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We study the dynamics of an ultra-thin reactive liquid film flowing down a heated vertical fiber under the 
influence of gravity. A key focus is on the impact of the van der Waals attraction, which is proportional to 
ℎ−3, where ℎ denotes the film thickness. Linear stability analysis of the film flow reveals that the van der Waals 
attractions and the Marangoni effect enhance the instability. Furthermore, instability is reduced by exothermic 
chemical reactions, while it is strengthened in the case of endothermic chemical reactions. Moreover, the 
weakly nonlinear stability of the film flow is studied. The results indicate the possibility of both subcritical and 
supercritical stability in the system. Lastly, direct numerical simulations of the evolution equation are conducted 
for various flow parameters. These results enhance our understanding of the intricate interplay of chemical 
reactions, thermal effects, and intermolecular forces influencing the liquid film dynamics in complex systems.

1. Introduction

The interfacial dynamics of thin liquid films flowing down verti-
cal fibers have attracted considerable attention due to their complexity 
(Craster and Matar, 2009; Oron et al., 1997) and wide range of ap-
plications (Ji et al., 2021; Quéré, 1999; Zeng et al., 2017). Notable 
phenomena include the formation of droplets and the emergence of trav-
eling wave patterns (Kalliadasis et al., 2012; Quéré, 1990). Exploring 
the flow of thin films along heated vertical fibers is particularly in-
triguing as it has diverse practical applications, such as the cooling of 
optical fibers (Sweetland and Lienhard, 2000) and the condensation of 
vapor on heat pipes (Kundan et al., 2017). The flow of a thin film along 
a heated cylindrical surface introduces non-uniformity in its profile, 
which in turn creates temperature gradients at the liquid-air interface. 
Previous studies (Dávalos-Orozco and You, 2000; Ding and Wong, 2017; 
Mukhopadhyay et al., 2020) have shown that when the film is situ-
ated on the exterior or interior of a heated cylinder, these interfacial 
thermal gradients generate unbalanced thermocapillary stress, leading 
to a destabilizing influence on the film. Several modeling approaches 
have been developed to examine the dynamics of exterior coating flows 
on fibers with or without thermal effects. These approaches include 
thin film models (Frenkel, 1992; Kalliadasis and Chang, 1994), thick 
film models (Kliakhandler et al., 2001), asymptotic models (Craster and 
Matar, 2006), weighted residual models (Ruyer-Quil et al., 2008), and 
integral boundary layer models (Shkadov et al., 2008). More recently, 
Kim et al. (2024), and Biswal et al. (2024) have developed positivity-
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preserving numerical schemes and optimal boundary control strategies 
within the context of fiber coating models.

Thin liquid films flowing down vertical fibers under the influence 
of gravity display interesting dynamics, such as the formation of vis-
cous beads and the breakup of the film. In the absence of additional 
effects like the Marangoni effect, the flow of a falling film over cylin-
drical substrates becomes hydrodynamically unstable primarily due to 
the well-known Rayleigh-Plateau (RP) instability (Quéré, 1999). In such 
flow scenarios, thin films can fragment into droplets on cylindrical sur-
faces, while cylindrical threads and jets manifest regular droplet-like 
wave patterns due to the RP mechanism (Rayleigh, 1892). Lister et al. 
(2006) reported the emergence of collars and lobes with the RP mech-
anism. Moreover, the literature suggests that thermocapillarity may en-
hance the RP instability, potentially leading to finite-time film rupture 
(Liu and Liu, 2014).

The rupture of thin, viscous liquid films on flat surfaces or verti-
cal fibers poses an intriguing challenge. The emergence of holes or dry 
patches in a uniform fluid layer leads to localized singularities in fi-
nite time, subsequently altering the topology and structure of fluid flow 
within the layer (Herminghaus et al., 1998; Xie et al., 1998). These 
considerations are particularly significant in the coating industry, in-
cluding optical coatings and insulating layers in micro-circuitry, where 
non-uniformities are undesirable (Oron et al., 1997). Previous studies 
by Williams and Davis (1982), Reisfeld and Bankoff (1992), Bertozzi 
and Pugh (1998), Witelski and Bernoff (2000), Hatziavramidis (1992)
and Matar (2002) have explored the thin film instabilities induced by 
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intermolecular forces. These studies typically involve thin films with 
thicknesses ranging from 100 to 1000 angstroms, subjected to long-
range van der Waals interactions that can lead to finite-time rupture 
(Sheludko, 1967). In addition to van der Waals forces, previous inves-
tigations have considered factors such as surface tension, evaporation, 
condensation, surfactants, slip, and various other scenarios. However, 
it is important to note that the studies on the vertical fibers or cylin-
ders (Craster and Matar, 2006; Frenkel, 1992; Kalliadasis and Chang, 
1994; Kliakhandler et al., 2001; Ruyer-Quil et al., 2008; Shkadov et al., 
2008) did not incorporate the effects of van der Waals attractions. Ding 
et al. (2019) investigated the behavior of ultra-thin liquid films on a 
heated vertical fiber. They considered the influence of van der Waals 
attraction to predict the film breakup. Their results revealed that an 
isothermal film consistently undergoes breakup in the absolutely unsta-
ble regime in the presence of van der Waals attractions. Importantly, 
they concluded that the Marangoni effect significantly accelerates the 
breakup process.

To describe liquid wetting/dewetting on solid surfaces, intermolec-
ular forces such as van der Waals interactions are included in the dy-
namic pressure using a disjoining pressure, denoted as Π(ℎ), in lubri-
cation equations. Ruckenstein and Jain (1974), Reisfeld and Bankoff 
(1992) and Burelbach et al. (1988) characterized van der Waals forces 
as Π(ℎ) = ýℎ−3, where ý is the Hamaker constant. These forces desta-
bilize when ý > 0, while ý < 0 leads to stabilization. Ji et al. (2019)
investigated a liquid film flowing along the outer surface of a vertical 
fiber with a film stabilization term that takes the functional form of the 
disjoining pressure Π(ℎ) = ýℎ−3 with ý < 0 as a stabilization parame-
ter. For a dewetting liquid, the purely destabilizing intermolecular forces 
modeled by Π(ℎ) =ýℎ−3 with ý > 0 can result in finite-time rupture of 
the film thickness.

Despite the advances in the study of thin film flows, theoretical de-
velopments on the influence of chemical reactions on thin film flows 
are still lacking. In 1984, Dagan and Pismen (1984) investigated the 
connection between chemical reactions and thin film hydrodynamics. 
The study by Gallez et al. (1996) explored the dynamics of a thin liq-
uid film undergoing a surface chemical reaction. They focused on the 
interaction between insoluble surfactants on the liquid-air interface and 
substrate binding sites. The researchers demonstrated that the coupling 
between the thin film and the chemical reaction substantially influenced 
its dynamics, resulting in oscillatory behavior and rupture. Braun et al. 
(1995) investigated how temperature-dependent surface tension affects 
the spreading of a drop on a solid plate in the presence of an isothermal 
chemical reaction. Subsequently, Trevelyan et al. (2002) and Trevelyan 
and Kalliadasis (2004a,b) studied the progression of a vertically falling 
film undergoing a first-order exothermic chemical reaction. These stud-
ies provided evidence that an exothermic reaction exerted a stabilizing 
effect on the free surface. These studies further revealed that the pres-
ence of chemical reactions can significantly impact the evolution of the 
interface, leading to dispersive solitary waves. Matar and Spelt (2005)
investigated the dynamics of thin liquid films under exothermic chemi-
cal reactions, which induce changes in film density and viscosity. Pereira 
et al. (2007) examined the interplay between a reaction-diffusion pro-
cess and the hydrodynamics of a horizontal thin liquid film. They found 
that this interplay had a significant influence on the flow dynamics. 
The free surface was linearly stable when the Marangoni effect was not 
present. However, the coupling between the free surface and the lin-
early unstable reaction-diffusion system, facilitated by the Marangoni 
effect, led to its destabilization. In subsequent studies, Trevelyan et al. 
(2012), Chao et al. (2020), Li and Chao (2020), and Chattopadhyay 
(2023) observed notable effects while investigating the behavior of a 
thin film flowing down an inclined plane and a cylindrical surface, re-
spectively. These investigations were conducted in the presence of a 
first-order chemical reaction and under the influence of gravity.

