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Generalized measurements, also called positive operator-valued measures (POVMs), can offer advan-

tages over projective measurements in various quantum information tasks. Here, we realize a generalized

measurement of one and two superconducting qubits with high fidelity and in a single experimental setting.

To do so, we propose a hybrid method, the “Naimark-terminated binary tree,” based on a hybridiza-

tion of Naimark’s dilation and binary tree techniques that leverages emerging hardware capabilities for

midcircuit measurements and feed-forward control. Furthermore, we showcase a highly effective use of

approximate compiling to enhance POVM fidelity in noisy conditions. We argue that our hybrid method

scales better toward larger system sizes than its constituent methods and demonstrate its advantage by

performing detector tomography of symmetric, informationally complete POVM (SIC POVM). Detector

fidelity is further improved through a composite error-mitigation strategy that incorporates twirling and a

newly devised conditional readout error mitigation. Looking forward, we expect improvements in approx-

imate compilation and hardware noise for dynamic circuits to enable generalized measurements of larger

multiqubit POVMs on superconducting qubits.
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I. INTRODUCTION

Measuring information accurately and efficiently from

inherently probabilistic systems is a central challenge of

quantum physics. Projective, or von Neumann, measure-

ments are often used in experiments because of their com-

paratively simple realization on many quantum computing

platforms [1]. At the same time, they can be suboptimal

in such tasks as quantum state discrimination [2,3], where

no projective measurement can unambiguously tell two

nonorthogonal states apart with a single shot. General-

ized measurements or positive operator-valued measures

(POVMs) define the most general framework for quantum

measurements, including projective measurement as a spe-

cial case. Among various broad areas [4–6], POVMs allow

for unambiguous state discrimination [2,7], optimal state

tomography [8,9,11], entanglement detection [12], Bell’s

inequalities [13], quantum machine-learning algorithms

[14], and improved observable estimates in variational
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quantum algorithms [15]. Therefore, it is crucial to have

a deterministic protocol, which can be realized in a single

experimental setting to implement a general POVM [16].

Despite the high utility of POVMs, realizing them on

superconducting quantum systems is challenging. In prin-

ciple, any POVM can be realized by a projective mea-

surement in an extended Hilbert space through Naimark’s

dilation [17,18]. Recent efforts involved embedding the

system in the qudit space of superconducting qubits [19]

and trapped ions [20]. However, this requires efficient

discrimination of qudit states, which adds a level of exper-

imental complexity and suffers from readout errors. Alter-

natively, a POVM may be realized by coupling the system

to a number of auxiliary qubits that scales with the size of

the POVM [21,22]. Such implementations, however, raise

concerns about circuit complexity and, hence, scalability

to multiqubit systems. For instance, the large number of

auxiliary qubits required for Naimark’s dilation may not

be readily available or directly connected to the qubits one

intends to measure. Overall, Naimark’s dilation encounters

practical implementation issues due to the complex unitary

operations required in the extended Hilbert space.

A promising alternative is a binary search, which

employs only a single auxiliary qubit to realize general

multiqubit POVMs [23,24]. It involves a sequence of

conditional two-outcome POVMs, requiring cutting-edge

2691-3399/24/5(3)/030315(16) 030315-1 Published by the American Physical Society



PETR IVASHKOV et al. PRX QUANTUM 5, 030315 (2024)

hardware capabilities such as midcircuit measurements

and feed-forward control [25,26] comprising “dynamic”

or “adaptive” circuits. This scheme has been recently

demonstrated in a specialized experiment with a single

microwave cavity coupled to a transmon qubit [27]. How-

ever, extending the implementation of this scheme to

multiqubit programmable quantum processors requires cir-

cuits with potentially large depths and many feed-forward

operations that limit its fidelity.

To address the limitation imposed on POVM fidelity by

circuit noise, we propose a novel method for single-setting

POVMs on multiqubit systems using dynamic circuits.

Furthermore, we introduce innovative use of approxi-

mate compiling to implement measurements, enhancing

POVM fidelity under noisy conditions [28]. In Sec. III,

we present a hybridization of Naimark’s dilation with

the binary search—an approach that we call “Naimark-

terminated binary tree.” Our hybrid method results in

shorter-depth circuits and scales better toward larger sys-

tems. In Sec. IV, we implement all three methods on

an IBM quantum device and demonstrate the advantage

of our hybrid approach by performing detector tomogra-

phy of symmetric, informationally complete POVM (SIC

POVM) [8,9]. Using our hybrid approach with a compos-

ite error-mitigation strategy, including twirling and newly

devised conditional readout error mitigation (CREM), we

improve the fidelity of two qubit SIC POVM to 70.4 ±
0.1% from 52% and 40% of bare Naimark and binary-tree

approaches, respectively. Our code and data are available

in the Supplemental Material [10].

II. POVM

Formally, a POVM is a set F = {Fi} of M positive

semidefinite Hermitian operators, called POVM elements.

Each element Fi corresponds to a measurement outcome i

with probability P(i) = Tr(Fiρ), where ρ is the state of

the system. POVM elements must satisfy the complete-

ness relation
∑M

i=1 Fi = I to have a normalized probabil-

ity distribution. Unlike projective measurements, POVM

elements are not necessarily orthogonal. We restrict our

attention to POVMs whose elements are linearly indepen-

dent rank-one operators Fi = |ψi〉〈ψi| where |ψi〉 is not

necessarily normalized. Any higher-rank POVMs can be

obtained by relabeling and mixing the outcomes of rank-

one POVMs with a maximum of d2 elements, where d

is the dimension of the system [29]. Note that a POVM

defines only the measurement statistics P(i) but not the

postmeasurement state of the system, which depends on

how the POVM is realized. In fact, we disregard the

postmeasurement state in applications like observable esti-

mation or quantum state tomography (see Appendix E),

where the system is measured only once at the end of the

experiment. Therefore, this paper focuses only on mea-

surement statistics. This allows us to measure both the

system and the auxiliary qubits directly using Naimark’s

dilation and achieve a higher fidelity than binary search at

the cost of destroying the postmeasurement state.

