that the leaf set of the stopping tree for any
node i € A is a VSS of size f(i). The following corollary can
be directly established:

Corollary 1. For a polar code with information bit index A,
SD(A) = min (i),
1€
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Fig. 3: The stopping tree for v(5,0) is shown with black
variable and check nodes.

2) New notation introduced in this paper: Let 1 € Zy

have the binary representation i, = %q,%1,...,in—1, Where
1= zzgilik x 2F, and let wt(iy) denote the weight of
i (i.e., the number of 1s). For example, if ¢ = 6, then
i, = 011 and wt(ip) = 2. According to Fact 5 in [5],
for a length-2" polar code, f(i) = wt(r;), where r; is

the (¢ + 1)-th row of G = F ® " Furthermore, it directly
follows from the properties of the recursively generated G
that wt(r;) = owt(iv) Thus, for 0 < i < 2" —1, the following
equation provides a straightforward method to calculate f(i):

F(i) = 2wt (1)

Given information set 7, we use UT(J) = Ujes7ST(j)
to denote the union of all the stopping trees defined by the
elements in 7, which is also the largest S.S(7), with all other
SS(J) C UT(J), as stated in the following proposition.
Fig. 4 gives an example of UT(J) with J = {3,5}. Define
the degree of a node as the number of its neighboring nodes.
Specifically, the degree of a variable node is the number of its
neighboring check nodes, and the degree of a check node is
the number of its neighboring variable nodes. In Fig. 4, ¢(1, 0)
and v(1,1) have a degree of 2, while ¢(1,1) and v(3,1) have
a degree of 3.

Proposition 1. Any SS(J) is a subset of UT(J).

Proof. Assume there exists a node v(r*,c*) ¢ UT(J) such
that v(r*, ¢*) is in some SS(J). If ¢(r*, ¢* —1) is of degree 2
in the factor graph, then its neighboring variable node in
column ¢* —1 must be in SS(7). Alternatively, if ¢(r*, ¢* —1)
is of degree 3, then at least one of its two neighboring variable
nodes in column ¢*—1 is in SS(J). Without loss of generality,

assume v(r*,¢* — 1) is in SS(J). Clearly, v(r*,c* — 1) is
a parent of v(r*, c*). We can then apply the same process to
find the parent(s) in columns c¢* — 2, ¢* — 3, and so on, until
we reach column 0.

At this point, there must exist a node v(r**,0) that is a
parent of v(r*,c*), implying v(r*,¢*) € ST(r**) and that
any SS(J) containing v(r*,¢*) must also contain v(r**,0).
However, since we assumed v(r*,c*) ¢ UT(J), it follows
that v(r**,0) ¢ J, which contradicts the fact that v(r**,0) is

n g%ﬁe‘gl)e'eﬁ check node in UT'(7) must lie in the interseg
tion of two stopping trees. We refer to this as an intersection
check node (ICN), and we denote the set of these as ICN(J).
A leaf that is shared by more than one ST'(¢), i € J is referred
to as an overlapped leaf (OLL). The set of overlapped leaves
is denoted as OLL(J). The leaves that are associated with
exactly one ST'(i), i € J are called non-overlapped leaves
and denoted as nOLL(J). For each element in OLL(J),
there exists at least one parent ICN. The parent ICN of the
leaf indexed by ¢ with the largest column index is called the
root ICN of 4, denoted as rIC'N (i). Again taking Fig. 4 as an
example, nOLL(J) = {x2, x5, 24,25}, OLL(J) = {0, 21}
and rICN(0) = rICN(1) = ¢(1,1).
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Fig. 4: An example of UT(J) for a set J of size 2.

III. STOPPING SET ANALYSIS FOR CONCATENATED POLAR
CODES

Consider the augmented polar code structure in Fig. 5,
where an inner polar code is concatenated with an outer
polar code. Recall that the inner information positions that
are connected with the outer code are known as semipolarized
channels, and the rest of the inner information bits are assigned
to the good bit-channels [8]. To be specific, K information
bits are assigned to the auxiliary outer polar code, and an
additional K7 information bits are assigned to the good bit-
channels within the inner code. The connection pattern be-
tween the outer codeword and the semipolarized bit-channels
of the inner code is determined by an interleaver.

Let vo(7) denote the (i + 1)-th node on the leftmost stage
within the outer factor graph, and let v1 (j) denote the (j+1)-
th node on the leftmost stage within the inner factor graph.
Let H; denote the set of inner information nodes such that
each element in H; is connected to one of the leaves in the
stopping tree ST'(i) defined on the outer factor graph. Let
MV SS(H;) be a MVSS (which may not be unique) defined
by set H; within the inner factor graph. For example in Fig. 5,
Ho is the set of nodes {v1(1),v1(5)}. MV SS(Hz) is the set



Inner factor graph

Outer factor graph |

Fig. 5: Augmented structure with Nyo=4, N;=8. Orange nodes
represent a SS and {4, x5} are a MVSS.

of nodes {x4,x5}. Note that {z¢,x1, x4, 25} is also a VSS
for Ho, but it is not a minimum VSS.

