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Midcircuit measurements (MCMs) are crucial ingredients in the development of fault-tolerant quan-

tum computation. While there have been rapid experimental progresses in realizing MCMs, a systematic

method for characterizing noisy MCMs is still under exploration. In this work, we develop a cycle bench-

marking (CB)-type algorithm to characterize noisy MCMs. The key idea is to use a joint Fourier transform

on the classical and quantum registers and then estimate parameters in the Fourier space, analogous to

Pauli fidelities used in CB-type algorithms for characterizing the Pauli-noise channel of Clifford gates.

Furthermore, we develop a theory of the noise learnability of MCMs, which determines what information

can be learned about the noise model (in the presence of state preparation and terminating measurement

noise) and what cannot, which shows that all learnable information can be learned using our algorithm. As

an application, we show how to use the learned information to test the independence between measure-

ment noise and state-preparation noise in an MCM. Finally, we conduct numerical simulations to illustrate

the practical applicability of the algorithm. Similar to other CB-type algorithms, we expect the algorithm

to provide a useful toolkit that is of experimental interest.

DOI: 10.1103/PRXQuantum.6.010310

I. INTRODUCTION

Midcircuit measurements (MCMs) are a central compo-

nent in quantum error correction and are being developed

on various hardware platforms [1–4]. To perform syn-

drome measurements, one needs to initialize fresh ancilla

qubits, apply the syndrome extraction circuit, and mea-

sure the ancilla qubits while maintaining the coherence

of system qubits. Characterizing the noise model for this

process is thus a necessary step for fault-tolerant quan-

tum computation. For quantum gate characterization, a

standard approach is to engineer the noise process into

Pauli channels [5,6] and various methods have been devel-

oped to characterize the Pauli channel [7–12]. However,

MCMs are much more complicated than a noisy gate:
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the measurement readout can be faulty, the postmeasure-

ment state can be faulty, and there can be additional errors

on unmeasured qubits. Despite significant recent efforts

[13,14], developing general and systematic characteriza-

tion methods for this more complicated noise model of

MCMs still remains open.

In this paper we address this challenge by develop-

ing a general algorithm for characterizing MCMs. Our

algorithm is a cycle benchmarking (CB)-type protocol

[7–10] generalizing CB with interleaved gates [11,12,

15], the state-of-the-art method for characterizing Clifford

gates. The key idea behind CB with interleaved gates is the

observation that the Fourier transform of the Pauli error

rates (known as Pauli fidelities) are eigenvalues of the

Pauli channel and therefore are easy to learn via repeated

application of the noisy gate. We generalize this view

to MCMs by defining Pauli fidelities as a joint Fourier

transform on the classical and quantum registers, which

provides a means of converting between the physical space

(focusing on Pauli errors) and dual space (focusing on

Fourier coefficients). A key challenge here is that the Pauli

fidelities are no longer eigenvalues of the noise channel

and are not directly learnable. We address this by introduc-

ing an additional Fourier transform during postprocessing

to filter out undesired components. This allows us to use
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the CB framework and repeatedly apply MCMs to learn

products of Pauli fidelities. See Fig. 2 for a comparison

between our algorithm and CB with interleaved gates.

On the other hand, not all parameters of noisy MCMs

are learnable in a way that is robust to state preparation

and terminating measurement (SPAM [16]) noise, simi-

lar to noisy Clifford gates [15], due to the existence of

gauge freedom [17]. We give an exact and complete char-

acterization about the learnable parameters of MCMs by

generalizing the graph-theoretical framework of Ref. [15],

and show that our algorithm is able to learn all learnable

parameters of noisy MCMs.

As a concrete application, our algorithm gives a gen-

eral method to test whether a noisy MCM can be fac-

torized as a measure-and-prepare instrument, which can

help understand the underlying physical mechanism for the

implementation of MCMs. See Sec. I C for a more detailed

summary.

A. General noisy MCMs

We start by defining the noise model associated with

MCMs. We consider an ideal MCM as a general Clifford

gate G on n + m qubits, followed by a measurement on the

n ancilla qubits in the computational basis [see Fig. 1(b)].

The other m qubits are left unmeasured. Note that the quan-

tum register for the n ancilla qubits is still present after

the measurement, i.e., we keep the postmeasurement quan-

tum state. We consider this general model because MCMs

are often used for qubit reset [4,18–20]. Also note that

this setting incorporates subsystem measurements (G is

equal to identity), syndrome measurements (G is the syn-

drome extraction circuit), as well as Clifford gates without

measurement (n = 0) as special cases.

In the literature of noise characterization, noisy Clifford

gates are often modeled as an ideal Clifford gate followed

by a Pauli channel (channels where random Pauli error

occur) or equivalently, a Pauli channel followed by an

ideal Clifford gate. This is due to the randomized com-

piling techniques [5,6], which can twirl a general CPTP

noise channel into a Pauli channel that is more tractable for

characterization. Motivated by recent developments in ran-

domized compiling for subsystem measurements [21], we

extend these techniques to MCMs. We show that general

noisy MCMs can be twirled into the form of an ideal Clif-

ford gate G followed by a uniform stochastic instrument

U , which is a highly structured noisy measurement and its

physical meaning can be understood as the following three

parts:

(1) Suppose we obtain the result k during measure-

ment readout. From this we know that ideally, the

n ancilla qubits should be projected into the basis

state |k〉 (throughout the paper, |k〉 means the com-

putational basis state of index k). However, due to

noise in the readout, the ancilla qubits are actually

projected into a different basis state |k + a〉, where

a is an n-bit string that came from some probability

distribution.

(2) After the ancilla qubits are projected into |k + a〉,

the noise can further affect the postmeasurement

state, which becomes |k + b〉, where b is an n-bit

string that came from some probability distribution.

(3) Finally, the measurement process causes an addi-

tional random Pauli error P acting on the remaining

m qubits due to crosstalk.

The above noise model is parameterized by Pauli error

rates, which is a joint probability distribution pP
a,b

(a)

(c)

(b)

FIG. 1. Noise models considered in this work. (a) A noisy Clifford gate G is modeled as an ideal gate G followed by a Pauli channel

�. (b) The noisy version of an MCM, whose corresponding ideal version consists of a Clifford gate G followed by a subsystem

measurement, is modeled as the ideal Clifford gate G followed by a uniform stochastic instrument U . The measurement outcome in the

noiseless case is denoted k0 whereas the outcome in the noisy case is denoted k. (c) We also consider a special family of noisy MCMs

called measure-and-prepare instruments, in which the noise model can be decomposed into measurement noise and state-preparation

noise.
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satisfying
∑

P∈Pm,a,b∈Z
n
2

pP
a,b = 1 (Pm is the m-qubit Pauli

group).

Our goal is to learn the Pauli error rates, which has

4n+m − 1 unknown parameters. More specifically, on input

density matrix ρ acting on n + m qubits, the output density

matrix equals

ρ �→
∑

P∈Pm,k,a,b∈Z
n
2

pP
a,b(P ⊗ |k + b〉 〈k + a|)GρG†

× (P ⊗ |k + a〉 〈k + b|) ⊗ |k〉 〈k|R . (1)

Here the third register R is a classical register for mea-

surement readout. A key point here is that the Pauli error

rates pP
a,b are independent from the readout result k; this is

a consequence of randomized compiling.

B. Measure-and-prepare instruments

A natural subclass of the general noise model in Eq. (1)

is the family of noise channels that can be factorized

into measurement noise and state-preparation noise, which

we call measure-and-prepare instruments [Fig. 1(c)]. For

example, in certain experimental setups, MCMs are real-

ized in a measure-and-prepare manner (e.g., destructive

measurements with replaced free ancilla in atom array plat-

forms [4]). After an MCM, the ancillas are initialized in

ground state |0〉, which are then adjusted into the state

corresponding to the measurement result through the appli-

cation of X gates (NOT gates). This sequence of operations

results in a special type of MCM and gives us additional

structures among the parameters.

A fundamental question about the physical process that

implements general MCMs is whether it has the above fac-

torized form. As an application of our result, in Sec. VI we

will give a general method for testing whether an unknown

MCM can be represented by a measure-and-prepare instru-

ment.

C. Summary of results

In the remainder of the paper, we will first introduce

notations and preliminaries in Sec. II. Subsequent sections

will detail specific aspects of our results.

1. Fourier transforms and dual-space formalism

(Sec. III)

For noisy Clifford gates, standard characterization meth-

ods such as some CB-type protocols [7,11,12,15] employ

a Fourier transform, converting Pauli error rates into quan-

tities known as Pauli fidelities, which are eigenvalues of

the Pauli channel and are easy to learn. Our first techni-

cal contribution is to generalize this conversion between

the physical space (Pauli errors) and the dual (Fourier)

space, by defining a suitable notion of “Pauli fidelities” for

MCMs, which is a joint Fourier transform on the classical

and quantum registers.

2. Generalized CB algorithm for characterizing MCMs

(Sec. IV)

Similar to CB with interleaved gates, our algorithm

learns the Pauli fidelities and reconstructs the Pauli error

rates via an inverse Fourier transform. However, the Pauli

fidelities of MCMs are no longer eigenvalues of the noise

channel, so learning these Pauli fidelities requires new

techniques. To address this challenge, we further introduce

a key technical idea: an additional Fourier transform on the

classical registers during the data-processing procedure,

which allows us to learn a single desired component from

sums of many components. This completes a generalized

version of the CB algorithm to characterize MCMs.

3. Learnability using pattern transfer graph (Sec. V)

Furthermore, we extend the pattern transfer graph tech-

nique from Ref. [15] to determine which parameters in

the noise model are SPAM-robustly learnable and which

are not. We show that our algorithm captures all the

information that can be learned, which corresponds to

the cycle space of the pattern-transfer graph. Conversely,

information that our algorithm cannot learn is inherently

unlearnable by any SPAM-robust algorithm. Correspond-

ing numerical simulation results are shown in Fig. 7.

4. Testing measure-and-prepare channels (Sec. VI)

As an application of our algorithm, we show that it

can be used to determine whether an arbitrary MCM can

be factorized as a measure-and-prepare instrument. This

shows that our algorithm can be used to probe the fun-

damental physical process of the measurement process.

Numerical results are shown in Fig. 8.

5. Numerical results (Sec. VII)

Finally, we conduct numerical simulations for the

algorithm and applications to support our analysis.

II. NOTATIONS AND PRELIMINARIES

A. Pauli operators, Clifford gates

In this paper, Pm := {I , X , Y, Z}m represents the m-qubit

Pauli group (modulus phase), C represents the group of

single-qubit Clifford gates.

B. Pauli operator with vector exponents

For P ∈ P1 and x ∈ Z
n
2, we use Px to represent the n-

qubit Pauli operator that act as I on the ith qubit if the ith

bit of x is 0, and act as P on the ith qubit if the ith bit of x

is 1.
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C. Inner product of Pauli operators

For P, Q ∈ Pm, we define inner product 〈P, Q〉 to be 0

if Pauli operators P and Q commute, and 1 otherwise [22].

That is, PQ = (−1)〈P,Q〉QP.

D. Pauli weight patterns

Following Ref. [15], for P ∈ Pm, we define its Pauli

weight pattern pt(P) to be the m-bit string that is 0 on the

ith bit if P act as identity on the ith qubit, and is 1 on the

ith bit if P act as nonidentity on the ith qubit.

E. Quantum channels

Calligraphic letters represent channels, for example,

E ,M,T ,U . Specifically, G, H, P , X , Z represent specific

channels of applying gates of the corresponding normal

letters G, H , P, X , Z. For example, G(ρ) = GρG†.

F. Pauli channels

Pauli channels are represented by � exclusively. They

are channels of applying a random Pauli operator accord-

ing to a probability distribution,

� =
∑

P∈Pm

pPP , (2)

where {pP}P∈Pm are called Pauli error rates.

G. Super-operator formalism

General treatment of the super-operator formalism can

be found in, e.g., Ref. [23]. In short, vectorization refers to

the isomorphism |i〉〈j | �→ |ij 〉. The inner product over the

vectorized space is then given by 〈〈O|P〉〉 = Tr(O†P). In

this paper, for k ∈ Z
n
2, |k〉〉 is the vectorization of computa-

tional basis state |k〉〈k|. And for P ∈ Pm, double brackets

|P〉〉 represents the vectorization of Pauli operator P.