It has been established that the presence of van der Waals attractions 
and the Marangoni effect results in an increased RP instability (Ding et 
al., 2019). However, the impact of chemical reactions on the instability 

induced by both thermal effects and van der Waals attraction remains 
unexplored. The present study aims to investigate whether this instabil-
ity can be mitigated by chemical reactions. Understanding the dynamics 
of reactive film flows is crucial for coating flow applications in industrial 
settings (Kundan et al., 2017; Quéré, 1990; Sweetland and Lienhard, 
2000; Zeng et al., 2017), especially those involving first-order reactions, 
such as catalytic or acid-base reactions. For example, combustion cham-
bers, fuels, and engine oils create wall films, resulting in deposits on 
ports, cylinder walls, and pistons (Zhao et al., 1999). These deposits, 
formed through chemical reactions (Dagaut et al., 2002; Norinaga and 
Deutschmann, 2007), diminish engine efficiency and increase pollutant 
emissions. Trevelyan et al. (2012) briefly discussed the practical sce-
narios with chemical reactions of this nature. To our knowledge, there 
have been no studies on the delay or mitigation of the rupture phenom-
ena of thin liquid films on heated fibers with van der Waals attractions. 
Our model offers new insights into the dynamics and parametric study 
of chemical reaction aspects in coating processes within chemical en-
gineering and could serve as a resource for further exploration in this 
area. Furthermore, the findings of this study could provide insights for 
enhancing the quality of coating films on cylindrical surfaces and sug-
gest a new direction for utilizing chemical reactions to achieve smooth 
textures in various products like paper and microchips.

The subsequent sections of the paper are structured as follows. In 
Section 2, a thin film model is formulated that incorporates exother-
mic or endothermic chemical reactions and includes van der Waals 
attractions. A single nonlinear equation is constructed that describes the 
evolution of the thin liquid film interface. Further, a linear and weakly 
nonlinear stability analysis is performed in Section 3. Furthermore, in 
Section 4, a direct numerical simulation of the nonlinear evolution equa-
tion is carried out. The key findings are discussed in Section 5.

2. Mathematical model

The problem under consideration involves a vertical cylindrical fiber 
with uniform surface temperature ÿý , over which an ultra-thin Newto-
nian liquid film flows, as shown in Fig. 1. The study assumes axisym-
metry and uses cylindrical coordinates (ÿ, ÿ). The thickness of the liquid 
film at any time is denoted by ℎ(ÿ, ý), while the fiber has a radius ý. The 
surrounding air is assumed to be inviscid, and thus, its dynamics are ne-
glected. The species 1 is present in the ambient gas phase and absorbed 
at the interface into the liquid film, which is always saturated with 1

due to its infinite availability in the gas phase. The reaction undergoes a 
simple first-order process, represented by 1 →2 ± heat (Li and Chao, 
2020; Trevelyan and Kalliadasis, 2004a; Trevelyan et al., 2002). Both 
1 and 2 are considered passive species, i.e., their concentration pro-
files do not affect the flow field. The system involves several variables, 
namely  =

(
ÿ1, ÿ2

)
representing the radial and axial velocity compo-

nents, pressure ý, temperature ÿ , and concentration ÿ of species 1. The 
system also involves density ÿ, dynamic viscosity ÿ, thermal diffusivity 
ÿ, and molecular diffusivity ýmol of species 1. The reaction rate coef-
ficient (ÿ) is assumed to be temperature-independent (Petrucci, 2017). 
Following Chao et al. (2020); Li and Chao (2020), this study considers 
only the thermocapillary Marangoni effect and neglects the solutocap-
illary Marangoni effect, which can arise from the solute concentration 
gradient (Dagan and Pismen, 1984).

We provide the dimensional system of equations in Appendix A. Let 
us simplify the analysis by introducing the following dimensionless vari-
ables based on the film geometry (Chao et al., 2020)

(ÿ, ÿ) =
(
ÿ∗, ÿ∗

)
, ý = (∕) ý∗,

(
ÿ1, ÿ2

)
= 

(
ÿ∗
1
, ÿ∗

2

)
,

ý = ý∞ + ÿýý∗, ÿ = ÿ∞ + ÿ ∗Δÿ ,ÿ = ïÿ∗, (1)

where the variable with an asterisk denotes a dimensionless quantity, 
the acceleration due to gravity is denoted by ý,  is the mean film 
thickness,  = ÿý2∕ÿ is the characteristic velocity, Δÿ = ÿý−ÿ∞, ï is 
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Fig. 1. Model geometry.

the initial concentration of species 1 in the film, and ý∞ is the ambient 
pressure.

Inserting (1) into the dimensional system of equations, the motion 
of the liquid can be described by the following dimensionless equations 
after omitting the asterisks:

∇ ⋅ = 0, (2)

ýÿ
ÿ
ÿý

= 1 −∇ý+∇2 , (3)

ýÿÿÿ
ÿÿ
ÿý

=∇2ÿ +Φðÿÿ, (4)

ýÿ
ÿÿ
ÿý

=∇2ÿ −ðÿÿ, (5)

 = 0, ÿ = 1, ÿÿ = 0 at ÿ = ÿ, (6)
ýH
ℎ3

n+
[
−ýý+∇ + (∇ )T

]
⋅ n = −ýÿ∇ýÿ

ÿ −
1 −Λÿ ÿ

ÿÿ
(∇ ⋅ n)n

at ÿ = ÿ + ℎ(ÿ, ý), (7)

ÿ1 = ℎý + ÿ2ℎÿ at ÿ = ÿ + ℎ(ÿ, ý), (8)

∇ÿ ⋅ n+ýÿÿ = 0 at ÿ = ÿ + ℎ(ÿ, ý), (9)

ÿ = 1 at ÿ = ÿ + ℎ(ÿ, ý), (10)

where n represent the unit normal vector, ý denote the identity tensor, 
∇ be the gradient operator, ÿ∕ÿý = ÿý + ⋅ ∇ represent the material 
derivative, and ∇ý =∇ − n(n ⋅∇) denote the surface gradient operator. 
The system is characterized by various dimensionless parameters, in-
cluding ÿ =ý∕, Reynolds number ýÿ = ÿ∕ÿ, Prandtl number ÿÿ =
ÿ∕(ÿÿ), Damköhler number ðÿ = ÿ2∕ýmol, dimensionless heat of reac-
tion Φ = ý ïýmol∕(ÿΔÿ ), Schmidt number  = ÿ∕ 

(
ÿýmol

)
, Marangoni 

number ýÿ = ÿΔÿ ∕(ÿ), capillary number ÿÿ = ÿ∕ÿ0, Λ = ÿΔÿ ∕ÿ0, 
and Biot number ýÿ =ýý∕ÿ. We introduce a composite Hamaker num-
ber ýH = ∕ýÿ to represent the strength of van der Waals attractions, 
where  = ý′∕ 

(
6ÿÿÿ2

)
is the dimensionless Hamaker constant and 

ý′ is the dimensional Hamaker constant. When ðÿ = 0, it indicates the 
absence of chemical reactions (Trevelyan et al., 2002). Similarly, when 
Φ = 0, the chemical reaction is assumed to be isothermal. The heat gen-
erated or absorbed by the chemical reaction is denoted by ý , which is 
assumed to be independent of temperature. For exothermic reactions, ý
is positive, whereas for endothermic reactions, ý is negative (Chao et al., 
2020). The system of equations (2)-(10) matches Ding et al. (2019) with-
out chemical reactions and Chao et al. (2020) without van der Waals 
attraction.

The system of equations is derived under the assumption that the sur-
face tension ÿ varies linearly with temperature and can be expressed as 
(Chattopadhyay (2021a, 2024); Chattopadhyay and Ji (2023)): ÿ(ÿ ) =
ÿ0 − ÿ

(
ÿ ÿ − ÿ0

)
. The coefficient ÿ > 0 represents the thermal surface 

tension coefficient, which characterizes the rate of change of surface 
tension to temperature evaluated at the reference temperature ÿ0 . This 
assumption is valid when the temperature difference between ÿ ÿ and ÿ0
is small, where ÿ ÿ is the temperature at the interface of the liquid film. 
Ding et al. (2018) estimated Λ of castor oil to be ÿ

(
10−2

)
using a tem-

perature difference of approximately 10 K. Since Λ is negligible, we will 
ignore it for further discussion.

