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We study the dynamics of an ultra-thin reactive liquid film flowing down a heated vertical fiber under the
influence of gravity. A key focus is on the impact of the van der Waals attraction, which is proportional to
h=3, where h denotes the film thickness. Linear stability analysis of the film flow reveals that the van der Waals
attractions and the Marangoni effect enhance the instability. Furthermore, instability is reduced by exothermic
chemical reactions, while it is strengthened in the case of endothermic chemical reactions. Moreover, the
weakly nonlinear stability of the film flow is studied. The results indicate the possibility of both subcritical and

supercritical stability in the system. Lastly, direct numerical simulations of the evolution equation are conducted
for various flow parameters. These results enhance our understanding of the intricate interplay of chemical
reactions, thermal effects, and intermolecular forces influencing the liquid film dynamics in complex systems.

1. Introduction

The interfacial dynamics of thin liquid films flowing down verti-
cal fibers have attracted considerable attention due to their complexity
(Craster and Matar, 2009; Oron et al., 1997) and wide range of ap-
plications (Ji et al., 2021; Quéré, 1999; Zeng et al., 2017). Notable
phenomena include the formation of droplets and the emergence of trav-
eling wave patterns (Kalliadasis et al., 2012; Quéré, 1990). Exploring
the flow of thin films along heated vertical fibers is particularly in-
triguing as it has diverse practical applications, such as the cooling of
optical fibers (Sweetland and Lienhard, 2000) and the condensation of
vapor on heat pipes (Kundan et al., 2017). The flow of a thin film along
a heated cylindrical surface introduces non-uniformity in its profile,
which in turn creates temperature gradients at the liquid-air interface.
Previous studies (Davalos-Orozco and You, 2000; Ding and Wong, 2017;
Mukhopadhyay et al., 2020) have shown that when the film is situ-
ated on the exterior or interior of a heated cylinder, these interfacial
thermal gradients generate unbalanced thermocapillary stress, leading
to a destabilizing influence on the film. Several modeling approaches
have been developed to examine the dynamics of exterior coating flows
on fibers with or without thermal effects. These approaches include
thin film models (Frenkel, 1992; Kalliadasis and Chang, 1994), thick
film models (Kliakhandler et al., 2001), asymptotic models (Craster and
Matar, 2006), weighted residual models (Ruyer-Quil et al., 2008), and
integral boundary layer models (Shkadov et al., 2008). More recently,
Kim et al. (2024), and Biswal et al. (2024) have developed positivity-
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preserving numerical schemes and optimal boundary control strategies
within the context of fiber coating models.

Thin liquid films flowing down vertical fibers under the influence
of gravity display interesting dynamics, such as the formation of vis-
cous beads and the breakup of the film. In the absence of additional
effects like the Marangoni effect, the flow of a falling film over cylin-
drical substrates becomes hydrodynamically unstable primarily due to
the well-known Rayleigh-Plateau (RP) instability (Quéré, 1999). In such
flow scenarios, thin films can fragment into droplets on cylindrical sur-
faces, while cylindrical threads and jets manifest regular droplet-like
wave patterns due to the RP mechanism (Rayleigh, 1892). Lister et al.
(2006) reported the emergence of collars and lobes with the RP mech-
anism. Moreover, the literature suggests that thermocapillarity may en-
hance the RP instability, potentially leading to finite-time film rupture
(Liu and Liu, 2014).

The rupture of thin, viscous liquid films on flat surfaces or verti-
cal fibers poses an intriguing challenge. The emergence of holes or dry
patches in a uniform fluid layer leads to localized singularities in fi-
nite time, subsequently altering the topology and structure of fluid flow
within the layer (Herminghaus et al., 1998; Xie et al., 1998). These
considerations are particularly significant in the coating industry, in-
cluding optical coatings and insulating layers in micro-circuitry, where
non-uniformities are undesirable (Oron et al., 1997). Previous studies
by Williams and Davis (1982), Reisfeld and Bankoff (1992), Bertozzi
and Pugh (1998), Witelski and Bernoff (2000), Hatziavramidis (1992)
and Matar (2002) have explored the thin film instabilities induced by
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intermolecular forces. These studies typically involve thin films with
thicknesses ranging from 100 to 1000 angstroms, subjected to long-
range van der Waals interactions that can lead to finite-time rupture
(Sheludko, 1967). In addition to van der Waals forces, previous inves-
tigations have considered factors such as surface tension, evaporation,
condensation, surfactants, slip, and various other scenarios. However,
it is important to note that the studies on the vertical fibers or cylin-
ders (Craster and Matar, 2006; Frenkel, 1992; Kalliadasis and Chang,
1994; Kliakhandler et al., 2001; Ruyer-Quil et al., 2008; Shkadov et al.,
2008) did not incorporate the effects of van der Waals attractions. Ding
et al. (2019) investigated the behavior of ultra-thin liquid films on a
heated vertical fiber. They considered the influence of van der Waals
attraction to predict the film breakup. Their results revealed that an
isothermal film consistently undergoes breakup in the absolutely unsta-
ble regime in the presence of van der Waals attractions. Importantly,
they concluded that the Marangoni effect significantly accelerates the
breakup process.

To describe liquid wetting/dewetting on solid surfaces, intermolec-
ular forces such as van der Waals interactions are included in the dy-
namic pressure using a disjoining pressure, denoted as I1(4), in lubri-
cation equations. Ruckenstein and Jain (1974), Reisfeld and Bankoff
(1992) and Burelbach et al. (1988) characterized van der Waals forces
as [I(h) = Ah~3, where A is the Hamaker constant. These forces desta-
bilize when A > 0, while A < 0 leads to stabilization. Ji et al. (2019)
investigated a liquid film flowing along the outer surface of a vertical
fiber with a film stabilization term that takes the functional form of the
disjoining pressure II(h) = Ah~—> with A <0 as a stabilization parame-
ter. For a dewetting liquid, the purely destabilizing intermolecular forces
modeled by I1(h) = Ah~3 with A > 0 can result in finite-time rupture of
the film thickness.