H. Pauli fidelities

Recall from Eq. (2) that a Pauli channel is of the

form � =
∑

P∈Pm pPP . Note that the Pauli operators are

eigenvectors of the channel:

�|Q〉〉 =
∑

P∈Pm

pPP|Q〉〉 =
∑

P∈Pm

(−1)〈P,Q〉pP|Q〉〉. (3)

The corresponding eigenvalues are defined as Pauli fideli-

ties [7]

λQ =
∑

P∈Pm

(−1)〈P,Q〉pP. (4)

For normalized Pauli channels, the trace-preserving con-

dition
∑

p∈Pm pP = 1 translates into λI = 1. The inverse

transformation is given by

pP =
1

4m

∑

Q∈Pm

(−1)〈P,Q〉λQ. (5)

Using the Pauli fidelities, we can write the Pauli channel in

the dual space

� =
1

2m

∑

Q∈Pm

λQ|Q〉〉〈〈Q|. (6)

This uses the Pauli-transfer-matrix representation, which

is diagonal for Pauli channels. We say that the Pauli error

rates lie in the physical space because they represent phys-

ical errors. Correspondingly, we say that the Pauli fidelities

lie in the dual space.

I. Quantum instruments

Mathematically, general MCMs are modeled as quan-

tum instruments, which are sets of completely positive,

trace nonincreasing maps {Ej } such that
∑

j Ej is trace

preserving. The action of it on a density operator ρ is [24]

ρ �→
∑

j

Ej (ρ) ⊗ |j 〉〈j |. (7)

That is, with probability pj = Tr(Ej (ρ)), outcome j is

observed and the output state becomes (1/pj )Ej (ρ).

III. NOISE MODELS AND THEIR FOURIER

TRANSFORM

A. Uniform stochastic instrument

As mentioned in the introduction, the motivation for

modeling MCMs as uniform stochastic instruments is

randomized compiling. But we will leave the details to

Appendix A 1 and begin our discussion with a formal

definition of the uniform stochastic instruments.

Using the super-operator formalism, we can rewrite our

noise model in Eq. (1) to the form of quantum instruments.

Definition 1 (Uniform stochastic instruments, Eq. (17)

of Ref. [21]). In physical space, the uniform stochastic

instrument is the set {Uk} where each Uk is expressed by

the following trace nonincreasing map

Uk :=
∑

a,b∈Z
n
2
,P∈Pm

pP
a,bP ⊗ |k + b〉〉〈〈k + a| (8)

=
∑

a,b∈Z
n
2

�a,b ⊗ |k + b〉〉〈〈k + a| (9)

here pP
a,b is a joint probability distribution on Z

n
2 × Z

n
2 ×

Pm called Pauli error rates and �a,b are unnormalized Pauli
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channels indexed by a, b (note that they are independent

of k).

The overall noise model in Eq. (1) can then be re-

expressed as

|ρ〉〉 �→
∑

k∈Z
n
2

UkG|ρ〉〉 ⊗ |k〉〉R. (10)

Let Tk := UkG. As the Pauli channel �a,b is independent

of k, in the following we will often drop the third reg-

ister |k〉〉R and work with a specific map Tk. Then we

can see that {Uk} and {Tk} are quantum instruments since∑
a,b∈Z

n
2
,P∈Pm pP

a,b = 1.

Now we generalize the physical vs dual space picture

to uniform stochastic instruments. We define the Pauli

fidelities λ
Q
x,y as the Fourier transform of the Pauli error

rates

λQ
x,y =

∑

a,b∈Z
n
2
,P∈Pm

(−1)a·x+b·y+〈P,Q〉pP
a,b. (11)

We note that the Pauli fidelities defined above are different

from the Pauli fidelities of the unnormalized Pauli channels

in Eq. (9) as there is an additional Fourier transformation

on the subscript a and b. The role of the Pauli fidelities will

become clear after the next lemma.

In fact, our protocol will first learn the Pauli fidelities

and then use the inverse transformation

pP
a,b =

1

4n+m

∑

x,y∈Z
n
2
,Q∈Pm

(−1)a·x+b·y+〈P,Q〉λQ
x,y (12)

to obtain the Pauli error rates.

Using Pauli fidelities, we can write the uniform stochas-

tic instrument and thus the instrument {Tk} of our model in

the dual space.

Lemma 1. Let Uk be a uniform stochastic instrument

defined in Eq. (9), and let Tk = UkG where G is a (Clif-

ford) unitary channel. Then Tk can be expressed in dual

space as

Tk =
1

22n+m

∑

x,y∈Z
n
2
,Q∈Pm

(−1)k·(x+y)λQ
x,y |Q ⊗ Zy〉〉

× 〈〈G†(Q ⊗ Zx)|. (13)

Proof. For a uniform stochastic instrument, we have

Uk =
∑

a,b∈Z
n
2

�a,b ⊗ |k + b〉〉〈〈k + a| (14)

=
∑

a,b∈Z
n
2

�a,b ⊗

⎛
¿ 1

2n

∑

Q∈Pn

|Q〉〉〈〈Q|

À
⎠ |k + b〉〉〈〈k + a|

(
1

2n

∑

P∈Pn

|P〉〉〈〈P|

)
(15)

=
∑

a,b∈Z
n
2

�a,b ⊗

⎛
¿ 1

2n

∑

y∈Z
n
2

|Zy〉〉〈〈Zy |

À
⎠ |k + b〉〉〈〈k + a|

⎛
¿ 1

2n

∑

x∈Z
n
2

|Zx〉〉〈〈Zx|

À
⎠ (16)

=
1

22n

∑

x,y∈Z
n
2

(−1)k·(x+y)
∑

a,b∈Z
n
2

(−1)a·x+b·y�a,b ⊗ |Zy〉〉〈〈Zx| (17)

=
1

22n

∑

x,y∈Z
n
2

(−1)k·(x+y)
∑

a,b∈Z
n
2

(−1)a·x+b·y

⎛
¿ 1

2m

∑

P,Q∈Pm

(−1)〈P,Q〉pP
a,b|Q〉〉〈〈Q|

À
⎠ ⊗ |Zy〉〉〈〈Zx| (18)

=
1

22n+m

∑

x,y∈Z
n
2
,Q∈Pm

(−1)k·(x+y)

⎛
¿ ∑

a,b∈Z
n
2
,P∈Pm

(−1)a·x+b·y+〈P,Q〉pP
a,b

À
⎠ |Q ⊗ Zy〉〉〈〈Q ⊗ Zx| (19)

=
1

22n+m

∑

x,y∈Z
n
2
,Q∈Pm

(−1)k·(x+y)λQ
x,y |Q ⊗ Zy〉〉〈〈Q ⊗ Zx|. (20)
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Equation (15) is a basis change. Equation (16) uses the

fact that Pauli operators that have nonzero inner prod-

uct (over the vectorized space) with a computational basis

state must be a tensor product of I and Zs. The phases in

Eq. (17) comes from the inner products 〈〈Zy | k + b〉〉 and

〈〈k + a | Zx〉〉. Equation (18) rewrites the Pauli channels

using Eq. (6).

As can be seen from Eq. (20), the Pauli fidelities are

not eigenvalues of the uniform stochastic instrument. They

connect the Pauli operators Q ⊗ Zy and Q ⊗ Zx.

Now put an ideal gate G before this instrument. Since

G†(Q ⊗ Zx) becomes Q ⊗ Zx after applying G, 〈〈Q ⊗

Zx|G = 〈〈G†(Q ⊗ Zx)|, we get the result. �

When noise rates are small, we would expect that p I
0,0

is close to 1, while other Pauli error rates are small. This

means that all Pauli fidelities will be close to 1. Note

that the trace preserving condition
∑

P∈Pm,a,b∈Z
n
2

pP
a,b = 1

translates into λI
0,0 = 1 here.

TABLE I. Summary comparing physical space and dual space, integrating our findings with previous works. Pointers are provided

for relevant definitions and details. The concept of cycle space and cut space will be discussed in Sec. IV B.

Physical space (Pauli error rate) Dual space (Pauli fidelity)

Noisy Clifford gates

[Fig. 1(a)]

Pauli channels (with

Clifford gates)

∑
P∈Pm

pPPG [Eq. (2)]
1

2m

∑
Q∈Pm

λQ|Q〉〉〈〈G†(Q)|

[Eq. (21)]

learnability same as the Pauli fidelities (see

Sec. D)

cycle space are learnable, cut

space are not (Theorem 2 in

[15])

conversion formula pP =
1

4m

∑
Q∈Pm

(−1)〈P,Q〉λQ

[Eq. (5)]

λQ =
∑

P∈Pm

(−1)〈P,Q〉pP [Eq. (4)]

Noisy MCMs [Fig. 1(b)] uniform stochastic

instruments (with

Clifford gates)

∑
a,b∈Z

n
2

P∈Pm

pP
a,b(P ⊗ |k + b〉〉〈〈k + a|)G

[Eq. (8)]

1

22n+m

∑
x,y∈Z

n
2

Q∈Pm

(−1)k·(x+y)λ
Q
x,y |Q ⊗

Zy〉〉〈〈G†(Q ⊗ Zx)| [Eq. (13)]

learnability different from the Pauli fidelities,

partially characterized (see

Sec. V B)

cycle space are learnable, cut

space are not (see Sec. V A)

conversion formula
pP

a,b =
1

4n+m

∑

x,y∈Z
n
2

Q∈Pm

(−1)a·x+b·y+〈P,Q〉λQ
x,y

[Eq. (12)]

λ
Q
x,y =

∑
a,b∈Z

n
2

P∈Pm

(−1)a·x+b·y+〈P,Q〉pP
a,b

[Eq. (11)]

Noisy

measure-and-prepare

[Fig. 1(c)]

measure and prepare

instruments (with

Clifford gates)

∑

a,b∈Z
n
2

P∈Pm

P1·P2=P

qP1
a r

P2
b

(P ⊗ |k + b〉〉〈〈k + a|)G
[Eq. (B15)]

1

22n+m

∑

x,y∈Z
n
2

Q∈Pm

(−1)k·(x+y)

ζ Q
x ξQ

y |Q ⊗ Zy〉〉〈〈G†(Q ⊗ Zx)|

[Eq. (B5)]

learnability same as uniform stochastic

instruments, but overly

constrained (see Sec. VI)

same as uniform stochastic

instruments, but overly

constrained (see Sec. VI)

conversion formula
qP

a =
1

2n+2m

∑

x∈Z
n
2

Q∈Pm

(−1)a·x+〈P,Q〉ζ Q
x

rP
b =

1

2n+2m

∑

x∈Z
n
2

Q∈Pm

(−1)b·x+〈P,Q〉ξQ

[Eq. (B7)]

ζ Q
x =

∑

a∈Z
n
2

P∈Pm

(−1)a·x+〈P,Q〉qP
a

ξQ
x =

∑

a∈Z
n
2

P∈Pm

(−1)b·x+〈P,Q〉rP
b

[Eq. (B8)]
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B. Measure-and-prepare instruments

It turns out that the additional structure for measure-and-

prepare instruments over uniform stochastic instruments is

that the Pauli error rates p factorizes according to pP
a,b =∑

P1·P2=P q
P1
a r

P2
b , where q and r are two probability dis-

tributions and the Pauli fidelities factorizes according to

λ
′Q
x,y = ζ

Q
x ξ

Q
y . We defer the proofs to Sec. B.

A comparison between the physical and dual space is

listed in Table I, which summarizes our results.

IV. ALGORITHMS FOR NOISE

CHARACTERIZATION

A. Generalizing CB-type protocols

For intuition, we will start with the special case of n = 0

in our CB-type protocol. In this scenario, our protocol sim-

plifies to the CB with interleaved gates protocol for bench-

marking noisy Clifford gates. Variants of this protocol have

been discussed in previous works, such as Refs. [7,10,12],

with the exact version employed in Ref. [15] and utilized

in Sec. SV of Ref. [11]. However, given that this is a spe-

cial case, we will not dig into a comprehensive treatment

here.

