




C. The Alternating Direction Method of Multipliers

The alternating direction method of multipliers

(ADMM) [37], [38], [39] is a popular and efficient

approach for solving convex optimization problems,

including QPs like (5). We provide a very brief summary

here and refer readers to [40] for more details.

Given a generic problem:

min
x

f(x)

subject to x ∈ C,
(6)

with f and C convex, we define the indicator function for

the set C:

IC(z) =

{

0 z ∈ C

∞ otherwise.
(7)

We can now form the following equivalent problem by

introducing the slack variable z:

min
x

f(x) + IC(z)

subject to x = z.
(8)

The augmented Lagrangian of the transformed problem (8)

is as follows, where λ is a Lagrange multiplier and ρ is a

scalar penalty weight:

LA(x, z, λ) = f(x)+IC(z)+λº(x−z)+
ρ

2
||x−z||22. (9)

If we alternate minimization over x and z, rather than

simultaneously minimizing over both, we arrive at the three-

step ADMM iteration,

primal update : x+ = argmin
x

LA(x, z, λ), (10)

slack update : z+ = argmin
z
LA(x

+, z, λ), (11)

dual update : λ+ = λ+ ρ(x+ − z+), (12)

the last step of which is a gradient-ascent update on the

Lagrange multiplier [39]. These steps can be iterated until a

desired convergence tolerance is achieved.

In the special case of a QP, each step of the ADMM

algorithm becomes very simple to compute: the primal

update is the solution to a linear system, and the slack

update is a linear projection. ADMM-based QP solvers, like

OSQP [29], have demonstrated state-of-the-art results.

III. THE TINYMPC SOLVER

TinyMPC trades generality for speed by exploiting the spe-

cial structure of the MPC problem. Specifically, we leverage

the closed-form Riccati solution to the LQR problem to com-

pute the primal update in (10). Pre-computing and caching

this solution allows us to avoid online matrix factorizations

and enables very fast performance while maintaining a small

memory footprint.

A. Combining LQR and ADMM for MPC

We solve the following problem, introducing slack vari-

ables as in (9) and transforming (4) into the following:

min
x1:N ,z1:N ,

λ1:N ,u1:N−1,
w1:N−1,µ1:N−1

LA(·) = J(x1:N , u1:N21)+

IX (z1:N ) + IU (w1:N21)+

N
∑

k=1

ρ

2
(xk − zk)

º(xk − zk) + λº

k(xk − zk)+

N21
∑

k=1

ρ

2
(uk − wk)

º(uk − wk) + µº

k(uk − wk)

subject to: xk+1 = Axk +Buk,

(13)

where z, w, λ, and µ are the state slack, input slack, state

dual, and input dual variables over the entire horizon. State

and input constraints are enforced through the indicator

functions IX and IU . We use the ADMM algorithm (10),

(11), (12) to solve this optimal control problem. The primal

update for (13) becomes an equality-constrained QP:

min
x1:N ,u1:N−1

1

2
xº

N Q̃fxN + q̃ºfxN+

N21
∑

k=1

1

2
xº

kQ̃xk + q̃ºkxk +
1

2
uº

kR̃xk + r̃ºuk

subject to xk+1 = Axk +Buk,

(14)

where

Q̃f = Qf + ρI, q̃f = qf + λN − ρzN ,

Q̃ = Q+ ρI, q̃k = qk + λk − ρzk,

R̃ = R+ ρI, r̃k = rk + µk − ρwk.

(15)

We reformulate (15) and introduce the scaled dual vari-

ables y and g for convenience [39]:

q̃f = qf + ρ(λN/ρ− zN ) = qf + ρ(yN − zN ),

q̃k = qk + ρ(λk/ρ− zk) = qk + ρ(yk − zk),

r̃k = rk + ρ(µk/ρ− wk) = rk + ρ(gk − wk).