To construct the equation of the liquid-air interface, we assume  ≪
ý and introduce a small parameter ÿ = ∕ý ≪ 1. Consequently, we 
introduce the following transformations (Chao et al., 2018):

ý→ ÿ2ý, ÿ = ÿ + ÿÿ, ℎ→ ÿÿ. (11)

The variables ÿ1, ÿ2, ý, ÿ and ÿ are expanded as follows (Chao et al., 
2020; Li and Chao, 2020)

ÿ1 = ÿ3
(
ÿ(0)
1

+ ÿÿ(1)
1

+⋯

)
, ÿ2 = ÿ2

(
ÿ(0)
2

+ ÿÿ(1)
2

+⋯

)
,

(ý,ÿ ,ÿ) =
(
ý(0), ÿ (0),ÿ(0)

)
+ ÿ

(
ý(1), ÿ (1),ÿ(1)

)
+⋯ . (12)

Substituting (11)-(12) into the governing equations (2)-(5) and bound-
ary conditions (6), (7), (9), (10), and taking the limit ÿ → 0, the leading-
order terms are given by the following equations

ÿ(0)
1,ÿ

+ ÿ(0)
2,ÿ

= 0, ý(0)ÿ = 0, ý(0)ÿ = 1 + ÿ(0)
2,ÿÿ

, ÿ (0)
ÿÿ +ÿÿ = 0, ÿ(0)

ÿÿ = 0,

(13)

ÿ(0)
1

= 0, ÿ(0)
2

= 0, ÿ (0) = 1, ÿ(0)
ÿ = 0 at ÿ = 0, (14)

ÿ(0)
2,ÿ

= −ýÿÿ (0)
ÿ , ý(0) =

ýH
ÿ3

+
1

ÿÿ

(
1

ÿÿ
−
ÿ

ÿ2
−ÿÿÿ

)
,

ÿ (0)
ÿ = −ýÿÿ (0), ÿ(0) = 1 at ÿ =ÿ. (15)

While deriving the equations (13)-(15), we obtained the dimensionless 
flow parameters Φ, ýH, ýÿ, ÿÿ, ýÿ, and ðÿ as ÿ

2Φ, ÿ−3ýH, ÿ
−1ýÿ, 

ÿ−1ÿÿ, ÿýÿ, and ÿ2ðÿ. The term ÿ2ðÿ was neglected due to the as-
sumption of a slow chemical reaction 

(
ðÿ ≪ 1

)
(Chao et al., 2020; Chat-

topadhyay, 2023). To retain the terms associated with van der Waals at-
traction (represented by the dimensionless composite Hamaker number 
ýH

)
, thermal effect (represented by ýÿ), and surface tension (repre-

sented by ÿÿ), we rescaled ÿ−3ýH, ÿ
−1ýÿ, and ÿ−1ÿÿ as ÿ−3ýH → ý̃, 

ÿ−1ýÿ → ý̃ÿ, and ÿ−1ÿÿ → ÿ̃ÿ (Chao et al., 2020; Ding et al., 2019). 
Additionally, to maintain the effect of the Biot number ýÿ, we rescaled 
ÿýÿ as ÿýÿ → ý̃ÿ. We assumed that these rescaled dimensionless num-
bers ý̃, ý̃ÿ, ÿ̃ÿ, and ý̃ÿ are of order unity. To account the chemical 
reaction, we have rescaled ÿ2Φ as ÿ2Φ → Φ̃ and introduced a parame-
ter ÿ = Φ̃ðÿ into the mass transport equation of (13) (Chao et al., 2020; 
Li and Chao, 2020). It is important to note that the new parameter ÿ
depends on the dimensionless heat of reaction Φ, which is proportional 
to the parameter ý . This ý parameter signifies the heat generation or 
absorption by the chemical reaction and is independent of temperature. 
Therefore, ÿ is essentially proportional to ý . Considering exothermic 
reactions where ý is positive and endothermic reactions where ý is 
negative, a positive value of ÿ signifies an exothermic reaction, while 
a negative value indicates an endothermic reaction.

However, for notational simplicity, we drop the tilde sign from the 
rescaled flow parameters ý̃, ý̃ÿ, ÿ̃ÿ, and ý̃ÿ in our upcoming discus-
sion. The leading order solutions for (13)-(15) are given by

ÿ (0) = 1 −
ýÿÿ

1 +ýÿÿ
−
ÿ
2

(
ÿ−

ÿ(2 +ýÿÿ)

(1 +ýÿÿ)

)
ÿ, (16)

ÿ(0)
2

=
(
ý(0)ÿ − 1

)(ÿ2

2
−ÿÿ

)
−

ýÿ

(1 +ýÿÿ)2
(ÿÿ −ýÿ)ÿÿÿ. (17)

The kinematic condition (8) can be expressed as mass conservation at 
leading order, which yields ÿý+ÿÿ ∫

ÿ
0

ÿ(0)
2
ýÿ = 0. Substituting (17) into 

the mass conservation equation, the evolution equation for the free sur-
face can be obtained as follows

ÿý+ÿ2ÿÿ
⏟⏟⏟
term (i)

+

£¤¤¤¤¤¥

ÿ3

3ÿÿ

(
ÿÿ

ÿ2
+ÿÿÿÿ

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
term (ii)

+
ýÿÿ

ÿ
⏟⏟⏟
term (iii)

−
ýÿ(ÿÿ−ýÿ)

2(1+ýÿÿ)2
ÿ2ÿÿ

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
term (iv)

¦§§§§§̈
ÿ

= 0. (18)
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Equation (18) describes the evolution of the liquid-air interface of a 
Newtonian film along a vertical fiber, taking into account the effects of 
chemical reactions (parameter ÿ) and van der Waals attractions (param-
eter ý). Unlike the previous work by Chao et al. (2020), which focused 
solely on the effects of chemical reactions in similar dynamics, this new 
model incorporates additional physics by including van der Waals at-
tractions. Furthermore, our model equation (18) is comparable to the 
one in the study by Li and Chao (2020) on chemical reactions on simi-
lar dynamics for fluids with surface tension that depends quadratically 
on temperature (self-rewetting fluid). Specifically, (18) agrees with the 
model studied in Li and Chao (2020) in the absence of van der Waals 
attractions and when the surface tension is approximated as a linearly 
decreasing function of temperature. Our model also aligns with Ding et 
al. (2019) when chemical reactions are absent (ÿ = 0). Here, we phys-
ically interpret the various terms in the evolution equation. Firstly, the 
term (i) arises from the mean flow. Secondly, term (ii) is linked to surface 
tension, encompassing both azimuthal and axial curvature components, 
whereas term (iii) emerges due to van der Waals attraction. Term (iv) 
comprises two components, both connected to the Marangoni number 
ýÿ. It is important to note that the Marangoni term appears here due 
to both chemical reactions and uniform heating. The component ýÿÿ
arises from the chemical reaction, while the component ýÿýÿ stems 
from the uniform heating of the fiber.

We simplify our analysis by not considering the effects of fiber radius 
ÿ and capillary number ÿÿ. Consequently assuming ÿ = ÿÿ = 1 (Chao 
et al., 2020; Ding et al., 2019), the evolution equation (18) reduces to

ÿý+ÿ2ÿÿ+

[(
ÿ3

3
+

ý
ÿ

−
ýÿ(ÿÿ −ýÿ)ÿ2

2(1 +ýÿÿ)2

)
ÿÿ +

ÿ3

3
ÿÿÿÿ

]

ÿ

= 0.

(19)

Equation (19) governs the liquid-air interface dynamics, influenced by 
van der Waals attraction and the Marangoni effect from uniform heating 
and chemical reactions.

Before discussing model results, we briefly examine parameter val-
ues pertinent to experiments outlined in the literature. It is crucial to 
note that, in the context of this study, a negligible Reynolds number is 
assumed, denoted as ýÿ ≪ 1 for the model derivation. Consequently, 
the applicability of this model is confined to scenarios where the RP 
instability is anticipated to predominate over the Kapitza instability. 
For flows with higher Reynolds numbers, one may consider retaining 
inertial terms in the derivation or adopting an integral boundary layer 
modeling approach. The latter has successfully aligned with experiments 
conducted at moderate to high liquid Reynolds numbers.