In CB with interleaved gates, a noisy Clifford gate to be

characterized is modeled as an ideal Clifford gate followed

by a Pauli noise channel. Naturally we would want to learn

the Pauli error rates of the error. However, concatenation

of Pauli channels corresponds to convolution of Pauli error

rates, making it complicated to work with. Therefore, a

Fourier transformation is employed and the theory evolves

within the dual space. In the dual space, combine Eq. (6)

to a Clifford gate G we get the noisy version of it,

G̃ = � ◦ G =
1

2m

∑

Q∈Pm

λQ|Q〉〉〈〈G†(Q)|. (21)

That is, the G†(Q) component of the input density matrix

is converted to the Q component of the output density

matrix and shrunk by a factor of λQ at the same time.

CB with interleaved gates repeatedly applies such noisy

gates for multiple times and measures the component in the

final density matrix. In addition, single-qubit Clifford gates

are interleaved between the midcircuit measurements to

ensure the correct concatenation of the transitions. Take the

simplest case where there are no interleaving single-qubit

Clifford gates as an example. Start with a noisy input state

(I + λP
S P)/2m (λP

S is an unknown state-preparation noise

parameter), repeatedly applying the noisy Clifford gate l

times gives

G̃ l

(
I + λP

S P

2m

)
=

I + λP
S λG(P) · · · λGl(P)G l(P)

2m
. (22)

If we then measure (with noise) the observable G l(P),

the expected value we get will be λP
S λG(P) · · · λGl(P)λ

Gl(P)
M ,

where λ
Gl(P)
M is an unknown measurement noise. Suppose

P is invariant under G, the expectation value becomes

λP
S (λP)lλP

M . In this case, by conducting experiments with

different l and conduct an exponential fitting, one can esti-

mate λP independently of the SPAM noise. For generic P

that is not invariant under G, since {G(P),G2(P), . . .} is

periodic, similar approaches can be used to estimate certain

product of Pauli fidelities SPAM robustly.

Inspired by this, we interleave single-qubit Clifford

gates between noisy MCMs. An illustrative example cir-

cuit is presented in Fig. 2. However, in our MCM scenario,

Pauli operators cease to be eigenvectors (cf. Lemma 1

and note the summation over y therein). In fact, prior

to the characterization, the eigenvectors are unknown,

so we cannot prepare and measure the eigenvectors as

in the CB with interleaved gates case. Hence we still

choose to prepare and measure Pauli observables, but

now simple interleaving is insufficient because multiple

(a) (b)

FIG. 2. A comparison between CB with interleaved gates (a) and our protocol for characterizing MCMs (b). Here, blank gates

represent single-qubit Clifford gates. The quantum circuit in (a) is used to characterize a noisy CNOT gate, while the circuit in (b) is

used to characterize a noisy MCM (measuring the target qubit after applying a CNOT). The key difference between the two algorithms

is an additional Fourier transform on measurement outcome (highlighted in blue).
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(a)

(b)

FIG. 3. Comparison between the composition of noisy Clifford

gates [G̃ in Eq. (21)] and noisy MCMs [T in Eq. (13)] in the

dual space. (a) Composition of noisy Clifford gates (G = CNOT,

m = 2, n = 0, with no interleaving single-qubit Clifford gates) in

the dual space. The noisy Clifford gates take one Pauli operator to

one Pauli operator, so different paths cannot have the same start

point and end point in the same time (highlighted by blue dash-

dot lines), and thus they do not superpose with each other. (b)

Composition of noisy MCMs (G = CNOT, m = n = 1, with no

interleaving single-qubit Clifford gates) in the dual space. Mul-

tiple transitions are happening in the same time, so fix a start

point and an end point, there may be many paths (highlighted by

blue dash-dot lines) between them and these paths will superpose

together.

transitions occur simultaneously, superposing together and

yielding complicated results. In detail, if we perform many

experiments, group the terminating measurement results

according to the MCM results and average them, the corre-

sponding conditional expectation values are compromised

of many terms, each term is a product of Pauli fidelities.

This new phenomenon is illustrated in Fig. 3.

Details of the figure may be understood more easily

by referencing Sec. IV C. Each column of nodes corre-

sponds to a vectorization of a Pauli operator. An arrow

from column P to column Q represents |Q〉〉〈〈P| together

with the associated coefficients, which are Pauli fideli-

ties up to signs. In Fig. 3(a), arrows start at G†(Q) and

end at Q for Q ∈ Pm. Take Q = IZ for example, we have

G†(Q) = CNOT† · IZ · CNOT = ZZ and Q = IZ, so we get

arrows from ZZ to IZ. Similarly, in Fig. 3(b), arrows

start at G†(Q ⊗ Zx) and end at Q ⊗ Zy for x, y ∈ Z
n
2

and Q ∈ Pm. Take Q = I , x = 1, y ∈ {0, 1}, for exam-

ple, we have G†(Q ⊗ Zx) = CNOT† · IZ · CNOT = ZZ, Q ⊗

Zy ∈ {II , IZ}, so we get arrows from ZZ to II and IZ.

Arrows of a specific row represent all elements of G̃ or

T of a specific time. By distributive law, the composition

(the product) contains all possible combinations of edges

from the channels. However, since the vectorized Pauli

operators are pairwise orthogonal, only consecutive edges

(paths) may have nonzero contribution to the prod-

uct since they correspond to the product of the form

|R〉〉〈〈Q|Q〉〉〈〈P| · · · , with coefficients omitted. Some of the

edges cannot form consecutive paths, indicating that their

contribution is completely eliminated by subsequent ran-

domized compiling, so if we want to learn them we should

change the interleaving single-qubit Clifford gates to make

them consecutive. If we specify a Pauli component of

the input state and a terminating measurement, only paths

of the specific starting point and end point will have

contribution to the probabilities.

To disentangle this superposition of different transition

paths so as to extract a single term, we need to apply

another Fourier transformation on the measurement results

in our data-processing procedure. It involves aggregating

the averages while incorporating the Fourier coefficients.

This is one of our new ideas, and further details will be

provided in Sec. IV C.

B. Pattern-transfer graph

Before formally introducing our protocol, we first need

to define the pattern-transfer graph, which is a directed

graph (V, E) where vertices V = Z
n+m
2 corresponds to

Pauli weight patterns and edges E = {e
Q
x,y := (pt(G†(Q ⊗

Zx)), pt(Q ⊗ Zy))|x, y ∈ Z
n
2, Q ∈ Pm} corresponds to log

Pauli fidelities. An example of the pattern transfer for

G = CNOT (m = n = 1) is shown in Fig. 4. Our graph can

be viewed as a generalization of the pattern-transfer graph

defined in Ref. [15]. For comparison, the pattern-transfer

graph for G = CNOT in the CB with interleaved gates’ case

(m = 2, n = 0) is also included [25].

With pattern-transfer graph in hand, we need some tools

from graph theory [26,27] to exploit its power. A (directed)

path is an alternating sequence of vertices and edges,

v0, e1, v1, . . . , en, vn such that ei = (vi−1, vi).

Let εi ∈ R. A 0 chain is a formal linear combination of

vertices
∑

εivi, while a 1 chain is a formal linear combina-

tion of edges
∑

εiei. For example, − 01© + 2 10© − 11© is a 0

chain and eZ
1,1 + 2eX

0,0 is a 1 chain (in this section, all graph

theory examples are considered for Fig. 4 left). We empha-

size that for pattern-transfer graph, vertices are elements in

Z
n+m
2 (Pauli weight patterns), but the readers shall not con-

fuse 0 chain with addition in Z
n+m
2 as we never perform

addition on Pauli weight patterns in Z
n+m
2 sense. In the
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00 01

10 11

eI
0,1

eZ
1,0

eZ
0,1

eI
1,0

eX
0,0, e

X
1,0, e

Y
0,0, e

Y
1,0

eI
1,1 eZ

1,1

eI
0,0

eZ
0,0

eX
0,1, e

X
1,1

eY
0,1, e

Y
1,1

00 01

10 11

eII eIX

eZI
eXZ , eZX ,
eY Y , eXY , eY Z

eIZ ,
eIY

eZY ,
eZZ

eXI , eY I

eY X , eXX

FIG. 4. Left: pattern transfer graph for G = CNOT. Here m = n = 1. The ancilla is the target qubit. This is the case for X measure-

ments using ancilla. As an example, the start point for eI
0,1 is pt(G†(II)) = 00, and the end point for eI

0,1 is pt(IZ) = 01. Right: pattern

transfer graph for G = CNOT. Here m = 2, n = 0. No qubits are measured, so the situation degenerates into the CB with interleaved

gates case. This graph can be found in [15]. Note that the rules are slightly different so the labels are different. See the footnote for

explanation.

previous example of 0 chain, we have circled the vertices

for the distinction. The edge space C is the vector space

over R formed by 1 chains, together with inner product

〈
∑

εiei,
∑

ε′
iei〉 =

∑
εiε

′
i . For example, eZ

1,1 + 2eX
0,0 ∈ C

and 〈eZ
1,1 + 2eX

0,0, eI
1,1 + eZ

1,1〉 = 1.

The boundary operator ∂ is a linear operator that

sends 1 chains to 0 chains such that if e = (u, v), then

∂e = v − u. For example, ∂(eZ
1,1 + 2eX

0,0) = ( 11© − 01©) +

2( 10© − 11©) = − 01© + 2 10© − 11©. The coboundary opera-

tor δ is a linear operator that sends 0 chains to 1 chains such

that δ(v) =
∑

εiei where εi = 1 if ei = (u, v) for some

u 
= v, εi = −1 if ei = (v, u) for some u 
= v, and εi = 0

otherwise. For example, δ( 00©) = eI
1,0 − eI

0,1. A cycle vec-

tor is a 1 chain with boundary 0. The cycle space Z

is the subspace of C formed by all cycle vectors. For

example, ∂(eI
1,1 + eZ

1,1) = ( 01© − 11©) + ( 11© − 01©) = 0, so

eI
1,1 + eZ

1,1 ∈ Z. A cut vector is a coboundary of some

0 chain. The cut space U is the subspace of C formed

by all cut vectors. For example, δ( 00©) = eI
1,0 − eI

0,1 ∈ U.

The following lemma describes the relation between C, Z,

and U.

Lemma 2 ([27], Sec. II.3, Theorem 9). The edge space

C is the orthogonal direct sum of cycle space Z and cut

space U.

C. Protocol details

Now we present our protocol in details. For this we

make use of the pattern-transfer graph. For any given

path v0, e
Q1
x1,y1

, v1, . . . , e
Ql
xl,yl

, vl, since pt(Qi ⊗ Zyi) = vi =

pt(G†(Qi+1 ⊗ Zxi+1)), there exists Hi ∈ C⊗n+m (recall that

C is the group of single-qubit Clifford gates, so His are

tensor products of single-qubit Clifford gates) such that

Hi(Qi ⊗ Zyi) = G†(Qi+1 ⊗ Zxi+1). (23)

We claim that the following protocol is able to estimate

log

(
λ

vl
M 〈〈G†(Q1 ⊗ Zx1)|ρ〉〉

l∏

i=1

λQi
xi,yj

)

≡ log〈〈G†(Q1 ⊗ Zx1)|ρ〉〉 +

l∑

i=1

log λQi
xi,yi

+ log λ
vl
M .

(24)

(1) Prepare Pauli eigenstate: prepare an arbitrary but

fixed state ρ. Preferably, it has a large overlap with

the Pauli eigenstate (I + Q1 ⊗ Zx1)/2n+m.

(2) Apply repeated MCMs: for i = 1, . . . , l, perform a

compiled MCM (we need to apply randomized com-

piling on the MCM to ensure that it follows our

noise model, see Appendix A 1 for details), record

the result mi, and then apply gate Hi (no need to

apply gate Hi for i = l).

(3) Estimate Pauli observable: perform a compiled ter-

minating measurement (again we need to apply

randomized compiling on the terminating measure-

ment to ensure that it follows our noise model, see

Appendix A 2 for details) for observable Ql ⊗ Zyl

and record the result r.

(4) Perform Fourier transform on measurement out-

come: repeat the above procedure multiple times

and estimate the expectation value

s = E

[
(−1)

∑l
i=1 mi·(xi+yi)r

]
.

(5) Obtain sum of log Pauli fidelities: output log s.

