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Midcircuit measurements (MCMs) are crucial ingredients in the development of fault-tolerant quan-
tum computation. While there have been rapid experimental progresses in realizing MCMs, a systematic
method for characterizing noisy MCMs is still under exploration. In this work, we develop a cycle bench-
marking (CB)-type algorithm to characterize noisy MCMs. The key idea is to use a joint Fourier transform
on the classical and quantum registers and then estimate parameters in the Fourier space, analogous to
Pauli fidelities used in CB-type algorithms for characterizing the Pauli-noise channel of Clifford gates.
Furthermore, we develop a theory of the noise learnability of MCMs, which determines what information
can be learned about the noise model (in the presence of state preparation and terminating measurement
noise) and what cannot, which shows that all learnable information can be learned using our algorithm. As
an application, we show how to use the learned information to test the independence between measure-
ment noise and state-preparation noise in an MCM. Finally, we conduct numerical simulations to illustrate
the practical applicability of the algorithm. Similar to other CB-type algorithms, we expect the algorithm
to provide a useful toolkit that is of experimental interest.
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I. INTRODUCTION

Midcircuit measurements (MCMs) are a central compo-
nent in quantum error correction and are being developed
on various hardware platforms [1-4]. To perform syn-
drome measurements, one needs to initialize fresh ancilla
qubits, apply the syndrome extraction circuit, and mea-
sure the ancilla qubits while maintaining the coherence
of system qubits. Characterizing the noise model for this
process is thus a necessary step for fault-tolerant quan-
tum computation. For quantum gate characterization, a
standard approach is to engineer the noise process into
Pauli channels [5,6] and various methods have been devel-
oped to characterize the Pauli channel [7—12]. However,
MCMs are much more complicated than a noisy gate:
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the measurement readout can be faulty, the postmeasure-
ment state can be faulty, and there can be additional errors
on unmeasured qubits. Despite significant recent efforts
[13,14], developing general and systematic characteriza-
tion methods for this more complicated noise model of
MCMs still remains open.

In this paper we address this challenge by develop-
ing a general algorithm for characterizing MCMs. Our
algorithm is a cycle benchmarking (CB)-type protocol
[7-10] generalizing CB with interleaved gates [11,12,
15], the state-of-the-art method for characterizing Clifford
gates. The key idea behind CB with interleaved gates is the
observation that the Fourier transform of the Pauli error
rates (known as Pauli fidelities) are eigenvalues of the
Pauli channel and therefore are easy to learn via repeated
application of the noisy gate. We generalize this view
to MCMs by defining Pauli fidelities as a joint Fourier
transform on the classical and quantum registers, which
provides a means of converting between the physical space
(focusing on Pauli errors) and dual space (focusing on
Fourier coefficients). A key challenge here is that the Pauli
fidelities are no longer eigenvalues of the noise channel
and are not directly learnable. We address this by introduc-
ing an additional Fourier transform during postprocessing
to filter out undesired components. This allows us to use

Published by the American Physical Society



ZHANG, CHEN, LIU, and JIANG

PRX QUANTUM 6, 010310 (2025)

the CB framework and repeatedly apply MCMs to learn
products of Pauli fidelities. See Fig. 2 for a comparison
between our algorithm and CB with interleaved gates.

On the other hand, not all parameters of noisy MCMs
are learnable in a way that is robust to state preparation
and terminating measurement (SPAM [16]) noise, simi-
lar to noisy Clifford gates [15], due to the existence of
gauge freedom [17]. We give an exact and complete char-
acterization about the learnable parameters of MCMs by
generalizing the graph-theoretical framework of Ref. [15],
and show that our algorithm is able to learn all learnable
parameters of noisy MCMs.

As a concrete application, our algorithm gives a gen-
eral method to test whether a noisy MCM can be fac-
torized as a measure-and-prepare instrument, which can
help understand the underlying physical mechanism for the
implementation of MCMs. See Sec. I C for a more detailed
summary.

A. General noisy MCMs

We start by defining the noise model associated with
MCMs. We consider an ideal MCM as a general Clifford
gate G on n + m qubits, followed by a measurement on the
n ancilla qubits in the computational basis [see Fig. 1(b)].
The other m qubits are left unmeasured. Note that the quan-
tum register for the n ancilla qubits is still present after
the measurement, i.e., we keep the postmeasurement quan-
tum state. We consider this general model because MCMs
are often used for qubit reset [4,18-20]. Also note that
this setting incorporates subsystem measurements (G is
equal to identity), syndrome measurements (G is the syn-
drome extraction circuit), as well as Clifford gates without
measurement (n = 0) as special cases.

(a) (b)

In the literature of noise characterization, noisy Clifford
gates are often modeled as an ideal Clifford gate followed
by a Pauli channel (channels where random Pauli error
occur) or equivalently, a Pauli channel followed by an
ideal Clifford gate. This is due to the randomized com-
piling techniques [5,6], which can twirl a general CPTP
noise channel into a Pauli channel that is more tractable for
characterization. Motivated by recent developments in ran-
domized compiling for subsystem measurements [21], we
extend these techniques to MCMs. We show that general
noisy MCMs can be twirled into the form of an ideal Clif-
ford gate G followed by a uniform stochastic instrument
U, which is a highly structured noisy measurement and its
physical meaning can be understood as the following three
parts:

(1) Suppose we obtain the result £ during measure-
ment readout. From this we know that ideally, the
n ancilla qubits should be projected into the basis
state |k) (throughout the paper, |k) means the com-
putational basis state of index k). However, due to
noise in the readout, the ancilla qubits are actually
projected into a different basis state |k + a), where
a is an n-bit string that came from some probability
distribution.

After the ancilla qubits are projected into |k + a),
the noise can further affect the postmeasurement
state, which becomes |k + b), where b is an n-bit
string that came from some probability distribution.
Finally, the measurement process causes an addi-
tional random Pauli error P acting on the remaining
m qubits due to crosstalk.

2

3)

The above noise model is parameterized by Pauli error
rates, which is a joint probability distribution p’,
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FIG. 1.

Noise models considered in this work. (a) A noisy Clifford gate G is modeled as an ideal gate G followed by a Pauli channel

A. (b) The noisy version of an MCM, whose corresponding ideal version consists of a Clifford gate G followed by a subsystem
measurement, is modeled as the ideal Clifford gate G followed by a uniform stochastic instrument /. The measurement outcome in the
noiseless case is denoted k) whereas the outcome in the noisy case is denoted k. (c) We also consider a special family of noisy MCMs
called measure-and-prepare instruments, in which the noise model can be decomposed into measurement noise and state-preparation
noise.
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satisfying ) PeP abell p‘i , = 1 (P™ is the m-qubit Pauli
group).

Our goal is to learn the Pauli error rates, which has
4"*tm _ 1 unknown parameters. More specifically, on input
density matrix p acting on n + m qubits, the output density
matrix equals

p> Y

Pepm ,k,a,bezg

X (P ® |k+a) (k+bl) ® |k) (klg. (1)

P(f,b(P Q |k + b) (k+ a|)GpG'

Here the third register R is a classical register for mea-
surement readout. A key point here is that the Pauli error
rates p a’j » are independent from the readout result k; this is
a consequence of randomized compiling.

B. Measure-and-prepare instruments

A natural subclass of the general noise model in Eq. (1)
is the family of noise channels that can be factorized
into measurement noise and state-preparation noise, which
we call measure-and-prepare instruments [Fig. 1(c)]. For
example, in certain experimental setups, MCMs are real-
ized in a measure-and-prepare manner (e.g., destructive
measurements with replaced free ancilla in atom array plat-
forms [4]). After an MCM, the ancillas are initialized in
ground state |0), which are then adjusted into the state
corresponding to the measurement result through the appli-
cation of X gates (NOT gates). This sequence of operations
results in a special type of MCM and gives us additional
structures among the parameters.

A fundamental question about the physical process that
implements general MCM s is whether it has the above fac-
torized form. As an application of our result, in Sec. VI we
will give a general method for testing whether an unknown
MCM can be represented by a measure-and-prepare instru-
ment.

C. Summary of results

In the remainder of the paper, we will first introduce
notations and preliminaries in Sec. II. Subsequent sections
will detail specific aspects of our results.

1. Fourier transforms and dual-space formalism
(Sec. I111)

For noisy Clifford gates, standard characterization meth-
ods such as some CB-type protocols [7,11,12,15] employ
a Fourier transform, converting Pauli error rates into quan-
tities known as Pauli fidelities, which are eigenvalues of
the Pauli channel and are easy to learn. Our first techni-
cal contribution is to generalize this conversion between
the physical space (Pauli errors) and the dual (Fourier)
space, by defining a suitable notion of “Pauli fidelities” for

MCMs, which is a joint Fourier transform on the classical
and quantum registers.

2. Generalized CB algorithm for characterizing MCMs
(Sec. IV)

Similar to CB with interleaved gates, our algorithm
learns the Pauli fidelities and reconstructs the Pauli error
rates via an inverse Fourier transform. However, the Pauli
fidelities of MCMs are no longer eigenvalues of the noise
channel, so learning these Pauli fidelities requires new
techniques. To address this challenge, we further introduce
a key technical idea: an additional Fourier transform on the
classical registers during the data-processing procedure,
which allows us to learn a single desired component from
sums of many components. This completes a generalized
version of the CB algorithm to characterize MCMs.

