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Abstract— Model-predictive control (MPC) is a powerful
tool for controlling highly dynamic robotic systems subject
to complex constraints. However, MPC is computationally
demanding, and is often impractical to implement on small,
resource-constrained robotic platforms. We present TinyMPC,
a high-speed MPC solver with a low memory footprint targeting
the microcontrollers common on small robots. Our approach
is based on the alternating direction method of multipliers
(ADMM) and leverages the structure of the MPC problem for
efficiency. We demonstrate TinyMPC’s effectiveness by bench-
marking against the state-of-the-art solver OSQP, achieving
nearly an order of magnitude speed increase, as well as through
hardware experiments on a 27 gram quadrotor, demonstrating
high-speed trajectory tracking and dynamic obstacle avoidance.
TinyMPC is publicly available at https://tinympc.org.

I. INTRODUCTION

Model-predictive control (MPC) enables reactive and dy-
namic online control for robots while respecting complex
control and state constraints such as those encountered during
dynamic obstacle avoidance and contact events [1], [2], [3],
[4]. However, despite MPC’s many successes, its practical
application is often hindered by computational limitations,
which can necessitate algorithmic simplifications [5], [6].
This challenge is amplified when dealing with systems that
have fast or unstable open-loop dynamics, where high control
rates are needed for safe and effective operation.

At the same time, there has been an explosion of interest
in tiny, low-cost robots that can operate in confined spaces,
making them a promising solution for applications ranging
from emergency search and rescue [7] to routine monitoring
and maintenance of infrastructure and equipment [8], [9].
These robots are limited to low-power, resource-constrained
microcontrollers (MCUs) for their computation [10], [11].
As shown in Figure 2, these microcontrollers feature orders
of magnitude less RAM, flash memory, and processor speed
compared to the CPUs and GPUs available on larger robots
and historically were not able to support the real-time execu-
tion of computationally or memory-intensive algorithms [12],
[13]. Consequently, many examples in the literature of intel-
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Fig. 1. TinyMPC is a fast convex model-predictive control solver that
enables real-time optimal control on resource-constrained microcontrollers.
We demonstrate its efficacy in dynamic obstacle avoidance (top) and
recovery from 90° attitude errors (bottom) on a 27 gram Crazyflie quadrotor.

ligent robot behaviors executed on these tiny platforms rely
on off-board computers [14], [15], [16], [17], [18], [19], [20].

Several efficient optimization solvers suitable for em-
bedded MPC have emerged in recent years, most notably
OSQP [29] and CVXGEN [30]. Both of these solvers have
code-generation tools that enable users to create dependency-
free C code to solve quadratic programs (QPs) on embedded
computers. However, they do not take full advantage of the
unique structure of the MPC problem, generally making them
too memory intensive and too computationally demanding to
run within the resource constraints of many microcontrollers.

On the other hand, the recent success of “TinyML”
has enabled the deployment of neural networks on micro-
controllers [12]. Motivated by these results, we developed
TinyMPC, an MCU-optimized implementation of convex
MPC using the alternating direction method of multipliers
(ADMM) algorithm. At its core, our solver is designed to
accelerate and compress the ADMM algorithm by exploiting
the structure of the MPC problem.

In particular, we precompute and cache expensive matrix
factorizations, allowing TinyMPC to completely avoid online
division and matrix inversion. This approach facilitates rapid
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Fig. 2. A comparison of micro, tiny, and full-scale robot platforms and their associated computational hardware. At the smallest scale, microrobots like
the Robobee [21] and HAMR-F [22] use highly constrained 8-bit microcontrollers to execute pre-planned open-loop gaits or wing motions. At large scales,
powerful embedded CPUs and GPUs, found onboard the Snapdragon Flight quadrotor [23] or Unitree Goledu quadruped [24], enable high performance
at the cost of high power requirements. In this work we target tiny robots such as the Crazyflie2.1 [25], DeepPiCarMicro [26], PIXHAWK PX4 [27], and
Petoi Bittle [28] that leverage 32-bit microcontrollers for motion planning and control. These devices are capable of some onboard computation, but feature
orders of magnitude less processor speed, RAM, and flash memory than full-scale robots.

computation with a very small memory footprint, enabling
deployment on resource-constrained MCUs. To the best of
the authors’ knowledge, TinyMPC is the first MPC solver
tailored for execution on these MCUs that has been demon-
strated onboard a highly dynamic, compute-limited robotic
system. Our contributions include:

¢ A novel quadratic-programming algorithm that is opti-
mized for MPC, is matrix-inversion free, and achieves
high efficiency and a very low memory footprint.
This combination makes it suitable for deployment on
resource-constrained microcontrollers.