Figure 5 illustrates the circuit used in the protocol. It turns

out to be mathematically convenient if we modify the pro-

tocol a little bit by adding another experiment to cancel

out the state-preparation noise. The modified protocol can
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G†(Q1⊗Zx1) Q1⊗Zy1 G†(Q2⊗Zx2) Q2⊗Zy2 · · · Ql⊗Zyl

⏐

⏐

�

λQ1

x1,y1

⏐

⏐

�

⏐

⏐

�

λQ2

x2,y2

⏐

⏐

�

· · · λQl

xl,yl

⏐

⏐

�

λvl

M

/m

T T

. . .

T
/n . . .

m1 H1
m2 H2

· · · ml r

v0 v1 v2 · · · vl

eQ1

x1,y1
eQ2

x2,y2
eQl

xl,yl

FIG. 5. Main circuit used in the protocol and the corresponding “walk” on the pattern transfer graph. We interleave MCMs with

the precomputed His and perform a terminating measurement in the end. The G†(Q1 ⊗ Zx1) component of the input state is multiplied

by λ
Q1
x1,y1

and transformed into the Q1 ⊗ Zy1 component after applying the first MCM. This component is then twisted by H1 into

G†(Q2 ⊗ Zx2) and so on. . . In the end the component becomes Ql ⊗ Zyl , which is then estimated by the terminating measurement. In

terms of Pauli weights, this sequence corresponds exactly to the transversal of the nodes v0, . . . , vl along the specified path, with the

Pauli fidelities (edges) acquired along the way. Those unshown components of the evolving underlying density matrix do not affect the

result, as they are either undetected, eliminated by randomized compiling, or averaged out during data processing.

estimate

log

(
λ

vl
M

λ
v0
M

l∏

i=1

λQi
xi,yj

)
≡ − log λ

v0
M +

l∑

i=1

log λQi
xi,yi

+ log λ
vl
M .

(25)

For the modification, simply replace step 5 by the follow-

ing:

(5∗) Prepare ρ and perform compiled terminating mea-

surement for observable G†(Q1 ⊗ Zx1). Record the

result as r′. Repeat multiple times and estimate the

expectation value t = E[r′].

(6∗) Output log s/t.

We note that the xi, yi, and Qis are the input to the

algorithm. His can then be calculated via Eq. (23). The

circuits are then determined and executed nonadaptively,

independent of the measurement outcomes observed. The

final output is calculated based on the measurement out-

comes and the inputs.

In the following, we consider the modified version of

the protocol. First we prove that the output is indeed the

desired quantity.

Theorem 1 (Main result). For any path v0, e
Q1
x1,y1

, v1, . . . ,

e
Ql
xl,yl

, vl, the function −v0 +
∑l

i=1 e
Qi
xi,yi + vl is learnable.

We note that our protocol outputs the path with its

two end points (SPAM errors). When the provided path

forms a directed cycle (i.e., v0 = vl), one can immediately

see that the output
∑l

i=1 log λ
Qi
xi,yi does not contain SPAM

error parameters since they have been canceled. In such

cases, one may also concatenate the directed cycle with

itself L times and run the protocol on the extended path

v0, e
Q1
x1,y1

, v1, . . . , e
Ql
xl,yl

, v0, e
Q1
x1,y1

, v1, . . . , e
Ql
xl,yl

, . . . , v0. (In

fact, as mentioned in Sec. IV A, this is the usual method

used in CB-type algorithms.) Then the protocol will output

L
∑l

i=1 log λ
Qi
xi,yi , from which one can retrieve the product

of fidelities. One can further perform the experiment for

varying L and run a regression to get the original product

of fidelities.

Proof of Theorem 1. It suffices to prove the correctness

of our protocol. The probability of observing MCM results

m1, . . . , ml is the trace of resulting unnormalized density

matrix

pm1,...,ml
= 〈〈I |Tml

Hl−1 · · · H1Tm1
|ρ〉〉. (26)

Here I means the identity matrix. Conditioned on observ-

ing this result, the quantum state is

|σm1,...,ml
〉〉 =

1

pm1,...,ml

Tml
Hl−1 · · · H1Tm1

|ρ〉〉. (27)

Hence by Lemma 7, the expectation of r conditioned on

observing the measurement results is

E [r|m1, . . . , ml] = λ
vl
M 〈〈Ql ⊗ Zyl |σm1,...,ml

〉〉. (28)
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Thus

E

[
(−1)

∑l
i=1 mi·(xi+yi)r

]
(29)

=
∑

m1,...,ml∈Z
n
2

pm1,...,ml
(−1)

∑l
i=1 mi·(xi+yi)E [r|m1, . . . , ml] (30)

=
∑

m1,...,ml∈Z
n
2

λ
vl
M (−1)

∑l
i=1 mi·(xi+yi)〈〈Ql ⊗ Zyl |Tml

Hl−1 · · · H1Tm1
|ρ〉〉 (31)

=
λ

vl
M

2(2n+m)l

∑

m1,...,ml∈Z
n
2
,a1,...,al∈Z

n
2

b1,...,bl∈Z
n
2
,P1,...,Pl∈P

m

(−1)
∑l

i=1 mi·(xi+yi+ai+bi)

l∏

i=1

λ
Pi
ai,bi

× 〈〈Ql ⊗ Zyl |Pl ⊗ Zbl〉〉〈〈G†(Pl ⊗ Zal)|Hl−1(Pl−1 ⊗ Zbl−1)〉〉 · · · 〈〈G†(P1 ⊗ Za1)|ρ〉〉 (32)

= λ
vl
M

∑

a1,...,al∈Z
n
2

P1,...,Pl∈P
m

l∏

i=1

λ
Pi
ai,xi+yi+ai

f (a1, . . . , al, P1, . . . , Pl)〈〈G
†(P1 ⊗ Za1)|ρ〉〉, (33)

where function f takes value 0, ±1 depending on the inner products

2(n+m)lf (a1, . . . , al, P1, . . . , Pl)

= 〈〈Ql ⊗ Zyl |Pl ⊗ Zxl+yl+al〉〉〈〈G†(Pl ⊗ Zal)|Hl−1(Pl−1 ⊗ Zxl−1+yl−1+al−1)〉〉

· · · 〈〈G†(P2 ⊗ Za2)|H1(P1 ⊗ Zx1+y1+a1)〉〉. (34)

Equation (32) uses Lemma 1.

Next, we prove that only one term is left in the sum-

mation, that is, f (a1, . . . , al, P1, . . . , Pl) =
∏l

i=1 δai,xi
δPi,Qi

.

Here, δ is the Kronecker δ function that takes value 1

only when its two subscripts are equal, and takes value

0 otherwise. We prove this inductively. If f is non-zero,

then from the first inner product we have Pl = Ql, al = xl.

Since Hl−1(Ql−1 ⊗ Zyl−1) = G†(Ql ⊗ Zxl), from the sec-

ond inner product we have Pl−1 = Ql−1, al−1 = xl−1. . . In

the end we have P1 = Q1, a1 = x1. Hence f is nonzero

only when Pi = Qi and ai = xi, and it takes value 1 in this

case. Putting this result back we get

E

[
(−1)

∑l
i=1 mi·(xi+yi)r

]
= λ

vl
M 〈〈G†(Q1 ⊗ Zx1)|ρ〉〉

l∏

i=1

λQi
xi,yi

.

(35)

This is the expected value of s. On the other hand, by

Lemma 7 the expected value of t is λ
v0
M 〈〈G†(Q1 ⊗ Zx1)|ρ〉〉,

hence log s/t is an estimate of the desired quantity. �

V. LEARNABILITY OF MCMS

We have seen in Theorem 1 that certain combinations

of Pauli fidelities can be learned using our generalized

CB algorithm. Now we show that, under our noise model

these turn out to be all information that can be SPAM-

robustly learned about noisy MCMs via any algorithm. For

this purpose, we develop a theory on the learnability of

MCMs, generalizing the framework from Ref. [15] about

the learnability of noisy Clifford gates.

To start with, let us formally summarize our noise model

assumptions:

(1) All single-qubit gates can be noiselessly imple-

mented.

(2) A set of multiqubit Clifford gates {Gi} can be imple-

mented followed by (unknown) gate-dependent

Pauli noise channels {�Gi
}.

(3) A noisy MCM {Tk} with (unknown) Pauli fidelities

{λ
Q
x,y} can be applied.

(4) An unknown but fixed initial state ρ can be prepared

[28].

(5) Any POVM can be measured following an

unknown (symmetric) Pauli noise channel �M . See

Appendix A 2 for details.

(6) All Pauli fidelities of noise channels are strictly pos-

itive. All noise channels are not at the boundary of

the completely positive polytope.
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Assumption 1 is standard for randomized-compiling-based

protocols [5,6,21], and can be relaxed such that all lay-

ers of single-qubit gates have gate-independent noise.

Assumptions 2–4 can be enforced using randomized com-

piling. Note that, if we exclude assumption 3, the noise

model reduces to the standard Pauli noise model with Clif-

ford gates, for which the learnability has been studied in

Ref. [15]. We also remark that, it is straightforward to

generalize our learnability theory to allow multiple dis-

tinct noisy MCM gadgets. We omit that for conciseness.

Assumption 6 is mostly for mathematical convenience:

the first part basically says that the noise is not over-

whelmingly large; the second part ensures that all noise

parameters can be perturbed without making the noise

model nonphysical.

To learn the noise parameters in the noise model N =

{ρ, {�Gi
}, {λ

Q
x,y}, �M }, the most general form of experi-

ments one can perform is to prepare the initial state, apply a

sequence of gates and MCM gadgets, and perform a termi-

nating measurement. Any experiment maps a (realization

of the) noise model to a probability distribution over the

measurement outcomes (from both the MCMs and the ter-

minating measurements). We say two noise models N1,N2

are indistinguishable if for every possible experiment, they

yield the same probability distribution. Otherwise they are

distinguishable.

We are interested in which parameters of the noise

model are learnable from experiments. Formally, a func-

tion f on noise models maps a noise model N to a real

number, denoted as f (N ). For example, a 0 chain can be

viewed as a function of noise models that reflects termi-

nating measurement noises
(∑

εivi

)
(N ) =

∑
εi log λ

vi
M .

Similarly, a 1 chain can be viewed as a function of noise

models that reflects MCM noises
(∑

ε
Q
x,ye

Q
x,y

)
(N ) =

∑
ε

Q
x,y log λ

Q
x,y .

A function f is called learnable [15] if

∀N1,N2 : N1 is indistinguishable from N2

⇒ f (N1) = f (N2).

Otherwise, f is unlearnable. This definition is as expected,

because the ability to learn an unlearnable function

would imply the ability to distinguish indistinguishable

noise models, which leads to a contradiction. From this

definition alone, f being learnable is only a necessary con-

dition for the existence of an experiment to actually learn

its value. Here we will prove that our learning algorithm

can indeed learn any of such learnable functions within

arbitrary precision. We also remark that a function being

unlearnable is a fundamental limitation for any learning

protocols, not just specific to CB-type protocols.

A. Learnability of Pauli fidelities

The protocol presented in Sec. IV C is important in

helping us understand the learnability of Pauli fidelities.

To make a complete characterization of the learnable

information, first we need the following lemma.

Lemma 3 (Lemma 1, Supplemental Material of

Ref. [15]). Denote the set of all learnable 1 chains by FL.

Then FL forms a linear subspace of the edge space C.

The lemma states that learnability defined above is

closed under linear operations. For completeness we

present a proof here.

Proof. Given any μ1, μ2 ∈ FL, ∀N1,N2, ∀α 
= 0,

N1 is indistinguishable from N2

⇒ μ1(N1) = μ1(N2) and μ2(N1) = μ2(N2)

⇒ (μ1 + αμ2)(N1) = (μ1 + αμ2)(N2). (36)

Thus μ1 + αμ2 ∈ FL. Note that the last line uses the

linearity of 1 chains. �

Corollary 1. For any 1 chain μ, μ + ∂μ is learnable.

Proof. As a special case of Theorem 1, for any edge

e, e + ∂e is learnable. Hence by linearility, μ + ∂μ is

learnable. �

Corollary 2. 1 chains in the cycle space Z are learnable.

Proof. For 1 chains μ ∈ Z, by Corollary 1, μ + ∂μ

is learnable. By definition of cycles, ∂μ = 0, thus μ is

learnable. �

We remark that our focus is on MCMs (1 chains), and

we are not interested in terminating measurement errors (0

chains). Thus the implication of Corollary 2 is that cycle

space can be learned unaffected by state-preparation and

terminating measurement noises, that is, SPAM robustly.