III. NAIMARK-TERMINATED BINARY TREE

In this section, we propose a novel combination of two

previously known methods for general POVMs, binary

search and Naimark’s dilation. This new hybrid scheme,

the Naimark-terminated binary tree, is more efficient than

its constituent methods. In a nutshell, we perform the

binary search by repeatedly dividing the set of POVM ele-

ments in half to narrow down the search range. When the

number of remaining POVM elements corresponds to the

dimension of the compound system and auxiliary Hilbert

space, we interrupt the binary search and apply Naimark’s

dilation.

We begin with the binary search. As originally detailed

by Andersson and Oi [23], binary search can realize gen-

eral POVM with only a single auxiliary qubit. It, therefore,

reduces the complexity of manipulating an extended sys-

tem and saves the quantum memory space when M is large.

We adopt the notation from Shen et al. [24] to briefly

outline the key steps below; see Appendix H for the full

treatment.

To construct the binary search tree, we begin by padding

our set of POVM elements with zero operators until M is

the nearest power of two. In the first step, we split the orig-

inal POVM into two sets of M/2 elements, for example,

as

B0 :=
M/2
∑

i=1

Fi and B1 :=
M

∑

i=M/2+1

Fi. (1)

The ordering of nonzero Fi may be arbitrary and corre-

sponds to relabeling the measurement outcomes. The set

{B0, B1} constitutes a valid POVM, which can be realized

via an indirect measurement of the system using a sin-

gle auxiliary qubit. Specifically, we measure the auxiliary

qubit after it has interacted with the system via a suitable

coupling unitary, effectively implementing a completely

positive map [1]. The corresponding Kraus operators must

satisfy the isometry condition A
†

0A0 + A
†

1A1 = I . Since the

POVM {B0, B1} is complete, we can always find suitable

Kraus operators by taking the square root of the cor-

responding POVM elements: A0 = √
B0 and A1 = √

B1.

Finally, we construct the coupling unitary UB by stack-

ing together the two binary Kraus operators A0 and A1 and

completing the remaining matrix elements:

UB =
(

A0 ∗
A1 ∗

)

∈ U(2d). (2)

The unitary operation is followed by the measurement of

the auxiliary qubit in the computational basis. Finally, the

auxiliary qubit is reset in the |0〉 state.
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After this first partial filtering, we again split the remain-

ing M/2 POVM elements in each branch into M/4 ele-

ments. This time, however, to implement the next step of

partial filtering by measuring a binary POVM, we have to

account for the postmeasurement state by modifying the

Kraus operators for the subsequent steps l ≥ 2 as follows:

Ab(l) = Kb(l)K
−1

b(l−1) , (3)

where we use a binary string b(l) of length l to denote the

sequence of measurement outcomes leading to the current

branch in the binary search tree, e.g., b(1) ∈ {0, 1}. Here,

Kb(l) =
√

∑b
i=a Fi is obtained by aggregating the POVM

elements located in the last level of the branch that starts

from b(l) with indices ranging from a to b. Importantly, at

every filtering step, we partition POVM elements such that

each branch receives at least d nonzero POVM elements.

As a result, the matrix Kb(l) is full rank for l ≤ m, making it

invertible. It is also worth noting that a unitary transforma-

tion Kb(l) → Wb(l)Kb(l) with arbitrary unitary Wb(l) leaves

the measurement statistics invariant and, thus, may have

an optimization potential for constructing the coupling uni-

tary in Eq. (2). As an example, Fig. 1(b) illustrates how a

16-element POVM on a two-qubit system is realized using

the hybrid method. The blue box in Fig. 1(b) aggregates

the corresponding POVM elements.

For POVMs with more than four elements, we con-

tinue bisecting the remaining POVM elements within each

branch until each branch has at most 2d elements in

its leaves. Precisely we arrive at this point after m =
log2(M/2d) iterations. For example, a 16-element POVM

on two-qubits requires a single iteration of binary search,

as shown in Fig. 1(b). At level m the cumulative Kraus

operator is given as

Ac

b(m) = Ab(m) · · · Ab(2)Ab(1) = Kb(m) , (4)

(a)

(c) (d)

(b)

FIG. 1. Schematic of a two-qubit POVM with M = 16 POVM elements realized through (a) binary tree (blue), (b) hybrid scheme

(blue and red), and (c) Naimark’s dilation (red). Branching occurs after the measurement conditional on the outcome, with the trajectory

defined by a bitstring of previous outcomes. Each scheme terminates with a bitstring of length four corresponding to one of 16 POVM

elements. The number of qubits n and the number of POVM elements M can be arbitrary. Gray panel (d) shows quantum circuit

implementations for methods (a)–(c), ordered from bottom to top. System qubits are in red, and auxiliary qubits are in blue. Binary

search tree and hybrid circuit include midcircuit measurements and unitaries conditional on the classical register (dotted line). Longer

unitary blocks correspond to the higher circuit depth.
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and the conditional postmeasurement state of the system is

ρs(m) =
Kb(m)ρK

†

b(m)

Tr(Kb(m)ρK
†

b(m))
. (5)

In principle, we could continue dividing the set of POVM

elements in half, narrowing down the search range until

the target element is found, as shown in Fig. 1(a). This

approach would require log2 M − m additional iterations

and a modified construction of Kraus operators for subse-

quent iterations, as detailed in Appendix H.