The information set J was previously defined as the set
of indices of the information nodes. In this section, we
slightly modify the definition of 7 to represent the information
nodes themselves, rather than their indices, to avoid confusion
between the elements in the set of outer information nodes and
those in the set of inner information nodes. Denote the set of
information nodes on the leftmost stage of the outer factor
graph that corresponds to Ky as J,,¢, and denote the set of
information nodes on the leftmost stage of the inner factor
graph corresponding to K as J;,. Define Jiota1 = Jout UTin-

Note that there is no valid stopping set within the overall
factor graph whose intersection with the union of the left-
most stages of the inner and outer factor graphs is exactly
Jtotar- This is because, when J,,; is non-empty, some inner
information nodes corresponding to semipolarized channels
must be included in the stopping set. However, 7;,, does not
include any nodes corresponding to semipolarized channels.
For example, in Fig. 5, with Jou: = {vo(2)} and J;p, = 0,
‘Ho must be part of any stopping set that only contains Jyy:
on the leftmost stage. Therefore, we introduce the following
definition: Let SS'(Jotar) denote a stopping set within the
overall factor graph that includes exactly 7,,: on the leftmost
stage of the outer factor graph, and J;, along with some
semipolarized nodes, on the leftmost stage of the inner factor
graph.

Example 1. We provide an example of SS’ to demonstrate that
at least one such set always exists for any given [Jiotqi. Let
UT(Jout) represent the union of stopping trees in the outer
factor graph, and let H g, be the set of inner information
nodes, where each element in H, , is connected to one of
the leaves in UT(Jout). Define J* = H,,, U Tin, and let
UT(J*) be the union of stopping trees in the inner factor
graph. Then, the set UT(Tout) U UT(JT*) forms a valid
SS/(u7total)~

In the augmented polar code structure, only the variable
nodes on the rightmost stage of the inner factor graph
are observed nodes. Accordingly, let V.SS'(Jiota;) denote
a set of observed variable nodes in SS'(Jiotar), and let
MV SS' (Jiotar) denote a minimum VSS among all the

VSS (Jiotar)- Define SD'(Tiotal) = jénjin |[MVSS'(T)|
1

ota

as the stopping distance of the augmented code. This nomen-
clature is appropriate because SD’(Jiota1) characterizes the
minimum number of errors at the receiver that will cause some
unrecoverable errors in the BP decoder. We now derive an
upper bound on this stopping distance.

We begin by considering a single information node. For
an inner information node i € J;,, the leaves of ST'(i) are
MV SS'(i). Therefore, we continue to use f(i) to charac-
terize the value of |MVSS'(i)| for i € J;y. For an outer
information node ¢ € J,u, it can be seen that #; must
be included in MV SS’(i). Thus, we are interested in deter-
mining |MV SS(H,;)| within the inner factor graph. Clearly,
MV SS(H;) forms a V.SS’(i), thus providing an upper bound
on |[MVSS'(i)]. Let fout(i) = |MV SS(H;)|. The following
theorem then provides an upper bound on SD’(Jiotal)-

Theorem 2. Let min(a,b) be the function that returns the
minimum value of a and b. Then, we have

) o . N in FO),
SD'(Jrotar) < mm(jg};nrit fout(3)7jr€r1}n f())

in

Proof. To start with, we point out that SD'(Jiotai) <

‘ rgin |MVSS’(4)]. This inequality arises because it defines
J€Jtotal
a search space that is contained in the search space con-

sidered by SD’(Jiotar), Which examines all possible com-
binations of nodes J C Jiota; and selects the smallest
|[MVSS'(J)|. Next, we note that min |[MVSS'(j)| =

JE€ETtotal
min( min |[MVSS’(j)|, min f(j)). Finally, as previously
JE€ETout JjeTi

discussed, fou(j) provides an upper bound on |MV SS’(5)]
for j € Jout, i.€., [MVSS'(§)| < fout(4), thereby completing
the proof.

]

Given that f(i) can be easily calculated by using Propo-
sition 1, it is of interest to determine the value of f,,:(i) =
|MV SS(H;)|. Since the connection pattern between the inner
code and the outer code is determined by an interleaver, know-
ing fou:(2) would be sufficient if we can find |[MV SS(J)| for
any selection of J within the inner factor graph. Theorem 1
gives a lower bound on this value. Empirical results, discussed
in the next section, show that this bound is loose when J
is randomly chosen (though we will prove that the bound
becomes tight for some specific choices of [J). However, we
will introduce four useful bounds on |MV SS(J)|, including
one lower bound and three upper bounds.

IV. BOUNDS ON [MV SS(J)|

As discussed in the previous section, to compute fo,:(1) =
|MV SS(H;)|, it suffices to be able to determine |[MV SS(J)]
for an arbitrary set J within the conventional polar factor
graph. However, finding the exact value is challenging. In this
section, we propose four different bounds on |MVSS(J)]|.
The proposed lower bound performs better than the one
described in Theorem 1, particularly when J is randomly
chosen, as we will demonstrate through simulation results.
Among the three upper bounds, the Encoding Bound has the



lowest time complexity, though it does not perform as well as
the others, which will be evident from experiment results. The
Deletion Bounds I and II are similar but applicable to different
scenarios, which we will discuss later in this section.

A. Lower bound on |MV SS(J)]

Let G 7 denote the submatrix of the inner encoding matrix
G = F®" consisting of the rows that correspond to 7. Again
taking Fig. 5 as an example, the resulting G, consists of the
second and sixth rows of the inner encoding matrix G = F&®3,
The following theorem, presented in [21], gives a lower bound
on the size of MV SS(J).