Furthermore, we will show that the cycle space is all the

information that can be learned SPAM robustly, and thus

our protocol learns all the information that can be learned.

Theorem 2. The protocol in Theorem 1 is complete in

the sense that the space of learnable information FL is equal

to the cycle space Z.

Proof. Z ⊆ FL is already proved in Corollary 2, so it

remains to show that FL ⊆ Z. By Lemma 2, it suffices to

show that FL is orthogonal to the cut space U. We will

show that every cut vector induces a gauge transformation

that convert one noise model to another indistinguishable

noise model. Since learnable functions should be invariant
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under such transformation by definition, we can conclude

that they should be orthogonal to the cut space.

Recall that a generic experiment begins with an initial

state ρ, followed by a sequence of MCMs interleaved by

single-qubit or multiqubit Clifford gates Ci (if we extend

our noise model to include non-Clifford multiqubit gates,

they can appear in the circuit, too), and finally a terminat-

ing measurement. Assume that there are d layers of MCMs

with outcome denoted by m1, . . . , md, and that the out-

come of the terminating measurement is denoted by m∗,

the probability distribution of the outcomes is given by

Pr[m1, . . . , md, m∗]

= Tr(Em∗

(
Cd ◦ Tmd

◦ · · · ◦ C1 ◦ Tm1
◦ C0(ρ)

)
). (37)

Here, each Ci can be a layer of noiseless single-qubit gates,

or a noisy multiqubit Clifford gates, or a concatenation of

both. Em∗ is the POVM element of the noisy terminating

measurement.

Thus we can see that, for any invertible linear map D,

the following gauge transformation does not change the

probability distribution.

⎧
⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪¬

ρ �→ D(ρ)

Ci �→ DCiD
−1

Tk �→ DTkD
−1

Ej �→ (D−1)†(Ej )

. (38)

For a noise model N1, we can use this to construct an

indistinguishable model N2 from N1.

Given any cut vector δ(ν) ∈ U, since δ(
∑

v) = 0, with-

out loss of generality assume ν =
∑

εvi
vi has coefficient 0

on vertex 0©m+n. Let D be the Pauli diagonal map defined

by

∀P ∈ Pn+m, D(P) = ηεpt(P)P (39)

for a positive η 
= 1. We hence need to verify that N2 still

satisfies all of our model assumptions:

(1) If C is a layer of single-qubit gate, it preserves the

pattern of any input Pauli operator [29], thus Ci =

DCiD−1, i.e., single-qubit gates remains noiseless.

(2) If C is a multiqubit Clifford gate Gi followed by a

Pauli noise channel �Gi
, we have

D�Gi
GiD

−1 =
(
D�Gi

GiD
−1G†

i

)
Gi = �′

Gi
Gi,

(40)

which is still the same Clifford gate followed by a

Pauli channel.

(3) From Lemma 1, we can easily see that {DTkD−1}

remains a compiled MCM (i.e., {DUkD−1} remains

a uniform stochastic instrument), with Pauli fideli-

ties changed according to

log λQ
x,y �→ log λQ

x,y + (εpt(Q⊗Zy ) − εpt(G†(Q⊗Zx))) log η

= log λQ
x,y + 〈δ(ν), eQ

x,y〉 log η (41)

Note that since eI
0,0 is always a self-loop on ver-

tex 0, the trace-preserving condition log λI
0,0 = 0 is

preserved.

(4) The initial state transforms from ρ to D(ρ). For

the terminating measurement, if the ideal POVM is

{Fj }, its noisy implementation is {�
†
M (Fj )} where

�M is a symmetric Pauli channel. The transfor-

mation results in �M �→ �MD−1, which is still a

symmetric Pauli channel.

(5) Finally, it is not hard to see Assumption 5 still holds

under the transformation, as long as η is sufficiently

close to 1.

Thus N2 satisfies all of our assumptions. Moreover, for any

1 chain μ, thanks to Eq. (41) we have

μ(N2) = μ(N1) + 〈δ(ν), μ〉 log η. (42)

Hence if μ ∈ FL, by the definition of learnable functions,

we must have 〈δ(ν), μ〉 = 0. This completes the proof. �

B. Learnability of Pauli error rates

Theorem 2 gives a complete classification for the learn-

able Pauli fidelities. Since Pauli error rates have a clearer

physical meaning, naturally we would ask for a classifi-

cation for the learnable Pauli error rates. In this subsec-

tion, we give a partial classification under low noise rate

assumption. Under low noise rate assumption, the Pauli

fidelities are close to 1, thus we can make approximation

pP
a,b =

1

4n+m

∑

x,y∈Z
n
2
,Q∈Pm

(−1)a·x+b·y+〈P,Q〉λQ
x,y (43)

≈
1

4n+m

∑

x,y∈Z
n
2
,Q∈Pm

(−1)a·x+b·y+〈P,Q〉(1 + log λQ
x,y)

(44)

=
1

4n+m

∑

x,y∈Z
n
2
,Q∈Pm

(−1)a·x+b·y+〈P,Q〉 log λQ
x,y

+ δa,0δb,0δP,I . (45)

Equation (44) uses the fact that when x ≈ 1, x ≈ 1 + log x,

and the δ in Eq. (45) means the Kronecker δ function.

010310-13



ZHANG, CHEN, LIU, and JIANG PRX QUANTUM 6, 010310 (2025)

As an example, the learnable Pauli error rates for n =

m = 1 MCMs with G = CNOT are

p I
1,1, pZ

1,1, pX
1,1, pY

1,1

p I
0,0 + pZ

0,0, p I
0,1 + pZ

1,0 + pZ
0,1 + p I

1,0

pX
0,0 − pY

0,0, pX
1,0 − pY

1,0, pX
0,1 − pY

0,1, pX
0,1 − pZ

0,1

p I
0,1 + p I

1,0 − p I
0,0, pX

0,1 + pX
1,0 + pX

0,0, p I
0,0 + p I

1,0 + pX
0,1.

More generally, we have the following propositions.

Proofs are deferred to Sec. C.

Proposition 1. ∀G, P, ∀a 
= 0, b 
= 0, pP
a,b is learnable.

The proof is existential, but Corollary 1 also suggests a

concrete way to learn this quantity. Specifically, one can

learn each log λ
Q
x,y as in Eq. (45) together with its end point

using our protocol. Thanks to Corollary 1, the end points

will cancel as we sum up all the estimators. Alternatively,

one can try to directly decompose Eq. (45) into sum of

cycles. As a concrete example, we give the protocol for

learning p I
1,1 when G = CNOT (the setting for Fig. 4). p I

1,1

can be decomposed as

16p I
1,1 ≈ log λI

0,0 + (log λX
1,1 + log λY

1,1 + log λY
0,0 + log λZ

0,1 + log λX
0,0

+ log λZ
0,0 + log λZ

0,1 + log λI
1,1 + log λZ

1,1) − (log λY
0,1 + log λX

1,0 + log λZ
0,1

+ log λX
0,1 + log λY

1,0 + log λZ
0,1 + log λI

1,0 + log λI
0,1 + log λZ

1,0 + log λZ
0,1). (46)

We note that the first term, log λI
0,0 is fixed to be 0, so we

only need to apply our protocol 2 times to learn the second

and the last term.

An important application for MCMs is syndrome mea-

surement. In this case we measure the stabilizer S by

introducing an ancilla, perform a Hadamard gate on the

ancilla, apply controlled S using the ancilla as control,

and then apply another Hadamard transformation on the

ancilla and measure the ancilla. See Fig. 6 for an illustra-

tion of the ideal Clifford gate G in the case when we want

to measure stabilizers S1, . . . , Sn simultaneously. Similar

noise extraction under syndrome measurements settings

have been studied in Refs. [30,31], though under different

noise assumptions.

The following two propositions consider this case. For

k ∈ Z
n
2, define Sk =

∏
S

ki
i . Denote the set of Pauli opera-

tors that commute with all stabilizers by CPm(S).

Proposition 2. ∀P ∈ CPm(S),
∑

k∈Z
n
2

pSkP
0,0 is learnable.

/m S1 S2 /m

GH • H ⇐⇒

H • H

FIG. 6. Illustration of the ideal Clifford gate G for syndrome

measurements. Here we take n = 2.

The summation over k ∈ Z
n
2 can be intuitively under-

stood as the following. Since we are measuring stabilizers,

it makes no effect if we randomly apply some stabilizers

before the measurement. Without loss of generality sup-

pose we indeed applied the random stabilizers. Then errors

that differ by stabilizers become equivalent, thus only their

average error rates can be learnable.

We note that when S1 = · · · = Sn = I , or equivalently,

G = I and we are implementing a subsystem measure-

ment, this proposition shows the learnability of p I
0,0, which

is the process fidelity between the uniform stochastic

instrument and the ideal subsystem measurement [32].

As another special case, when n = 0, no stabilizers are

measured. By the requirements on G, G must be identity.

Now CPm(S) = Pm, and this proposition degenerates into

the fact that for an isolated Pauli channel, every parameter

is learnable.

Proposition 3. ∀P ∈ CPm(S), ∀a 
= 0,
∑

k∈Z
n
2

pSkP
0,a +

pSkP
a,0 is learnable.

The summation over k ∈ Z
n
2 originates from the random

stabilizer intuition. The intuitive meaning of summing pP
0,a

and pP
a,0 together is that we cannot distinguish between

wrong but consistent with postmeasurement state result

and a correct but inconsistent with postmeasurement state

result. These two possibilities can only be learned as a

unity.
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VI. APPLICATION: TESTING THE

INDEPENDENCE OF MEASUREMENT AND

STATE PREPARATION

In Sec. III B we described the measure and prepare

instrument model. The key assumption we made is that

the measurement and the subsequent state preparation

are independent and suffers from uncorrelated noises. In

experiment, we can test whether the assumption is true or

not by checking the additional structures of the model. To

see why we can do this, we need more understanding on

the structure.

Lemma 4. ∃ζ , ξ s.t. ∀x, y ∈ Z
n
2, Q ∈ Pm, λ

′Q
x,y = ζ

Q
x ξ

Q
y

if and only if ∀x1, x2, y1, y2 ∈ Z
n
2, Q ∈ Pm, the corre-

lation c
Q
x1,x2,y1,y2

:= log λ
′Q
x1,y1

+ log λ
′Q
x2,y2

− log λ
′Q
x2,y1

− log

λ
′Q
x1,y2

= 0.

Proof. The only if part is easy. Suppose ∃ζ , ξ s.t.

∀x, y ∈ Z
n
2, Q ∈ Pm, λ

′Q
x,y = ζ

Q
x ξ

Q
y , then for ∀x1, x2, y1, y2 ∈

Z
n
2, Q ∈ Pm,

log λ′Q
x1,y1

+ log λ′Q
x2,y2

− log λ′Q
x2,y1

− log λ′Q
x1,y2

(47)

= log ζ Q
x1

+ log ξQ
y1

+ log ζ Q
x2

+ log ξQ
y2

− log ζ Q
x2

− log ξQ
y1

− log ζ Q
x1

− log ξQ
y2

= 0. (48)

Conversely, for the if part, set x1 = y1 = 0, x2 = x, y2 = y

we have

log λ′Q
x,y = log λ

′Q

x,0 + log λ
′Q

0,y − log λ
′Q

0,0. (49)

Thus we can set ζ
Q
x = λ

′Q

x,0/

√
λ

′Q

0,0, ξ
Q
y = λ

′Q

0,y/

√
λ

′Q

0,0, prov-

ing the result. �

From Lemma 4 we see that to test the independence of

measurement and state preparation, we can equivalently

test whether the correlations are all zero. Furthermore,

these conditions are learnable information and hence are

indeed verifiable.

Lemma 5. ∀x, y ∈ Z
n
2, Q ∈ Pm, log λ

′Q
x1,y1

+ log λ
′Q
x2,y2

−

log λ
′Q
x2,y1

− log λ
′Q
x1,y2

is learnable.

Proof.