3. Learnability using pattern transfer graph (Sec. V)

Furthermore, we extend the pattern transfer graph tech-
nique from Ref. [15] to determine which parameters in
the noise model are SPAM-robustly learnable and which
are not. We show that our algorithm captures all the
information that can be learned, which corresponds to
the cycle space of the pattern-transfer graph. Conversely,
information that our algorithm cannot learn is inherently
unlearnable by any SPAM-robust algorithm. Correspond-
ing numerical simulation results are shown in Fig. 7.

4. Testing measure-and-prepare channels (Sec. VI)

As an application of our algorithm, we show that it
can be used to determine whether an arbitrary MCM can
be factorized as a measure-and-prepare instrument. This
shows that our algorithm can be used to probe the fun-
damental physical process of the measurement process.
Numerical results are shown in Fig. 8.

5. Numerical results (Sec. VII)

Finally, we conduct numerical simulations for the
algorithm and applications to support our analysis.

II. NOTATIONS AND PRELIMINARIES

A. Pauli operators, Clifford gates
In this paper, P™" := {I, X, Y, Z}" represents the m-qubit
Pauli group (modulus phase), C represents the group of
single-qubit Clifford gates.

B. Pauli operator with vector exponents

For P € P! and x € Zj, we use P~ to represent the n-
qubit Pauli operator that act as / on the ith qubit if the ith
bit of x is 0, and act as P on the ith qubit if the ith bit of x
is 1.
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C. Inner product of Pauli operators

For P,Q € P™, we define inner product (P, Q) to be 0
if Pauli operators P and Q commute, and 1 otherwise [22].
That is, PQ = (—1)"2 QP.

D. Pauli weight patterns

Following Ref. [15], for P € P", we define its Pauli
weight pattern pt(P) to be the m-bit string that is 0 on the
ith bit if P act as identity on the ith qubit, and is 1 on the
ith bit if P act as nonidentity on the ith qubit.

E. Quantum channels

Calligraphic letters represent channels, for example,
E, M, T,U. Specifically, G, H, P, X, Z represent specific
channels of applying gates of the corresponding normal
letters G, H, P, X, Z. For example, G(p) = GpG".

F. Pauli channels

Pauli channels are represented by A exclusively. They
are channels of applying a random Pauli operator accord-
ing to a probability distribution,

A=) p'P, )

pepm

where {p?}pepm are called Pauli error rates.

G. Super-operator formalism

General treatment of the super-operator formalism can
be found in, e.g., Ref. [23]. In short, vectorization refers to
the isomorphism |i){j | = [ij ). The inner product over the
vectorized space is then given by (O|P)) = Tr(O'P). In
this paper, for k € 7/, |k)) is the vectorization of computa-
tional basis state |k) (k|. And for P € P™, double brackets
|P)) represents the vectorization of Pauli operator P.

H. Pauli fidelities

Recall from Eq. (2) that a Pauli channel is of the
form A =Y p_pm p”P. Note that the Pauli operators are
eigenvectors of the channel:

AOY =Y pPPIO) = > (—D"9pPIoN.  3)

Pepm Pepm™

The corresponding eigenvalues are defined as Pauli fideli-
ties [7]

20 =" (=nPop”. )

pPepm

For normalized Pauli channels, the trace-preserving con-
dition ), _pm p? =1 translates into A’ = 1. The inverse

transformation is given by

1
P _ _1){P.0)4 0
p—4m§(1) A= (5)
Qepm

Using the Pauli fidelities, we can write the Pauli channel in
the dual space

1
A=oo ) 220040l (6)

Qep™m

This uses the Pauli-transfer-matrix representation, which
is diagonal for Pauli channels. We say that the Pauli error
rates lie in the physical space because they represent phys-
ical errors. Correspondingly, we say that the Pauli fidelities
lie in the dual space.

I. Quantum instruments

Mathematically, general MCMs are modeled as quan-
tum instruments, which are sets of completely positive,
trace nonincreasing maps {&;} such that ), & is trace
preserving. The action of it on a density operator p is [24]

pr Y E@I (7)
J

That is, with probability p; = Tr(; (p)), outcome j is
observed and the output state becomes (1/p;)&; (p).

ITI. NOISE MODELS AND THEIR FOURIER
TRANSFORM

A. Uniform stochastic instrument

As mentioned in the introduction, the motivation for
modeling MCMs as uniform stochastic instruments is
randomized compiling. But we will leave the details to
Appendix A1 and begin our discussion with a formal
definition of the uniform stochastic instruments.

Using the super-operator formalism, we can rewrite our
noise model in Eq. (1) to the form of quantum instruments.

Definition 1 (Uniform stochastic instruments, Eq. (17)
of Ref. [21]). In physical space, the uniform stochastic
instrument is the set {{{;} where each U4 is expressed by
the following trace nonincreasing map

Uy, = Z

abeZh PeP™

= D> Aw®k+b)(k+al ©)

n
a,beZ2

pLPIk+b)(k+al  (8)

here p”, is a joint probability distribution on Zj x Zj x
‘P called Pauli error rates and A, are unnormalized Pauli
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channels indexed by a,b (note that they are independent
of k).

The overall noise model in Eq. (1) can then be re-
expressed as

= > UGlp) ® k).

keZj

(10)

Let 7y := UG. As the Pauli channel A, is independent
of k, in the following we will often drop the third reg-
ister |k)r and work with a specific map 7;. Then we
can see that {U;} and {7;} are quantum instruments since
Za,beZZ,Per p:h =1

Now we generalize the physical vs dual space picture
to uniform stochastic instruments. We define the Pauli
fidelities )»,%, as the Fourier transform of the Pauli error
rates

)\‘gy — Z (_ l)a-x+b-y+(P,Q)p61;’b. (1 1)

a,beZZ,PEP’”

We note that the Pauli fidelities defined above are different
from the Pauli fidelities of the unnormalized Pauli channels
in Eq. (9) as there is an additional Fourier transformation

on the subscript @ and b. The role of the Pauli fidelities will
become clear after the next lemma.

In fact, our protocol will first learn the Pauli fidelities
and then use the inverse transformation

1
P _
Pap = Qn-+m Z

x,yEZ’Z’,QGPm

(_1)a<x+b-y+(P,Q>)LxQ’y (12)

to obtain the Pauli error rates.

Using Pauli fidelities, we can write the uniform stochas-
tic instrument and thus the instrument {7} of our model in
the dual space.

Lemma 1. Let Uj, be a uniform stochastic instrument
defined in Eq. (9), and let 7; = UG where G is a (Clif-
ford) unitary channel. Then 7, can be expressed in dual
space as

1
Ti= s 2

x,y€Zy,0eP™

(G'o® 79|

(=L 10® 27)

(13)

Proof. For a uniform stochastic instrument, we have

U= D Aap @k +b)((k+al (14)
a,beZg
=2 Aw® |5 ZIQ (Ol | 1k + b k+a|( > 1Py P|> (15)
abez" Qepn Pepn
1 x X
=Y Aw® 272 \ZW(Z| | 1k + b)) (k + al Z|z (2| (16)
a,beZ; YezZ x€Zj
1
= 2 D (CDFER Y T (DT A @12 ) (2| (17)
xy€Ly a,beZl
1
=2 D (FDEER Y 7 (e Y =DPOpllonel | ® 122 (18)
x,y €Ll a,beZy P,QePm™
1
=S D DR S (e ROpl 109 2) (0@ 7| (19)
x,y€Zy,0eP™ a,be’Zy PEP™
1 ! .
= D (DIRZI0e2)(0e 2. (20)

x,y€Zy,0eP™
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Equation (15) is a basis change. Equation (16) uses the
fact that Pauli operators that have nonzero inner prod-
uct (over the vectorized space) with a computational basis
state must be a tensor product of / and Zs. The phases in
Eq. (17) comes from the inner products (Z” | k + b)) and
{k+ a| Z*)). Equation (18) rewrites the Pauli channels
using Eq. (6).

As can be seen from Eq. (20), the Pauli fidelities are
not eigenvalues of the uniform stochastic instrument. They
connect the Pauli operators Q ® Z¥ and Q ® Z*.

Now put an ideal gate G before this instrument. Since
GO ® Z*) becomes Q® Z* after applying G, (Q®
7*|1G = (GT (O ® Z¥)|, we get the result. |

When noise rates are small, we would expect that p/,
is close to 1, while other Pauli error rates are small. This
means that all Pauli fidelities will be close to 1. Note
that the trace preserving condition Y pcpm <z pi p =1

translates into A , = 1 here.

TABLE I. Summary comparing physical space and dual space, integrating our findings with previous works. Pointers are provided
for relevant definitions and details. The concept of cycle space and cut space will be discussed in Sec. [V B.