¢ An open-source implementation of TinyMPC in C++
that delivers state-of-the-art real-time performance for
convex MPC problems on microcontrollers.

o Experimental demonstrations on a small,
resource-constrained quadrotor platform.

agile,

This paper proceeds as follows: Section II reviews linear-
quadratic optimal control, convex optimization, and ADMM.
Section III then derives the core TinyMPC solver algo-
rithm. Benchmarking results and hardware experiments on
a Crazyflie quadrotor are presented in Section IV. Finally,
we summarize our results and conclusions in Section V.

II. BACKGROUND
A. The Linear-Quadratic Regulator

The linear-quadratic regulator (LQR) [31] is a widely
used approach for solving robotic control problems. LQR
optimizes a quadratic cost function subject to a set of linear
dynamics constraints:

1
I T
Z1;N,u1:N—1J o QxNQfo T qfo—’_
N-1y
Z 5%@% +qrrr +
k=1
subject to 41 = Azxy, + Buy

1
§uLRuk + rlug 1)

VEk € [1,N),

where zj, € R”, ug € R™ are the state and control input at
time step k, IV is the number of time steps (also referred to
as the horizon), A € R"*" and B € R"*"™ define the system
dynamics, @ = 0, R > 0, and @, = 0 are symmetric cost
matrices and ¢ and r are linear cost vectors.

2

Equation (1) has a closed-form solution in the form of an
affine feedback controller [31]:

)

The feedback gain K} and feedforward term dj can be
obtained by solving the discrete Riccati equation backward
in time, starting with Py = @y and py = ¢, where P}, and
pi are the quadratic and linear terms of the cost-to-go (or
value) function [31]:

Ky = (R+ BTPy1B) (BTPyy1 A)
dx = (R+ BT Pry1B) (B pri1 + 1)
Pi=Q+ KIRK; + (A — BK) Py1(A — BEy) (3)
Pk = qrx + (A — BKy)T(prq1 — Pryr Bdy)+
K;(de - Tk).

’U,Z = —Kkl‘k — dk.

1

-
-

B. Convex Model-Predictive Control

Convex MPC extends the LQR formulation to admit
additional convex constraints on the system states and control
inputs, such as joint and torque limits, hyperplanes for
obstacle avoidance, and contact constraints:

min
T1:N,UL:N—1

subject to x4 = Az, + Buy,
T € X,up €U,

J(x1:n,u1:N—1)

“4)

where X and U are convex sets. The convexity of this
problem means that it can be solved efficiently and reli-
ably, enabling real-time deployment in a variety of control
applications including the landing of rockets [32], legged
locomotion [33], and autonomous driving [34].
When X and U/ can be expressed as linear constraints, (4)
is a QP, and can be put into the standard form:
min
TER™
subject to Az <b,

Cx =d.

1
§£ETP.’L‘ +qTx
®)

Further analysis, including theoretical guarantees regard-
ing feasibility, stability, and design practices are elaborated
upon in [35] and [36].
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C. The Alternating Direction Method of Multipliers

The alternating direction method of multipliers
(ADMM) [37], [38], [39] is a popular and efficient
approach for solving convex optimization problems,
including QPs like (5). We provide a very brief summary
here and refer readers to [40] for more details.

Given a generic problem:

min f(2)

subject to z € C,

(6)
with f and C convex, we define the indicator function for
the set C:

0 zeC
I =
c(2) {oo otherwise.

We can now form the following equivalent problem by
introducing the slack variable z:

min f(z) + Le(2)

subject to x = z.

)

(®)

The augmented Lagrangian of the transformed problem (8)
is as follows, where A is a Lagrange multiplier and p is a
scalar penalty weight:

La(z,z,\) = f(x)+1c(2)+AT(x—2) z|13. (9)

If we alternate minimization over x and 2z, rather than
simultaneously minimizing over both, we arrive at the three-
step ADMM iteration,

+5lle—

primal update : 7 = argmin £ 4(x, 2, \), (10)
slack update : 27 = argmin L4 (z", 2, ), (11)
dual update : AT = X\ + p(zt — 21), (12)

the last step of which is a gradient-ascent update on the
Lagrange multiplier [39]. These steps can be iterated until a
desired convergence tolerance is achieved.

In the special case of a QP, each step of the ADMM
algorithm becomes very simple to compute: the primal
update is the solution to a linear system, and the slack
update is a linear projection. ADMM-based QP solvers, like
OSQP [29], have demonstrated state-of-the-art results.