∂
(

eQ
x1,y1

+ eQ
x2,y2

− eQ
x2,y1

− eQ
x1,y2

)

= −pt(G†(Q ⊗ Zx
1)) + pt(Q ⊗ Z

y

1 )

− pt(G†(Q ⊗ Zx
2)) + pt(Q ⊗ Z

y

2 )

− pt(G†(Q ⊗ Zx
2)) + pt(Q ⊗ Z

y

1 )

− pt(G†(Q ⊗ Zx
1)) + pt(Q ⊗ Z

y

2 ) = 0. (50)

�

Since c
Q
x1,x2,y1,y2

= −c
Q
x2,x1,y1,y2

= −c
Q
x1,x2,y2,y1

, in experi-

ments we need only to estimate for x1 < x2 and y1 < y2

(comparison under alphabetical order).

VII. NUMERICAL SIMULATIONS

In this section, we perform numerical simulations for the

simple example of G = CNOT and m = n = 1, which is a

basic gadget for syndrome measurement.

A. Learning Pauli fidelities

We randomly generate a noisy quantum instrument and

simulate our (modified) protocol on it. For each of the

cycle basis, the way we learn it is to concatenate the cycle

multiple times in the main circuit (steps 1–4) so that the

cycle becomes of length � = 12 (i.e., 12 MCMs in each of

the main circuit). We assign values for the random vari-

ables in the randomized compilings 100 times. This results

in 100 random circuits, which we call compiled circuits,

and for each compiled circuit we sample 100 shots. We

take the same number of shots for the auxiliary circuit

(step 5), so in total N = 20 000 shots are taken for each

data point. We then process the data to get the geometric

mean of the Pauli fidelities in the cycle basis. The standard

deviations of the obtained results are calculated through

bootstrapping. Our results are shown in Fig. 7.

In the setting above, the variance can also be estimated

theoretically. Suppose s, t, λ are all sufficiently close to 1,

the variance is roughly given by [33]

Var
[
e

1
�

log s
t

]
≈ Var

[
s − t

�

]
=

Var(s) + Var(t)

�2

=
1 − E[s]2 + 1 − E[t]2

�2N/2

=
1 − λ2

0λ
2� + 1 − λ2

0

�2N/2
≈

2(1 − λ2
0)

�2N/2

+
λ2

0(1 − λ2)

�N/2
. (51)

Here � = lL is the number of MCMs used in each shot,

N is the total number of shots used for estimating s and t,

and λ0 = 〈〈G†(Q1 ⊗ Zx1)|ρ〉〉λ
vl
M is a constant related only

to SPAM errors. We have used the assumption that the

noise rate is small, so s and t concentrates around values

close to 1.

B. Testing independence of measurement and state

preparation

We then simulate the experiment of testing the inde-

pendence of the measurement and state preparation, as

described in Sec. VI. We randomly construct a quantum

instrument for a noisy MCM and apply randomized com-

piling on it. A noisy MCM with independent Pauli channel
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FIG. 7. Simulation results in Sec. VII A. There are 13 learnable degrees of freedom, each corresponds to a cycle. The x axis shows

the corresponding cycles while the y axis shows the learned geometric average of the fidelities in the cycle. The learnable information

λI
00 is omitted here since it is always 1. The error bars represent one standard deviation.

noise before and after measurement (a measure and pre-

pare instrument) is used for comparison. The two MCMs

have roughly the same noise level and we simulate our test

for them. Specifically, we learn the correlations c
Q

0,1,0,1 for

Q ∈ {I , X , Y, Z}. Because of the antisymmetry of the cor-

relations, these are all the correlations that we need to test.

We use an approach slightly different to the previous part

to learn the correlations. For each correlation, we learn the

4 log fidelities separately using the (modified) protocol and

add or subtract them together. By Lemma 5 we know that

the boundaries will cancel out. For compiled MCM, 100

compiled circuits are used for the main circuit, each with

20 000 shots. 2 000 000 shots are used for the auxiliary cir-

cuit, so one log fidelity is learned using 4 000 000 shots.

The same number of shots are used for measure and pre-

pare instrument. The standard deviation is estimated via

bootstrapping. Our results are shown in Fig. 8. One can

see that our criteria judges the independence nicely. We

note that the true values are always non-negative because

of the positivity requirement of the quantum instruments.

I X Y Z

Q

−0.0010

−0.0005

0.0000

0.0005

0.0010

0.0015

cQ 0
,1

,0
,1

General compiled MCM

true values

learned values

I X Y Z

Q

−0.0010

−0.0005

0.0000

0.0005

0.0010

0.0015

cQ 0
,1

,0
,1

Measure-and-prepare instrument

true values

learned values

FIG. 8. Simulation results in VII B. The left side shows the estimated correlations of a general compiled MCM while the right side

shows that of a measure and prepare channel. The y axis represents the learned values of the correlation c
Q

0,1,0,1. The x axis indicates

the corresponding Q. The error bars represent one standard deviation. Logarithms are in base e.
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C. Learning Pauli error rate

Finally we learn the p I
1,1 of a random quantum instru-

ment. The method has already been used as an example

in Eq. (46). We learn the two terms in Eq. (46) by the

(modified) protocol, each with 100 compiled circuits for

the main circuit and we take ten shots from each of the

compiled circuits. 1000 shots are taken for the auxiliary

circuit. We repeat the above experiment 10 times and use

their mean as output, so in total 40 000 shots are taken.

The standard deviation is estimated from repetitions. In our

simulation, the true value for p I
1,1 is 2.79 × 10−4, while

our learned value is 2.60 × 10−4 with estimated standard

deviation 0.55 × 10−4.

VIII. DISCUSSION AND OUTLOOK

In this work, we conduct a comprehensive investigation

on learning noisy MCMs. Using graph-theoretic tools, we

can determine all the learnable degrees of freedom for a

compiled MCM, and design a CB-type protocol to learn all

learnable information. We demonstrate our learning proto-

col in a numerical example. As an application, we illustrate

how our protocol can be used to test the independence

between measurement and state preparation for an MCM.

Our results put forward a fundamental limit on charac-

terizing randomly compiled MCMs. Namely, we show that

certain parameters are coupled with gauge transformations,

thus cannot be precisely learned SPAM robustly. In prac-

tice, it could be desirable to obtain knowledge about those

“unlearnable” degrees of freedom. For example, one might

want to know whether the dominant error is in the mea-

surement readout or in the postmeasurement state, which

might provide insight on how to improve the hardware

design. Solving such a problem would require additional

assumptions to anchor the gauge, e.g., assuming noise-

less state preparation or terminating measurements, or use

the physicality constraints as investigated in Ref. [15].

How to characterize MCMs efficiently under such physical

assumptions requires dedicated exploration in the future.

Moreover, the concatenation technique discussed at the

end of Sec. IV C may not always be applicable. In Sec. V A

we proved that all the learnable information are cycles.

For CB with interleaved gates, we can prove that the

connected components of the pattern-transfer graph are

strongly connected. As a consequence, it permits a directed

cycle basis, meaning that all the learnable information can

be decomposed into directed cycles and thus concatenated.

However, we cannot obtain similar results for our protocol.

Whether the entire cycle space can be learned through con-

catenation (i.e., whether the pattern transfer graph admits

a circuit basis) remains an open question.

Finally, although we have given a complete characteri-

zation of the learnability of noisy MCMs in terms of Pauli

fidelities, we are only able to give a partial characterization

for the learnability of Pauli error rates with three special

cases in Sec. V B. For noisy Clifford gate, in contrast, the

learnability of Pauli error rates and Pauli fidelities are basi-

cally the same, thanks to the fact that the cycle space is

invariant under Walsh-Hadamard transform (see Sec. D for

details). Such a property breaks down when we include

MCMs. Therefore, a more comprehensive and physically

motivating understanding of the learnability for Pauli error

rates is left for future investigation.

Note added. Recently, an independent work proposed a

similar algorithm [34].

The code for numerical simulation can be found at

https://github.com/zhihan-z/MCM_Learnability.
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APPENDIX A: RANDOMIZED COMPILING

1. Randomized compiling for MCMs

In this section, we explain how randomized compiling

techniques can reduce a general quantum instrument M =

{Mk} into an instrument T = {Tk} that fits our model.

The scheme we adopt is a simple variation of the scheme

proposed in Ref. [21]. Figure 9 illustrates our randomized

compiling scheme.

Specifically, we choose P ∈ Pm, α, ³, ´ ∈ Z
n
2 uniformly

randomly and define operator P1 ⊗ P2 = G†(P ⊗ Z³X α).

We apply gate P1 ⊗ P2, followed by the noisy MCM

M, and then gate P ⊗ X αZ´ . The classical output from

the MCM is added by α to form the measurement result

of the compiled channel. We make the assumption that

all single-qubit unitaries can be implemented noiselessly.

This is justified by the fact that noises of multiqubit

/m P1

M
P /m

T
EP,x,y,z /n P2 Zγ Xα = /n

• add α |k〉〉 • |k〉〉

k + α

FIG. 9. Illustration of the randomized compiling scheme.
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operations are usually much higher than that of single-

qubit operations. Then, after the compiling, the effective

instrument becomes

Tk = E
P,α,³,´

[
(P ⊗ X αZ´ )Mk−α(G†(P ⊗ Z³X α)G)

]

(A1)

= E
P,α,³,´

[
(P ⊗ X αZ´ )Mk−αG

†(P ⊗ Z³X α)
]
G.

(A2)

Here, gates and channels are used interchangeably. To

simplify, we need a lemma from Ref. [21].

Lemma 6 (Theorem 2, Ref. [21]). The following ran-

domized compiling twirls a general quantum instrument

M = {Mk} to a uniform stochastic instrument {Uk}:

E
P,α,³,´

[
(P ⊗ X αZ´ )Mk−αG

†(P ⊗ Z³X α)
]

= Uk.

(A3)

Intuitively, the random α averages over different abso-

lute measurement outcomes, making the �a,b in Uk

[Eq. (9)] independent of k and depends instead only on the

relative differences a and b.

From Lemma 6, we immediately see that Tk = UkG
and thus justifies our model. We note that this compiling

scheme is slightly different from Fig. 5 of Ref. [21] as we

are not allowed to insert twirling gates between the Clifford

gate G and the subsystem measurement since we assume

that they are implemented as a whole.

2. Randomized compiling for terminating

measurements

We model a terminating measurement as a (special)

Pauli channel �M , followed by an ideal terminating mea-

surement. The Pauli channel here has the form

�M =
∑

F∈Pn+m

λ
pt(F)

M |F〉〉〈〈F|. (A4)

One can immediately see that this Pauli channel is special

in the sense that the Pauli fidelities are indexed by Pauli

weight patterns instead of Pauli operators. We note that this

is for mathematical convenience, and our proof also works

for general Pauli channels.

Again, our noise model can be realized via randomized

compiling. Assume the noisy terminating measurements

implemented can be viewed as an arbitrary channel EM

followed by an ideal terminating measurement. Then we

can use the standard randomized compiling [5] techniques

to twirl the noise into a special Pauli channel �M . More

specifically, suppose we want to measure observable E,

then we shall select a random H ∈ C⊗n+m, apply gate H

and then measure in H(E) basis.

Lemma 7. If we use the above compiled terminating

measurements to measure observable E ∈ Pn+m on ρ, then

the expectation of the result is λ
pt(E)

M 〈〈E|ρ〉〉. Here λM are

actually Pauli fidelities of the terminating measurement

noise. It is indexed by Pauli weight patterns.

Proof. The expectation value is

E
H∈C⊗n+m

[Tr(H(E) · E ◦ H(ρ))]

= Tr

(
E E

H∈C⊗n+m

[
H†◦E ◦ H(ρ)

])
= λ

pt(E)

M 〈〈E|ρ〉〉.

(A5)

The second equality is the direct consequence of Schur’s

lemma [35] as in standard randomized compiling. �

APPENDIX B: STRUCTURE OF THE

MEASURE-AND-PREPARE INSTRUMENTS

In this section, we formalize the definition of measure-

and-prepare instrument and express it in the dual space.

The process is shown in Fig. 1(c) and follows the descrip-

tion in Sec. I B.

We start with a uniform stochastic instrument [we use

the dual-space form Eq. (20) here]. Without the Clifford

gate G, a uniform stochastic instrument is

Uk =
1

22n+m

∑

x,y∈Z
n
2
,Q∈Pm

(−1)k·(x+y)λQ
x,y |Q ⊗ Zy〉〉〈〈Q ⊗ Zx|.