First, we estimate the range of the dimensionless number ý, which 
characterizes the impact of van der Waals attraction. Based on our model 
formulation, ý is linked to the dimensionless composite Hamaker num-
ber ýH as ý = ÿ−3ýH, where ýH = ∕ýÿ and  = ý′∕ 

(
6ÿÿÿ2

)
is the 

dimensionless Hamaker constant. Burelbach et al. (1988) determined 
that ý′ is of the order ÿ

(
10−20

)
N m. Let us consider the water for 

example: density ÿ = 103 kg m−3 and viscosity ÿ = 10−3 N m−2s. As-
suming  = 10−5 m and ý′ ∼ ÿ

(
10−20

)
N m, we obtain the velocity 

scale  = ÿý2∕ÿ = 9.81 × 10−4 m s−1, the dimensionless Hamaker 
number  = 5.3 × 10−8 and the Reynolds number ýÿ = 9.81 × 10−3. 
Therefore, the dimensionless composite Hamaker number ýH we obtain 
as ýH = 5 ×10−6. According to our model assumption, ÿ is small, and we 
consider ÿ to be approximately of order ÿ

(
10−1

)
. Consequently, ý is 

approximately ÿ
(
10−3

)
. However, for the theoretical discussion of the 

present model, we will consider slightly stronger intermolecular forces 
with ý in the range of ÿ

(
10−2

)
−ÿ

(
10−1

)
.

Next, let us estimate the range of the Marangoni number ýÿ. Ac-
cording to our model formulation, ýÿ is related to the Marangoni num-
ber ýÿ as ýÿ = ÿ−1ýÿ. Considering water as example with mean film 
thickness  = 5 × 10−4 m and ÿ = 5 × 10−5 N m−1K−1, we obtain the 
Marangoni number ýÿ = ÿΔÿ ∕ (ÿ) as ýÿ ≈ 2 × 10−2Δÿ . Assuming

Δÿ is in the range of 10 K to 20 K, the range of ýÿ is approximately 0.2
to 0.4. Considering ÿ ∼ ÿ

(
10−1

)
, we determine the range for ýÿ as 2 

to 4. Therefore, for this study, we will adopt the range of ýÿ as 0 to 4.

3. Stability analysis

We consider the stability analysis of the base state ℎ̄ = 1 and conse-
quently impose a small disturbance to the film as

ÿ(ÿ, ý) = 1 + ÿ(ÿ, ý) (20)

where ÿ(ÿ, ý) ≪ 1 represents the small perturbation to the base state at 
time ý.

Substituting (20) into (19) and keeping terms up to ÿ
(
ÿ3
)
yields

ÿý +ÿÿ +ÿÿÿ +  ÿÿÿÿÿ +′ÿÿÿ + ′
(
ÿÿÿÿ + ÿ2ÿ

)

+ ′
(
ÿÿÿÿÿ + ÿÿÿÿÿÿ

)
+

1

2
′′ÿ2ÿÿ

+ ′′
(
1

2
ÿ2ÿÿÿ + ÿÿ2ÿ

)
+  ′′

(
1

2
ÿ2ÿÿÿÿÿ + ÿÿÿÿÿÿ

)
= 0, (21)

where (ÿ) =ÿ2,  (ÿ) =
(
ÿ3∕3

)
+ýÿ−1−

ýÿ
2(1+ýÿÿ)2

(ÿÿ −ýÿ)ÿ2

and  (ÿ) = ÿ3∕3. The values of ,  ,  , and their corresponding 
derivatives are determined at ÿ = 1.

For the linear stability analysis, nonlinear terms of (21) are ignored. 
Normal mode solution assumes ÿ ∝ exp[ÿ(ýÿ −ÿý)] + ýý, where ý is the 
wavenumber, ÿ =

√
−1, and ÿ = ÿÿ + ÿÿÿ is the complex frequency with 

ÿÿ and ÿÿ being the real and imaginary parts of ÿ, respectively. The ýý
denotes the complex conjugate of the preceding term. The dispersion 
relation is obtained by inserting ÿ in the linearized part of (21) which 
yields ÿÿ = ý and

ÿÿ =

[
1

3
+ý−

ýÿ(ÿ −ýÿ)

2(1 +ýÿ)2

]
ý2 −

ý4

3
. (22)

Equation (22) reveals that the linear growth rate ÿÿ is influenced by 
the van der Waals attractions (through the parameter ý), thermocapil-
lary force (via ýÿ), and the chemical reactions (via ÿ). This implies 
that these factors significantly impact the film’s stability, as even small 
variations in these parameters can cause changes in the growth rate 
of disturbances. On the other hand, the linear phase velocity, given by 
ýÿ = ÿÿ∕ý = 1, is independent of these key parameters. A similar obser-
vation was also reported by Chao et al. (2020). Overall, (22) highlights 
the interplay between various physical mechanisms in determining the 
stability properties of thin films and underscores the importance of un-
derstanding these mechanisms to predict and control the behavior of 
thin film systems. The sign of ÿÿ determines the stability of the flow, 
where a positive value indicates instability and a negative value indi-
cates stability.

In Fig. 2, the impact of the thermocapillary force and van der Waals 
attractions on the linear growth rate ÿÿ without chemical reactions (ÿ =

0) is illustrated. Fig. 2a shows the enhancement of instability due to 
substrate heating for three typical ýÿ values, namely ýÿ = 1, 2 and 
4, in the absence of the Hamaker number ý. Fig. 2b demonstrates the 
intensification of instability with increasing van der Waals attractions 
for three typical Hamaker numbers, namely ý = 0, 0.1 and 0.2, without 
the heating effect (ýÿ = 0). Based on these results, it can be concluded 
that both van der Waals attractions and thermocapillary force enhance 
the RP instability, which aligns with the findings reported by Ding et al. 
(2019).

Fig. 3 illustrates the influence of chemical reactions (ÿ) on the lin-
ear growth rate under substrate heating and van der Waals attractions. 
For characterization, we set the Marangoni number ýÿ = 4 and the 
Hamaker number ý = 0.2, as these values demonstrated increased flow 
instability in Fig. 2. Fig. 3a corresponds to the case of an exothermic 
chemical reaction (ÿ > 0), while Fig. 3b represents the endothermic 
case (ÿ < 0). The results reveal that an exothermic chemical reaction on 
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Fig. 2. Linear growth rate as a function of wavenumber ý for different values of (a) Marangoni number ýÿ (when ý = 0); (b) Hamaker number ý (when ýÿ = 0) 
for ÿ = 0 and ýÿ = 1.

Fig. 3. Influence of the (a) exothermic reactions (ÿ > 0); (b) endothermic reactions (ÿ < 0) on the linear growth rate as a function of wavenumber ý when ýÿ = 4, 
ý = 0.2 and ýÿ = 1.

Fig. 4. Influence of the chemical reaction on the neutral stability curve for different values of ý whenýÿ = 4 and ýÿ = 0.01.

the substrate inhibits instability, while an endothermic reaction intensi-
fies it. Similar findings regarding the roles of exothermic and endother-
mic chemical reactions have also been reported by Chao et al. (2020)
and Li and Chao (2020). We note that, despite the destabilizing effect 
of the combined van der Waals attraction and thermocapillary force, 
which intensifies the RP instability, Fig. 3 concludes that an exothermic 
reaction can alleviate it.

Fig. 4 depicts how van der Waals attractions affect the marginal sta-
bility curves in the ÿ − ý plane for a heated vertical fiber. The unstable 
region in the ÿ − ý plane expands with increasing Hamaker number 
ý, indicating that van der Waals attraction has a destabilizing impact. 
Moreover, regardless of the presence or absence of ý, the unstable re-
gion in the ÿ − ý plane widens as the chemical reaction becomes more 
endothermic, i.e., as ÿ(< 0) values increase, and contracts as the re-
action becomes more exothermic, i.e., as ÿ(> 0) values increase. This 
further validates the substantial stabilizing influence of an exothermic 
chemical reaction and underscores the destabilizing effect of an en-

dothermic chemical reaction. In Fig. 4b, we present a three-dimensional 
view of the neutral stability curves to illustrate their variation with 
changes in both ÿ and ý.