III. THE TINYMPC SOLVER

TinyMPC trades generality for speed by exploiting the spe-
cial structure of the MPC problem. Specifically, we leverage
the closed-form Riccati solution to the LQR problem to com-
pute the primal update in (10). Pre-computing and caching
this solution allows us to avoid online matrix factorizations
and enables very fast performance while maintaining a small
memory footprint.

3

A. Combining LOR and ADMM for MPC

We solve the following problem, introducing slack vari-
ables as in (9) and transforming (4) into the following:

min
L1:N3Z1:N»
ALN,ULN-1,
W1:N—1;M1:N—1

La(-) = J(@1.n,vn—1)+
Ix(z1.n) + Iy (win—1)+

Zi T —Zk Ik—Zk)+>\Z(Ik —Zk)-l- (13)
k=1
3 (up — wi) T (g, — wi) + pf (ug — wy)
k=1
subject to:  zpy1 = Az + Buy,

where 2z, w, A, and p are the state slack, input slack, state
dual, and input dual variables over the entire horizon. State
and input constraints are enforced through the indicator
functions Iy and ;. We use the ADMM algorithm (10),
(11), (12) to solve this optimal control problem. The primal
update for (13) becomes an equality-constrained QP:

1 ~ .
min STNQrTN + frNt

T1.N,U1:N—1 2
pi (14)
25 Q k—l—quk + 2ukak + 7Ty,
subject to  xpy1 = Axy + Buy,
where
Qr =Qy +pl, 4r = q5 + AN — p2n,
Q=Q+pl, dk = qk + Ak — P2k, (15)
R=R+pl, T =Tk + U — PW.

We reformulate (15) and introduce the scaled dual vari-
ables y and g for convenience [39]:
qr =aqr + p(AN/p—2N) = qf + p(Yyn — 2n),
Gk = a1 + p(Me/p — 2) = a + p(yr — 2x),
P =1k + p(e/p — wr) =1 + p(ge — Wi).
We observe that, because (14) exhibits the same LQR prob-
lem structure as in (1), it can be solved efficiently with the

Riccati recursion in (3). The slack update for (13) becomes
a simple linear projection onto the feasible set:

(16)

0 = projx(z) + ),

w = projy (uf + gx),
where the superscript denotes the variable at the subsequent
ADMM iteration. The dual update for (13) becomes:

+

+_ +
Yo =Yk T2, — 2,
+

g1 =gk +uf —wf.

a7

(18)

Finally, the algorithm terminates when the primal and dual
residuals are within a set tolerance.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on June 23,2025 at 01:25:24 UTC from IEEE Xplore. Restrictions apply.



2 600 600 ¥ 600 o TinyMPC
= II ¢ le0SQP
£ 400 400 - 400 R
g - x -
" - & o= v
3 - -
£ 200 200 — 200 -
3} —o= < - - o=
= oL e 0 - 0 o
0 10 20 30 0 10 20 30 0 10 20 30 40 50

600 600 600
= mE TinyMPC
= N A AUy N I S N S A A 1 |mmoOsQP | Q..
g,) 500 500 500
:(I;
>
g 400 400 400
=
[5)
=

300

4 8 12 16 24 28 32 4 8 12 16 24 28 32 4 8 12 16 30 40 50
(a) State dimension (n) (b) Input dimension (m) (c) Time horizon (N)
Fig. 3. Comparison of average iteration times (top) and memory usage (bottom) for OSQP and TinyMPC on randomly generated trajectory tracking

problems on a Teensy 4.1 development board (ARM Cortex-M7 running at 600 MHz with 32-bit floating point support, 7.75 MB of flash, and 512 kB of
tightly coupled RAM). Error bars show the maximum and minimum time per iteration over all MPC steps executed for a given problem. In (a), the input
dimension and time horizon are held constant at m = 4 and N = 10 while the state dimension n varies from 4 to 32. In (b), n = 10 and N = 10 while
the m varies from 4 to 32. In (¢), n = 10, m = 4 and N varies from 4 to 50. The dotted black line indicates the memory limit of the Teensy 4.1.

B. Pre-Computation

Solving the linear system in each primal update is the most
expensive step in each ADMM iteration. In our case, this is
the solution to the Riccati equation, which has properties we
can leverage to significantly reduce computation and memory
usage. Given a long enough horizon, the Riccati recursion
(3) converges to the constant solution of the infinite-horizon
LQR problem [31]. Thus, we pre-compute a single LQR gain
matrix Kjys and cost-to-go Hessian Py;. We then cache the
following matrices from (3):

Cl = (R + BTRnfB)71»

Cy = (A — BKinf)T. (19)

A careful analysis of the Riccati equation then reveals that
only the linear terms need to be updated as part of the
ADMM iteration:

dp = C1(BTpg41 + 7%),

(20)
e = @ + Copr1 — K.