Instead, we observe that at level m, each branch has

at most 2d elements in its leaves. For example, as illus-

trated in Fig. 1(b), each red box aggregates at most eight

POVM elements. Therefore, at this point, the single auxil-

iary qubit suffices to apply Naimark’s dilation. To account

for the postmeasurement state, we modify the vectors

|ψi〉 to |ψ̃i〉 = K
−1†

b(m) |ψi〉. The new POVM defined by F̃i =
|ψ̃i〉〈ψ̃i| satisfies the completeness relation because

b
∑

i=a

|ψ̃i〉〈ψ̃i| = K
−1†

b(m)

(

b
∑

i=a

Fi

)

K−1

b(m) = I , (6)

where a and b stand for the first and last indices of aggre-

gated POVM elements at the level m with b − a + 1 = 2d.

Therefore, the modified vectors |ψ̃i〉 can be arranged as

column vectors to form a d × 2d array whose rows are

orthonormal 2d-dimensional vectors. Such an array can

always be extended to a 2d × 2d unitary matrix U, as

detailed in Appendix G. By projectively measuring the

compound system in the computational basis after the uni-

tary transformation U†, as shown in Fig. 1(b), we obtain

the outcomes |ψ̃i

ext〉〈ψ̃i

ext|, where |ψ̃i

ext〉 are the columns

of U. The conditional probability of observing the outcome

i given that a string of previous measurement outcomes

b(m) has been obtained is given by

P(i|b(m)) = Tr(|ψ̃i〉〈ψ̃i|ρs(m)) = Tr(Fiρ)

Tr(Kb(m)ρK
†

b(m))
, (7)

which results in the correct measurement statistics P(i) =
Tr(Fiρ).

Overall, the hybrid scheme involves m = log2 (M/2d)

binary search steps and a final level that applies Naimark’s

dilation. This results in a total of m + 1 steps where (n +
1)-qubit unitaries are applied. In contrast, a standard binary

search requires log2 M layers of (n + 1)-qubit unitaries.

Therefore, a hybrid circuit has log2 d fewer layers. For

instance, the 16-element POVM in Fig. 1 is implemented

through the binary search in log2 M = 4 steps, each involv-

ing a unitary acting on n + 1 = 3 qubits. In contrast, hybrid

involves only a single (m = log2 (M/2d) = 1) binary

search step and an additional level of conditional Naimark

unitaries, thus requiring two steps of three-qubit unitaries.

Bare Naimark’s dilation realizes the same POVM with

a single application of a four-qubit unitary. Finally, it is

worth noting that when M ≤ 2d, the hybrid scheme sim-

plifies to a single application of Naimark’s dilation without

the need for any binary search steps. For example, a

four-element POVM on a single qubit is most efficiently

realized with a single application of Naimark’s dilation, as

detailed in Appendix A.

IV. EXPERIMENT

In this section, we compare the three methods by imple-

menting SIC POVMs on one and two qubits. The choice of

SIC POVMs as our benchmark is motivated by their exten-

sive study in the literature, particularly for their unique

tomographic properties [9]. Formally, a SIC POVM consist

of M = d2 elements Fi = 1/d|φi〉〈φi|, which have equal

pairwise overlap with each other |〈φi|φj 〉|2 = 1/(d + 1)

for i 
= j . This symmetric property makes this class of

POVMs particularly important in the context of opti-

mal state tomography [20,30] and quantum key distribu-

tion [31,32]. However, practical implementation of SIC

POVMs becomes challenging for more than one qubit.

A. Detector tomography of SIC POVMs

In practice, the realized POVM will differ from the

ideal SIC POVM due to noise in the circuit [33]. To

quantify the quality of POVM implementation, we per-

form detector tomography by preparing an overcomplete

set of initial states and reconstructing the realized POVM

from measurement statistics, as described in Appendix B.

To calculate the fidelity, we represent the POVM as a

measurement channel [34,35]:

EF(ρ) =
M

∑

i=1

Tr (Fiρ) |i〉〈i|, (8)

where the output state EF(ρ) represents the POVM out-

come probabilities. The POVM fidelity between the target

POVM F and the realized POVM F̃ can be defined as

FD(EF , EF̃) = FS(�EF
, �E

F̃
), (9)

where FS(ρ, σ) = Tr
(√√

ρσ
√

ρ
)2

is the conventional

state fidelity. Here, �EF
stands for the normalized Choi

matrix of the quantum channel:

�EF
= 1

d

d
∑

i,j =1

|i〉〈j | ⊗ EF(|i〉〈j |). (10)

The POVM fidelity can be reduced by different noise

sources in the circuit. To mitigate the impact of coher-

ent noise, we employ Pauli twirling on CNOTs, taking five
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twirled instances for each circuit [36–40]. Furthermore,

the effect of imprecise readout is mitigated using readout

error mitigation [41,42]. In circuits involving midcircuit

measurement and feed forward, measurement errors can

propagate through the conditional operations and further

reduce the fidelity. To address these errors, we extended the

standard readout error mitigation to account for error prop-

agation in dynamic circuits. As detailed in Appendix C,

our CREM technique involves taking measurement statis-

tics from additional circuits that provide the necessary

information for the deconvolution of noisy outcome prob-

abilities. Finally, we note that the fidelity of a POVM with

completely random outcomes is 1/2n. Therefore, a non-

trivial realization of a POVM should yield a fidelity higher

than 1/2n. For example, for one qubit, the baseline fidelity

is 50%, and for two qubits, it is 25%.

B. One-qubit SIC POVM

The one-qubit SIC POVM is implemented using

Naimark’s dilation and binary search, both requiring a

single auxiliary qubit (see Appendix A). In either case,

the circuit can be exactly compiled with a small number

of CNOTs. Naimark’s dilation requires three CNOTs and

binary search results in an average CNOT depth of 4.5.