Despite the advances in the study of thin film flows, theoretical de-
velopments on the influence of chemical reactions on thin film flows
are still lacking. In 1984, Dagan and Pismen (1984) investigated the
connection between chemical reactions and thin film hydrodynamics.
The study by Gallez et al. (1996) explored the dynamics of a thin lig-
uid film undergoing a surface chemical reaction. They focused on the
interaction between insoluble surfactants on the liquid-air interface and
substrate binding sites. The researchers demonstrated that the coupling
between the thin film and the chemical reaction substantially influenced
its dynamics, resulting in oscillatory behavior and rupture. Braun et al.
(1995) investigated how temperature-dependent surface tension affects
the spreading of a drop on a solid plate in the presence of an isothermal
chemical reaction. Subsequently, Trevelyan et al. (2002) and Trevelyan
and Kalliadasis (2004a,b) studied the progression of a vertically falling
film undergoing a first-order exothermic chemical reaction. These stud-
ies provided evidence that an exothermic reaction exerted a stabilizing
effect on the free surface. These studies further revealed that the pres-
ence of chemical reactions can significantly impact the evolution of the
interface, leading to dispersive solitary waves. Matar and Spelt (2005)
investigated the dynamics of thin liquid films under exothermic chemi-
cal reactions, which induce changes in film density and viscosity. Pereira
et al. (2007) examined the interplay between a reaction-diffusion pro-
cess and the hydrodynamics of a horizontal thin liquid film. They found
that this interplay had a significant influence on the flow dynamics.
The free surface was linearly stable when the Marangoni effect was not
present. However, the coupling between the free surface and the lin-
early unstable reaction-diffusion system, facilitated by the Marangoni
effect, led to its destabilization. In subsequent studies, Trevelyan et al.
(2012), Chao et al. (2020), Li and Chao (2020), and Chattopadhyay
(2023) observed notable effects while investigating the behavior of a
thin film flowing down an inclined plane and a cylindrical surface, re-
spectively. These investigations were conducted in the presence of a
first-order chemical reaction and under the influence of gravity.

It has been established that the presence of van der Waals attractions
and the Marangoni effect results in an increased RP instability (Ding et
al., 2019). However, the impact of chemical reactions on the instability
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induced by both thermal effects and van der Waals attraction remains
unexplored. The present study aims to investigate whether this instabil-
ity can be mitigated by chemical reactions. Understanding the dynamics
of reactive film flows is crucial for coating flow applications in industrial
settings (Kundan et al., 2017; Quéré, 1990; Sweetland and Lienhard,
2000; Zeng et al., 2017), especially those involving first-order reactions,
such as catalytic or acid-base reactions. For example, combustion cham-
bers, fuels, and engine oils create wall films, resulting in deposits on
ports, cylinder walls, and pistons (Zhao et al., 1999). These deposits,
formed through chemical reactions (Dagaut et al., 2002; Norinaga and
Deutschmann, 2007), diminish engine efficiency and increase pollutant
emissions. Trevelyan et al. (2012) briefly discussed the practical sce-
narios with chemical reactions of this nature. To our knowledge, there
have been no studies on the delay or mitigation of the rupture phenom-
ena of thin liquid films on heated fibers with van der Waals attractions.
Our model offers new insights into the dynamics and parametric study
of chemical reaction aspects in coating processes within chemical en-
gineering and could serve as a resource for further exploration in this
area. Furthermore, the findings of this study could provide insights for
enhancing the quality of coating films on cylindrical surfaces and sug-
gest a new direction for utilizing chemical reactions to achieve smooth
textures in various products like paper and microchips.

The subsequent sections of the paper are structured as follows. In
Section 2, a thin film model is formulated that incorporates exother-
mic or endothermic chemical reactions and includes van der Waals
attractions. A single nonlinear equation is constructed that describes the
evolution of the thin liquid film interface. Further, a linear and weakly
nonlinear stability analysis is performed in Section 3. Furthermore, in
Section 4, a direct numerical simulation of the nonlinear evolution equa-
tion is carried out. The key findings are discussed in Section 5.

2. Mathematical model

The problem under consideration involves a vertical cylindrical fiber
with uniform surface temperature 7, over which an ultra-thin Newto-
nian liquid film flows, as shown in Fig. 1. The study assumes axisym-
metry and uses cylindrical coordinates (r, z). The thickness of the liquid
film at any time is denoted by A(z, t), while the fiber has a radius R. The
surrounding air is assumed to be inviscid, and thus, its dynamics are ne-
glected. The species Z, is present in the ambient gas phase and absorbed
at the interface into the liquid film, which is always saturated with Z;
due to its infinite availability in the gas phase. The reaction undergoes a
simple first-order process, represented by Z; — Z, + heat (Li and Chao,
2020; Trevelyan and Kalliadasis, 2004a; Trevelyan et al., 2002). Both
Z, and Z, are considered passive species, i.e., their concentration pro-
files do not affect the flow field. The system involves several variables,
namely U = (”1 , u2) representing the radial and axial velocity compo-
nents, pressure p, temperature 7', and concentration x of species Z;. The
system also involves density p, dynamic viscosity y, thermal diffusivity
k, and molecular diffusivity d,, of species Z,. The reaction rate coef-
ficient (b) is assumed to be temperature-independent (Petrucci, 2017).
Following Chao et al. (2020); Li and Chao (2020), this study considers
only the thermocapillary Marangoni effect and neglects the solutocap-
illary Marangoni effect, which can arise from the solute concentration
gradient (Dagan and Pismen, 1984).

We provide the dimensional system of equations in Appendix A. Let
us simplify the analysis by introducing the following dimensionless vari-
ables based on the film geometry (Chao et al., 2020)

(r,2)=H (r*,z*) ,t = (H/V) 1", (uy,uy) =V (uT,u;) ,
P=DPe +pgHp" T=T, +T*AT,x =Cx", D

where the variable with an asterisk denotes a dimensionless quantity,
the acceleration due to gravity is denoted by g, H is the mean film
thickness, ¥ = pgH2/u is the characteristic velocity, AT = T,-T,,Cis
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Fig. 1. Model geometry.

the initial concentration of species Z; in the film, and p, is the ambient
pressure.