Theorem 3. (Lower Bound II) Given any information set J,
we have |[MV SS(T)| > g(G ), where

q P
Apxq) 25 Zaij -1) (2)
j=1 =1
)1 ifzx=0,
o) = {O otherwise. ©)

Proof. The proof can be found in the Appendix of [21]. W

In words, the function g(-) counts the number of columns in
a matrix that have weight one. Thus, for any given information
indices J we easily calculate the lower bound on the size of
a MV SS(J) by looking at the generator matrix of the polar
code.

B. Upper bounds on |MV SS(T)|

Given a vector v = [vg,v1,...,Vn—1] € F", the support
set of v, denoted as supp(v), is the set of indices where
the elements of v are non-zero. Formally, supp(v) = {i €
{0,1,...,n — 1} | v; # 0}. For example, for the vector
v =11,0,0,1,1], the support set is supp(v) = {0,3,4}.

Theorem 4. (Encoding Bound) Let u be a length-N binary
vector, whose support set is J. Let © = uG. Then, the nodes
on the rightmost stage that are indexed by the support set of
x form a VSS(J), and we have:

IMVSS(T)| < wt(x).

Proof. In the encoding process of polar codes, all of the
variable nodes in the factor graph are set to either O or 1. Each
check node has an even number of neighboring variable nodes
with value 1, in order to satisfy the parity check requirement.
If we initialize the variable nodes on the leftmost stage of the
factor graph with u, i.e., set nodes in J to 1 and nodes in J°
to 0, and update for each variable node on the other stages
(which is basically the encoding process), then the value-1
nodes on the rightmost stage will be indexed by the support
set of x.

We state that after the encoding process, all the variable
nodes with value 1 form a stopping set. The reason is that
if a check node is connected with a value-1 variable node,

then it must connect to exactly two value-1 variable nodes
to satisfy the parity check equations. Thus, we can pick all
the value-1 variable nodes on the rightmost stage to form a
variable stopping set of 7.

Note that the validity of the proof relies on setting the
information bits corresponding to 7 to 1 and the frozen bits
corresponding to J¢ to 0. We use this configuration in order
to leverage the encoding process to simplify the formulation
of the bound. ]

Fig. 6 gives an example of Theorem 4, where J =
{0,3,7}. The value-1 variable nodes together with their neigh-
boring check nodes are shown in black. In this example,
x = [1,0,0,0,1,1,1,1], and the corresponding V.SS(J) =
{zo, 24, w5, 6, 7}
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v(1,0) O 0 O—O0 X4
v(2,0) O K / Df—O7D—O

v(3,0) @ / G/ O—O X3
v(4,0) o/ [ @ x:
v(5.0) Q/ / / /. ® x5
v(6,0) o/ / @ %6
v(7.,0) / @ x7

Fig. 6: An example of the Encoding Bound, J = {0, 3, 7}.

The following two upper bounds are algorithm-based. From
Proposition 1, we know that any MV SS(J) is a subset of
UT(J). To find a MV SS(J), we begin by deleting some
nodes from the set of leaf nodes in UT(J). When the code
length IV and |J| are small, such as when both are less than
32, we can perform an exhaustive search for MV SS(J).
For instance, in Fig. 4, the worst-case complexity involves
testing all possible deletion patterns in the set of leaf nodes
{0, x1, T2, T3, T4, T5}, which amounts to Zii’ (2) = 62
combinations.

However, since the time complexity is not polynomial with
respect to |J|, a different approach is required for large
N and |J|. Instead of randomly selecting combinations, we
will need a certain deletion schedule. The following two
upper bounds, derived from similar algorithms but employing
distinct schedules, are appropriate for different choices of 7.
Before introducing the upper bounds, we reduce the search
space for deletion patterns by observing that nOLL(J) must
be included in any MV SS(7J), as stated in the following
proposition:

Proposition 2. Given set [J within the factor graph of a polar
code, we have nOLL(J) C MV SS(J).

Proof. To see this, suppose that non-overlapped leaf node
(nOLL) z, € UT(J) belongs only to the stopping tree
ST(i), where ¢ € J. The variable nodes on the branch of
ST (3) that traces back to the root node v(%,0) must also be



non-overlapped. This is because if one of the nodes v(p, q)
on that branch is shared by two trees or more, then all the
children nodes of v(p,q), i.e., nodes to the right of v(p,q)
along the tree ST'(7), must be shared nodes, including the leaf
node x. This contradicts the assumption that xj, is unshared.
Since this branch belongs only to S7'(7), the result of deleting
xp or any subset of nodes from this branch other than the
root node v(,0) could not produce a stopping set, for this
would mean that the remaining subset of nodes in ST(7)
would still constitute a stopping tree, call it ST"(i), with
root v(%,0). However, this would violate Fact 2 in [5], which
states that every information bit has a unique stopping tree. A
simple example is shown in Fig. 6, where 7 = {0, 3,7} and
nOLL(J) = {x4, x5, 6,7 }. There is no proper SS(J) that
does not include nOLL(J). |

Theorem 5. (Deletion Bound I) Let S be the set of variable
nodes returned by Algorithm 1. Then S forms a V.SS(J), and
we have:

IMVSS(T)| < ||

Proof. From Proposition 2, we know that MV SS(J) must
include nOLL(J). The algorithm attempts to delete some
nodes from the set OLL(J) by checking whether the punc-
tured UT'(J) can still form a stopping set, i.e., by verifying
if any degree-1 check nodes remain (see lines 9-11 in the
algorithm). If S is returned by the algorithm, then there exists
a punctured subgraph containing J on the left and S on the
right, with some nodes in the middle, which forms a stopping
set. ]