Physical space (Pauli error rate)

Dual space (Pauli fidelity)

Noisy Clifford gates
[Fig. 1(a)]

Noisy MCMs [Fig. 1(b)]

Noisy
measure-and-prepare
[Fig. 1(c)]

Pauli channels (with
Clifford gates)

learnability

conversion formula

uniform stochastic
instruments (with
Clifford gates)

learnability

conversion formula

measure and prepare
instruments (with
Clifford gates)

learnability

conversion formula

> pPPG [Eq. (2)]

PepP™

same as the Pauli fidelities (see
Sec. D)

P

1
P > (~1)P0;0

- 47’71 ern‘l
[Eq. (5)]

Y plhy(P @ Ik +b)(k+ahg
a,beZg
pepP™
[Eq. (8)]
different from the Pauli fidelities,
partially characterized (see
Sec. VB)

1
P _
pa’b_4n+m Z

xyeZl
QGP)H

(_ l)a-x+b-y+(P,Q> )\.ny
[Eq. (12)]

Py P2
hDRA

a,beZ'z’
PepP™
P1-Py=P
(P ® lk+ b))k + al)g
[Eq. (B1S)]
same as uniform stochastic
instruments, but overly
constrained (see Sec. VI)

1 a-x
0= g 2 (CDTOGE

x€Zy
QePpP™
1 bx+(P,0) 0
I"}[: = 2n+2m Z (_1) S
xeZl
QeP™
[Eq. (B7)]

1
D DRSO K (AU()]

2m Qe’PVIZ
[Eq. 2D)]

cycle space are learnable, cut
space are not (Theorem 2 in

[15])

2= 3 (~D)"OpF [Eq. (4]
PepP™

1
T
22n+m vyel

(—DF L 10®

2
QeP™

Z)(GNQ ® 79| [Eq. (13)]
cycle space are learnable, cut
space are not (see Sec. V A)

)»xQ,y =Y (_1)a~x+b~y+(P,Q)p:b
a,bEZg
PeP™
[Eq. (1D)]

1
eI DR

n
)c,yeZ2

QePpP™

CE2100 2 )(GT (0 ® 7Y
[Eq. (B5)]
same as uniform stochastic
instruments, but overly
constrained (see Sec. VI)

é—x — Z (_l)a-x+(P,Q)q5

ae’ly
pPep™

%—XQ — Z (_l)b'JC-I—(P,Q)’,,é3
acZ
pPepP™
(Eq. (B8)]
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B. Measure-and-prepare instruments

It turns out that the additional structure for measure-and-
prepare instruments over uniform stochastic instruments is
that the Pauli error rates p factorizes according to p”, =

> p.py=p g rIsz, where ¢ and r are two probability dis-
tributions and the Pauli fidelities factorizes according to
A;Qy = g“XQSyQ. We defer the proofs to Sec. B.

A comparison between the physical and dual space is
listed in Table I, which summarizes our results.

IV. ALGORITHMS FOR NOISE
CHARACTERIZATION

A. Generalizing CB-type protocols

For intuition, we will start with the special case of n = 0
in our CB-type protocol. In this scenario, our protocol sim-
plifies to the CB with interleaved gates protocol for bench-
marking noisy Clifford gates. Variants of this protocol have
been discussed in previous works, such as Refs. [7,10,12],
with the exact version employed in Ref. [15] and utilized
in Sec. SV of Ref. [11]. However, given that this is a spe-
cial case, we will not dig into a comprehensive treatment
here.

In CB with interleaved gates, a noisy Clifford gate to be
characterized is modeled as an ideal Clifford gate followed
by a Pauli noise channel. Naturally we would want to learn
the Pauli error rates of the error. However, concatenation
of Pauli channels corresponds to convolution of Pauli error
rates, making it complicated to work with. Therefore, a
Fourier transformation is employed and the theory evolves
within the dual space. In the dual space, combine Eq. (6)
to a Clifford gate G we get the noisy version of it,

G=roG=2. 3 22000 @1 @)

Qepm

(a)

—
—{ <

—{ <

1. Prepare Pauli eigenstate

2. Apply repeated Clifford gates

3. Estimate Pauli observable

4. Obtain sum of log Pauli fidelities

5. Perform Fourier transform,
obtain Pauli error

—{ H—{ HA
—{ Fo—-{ HA

4€

O ULl W N =

CB with interleaved gates

(b)
N O
S EAT IO LA

. Prepare Pauli eigenstate

. Apply repeated MCMs

. Estimate Pauli observable

. Perform Fourier transform on measurement outcome
. Obtain sum of log Pauli fidelities

. Perform Fourier transform, obtain Pauli error

That is, the GT(Q) component of the input density matrix
is converted to the Q component of the output density
matrix and shrunk by a factor of A2 at the same time.
CB with interleaved gates repeatedly applies such noisy
gates for multiple times and measures the component in the
final density matrix. In addition, single-qubit Clifford gates
are interleaved between the midcircuit measurements to
ensure the correct concatenation of the transitions. Take the
simplest case where there are no interleaving single-qubit
Clifford gates as an example. Start with a noisy input state
(I +2£P)/2™ (AL is an unknown state-preparation noise
parameter), repeatedly applying the noisy Clifford gate /
times gives

~ (I + 5P [+ AEp9®) ... 39" P glp

2m 2m

If we then measure (with noise) the observable G'(P),

;
the expected value we get will be AA9P) .. Ag'P AR

1
P) .
where }\ff ) is an unknown measurement noise. Suppose

P is invariant under G, the expectation value becomes
AE(AP)AL,. In this case, by conducting experiments with
different / and conduct an exponential fitting, one can esti-
mate A" independently of the SPAM noise. For generic P
that is not invariant under G, since {G(P), G*(P),...} is
periodic, similar approaches can be used to estimate certain
product of Pauli fidelities SPAM robustly.

Inspired by this, we interleave single-qubit Clifford
gates between noisy MCMs. An illustrative example cir-
cuit is presented in Fig. 2. However, in our MCM scenario,
Pauli operators cease to be eigenvectors (cf. Lemma 1
and note the summation over y therein). In fact, prior
to the characterization, the eigenvectors are unknown,
so we cannot prepare and measure the eigenvectors as
in the CB with interleaved gates case. Hence we still
choose to prepare and measure Pauli observables, but
now simple interleaving is insufficient because multiple

AH R AH

3

Our protocol

FIG. 2. A comparison between CB with interleaved gates (a) and our protocol for characterizing MCMs (b). Here, blank gates
represent single-qubit Clifford gates. The quantum circuit in (a) is used to characterize a noisy CNOT gate, while the circuit in (b) is
used to characterize a noisy MCM (measuring the target qubit after applying a CNOT). The key difference between the two algorithms
is an additional Fourier transform on measurement outcome (highlighted in blue).
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FIG. 3. Comparison between the composition of noisy Clifford
gates [G in Eq. (21)] and noisy MCMs [7 in Eq. (13)] in the
dual space. (a) Composition of noisy Clifford gates (G = CNOT,
m = 2, n = 0, with no interleaving single-qubit Clifford gates) in
the dual space. The noisy Clifford gates take one Pauli operator to
one Pauli operator, so different paths cannot have the same start
point and end point in the same time (highlighted by blue dash-
dot lines), and thus they do not superpose with each other. (b)
Composition of noisy MCMs (G = CNOT, m = n = 1, with no
interleaving single-qubit Clifford gates) in the dual space. Mul-
tiple transitions are happening in the same time, so fix a start
point and an end point, there may be many paths (highlighted by
blue dash-dot lines) between them and these paths will superpose
together.

transitions occur simultaneously, superposing together and
yielding complicated results. In detail, if we perform many
experiments, group the terminating measurement results
according to the MCM results and average them, the corre-
sponding conditional expectation values are compromised
of many terms, each term is a product of Pauli fidelities.
This new phenomenon is illustrated in Fig. 3.

Details of the figure may be understood more easily
by referencing Sec. IV C. Each column of nodes corre-
sponds to a vectorization of a Pauli operator. An arrow
from column P to column Q represents |Q)) (P]| together
with the associated coefficients, which are Pauli fideli-
ties up to signs. In Fig. 3(a), arrows start at G'(Q) and
end at Q for Q € P™. Take Q = IZ for example, we have
G'(Q) = cNoTT - IZ - cNOT = ZZ and Q = IZ, so we get
arrows from ZZ to IZ. Similarly, in Fig. 3(b), arrows

start at GT(Q® Z") and end at Q® 2" for x,y € Z2
and Q € P". Take Q =1, x =1, y € {0, 1}, for exam-
ple, we have GT(Q ® Z*) = cNOT' - IZ - CcNOT =ZZ, 0 ®
7z e {ll,IZ}, so we get arrows from ZZ to II and IZ.
Arrows of a specific row represent all elements of G or
T of a specific time. By distributive law, the composition
(the product) contains all possible combinations of edges
from the channels. However, since the vectorized Pauli
operators are pairwise orthogonal, only consecutive edges
(paths) may have nonzero contribution to the prod-
uct since they correspond to the product of the form
[RY(QOI1ON(P] - - -, with coefficients omitted. Some of the
edges cannot form consecutive paths, indicating that their
contribution is completely eliminated by subsequent ran-
domized compiling, so if we want to learn them we should
change the interleaving single-qubit Clifford gates to make
them consecutive. If we specify a Pauli component of
the input state and a terminating measurement, only paths
of the specific starting point and end point will have
contribution to the probabilities.