(B1)

Suppose we obtain the measurement outcome k, which

corresponds to Uk being applied. A measure-and-prepare

instrument corresponds to tracing out the ancilla register,

followed by a preparation of fresh ancilla with X correc-

tion [Fig. 1(c)]. Our goal is to derive the dual-space form

of this process.

First, tracing out the ancilla register in Uk, we get

1

2n+m

∑

x∈Z
n
2
,Q∈Pm

(−1)k·xλ
Q

x,0|Q〉〉〈〈Q ⊗ Zx|

=
1

2n+m

∑

x∈Z
n
2
,Q∈Pm

(−1)k·xζ Q
x |Q〉〉〈〈Q ⊗ Zx|. (B2)

Here we have defined ζ
Q
x = λ

Q

x,0. Next, we model the state-

preparation procedure as preparing a perfect initial state

|0n〉〉 (the computational basis state where all qubits are

zero) followed by a Pauli noise channel, so the next step

is to put the refreshed ancillas in,
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1

22n+m

∑

x,y∈Z
n
2
,Q∈Pm

(−1)k·xζ Q
x |Q ⊗ Zy〉〉〈〈Q ⊗ Zx|. (B3)

For the Pauli-noise channel, denote its Pauli fidelity for Q ⊗ Zy by ξ
Q
y . Applying this noise, we get

1

22n+m

∑

x,y∈Z
n
2
,Q∈Pm

(−1)k·xζ Q
x ξQ

y |Q ⊗ Zy〉〉〈〈Q ⊗ Zx|. (B4)

Apply the NOT gates X k, we get the effective channel for measurement result k

U ′
k =

1

22n+m

∑

x,y∈Z
n
2
,Q∈Pm

(−1)k·(x+y)ζ Q
x ξQ

y |Q ⊗ Zy〉〉〈〈Q ⊗ Zx|. (B5)

{U ′
k} is the measure-and-prepare instrument expressed in dual space. Compared with Eq. (13), one can see that {U ′

k} is also

a uniform stochastic instrument, with the additional structure

λ′Q
x,y = ζ Q

x ξQ
y , (B6)

i.e., the Pauli fidelity is factorized into a product.

In terms of error rates, define q and r as the inverse Fourier transformation of ζ and ξ over Z
n
2, respectively,

qP
a =

1

2n+2m

∑

x∈Z
n
2
,Q∈Pm

(−1)a·x+〈P,Q〉ζ Q
x , rP

b =
1

2n+2m

∑

x∈Z
n
2
,Q∈Pm

(−1)b·x+〈P,Q〉ξQ
x . (B7)

q and r corresponds to the Pauli error rates for the measurement-and-prepare process, respectively. The inverse

transformations are

ζ Q
x =

∑

a∈Z
n
2
,P∈Pm

(−1)a·x+〈P,Q〉qP
a , ξQ

x =
∑

a∈Z
n
2
,P∈Pm

(−1)b·x+〈P,Q〉rP
b . (B8)

And we have

p ′P
a,b =

1

4n+m

∑

x,y∈Z
n
2
,Q∈Pm

(−1)a·x+b·y+〈P,Q〉λ′Q
x,y (B9)

=
1

4n+m

∑

x,y∈Z
n
2
,Q∈Pm

(−1)a·x+b·y+〈P,Q〉ζ Q
x ξQ

y (B10)

=
1

4n+2m

∑

x,y∈Z
n
2
,Q1,Q2,P∈Pm

(−1)a·x+b·y+〈P,Q1Q2〉+〈P,Q2〉ζ Q1
x ξQ2

y (B11)

=
1

4n+2m

∑

x,y∈Z
n
2
,Q1,Q2,P∈Pm

(−1)a·x+b·y+〈P,Q1〉+〈PP1,Q2〉ζ Q1
x ξQ2

y (B12)

=
∑

P1·P2=P

⎛
¿ 1

2n+2m

∑

x∈Z
n
2
,Q∈Pm

(−1)a·x+〈P,Q〉ζ Q
x

À
⎠

⎛
¿ 1

2n+2m

∑

x∈Z
n
2
,Q∈Pm

(−1)b·x+〈P,Q〉ξQ

À
⎠ (B13)

=
∑

P1·P2=P

qP1
a r

P2
b . (B14)
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Equation (B11) uses the fact that
∑

P∈Pm(−1)〈P,Q1Q2〉 is nonzero only when Q1 = Q2 and takes value 4m in this case. By

plugging in this equation to Eq. (8) we get the physical space expression of the measure-and-prepare instrument.

U ′
k =

∑

a,b∈Z
n
2
,P∈Pm,P1·P2=P

qP1
a r

P2
b (P ⊗ |k + b〉〉〈〈k + a|). (B15)

APPENDIX C: PROOFS FROM SEC. V B

Proof of Proposition 1. It suffices to show the corresponding 1 chain is in Z.

∂
1

4n+m

∑

x,y∈Z
n
2
,Q∈Pm

(−1)a·x+b·y+〈P,Q〉eQ
x,y (C1)

=
1

4n+m

∑

x,y∈Z
n
2
,Q∈Pm

(−1)a·x+b·y+〈P,Q〉(−pt(G†(Q ⊗ Zx)) + pt(Q ⊗ Zy)) (C2)

= −
1

4n+m

∑

x∈Z
n
2
,Q∈Pm

(−1)a·x+〈P,Q〉pt(G†(Q ⊗ Zx))
∑

y∈Z
n
2

(−1)b·y

+
1

4n+m

∑

y∈Z
n
2
,Q∈Pm

(−1)b·y+〈P,Q〉pt(Q ⊗ Zy)
∑

x∈Z
n
2

(−1)a·x = 0. (C3)

Note that the addition of Pauli weight patterns are performed in the sense of 0 chains. Equation (C2) uses the definition of

boundary operator and Eq. (C3) uses the fact that when a 
= 0 and b 
= 0,
∑

y∈Z
n
2
(−1)b·y =

∑
x∈Z

n
2
(−1)a·x = 0. �

Proof of Proposition 2.

∂
1

4n+m

∑

x,y,k∈Z
n
2
,Q∈Pm

(−1)〈S
kP,Q〉eQ

x,y (C4)

=
1

4n+m

∑

x,y∈Z
n
2
,Q∈Pm

(−1)〈P,Q〉∂eQ
x,y

∑

k∈Z
n
2

(−1)〈S
k ,Q〉 (C5)

=
2n

4n+m

∑

x,y∈Z
n
2
,Q∈CPm (S)

(−1)〈P,Q〉(−pt(G†(Q ⊗ Zx)) + pt(Q ⊗ Zy)) (C6)

=
2n

4n+m

∑

x,y∈Z
n
2
,Q∈CPm (S)

(−1)〈P,Q〉(−pt(SxQ ⊗ Zx) + pt(Q ⊗ Zy)) (C7)

= −
1

4m

∑

x∈Z
n
2
,Q∈CPm (S)

(−1)〈P,Q〉pt(SxQ ⊗ Zx) +
1

4m

∑

y∈Z
n
2
,Q∈CPm (S)

(−1)〈P,Q〉pt(Q ⊗ Zy) (C8)

= −
1

4m

∑

x∈Z
n
2
,Q∈CPm (S)

(−1)〈P,SxQ〉pt(Q ⊗ Zx) +
1

4m

∑

x∈Z
n
2
,Q∈CPm (S)

(−1)〈P,Q〉pt(Q ⊗ Zx) = 0. (C9)

Equation (C6) uses the fact that
∑

k∈Z
n
2
(−1)〈S

k ,Q〉 is nonzero and takes value 2n only when Q ∈ CPm(S) and Eq. (C9)

makes a substitution Q �→ SxQ for the first term and also uses the fact P ∈ CPm(S). �
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Proof of Proposition 3.

∂
1

4n+m

∑

Q∈Pm,x,y,k∈Z
n
2

(−1)〈S
kP,Q〉 [(−1)a·x + (−1)a·y ] eQ

x,y (C10)

=
1

4n+m

∑

Q∈Pm,x,y∈Z
n
2

(−1)〈P,Q〉 [(−1)a·x + (−1)a·y] ∂eQ
x,y

∑

k∈Z
n
2

(−1)〈S
k ,Q〉 (C11)

=
2n

4n+m

∑

Q∈CPm (S),x,y∈Z
n
2

(−1)〈P,Q〉 [(−1)a·x + (−1)a·y] ∂eQ
x,y (C12)

= −
2n

4n+m

∑

Q∈CPm (S),x,y∈Z
n
2

(−1)〈P,Q〉 [(−1)a·x + (−1)a·y] pt(SxQ ⊗ Zx)

+
2n

4n+m

∑

Q∈CPm (S),x,y∈Z
n
2

(−1)〈P,Q〉 [(−1)a·x + (−1)a·y] pt(Q ⊗ Zy) (C13)

= −
1

4m

∑

Q∈CPm (S),x∈Z
n
2

(−1)a·x+〈P,Q〉pt(SxQ ⊗ Zx) +
1

4m

∑

Q∈CPm (S),y∈Z
n
2

(−1)a·y+〈P,Q〉pt(Q ⊗ Zy) (C14)

= −
1

4m

∑

Q∈CPm (S),x∈Z
n
2

(−1)a·x+〈P,SxQ〉pt(Q ⊗ Zx) +
1

4m

∑

Q∈CPm (S),x∈Z
n
2

(−1)a·x+〈P,Q〉pt(Q ⊗ Zx) = 0. (C15)

Equation (C12) uses the trick similar to Eq. (C6) and Eq. (C15) uses the trick similar to Eq. (C9). �

APPENDIX D: INVARIANCE OF CYCLE SPACE

UNDER WALSH-HADAMARD

TRANSFORMATION

In Ref. [15], the authors made a conjecture about the

learnability of Pauli error rates for noisy Clifford gates.

They conjectured that in this case, the cycle space is invari-

ant under Walsh-Hadamard transformation. That is, for a

learnable cycle, if we substitute the log fidelities by the cor-

responding Pauli error rates, the resulting quantity about

Pauli error rates is also learnable (under first-order approx-

imation). Though noisy Clifford gates is not the focus of

this paper and from Sec. V B obviously this special prop-

erty no longer holds in our generalized case, to complete

the physical vs dual-space picture, in this section we give

a proof for this conjecture.

We note by the way that though in a different language,

Lemma 3 in Ref. [12] effectively gives a constructive proof

for the theorem for the special case where no interleaving

single-qubit Clifford gates are allowed. But in this section,

we follow the nonconstructive proof fashion in Sec. V B to

prove the general theorem.

Once again, we emphasize that in this section we follow

our convention and model the noise as happening after the

Clifford gate, so our definition of pattern-transfer graph is

different from that of Ref. [15]. Reference [15] has proved

that for Pauli fidelities, the cycle space is learnable while

the cut space is unlearnable, and their results are still valid

using our convention.

Theorem 3. For a cycle v0, eQ1 , v1, . . . , eQl , v0,
∑l

k=1

pQk is learnable.

Proof. Since we are considering a cycle, view the sub-

script 0 equivalent as the subscript l. By definition of

pattern-transfer graph, ∃H1, . . . , Hl ∈ C⊗m (C is the group

of single-qubit Clifford gates) such that Hk−1Qk−1H
†

k−1 =

G†QkG. Then it suffices to prove the learnability of the

corresponding 1 chain.