Algorithm 1 Find small VSS (Deletion Bound I)

Input: 7, N (N is used to initialize the factor graph)
Output: VSS(J)

1: find OLL(J) and nOLL(J)

22 UT « UT(J)

3. VSS(J) + nOLL(J)

4: OLL_temp <+ OLL(J)

5: while OLL_temp is not empty do

6: UT_punc = UT

7: pick ! with the largest index from OLL_temp

8: delete children leaves of rIC'N(l) from UT_punc

9: while Exist a degree-1 CN in UT_punc do

10: delete this degree-1 CN and its neighbor VN from
UT_punc

11: end while

12: if any VN on the leftmost stage is deleted then

13: VSS(J)=VSS(J)u{l}

14: remove [ from OLL_temp

15: else

16: remove all the leaves deleted in this iteration from
OLL_temp

17: UT = UT_punc

18: end if

19: end while

An example of Algorithm 1 is shown in Fig. 7 with J =
{0,3,7} and N = 8. UT(J) is shown by the colored nodes
(black, green and orange). nOLL(J) = {x4, x5, 26, z7} and
OLL(J) = {xo, %1, x2, x3}. Algorithm 1 first tries to delete
x3 from OLL(J) by trying to delete all the children leaf
nodes of ¢(3,0), which is 7/C' N (3), the rICN of the selected
leaf x3. However, deleting {x¢, 21,2z, 23} would result in
deletion of v(0,0), so the algorithm labels x3 as undeletable.
The same process applies to xo and z;. The algorithm then
moves to xg. Deleting the only child leaf of 7IC'N(0) yields a
structure that forms a stopping set that contains 7. As a result,
xo will be deleted from UT, and the punctured UT is stored
for future iterations until all elements in OLL(J) are tried.
In this example, since xg is the last element, Algorithm 1 will
terminate and return the set {x1, xo, x3, T4, Ts5, Tg, T7}-

v(0,0) (@ / ® / :/l X0
c(0,2)
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v(3,0)(@ / ) —e X3
C/ /c(s,O)
v(4,0) / o / /I ® X4
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Fig. 7: An example of Deletion Bounds I and II, 7 = {0, 3, 7}.

In the same example, the exact value of |[MVSS(7J)| is
5, which is obtained by deleting {x1, 22, x3}. To improve the
performance of Deletion Bound I, we modified Algorithm 1 as
follows: Given a leaf node [, instead of identifying rTC'N(1)
and deleting all its children leaves, the new algorithm attempts
to delete only the leaf node [ itself. Moreover, ! is randomly
selected instead of being picked according to the largest index.
This modified approach is detailed in Algorithm 2. It can be
observed that with sufficient attempts using different random
deletion seeds, Algorithm 2 can find a MV SS(J), as it
effectively performs an exhaustive search. While Algorithm 2
appears to be more adaptive and precise, we will demonstrate
through experimental results in Section V that Algorithm 1
performs better for certain choices of 7, such as when J is
the information set of a polar codes or a Reed-Muller code.

Theorem 6. (Deletion Bound II) Let S be the set of variable
nodes returned by Algorithm 2. Then S forms a V.SS(J), and
we have:

MV SS(T)| < |S]

Proof. The same proof as Theorem 5. |

Consider again the example in Fig. 7. The output of
Algorithm 2 has two possible outcomes. If the algorithm
selects | = x1 (or xo,x3), it will return {xg, x4, x5, x6, T7}



Algorithm 2 Find small VSS (Deletion Bound II)

Input: 7, N (N is used to initialize the factor graph)
Output: VSS(J)

1: find OLL(J) and nOLL(J)

2: UT «+ UT(J)

3: VSS(J) «+ nOLL(J)

4: OLL_temp < OLL(J)

5. while OLL_temp is not empty do

6: UT_punc = UT

7: randomly pick [ from OLL_temp

8: delete [ from UT_punc

9: while Exist a degree-1 CN in UT_punc do

10: delete this degree-1 CN and its neighbor VN from
UT_punc

11: end while

12: if any VN on the leftmost stage is deleted then

13: VSS(J)=VSS(J)u{l}

14: remove [ from OLL_temp

15: else

16: remove all the leaves deleted in this iteration from
OLL_temp

17: UT = UT_punc

18: end if

19: end while

with green nodes deleted. If it selects [ = xg, it will re-
turn {x1, xe, T3, T4, Ts5, Tg, 7} With the orange node deleted.
Thus, with a 75% probability, the algorithm provides a bound
of 5, and with a 25% probability, it provides a bound of 7.

In practice, we can run the algorithm ¢ times with different
random seeds. By repeating the algorithm with varied seeds,
we can gather a range of potential outcomes and subsequently
select the smallest result as the final upper bound.

C. Simulation results

In this part, we present experiment results that demonstrate
the performance of the proposed bounds. The code length for
Figs. 8-10 is set to N = 1024. The parameter K represents
the size of the set J, which corresponds to the number of
information bits on the leftmost stage of the factor graph.
In Fig. 8, J is selected to form polar codes designed using
Bhattacharyya parameters [1]. In contrast, for Figs. 9 and 10,
the set J is chosen randomly.