(16)

We observe that, because (14) exhibits the same LQR prob-

lem structure as in (1), it can be solved efficiently with the

Riccati recursion in (3). The slack update for (13) becomes

a simple linear projection onto the feasible set:

z+k = projX (x+

k + yk),

w+

k = projU (u
+

k + gk),
(17)

where the superscript denotes the variable at the subsequent

ADMM iteration. The dual update for (13) becomes:

y+k = yk + x+

k − z+k ,

g+k = gk + u+

k − w+

k .
(18)

Finally, the algorithm terminates when the primal and dual

residuals are within a set tolerance.
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Fig. 3. Comparison of average iteration times (top) and memory usage (bottom) for OSQP and TinyMPC on randomly generated trajectory tracking
problems on a Teensy 4.1 development board (ARM Cortex-M7 running at 600 MHz with 32-bit floating point support, 7.75 MB of flash, and 512 kB of
tightly coupled RAM). Error bars show the maximum and minimum time per iteration over all MPC steps executed for a given problem. In (a), the input
dimension and time horizon are held constant at m = 4 and N = 10 while the state dimension n varies from 4 to 32. In (b), n = 10 and N = 10 while
the m varies from 4 to 32. In (c), n = 10,m = 4 and N varies from 4 to 50. The dotted black line indicates the memory limit of the Teensy 4.1.

B. Pre-Computation

Solving the linear system in each primal update is the most

expensive step in each ADMM iteration. In our case, this is

the solution to the Riccati equation, which has properties we

can leverage to significantly reduce computation and memory

usage. Given a long enough horizon, the Riccati recursion

(3) converges to the constant solution of the infinite-horizon

LQR problem [31]. Thus, we pre-compute a single LQR gain

matrix Kinf and cost-to-go Hessian Pinf. We then cache the

following matrices from (3):

C1 = (R+BºPinfB)21,

C2 = (A−BKinf)
º.

(19)

A careful analysis of the Riccati equation then reveals that

only the linear terms need to be updated as part of the

ADMM iteration:

dk = C1(B
ºpk+1 + rk),

pk = qk + C2pk+1 −Kº

infrk.
(20)

As a result, we completely avoid online matrix factorization

and only compute matrix-vector products. We also dramati-

cally reduce memory footprint by only storing a few vectors

at each time step.

C. Penalty Scaling

ADMM is sensitive to the value of the penalty term ρ
in (9). Solvers like OSQP [29] overcome this issue by adap-

tively scaling ρ. However, this requires performing additional

matrix factorizations. To avoid this, we pre-compute and

cache a set of matrices corresponding to several values of ρ.

Online, we switch between these cached matrices based on

the values of the primal and dual residual values in a scheme

adapted from OSQP. The resulting TinyMPC algorithm is

summarized in Algorithm 1.

Algorithm 1 TinyMPC

function TINY SOLVE(input)

while not converged do

//Primal update

p1:N21, d1:N21 ← Backward pass via (20)

x1:N , u1:N21 ← Forward pass via (2)

//Slack update

z1:N , w1:N21 ← Project to feasible set (17)

//Dual update

y1:N , g1:N21 ← Gradient ascent (18)

q1:N , r1:N21, pN ← Update linear cost terms

return x1:N , u1:N21

IV. EXPERIMENTS

We evaluate TinyMPC through two sets of experiments:

first, we benchmark our solver against the state-of-the-

art OSQP [29] solver on a representative microcontroller,

demonstrating improved computational speed and reduced

memory footprint. We then test the efficacy of our solver on a

resource-constrained nano-quadrotor platform, the Crazyflie

2.1. We show that TinyMPC enables the Crazyflie to track

aggressive reference trajectories while satisfying control lim-

its and time-varying state constraints.
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Fig. 4. Figure-eight tracking at low speed (top) and high speed (bottom)
comparing TinyMPC with the two most performant controllers available
on the Crazyflie. For slower trajectories, all three controllers resulted in
similar performance. For faster trajectories, only TinyMPC was capable of
maintaining tracking without crashing. The maximum velocity and attitude
deviation from hover with TinyMPC reached 1.5 m/s and 20ç, respectively.

A. Microcontroller Benchmarks

As shown in Fig. 3, we first compare TinyMPC and OSQP

on random linear MPC problems while varying the state and

input dimensions, as well as the horizon length.