Inserting (1) into the dimensional system of equations, the motion
of the liquid can be described by the following dimensionless equations
after omitting the asterisks:

V-U=0, (2)
Re% =1-Vp+VU, (©))
RePr% =VT + DD, x, “4)
ReS%J: V2% =D, x, )
U=0,T=1, x,=0 atr=aq, (6)
%n [+ VU 4 ] -n=—Mav, T~ AT (g gy
atr=a + h(z,1), @)
uy=h,+uh, atr=a+h(z,1), (8)
VT -n+BiT =0 atr=a+ h(z,t), ()]
x=1 atr=a+ h(z,1), (10)

where n represent the unit normal vector, | denote the identity tensor,
V be the gradient operator, D/Dt =0, + U" - V represent the material
derivative, and V, =V —n(n - V) denote the surface gradient operator.
The system is characterized by various dimensionless parameters, in-
cluding @« = R/H, Reynolds number Re = pVH /i, Prandtl number Pr =
#/(px), Damkaohler number D, = bH? /d 01, dimensionless heat of reac-
tion ® =YCd,, /(kAT), Schmidt number S = u/ (pdmol), Marangoni
number Mn =yAT /(uV), capillary number Ca = uV /oy, A =yAT /o,
and Biot number Bi = Hk,/A. We introduce a composite Hamaker num-
ber Ay = G/Re to represent the strength of van der Waals attractions,
where G= A’/ (67erv2) is the dimensionless Hamaker constant and
A’ is the dimensional Hamaker constant. When D, = 0, it indicates the
absence of chemical reactions (Trevelyan et al., 2002). Similarly, when
@ =0, the chemical reaction is assumed to be isothermal. The heat gen-
erated or absorbed by the chemical reaction is denoted by Y, which is
assumed to be independent of temperature. For exothermic reactions, Y
is positive, whereas for endothermic reactions, Y is negative (Chao et al.,
2020). The system of equations (2)-(10) matches Ding et al. (2019) with-
out chemical reactions and Chao et al. (2020) without van der Waals
attraction.

The system of equations is derived under the assumption that the sur-
face tension o varies linearly with temperature and can be expressed as
(Chattopadhyay (2021a, 2024); Chattopadhyay and Ji (2023)): o(T) =
oo — 7 (T" = Ty). The coefficient y > 0 represents the thermal surface
tension coefficient, which characterizes the rate of change of surface
tension to temperature evaluated at the reference temperature T;. This
assumption is valid when the temperature difference between 7' and Ty,
is small, where T' is the temperature at the interface of the liquid film.
Ding et al. (2018) estimated A of castor oil to be O (10‘2) using a tem-
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perature difference of approximately 10 K. Since A is negligible, we will
ignore it for further discussion.

To construct the equation of the liquid-air interface, we assume H <«
R and introduce a small parameter § = H/R < 1. Consequently, we
introduce the following transformations (Chao et al., 2018):

11— 8%, r=a+séy, h—6H. (€8))

The variables u,, u,, p, T and x are expanded as follows (Chao et al.,
2020; Li and Chao, 2020)

wy =6 (5 ),y =8 () 6 4 ),
0. T,0 = (10, 7O, ) + 5 (50, TV, V) 4 ... a2

Substituting (11)-(12) into the governing equations (2)-(5) and bound-
ary conditions (6), (7), (9), (10), and taking the limit 6 — 0, the leading-
order terms are given by the following equations

(0) ©0) _ (0) _ ©0) _ (0) 0) _ ©) _
1y+uz’z—0, =0, P 1+u Tyy + Xx=0, }{yy—(),
13)
=0, =0, TO=1, »0=0 aty=0, a4
A 1 (1 H
o __ © 0 _ A1 1 _H_
Uy =—MnT" b st Ca <6a a2 H“)’
Ty<0> =-BiT®, x9=1 aty=H. (15)

While deriving the equations (13)-(15), we obtained the dimensionless
flow parameters ®, Ay, Mn, Ca, Bi, and D, as 52, 5‘3AH, 5§~ Mn,
671Ca, 6Bi, and 6°D,. The term §°D, was neglected due to the as-
sumption of a slow chemical reaction (Da <1 ) (Chao et al., 2020; Chat-
topadhyay, 2023). To retain the terms associated with van der Waals at-
traction (represented by the dimensionless composite Hamaker number
AH) thermal effect (represented by Mn), and surface tension (repre-
sented by Ca), we rescaled 6~ 3AH, 57\ Mn, and 67! Ca as 673 Ay — A,
5 'Mn— Ma, and 6~1Ca — Ca (Chao et al., 2020; Ding et al., 2019).
Additionally, to maintain the effect of the Biot number Bi, we rescaled
0Bi as 6Bi —~ Bz We assumed that these rescaled dimensionless num-
bers A4, Ma a, Ca, and Bi are of order unity. To account the chemical
reaction, we have rescaled 52® as 6°® — ® and introduced a parame-
ter X = CTDDa into the mass transport equation of (13) (Chao et al., 2020;
Li and Chao, 2020). It is important to note that the new parameter X
depends on the dimensionless heat of reaction ®, which is proportional
to the parameter Y. This Y parameter signifies the heat generation or
absorption by the chemical reaction and is independent of temperature.
Therefore, X is essentially proportional to Y. Considering exothermic
reactions where Y is positive and endothermic reactions where Y is
negative, a positive value of X signifies an exothermic reaction, while
a negative value indicates an endothermic reaction.

However, for notational simplicity, we drop the tilde sign from the
rescaled flow parameters A, Ma, Ca, and Bi in our upcoming discus-
sion. The leading order solutions for (13)-(15) are given by

7O _ 1 _ Biy X ( HQ2+BiH) (16)
1+BiH 2 (I+ BiH)
2
O _ (,© y Ma

The kinematic condition (8) can be expressed as mass conservation at
leading order, which yields H, +9, /OH u(zo)d y =0. Substituting (17) into
the mass conservation equation, the evolution equation for the free sur-
face can be obtained as follows

3 H AH, Ma(X H—-Bi
H+ H>H, + H- <—Z+Hm>+ z ( )
——

3Ca \ a2 H  2(1+BiH)? :
term (i) %,_/ \___V——_J
term (ii) term (ii) term (iv) ;
=0. (18)
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Equation (18) describes the evolution of the liquid-air interface of a
Newtonian film along a vertical fiber, taking into account the effects of
chemical reactions (parameter X) and van der Waals attractions (param-
eter A). Unlike the previous work by Chao et al. (2020), which focused
solely on the effects of chemical reactions in similar dynamics, this new
model incorporates additional physics by including van der Waals at-
tractions. Furthermore, our model equation (18) is comparable to the
one in the study by Li and Chao (2020) on chemical reactions on simi-
lar dynamics for fluids with surface tension that depends quadratically
on temperature (self-rewetting fluid). Specifically, (18) agrees with the
model studied in Li and Chao (2020) in the absence of van der Waals
attractions and when the surface tension is approximated as a linearly
decreasing function of temperature. Our model also aligns with Ding et
al. (2019) when chemical reactions are absent (X = 0). Here, we phys-
ically interpret the various terms in the evolution equation. Firstly, the
term (i) arises from the mean flow. Secondly, term (ii) is linked to surface
tension, encompassing both azimuthal and axial curvature components,
whereas term (iii) emerges due to van der Waals attraction. Term (iv)
comprises two components, both connected to the Marangoni number
M a. It is important to note that the Marangoni term appears here due
to both chemical reactions and uniform heating. The component MaX
arises from the chemical reaction, while the component MaBi stems
from the uniform heating of the fiber.