In Fig. 8, Deletion Bound I completely aligns with Lower
Bound I for all values of K, indicating that these two bounds
can accurately determine |[MV.SS(J)| when J is chosen to
form a polar code. In the following section, we will prove
that Lower Bound I can precisely determine the value when 7
satisfies certain conditions. Additionally, Fig. 8 shows that En-
coding Bound is relatively loose, and while Deletion Bound II
does not always yield the exact value of |[MV SS(J)|, it still
provides a fairly good approximation. We ran Algorithm 2
once (t = 1) to generate the curve for Deletion Bound II.
Lower Bound II is quite loose, as it frequently yields values
close to zero.

Fig. 9 compares the proposed bounds when 7 is randomly
selected. It can be observed that while Deletion Bounds I and

I may yield different results, their outputs are very close to
one another. Encoding Bound, however, is generally looser
than both Deletion Bounds I and II. The performance of the
proposed lower bounds differs from Fig. 8: In Fig. 8, where
J is selected to form polar codes, Lower Bound II is loose,
whereas in Fig. 9, with randomly chosen .7, it is Lower Bound
I that is loose and often yields values close to zero.

Fig. 10 compares the performance of Deletion Bound II
with different values of ¢, alongside Deletion Bound I when
J is randomly selected. It can be observed that when the code
length NNV is large, using a small value of ¢ (relative to the
size of the search space) has minimal impact on the output of
Algorithm 2. Deletion Bounds I and II with a small ¢ produce
nearly the same results, suggesting that a one-shot search may
suffice for approximating the upper bound of |[MV SS(J)]|.

In Fig. 11, with N = 32 and a randomly chosen 7,
the green dashed line (which coincides with the red line)
labeled “| MV SS|” represents the exact value of | MV SS(J)|,
obtained through exhaustive search. It can be observed that
Deletion Bound II with ¢ = 10 accurately identifies the exact
value of [MV SS(J)|, while Deletion Bound I is occasionally
less tight.

Although the results may differ when Algorithm 2 is run
with different random seeds, we emphasize that the outcomes
are ‘robust’ in the sense that they exhibit minimal variation
across different random deletion seeds. This is confirmed
in Fig. 12, which shows results for N = 1024, K =
256,512, 768, with J selected to form a polar code. In these
experiments, Algorithm 2 was run 100 times with different
random seeds for each value of K. Instead of picking only
the smallest outcome from the 100 trials, we plot all of them
in the form of a box plot, with middle half of the results falling
within the colored box. The results show little fluctuation.
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Fig. 8: A comparison of different bounds with N = 1024 and
J selected to form polar codes.
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Fig. 12: Box plots of results from Algorithm 2 with different
random seeds for N = 1024, K = 256,512,768, and J
selected to form a polar code.

V. IMVSS(J)| FOR SPECIFIC CHOICES OF J
A. Case 1

The following result demonstrates that the bound presented
in Theorem 3 is precisely tight in cases where the set cardi-
nality | J| = 2.

Theorem 7. When |J| =2, MV SS(T)| = g(G7).

Proof. The proof can be found in the Appendix of [21].
|

We note that Theorem 7 cannot be extended to the case
where |J| > 2. For example in Fig. 13, if J = {1,6,7},
then the nodes {xq, 1,22, 24,26} are shared leaves. There
are two MVSSs for J: {xq, z3, x5, 27} and {z1, x3, x5, 27}.
Removing the OLLs for J does not yield an MV SS(J);
rather, the size of the resulting VSS provides a lower bound
for [MVSS(J)|.

B. Case 2

Here we give another condition on J, under which the
value of |[MV SS(J)| can be determined in O(N), where N
is the code length. In words, given information set J and
f(i) for each i € J (where f(i) is determined using (1)),
|[MVSS(J)| can be calculated by selecting the smallest f
value. We start with some definitions that are used in the rest
of this subsection.

For any given information set 7, there always exists an
information bit 7 € J whose corresponding stopping tree has
the smallest leaf set among all the elements in 7. We call such
an information bit a minimum information bit for J, denoted
by MIB(J). Note that there may exist more than one MIB
in J. In that case, we pick the one with the largest index. We
denote the selected MIB as M IB*(J). That is, we pick the
one which occupies the lowest place in the graph among the
MIBs of 7.

Let 7, denote the set of indices on the leftmost stage of
the factor graph T;,, and let J denote the set of indices
on the leftmost stage of T,%, such that the variable nodes
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Fig. 13: Example showing that Theorem 7 does not generalize
to |J| > 2.

indexed by JL on the leftmost stage of T'X are in UT(J,).
Similarly, 7V denotes the set of indices whose corresponding
nodes on the leftmost stage of TV are in UT(J,). For
example in Fig. 4, 7, = {3,5} (with corresponding nodes
v(3,0),v(5,0)), JE = {1} (with corresponding node v(5, 1))
and JU = {1,3} (with corresponding nodes v(1,1),v(3,1)).

Recall that 7,5 € Zxy have binary representations i, =

. . d i — i i . . . —k=n—1_

20)7'17"'7171—1 211 jb _.707.717"'7.]71—1’ 1.€.,1 = k=0 ka
. =n—1 . .

2% and j = k:g Jr x 2%, respectively.

Definition 1. We write j 7 i if there exists k, k' € Z,, with
k < k' such that

])jkzlandjk/:()

2) ik:Oandik/ =1

3) Foralll € Zo\{k,K'} : i =1,

Clearly, if j i then j < 4 and wt(jp) = wit(ip).