As a result, we completely avoid online matrix factorization
and only compute matrix-vector products. We also dramati-
cally reduce memory footprint by only storing a few vectors
at each time step.

C. Penalty Scaling

ADMM is sensitive to the value of the penalty term p
in (9). Solvers like OSQP [29] overcome this issue by adap-
tively scaling p. However, this requires performing additional
matrix factorizations. To avoid this, we pre-compute and
cache a set of matrices corresponding to several values of p.

4

Online, we switch between these cached matrices based on
the values of the primal and dual residual values in a scheme
adapted from OSQP. The resulting TinyMPC algorithm is
summarized in Algorithm 1.

Algorithm 1 TinyMPC
function TINY_SOLVE(input)
while not converged do

//Primal update
P1:N—1,d1.N—1 < Backward pass via (20)
Z1.N,Uu1:N—1 < Forward pass via (2)
//Slack update
21:N,W1:N—1 < Project to feasible set (17)
//Dual update
Y1:N, g1:N—1 < Gradient ascent (18)
q1:N,T1:N—1,PN ¢ Update linear cost terms

return Ti.n,U1.N—1

IV. EXPERIMENTS

We evaluate TinyMPC through two sets of experiments:
first, we benchmark our solver against the state-of-the-
art OSQP [29] solver on a representative microcontroller,
demonstrating improved computational speed and reduced
memory footprint. We then test the efficacy of our solver on a
resource-constrained nano-quadrotor platform, the Crazyflie
2.1. We show that TinyMPC enables the Crazyflie to track
aggressive reference trajectories while satisfying control lim-
its and time-varying state constraints.
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comparing TinyMPC with the two most performant controllers available
on the Crazyflie. For slower trajectories, all three controllers resulted in
similar performance. For faster trajectories, only TinyMPC was capable of
maintaining tracking without crashing. The maximum velocity and attitude
deviation from hover with TinyMPC reached 1.5 m/s and 20°, respectively.

A. Microcontroller Benchmarks

As shown in Fig. 3, we first compare TinyMPC and OSQP
on random linear MPC problems while varying the state and
input dimensions, as well as the horizon length.

1) Methodology: Experiments were performed on a
Teensy 4.1 [41] development board, which has an ARM
Cortex-M7 microcontroller operating at 600 MHz, 7.75 MB
of flash memory, and 512 kB of RAM. TinyMPC is imple-
mented in C++ using the Eigen matrix library [42]. We used
OSQP’s code-generation feature to generate a C implementa-
tion of each problem to run on the microcontroller. Objective
tolerances were set to 1073 and constraint tolerances to
10~%. The maximum number of iterations for both solvers
was set to 4000, and both utilized warm starting. OSQP’s
solution polishing was disabled to decrease solve time. Other
parameters were set to equivalent values wherever possible.

Dynamics models A and B were randomly generated
and checked to ensure controllability for all values of state
dimension n, input dimension m, and time horizon N.
The control input was constrained within fixed bounds over
the entire horizon. During the microcontroller tests, noise
was added to mimic imperfect state estimation. The largest
problem instance involved 696 decision variables, 490 linear
equality constraints, and 392 linear inequality constraints.
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Fig. 5. Control trajectories during the Extreme Initial Poses experiment.

Four pre-clipped PWM motor commands are shown for each controller.
The black dotted line denotes the thrust limit, from 0 to 65535 PWM value.
Among the three successful controllers, only TinyMPC could reason about
control feasibility, exhibiting the maneuver shown in Fig. 1 (bottom).

2) Evaluation: Fig. 3 shows the average execution times
for both solvers, in which TinyMPC exhibits a maxi-
mum speed-up of 8.85x over OSQP. This speed-up allows
TinyMPC to perform real-time trajectory tracking while
handling input constraints. OSQP also quickly exceeded the
memory limitations of the MCU, while TinyMPC was able to
scale to much larger problem sizes. For example, for a fixed
input dimension of m = 4 and time horizon of N = 10
(Fig. 3a), OSQP exceeded the 512 kB memory limit of the
Teensy at a state dimension of only n = 16, while TinyMPC
only used around 400 kB at a state dimension of n = 32.

B. Hardware Experiments

We demonstrate the efficacy of our solver for real-
time execution of dynamic control tasks on a resource-
constrained Crazyflie 2.1 quadrotor. We present three ex-
periments: 1) figure-eight trajectory tracking at slow and
fast speeds, 2) recovery from extreme initial attitudes, and
3) dynamic obstacle avoidance through online updating of
state constraints.