∂
1

4m

l∑

k=1

∑

R∈Pm

(−1)〈Qk ,R〉eR (D1)
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=
1

4m

∑

R∈Pm

∂eR

l∑

k=1

(−1)〈Qk ,R〉 (D2)

=
1

4m

∑

R∈Pm

pt(R)

l∑

k=1

(−1)〈Qk ,R〉 −
1

4m

∑

R∈Pm

pt(G†(R))

l∑

k=1

(−1)〈Qk ,R〉 (D3)

=
1

4m

∑

R∈Pm

pt(R)

l∑

k=1

(−1)〈Qk ,R〉 −
1

4m

∑

R∈Pm

pt(R)

l∑

k=1

(−1)
〈GHk−1Qk−1H

†
k−1

G†,GRG†〉 (D4)

=
1

4m

∑

R∈Pm

pt(R)

l∑

k=1

(−1)〈Qk ,R〉 −
1

4m

∑

R∈Pm

pt(R)

l∑

k=1

(−1)
〈Qk−1,H

†
k−1

RHk−1〉 (D5)

=
1

4m

∑

R∈Pm

pt(R)

l∑

k=1

(−1)〈Qk ,R〉 −
1

4m

∑

R∈Pm

pt(R)

l∑

k=1

(−1)〈Qk−1,R〉 (D6)

= 0. (D7)

Equation (D3) uses the definition of pattern-transfer graph

for cycle benchmarking. Equation (D4) makes the sub-

stitution R �→ GRG†. Equation (D5) uses the fact that

conjugating by the same Clifford gate does not change the

commutation relation. Equation (D6) makes the substitu-

tion R �→ Hk−1RH
†

k−1 and uses the fact that single-qubit

Clifford gates do not change patterns. �

By simple counting of degrees of freedom, [15] proved

that Theorem 3 implies that the learnability of Pauli error

rates are also completely characterized by cycle space.

That is, the cycle space is the space of all learnable about

Pauli error rates.

[1] C. Ryan-Anderson, J. G. Bohnet, K. Lee, D. Gresh, A. Han-

kin, J. Gaebler, D. Francois, A. Chernoguzov, D. Lucchetti,

N. C. Brown, et al., Realization of real-time fault-tolerant

quantum error correction, Phys. Rev. X 11, 041058 (2021).

[2] K. Singh, C. E. Bradley, S. Anand, V. Ramesh, R. White,

and H. Bernien, Mid-circuit correction of correlated phase

errors using an array of spectator qubits, Science 380, 1265

(2023).

[3] I. Aleiner, R. Allen, T. I. Andersen, M. Ansmann, F. Arute,

K. Arya, A. Asfaw, J. Atalaya, R. Babbush, D. Bacon,

et al., Suppressing quantum errors by scaling a surface code

logical qubit, Nature 614, 676 (2023).

[4] D. Bluvstein, S. J. Evered, A. A. Geim, S. H. Li, H.

Zhou, T. Manovitz, S. Ebadi, M. Cain, M. Kalinowski,

D. Hangleiter, et al., Logical quantum processor based on

reconfigurable atom arrays, Nature 626, 58 (2024).

[5] J. J. Wallman and J. Emerson, Noise tailoring for scalable

quantum computation via randomized compiling, Phys.

Rev. A 94, 052325 (2016).

[6] A. Hashim, R. K. Naik, A. Morvan, J.-L. Ville, B. Mitchell,

J. M. Kreikebaum, M. Davis, E. Smith, C. Iancu, K.

P. O’Brien, et al., Randomized compiling for scalable

quantum computing on a noisy superconducting quantum

processor, Phys. Rev. X 11, 041039 (2021).

[7] S. T. Flammia and J. J. Wallman, Efficient estimation of

Pauli channels, ACM Trans. Quantum Comput. 1, 1 (2020).

[8] A. Erhard, J. J. Wallman, L. Postler, M. Meth, R. Stricker,

E. A. Martinez, P. Schindler, T. Monz, J. Emerson, and

R. Blatt, Characterizing large-scale quantum computers via

cycle benchmarking, Nat. Commun. 10, 5347 (2019).

[9] J. Emerson, M. Silva, O. Moussa, C. Ryan, M. Laforest, J.

Baugh, D. G. Cory, and R. Laflamme, Symmetrized char-

acterization of noisy quantum processes, Science 317, 1893

(2007).

[10] S. T. Flammia, in 17th Conference on the Theory of

Quantum Computation, Communication and Cryptography

(TQC 2022), edited by F. Le Gall and T. Morimae, Leibniz

International Proceedings in Informatics (LIPIcs) (Schloss

Dagstuhl—Leibniz-Zentrum für Informatik, Dagstuhl, Ger-

many, 2022), Vol. 232, p. 4:1.

[11] E. Van Den Berg, Z. K. Minev, A. Kandala, and K. Temme,

Probabilistic error cancellation with sparse Pauli–Lindblad

models on noisy quantum processors, Nat. Phys. 19, 1116

(2023).

[12] A. Carignan-Dugas, D. Dahlen, I. Hincks, E. Ospadov, S.

J. Beale, S. Ferracin, J. Skanes-Norman, J. Emerson, and J.

J. Wallman, The error reconstruction and compiled calibra-

tion of quantum computing cycles, ArXiv:2303.17714.

[13] L. Govia, P. Jurcevic, C. Wood, N. Kanazawa, S.

Merkel, and D. McKay, A randomized benchmarking suite

for midcircuit measurements, New J. Phys. 25, 123016

(2023).

[14] K. Rudinger, G. J. Ribeill, L. C. Govia, M. Ware, E.

Nielsen, K. Young, T. A. Ohki, R. Blume-Kohout, and

T. Proctor, Characterizing midcircuit measurements on a

superconducting qubit using gate set tomography, Phys.

Rev. Appl. 17, 014014 (2022).

010310-22



GENERALIZED CYCLE BENCHMARKING ALGORITHM. . . PRX QUANTUM 6, 010310 (2025)

[15] S. Chen, Y. Liu, M. Otten, A. Seif, B. Fefferman, and L.

Jiang, The learnability of Pauli noise, Nat. Commun. 14, 52

(2023).

[16] Note that, while SPAM typically refers to “state preparation

and measurements,” in our context, we treat MCMs as a

midcircuit gadget different from the usual destructive mea-

surement. Thus, the “M” in SPAM should be interpreted

specifically as the terminating measurements.

[17] E. Nielsen, J. K. Gamble, K. Rudinger, T. Scholten,

K. Young, and R. Blume-Kohout, Gate set tomography,

Quantum 5, 557 (2021).

[18] E. Bäumer, V. Tripathi, D. S. Wang, P. Rall, E. H. Chen,

S. Majumder, A. Seif, and Z. K. Minev, Efficient long-

range entanglement using dynamic circuits, PRX Quantum

5, 030339 (2024).

[19] A. Hashim, A. Carignan-Dugas, L. Chen, C. Juenger, N.

Fruitwala, Y. Xu, G. Huang, J. Wallman, and I. Siddiqi,

Quasi-probabilistic readout correction of mid-circuit mea-

surements for adaptive feedback via measurement random-

ized compiling, ArXiv:2312.14139.

[20] M. McEwen, D. Kafri, Z. Chen, J. Atalaya, K. Satzinger,

C. Quintana, P. V. Klimov, D. Sank, C. Gidney, A. Fowler,

et al., Removing leakage-induced correlated errors in

superconducting quantum error correction, Nat. Commun.

12, 1761 (2021).

[21] S. J. Beale and J. J. Wallman, Randomized compiling for

subsystem measurements, ArXiv:2304.06599.

[22] This is the symplectic inner product between the symplec-

tic representation of P and Q. Specifically, the symplectic

representation φ of a Pauli operator P ∈ Pm is the unique

length 2m bit string that satisfies P = iφ(P)Tϒφ(P)X φ(P)odd ·

Zφ(P)even , where φ(P)odd and φ(P)even denotes the sub-

string of φ(P) consists of odd and even positions, respec-

tively, and ϒ =
⊕m

j =1

(
0 1
0 0

)
. The inner product is defined as

the binary symplectic form 〈P, Q〉 = φ(P)T(ϒ + ϒT)φ(Q)

mod 2.

[23] D. Greenbaum, Introduction to quantum gate set tomogra-

phy, ArXiv:1509.02921.

[24] M. M. Wilde, From classical to quantum Shannon theory,

ArXiv:1106.1445.

[25] Note that, our labeling convention is slightly differ-

ent from Ref. [15] because in our model, the noise

happens after the Clifford gate, while in Ref. [15] the

noise happens before the Clifford gate. As a result,

the pattern-transfer graph defined in Ref. [15] is (V, E)

with V = Z
m
2 and E = {eQ := (pt(Q), pt(G(Q))|Q ∈ Pm},

while our pattern-transfer graph is defined as (V, E)

with V = Z
n+m
2 and E = {e

Q
x,y := (pt(G†(Q ⊗ Zx)), pt(Q ⊗

Zy))|x, y ∈ Z
n
2, Q ∈ Pm}.

[26] F. Harary, Graph Theory (on Demand Printing Of 02787)

(CRC Press, Boca Raton, 2018).

[27] B. Bollobás, Modern Graph Theory (Springer Science &

Business Media, New York, 1998), Vol. 184.

[28] We note that regarding the initial state, though it does not

affect our learnability theory, for our protocol the overlap

〈〈G†(Q1 ⊗ Zx1)|ρ〉〉 do affect the sample complexity. It is

desirable to choose and prepare an initial state with high

overlap 〈〈G†(Q1 ⊗ Zx1)|ρ〉〉.

[29] More precisely, since C is allowed to be non-Clifford, it can

map an input Pauli to multiple output Paulis, each of which

has the same pattern as the input.

[30] T. Wagner, H. Kampermann, D. Bruß, and M. Kliesch,

Pauli channels can be estimated from syndrome mea-

surements in quantum error correction, Quantum 6, 809

(2022).

[31] T. Wagner, H. Kampermann, D. Bruß, and M. Kliesch,

Learning logical Pauli noise in quantum error correction,

Phys. Rev. Lett. 130, 200601 (2023).

[32] D. McLaren, M. A. Graydon, and J. J. Wallman, Stochastic

errors in quantum instruments, ArXiv:2306.07418.

[33] It is worth noting that a rigorous formula for the variance is

unattainable as our protocol has some small probability of

failure. In extreme cases where either s or t in the protocol

deviates significantly from their expected value such that

s/t becomes negative, the output of the protocol is unde-

fined. However, assuming that the number of shots taken

is sufficient so that such extreme cases can be ignored and

that the noise rate is low, the variance of the results can be

estimated.

[34] J. Hines and T. Proctor, Pauli noise learning for mid-circuit

measurements, ArXiv:2406.09299.

[35] W. Fulton and J. Harris, Representation Theory: A First

Course (Springer Science & Business Media, New York,

2013), Vol. 129.

010310-23


	I.. INTRODUCTION
	A.. General noisy MCMs
	B.. Measure-and-prepare instruments
	C.. Summary of results
	1.. Fourier transforms and dual-space formalism (Sec. [s3]III)
	2.. Generalized CB algorithm for characterizing MCMs (Sec. [s4]IV)
	3.. Learnability using pattern transfer graph (Sec. [s5]V)
	4.. Testing measure-and-prepare channels (Sec. [s6]VI)
	5.. Numerical results (Sec. [s7]VII)

	II.. NOTATIONS AND PRELIMINARIES
	A.. Pauli operators, Clifford gates
	B.. Pauli operator with vector exponents
	C.. Inner product of Pauli operators
	D.. Pauli weight patterns
	E.. Quantum channels
	F.. Pauli channels
	G.. Super-operator formalism
	H.. Pauli fidelities
	I.. Quantum instruments

	III.. NOISE MODELS AND THEIR FOURIER TRANSFORM
	A.. Uniform stochastic instrument
	B.. Measure-and-prepare instruments

	IV.. ALGORITHMS FOR NOISE CHARACTERIZATION
	A.. Generalizing CB-type protocols
	B.. Pattern-transfer graph
	C.. Protocol details

	V.. LEARNABILITY OF MCMs
	A.. Learnability of Pauli fidelities
	B.. Learnability of Pauli error rates

	VI.. APPLICATION: TESTING THE INDEPENDENCE OF MEASUREMENT AND STATE PREPARATION

	VII.. NUMERICAL SIMULATIONS
	A.. Learning Pauli fidelities
	B.. Testing independence of measurement and state preparation
	C.. Learning Pauli error rate

	VIII.. DISCUSSION AND OUTLOOK
	. ACKNOWLEDGMENTS
	. APPENDIX A: RANDOMIZED COMPILING
	1.. Randomized compiling for MCMs
	2.. Randomized compiling for terminating measurements

	. APPENDIX B: STRUCTURE OF THE MEASURE-AND-PREPARE INSTRUMENTS
	. APPENDIX C: PROOFS FROM SEC. [s5b]VB
	. APPENDIX D: INVARIANCE OF CYCLE SPACE UNDER WALSH-HADAMARD TRANSFORMATION
	. REFERENCES