Figure 2(a) summarizes the highest fidelities achieved with

each method and the impact of readout error mitigation

on ibmq_kolkata [43]. While both Naimark’s dilation

and binary tree require one auxiliary qubit for a single-

qubit SIC POVM, there are additional sources of noise that

limit the fidelity of the latter. Specifically, the binary tree

applies two unitaries, which leads to a higher circuit depth.

Moreover, it suffers from additional idle time due to mid-

circuit readout and the delay in processing measurement

outcomes to determine the next unitary operation [26].

This reduces the fidelity of the binary-tree approach. After

readout error mitigation, Naimark achieves a fidelity of

98.4 ± 0.2% while binary tree reaches 90.6 ± 0.2% using

CREM. Naimark’s fidelity increases by 2% due to read-

out error mitigation, while binary’s increases by 1.3%.

The smaller enhancement from readout error mitigation in

binary tree is due to two main factors. Firstly, in our exper-

iment, the auxiliary qubit has a lower readout error than the

system qubit, and therefore, the binary-tree approach is less

affected by those errors compared to Naimark. Secondly,

qubit readout deviates from being a perfect quantum non-

demolition (QND) measurement [44]. Thus, the postmea-

surement state may differ from the recorded measurement

outcome. Such discrepancies are not corrected by CREM

as detailed in Appendix C.

C. Two-qubit SIC POVM

For the two-qubit SIC POVM, exact compilation of

required unitary operations into native gates results in

(a) (b)

�������	
��
������ �������	
��
������

FIG. 2. Comparison of the highest achieved POVM fidelities

for different implementations of one- (left) and two-qubit (right)

SIC POVMs. The colored bars represent three different meth-

ods: Naimark (red), binary (blue), and hybrid (gray). White bars

represent the improvement from readout error mitigation and

hatched bars represent the improvement from approximate com-

piling. Error bars are obtained from bootstrapping and are too

narrow to be visible.

circuits with a large CNOT count. This limits their applica-

bility on near-term quantum hardware. To overcome this

challenge, we use approximate compiling, which aims to

find shorter circuits for a given unitary at the cost of only

approximating the target unitary. In this approach, we con-

strain both the number and connectivity of CNOT gates

within the circuit, which are interleaved with single-qubit

rotation gates. An optimizer then tries to find the rotation

angles for these single-qubit gates such that the resulting

circuit implements the target unitary as accurately as pos-

sible [28]. We use approximate compiling for all unitaries

involved in the construction of each of the three schemes.

For Naimark’s dilation, the optimization involves compil-

ing a single four-qubit unitary, while for the binary search

and hybrid methods, multiple three-qubit unitaries at dif-

ferent levels are compiled separately and then combined

together to realize the measurement sequence.

When using approximate compiling, we expect a trade-

off between circuit depth and the accuracy of the approx-

imated POVM. For example, a low number of CNOT

results in a large approximation error, as illustrated in the

ideal simulation in Fig. 3. However, deeper circuits will

encounter more noise, and a priori it is unclear which

CNOT depth will result in the optimal performance. To

approach this, we compile and run each algorithm at ten

different CNOT depths, ranging from about 9 to 35, and

for each algorithm, we pick the circuit with the highest

POVM fidelity in the experiment, as shown in Fig. 3.

Additional details of data acquisition can be found in

Appendix J. Finally, Fig. 2(b) summarizes the highest
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FIG. 3. POVM implementation fidelity across varying CNOT

depths for binary tree (blue), Naimark’s dilation (red), and hybrid

(gray) schemes. The line styles represent ideal fidelity (dashed),

depolarizing noise model simulation (dotted), and hardware

fidelity (solid), with the peak hardware fidelity denoted by a

star. The fidelity of a random outcome POVM is denoted by

a horizontal line at FD = 0.25. Error bars are obtained from

bootstrapping and are smaller than markers.

fidelities achieved on hardware with each method, along

with the effect of readout error mitigation. In addition, the

improvement from approximate compiling is represented

by the difference between the optimal CNOT depth and the

highest CNOT depth. For hybrid and Naimark, the improve-

ment from approximate compiling is substantial. However,

its effect is limited for binary tree due to long idle times in

feed-forward operations, which are the main limiting fac-

tors for fidelity. We observe that the hybrid method results

in the highest fidelity of 70.4 ± 0.1%. Binary tree achieves

a maximum of 42.1 ± 0.1% fidelity, significantly lower

than the best fidelity of 65.0 ± 0.1% using Naimark’s dila-

tion. However, it is still higher than the baseline fidelity

of 25%. Even though the binary tree is more efficient

in terms of required CNOT depth, its fidelity is strongly

affected by the high number of feed-forward operations

in the three midcircuit measurements, causing longer idle

times and coherence loss. We confirm this interpretation

with numerical simulations of these experiments with a

noise model inspired by the hardware in Sec. IV D. Finally,

as in the one-qubit experiment, the lower improvement of

only 0.2% from CREM in the binary tree as compared

to the 1.9% for Naimark and 1.8% for the hybrid circuit

is attributed to the comparatively low readout errors on

the auxiliary qubit as well as the non-QND errors in the

auxiliary qubit readout.

D. Noise analysis

CNOT gates are significantly noisier than single-qubit

gates. Therefore, their count is a key noise metric. How-

ever, in the context of dynamic circuits, fidelity may further

degrade due to idle times from midcircuit measurements

and feed-forward operations. Each conditional unitary in

binary and hybrid circuits involves verifying the unitary’s

condition, with a time cost comparable to that of a CNOT

gate’s duration.