To compare the result of the linear stability analysis from the present 
model and that reported by Ding et al. (2019) and Chao et al. (2020), 
we assume ÿ ∝ exp [ÿý+ ÿýÿ]. Considering ýÿ is small (ýÿ ≪ 1) and ýÿ

is large enough to retain the terms involving ýÿýÿ (Chao et al., 2018), 
the dispersion relation can be derived as follows

ÿ = −ÿý+ ý2
[
1

3

(
1 − ý2

)
+ý−

ýÿÿ
2

+ý
]
, (23)

where ý =ýÿýÿ∕2 is the modified Marangoni number. Without van 
der Waals attractions, chemical reactions, and the modified Marangoni 
number ý , the equation (23) exhibits a structure comparable to the one 
presented by Duprat et al. (2007). For ÿ = 0, equation (23) matches 
with Ding et al. (2019) and for ý = 0, it recovers Chao et al. (2020). 
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Fig. 5. (a) The impact of chemical reaction on the critical wavenumber 
(
ýý
)
for various values of ÿ. (b) Contour plot of ýý as a function of ý and ÿ. The other fixed 

parameters are ýÿ = 1, ýÿ = 0.01.

Further, we determine the value of ýý by substituting ÿÿ = 0 in (23), 
leading to the expression

ýý =
√
1 + 3(ý+ý) − 1.5ýÿÿ. (24)

Thus, the most unstable mode ýÿ can be obtained by evaluating 
ýÿÿ∕ýý = 0 in (23), resulting in ýÿ =

√
0.5 + 1.5(ý+ý) − 0.75ýÿÿ. 

In the absence of a chemical reaction (ÿ = 0), this expression for ýÿ
aligns with Ding et al. (2019). When van der Waals attractions are absent 
(ý = 0), and with ýÿ = 1, ýÿ = 0.01, we find ýÿ =

√
0.5075 − 0.75ÿ, 

which matches the result obtained in Chao et al. (2020). It is evident 
that due to ý and ý being finite positive numbers, the values of ýý and, 
consequently, ýÿ will either increase or decrease depending on the in-
crease of ÿ (for ÿ < 0) or ÿ (for ÿ > 0). Conversely, in the absence of 
a chemical reaction (ÿ = 0), the values of ýý and, consequently, ýÿ will 
increase depending on the increase of both ý and ý. This behavior is 
illustrated in Fig. 5.

Considering ÿ = 1 in (18), with ÿ ∝ exp [ÿý+ ÿýÿ], we obtain the 
dispersion relation as

ÿ = −ÿý+ ý2
[

1

3ÿÿ

(
1 − ý2

)
+ý−

ýÿ(ÿ −ýÿ)

2(1 +ýÿ)2

]
. (25)

We multiply (25) by ÿ, and use the transformation (ÿÿ, ý)→ ÿÿ1∕3
(
ÿÿ̃, ý̃

)
. 

Consequently, we obtain

ÿ̃ = ý̃+
ÿ̃ý2

3

(
ÿ − ý̃2

)
, (26)

where

ÿ = ÿÿ−2∕3 + 3

[
ý−

ýÿ(ÿ −ýÿ)

2(1 +ýÿ)2

]
ÿÿ1∕3. (27)

This corresponds to the dispersion relation of a weakly nonlinear lu-
brication model studied by Frenkel (1992) excluding van der Waals 
attractions, thermocapillary effects, and chemical reactions. The stan-
dard dispersive relation (26) also mirrors those found by Duprat et al. 
(2007) and Ji et al. (2021). Duprat et al. (2007) determined the system’s 

absolute instability when ÿ > ÿý ≡
[
(9∕4) ×

(
−17 + 7

√
7
)]1∕3

≈ 1.507. 

Consequently, for the present study, we obtain

ý−
ýÿ(ÿ −ýÿ)

2(1 +ýÿ)2
>

1

3

[
9

4ÿÿ

(
−17 + 7

√
7
)]1∕3

−
ÿÿ−1

3
. (28)

Moreover, if we consider ýÿ ≪ 1, say ýÿ = 0.01 and ýÿ is large, say 
ýÿ = 2, then (28) shows

ý> 0.16 +ÿ (approx). (29)

When ÿ = 0, equation (29) corresponds to the condition established 
by Ding et al. (2019). Equation (29) indicates that when considering 
chemical reactions (ÿ ≠ 0), the absolute instability threshold depends 
on the nature of the reaction. For exothermic reactions (ÿ > 0), the 

van der Waals attractions must exceed a higher value of ý compared 
to a non-reactive liquid for instability to be absolute. Conversely, for 
endothermic reactions (ÿ < 0), the van der Waals attractions need to 
exceed a lower value compared to a non-reactive liquid.

The above discussion revolves around linear stability, which pro-
vides only initial insights into the stability mechanism. We must con-
sider nonlinear effects to understand how van der Waals attraction 
affects flow dynamics under chemical reactions and uniform heating. 
Therefore, this section will examine weakly nonlinear stability analysis 
(Desai et al., 2023; Jiang and Ding, 2022; Oron and Gottlieb, 2004) of 
the present model. We introduce small variables ÿ1 = ÿÿ, ý1 = ÿý, and 
ý2 = ÿ2ý, where ÿ ≪ 1 denotes the distance from criticality (Mukhopad-
hyay et al., 2019). We assume that the linear growth rate of the am-
plitude, denoted by ÿÿ, is of order ÿ(ÿ

2). The resulting substitutions 
transform the partial derivatives as follows

ÿý → ÿý + ÿÿý1 + ÿ2ÿý2 +⋯ , ÿÿ → ÿÿ + ÿÿÿ1 + ÿ2ÿÿ2 +⋯ . (30)

We expand ÿ(ÿ, ý) as ÿ 
(
ÿ, ÿ1, ÿ2,… , ý, ý1, ý2

)
= ÿÿ1+ÿ2ÿ2+ÿ3ÿ3+⋯ and 

insert in (21) along with (30). This yields (Chattopadhyay and Ji, 2023; 
Jiang and Ding, 2022; Oron and Gottlieb, 2004; Sadiq and Usha, 2008)

(
0 + ÿ1 + ÿ22 +⋯

)(
ÿÿ1 + ÿ2ÿ2 + ÿ3ÿ3 +⋯

)
= −ÿ22−ÿ

33−⋯ ,

(31)

where ÿ, ÿ = 0, 1, 2, … are the operators and ÿ , ÿ = 2, 3, … are 
the nonlinear terms. The explicit expressions of ÿ, ÿ = 0, 1, 2, … and 
ÿ , ÿ = 2, 3, … are given in Appendix B.

Solutions for ÿ1 and ÿ2 can be obtained by using different orders of 
ÿ. The solutions are as follows (Chattopadhyay and Ji, 2023; Jiang and 
Ding, 2022; Oron and Gottlieb, 2004; Sadiq and Usha, 2008)

ÿ1 = 
(
ÿ1, ý1, ý2

)
exp

[
ÿ
(
ýÿ−ÿÿý

)]
+ ýý,

ÿ2 =
2ý

(
 ′ −  ′ý2

)
− ÿ′

4ý
(
4 ý2 −

) 2 exp
[
2ÿ
(
ýÿ−ÿÿý

)]
+ ýý, (32)

where  ≪ 1 is the disturbance amplitude.
Following Chattopadhyay (2021b); Chattopadhyay and Desai (2022); 

Chattopadhyay et al. (2022a); Mukhopadhyay et al. (2020), the complex 
Ginzburg-Landau equation (CGLE) is obtained as

ÿ
ÿý2

+ 2ÿý
(
 − 2 ý2

)
ÿ−1

ÿ
ÿÿ1

+
(
 − 6 ý2

) ÿ2
ÿÿ2

1

−ÿ−2ÿÿ +
(
ý2 + ÿý4

) ||2  = 0, (33a)

ý2 =
ý2

2

(
 ′′ý2 − ′′

)
+

(′)2 − 2ý2
(
 ′ − 7 ′ý2

)(
 ′ −  ′ý2

)

16 ý2 − 4
,

ý4 =
1

2
′′ý+

3′
(
 ′ − 3 ′ý2

)
ý

16 ý2 − 4
. (33b)
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Fig. 6. Variation of ý as a function of Marangoni numberýÿ for (a) ý = 0; (b) ý = 0.02; (c) ý = 0.04; (d) ý = 0.066 for ÿ = 0 and ýÿ = 1.