We simplify our analysis by not considering the effects of fiber radius
a and capillary number Ca. Consequently assuming « = Ca =1 (Chao
et al., 2020; Ding et al., 2019), the evolution equation (18) reduces to

3
H,+H2HZ+[<i+

A Ma(XH - Bi)H? H?
= " )H,
3  H

, 2y ] —0.
2(1+ BiH)? ]
(19)

Equation (19) governs the liquid-air interface dynamics, influenced by
van der Waals attraction and the Marangoni effect from uniform heating
and chemical reactions.

Before discussing model results, we briefly examine parameter val-
ues pertinent to experiments outlined in the literature. It is crucial to
note that, in the context of this study, a negligible Reynolds number is
assumed, denoted as Re <1 for the model derivation. Consequently,
the applicability of this model is confined to scenarios where the RP
instability is anticipated to predominate over the Kapitza instability.
For flows with higher Reynolds numbers, one may consider retaining
inertial terms in the derivation or adopting an integral boundary layer
modeling approach. The latter has successfully aligned with experiments
conducted at moderate to high liquid Reynolds numbers.

First, we estimate the range of the dimensionless number A, which
characterizes the impact of van der Waals attraction. Based on our model
formulation, A is linked to the dimensionless composite Hamaker num-
ber Ay as A =673 Ay, where Ay =G/Re and G= A’/ (6xHpv?) is the
dimensionless Hamaker constant. Burelbach et al. (1988) determined
that A’ is of the order O (1072°) N m. Let us consider the water for
example: density p = 10> kg m™ and viscosity 4 = 107> N m~2s. As-
suming H = 107> m and A’ ~ O (10’20) N m, we obtain the velocity
scale V = pgH?*/u = 9.81 x 107* m s~!, the dimensionless Hamaker
number G = 5.3 X 10~® and the Reynolds number Re = 9.81 x 1073,
Therefore, the dimensionless composite Hamaker number A;; we obtain
as Ay = 5x 1070, According to our model assumption, § is small, and we
consider 6 to be approximately of order O (10_1). Consequently, A is
approximately O (10_3). However, for the theoretical discussion of the
present model, we will consider slightly stronger intermolecular forces
with A in the range of O (1072) — 0 (107!).

Next, let us estimate the range of the Marangoni number Ma. Ac-
cording to our model formulation, M a is related to the Marangoni num-
ber Mn as Ma=5-! Mn. Considering water as example with mean film
thickness H =5x 107* m and y =5 x 107> N m~'K~!, we obtain the
Marangoni number Mn =yAT/(uV) as Mn~2 X 1072AT. Assuming
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AT is in the range of 10 K to 20 K, the range of M n is approximately 0.2
to 0.4. Considering 6 ~ O (10‘1), we determine the range for Ma as 2
to 4. Therefore, for this study, we will adopt the range of Ma as 0 to 4.

3. Stability analysis

We consider the stability analysis of the base state i = 1 and conse-
quently impose a small disturbance to the film as

H(z,H)=1+39(z,1) (20)

where 9(z,7) < | represents the small perturbation to the base state at
time ¢.
Substituting (20) into (19) and keeping terms up to O (9°) yields

9+ MO, +FI, +T9,..+ M +F (99, +92)
AT (8., +9.9,..) + %M”&Zsz

(3820, 002 ) 4 T (3020000 48,9, ) =0, @1)
— g2 — 3 -1__ Ma _ _ R 2
where M(H) = H2, F(H) = (H3/3)+ AH™ 3 Mo (x 11— Biy

and 7(H) = H? /3. The values of M, F, T, and their corresponding
derivatives are determined at H = 1.

For the linear stability analysis, nonlinear terms of (21) are ignored.
Normal mode solution assumes & « exp[i(kz — wt)] + cc, where k is the
wavenumber, i = \/—_1, and w = w, + iw; is the complex frequency with
, and w; being the real and imaginary parts of @, respectively. The cc
denotes the complex conjugate of the preceding term. The dispersion
relation is obtained by inserting J in the linearized part of (21) which

yields w, = k and
0 = [1 LA Ma(X—.Bi) 2 k_4.
3 2(1 + Bi)? 3

Equation (22) reveals that the linear growth rate w; is influenced by
the van der Waals attractions (through the parameter A), thermocapil-
lary force (via Ma), and the chemical reactions (via X). This implies
that these factors significantly impact the film’s stability, as even small
variations in these parameters can cause changes in the growth rate
of disturbances. On the other hand, the linear phase velocity, given by
¢y =w,/k =1, is independent of these key parameters. A similar obser-
vation was also reported by Chao et al. (2020). Overall, (22) highlights
the interplay between various physical mechanisms in determining the
stability properties of thin films and underscores the importance of un-
derstanding these mechanisms to predict and control the behavior of
thin film systems. The sign of w; determines the stability of the flow,
where a positive value indicates instability and a negative value indi-
cates stability.

In Fig. 2, the impact of the thermocapillary force and van der Waals
attractions on the linear growth rate w; without chemical reactions (X =
0) is illustrated. Fig. 2a shows the enhancement of instability due to
substrate heating for three typical Ma values, namely Ma = 1,2 and
4, in the absence of the Hamaker number A. Fig. 2b demonstrates the
intensification of instability with increasing van der Waals attractions
for three typical Hamaker numbers, namely A =0,0.1 and 0.2, without
the heating effect (M a = 0). Based on these results, it can be concluded
that both van der Waals attractions and thermocapillary force enhance
the RP instability, which aligns with the findings reported by Ding et al.
(2019).

Fig. 3 illustrates the influence of chemical reactions (X) on the lin-
ear growth rate under substrate heating and van der Waals attractions.
For characterization, we set the Marangoni number Ma = 4 and the
Hamaker number A = 0.2, as these values demonstrated increased flow
instability in Fig. 2. Fig. 3a corresponds to the case of an exothermic
chemical reaction (X > 0), while Fig. 3b represents the endothermic
case (X < 0). The results reveal that an exothermic chemical reaction on

(22)
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Fig. 2. Linear growth rate as a function of wavenumber k for different values of (a) Marangoni number Ma (when A = 0); (b) Hamaker number A (when Ma = 0)

for X =0and Bi=1.
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Fig. 3. Influence of the (a) exothermic reactions (X > 0); (b) endothermic reactions (X < 0) on the linear growth rate as a function of wavenumber k when Ma =4,

A=02and Bi=1.