Definition 2. Define the following conditions as:

(cover condition) (Definition 7 from [17].) If j € J and for
all k € Z.,,, we have ji, =1 = i, = 1 (meaning that i covers
j), theni € J.

(swap condition) (Definition 4 from [17].) If j € J and
i i, theni € J.

In [17], it is also stated that if ¢ covers j, or j /‘ 7, then
Wj(j )is stochastically degraded with respect to WJ(\;).

Given a set of indices 7,,, define J,, = {j € J|j < 2"~ '}
and define J,, = {j —2""![j € J,,7 > 2"~ '}. In words, J,,
is the subset of 7, that is on the upper-half of the leftmost
stage within the factor graph, and [, is on the lower-half.
Similarly, for each j € J, such that j > 2"~ we define

j =j—2""1 Clearly, we have f(j) = 3f(j) (For detailed
proof, see Fact 6 in [5]).

Proposition 3. If 7,11 satisfies both conditions, then Jpi1
would also satisfy both conditions.

*

Proof. Suppose j* € [Jny1, ©* covers j*, and j* 7 i*.
According to the definition of 7, 1, we know that j* + 2" €
jn-‘rl'
Cover condition: Since ¢*+2" covers 7" +2", and j* 42" €
Tn+1, we know that +* + 2" € J,1. Thus i* € J,41.
Swap condition: Since j* + 2™ 7 i* + 2", and j* + 2" €
Tn+1, we know that i* 4+ 2" € J,41. Thus i* € J,41. |

Theorem 8. |[MVSS(J)| = Hél}l f(@) if non-empty set J

satisfies the cover condition and the swap condition.

Proof. See Appendix. ]

In fact, any decreasing monomial set (see Definition 4 in
[18]) satisfies both the cover and swap conditions, as can
be directly inferred from the definition and the relationship
between the row indices and their corresponding monomials.
The information set A of a polar code is known to be a de-
creasing monomial set [18], and thus satisfies both conditions.
This is also confirmed in [17], where it is shown that the
polar information set A meets these conditions, leading to the
following corollary:

Corollary 2. For a polar code with information set A,
[MVSS(A)] = min (7).

Consider a binary erasure channel (BEC), where the values
of the variable nodes can be 0, 1, or erasure, and a belief
propagation (BP) decoder. We examine the erasures on the
information nodes after sufficient iterations of BP decoding.
Corollary 2 highlights an interesting fact: the probability of
erasure for the entire set A is greater than or equal to the
probability of erasure for a single bit M IB(.A). The strict
inequality may arise when there is more than one MVSS for
the set A.

VI. OUTER POLAR STOPPING SET CONSTRUCTION

The proposed bounds suggest a practical way to design outer
polar codes based on the size of stopping sets. In this section,
we focus on Deletion Bound I as an example, given its strong
performance among all the proposed bounds on short codes,
as shown in Fig. 11. Similar constructions can easily extend to
other proposed bounds. Notably, we observe that for the code
parameters used in the experiments, the outer codes designed
using Deletion Bound I are the same as those designed using
Lower Bound II for both the augmented and local-global
concatenation architectures. This is surprising given that the
two bounds are not identical for these parameters.

A. Construction method

Denote by d(4) the upper bound of |MV SS(H,;)| obtained
by Deletion Bound I. We first initialize an unfrozen set O for
the outer code using the conventional DE, for example. Then
we swap a specified number of unfrozen bits ¢ € O with the



smallest “stopping distance” d(7) with some positions j € O°¢
such that d(j) > d(i).

Let @ be a length Ny vector that contains the indices of
bit-channels ordered according to channel reliability calcu-
lated by DE. The indices are ordered by descending channel
reliability, i.e., Q(1) stores the index for the strongest bit
channel, Q(2) stores the index for the second strongest, and
so on. Let s denote the number of bits we are going to
swap. Let K denote the size of the desired unfrozen set.
Let mings(-) be the function that returns the s-th smallest
value in a vector, while min(-) returns the smallest value
along with its index. Note that s should be chosen such that
there are more than s frozen bits that have d(-) value larger
than min,(d(Q(1)),...,d(Q(Ky))). The detailed swapping
algorithm is presented in Algorithm 3. Note that Algorithm 3
can be easily extended to incorporate other bounds by setting
d(i) = |[MVSS(H;)|, where |MVSS(#;)| represents the
value determined by the respective bounds.

Algorithm 3 Outer polar stopping set (OPSS) construction

Input: Q; d(¢) for each i < Ny; s
Output: designed unfrozen set O
1: threshold = mins(d(Q(1)), ..., d(Q(Ky)))
2: 141
3: while : < s do

4: [value, index] = min(d(Q(1)), ..., d(Q(Ky)))
5: 71

6: while True do

7: if d(Q(Ko + j)) > threshold then
8: Q(index) + Q(Ko + j)

9: delete Q(Ko + j) from Q

10: jump to line 14

11: end if

12: j—i+1

13: end while

14: 11+ 1

15: end while
16: Return O = Q(1 : Ky)

We can easily extend Deletion Bound I to the case when M
inner codes are connected by a single outer code. For example,
assume there are M = 2 inner codes and H; = {H}, H?},
where H} and H? are connected nodes in the first and
second inner codes, respectively. Then d(i) = |[MV SS(H})|+
|MV SS(H2)|.