Fig. 7. Variation of ý as a function of Marangoni numberýÿ for (a) ÿ = 0.4; (b) ÿ = 0.8 for ý = 0.04 and ýÿ = 1.

The behavior of perturbation dynamics beyond the linear regime de-
pends entirely on the sign of ý2, the Landau constant. Specifically, the 
sign of ý2 determines the stability of these dynamics. When ý2 > 0, 
the amplitude  saturates, indicating a supercritical bifurcation. Con-
versely, no saturation occurs when ý2 < 0, and this corresponds to a 
subcritical bifurcation (Oron and Gottlieb, 2004). If ý2 = 0, the result-
ing wave may be stable or unstable based on whether ÿÿ < 0 or ÿÿ > 0.

Based on the analysis, four stability zones have been identified and 
classified as follows: “supercritical stable” when ÿÿ < 0 and ý2 > 0, “sub-
critical stable” when ÿÿ < 0 and ý2 < 0, “subcritical unstable” when ÿÿ > 0

and ý2 < 0, and “supercritical unstable” when ÿÿ > 0 and ý2 > 0 (Sadiq 
and Usha, 2008; Sadiq et al., 2010). These four regions are denoted as 
zones 1, 2, 3, and 4. In Figs. 6-8, we visually elucidate the shifts in in-
stability regions for a heated vertical fiber impacted by van der Waals 
attraction (regulated by the Hamaker number ý) and exothermic reac-
tions (indicated by ÿ > 0) or endothermic reactions (denoted by ÿ < 0) 
in the system.

Fig. 6 demonstrates the impact of van der Waals attraction on super-
critical/subcritical zones 1 to 4 in the absence of any chemical reaction 
(ÿ = 0). This is demonstrated by selecting four different values of the 
Hamaker number (ý), i.e., ý = 0, 0.02, and 0.04, depicted in Figs. 6a to 
6c, respectively. The findings reveal that van der Waals attraction has a 
destabilizing effect on the flow system, as reflected by the reduction in 
the supercritical stable zone (zone 1) and the enlargement of the subcrit-
ical unstable zone (zone 3) with the increasing Hamaker number (ý). 
Moreover, from Fig. 6d, it can be observed that the supercritical stable 
zone, where finite amplitude disturbances remain stable for both linear 
and nonlinear regimes, disappears at ý =ýý = 0.066.

Fig. 7 illustrates the impact of an exothermic chemical reaction 
(ÿ > 0) on supercritical/subcritical zones 1 to 4 under the influence of 
van der Waals attraction. The Hamaker number ý = 0.04, which was 
used in Fig. 6c without any chemical reaction (ÿ = 0) is kept fixed 
to show the effect of the exothermic chemical reaction. Two values of 
ÿ(> 0), specifically ÿ = 0.4 and ÿ = 0.8, are chosen for Figs. 7a and 
7b, respectively. A comparison of Figs. 6c, 7a, and 7b reveal that the su-
percritical stable zone (zone 1) expands, while the subcritical unstable 
zone (zone 3) contracts as the value of ÿ (> 0) increases. Thus, accord-
ing to the findings presented in Fig. 7, while van der Waals attraction 
can exacerbate flow instability, an exothermic chemical reaction may 
serve as a means to mitigate this instability.

According to the results displayed in Fig. 8, the influence of van 
der Waals attraction on supercritical/subcritical zones 1 to 4 is exam-
ined in the presence of an endothermic chemical reaction (ÿ < 0). The 
value of the Hamaker number ý is fixed at 0.01, and two values of 
ÿ(< 0), namely ÿ = −0.4 and ÿ = −0.8, are chosen for Figs. 8a and 
8b, respectively. Upon comparing Figs. 8a and 8b, it is evident that the 
supercritical stable zone (zone 1) contracts, while the subcritical unsta-
ble zone (zone 3) expands with an increase in the value of ÿ (< 0). Thus, 
the findings suggest that van der Waals attraction can aggravate flow in-
stability, while an endothermic chemical reaction can intensify it.

To obtain a solution for (33), we consider those waves in which spa-
tial modulation does not exist (filtered wave) and consequently (33)
reduces to

ÿ
ÿý2

− ÿ−2ÿÿ +
(
ý2 + ÿý4

) ||2  = 0. (34)
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Fig. 8. Variation of ý as a function of Marangoni numberýÿ for (a) ÿ = −0.4; (b) ÿ = −0.8 for ý = 0.01 and ýÿ = 1.

Fig. 9. Threshold amplitude (ÿÿ) variation with wavenumber (ý) in supercritical unstable and subcritical stable zones for different parameter combinations: (a) 
ÿ = 0, ýÿ = 0.2; (b) ÿ = 0, ýÿ = 0.45; (c) ý = 0.04, ýÿ = 0.45; (d) ý = 0.02, ýÿ = 0.45, with ýÿ = 1.

For a filtered wave,  can be written as  = ÿ 
(
ý2
)
ÿ−ÿÿ

(
ý2
)
ý2 (Jiang and 

Ding, 2022; Mukhopadhyay and Chattopadhyay, 2018; Mukhopadhyay 
et al., 2020). Consequently, inserting  in (34) leads to a nonlinear ODE 
for ÿ as follows:

ýÿ
ýý2

− ÿÿ
ý
(
ÿ
(
ý2
)
ý2
)

ýý2
− ÿ−2ÿÿÿ+

(
ý2 + ÿý4

)
ÿ3 = 0. (35)

Further, we separate the real and imaginary parts of (35). The real part 
gives

ýÿ
ýý2

= ÿ−2ÿÿÿ−ý2ÿ
3. (36)

For ÿ ≠ 0 and independent of ý2, equation (36) yields the threshold am-
plitude for the filtered wave as (Chattopadhyay et al. (2021); Sadiq and 
Usha (2008))

ÿÿ =

√
ÿÿ

ý2

. (37)

Fig. 9 illustrates the sensitivity of the threshold amplitude to van der 
Waals attraction, both with and without a chemical reaction. Without a 
chemical reaction (ÿ = 0), increasing the Hamaker number ý raises the 
threshold amplitude in the supercritical unstable zone (zone 4) and low-
ers it in the subcritical stable zone (zone 2), with a stronger Marangoni 
effect amplifying these changes (Figs. 9a, 9b). In the presence of van der 
Waals attraction (ý = 0.04), an exothermic reaction (ÿ > 0) reduces the 
threshold amplitude in zone 4 and increases it in zone 2 (Fig. 9c), while 

an endothermic reaction (ÿ < 0) has the opposite effect, increasing the 
threshold amplitude in zone 4 and decreasing it in zone 2 (Fig. 9d).

4. Numerical simulations

To comprehensively examine the growth of film instability consider-
ing the thermocapillary effect, van der Waals attractions, and chemical 
reaction, it is necessary to consider the complete nonlinear evolution 
equation as given in (19). For computations, we adopt a finite periodic 
domain with 0 ≤ ÿ < ÿ, where ÿ = 2ÿ∕ý represents the length of the 
computational domain. We set the initial condition as

ÿ(ÿ,0) = 1 + 0.1 sin (ýÿ) . (38)

To numerically simulate the solution for equation (19), a truncated 
Fourier series is employed, given by ÿ(ÿ, ý) =

∑ý∕2

−(ý∕2)+1
ÿ̂ÿexp (ÿÿýÿ). 

Here, ÿ̂ÿ represents the Fourier amplitude of the perturbations. Fol-
lowing Chattopadhyay et al. (2022b), we conduct a convergence study 
for the current study that indicates ý = 28 and Δý = 0.01 provide suf-
ficiently accurate solutions for the numerical simulations. The analysis 
focuses on the film’s evolution within the supercritical stability region. 
In Figs. 10 to 12, we set ý = 0.8 and use a relative error tolerance of 
10−6.