Stable

(a)

Fig. 4. Influence of the chemical reaction on the neutral stability curve for different values of A when Ma =4 and Bi =0.01.

the substrate inhibits instability, while an endothermic reaction intensi-
fies it. Similar findings regarding the roles of exothermic and endother-
mic chemical reactions have also been reported by Chao et al. (2020)
and Li and Chao (2020). We note that, despite the destabilizing effect
of the combined van der Waals attraction and thermocapillary force,
which intensifies the RP instability, Fig. 3 concludes that an exothermic
reaction can alleviate it.

Fig. 4 depicts how van der Waals attractions affect the marginal sta-
bility curves in the X — k plane for a heated vertical fiber. The unstable
region in the X — k plane expands with increasing Hamaker number
A, indicating that van der Waals attraction has a destabilizing impact.
Moreover, regardless of the presence or absence of A, the unstable re-
gion in the X — k plane widens as the chemical reaction becomes more
endothermic, i.e., as X (< 0) values increase, and contracts as the re-
action becomes more exothermic, i.e., as X (> 0) values increase. This
further validates the substantial stabilizing influence of an exothermic
chemical reaction and underscores the destabilizing effect of an en-

dothermic chemical reaction. In Fig. 4b, we present a three-dimensional
view of the neutral stability curves to illustrate their variation with
changes in both X and A.

To compare the result of the linear stability analysis from the present
model and that reported by Ding et al. (2019) and Chao et al. (2020),
we assume § « exp [w? + ikz]. Considering Bi is small (Bi < 1) and Ma
is large enough to retain the terms involving M aBi (Chao et al., 2018),
the dispersion relation can be derived as follows

M

a):—ik+k2[%(1—k2)+A—TaX+M], (23)

where M = MaBi/2 is the modified Marangoni number. Without van
der Waals attractions, chemical reactions, and the modified Marangoni
number M, the equation (23) exhibits a structure comparable to the one
presented by Duprat et al. (2007). For X = 0, equation (23) matches
with Ding et al. (2019) and for A =0, it recovers Chao et al. (2020).
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Fig. 5. (a) The impact of chemical reaction on the critical wavenumber (k‘,) for various values of X. (b) Contour plot of k. as a function of A and X. The other fixed

parameters are Ma =1, Bi =0.01.

Further, we determine the value of k, by substituting @, =0 in (23),
leading to the expression

k,=v1+3(A+M)—15MaX. (24)

Thus, the most unstable mode k,, can be obtained by evaluating
dw,/dk =0 in (23), resulting in k,, = /0.5 + 1.5(A + M) — 0.75MaX.
In the absence of a chemical reaction (X = 0), this expression for k,,
aligns with Ding et al. (2019). When van der Waals attractions are absent
(A=0), and with Ma =1, Bi =0.01, we find k,, = v/0.5075 - 0.75X,
which matches the result obtained in Chao et al. (2020). It is evident
that due to A and M being finite positive numbers, the values of k, and,
consequently, k, will either increase or decrease depending on the in-
crease of X (for X <0) or X (for X > 0). Conversely, in the absence of
a chemical reaction (X =0), the values of k, and, consequently, k,, will
increase depending on the increase of both M and A. This behavior is
illustrated in Fig. 5.

Considering a = 1 in (18), with 9 « exp [wf + ikz], we obtain the
dispersion relation as

w=—ik+k [L(l—kz)wx

Ma(X — Bi)
3Ca B ] 5

2(1 + Bi)?

We multiply (25) by i, and use the transformation (iw, k) - Ca'/3 (zﬁ%)

Consequently, we obtain

~ k2 ~
s=F+% (p-), 26)
where

27)

p=Ca 13 [A _ M] call3.

2(1 + Bi)?

This corresponds to the dispersion relation of a weakly nonlinear lu-
brication model studied by Frenkel (1992) excluding van der Waals
attractions, thermocapillary effects, and chemical reactions. The stan-
dard dispersive relation (26) also mirrors those found by Duprat et al.
(2007) and Ji et al. (2021). Duprat et al. (2007) determined the system’s

1/3
absolute instability when § > f, = [(9/4) x (—17 + 7\/7)] ~ 1.507.
Consequently, for the present study, we obtain
Ma(X-Bi) 1] 9 13 gt
A——>—[—(—17+7 7)] _La (28)
2(1 + Bi)? 3 l4Ca V7 3

Moreover, if we consider Bi <« 1, say Bi =0.01 and Ma is large, say
Ma =2, then (28) shows

A>0.16 + X (approx). (29)

When X = 0, equation (29) corresponds to the condition established
by Ding et al. (2019). Equation (29) indicates that when considering
chemical reactions (X # 0), the absolute instability threshold depends
on the nature of the reaction. For exothermic reactions (X > 0), the

van der Waals attractions must exceed a higher value of A compared
to a non-reactive liquid for instability to be absolute. Conversely, for
endothermic reactions (X < 0), the van der Waals attractions need to
exceed a lower value compared to a non-reactive liquid.

The above discussion revolves around linear stability, which pro-
vides only initial insights into the stability mechanism. We must con-
sider nonlinear effects to understand how van der Waals attraction
affects flow dynamics under chemical reactions and uniform heating.
Therefore, this section will examine weakly nonlinear stability analysis
(Desai et al., 2023; Jiang and Ding, 2022; Oron and Gottlieb, 2004) of
the present model. We introduce small variables z; = ¢z, t; = ¢t, and
t, = ¢2t, where ¢ < 1 denotes the distance from criticality (Mukhopad-
hyay et al., 2019). We assume that the linear growth rate of the am-
plitude, denoted by ;, is of order O(¢?). The resulting substitutions
transform the partial derivatives as follows

0= 0, +60; +¢%0, + . 0, =0, +¢0; +¢70, + . (30)

We expand 9(z,1) as 8 (2,21, 25, ..., 1,11, 15) =69 +¢29,+¢393+ - and
insert in (21) along with (30). This yields (Chattopadhyay and Ji, 2023;
Jiang and Ding, 2022; Oron and Gottlieb, 2004; Sadiq and Usha, 2008)

(Lo+cLy+¢7Ly+ ) (¢ +2 + 93+ ) = PNy = N3 —--,

(€20)]
where £;, i =0,1,2,... are the operators and .N'j, j=2.3,... are
the nonlinear terms. The explicit expressions of £;, i =0,1,2,... and

N}, j=2,3,... are given in Appendix B.