1) Methodology: Experiments were performed on a

Teensy 4.1 [41] development board, which has an ARM

Cortex-M7 microcontroller operating at 600 MHz, 7.75 MB

of flash memory, and 512 kB of RAM. TinyMPC is imple-

mented in C++ using the Eigen matrix library [42]. We used

OSQP’s code-generation feature to generate a C implementa-

tion of each problem to run on the microcontroller. Objective

tolerances were set to 1023 and constraint tolerances to

1024. The maximum number of iterations for both solvers

was set to 4000, and both utilized warm starting. OSQP’s

solution polishing was disabled to decrease solve time. Other

parameters were set to equivalent values wherever possible.

Dynamics models A and B were randomly generated

and checked to ensure controllability for all values of state

dimension n, input dimension m, and time horizon N .

The control input was constrained within fixed bounds over

the entire horizon. During the microcontroller tests, noise

was added to mimic imperfect state estimation. The largest

problem instance involved 696 decision variables, 490 linear

equality constraints, and 392 linear inequality constraints.
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Fig. 5. Control trajectories during the Extreme Initial Poses experiment.
Four pre-clipped PWM motor commands are shown for each controller.
The black dotted line denotes the thrust limit, from 0 to 65535 PWM value.
Among the three successful controllers, only TinyMPC could reason about
control feasibility, exhibiting the maneuver shown in Fig. 1 (bottom).

2) Evaluation: Fig. 3 shows the average execution times

for both solvers, in which TinyMPC exhibits a maxi-

mum speed-up of 8.85x over OSQP. This speed-up allows

TinyMPC to perform real-time trajectory tracking while

handling input constraints. OSQP also quickly exceeded the

memory limitations of the MCU, while TinyMPC was able to

scale to much larger problem sizes. For example, for a fixed

input dimension of m = 4 and time horizon of N = 10
(Fig. 3a), OSQP exceeded the 512 kB memory limit of the

Teensy at a state dimension of only n = 16, while TinyMPC

only used around 400 kB at a state dimension of n = 32.

B. Hardware Experiments

We demonstrate the efficacy of our solver for real-

time execution of dynamic control tasks on a resource-

constrained Crazyflie 2.1 quadrotor. We present three ex-

periments: 1) figure-eight trajectory tracking at slow and

fast speeds, 2) recovery from extreme initial attitudes, and

3) dynamic obstacle avoidance through online updating of

state constraints.

1) Methodology: The Crazyflie 2.1 is a 27 gram quadro-

tor. Its primary MCU is an ARM Cortex-M4 (STM32F405)

clocked at 168 MHz with 192 kB of SRAM and 1 MB

of flash. OSQP could not fit within the memory available

on this MCU, making it impossible to be used as an MPC

baseline. Instead, we compare against the four controllers
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included with the Crazyflie firmware: Cascaded PID [43],

Mellinger [44], INDI [45], and Brescianini [46]. These are

reactive controllers that often clip the control input to meet

hardware constraints.

All experiments shown were performed in an Opti-

Track motion-capture environment sending pose data to the

Crazyflie at 100 Hz. TinyMPC ran at 500 Hz with a horizon

length of N = 15 for the figure-eight tracking task and

the attitude-recovery task. For the obstacle-avoidance task,

we sent the location of the end of a stick to the Crazyflie

using the onboard radio. Additionally, we reduced the MPC

frequency to 100 Hz and increased N to 20.

In all experiments, we linearized the quadrotor’s 6-DOF

dynamics about a hover and represented its attitude with a

quaternion using the formulation in [47]. This problem has

state dimension n = 12 and m = 4 representing the quadro-

tor’s full state and PWM motor commands. The largest

problem was in the dynamic obstacle avoidance scenario,

which was solved onboard at high frequency and consisted

of 316 decision variables, 248 linear equality constraints, and

172 linear inequality constraints.

2) Evaluation––Figure-Eight Trajectory Tracking: We

compare the tracking performance of TinyMPC and other

controllers with a figure-eight trajectory, as shown in Fig. 4.