Fig. 10 illustrates the influence of van der Waals attractions on the 
dynamics of a thin film flowing down a vertical fiber without any chem-
ical reaction, specifically when ÿ = 0. To investigate this phenomenon, 
three representative values of the Hamaker number ý (ý = 0, 0.02, 0.04) 
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Fig. 10. Influence of van der Waals attractions. (a) Maximum 
(
ÿÿÿý

)
amplitude of the film thickness for different ý; (b)-(d) Temporal evolution of the film profiles. 

The other fixed parameters are ÿ = 0, ýÿ = 2, ýÿ = 1.

are selected to measure the strength of van der Waals attractions. 
Fig. 10a depicts the evolution of the maximum thickness. We find that 
the disturbance amplitude 

(
ÿÿÿý

)
increases with increasing ý. In all 

presented cases, the disturbances experience initial growth, reaching a 
peak value, before eventually transitioning into a steady state over a 
more extended period. While the general trend remains similar across 
the cases, the wave amplitude exhibits rapid evolution with slight oscil-
lations as ý increases. By comparing the wave amplitudes, it becomes 
evident that van der Waals attractions destabilize the film dynamics, 
leading to an amplified wave amplitude growth. This observed effect be-
comes more prominent as ý increases. The temporal evolution of film 
profiles at specific times (ý = 0, 25, 50) is shown in Figs. 10b to 10d, 
both with and without ý. Comparing these subfigures reveals that at 
any given time ý, interfacial waves exhibit larger peaks with increasing 
values of ý.

Fig. 11 shows the dynamics of the film on the fiber with van der 
Waals attractions and an exothermic chemical reaction (ÿ > 0). We dis-
play the results for ý = 0.04 as we observed oscillations in the absence 
of a chemical reaction (ÿ = 0) for this specific value of ý in Fig. 10a. 
The parameters other than ý remain consistent with those in Fig. 10. 
In Fig. 11a, the maximum thickness evolution over time is depicted, 
revealing that increasing the parameter ÿ leads to a decrease in distur-
bance amplitude 

(
ÿÿÿý

)
. Across all scenarios presented, disturbances 

initially grow to a peak value before stabilizing over time. A compari-
son of the wave amplitudes reveals that exothermic chemical reactions 
exert a stabilizing influence on the dynamics of the film, resulting in a 
reduced amplification of the wave amplitude. This observed effect be-
comes more pronounced with higher values of ÿ (where ÿ > 0). Film 
profiles at ý = 25 and ý = 50 are shown in Figs. 11b and 11c, respec-
tively, illustrating temporal changes influenced by the Hamaker number 
ý. These subfigures demonstrate that stronger exothermic reactions lead 
to smaller peaks in interfacial waves. In summary, Fig. 11 underscores 
the stabilizing influence of exothermic chemical reactions in mitigating 
instability induced by van der Waals attraction.

Fig. 12 illustrates the dynamics of the film flowing down the fiber 
under the influence of van der Waals attractions and an endothermic 
chemical reaction (ÿ < 0). Here also we set ý = 0.04 as Fig. 11. The 
parameters other than ý remain unchanged and consistent with those 
in Fig. 10. In Fig. 12, the evolution of maximum thickness over time 
is depicted, indicating that increasing the parameter ÿ (where ÿ < 0) 

Fig. 11. Influence of exothermic reactions (ÿ > 0). (a) Maximum 
(
ÿÿÿý

)
am-

plitude of the film thickness for different ÿ; (b)-(c) Temporal evolution of the 
film profiles. The other fixed parameters are ý = 0.04, ýÿ = 2, ýÿ = 1.

intensifies the disturbance amplitude 
(
ÿÿÿý

)
. While the overall trend 

remains consistent across all scenarios, the magnitude of oscillations ob-
served in the absence of a chemical reaction (ÿ = 0) notably increases 
with higher values of ÿ (where ÿ < 0). Comparing wave amplitudes, 
it becomes evident that endothermic chemical reactions destabilize the 
film dynamics, leading to increased wave amplification. This effect be-
comes more pronounced as higher negative values of ÿ are considered.

To study the influence of chemical reaction on the breakup phenom-
ena, we set ý = 0.1 and choose the initial condition as Matar et al. (2007)

ÿ(ÿ,0) = 1 + 0.01exp
[
−0.5 (ÿ− 10)2

]
(39)

and the corresponding plots are shown in Figs. 13 and 14. In Fig. 13a, 
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Fig. 12. Influence of endothermic reactions (ÿ < 0) on the maximum 
(
ÿÿÿý

)
amplitude of the film thickness for ý = 0.04, ýÿ = 2, ýÿ = 1.

Fig. 13. (a,c) The minimum thickness 
(
ÿÿÿÿ

)
; (b,d) Film profiles (at ý = 18) for 

different ý and exothermic reactions (ÿ > 0) when ýÿ = 1, ýÿ = 1.

we illustrate the evolution of minimum amplitude profiles 
(
ÿÿÿÿ

)
with-

out any chemical reaction (ÿ = 0) for different values of ý. The figure 
demonstrates that a stronger van der Waals attraction leads to a more 
rapid reduction in ÿÿÿÿ. Based on Fig. 13a, we focus on the time ý = 18

to visualize free surface configurations for the same ý values selected 
earlier. We observe as ý increases, the surface wave instability becomes 
more pronounced. To investigate the impact of exothermic chemical re-
actions (i.e., when ÿ > 0), we set ý to a constant value of 0.2 and select 
three distinct values of ÿ, namely ÿ = 0, ÿ = 0.4, and ÿ = 0.8. By 
comparing Figs. 13a and 13c, it becomes evident that a higher value 
of ÿ > 0 delays the decrease of ÿÿÿÿ. As a result, we plot the free sur-
face configurations for ý = 0.2 and the three aforementioned ÿ values 
(ÿ = 0, ÿ = 0.4, and ÿ = 0.8) at ý = 18 in Fig. 13d. Further comparison 
between Figs. 13b and 13d reveals that increasing ÿ (> 0) significantly 
reduces the surface wave instability. Therefore, the overall conclusion 
drawn from Fig. 13 is that although the combined effect of van der Waals 
attraction (via ý) and heating (ýÿ = 1) promotes surface wave insta-

Fig. 14. (a) The minimum thickness 
(
ÿÿÿÿ

)
; (b,c,d) Film profiles at different 

time ý for endothermic reactions (ÿ < 0) when ý = 0.2, ýÿ = 1, ýÿ = 1.

bility, the presence of an exothermic chemical reaction and its higher 
values can effectively suppress this surface wave instability.

Fig. 14 depicts the impact of an endothermic chemical reaction 
(ÿ < 0) in the presence of van der Waals attraction (ý = 0.2) and ther-
mal effects (ýÿ = 1). In Fig. 14a, we show the evolution of minimum 
amplitude profiles 

(
ÿÿÿÿ

)
for various values of ÿ < 0. It is evident 

from the figure that larger negative values of ÿ result in a more rapid 
reduction in ÿÿÿÿ, indicating a stronger effect of the endothermic reac-
tion. To investigate this behavior further, we focus on a specific time, 
ý = 13.5, and visualize Fig’s corresponding free surface configurations. 
As shown in Fig. 14b, an increase in the magnitude of ÿ < 0 leads to a 
more pronounced surface wave instability. Therefore, the top panel of 
Fig. 14 concludes that surface wave instability is more significant when 
an endothermic reaction is present than the scenario without any chem-
ical reaction. Figs. 14c and 14d display the temporal evolutions of the 
film profiles captured at sequential times, specifically ý = 14, 15, 15.6 for 
ÿ = −0.4, and ý = 12, 13, 13.7 for ÿ = −0.8, respectively. These figures 
reveal that for a constant value of ÿ (< 0), the interfacial waves exhibit 
higher humps as time progresses.