To provide a phenomenological explanation for the two-

qubit SIC POVM results, we perform a noisy simulation

using a depolarizing noise model. Firstly, to model the

fidelity decay due to CNOT depth, we attach a depolariz-

ing error εCNOT = 1.5% to every CNOT gate. Secondly, we

associate a depolarizing error εidle = 5% with each mea-

surement and feed-forward operation. This is motivated

by the comparatively long measurement and feed-forward

times, usually multiple times longer than the CNOT gate

time [26]. We choose the depolarizing errors heuristically,

and the error values are consistent with recent experi-

ments on analogous devices [26,44,45]. The binary tree is

impacted the most by this second kind of error because

it has three midcircuit measurements and 14 feed-forward

cases, as shown in Fig. 1(d). In contrast, the hybrid only

has one midcircuit measurement and two feed-forward

cases. On the other hand, Naimark’s circuit requires the

highest CNOT depth for approximate compilation and is,

therefore, additionally affected by the approximation error,

as shown in Fig. 3. Overall, the hybrid scheme outperforms

its constituents across all CNOT depths, consistent with the

experimental results. Despite the phenomenological nature

of our noise model, we achieved notable agreement with

the experimental data, suggesting that the error model cap-

tures the two major noise sources. An extended analysis

of the performance of the three schemes in different noise

regimes can be found in Appendix I.

E. Scaling to larger systems

We now discuss the resource costs of the three algo-

rithms when scaling to larger systems. As an illustrative

example, we focus on POVMs with M = d2 elements,

such as informationally complete POVMs [8], and extend

this discussion in Appendix D. Naimark’s dilation realizes

a POVM with M = d2 elements through a single uni-

tary acting on log2 M = 2n qubits followed by a layer of

end-circuit measurements. For an n-qubit system, Naimark

thus requires n auxiliary qubits. Notably, end-circuit mea-

surements can usually be executed in parallel, effectively

counting as a single measurement step. Binary search uti-

lizes log2 M = 2n layers of (n + 1)-qubit unitaries, inter-

leaved by 2n − 1 midcircuit measurements and a final

end-circuit measurement. Of these 2n unitaries, 2n − 1

are conditional. In contrast, the hybrid uses log2(M/d) =
n layers of (n + 1)-qubit unitaries, interleaved by n − 1
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midcircuit measurements and terminating with n + 1 end-

circuit measurements. Thus, the hybrid approach requires

half as many layers compared to binary. Additionally,

its final n + 1 end-circuit measurements can also be par-

allelized, providing yet another advantage over binary.

For both binary and hybrid, each midcircuit measurement

is followed by resetting the auxiliary qubit. This reset

can be achieved at minimal cost by applying an X gate

conditional on the measurement outcome (active reset).

We consider all unitaries in the binary search and

Naimark’s dilation as generic. Therefore, an upper bound

of O(4n) CNOTs required for decomposing a generic n-

qubit unitary [46] serves as a common cost unit for the

circuit depth of all three schemes. Consequently, the CNOT

depths for Naimark, binary, and hybrid schemes scale as

O(16n), O(2n × 4n+1), and O(n × 4n+1), respectively. We

conclude that the hybrid scheme requires asymptotically

the shortest circuit. Furthermore, since the number of mid-

circuit measurements and conditional operations increases

only linearly with system size, the CNOT depth emerges

as the critical cost factor for larger systems. Finally, in

Appendix I, we provide further analysis on the impact

of noise from midcircuit measurements and conditional

operations in the two-qubit experiment.

V. CONCLUSION

In conclusion, we introduce a new approach for imple-

menting single-setting POVMs on multiqubit supercon-

ducting systems using dynamic circuits. Our method

results in shorter-depth circuits and outperforms both

Naimark’s dilation and binary tree in implementing

a two-qubit SIC POVM. We further demonstrate that

approximate compiling is an effective approach to realizing

generalized measurements under noisy conditions. In addi-

tion, we devise a new CREM technique to combat error

propagation in dynamic circuits and enhance the fidelity.

We limit our implementation to two-qubit POVMs, as our

attempts to extend this approach to three-qubit POVMs

resulted in prohibitively large circuit depths in the order of

hundreds of CNOTs, surpassing any previously successful

implementation on similar hardware. We, therefore, expect

that implementing higher-dimensional POVMs using our

approach will require improvements in hardware, such

as faster feed forward and more efficient approximate

compiling techniques. For example, an optimized com-

piling strategy could exploit the unitary freedom in the

definition of Kraus operators in Eq. (3) or try permuta-

tions of POVM elements. Nevertheless, our results open

new possibilities in the near future. For example, parallel

execution of products of two-qubit POVMs would allow

multiple qubits to be covered on the chip, a strategy with

potential implications for multiqubit state tomography or

classical shadows [20]. We also suggest incorporating our

hybrid approach in the development of hardware-efficient,

parametric POVMs, which has proven to be an effective

technique for targeted applications [15].

Note added.—Recently, we became aware of a related

but independently developed error-mitigation technique

for mid-circuit measurements [47].
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APPENDIX A: ONE-QUBIT POVM

IMPLEMENTATION

A single-qubit rank-one POVM can have at most M = 4

linearly independent elements. Using Naimark’s dilation,

we can realize such a POVM with a single auxiliary qubit

by applying a suitable coupling unitary and measuring the

system and auxiliary qubit in the computational basis, as

detailed in Appendix G. Therefore, a single-qubit POVM

is a special case where the dimension of unitaries for

the binary tree and Naimark’s dilation coincide. In this

case, we do not expect binary to offer any advantage over

Naimark because it requires two layers of two-qubit uni-

taries, as shown in Fig. 4. Finally, our hybrid approach

simplifies to a single application of Naimark’s dilation

because there is no need for partial filtering.

The advantage of Naimark over binary is confirmed by

the higher fidelities obtained in the one-qubit realization of

a SIC POVM in Sec. IV B.