For the faster trajectory, the maximum velocity and atti-

tude deviation reached 1.5 m/s and 20ç, respectively. Only

TinyMPC could track the entire reference while respecting

actuator limits, while the Mellinger and Brescianini con-

trollers crashed almost immediately. TinyMPC converged at

all steps within a maximum of 7 iterations and under the

allotted 2 ms solve time defined by the 500 Hz control

frequency.

3) Evaluation––Extreme Initial Poses: Fig. 1 (bottom)

shows the performance of the Crazyflie when initialized

with a 90ç attitude error. TinyMPC displayed the best

recovery performance with a maximum position error of

23 cm while respecting the input limits. The PID and

Brescianini controllers achieved maximum errors of 40 cm

and 65 cm, respectively, while violating input limits (Fig. 5).

The other controllers, INDI and Mellinger, failed to stabilize

the quadrotor, causing it to crash.

4) Evaluation––Dynamic Obstacle Avoidance: We

demonstrate TinyMPC’s ability to handle time-varying state

constraints by avoiding a moving stick (Fig. 1 top). These

experiments are more challenging because the constraints

arbitrarily switch between inactive and active, requiring far

more iterations to solve to convergence. The obstacle sphere

was re-linearized about its updated position at each MPC

step, allowing the drone to avoid the unplanned movements

of the swinging stick. As illustrated, the quadrotor could

move freely in space to avoid the dynamic obstacle and

come back safely to the hovering position. As an additional

challenge, we added a constraint such that the quadrotor

must stay within a vertical plane defined by x = 0. The

Crazyflie deviated a maximum of approximately 5 cm

from this constraint plane while successfully avoiding the

dynamic obstacle.

V. CONCLUSION AND FUTURE WORK

We introduce TinyMPC, a model-predictive control solver

for resource-constrained embedded systems. TinyMPC uses

ADMM to handle state and input constraints while leverag-

ing the structure of the MPC problem and insights from LQR

to reduce memory footprint and speed up online execution

compared to existing state-of-the-art solvers like OSQP.

We demonstrated TinyMPC’s practical performance on a

Crazyflie nano-quadrotor performing highly dynamic tasks

with input and obstacle constraints.

Several directions for future work remain. First, it should

be straightforward to extend TinyMPC to handle second-

order cone constraints, which are useful in many MPC appli-

cations for modeling thrust and friction. We also plan to fur-

ther reduce TinyMPC’s hardware requirements by developing

a fixed-point version, since many small microcontrollers lack

hardware floating-point support. Finally, to ease deployment

and adoption, we plan to develop a code-generation wrapper

for TinyMPC in a high-level language such as Julia or

Python, similar to OSQP and CVXGEN.

For more information and to get started using our open-

source solver, we recommend users visit our website,

https://tinympc.org.

VI. ACKNOWLEDGMENTS

The authors would like to thank Brian Jackson for insight-

ful discussions and Professor Mark Bedillion for providing

us with extra Crazyflies.

REFERENCES

[1] P. M. Wensing, M. Posa, Y. Hu, A. Escande, N. Mansard, and
A. Del Prete, “Optimization-based control for dynamic legged robots,”
arXiv preprint arXiv:2211.11644, 2022.

[2] J. Di Carlo, “Software and control design for the mit cheetah
quadruped robots,” Ph.D. dissertation, Massachusetts Institute of Tech-
nology, 2020.

[3] Z. Manchester, N. Doshi, R. J. Wood, and S. Kuindersma, “Contact-
implicit trajectory optimization using variational integrators,” The

International Journal of Robotics Research, vol. 38, no. 12-13, pp.
1463–1476, 2019.

[4] S. Kuindersma, “Taskable agility: Making useful dynamic behavior
easier to create,” Princeton Robotics Seminar, 4 2023.

[5] B. Plancher and S. Kuindersma, “A performance analysis of parallel
differential dynamic programming on a gpu,” in Algorithmic Foun-

dations of Robotics XIII: Proceedings of the 13th Workshop on the

Algorithmic Foundations of Robotics 13. Springer, 2020, pp. 656–
672.