To disentangle this superposition of different transition
paths so as to extract a single term, we need to apply
another Fourier transformation on the measurement results
in our data-processing procedure. It involves aggregating
the averages while incorporating the Fourier coefficients.
This is one of our new ideas, and further details will be
provided in Sec. IV C.

B. Pattern-transfer graph

Before formally introducing our protocol, we first need
to define the pattern-transfer graph, which is a directed
graph (V,E) where vertices V = Z5" corresponds to

Pauli weight patterns and edges £ = {eY = (ptGH O ®
Z),pt(Q Q@ Z2))|x,y € 7,0 € P™} corresponds to log
Pauli fidelities. An example of the pattern transfer for
G = CNOT (m = n = 1) is shown in Fig. 4. Our graph can
be viewed as a generalization of the pattern-transfer graph
defined in Ref. [15]. For comparison, the pattern-transfer
graph for G = CNOT in the CB with interleaved gates’ case
(m = 2, n = 0) is also included [25].

With pattern-transfer graph in hand, we need some tools
from graph theory [26,27] to exploit its power. A (directed)
path is an alternating sequence of vertices and edges,
Vg, €1, U1, . . ., €p, U, such that e; = (v;_1, v;).

Let ¢; € R. A 0 chain is a formal linear combination of
vertices ) _ €;v;, while a / chain is a formal linear combina-
tion of edges > _ €;e;. For example, — @) +2 (19 — () isa0
chain and ef | 4 2¢j, is a 1 chain (in this section, all graph
theory examples are considered for Fig. 4 left). We empha-
size that for pattern-transfer graph, vertices are elements in
Z2+™ (Pauli weight patterns), but the readers shall not con-
fuse 0 chain with addition in Z5*" as we never perform
addition on Pauli weight patterns in Z5*" sense. In the
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FIG. 4. Left: pattern transfer graph for G = CNOT. Here m = n = 1. The ancilla is the target qubit. This is the case for X measure-
ments using ancilla. As an example, the start point for e{)’l is pt(GT(II)) = 00, and the end point for e([)’l is pt(IZ) = 01. Right: pattern
transfer graph for G = CNOT. Here m = 2, n = 0. No qubits are measured, so the situation degenerates into the CB with interleaved
gates case. This graph can be found in [15]. Note that the rules are slightly different so the labels are different. See the footnote for

explanation.

previous example of 0 chain, we have circled the vertices
for the distinction. The edge space C is the vector space
over R formed by 1 chains, together with inner product
(X" €ier, > €le;) = > €€l. For example, e{l + 26{)(,0 eC
and (ef | 4 2¢5. ¢} +ef,) = 1.

The boundary operator 9 is a linear operator that
sends 1 chains to 0 chains such that if e = (u, v), then
de = v — u. For example, 3(ef| +2¢5,) = () — @) +
2( — @) = —@ +2@® — Q. The coboundary opera-
tor § is a linear operator that sends 0 chains to 1 chains such
that §(v) = ) €;e; where €¢; =1 if ¢; = (u,v) for some
u#v,¢=—1if ¢, = (v,u) for some u # v, and €, = 0
otherwise. For example, (@) = e}, — ef,. A cycle vec-
tor is a 1 chain with boundary 0. The cycle space Z
is the subspace of C formed by all cycle vectors. For
example, 3(6{51 + eil) =(@— @)+ (@ — @) =0,so0
el +ef, €Z A cut vector is a coboundary of some
0 chain. The cut space U is the subspace of C formed
by all cut vectors. For example, (@) = e{, —¢f, € U.
The following lemma describes the relation between C, Z,
and U.

Lemma 2 ([27], Sec. I1.3, Theorem 9). The edge space
C is the orthogonal direct sum of cycle space Z and cut
space U.

C. Protocol details
Now we present our protocol in details. For this we
make use of the pattern-transfer graph. For any given
path vo,erI',yl, v, .. ,er,fy,, v;, since pt(Q; ® 2) = v; =
pt(GT(OQi41 ® ZFi+1)), there exists H; € C®"+" (recall that
C is the group of single-qubit Clifford gates, so H;s are
tensor products of single-qubit Clifford gates) such that

Hi(Q: ® ) = GT(Qi1 ® Z5+1). (23)

We claim that the following protocol is able to estimate

i
log (Aﬁé (G' @1 ®Z"lp) A,%;,)
i=1
1
= log(G" (01 ® Z1)|p)) + Zlogkgfyi + log Ay}
i=1
(24)

(1) Prepare Pauli eigenstate: prepare an arbitrary but
fixed state p. Preferably, it has a large overlap with
the Pauli eigenstate (/ + Q1 ® Z*1) /2",

(2) Apply repeated MCMs: for i = 1,...,1, perform a
compiled MCM (we need to apply randomized com-
piling on the MCM to ensure that it follows our
noise model, see Appendix A 1 for details), record
the result m;, and then apply gate H; (no need to
apply gate H; for i = ).

(3) Estimate Pauli observable: perform a compiled ter-
minating measurement (again we need to apply
randomized compiling on the terminating measure-
ment to ensure that it follows our noise model, see
Appendix A2 for details) for observable O; ® 2
and record the result 7.

(4) Perform Fourier transform on measurement out-
come: repeat the above procedure multiple times
and estimate the expectation value
s=1FE [(_1)25:1 mi'(xi+J’i)r:|_

(5) Obtain sum of log Pauli fidelities: output log s.

Figure 5 illustrates the circuit used in the protocol. It turns
out to be mathematically convenient if we modify the pro-
tocol a little bit by adding another experiment to cancel
out the state-preparation noise. The modified protocol can
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FIG. 5.

Main circuit used in the protocol and the corresponding “walk” on the pattern transfer graph. We interleave MCMs with

the precomputed H;s and perform a terminating measurement in the end. The G'(Q; ® Z*1) component of the input state is multiplied

by )Lle‘,yl and transformed into the Q| ® Z”! component after applying the first MCM. This component is then twisted by H; into
G'(0» ® 7*2) and so on...In the end the component becomes Q; ® Z*, which is then estimated by the terminating measurement. In

terms of Pauli weights, this sequence corresponds exactly to the transversal of the nodes vy, . .

., vy along the specified path, with the

Pauli fidelities (edges) acquired along the way. Those unshown components of the evolving underlying density matrix do not affect the
result, as they are either undetected, eliminated by randomized compiling, or averaged out during data processing.

estimate

)\’UI i A ! ‘
log (A_% 1_[ }LXQ;YI, = —logh)y + Z log AZ" + log A}y
M = i=1

(25)

For the modification, simply replace step 5 by the follow-
ing:

(5*) Prepare p and perform compiled terminating mea-
surement for observable GT(Q; ® Z*1). Record the
result as /. Repeat multiple times and estimate the
expectation value ¢t = E[7/].

(6*) Output logs/t.

We note that the x;, y;, and Q;s are the input to the
algorithm. H;s can then be calculated via Eq. (23). The
circuits are then determined and executed nonadaptively,
independent of the measurement outcomes observed. The
final output is calculated based on the measurement out-
comes and the inputs.

In the following, we consider the modified version of
the protocol. First we prove that the output is indeed the
desired quantity.

Theorem 1 (Main result). For any path v, erf,yl S UL, e e ey
er,fy,, vy, the function —vg + Zle eg’,y,. + vy is learnable.

We note that our protocol outputs the path with its
two end points (SPAM errors). When the provided path
forms a directed cycle (i.e., vo = v;), one can immediately
see that the output Zle log ngyl. does not contain SPAM
error parameters since they have been canceled. In such

cases, one may also concatenate the directed cycle with
itself L times and run the protocol on the extended path
vo, €2 v, 2 v, €2 v, el v, (In
fact, as mentioned in Sec. IV A, this is the usual method
used in CB-type algorithms.) Then the protocol will output
L Zﬁ:l log Agfyi, from which one can retrieve the product
of fidelities. One can further perform the experiment for
varying L and run a regression to get the original product
of fidelities.

Proof of Theorem 1. 1t suffices to prove the correctness
of our protocol. The probability of observing MCM results
my,...,my is the trace of resulting unnormalized density
matrix

Py = (N Ty Hizy - - - Hy Ty | 0)). (26)

Here / means the identity matrix. Conditioned on observ-
ing this result, the quantum state is

T

Hi_y---HiT, |p). (27)

1

Hence by Lemma 7, the expectation of r conditioned on
observing the measurement results is

E [r|my,.. (28)

010310-10



GENERALIZED CYCLE BENCHMARKING ALGORITHM...

PRX QUANTUM 6, 010310 (2025)

Thus
E [(_1)2521 mi~(xi+yi),,] (29)
L o
= D P (CDZE IR [y, ] (30)
my,...,m €L;
v L Geitys
= Z W (=) Zim ) (0 @ 2T Hyy -+ - Hy Ty | 0) (31)
my,...;m €L
A i !
- M 1) iz M- (ityitai+by) P;
- 2 @n+m)l Z ( 1) ! ) ]—[)\'aiabi
my,...,m€LY,ay,....a] €Ly i=1
by bIGZg,Pl ..... PepP™
X (Q1® 2Py @ Z"W(GT(Pr @ Z) | Himy (Proy @ ZP1)) -+ (GT(Pr @ Z) p)) (32)
I
= Y JIMioma @i an P PY(GT (P @ Z1))), (33)
A yeeey a1€Zg i=1
Pq,..., PIEPm
where function f* takes value 0, £1 depending on the inner products
20 (4, a4 Py, Py)
= (0 ® Z"|P; @ Z"H ) (G (P @ Z) | H iy (Pr—y @ Z7-1 -1ty
(G (P ® Z)[H (P @ Z ). (34)

Equation (32) uses Lemma 1.