APPENDIX B: DETECTOR TOMOGRAPHY

Detector tomography is used to reconstruct an unknown

detector, or a POVM in the present work. In many aspects,

it is similar to state tomography, where an unknown state is
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(a)

(c)

(b)

FIG. 4. Schematic representation of a single qubit POVM with

M=4 POVM elements realized through (a) binary tree (blue), and

(b) Naimark’s dilation (red). Branching occurs after the measure-

ment conditional on the outcome, with the trajectory defined by

a bitstring of previous outcomes. Each scheme terminates with a

bitstring of length two corresponding to one of four POVM ele-

ments. Gray panel (c) shows quantum circuit implementations

for methods (a) and (b). System qubits are in red, and auxiliary

qubits are in blue. Binary tree includes a single midcircuit mea-

surement and two unitaries conditional on the classical register

(dotted line).

reconstructed from the measurement statistics of a known

detector. In contrast, in detector tomography, we aim to

reconstruct an unknown detector by preparing and mea-

suring a set of known initial states. To elaborate, for a

specific known state ρi, the probability of getting a mea-

surement outcome Fm is given by pmi = tr(Fmρi). Every

Fm can be expressed using multiqubit Pauli matrices: Fm =
∑d2

k=1 fmkσk. This leads to the probability equation:

pmi =
d2

∑

k=1

fmktr(σkρi), (B1)

which is linear and analogous to state tomography. We

define the matrix S as the matrix containing trace values

that are specific to the set of initial states:

S =

»

¼

¼

½

tr(σ1ρ1) · · · tr(σd2ρ1)

tr(σ1ρ2) · · · tr(σd2ρ2)
...

...
...

tr(σ1ρn) · · · tr(σd2ρn)

¾

¿

¿

À

. (B2)

Then, by writing �fm as the vector of coefficients in front of

Pauli matrices in the expansion of Fm and �pm as the vector

of corresponding probabilities determined from the exper-

iment, we find the solution to �pm = S�fm by computing the

least-squares estimate:

�fm = (S†S)−1S†�pm. (B3)

The procedure above has to be repeated for every unknown

POVM element Fm. In general, the least-squares esti-

mate is not guaranteed to produce a non-negative Fm,

especially with few measurement samples. Therefore, the

Choi matrix in Eq. (10) of the reconstructed POVM may

have small negative eigenvalues. To impose the non-

negativity, one can rescale the eigenvalues of the Choi

matrix from least squares, effectively projecting it onto the

set of quantum states [48,49]. This procedure corresponds

to computing the maximum-likelihood estimate under the

assumption of Gaussian noise [48]. In our experiments,

however, we take sufficient measurement samples such

that rescaling is only necessary for a few POVM elements.

In particular, rescaling has no effect on fidelities within the

statistical uncertainty.

For a two-qubit experiment, 36 Pauli basis states were

used, making the set of initial states overcomplete. Con-

sequently, the matrix S had dimensions 36 × 16. We also

used an overcomplete set of six Pauli basis states for a

one-qubit experiment, resulting in a 6 × 4 matrix. In prin-

ciple, only d2 initial states are fundamentally required

to form a complete basis. However, using extra states

improves the estimation accuracy and compensates for

the state-dependent performance of a particular POVM

implementation.

APPENDIX C: CONDITIONAL READOUT ERROR

MITIGATION

Imprecise multiqubit measurements can be described

using a classical probabilistic model. Measurement errors

arise from random misclassification of correct outcomes,

represented by a confusion matrix M , where Mij = p(i|j)
is the probability of misclassifying j as i. Here, i and j

are computational basis states. Observed probabilities (P)

are obtained by applying the confusion matrix to ideal

probabilities (Q): P = MQ. For example, for the case of

measuring one qubit (i ∈ 0, 1), the confusion matrix is

given as

M =
(

1 − ε0 ε1

ε0 1 − ε1

)

. (C1)

For instance, the probability of obtaining 0 is the sum of the

probability (1 − ε0) of correctly identifying 0 as 0 and the

probability ε1 of misclassifying 1 as 0. Error-free probabil-

ities Q can be obtained by inverting the confusion matrix:

Q = M−1P. In general, measuring n qubits in the compu-

tational basis can result in any of 2n computational states

with some unique probability. Therefore, to characterize

the full confusion matrix M , one needs to obtain 4n matrix

elements through calibration. Often, however, it is justified

to assume that readout errors are local, i.e., the probability

of misclassifying the state of some qubit is independent of

the states of other qubits. This allows us to construct the
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global confusion matrix M as the tensor product of n 2 × 2

confusion matrices Mi, one for each qubit:

M = Mn ⊗ Mn−1 ⊗ . . . ⊗ M1. (C2)

The situation is different with dynamic circuits, which

enable midcircuit measurements, allowing subsequent

gates to be conditional on these measurement outcomes.

For instance, consider the two-qubit circuit in Fig. 5. A uni-

tary operation U prior to the first midcircuit measurement

encompasses the circuit’s unitary segment. After measur-

ing qubit q1, the result is stored in the first bit of the

classical register. Subsequently, the circuit applies U0 if the

measurement reports 0 and U1 if 1. We see that if a bit-flip

error occurs during the midcircuit measurement, then not

only is the wrong measurement outcome recorded, but also

the wrong condition is triggered, and the wrong unitary

is applied. Moreover, the unitaries now act on the flipped

postmeasurement state of qubit q1. In this way, the mea-

surement error from midcircuit measurement propagates

through the circuit, affecting the evolution of the quantum

state. To account for this error propagation, consider the

second circuit in Fig. 5. The second circuit, which we call a

conditional calibration circuit, differs from the original cir-

cuits in that the conditions of the two unitaries are inverted,

and an X gate flips the postmeasurement state. Notice that

if a bit flip occurs during the midcircuit measurement in the

second circuit, the subsequent state evolution will corre-

spond to the case when no bit-flip occurs in the first circuit.