[6] S. M. Neuman, B. Plancher, T. Bourgeat, T. Tambe, S. Devadas,
and V. J. Reddi, “Robomorphic computing: A design methodology
for domain-specific accelerators parameterized by robot morphology,”
ser. ASPLOS 2021. New York, NY, USA: Association for
Computing Machinery, 2021, p. 674–686. [Online]. Available:
https://doi-org.ezp-prod1.hul.harvard.edu/10.1145/3445814.3446746

[7] K. McGuire, C. De Wagter, K. Tuyls, H. Kappen, and G. C. de Croon,
“Minimal navigation solution for a swarm of tiny flying robots to
explore an unknown environment,” Science Robotics, vol. 4, no. 35,
p. eaaw9710, 2019.

[8] S. D. De Rivaz, B. Goldberg, N. Doshi, K. Jayaram, J. Zhou, and R. J.
Wood, “Inverted and vertical climbing of a quadrupedal microrobot
using electroadhesion,” Science Robotics, vol. 3, no. 25, p. eaau3038,
2018.

[9] B. P. Duisterhof, S. Li, J. Burgués, V. J. Reddi, and G. C. de Croon,
“Sniffy bug: A fully autonomous swarm of gas-seeking nano quad-
copters in cluttered environments,” in 2021 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE, 2021,
pp. 9099–9106.

6

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on June 23,2025 at 01:25:24 UTC from IEEE Xplore.  Restrictions apply. 



[10] W. G. et al. Crazyflie 2.0 quadrotor as a platform for research and
education in robotics and control engineering. [Online]. Available:
https://www.bitcraze.io/papers/giernacki draft crazyflie2.0.pdf

[11] Petoi, “Open source, programmable robot dog bittle,” Available
at https://www.petoi.com/pages/bittle-open-source-bionic-robot-dog
(5.9.2023).

[12] S. M. Neuman, B. Plancher, B. P. Duisterhof, S. Krishnan, C. Banbury,
M. Mazumder, S. Prakash, J. Jabbour, A. Faust, G. C. de Croon, et al.,
“Tiny robot learning: challenges and directions for machine learning in
resource-constrained robots,” in 2022 IEEE 4th International Confer-

ence on Artificial Intelligence Circuits and Systems (AICAS). IEEE,
2022, pp. 296–299.

[13] Z. Zhang, A. A. Suleiman, L. Carlone, V. Sze, and S. Karaman,
“Visual-inertial odometry on chip: An algorithm-and-hardware co-
design approach,” 2017.

[14] V. Adajania, S. Zhou, S. Arun, and A. Schoellig, “Amswarm: An
alternating minimization approach for safe motion planning of quadro-
tor swarms in cluttered environments,” in 2023 IEEE International

Conference on Robotics and Automation (ICRA), 2023, pp. 1421–
1427.

[15] P. Varshney, G. Nagar, and I. Saha, “Deepcontrol: Energy-efficient
control of a quadrotor using a deep neural network,” in 2019 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS),
2019, pp. 43–50.

[16] N. O. Lambert, D. S. Drew, J. Yaconelli, S. Levine, R. Calandra,
and K. S. Pister, “Low-level control of a quadrotor with deep model-
based reinforcement learning,” IEEE Robotics and Automation Letters,
vol. 4, no. 4, pp. 4224–4230, 2019.

[17] C. E. Luis, M. Vukosavljev, and A. P. Schoellig, “Online trajectory
generation with distributed model predictive control for multi-robot
motion planning,” IEEE Robotics and Automation Letters, vol. 5, no. 2,
pp. 604–611, 2020.

[18] L. Xi, X. Wang, L. Jiao, S. Lai, Z. Peng, and B. M. Chen, “Gto-
mpc-based target chasing using a quadrotor in cluttered environments,”
IEEE Transactions on Industrial Electronics, vol. 69, no. 6, pp. 6026–
6035, 2021.

[19] G. Torrente, E. Kaufmann, P. Föhn, and D. Scaramuzza, “Data-driven
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