Next, we prove that only one term is left in the sum-
mation, thatis, /' (a1, ...,a,P1,...,P) = ]_[ﬁz1 8a;x:0P,0;-
Here, § is the Kronecker § function that takes value 1
only when its two subscripts are equal, and takes value
0 otherwise. We prove this inductively. If f* is non-zero,
then from the first inner product we have P; = Oy, a; = x;.
Since H;_1(Q1_1 ® Z-1) = GT(Q; ® Z), from the sec-
ond inner product we have P;_; = Q;_1, a1 = x;_1...In
the end we have P; = 0, a; = x;. Hence f is nonzero
only when P; = Q; and a; = x;, and it takes value 1 in this
case. Putting this result back we get

1
L oG x ;
E [(_1)Zi:1 mi-( ,+yl),,:| — )Lx/ll«g’r(Ql ® Z)|p) )‘inl,yi'
i=1

(33)

This is the expected value of s. On the other hand, by
Lemma 7 the expected value of #is A, (GT (01 ® Z°1)|p)),
hence log s/t is an estimate of the desired quantity. |

V. LEARNABILITY OF MCMS

We have seen in Theorem 1 that certain combinations
of Pauli fidelities can be learned using our generalized

(

CB algorithm. Now we show that, under our noise model
these turn out to be all information that can be SPAM-
robustly learned about noisy MCMs via any algorithm. For
this purpose, we develop a theory on the learnability of
MCMs, generalizing the framework from Ref. [15] about
the learnability of noisy Clifford gates.

To start with, let us formally summarize our noise model
assumptions:

(1) All single-qubit gates can be noiselessly imple-
mented.

(2) A set of multiqubit Clifford gates {G;} can be imple-
mented followed by (unknown) gate-dependent
Pauli noise channels {Ag,}.

(3) A noisy MCM {7} with (unknown) Pauli fidelities
{xe,y} can be applied.

(4) Anunknown but fixed initial state p can be prepared
[28].

(5) Any POVM can be measured following an
unknown (symmetric) Pauli noise channel A,,. See
Appendix A 2 for details.

(6) All Pauli fidelities of noise channels are strictly pos-
itive. All noise channels are not at the boundary of
the completely positive polytope.
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Assumption 1 is standard for randomized-compiling-based
protocols [5,6,21], and can be relaxed such that all lay-
ers of single-qubit gates have gate-independent noise.
Assumptions 2—4 can be enforced using randomized com-
piling. Note that, if we exclude assumption 3, the noise
model reduces to the standard Pauli noise model with Clif-
ford gates, for which the learnability has been studied in
Ref. [15]. We also remark that, it is straightforward to
generalize our learnability theory to allow multiple dis-
tinct noisy MCM gadgets. We omit that for conciseness.
Assumption 6 is mostly for mathematical convenience:
the first part basically says that the noise is not over-
whelmingly large; the second part ensures that all noise
parameters can be perturbed without making the noise
model nonphysical.

To learn the noise parameters in the noise model N =
{p,{Ag,}, {Agy},AM}, the most general form of experi-
ments one can perform is to prepare the initial state, apply a
sequence of gates and MCM gadgets, and perform a termi-
nating measurement. Any experiment maps a (realization
of the) noise model to a probability distribution over the
measurement outcomes (from both the MCMs and the ter-
minating measurements). We say two noise models Nj, NV,
are indistinguishable if for every possible experiment, they
yield the same probability distribution. Otherwise they are
distinguishable.

We are interested in which parameters of the noise
model are learnable from experiments. Formally, a func-
tion / on noise models maps a noise model A to a real
number, denoted as f (N). For example, a 0 chain can be
viewed as a function of noise models that reflects termi-
nating measurement noises () €;v;) (N) =Y €;log ).
Similarly, a 1 chain can be viewed as a function of noise

models that reflects MCM noises (Z egyegy) W) =

3 ey log .
A function f* is called learnable [15] if

VN1, N, @ N is indistinguishable from A5
= fN) =fN2).

Otherwise, f* is unlearnable. This definition is as expected,
because the ability to learn an unlearnable function
would imply the ability to distinguish indistinguishable
noise models, which leads to a contradiction. From this
definition alone, f* being learnable is only a necessary con-
dition for the existence of an experiment to actually learn
its value. Here we will prove that our learning algorithm
can indeed learn any of such learnable functions within
arbitrary precision. We also remark that a function being
unlearnable is a fundamental limitation for any learning
protocols, not just specific to CB-type protocols.

A. Learnability of Pauli fidelities

The protocol presented in Sec. IV C is important in
helping us understand the learnability of Pauli fidelities.
To make a complete characterization of the learnable
information, first we need the following lemma.

Lemma 3 (Lemma 1, Supplemental Material of
Ref. [15]). Denote the set of all learnable 1 chains by F7.
Then F; forms a linear subspace of the edge space C.

The lemma states that learnability defined above is
closed under linear operations. For completeness we
present a proof here.

Proof. Given any 1, uy € Fr, VN1, N3, Va # 0,

N is indistinguishable from N,
= V) = i N2) and o (V) = o (W)
= (1 +au)N) = (1 +ap)N2).  (36)

Thus @ + au, € Fr. Note that the last line uses the
linearity of 1 chains. |

Corollary 1. For any 1 chain u, i + o is learnable.

Proof. As a special case of Theorem 1, for any edge
e, e+ de is learnable. Hence by linearility, u + du is
learnable. |

Corollary 2. 1 chains in the cycle space Z are learnable.

Proof. For 1 chains u € Z, by Corollary 1, u+ du
is learnable. By definition of cycles, o = 0, thus w is
learnable. ]

We remark that our focus is on MCMs (1 chains), and
we are not interested in terminating measurement errors (0
chains). Thus the implication of Corollary 2 is that cycle
space can be learned unaffected by state-preparation and
terminating measurement noises, that is, SPAM robustly.

Furthermore, we will show that the cycle space is all the
information that can be learned SPAM robustly, and thus
our protocol learns all the information that can be learned.

Theorem 2. The protocol in Theorem 1 is complete in
the sense that the space of learnable information F; is equal
to the cycle space Z.

Proof. Z C Fy is already proved in Corollary 2, so it
remains to show that F; C Z. By Lemma 2, it suffices to
show that F is orthogonal to the cut space U. We will
show that every cut vector induces a gauge transformation
that convert one noise model to another indistinguishable
noise model. Since learnable functions should be invariant
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under such transformation by definition, we can conclude
that they should be orthogonal to the cut space.

Recall that a generic experiment begins with an initial
state p, followed by a sequence of MCMs interleaved by
single-qubit or multiqubit Clifford gates C; (if we extend
our noise model to include non-Clifford multiqubit gates,
they can appear in the circuit, too), and finally a terminat-
ing measurement. Assume that there are d layers of MCMs
with outcome denoted by my,...,my, and that the out-
come of the terminating measurement is denoted by m,,
the probability distribution of the outcomes is given by

Pr[m15 <., My, m*]

= Tr(Ep, (Cd o an o---0Cjo an o Co(p))). (37)

Here, each C; can be a layer of noiseless single-qubit gates,
or a noisy multiqubit Clifford gates, or a concatenation of
both. £, is the POVM element of the noisy terminating
measurement.

Thus we can see that, for any invertible linear map D,
the following gauge transformation does not change the
probability distribution.

p = D(p)
G+ DCD!

T — DT, D!
E; — (D7)'(E)

(38)

For a noise model N, we can use this to construct an
indistinguishable model N, from M.

Given any cut vector §(v) € U, since §(O_ v) = 0, with-
out loss of generality assume v = ) €,,v; has coefficient 0
on vertex (0),,,,. Let D be the Pauli diagonal map defined
by

VP e P"™  D(P) = n»® P (39)
for a positive n # 1. We hence need to verify that A5 still
satisfies all of our model assumptions:

(1) If C is a layer of single-qubit gate, it preserves the
pattern of any input Pauli operator [29], thus C; =
DC;D7!, i.e., single-qubit gates remains noiseless.

(2) If C is a multiqubit Clifford gate G; followed by a
Pauli noise channel Ag,, we have

DAGGD ™ = (DAGGD™'G)) G = A
(40)

which is still the same Clifford gate followed by a
Pauli channel.

(3) From Lemma 1, we can easily see that {D7; D'}
remains a compiled MCM (i.e., {DU; D~} remains
a uniform stochastic instrument), with Pauli fideli-
ties changed according to

10g )\'XQ,y = log }\‘XQ,y + (6pt(Q®Z,V) - Ept(gT(Q®ZX))) log 7)
=1log A2, + (3(v),€2,) logn (41)

Note that since e{)’o is always a self-loop on ver-
tex 0, the trace-preserving condition log )“6,0 =0is
preserved.