The design method of Algorithm 3 can be extended to
the local-global polar code, but some care is needed. The
systematic outer code assigns M information vectors K,,,
i=1,..., M to the M inner codes. Directly applying Algo-
rithm 3 can potentially swap bits K., with P, (i # j), causing
[Ka,;, Ka,] to be assigned to the same inner code. For example,
assume the unfrozen set O = {2,3,6,7} represents the most
reliable positions according to DE, and O° = {0,1,4,5}.
Then, if the partition of O is according to bit index, the first
half of O will correspond to K,, = {2,3} and the second half
to K,, = {6,7}. If the parity bits are partitioned similarly,
we have P,, = {0,1} and P,, = {4,5}. If, after calculating
the d(i) value for each position, we swap positions 2 and

4, this would yield K,, = {3,4}. This assignment is now
inconsistent with the local-global architecture because part of
K, (position 4) is connected with the second inner code. To
avoid this problem, one needs to carefully design the partition
of the outer codeword in the local-global encoder to ensure
that positions in K, are only swapped with positions in F,,.
For an example of such a partition, see Example II1.2 in [21].

B. Experimental results

Now we give empirical results under BP decoding for aug-
mented and local-global polar codes. The bit-channel ordering
is based on DE on the AWGN channel at E}, /Ny = 3 dB. DE
is simplified by using Gaussian approximation (GA), using the
4-segment approximation function in [16]. The BP decoding
schedules are the same as those in [8] for augmented codes
and in [9] for local-global codes. The maximum number of BP
decoder iterations is set at 100. In the OPSS design (Algorithm
3), we set the number of bit-channel swaps to s = 4. We
also include the results for outer codes designed by non-
stationary density evolution (NDE), which is another outer
code construction method proposed by us in the shorter version
of this paper [21]. The NDE algorithm does not assume that
the inital LLR distributions to the outer code are identical,
as assumed by conventional DE; rather, the LLR distributions
coming from the inner code at the rightmost stage of the outer
code factor graph correspond to Ny separate binary symmetric
memoryless channels W;, i=0,..., No—1. In practice, we
replace each initial LLR density of the outer code with the
empirical LLR density of the corresponding bit-channel of
the inner code after ite iterations of BP decoding under
assumption of an all-zero codeword. We use ite = 3 for the
augmented code and ite = 4 for the local-global code.

Fig. 14 shows frame error rate (FER) results for augmented
code constructions. The outer code length is Ny = 64 with
code rate Ry = % The inner code length is Ny = 1024.
The design rate of the augmented code is Rqyg = % The
connections between the bit-channels of the inner code and
the bits of the outer codeword are based on the natural index
ordering within the set of semipolarized bit-channels. For
reference, we present the results for conventional (1024, 512)
polar codes obtained using SCL [4], BPL [13] and CA-SCL
decoding with 16 CRC bits [4]. Solid lines correspond to
augmented codes, while dashed lines are for conventional polar
codes.

At FER = 1073, the OPSS design and NDE design offer
gains of 0.12 dB and 0.18 dB over the conventional DE design,
respectively. At this FER they also perform comparably to SCL
decoding, although SCL becomes superior at higher FERs. We
remark that when the outer codes designed using the OPSS
and NDE methods are disconnected from the concatenation
architecture, their performance is inferior to that of a code
designed using conventional DE. This confirms their inherent
relationship with the concatenation structure.

Figs. 15(a) and 15(b) present the results for local and
global decoding, respectively, for a local-global code with
component code lengths Ny = 256, Ny = Ny = 1024. The
connections between the inner codes and the outer code are
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Fig. 15: Local-global code with Ny = 256, N; = Ny = 1024.

—-conventional DE
-e-average
-+ OPSS (s=2)

N ——conventional DE
102 -e-average
h ——OPSS (s=2)

Frame Error Rate
Frame Error Rate

2 22 24 2.6 2 22 24 26
Eb/NO in dB Eb/NO in dB

(a) pattern 1 (b) pattern 2

——conventional DE|
-e-average
——OPSS (s=2)

—-conventional DE|
-e-average
—+—OPSS (s=2)

=l
3

Frame Error Rate
Frame Error Rate

S

2 2.2 24 26 2 22 24 2.6
Eb/NO in dB Eb/NO in dB

(c) pattern 3 (d) pattern 4
Fig. 16: Augmented code Ny = 64, N; = 1024 with different
interleaver patterns.

as described by Example III.2 in [21]. Local decoding results
for the different outer code design methods are similar, as
expected, since local decoding does not rely on the outer
code. Under global decoding, at FER = 10~4, the OPSS and
NDE designs provide gains of 0.19 dB and 0.07 dB over
conventional DE, respectively. The results for conventional
(2048,1024) polar codes obtained using BP and BPL [13]
decoding are shown for reference. Solid lines represent local-
global codes, while dashed lines indicate conventional polar
codes. In summary, the improved global decoding performance
provided by the new outer code constructions does not reduce
the local decoding performance.

Although the natural ordering is attractive from an imple-
mentation standpoint, it may not provide the best starting
point for these design methods, and experiments with other
connection patterns, both structured and randomly generated,
show that gains achieved with the proposed methods vary. For
example in Fig. 16, we selected four different patterns for
augmented codes whose performance are close to the average
of all the interleaver patterns, within which pattern 1 and 3
benefit from OPSS. These results suggest that while some
interleavers benefit from the proposed method, others might
not experience the same level of enhancement. This highlights
the importance of selecting an appropriate outer code design
method that aligns well with the connection pattern. How to
jointly optimize the interleaver pattern and the design methods
remains a problem for further research.