Solutions for §; and J, can be obtained by using different orders of
¢. The solutions are as follows (Chattopadhyay and Ji, 2023; Jiang and
Ding, 2022; Oron and Gottlieb, 2004; Sadiq and Usha, 2008)

9 =€ (zi.11.1) exp [i (kz = o,1)] +cc,
2k (F/ =T'k*) —iM'
2T 44T -F)

E%exp [2i (kz — w,1)] +cc, (32)

where £ < 1 is the disturbance amplitude.

Following Chattopadhyay (2021b); Chattopadhyay and Desai (2022);
Chattopadhyay et al. (2022a); Mukhopadhyay et al. (2020), the complex
Ginzburg-Landau equation (CGLE) is obtained as

90E .. 2 1 OE 2y 02E

== 4 2ik (F=2Tk = (F-6TKY) =

o 2k Je S )5

—c 2w, E+ (Ry +iRy) |E)* € =0, (33a)

2 (MY =22 (F' =7T'k2) (F' = T'k?

R2=k—(7”k2—r”)+ ( )( ),
2 16T k2 — 4F
1 3M(F' =37k k

Ry=- Mkt ——————— (33b)
2 16T k2 — 4F
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Fig. 7. Variation of k as a function of Marangoni number Ma for (a) X =0.4; (b) X =0.8 for A=0.04 and Bi=1.

The behavior of perturbation dynamics beyond the linear regime de-
pends entirely on the sign of R,, the Landau constant. Specifically, the
sign of R, determines the stability of these dynamics. When R, > 0,
the amplitude £ saturates, indicating a supercritical bifurcation. Con-
versely, no saturation occurs when R, < 0, and this corresponds to a
subcritical bifurcation (Oron and Gottlieb, 2004). If R, =0, the result-
ing wave may be stable or unstable based on whether w; <0 or w; > 0.

Based on the analysis, four stability zones have been identified and
classified as follows: “supercritical stable” when ®; <0 and R, > 0, “sub-
critical stable” when w; < 0 and R, < 0, “subcritical unstable” when w; > 0
and R, <0, and “supercritical unstable” when w; > 0 and R, > 0 (Sadiq
and Usha, 2008; Sadiq et al., 2010). These four regions are denoted as
zones 1, 2, 3, and 4. In Figs. 6-8, we visually elucidate the shifts in in-
stability regions for a heated vertical fiber impacted by van der Waals
attraction (regulated by the Hamaker number A) and exothermic reac-
tions (indicated by X > 0) or endothermic reactions (denoted by X < 0)
in the system.

Fig. 6 demonstrates the impact of van der Waals attraction on super-
critical/subcritical zones 1 to 4 in the absence of any chemical reaction
(X =0). This is demonstrated by selecting four different values of the
Hamaker number (A), i.e., A =0,0.02, and 0.04, depicted in Figs. 6a to
6¢, respectively. The findings reveal that van der Waals attraction has a
destabilizing effect on the flow system, as reflected by the reduction in
the supercritical stable zone (zone 1) and the enlargement of the subcrit-
ical unstable zone (zone 3) with the increasing Hamaker number (A).
Moreover, from Fig. 6d, it can be observed that the supercritical stable
zone, where finite amplitude disturbances remain stable for both linear
and nonlinear regimes, disappears at A = A, = 0.066.

Fig. 7 illustrates the impact of an exothermic chemical reaction
(X > 0) on supercritical/subcritical zones 1 to 4 under the influence of
van der Waals attraction. The Hamaker number A = 0.04, which was
used in Fig. 6¢ without any chemical reaction (X = 0) is kept fixed
to show the effect of the exothermic chemical reaction. Two values of
X (> 0), specifically X =0.4 and X = 0.8, are chosen for Figs. 7a and
7b, respectively. A comparison of Figs. 6¢, 7a, and 7b reveal that the su-
percritical stable zone (zone 1) expands, while the subcritical unstable
zone (zone 3) contracts as the value of X (> 0) increases. Thus, accord-
ing to the findings presented in Fig. 7, while van der Waals attraction
can exacerbate flow instability, an exothermic chemical reaction may
serve as a means to mitigate this instability.

According to the results displayed in Fig. 8, the influence of van
der Waals attraction on supercritical/subcritical zones 1 to 4 is exam-
ined in the presence of an endothermic chemical reaction (X < 0). The
value of the Hamaker number A is fixed at 0.01, and two values of
X (< 0), namely X = —-0.4 and X = —0.8, are chosen for Figs. 8a and
8b, respectively. Upon comparing Figs. 8a and 8b, it is evident that the
supercritical stable zone (zone 1) contracts, while the subcritical unsta-
ble zone (zone 3) expands with an increase in the value of X (< 0). Thus,
the findings suggest that van der Waals attraction can aggravate flow in-
stability, while an endothermic chemical reaction can intensify it.

To obtain a solution for (33), we consider those waves in which spa-
tial modulation does not exist (filtered wave) and consequently (33)
reduces to
o0&

— —¢2w,E+ (Ry+iRy) |E* E=0.
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Fig. 9. Threshold amplitude (¢a) variation with wavenumber (k) in supercritical unstable and subcritical stable zones for different parameter combinations: (a)
X=0,Ma=0.2;(b) X=0, Ma=0.45; (c) A=0.04, Ma=0.45; (d) A=0.02, Ma=0.45, with Bi =1.

For a filtered wave, £ can be written as £ = a (1,) emi€(i2)ta (Jiang and
Ding, 2022; Mukhopadhyay and Chattopadhyay, 2018; Mukhopadhyay
et al., 2020). Consequently, inserting £ in (34) leads to a nonlinear ODE
for a as follows:

da _ d(&(0)0)
dr, dr,

Further, we separate the real and imaginary parts of (35). The real part
gives

—¢wa+ (R, +iR,)a* =0. (35)

da _
d_t2 =g 2a),»a - R2a3. (36)
For a # 0 and independent of ¢,, equation (36) yields the threshold am-
plitude for the filtered wave as (Chattopadhyay et al. (2021); Sadiq and

Usha (2008))

@;
ca=, /R—, 37)
2

Fig. 9 illustrates the sensitivity of the threshold amplitude to van der
Waals attraction, both with and without a chemical reaction. Without a
chemical reaction (X =0), increasing the Hamaker number A raises the
threshold amplitude in the supercritical unstable zone (zone 4) and low-
ers it in the subcritical stable zone (zone 2), with a stronger Marangoni
effect amplifying these changes (Figs. 9a, 9b). In the presence of van der
Waals attraction (A = 0.04), an exothermic reaction (X > 0) reduces the
threshold amplitude in zone 4 and increases it in zone 2 (Fig. 9¢), while

an endothermic reaction (X < 0) has the opposite effect, increasing the
threshold amplitude in zone 4 and decreasing it in zone 2 (Fig. 9d).