(4) The initial state transforms from p to D(p). For
the terminating measurement, if the ideal POVM is
{F;}, its noisy implementation is {AL(FJ-)} where
Ay is a symmetric Pauli channel. The transfor-
mation results in Ay — AyD~!, which is still a
symmetric Pauli channel.

(5) Finally, it is not hard to see Assumption 5 still holds
under the transformation, as long as 7 is sufficiently
close to 1.

Thus N satisfies all of our assumptions. Moreover, for any
1 chain u, thanks to Eq. (41) we have

uN2) = (N + (8(v), ) log n. (42)

Hence if u € Fy, by the definition of learnable functions,
we must have (§(v), u) = 0. This completes the proof. W

B. Learnability of Pauli error rates

Theorem 2 gives a complete classification for the learn-
able Pauli fidelities. Since Pauli error rates have a clearer
physical meaning, naturally we would ask for a classifi-
cation for the learnable Pauli error rates. In this subsec-
tion, we give a partial classification under low noise rate
assumption. Under low noise rate assumption, the Pauli
fidelities are close to 1, thus we can make approximation

1 b
pib = yrE Z (—l)ax+by+(P,Q>)\xQ’y (43)
xyezy,0ePm

1
~ 4n+m Z

x,y€Zy,0eP™

(_1)a»x+b~y+(P,Q) (1 + 10g )\‘xQ,y)

(44)
1
— e Z (_ 1)a~x+b<y+<P,Q) log )\‘xQ,y
x,yeZS,QEP’”
+ 84,085,001 (45)

Equation (44) uses the fact that whenx ~ 1,x ~ 1 4 logx,
and the § in Eq. (45) means the Kronecker § function.
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As an example, the learnable Pauli error rates for n =
m = 1 MCMs with G = CNOT are

P{,laplz,lapflspl)fl

Poo +Pi0rh1 +plo+ P51+l

Pf{o —p({o,pfo —P1Y,0apéf1 —P({pl’(ﬁ —Poz,l

Poa +Plo — Poo-Poy +Pio + P00 Poo + P10+ Poy-

More generally, we have the following propositions.
Proofs are deferred to Sec. C.

Proposition 1. YG,P,NYa # 0,b # 0:1’5,1) is learnable.

The proof is existential, but Corollary 1 also suggests a
concrete way to learn this quantity. Specifically, one can
learn each log Agy as in Eq. (45) together with its end point
using our protocol. Thanks to Corollary 1, the end points
will cancel as we sum up all the estimators. Alternatively,
one can try to directly decompose Eq. (45) into sum of
cycles. As a concrete example, we give the protocol for
learning p{ | when G = CNOT (the setting for Fig. 4). p{ |
can be decomposed as

16}7{31 R log)ué’o + (log)\)ftl + logk{l + log)\({o + log)\g’l + log)»f{o

+ logkéO + logkél + log)»il + log)»lz,l) - (log)»({1 + log)fl(,o + log)»g,1

+ log )»{{1 + log )‘{,o + log Ag’l + log )»11’0 + log )»f),l + log )‘%,0 + log Ag’l). (46)

We note that the first term, log )‘6,0 is fixed to be 0, so we
only need to apply our protocol 2 times to learn the second
and the last term.

An important application for MCMs is syndrome mea-
surement. In this case we measure the stabilizer S by
introducing an ancilla, perform a Hadamard gate on the
ancilla, apply controlled S using the ancilla as control,
and then apply another Hadamard transformation on the
ancilla and measure the ancilla. See Fig. 6 for an illustra-
tion of the ideal Clifford gate G in the case when we want
to measure stabilizers S, ...,S, simultaneously. Similar
noise extraction under syndrome measurements settings
have been studied in Refs. [30,31], though under different
noise assumptions.

The following two propositions consider this case. For
k € 72, define S¥ = []S}. Denote the set of Pauli opera-
tors that commute with all stabilizers by Cpm (S).

Proposition 2. YP € Cpn(S), Zkezg pg’lgp is learnable.

H = —G
—{Hf——{H
FIG. 6. [Illustration of the ideal Clifford gate G for syndrome

measurements. Here we take n = 2.

The summation over k € Z/ can be intuitively under-
stood as the following. Since we are measuring stabilizers,
it makes no effect if we randomly apply some stabilizers
before the measurement. Without loss of generality sup-
pose we indeed applied the random stabilizers. Then errors
that differ by stabilizers become equivalent, thus only their
average error rates can be learnable.

We note that when S} = --- =S, = I, or equivalently,
G =1 and we are implementing a subsystem measure-
ment, this proposition shows the learnability of p(I)’O, which
is the process fidelity between the uniform stochastic
instrument and the ideal subsystem measurement [32].

As another special case, when n = 0, no stabilizers are
measured. By the requirements on G, G must be identity.
Now Cpm(S) = P™, and this proposition degenerates into
the fact that for an isolated Pauli channel, every parameter
is learnable.

Proposition 3. VP € Cpn(S), VYa # 0, Zkezgp({’;” +

kp .
p3 L is learnable.

The summation over k € Z originates from the random
stabilizer intuition. The intuitive meaning of summing p(‘i B
and pi o together is that we cannot distinguish between
wrong but consistent with postmeasurement state result
and a correct but inconsistent with postmeasurement state
result. These two possibilities can only be learned as a
unity.
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VI. APPLICATION: TESTING THE
INDEPENDENCE OF MEASUREMENT AND
STATE PREPARATION

In Sec. IIIB we described the measure and prepare
instrument model. The key assumption we made is that
the measurement and the subsequent state preparation
are independent and suffers from uncorrelated noises. In
experiment, we can test whether the assumption is true or
not by checking the additional structures of the model. To
see why we can do this, we need more understanding on
the structure.

/Q = {xQ‘i:y
the corre-

Lemma 4. 3¢, st. Vx,y € 25,0 € P,

if and only if Vxl,xz,yl,yz € ZZ,Q cpPm,
lation cKQMC2 1y, o= log M 3, +log )"62 4, — log )Wzm — log

XIYZ _O

Proof. The only if part is easy. Suppose 3¢,& s.t.
Vx,y € 25,0 € P™, A /y = éyQ, then for Vxi,x2,y1,)2 €

75,0 € P™,
log Ax1 y, T log sz , — log sz 4y, — log Avl » 47)
= log {xl + log SyQ] + log -+ logé log
—log&? —log ¢2 — log gQ =0. (48)
Conversely, for the if part, setx; =y, =0, x; =x,), =y

we have

log )2 =log 25 +log A, — logagy.  (49)

Thus we can set ;x =2 / 0> éy = ké)Qy / AE)%, prov-
ing the result.

From Lemma 4 we see that to test the independence of
measurement and state preparation, we can equivalently
test whether the correlations are all zero. Furthermore,
these conditions are learnable information and hence are
indeed verifiable.

Lemma 5. Vx y € Z5,Q € P, log Axl » tlog )\'XZ oy —

log sz » — log Axl », 18 learnable.

Proof.

J ( gm + eXzyz erz,y - eng)
= —pt(G"O® Z)) +pt(Q ® Z))
—pt(GT(Q® ) +pt(Q ® Z3)
- pt(GT(O®Z)) +pt(Q ® 7))

—-ptGTO®Z)) +pt(Q® 7)) = 0. (50)

Since ¢y, vy pyp, = TCoxpyryy = Ty 10 CXPETl-
ments we need only to estimate for x; < x; and y; <y,
(comparison under alphabetical order).

VII. NUMERICAL SIMULATIONS

In this section, we perform numerical simulations for the
simple example of G = CNOT and m = n = 1, which is a
basic gadget for syndrome measurement.

A. Learning Pauli fidelities

We randomly generate a noisy quantum instrument and
simulate our (modified) protocol on it. For each of the
cycle basis, the way we learn it is to concatenate the cycle
multiple times in the main circuit (steps 1—4) so that the
cycle becomes of length £ = 12 (i.e., 12 MCMs in each of
the main circuit). We assign values for the random vari-
ables in the randomized compilings 100 times. This results
in 100 random circuits, which we call compiled circuits,
and for each compiled circuit we sample 100 shots. We
take the same number of shots for the auxiliary circuit
(step 5), so in total N = 20000 shots are taken for each
data point. We then process the data to get the geometric
mean of the Pauli fidelities in the cycle basis. The standard
deviations of the obtained results are calculated through
bootstrapping. Our results are shown in Fig. 7.

In the setting above, the variance can also be estimated
theoretically. Suppose s, 7, A are all sufficiently close to 1,
the variance is roughly given by [33]

Var [e Liog %] ~ Var s—t _ Var(s) + Var(?)
¢ Iz

_1—E[sP+1-E[]
B (2N /2
L= A 1= 2(1—A9)
B 2N /2 RE)

A2(1 — A2

M_ (51)

IN/2

Here ¢ = IL is the number of MCMs used in each shot,
N is the total number of shots used for estimating s and ¢,
and 1o = (GT(0, ® Zx1)|,0)))LX/Z, is a constant related only
to SPAM errors. We have used the assumption that the
noise rate is small, so s and ¢ concentrates around values
close to 1.