VII. CONCLUSION

In this paper, we proposed four bounds on the value of
|[MVSS(J)|, which can be used to bound the stopping
distance of concatenated polar codes. We proposed a design
method for the outer code in augmented and local-global polar
code architectures based on the “stopping distance” associated
with each bit position. However, several questions still remain
to be answered:

e In Section III, a practical algorithm for computing
|[MVSS'(Jout)| remains to be found.



e In Section IV, a practical algorithm for computing
|[MVSS(J)| remains to be found. A potential direction
for future research could involve proving the NP-hardness
of this problem.

« In Fig. 8, we only proved the tightness for Lower Bound 1.
However, it appears that Deletion Bound I is also tight
under certain conditions, as indicated by the following
conjecture.

Conjecture 1. If set J satisfies both cover condition and swap
condition, then Algorithm I (Deletion Bound I) can find the
exact value of |MV SS(J)|.

APPENDIX

Proof of Theorem 8: The proof proceeds by induction.
For the case n = 1, the statement follows immediately from
inspection of the corresponding factor graph. Now, suppose
the result is true for a given n. By the induction hypothesis,
|[MVSS(J,)| = Igl}l f(@) holds if 7, satisfies both condi-

tions. Now, for a set J,41 that also satisfies both conditions,
consider the following cases:

1. |Jny1] = 0. There is no information bit on the upper-
half of the leftmost stage within the factor graph. Clearly 7Y 1
and J,L 1 are identical, and TJY 1= jnL_H = Jn+1. We state
that both of them would be in the stopping set corresponding
to MV SS(J,+1), which is because all the neighbor check
nodes in UT(J,41) that are on the left of JY,; and JF 4
are degree two. An example can be seen in Fig. 17(a), where
UT(Jn+1) is labeled by black nodes.

From Proposition 3, we know that JU a1 and jnLH satisfy
both conditions, thus

MV SS(Tp0)l = [MVSS(Th)l = min f(i).

Tn+1

Now we prove that min L min 7). Assume
P 1€Tn+1 f( ) 2 1€Tn+1 f( )
MIB*(Jn41) = j*, then we state that MIB*(Jp11) = j*.

Because if there exists k € J,,4+1 such that f(k) < f(5*), then
f(k)=2x f(k) <2x f(%) = f(j*), which contradicts the
assumption that j* is the MIB. Now, since f(j*) = 2 x f(5*),
we know that |MV SS(J,11)] = 2 x | MV SS(Tni1)| =2 x
fGY) =107

2. |Tns1| = |Tns1]. There are more information bits on
the upper-half than on the lower-half. We prove that this case
is impossible unless 7,41 contains all the positions on the
left (code rate is 1). According to the cover condition, any i €
Tn+1 would imply that i +2" € J, 41, thus | T41] < [ Tnt1]-

Now we assume that |7,+1| = |Jn+1|, which implies
that j € Jn41 = J € Tnt+1- We also assume that j* has
the minimum weight (fewest number of 1’s in the binary
expressmn (7)p) among all j € Jy41. Clearly wit((5%)s) > 1
since j* > 2". We further assume that wt((5*),) > 1. By
the definition of j*, it directly follows that wt((j*),) =
wt((j%)p) — 1 > 1. We also know that the last bit of the
binary representation of j* is 0, i.e., (j*), = 0. Without loss
of generality, assume (j* Y = 1,m < n. Then, we can swap
(5% )m with (j*),, to get a new 1ndex [. According to the swap
condition, | € J,+1 and since [, = 1, we have | € J,41.

jn+l

(b) Example of case 3

Fig. 17: Illustrative examples for the proof of Theorem 8.

Now wi(lp) is smaller than wt((j*)s), which contradicts the
assumption.

If wt((5*)p) = 1, then j* = 2™ and by the cover condition
we know that 0 € 7,41, which implies that 7,4 contains
all bits on the left. It is trivial to see that |MVSS(Jp41)| =

min f(i) = f(0) = L.

1€ Tn+1

3. 0 < [Tng1l < |Tns1]- Let MIB*(Jni1) = j*. An
example for this case is shown in Fig. 17(b). We first state
that j* > 2". Otherwise if j* < 2", we can swap a 1 to the
last bit to get another index [, such that [ > j5*. From (1),
we know that f(I) = f(j*) since wt(lp) = wt((5*)p). This
contradicts the definition of M IB* as the MIB with the largest
index.

Again we have 7Y, = JF | = J.41, since any j €
Tn+1 would imply that j + 2" € J,.1, according to the
cover condition. Similar to case 1, we can conclude that
MIB*(Jny1) = j*, using the same proof.

Now the difference with case 1 is: JY, .1 Mmight not be
in the stopping set corresponding to MV .SS(J,+1), since
there are some degree-3 neighbor check nodes on the left of
JY.; so that some nodes in JU,; may be excluded from
the stopping set corresponding to MV SS(7,+1). Denote by
S an arbitrary subset of J',,. From Theorem 1, we know
that |MVSS(S)| > rgleigf( s). Since S C JY,, we have




|IMVSS(S)| > minf(s) > min f(i) =
seS iejTlLJH
suggests that the minimum size we can expect in 7V L1 i
actually f(j5*). Then, the lower-half factor graph T,fH can
be treated as incase 1, and we have |MVSS(J,11)| =

2 X |MVSS(Tns1)| =2 x f(3°) = f(57).

£(j*), which
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