Denote εk
i as the probability of misclassifying the state i

on qubit qk; P and Q as the noisy and ideal probabilities

for the original circuit; and P̃ and Q̃ as the corresponding

probabilities for the conditional calibration circuit. Also,

Pij denotes the probability of measuring q1 in state j and

q2 in state i. We can now express the noisy probability P00

of obtaining the outcome 00 as

P00 = (1 − ε2
0)(1 − ε1

0)Q00 + (1 − ε2
0)ε

1
1Q̃01

+ ε2
1(1 − ε1

0)Q10 + ε2
1ε

1
1Q̃11.

We see that the noisy probability P00 includes four different

scenarios:

(1) The ideal case scenario when no readout error

occurs during both midcircuit and end-circuit mea-

surement with probability (1 − ε2
0)(1 − ε1

0).

(2) The outcome 01 is misclassified as 00 with prob-

ability (1 − ε2
0)ε

1
1 due to the error on the midcir-

cuit measurement. However, the subsequent state

evolution corresponds to the error-free scenario.

(3) The outcome 10 is misclassified as 00 with proba-

bility ε2
1(1 − ε1

0) due to the error on the end-circuit

measurement.

(4) The outcome 11 is misclassified as 00 with prob-

ability ε2
1ε

1
1 due to errors on both measurements,

whereby the effective state evolution is unaffected

by measurement errors.

In a similar manner we can obtain expressions for P01, P10,

and P11:

P01 = ε1
0(1 − ε2

0)Q̃00 + (1 − ε2
0)(1 − ε1

1)Q01 + ε1
0ε

2
1Q̃10 + (1 − ε1

1)ε
2
1Q11,

P10 = (1 − ε1
0)ε

2
0Q00 + ε2

0ε
1
1Q̃01 + (1 − ε1

0)(1 − ε2
1)Q10 + ε1

1(1 − ε2
1)Q̃11,

P11 = ε1
0ε

2
0Q̃00 + ε2

0(1 − ε1
1)Q01 + ε1

0(1 − ε2
1)Q̃10 + (1 − ε1

1)(1 − ε2
1)Q11.

Following the same logic, we obtain the expression for P̃00, P̃01, P̃10, and P̃11. It is convenient to write

»

¼

¼

½

P00

P̃01

P10

P̃11

¾

¿

¿

À

=
[(

1 − ε1
0 ε1

1

ε1
0 1 − ε1

1

)

⊗

(

1 − ε2
0 ε2

1

ε2
0 1 − ε2

1

)]

»

¼

¼

½

Q00

Q̃01

Q10

Q̃11

¾

¿

¿

À

=
[

M2

⊗

M1

]

»

¼

¼

½

Q00

Q̃01

Q10

Q̃11

¾

¿

¿

À

and

»

¼

¼

½

P̃00

P01

P̃10

P11

¾

¿

¿

À

=
[(

1 − ε1
0 ε1

1

ε1
0 1 − ε1

1

)

⊗

(

1 − ε2
0 ε2

1

ε2
0 1 − ε2

1

)]

»

¼

¼

½

Q̃00

Q01

Q̃10

Q11

¾

¿

¿

À

=
[

M2

⊗

M1

]

»

¼

¼

½

Q̃00

Q01

Q̃10

Q11

¾

¿

¿

À

.
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FIG. 5. Conditional readout error mitigation. (a) Original two-

qubit circuit with a unitary applied to q1 and q2, followed by a

midcircuit measurement, with subsequent operations conditioned

on the measurement’s outcome. (b) Conditional calibration cir-

cuit replicating the original with the feed-forward conditions

exchanged, and the postmeasurement state flipped.

Here, Mi denotes the confusion matrix on qubit qi. In

a similar manner to the standard readout error mitiga-

tion, we can invert the Kronecker product (M2

⊗

M1)
−1 =

M−1
2

⊗

M−1
1 to obtain error-free probabilities Q. As a

byproduct, we also obtain error-free probabilities Q̃ for

the conditional calibration circuit. It is worth noting that

the described postprocessing requires obtaining probabili-

ties for two circuits (original and calibration circuit), which

doubles the total number of samples.

The described procedure extends to multiple midcircuit

measurements. The number of required conditional cal-

ibration circuits (including the original circuit) is given

by the number of possible combinations of measurement

errors, which is 2nmid where nmid is the number of mid-

circuit measurements. Therefore, the sampling overhead

scales exponentially with nmid, which makes this technique

feasible only for a few numbers of midcircuit measure-

ments. Note that the underlying assumption we made about

the nature of readout errors is that readout is perfectly

QND. In this setting, CREM can correct readout errors. In

reality, the readout of qubits is not perfectly QND, which

can result in inconsistencies between the postmeasurement

state and the measurement outcome. For example, a qubit

can decay during the measurement pulse. Moreover, apply-

ing measurements can cause leakage from the computation

subspace to other states outside of the computational space.

These errors contribute to non-QND measurement errors,

FIG. 6. Two-qubit circuit modeling non-QND readout errors

as postmeasurement bit flip with probability εQND. The “cor-

rectable” error is modeled as a premeasurement bit flip with

probability ε.

FIG. 7. Illustration of the increase in Hellinger distance

between the noisy and noiseless probability distributions with

the rise of non-QND error rate εQND, comparing outcomes with

(blue) and without (red) CREM across different “correctable”

error rates ε. In the presence of both errors, CREM removes the

contribution of “correctable” errors.

which alter the state after the measurement [44]. In mid-

circuit measurements, these errors affect the subsequent

computations, whereas in final measurements they mani-

fest as initialization errors in the next round. CREM does

not account for non-QND errors. To illustrate how CREM

performs in the presence of non-QND errors, we use a sim-

ple noise model that includes random bit flips before and

after the noiseless measurement pulse. The correspond-

ing two-qubit circuit is shown in Fig. 6. The random bit

flip before the measurement occurs with probability ε and

represents the error that misclassifies the qubit state but

leaves the postmeasurement state consistent with the mea-

surement outcome. The random bit flip with probability

εQND after the measurement represents the non-QNDness

of the readout. The measurement on the second qubit is

ideal, and the unitaries in the circuit are chosen randomly.