B. Testing independence of measurement and state
preparation

We then simulate the experiment of testing the inde-
pendence of the measurement and state preparation, as
described in Sec. VI. We randomly construct a quantum
instrument for a noisy MCM and apply randomized com-
piling on it. A noisy MCM with independent Pauli channel
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Learned geometric averages of fidelities in cycles
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FIG. 7.

Simulation results in Sec. VII A. There are 13 learnable degrees of freedom, each corresponds to a cycle. The x axis shows

the corresponding cycles while the y axis shows the learned geometric average of the fidelities in the cycle. The learnable information
Al is omitted here since it is always 1. The error bars represent one standard deviation.

noise before and after measurement (a measure and pre-
pare instrument) is used for comparison. The two MCMs
have roughly the same noise level and we simulate our test
for them. Specifically, we learn the correlations coQ,1,o,1 for
Qe {l,X,Y,Z}. Because of the antisymmetry of the cor-
relations, these are all the correlations that we need to test.
We use an approach slightly different to the previous part
to learn the correlations. For each correlation, we learn the
4 log fidelities separately using the (modified) protocol and
add or subtract them together. By Lemma 5 we know that

General compiled MCM

0.0015 = W(

0.0010 1 ‘MV 1 I
l i |

- 0.0005 1
o

0.0000 1
—0.0005 A

—0.00104 A true values

’ ¥ learned values
i X y z
Q

FIG. 8.

the boundaries will cancel out. For compiled MCM, 100
compiled circuits are used for the main circuit, each with
20000 shots. 2000 000 shots are used for the auxiliary cir-
cuit, so one log fidelity is learned using 4 000 000 shots.
The same number of shots are used for measure and pre-
pare instrument. The standard deviation is estimated via
bootstrapping. Our results are shown in Fig. 8. One can
see that our criteria judges the independence nicely. We
note that the true values are always non-negative because
of the positivity requirement of the quantum instruments.

Measure-and-prepare instrument

Ao true values

0.0015 1 ¥ learned values
0.0010 A
- 0.0005 A y
0.0000 14 2 e 4
—0.0005 1 }{ w’( WOT
—0.0010 4 +
0.0010 1
1 X ;/ z
Q

Simulation results in VII B. The left side shows the estimated correlations of a general compiled MCM while the right side

shows that of a measure and prepare channel. The y axis represents the learned values of the correlation cg Lo0.1- The x axis indicates
the corresponding Q. The error bars represent one standard deviation. Logarithms are in base e.
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C. Learning Pauli error rate

Finally we learn the p{,l of a random quantum instru-
ment. The method has already been used as an example
in Eq. (46). We learn the two terms in Eq. (46) by the
(modified) protocol, each with 100 compiled circuits for
the main circuit and we take ten shots from each of the
compiled circuits. 1000 shots are taken for the auxiliary
circuit. We repeat the above experiment 10 times and use
their mean as output, so in total 40 000 shots are taken.
The standard deviation is estimated from repetitions. In our
simulation, the true value for pf’l is 2.79 x 1074, while

our learned value is 2.60 x 10~ with estimated standard
deviation 0.55 x 1074,

VIII. DISCUSSION AND OUTLOOK

In this work, we conduct a comprehensive investigation
on learning noisy MCMs. Using graph-theoretic tools, we
can determine all the learnable degrees of freedom for a
compiled MCM, and design a CB-type protocol to learn all
learnable information. We demonstrate our learning proto-
col in a numerical example. As an application, we illustrate
how our protocol can be used to test the independence
between measurement and state preparation for an MCM.

Our results put forward a fundamental limit on charac-
terizing randomly compiled MCMs. Namely, we show that
certain parameters are coupled with gauge transformations,
thus cannot be precisely learned SPAM robustly. In prac-
tice, it could be desirable to obtain knowledge about those
“unlearnable” degrees of freedom. For example, one might
want to know whether the dominant error is in the mea-
surement readout or in the postmeasurement state, which
might provide insight on how to improve the hardware
design. Solving such a problem would require additional
assumptions to anchor the gauge, e.g., assuming noise-
less state preparation or terminating measurements, or use
the physicality constraints as investigated in Ref. [15].
How to characterize MCMs efficiently under such physical
assumptions requires dedicated exploration in the future.

Moreover, the concatenation technique discussed at the
end of Sec. IV C may not always be applicable. In Sec. V A
we proved that all the learnable information are cycles.
For CB with interleaved gates, we can prove that the
connected components of the pattern-transfer graph are
strongly connected. As a consequence, it permits a directed
cycle basis, meaning that all the learnable information can
be decomposed into directed cycles and thus concatenated.
However, we cannot obtain similar results for our protocol.
Whether the entire cycle space can be learned through con-
catenation (i.e., whether the pattern transfer graph admits
a circuit basis) remains an open question.

Finally, although we have given a complete characteri-
zation of the learnability of noisy MCMs in terms of Pauli
fidelities, we are only able to give a partial characterization
for the learnability of Pauli error rates with three special

cases in Sec. V B. For noisy Clifford gate, in contrast, the
learnability of Pauli error rates and Pauli fidelities are basi-
cally the same, thanks to the fact that the cycle space is
invariant under Walsh-Hadamard transform (see Sec. D for
details). Such a property breaks down when we include
MCMs. Therefore, a more comprehensive and physically
motivating understanding of the learnability for Pauli error
rates is left for future investigation.

Note added. Recently, an independent work proposed a
similar algorithm [34].

The code for numerical simulation can be found at
https://github.com/zhihan-z/MCM_ Learnability.
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APPENDIX A: RANDOMIZED COMPILING
1. Randomized compiling for MCMs

In this section, we explain how randomized compiling
techniques can reduce a general quantum instrument M =
{M,} into an instrument 7 = {7}} that fits our model.
The scheme we adopt is a simple variation of the scheme
proposed in Ref. [21]. Figure 9 illustrates our randomized
compiling scheme.

Specifically, we choose P € P", a, B,y € Z5 uniformly
randomly and define operator P; ® P, = GT(P ® ZPX ).
We apply gate P ® P,, followed by the noisy MCM
M, and then gate P ® X*Z". The classical output from
the MCM is added by « to form the measurement result
of the compiled channel. We make the assumption that
all single-qubit unitaries can be implemented noiselessly.
This is justified by the fact that noises of multiqubit

m -
EP@?y,z

k+a

FIG. 9. Illustration of the randomized compiling scheme.
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operations are usually much higher than that of single-
qubit operations. Then, after the compiling, the effective
instrument becomes

Ti= E [(PR®X*Z)Mi—o(G'(P® ZFX*)G)]

Po,By
(AT)
= E [(P@X*2) M.l (P@ 2 X0
S0P,y
(A2)

Here, gates and channels are used interchangeably. To
simplify, we need a lemma from Ref. [21].

Lemma 6 (Theorem 2, Ref. [21]). The following ran-
domized compiling twirls a general quantum instrument
M = { M} to a uniform stochastic instrument {{4;}:

LE [P 2)MeuG'(P @ 28 X)) = U
S0PV
(A3)

Intuitively, the random « averages over different abso-
lute measurement outcomes, making the A, in Uy
[Eq. (9)] independent of k£ and depends instead only on the
relative differences @ and b.

From Lemma 6, we immediately see that 7; = UG
and thus justifies our model. We note that this compiling
scheme is slightly different from Fig. 5 of Ref. [21] as we
are not allowed to insert twirling gates between the Clifford
gate G and the subsystem measurement since we assume
that they are implemented as a whole.

2. Randomized compiling for terminating
measurements

We model a terminating measurement as a (special)
Pauli channel A, followed by an ideal terminating mea-
surement. The Pauli channel here has the form

Au= Y I
Fepntm

(A4)

One can immediately see that this Pauli channel is special
in the sense that the Pauli fidelities are indexed by Pauli
weight patterns instead of Pauli operators. We note that this
is for mathematical convenience, and our proof also works
for general Pauli channels.

Again, our noise model can be realized via randomized
compiling. Assume the noisy terminating measurements
implemented can be viewed as an arbitrary channel £/
followed by an ideal terminating measurement. Then we
can use the standard randomized compiling [5] techniques
to twirl the noise into a special Pauli channel AY. More
specifically, suppose we want to measure observable E,
then we shall select a random H € C®"*" apply gate H
and then measure in H (E) basis.

Lemma 7. If we use the above compiled terminating
measurements to measure observable £ € P"" on p, then
the expectation of the result is Aﬁ;(E) {(E|p)). Here Ay, are
actually Pauli fidelities of the terminating measurement
noise. It is indexed by Pauli weight patterns.

Proof. The expectation value is

E [Tr(H(E) - € o H(p))]

Hec®ntm

:Tr(E E

HeC®n+m

[HToE o H(p>]) = a7 (Elp).
(AS)

The second equality is the direct consequence of Schur’s
lemma [35] as in standard randomized compiling. |

APPENDIX B: STRUCTURE OF THE
MEASURE-AND-PREPARE INSTRUMENTS

In this section, we formalize the definition of measure-
and-prepare instrument and express it in the dual space.
The process is shown in Fig. 1(c) and follows the descrip-
tion in Sec. I B.