1) Methodology: The Crazyflie 2.1 is a 27 gram quadro-
tor. Its primary MCU is an ARM Cortex-M4 (STM32F405)
clocked at 168 MHz with 192 kB of SRAM and 1 MB
of flash. OSQP could not fit within the memory available
on this MCU, making it impossible to be used as an MPC
baseline. Instead, we compare against the four controllers
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included with the Crazyflie firmware: Cascaded PID [43],
Mellinger [44], INDI [45], and Brescianini [46]. These are
reactive controllers that often clip the control input to meet
hardware constraints.

All experiments shown were performed in an Opti-
Track motion-capture environment sending pose data to the
Crazyflie at 100 Hz. TinyMPC ran at 500 Hz with a horizon
length of N = 15 for the figure-eight tracking task and
the attitude-recovery task. For the obstacle-avoidance task,
we sent the location of the end of a stick to the Crazyflie
using the onboard radio. Additionally, we reduced the MPC
frequency to 100 Hz and increased IV to 20.

In all experiments, we linearized the quadrotor’s 6-DOF
dynamics about a hover and represented its attitude with a
quaternion using the formulation in [47]. This problem has
state dimension n = 12 and m = 4 representing the quadro-
tor’s full state and PWM motor commands. The largest
problem was in the dynamic obstacle avoidance scenario,
which was solved onboard at high frequency and consisted
of 316 decision variables, 248 linear equality constraints, and
172 linear inequality constraints.

2) Evaluation—Figure-Eight Trajectory Tracking: We
compare the tracking performance of TinyMPC and other
controllers with a figure-eight trajectory, as shown in Fig. 4.
For the faster trajectory, the maximum velocity and atti-
tude deviation reached 1.5 m/s and 20°, respectively. Only
TinyMPC could track the entire reference while respecting
actuator limits, while the Mellinger and Brescianini con-
trollers crashed almost immediately. TinyMPC converged at
all steps within a maximum of 7 iterations and under the
allotted 2 ms solve time defined by the 500 Hz control
frequency.

3) Evaluation—Extreme Initial Poses: Fig. 1 (bottom)
shows the performance of the Crazyflie when initialized
with a 90° attitude error. TinyMPC displayed the best
recovery performance with a maximum position error of
23 cm while respecting the input limits. The PID and
Brescianini controllers achieved maximum errors of 40 cm
and 65 cm, respectively, while violating input limits (Fig. 5).
The other controllers, INDI and Mellinger, failed to stabilize
the quadrotor, causing it to crash.

4) Evaluation—Dynamic  Obstacle Avoidance: We
demonstrate TinyMPC'’s ability to handle time-varying state
constraints by avoiding a moving stick (Fig. 1 top). These
experiments are more challenging because the constraints
arbitrarily switch between inactive and active, requiring far
more iterations to solve to convergence. The obstacle sphere
was re-linearized about its updated position at each MPC
step, allowing the drone to avoid the unplanned movements
of the swinging stick. As illustrated, the quadrotor could
move freely in space to avoid the dynamic obstacle and
come back safely to the hovering position. As an additional
challenge, we added a constraint such that the quadrotor
must stay within a vertical plane defined by x = 0. The
Crazyflie deviated a maximum of approximately 5 cm
from this constraint plane while successfully avoiding the
dynamic obstacle.
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V. CONCLUSION AND FUTURE WORK

We introduce TinyMPC, a model-predictive control solver
for resource-constrained embedded systems. TinyMPC uses
ADMM to handle state and input constraints while leverag-
ing the structure of the MPC problem and insights from LQR
to reduce memory footprint and speed up online execution
compared to existing state-of-the-art solvers like OSQP.
We demonstrated TinyMPC’s practical performance on a
Crazyflie nano-quadrotor performing highly dynamic tasks
with input and obstacle constraints.

Several directions for future work remain. First, it should
be straightforward to extend TinyMPC to handle second-
order cone constraints, which are useful in many MPC appli-
cations for modeling thrust and friction. We also plan to fur-
ther reduce TinyMPC’s hardware requirements by developing
a fixed-point version, since many small microcontrollers lack
hardware floating-point support. Finally, to ease deployment
and adoption, we plan to develop a code-generation wrapper
for TinyMPC in a high-level language such as Julia or
Python, similar to OSQP and CVXGEN.

For more information and to get started using our open-
source solver, we recommend users visit our website,
https://tinympc.org.
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