5. Summary and conclusions

This study analyzes the dynamic behavior of reactive ultra-thin liq-
uid films as they flow along heated vertical fibers. The investigation 
focuses on the interplay among several crucial factors, including the 
influence of pseudo-zero-order exothermic or endothermic chemical re-
actions and the proportional effects of van der Waals attractions, which 
vary with ℎ−3. By assuming that the thickness of the liquid film is signifi-
cantly smaller than the radius of the fiber, a nonlinear partial differential 
equation is derived to describe the evolution of the thin film. The linear 
stability of the system is examined through a thorough exploration of 
the resulting thin-film equation. The analysis reveals that van der Waals 
attractions play a critical role in augmenting the overall instability of the 
system. Importantly, it is observed that even in the presence of these at-
tractions, an exothermic reaction contributes an additional stabilizing 
effect, whereas an endothermic reaction leads to the destabilization of 
the system. Moreover, by employing weakly nonlinear stability analy-
sis, the study predicts the existence of distinct regions within the system. 
These regions include supercritical and subcritical regions, further em-
phasizing the multifaceted nature of the phenomenon. To investigate 
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the nonlinear evolution of the film thickness, we numerically solve the 
evolution equation within a periodic domain. The obtained results from 
these simulations corroborate the findings derived from the linear and 
weakly nonlinear stability analyses, confirming their validity and relia-
bility.

This study explores how non-isothermal chemical reactions, when 
combined with van der Waals attractions, affect the dynamic behavior 
of thin liquid films flowing along vertical fibers. These results are ex-
pected to motivate the design of more efficient and optimized processes 
for engineering systems involving thin liquid films in non-isothermal 
environments.
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Appendix A. Dimensional system of equations

The dynamics of the liquid film along the outer surface of the heated 
cylinder is governed by the continuity, Navier-Stokes, energy, and mass 
transport of reactants, which are presented below (Chao et al., 2020; 
Chattopadhyay, 2023; Trevelyan and Kalliadasis, 2004a; Trevelyan et 
al., 2002)

ÿ−1(ÿÿ1)ÿ + ÿ2,ÿ = 0, (40a)

ÿ
(
ÿ1,ý + ÿ1ÿ1,ÿ + ÿ2ÿ2,ÿ

)
= −ýÿ + ÿ

[
ÿ−1

(
ÿÿ1,ÿ

)
ÿ
− ÿ1ÿ

−2 + ÿ1,ÿÿ
]
, (40b)

ÿ
(
ÿ2,ý + ÿ1ÿ2,ÿ + ÿ2ÿ2,ÿ

)
= −ýÿ + ÿý + ÿ

[
ÿ−1

(
ÿÿ2,ÿ

)
ÿ
+ ÿ2,ÿÿ

]
, (40c)

ÿý + ÿ1ÿÿ + ÿ2ÿÿ = ÿ
[
ÿ−1

(
ÿÿÿ

)
ÿ
+ ÿÿÿ

]
+ ÿý ÿ, (40d)

ÿý + ÿ1ÿÿ + ÿ2ÿÿ = ýmol
[
ÿ−1

(
ÿÿÿ

)
ÿ
+ ÿÿÿ

]
− ÿÿ, (40e)

where ÿ is the liquid density, ý is the pressure of the species 1, ÿ is 
the dynamic viscosity, ý is the gravitational acceleration, ÿ is the tem-
perature of the species 1, ÿ is the thermal diffusivity, ÿ is the reaction 

rate, ý is the heat release or consumption, ÿ is the concentration of the 
species 1, and ýmol is the molecular diffusivity of the species 1 and (
ÿ1, ÿ2

)
the radial (ÿ) and axial (ÿ) velocity components.

At the cylinder wall ÿ = ý, we impose the following boundary con-
ditions: no-slip and no penetration for velocity, uniform heating for 
thermal conditions, and a no-flux condition for species (Chao et al., 
2020; Li and Chao, 2020; Trevelyan et al., 2002):

ÿ1 = 0, ÿ2 = 0, ÿ = ÿý, ÿÿ = 0, (40f)

where ÿý denotes the temperature at the cylinder surface.
The boundary conditions on the liquid-air interface ÿ =ý +ℎ(ÿ, ý) are 

the stress balances (along tangential and normal directions), kinematic 
condition, and Newton’s law of cooling (Chao et al., 2018; Chattopad-
hyay, 2021a; Kalliadasis et al., 2012). In addition, a constant concen-
tration of species 1 is imposed at the liquid-air interface following Li 
and Chao (2020); Trevelyan and Kalliadasis (2004a); Trevelyan et al. 
(2002). These conditions are given below:

ÿ
[(
ÿ1,ÿ + ÿ2,ÿ

)(
1 − ℎ2ÿ

)
+ 2

(
ÿ1,ÿ − ÿ2,ÿ

)
ℎÿ

]
=
(
ÿÿ + ℎÿÿÿ

)(
1 + ℎ2ÿ

)1∕2
,

(40g)

ý′

ℎ3
+ ý∞ − ý+ 2ÿ

[
ÿ1,ÿ + ÿ2,ÿℎ

2
ÿ −

(
ÿ1,ÿ + ÿ2,ÿ

)
ℎÿ

] (
1 + ℎ2ÿ

)−1

= −ÿ(ÿ )
[(
1 + ℎ2ÿ

)
ÿ−1 − ℎÿÿ

] (
1 + ℎ2ÿ

)−3∕2
, (40h)

ÿ1 = ℎý + ÿ2ℎÿ, (40i)

ÿ
(
ÿÿ − ℎÿÿÿ

)(
1 + ℎ2ÿ

)−1∕2
+ ýý

(
ÿ − ÿ∞

)
= 0, (40j)

ÿ = ï, (40k)

where ÿ is the surface tension, ý∞ is the atmospheric pressure, ÿ is the 
thermal conductivity, ýý is the heat transfer coefficient of the liquid, ï
represents the initial concentration of the species 1 . In (40h), ý

′ repre-
sents the dimensional Hamaker constant. We assume ý′ > 0, indicating 
a destabilizing van der Waals force. To model the breakup process, the 
van der Waals attractions are assumed to vary proportionally to ℎ−3

(Burelbach et al., 1988).

Appendix B. Explicit expressions of ÿ, ÿ = ÿ, ÿ, ÿ, … and 
ÿ , ÿ = ÿ, ÿ, … in (31)

0 ≡
ÿ
ÿý

+
ÿ
ÿÿ

+
ÿ2

ÿÿ2
+ 

ÿ4

ÿÿ4
,

1 ≡
ÿ
ÿý1

+
ÿ
ÿÿ1

+ 2
ÿ2

ÿÿÿÿ1
+ 4

ÿ4

ÿÿ3ÿÿ1
,

2 ≡
ÿ
ÿý2

+
ÿ2

ÿÿ2
1

+ 6
ÿ4

ÿÿ2ÿÿ2
1

,

2 ≡′ÿ1
ÿÿ1
ÿÿ

+ ′

[
ÿ1

ÿ2ÿ1
ÿÿ2

+

(
ÿÿ1
ÿÿ

)2
]
+  ′

[
ÿ1

ÿ4ÿ1
ÿÿ4

+
ÿÿ1
ÿÿ

ÿ3ÿ1
ÿÿ3

]
,

3 ≡′

[
ÿ1

(
ÿÿ2
ÿÿ

+
ÿÿ1
ÿÿ1

)
+ ÿ2

ÿÿ1
ÿÿ

]

+ ′

[
ÿ1

(
ÿ2ÿ2
ÿÿ2

+ 2
ÿ2ÿ1
ÿÿÿÿ1

)
+ ÿ2

ÿ2ÿ1
ÿÿ2

+ 2
ÿÿ1
ÿÿ

(
ÿÿ2
ÿÿ

+
ÿÿ1
ÿÿ1

)]

+ ′

[
ÿ1

(
ÿ4ÿ2
ÿÿ4

+ 4
ÿ4ÿ1
ÿÿ3ÿÿ1

)
+ ÿ2

ÿ4ÿ1
ÿÿ4

+
ÿÿ1
ÿÿ

(
ÿ3ÿ2
ÿÿ3

+ 3
ÿ3ÿ1
ÿÿ2ÿÿ1

)

+
ÿ3ÿ1
ÿÿ3

(
ÿÿ2
ÿÿ

+
ÿÿ1
ÿÿ1

)]

+
1

2
′′ÿ2

1

ÿÿ1
ÿÿ

+ ′′

(
1

2
ÿ2
1

ÿ2ÿ1
ÿÿ2

+ ÿ1

(
ÿÿ1
ÿÿ

)2
)

+ ′′

(
1

2
ÿ2
1

ÿ4ÿ1
ÿÿ4

+ ÿ1
ÿÿ1
ÿÿ

ÿ3ÿ1
ÿÿ3

)
.
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