We start with a uniform stochastic instrument [we use
the dual-space form Eq. (20) here]. Without the Clifford
gate G, a uniform stochastic instrument is

1
U= 2

x,yeZg,QEP’"

(DL 10® Z') (0 ® Z¥).
(B1)

Suppose we obtain the measurement outcome %, which
corresponds to U being applied. A measure-and-prepare
instrument corresponds to tracing out the ancilla register,
followed by a preparation of fresh ancilla with X correc-
tion [Fig. 1(c)]. Our goal is to derive the dual-space form
of this process.

First, tracing out the ancilla register in U, we get

Y =nglonio ez

ezl 0P

1
- 2n+m

2n+m

Y =D lIoN0® 2.

ez, 0eP™

(B2)

Here we have defined ;‘XQ = )‘go- Next, we model the state-
preparation procedure as preparing a perfect initial state
|0™) (the computational basis state where all qubits are
zero) followed by a Pauli noise channel, so the next step
is to put the refreshed ancillas in,
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1
w2 CDloez)0ez. (B3)

x,y €Ly, QP™

For the Pauli-noise channel, denote its Pauli fidelity for Q ® Z” by SyQ. Applying this noise, we get

1
o 2 (CDMePELIoe 208 7' (B4)

X,y €Ly, QeP™

Apply the NOT gates X *, we get the effective channel for measurement result k

U=— T D00 )08 7. (B5)

= 22n+m
x,yeZg,QEP’"

{U;} is the measure-and-prepare instrument expressed in dual space. Compared with Eq. (13), one can see that {{{]} is also
a uniform stochastic instrument, with the additional structure

0 _ ;080
My =608y (B6)

i.e., the Pauli fidelity is factorized into a product.
In terms of error rates, define ¢ and r as the inverse Fourier transformation of ¢ and & over 7}, respectively,

1
qg = on+2m

1
D G e S R DR Gl Dt 18 (B7)

xEZg,QEP’” erE‘,QeP”’

g and r corresponds to the Pauli error rates for the measurement-and-prepare process, respectively. The inverse
transformations are

I S S (B8)

acly . PepP™ aclZy PepP™

And we have

1
p:;) = pre Z (_l)a-x+b')/+<P,Q>k;’Q)) (B9)
x,yeZg,QEP”’
1 b y+(P
= pree Z (_l)ax+ v+ ,Q>§xQ§yQ (B10)
x,y €Ly, QeP™
- ST (P00 PO 0120 B11)
n+2m X y
4 x,yEZg,Ql ,0p ,PeP™
= ; Z (—l)a'x+b'y+<P’Q1>+<PP1’Q2)§Q1§Q2 (B12)
n+2m X 2y
4 x,y€Z5,01,07,PEP™
1 a-x+(P,0) -0 1 b-x+(P,0) O
= Z on+2m Z (=D é‘)c W Z (=D %_ (B13)
Py-Py=P xezZl QePr xez4,QeP”
= 2 @' (B14)
Py-Py=P
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Equation (B11) uses the fact that ) p_pm (—1)7€192) is nonzero only when 0y = O and takes value 4™ in this case. By

plugging in this equation to Eq. (8) we get the physical space expression of the measure-and-prepare instrument.

Uy = > g (P @ [k + b)) (k + al).

a,beZ PEPM Py -Py=P

APPENDIX C: PROOFS FROM SEC. VB

Proof of Proposition 1. It suffices to show the corresponding 1 chain is in Z.

1
§ x+b-y+(P,
4n+m (_1)‘1x i Q>e)%’

x,y€Zy,0eP™

LY (O G (@ 7)) + pQ ® 2)

- 4n+m
x,yeZg,QeP’”
1 .
=g 2 L@l Qez) Yo (-1
x€Z5,0eP™ vez!
1
2 LY ez) Y (- =o.
YEZy,0eP™ x€Z

(B15)

(CI)

(C2)

(C3)

Note that the addition of Pauli weight patterns are performed in the sense of 0 chains. Equation (C2) uses the definition of

boundary operator and Eq. (C3) uses the fact that when a # 0 and b # 0, Zy ez (=P = szzg (=DH** = 0.

Proof of Proposition 2.

1 k
E _1\{8*P.0) 0
( 1) ex’y

4n+m
x,y,keZS,QEP’”

1 k
_ _1\{.0) 9,0 _1\{8%0)
= 2 (D72 y =D

x,yeZZ,QeP’” kezg

2)’1
Y HP2>—puG"Q®ZY) +pi(Q® 2")

= 4n+m
x,yeZZ,QeCfpm (S)

2n
=om 2 CDPOEpSO® ) +piQ® 2)

x,yEZg,QGCpm S)

1 " . 1 ’
=-w 2 WMoz + o Y DPOp0e2)

4m
x€Z5,0eCpm(S) YeZ5,0eCpm(S)

1 . o1 N
=-w 2 COVOmezy+ o Y D"z =o.

x€Z5,0eCpm(S) x€25,0eCpm(S)

(C4)

(C5)

(Co)

(C7)

(C8)

(C9)

Equation (C6) uses the fact that Zkezg(—l)“k’Q> is nonzero and takes value 2" only when Q € Cpn(S) and Eq. (C9)

makes a substitution Q +> S*Q for the first term and also uses the fact P € Cpn(S).
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Proof of Proposition 3.

1 k . “
reriD DR G Dl (Co Vb G bR 2 (C10)
QeP™ x,y kel
1
= o 2 CDPOLEDT  (=D)™9ed, o (- (C11)
QeP™ x,yeZl kezj
2n
=2 2 EDPPIEDT (=)™ 06, (C12)
QECpm (S),x,y€Zg
2’1
= 2 CDPPLEDT DS ® Z)
Q€C7;m (S),r,yeZ;
2}1
o 2 CDPYLEDT (D0 e Z) (C13)
QECpm (S),x,yEZg
1 1
— _4? Z (_l)a.x+(P,Q>pt(SXQ ® ZX) + 4_m Z (_1)a<y+<P,Q)pt(Q ® Zy) (C14)
0eCpm(S)xeLs 0eCpm(S).yeZl
1 x 1
=% 2 ez + - 3 D™POpoez) =0. (C15)
0eCpm (S),xezg 0eCpm (S)yxezg
Equation (C12) uses the trick similar to Eq. (C6) and Eq. (C15) uses the trick similar to Eq. (C9). |

APPENDIX D: INVARIANCE OF CYCLE SPACE
UNDER WALSH-HADAMARD
TRANSFORMATION

In Ref. [15], the authors made a conjecture about the
learnability of Pauli error rates for noisy Clifford gates.
They conjectured that in this case, the cycle space is invari-
ant under Walsh-Hadamard transformation. That is, for a
learnable cycle, if we substitute the log fidelities by the cor-
responding Pauli error rates, the resulting quantity about
Pauli error rates is also learnable (under first-order approx-
imation). Though noisy Clifford gates is not the focus of
this paper and from Sec. V B obviously this special prop-
erty no longer holds in our generalized case, to complete
the physical vs dual-space picture, in this section we give
a proof for this conjecture.

We note by the way that though in a different language,
Lemma 3 in Ref. [12] effectively gives a constructive proof
for the theorem for the special case where no interleaving
single-qubit Clifford gates are allowed. But in this section,

/
1
— —1){Qx:R)
3 " (—1)ORek

k=1 ReP™

(

we follow the nonconstructive proof fashion in Sec. V B to
prove the general theorem.

Once again, we emphasize that in this section we follow
our convention and model the noise as happening after the
Clifford gate, so our definition of pattern-transfer graph is
different from that of Ref. [15]. Reference [15] has proved
that for Pauli fidelities, the cycle space is learnable while
the cut space is unlearnable, and their results are still valid
using our convention.

Theorem 3. For a cycle vy, e, vy, ..., e, vy, Zi:l
p% is learnable.

Proof. Since we are considering a cycle, view the sub-
script 0 equivalent as the subscript /. By definition of
pattern-transfer graph, 3H,,...,H; € C®" (C is the group
of single-qubit Clifford gates) such that Hy_; Or—1H, 111 =
G'0;G. Then it suffices to prove the learnability of the
corresponding 1 chain.

(D1)
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= Z aeRZ( 1)(QeR)

Repm

== Ly pt(R)Z( 1){Qek)

Repm

= Z pt(R) Z( L Z pt(R) Z( 1)(GHe-19k- \H] G ,GRGT)

Repm

= Z pt(R)Z( )0k —

Rer

= Ly pt(R)Z( 1)(QeR) —

Repm
=0.

Equation (D3) uses the definition of pattern-transfer graph
for cycle benchmarking. Equation (D4) makes the sub-
stitution R — GRG'. Equation (D5) uses the fact that
conjugating by the same Clifford gate does not change the
commutation relation. Equation (D6) makes the substitu-
tion R — Hk,lRH,j_l and uses the fact that single-qubit
Clifford gates do not change patterns. ]

By simple counting of degrees of freedom, [15] proved
that Theorem 3 implies that the learnability of Pauli error
rates are also completely characterized by cycle space.
That is, the cycle space is the space of all learnable about
Pauli error rates.
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