4. Numerical simulations

To comprehensively examine the growth of film instability consider-
ing the thermocapillary effect, van der Waals attractions, and chemical
reaction, it is necessary to consider the complete nonlinear evolution
equation as given in (19). For computations, we adopt a finite periodic
domain with 0 <z < L, where L =2z /k represents the length of the
computational domain. We set the initial condition as

H(z,0)=1+0.1sin(kz). (38)

To numerically simulate the solution for equation (19), a truncated

Fourier series is employed, given by H(z,t) = Zf(/}i oy IAInexp (inkz).

Here, ﬁ,, represents the Fourier amplitude of the perturbations. Fol-
lowing Chattopadhyay et al. (2022b), we conduct a convergence study
for the current study that indicates N =28 and At = 0.01 provide suf-
ficiently accurate solutions for the numerical simulations. The analysis
focuses on the film’s evolution within the supercritical stability region.
In Figs. 10 to 12, we set k = (0.8 and use a relative error tolerance of
1076,

Fig. 10 illustrates the influence of van der Waals attractions on the
dynamics of a thin film flowing down a vertical fiber without any chem-
ical reaction, specifically when X = 0. To investigate this phenomenon,
three representative values of the Hamaker number A (A =0,0.02,0.04)
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Fig. 10. Influence of van der Waals attractions. (a) Maximum (Hmax
The other fixed parameters are X =0, Ma=2, Bi=1.

are selected to measure the strength of van der Waals attractions.
Fig. 10a depicts the evolution of the maximum thickness. We find that
the disturbance amplitude (H,,,, ) increases with increasing A. In all
presented cases, the disturbances experience initial growth, reaching a
peak value, before eventually transitioning into a steady state over a
more extended period. While the general trend remains similar across
the cases, the wave amplitude exhibits rapid evolution with slight oscil-
lations as A increases. By comparing the wave amplitudes, it becomes
evident that van der Waals attractions destabilize the film dynamics,
leading to an amplified wave amplitude growth. This observed effect be-
comes more prominent as A increases. The temporal evolution of film
profiles at specific times (t = 0,25,50) is shown in Figs. 10b to 10d,
both with and without A. Comparing these subfigures reveals that at
any given time ¢, interfacial waves exhibit larger peaks with increasing
values of A.

Fig. 11 shows the dynamics of the film on the fiber with van der
Waals attractions and an exothermic chemical reaction (X > 0). We dis-
play the results for A =0.04 as we observed oscillations in the absence
of a chemical reaction (X = 0) for this specific value of A in Fig. 10a.
The parameters other than A remain consistent with those in Fig. 10.
In Fig. 11a, the maximum thickness evolution over time is depicted,
revealing that increasing the parameter X leads to a decrease in distur-
bance amplitude (Hmax). Across all scenarios presented, disturbances
initially grow to a peak value before stabilizing over time. A compari-
son of the wave amplitudes reveals that exothermic chemical reactions
exert a stabilizing influence on the dynamics of the film, resulting in a
reduced amplification of the wave amplitude. This observed effect be-
comes more pronounced with higher values of X (where X > 0). Film
profiles at 1 =25 and ¢ = 50 are shown in Figs. 11b and 11c, respec-
tively, illustrating temporal changes influenced by the Hamaker number
A. These subfigures demonstrate that stronger exothermic reactions lead
to smaller peaks in interfacial waves. In summary, Fig. 11 underscores
the stabilizing influence of exothermic chemical reactions in mitigating
instability induced by van der Waals attraction.

Fig. 12 illustrates the dynamics of the film flowing down the fiber
under the influence of van der Waals attractions and an endothermic
chemical reaction (X < 0). Here also we set A =0.04 as Fig. 11. The
parameters other than A remain unchanged and consistent with those
in Fig. 10. In Fig. 12, the evolution of maximum thickness over time
is depicted, indicating that increasing the parameter X (where X < 0)
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Fig. 11. Influence of exothermic reactions (X > 0). (a) Maximum (Hmux) am-
plitude of the film thickness for different X; (b)-(c) Temporal evolution of the

film profiles. The other fixed parameters are A =0.04, Ma=2, Bi=1.

intensifies the disturbance amplitude (H max). While the overall trend
remains consistent across all scenarios, the magnitude of oscillations ob-
served in the absence of a chemical reaction (X = 0) notably increases
with higher values of X (where X < 0). Comparing wave amplitudes,
it becomes evident that endothermic chemical reactions destabilize the
film dynamics, leading to increased wave amplification. This effect be-
comes more pronounced as higher negative values of X are considered.

To study the influence of chemical reaction on the breakup phenom-
ena, we set k = 0.1 and choose the initial condition as Matar et al. (2007)

H(z,0)=1+0.01exp [-0.5(z — 10)* (39)

and the corresponding plots are shown in Figs. 13 and 14. In Fig. 13a,
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Fig. 13. (a,c) The minimum thickness (H,,;,); (b,d) Film profiles (at ¢ = 18) for
different A and exothermic reactions (X > 0) when Ma=1, Bi=1.

we illustrate the evolution of minimum amplitude profiles ( H,,;,) with-
out any chemical reaction (X = 0) for different values of A. The figure
demonstrates that a stronger van der Waals attraction leads to a more
rapid reduction in H,,;,. Based on Fig. 13a, we focus on the time r =18
to visualize free surface configurations for the same A values selected
earlier. We observe as A increases, the surface wave instability becomes
more pronounced. To investigate the impact of exothermic chemical re-
actions (i.e., when X > 0), we set A to a constant value of 0.2 and select
three distinct values of X, namely X =0, X =04, and X = 0.8. By
comparing Figs. 13a and 13c, it becomes evident that a higher value
of X > 0 delays the decrease of H,,,. As a result, we plot the free sur-
face configurations for A = 0.2 and the three aforementioned X values
(X=0,X=04,and X =0.8) at r = 18 in Fig. 13d. Further comparison
between Figs. 13b and 13d reveals that increasing X (> 0) significantly
reduces the surface wave instability. Therefore, the overall conclusion
drawn from Fig. 13 is that although the combined effect of van der Waals
attraction (via A) and heating (M a = 1) promotes surface wave insta-

10
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Fig. 14. (a) The minimum thickness (Hm,-n); (b,c,d) Film profiles at different
time ¢ for endothermic reactions (X <0) when A=0.2, Ma=1, Bi=1.

bility, the presence of an exothermic chemical reaction and its higher
values can effectively suppress this surface wave instability.

Fig. 14 depicts the impact of an endothermic chemical reaction
(X <0) in the presence of van der Waals attraction (A = 0.2) and ther-
mal effects (M a = 1). In Fig. 14a, we show the evolution of minimum
amplitude profiles (H,,;,) for various values of X < 0. It is evident
from the figure that larger negative values of X result in a more rapid
reduction in H,,,, indicating a stronger effect of the endothermic reac-
tion. To investigate this behavior further, we focus on a specific time,
t = 13.5, and visualize Fig’s corresponding free surface configurations.
As shown in Fig. 14b, an increase in the magnitude of X <0 leads to a
more pronounced surface wave instability. Therefore, the top panel of
Fig. 14 concludes that surface wave instability is more significant when
an endothermic reaction is present than the scenario without any chem-
ical reaction. Figs. 14c and 14d display the temporal evolutions of the
film profiles captured at sequential times, specifically t = 14, 15, 15.6 for
X =-04, and r =12,13,13.7 for X = —0.8, respectively. These figures
reveal that for a constant value of X (< 0), the interfacial waves exhibit
higher humps as time progresses.

5. Summary and conclusions

This study analyzes the dynamic behavior of reactive ultra-thin lig-
uid films as they flow along heated vertical fibers. The investigation
focuses on the interplay among several crucial factors, including the
influence of pseudo-zero-order exothermic or endothermic chemical re-
actions and the proportional effects of van der Waals attractions, which
vary with 273, By assuming that the thickness of the liquid film is signifi-
cantly smaller than the radius of the fiber, a nonlinear partial differential
equation is derived to describe the evolution of the thin film. The linear
stability of the system is examined through a thorough exploration of
the resulting thin-film equation. The analysis reveals that van der Waals
attractions play a critical role in augmenting the overall instability of the
system. Importantly, it is observed that even in the presence of these at-
tractions, an exothermic reaction contributes an additional stabilizing
effect, whereas an endothermic reaction leads to the destabilization of
the system. Moreover, by employing weakly nonlinear stability analy-
sis, the study predicts the existence of distinct regions within the system.
These regions include supercritical and subcritical regions, further em-
phasizing the multifaceted nature of the phenomenon. To investigate
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the nonlinear evolution of the film thickness, we numerically solve the
evolution equation within a periodic domain. The obtained results from
these simulations corroborate the findings derived from the linear and
weakly nonlinear stability analyses, confirming their validity and relia-
bility.

This study explores how non-isothermal chemical reactions, when
combined with van der Waals attractions, affect the dynamic behavior
of thin liquid films flowing along vertical fibers. These results are ex-
pected to motivate the design of more efficient and optimized processes
for engineering systems involving thin liquid films in non-isothermal
environments.
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Appendix A. Dimensional system of equations

The dynamics of the liquid film along the outer surface of the heated
cylinder is governed by the continuity, Navier-Stokes, energy, and mass
transport of reactants, which are presented below (Chao et al., 2020;
Chattopadhyay, 2023; Trevelyan and Kalliadasis, 2004a; Trevelyan et
al., 2002)

rruy), +uy =0, (40a)
p (u],, +uguy, + “2”2,z) =-p.+u [r_l (rul,r),- - u,r_2 + ulyu] ,  (40b)
p (uz’, +uguy, + ”2”21) =—p,+pg+u [r_l (ruzqr)r + uz,zz] , (400)
T,+u T, +u, T, =x [r~! (rT,) +T,] +bYx, (40d)
Xy Uy + g, = digy [r7! (rx,), + 2] = bx, (40e)

where p is the liquid density, p is the pressure of the species Z, u is
the dynamic viscosity, g is the gravitational acceleration, T is the tem-
perature of the species Z, « is the thermal diffusivity, b is the reaction
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rate, Y is the heat release or consumption, x is the concentration of the
species Z|, and d; is the molecular diffusivity of the species Z; and
(uy,u,) the radial (r) and axial (z) velocity components.

At the cylinder wall r = R, we impose the following boundary con-
ditions: no-slip and no penetration for velocity, uniform heating for
thermal conditions, and a no-flux condition for species (Chao et al.,
2020; Li and Chao, 2020; Trevelyan et al., 2002):
up =0, u,=0, T=T,, x.=0, (40f)

r

where T denotes the temperature at the cylinder surface.

The boundary conditions on the liquid-air interface r = R+ h(z,t) are
the stress balances (along tangential and normal directions), kinematic
condition, and Newton’s law of cooling (Chao et al., 2018; Chattopad-
hyay, 2021a; Kalliadasis et al., 2012). In addition, a constant concen-
tration of species Z; is imposed at the liquid-air interface following Li
and Chao (2020); Trevelyan and Kalliadasis (2004a); Trevelyan et al.
(2002). These conditions are given below:

(e, +un,) (1= B2 +2 (uy, —uy ) hy] = (0, + heo,) (1+42)72,
(409)
At po=p+2u [, b 2 (i, ) ] (1402)
=—o([(1+h2)r " =h) (1+82) 7, (40h)
uy = hy +uyh,, (40)
AT =h,1,) (1402 ke, (T-T) =0, (40))
x=C, (40K)

where ¢ is the surface tension, p, is the atmospheric pressure, 4 is the
thermal conductivity, k, is the heat transfer coefficient of the liquid, C
represents the initial concentratlon of the species Z . In (40h), A repre-
sents the dimensional Hamaker constant. We assume A’ > 0, indicating
a destabilizing van der Waals force. To model the breakup process, the
van der Waals attractions are assumed to vary proportionally to 4>
(Burelbach et al., 1988).

Appendix B. Explicit expressions of L;, i =0,1,2,... and

Nj, j=2,3,...in (31)

EOE§+M%+ ;; T%

£y a +Md_z1 27Dazaazl +4Taz{3);zl’
£2=§+7’%+6T#;2,

stM’&1%+P’ [8 062821 +<%>2] +7 [,91(2:‘941 21921 0;:;1]
s (22 2) o2

P 02&2 62&1 o, azsl+2031 a&2+031
! az2 ()zazl 0z2 dz \ 0z 0z

*9 a 9 *9, 09, (8 %9
+7" |9 2 4 '>+8 '+—1< 2+3—'>
[ < 024 z30z1 2ozt 0z \ 0z3 0220z,

L P8 (09 09,
0z3 \ 9z 0z,
09 1,09 29, \?
2 //192 1 + P 92 1 9 1
M 2°152 T\ G2

49 99, 03 9
+T”<119%—1 +9,— :
2 1ozt
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