By sweeping the non-QND error εQND, as shown in Fig. 7,

we observe that the Hellinger distance between the noisy

and ideal measurement outcome distributions increases for

both mitigated and unmitigated results. However, the error

of unmitigated results also grows with ε, while mitigated

results are independent of ε. Therefore, in a realistic set-

ting, where both kinds of errors are present, CREM takes

out the contribution of the first type of error.

APPENDIX D: RESOURCE ESTIMATE

In Sec. IV E of the main text, we discuss the upper bound

on the number of CNOTs for all three schemes for POVMs

with M = d2. Here, we extend the discussion to POVMs

with M ≤ d2, still assuming that POVM elements are lin-

early independent rank-one operators. As follows from the

main text, Naimark’s dilation requires a single 
log2 M�-

qubit unitary. The binary-tree scheme requires n + 1-qubit
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TABLE I. Upper bounds on the number of CNOTs required for POVM implementation.

M Naimark Binary Hybrid

2n < M ≤ 2n+1 4n+1 (n + 1) × 4n+1 4n+1

2n+1 < M ≤ 4n M 2 log2 M × 4n+1 (log2 M − n) × 4n+1

Example for a minimal IC POVM

M = 4n 16n 2n × 4n+1 n × 4n+1

unitaries to be implemented 
log2 M� times. Finally, the

hybrid scheme requires n + 1-qubit unitaries to be imple-

mented 
log2
M
2n � times. Table I provides asymptotic upper

bounds on the number of CNOTs. For clarity, we treat the

case when 2n < M ≤ 2n+1 separately. We first pad the

POVM with zero operators to the nearest power of two.

That is, if a given POVM initially has 2n < M < 2n+1 ele-

ments, we pad it until M = 2n+1. The POVM with M =
2n+1 elements can be most efficiently implemented with

Naimark’s dilation using a single auxiliary qubit. Binary

search requires (n + 1) partial filtering steps, while the

hybrid scheme coincides with Naimark’s dilation, as in

the case of one-qubit SIC POVM in Appendix IV B. An

important example is a minimal informationally complete

POVM, i.e., a POVM with 4n linearly independent POVM

elements, such as SIC POVM. In this case, the hybrid

scheme results in a circuit with half the length compared

to the binary search, as shown in Table I.

In summary, the hybrid scheme yields a shorter circuit

than the binary search tree for any system size and number

of POVM elements. It outperforms Naimark’s dilation for

M > 2n+1 while coinciding with Naimark’s dilation when

M ≤ 2n+1.

APPENDIX E: STATE TOMOGRAPHY

Quantum state tomography is one of the prominent

examples where the choice of measurement plays a central

role. A typical approach to perform state reconstruction of

a multiqubit system is to perform tomographic measure-

ments on each individual qubit using each of the Pauli

bases. For an n-qubit system, this requires 3n measurement

settings, a number which grows exponentially with the sys-

tem size, making it impractical for large numbers of qubits.

Moreover, Pauli bases are known to be suboptimal for state

tomography, requiring more samples than necessary due

to the informational redundancy of its projectors. The last

aspect is investigated in more detail in Appendix F.

SIC POVMs, in contrast, are known to be sample-

optimal for state tomography [9]. In the previous sec-

tions, we performed the detector tomography by assuming

perfect knowledge of the prepared states to obtain the

tomographic information about the implemented POVM.

Conversely, we could assume the perfect knowledge of the

detector (SIC POVM) to reconstruct the prepared quantum

states. Of course, since the implemented POVM is imper-

fect, the resulting reconstruction fidelity will deviate from

the ideal.

Notably, we do not need to perform any additional

measurements to the ones obtained for detector tomog-

raphy. We simply recast the problem and use the ideal

SIC POVM and the measurement statistics to perform

the linear inversion. In practice, the reconstructed states

may not be physical due to small negative eigenvalues.

To address this problem without significant computational

overhead, we rescale the eigenvalues of each reconstructed

density matrix to make it positive semidefinite [48]. Figure

8 shows the average reconstruction fidelities of the six

single-qubit Pauli basis states and the 36 two-qubit Pauli

basis states. Here, for the two-qubit experiment, we used

the optimal CNOT depths determined in Sec. IV. We see

that, overall, the achieved peak fidelities by each algorithm

agree closely with the corresponding POVM fidelities.

APPENDIX F: RESOURCE OVERHEAD OF STATE

TOMOGRAPHY

In the context of state tomography with Pauli basis,

we need 3n different measurement settings, each yielding

d outcomes. The total number of measurement outcomes

�������	
��
�
�� �������	
��
�
��

FIG. 8. Comparison of the highest achieved (average) state

fidelities for different implementations of one- (left) and two-

qubit (right) SIC POVMs. The colored bars represent three

different methods: Naimark (red), binary (blue), and hybrid

(gray). White bars represent the improvement from readout error

mitigation.
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(a)

(b)

FIG. 9. Comparison of the infidelity of state reconstruction

between Pauli bases (red) and SIC POVM (gray) as a function

of the number of measurement shots (a) and the CNOT gate error

rate (b). In (a), the simulation is noiseless, and in (b), the number

of shots is fixed at 500.

exceeds the d2 − 1 parameters of a d-dimensional density

matrix. Therefore, Pauli bases provide redundant informa-

tion, which results in a higher variance in the fidelity of the

reconstructed state [31].

SIC POVMs, however, are proven optimal for state

tomography [9]. This is observed in Fig. 9 by compar-

ing the infidelity of reconstruction for a two-qubit SIC

POVM with varying numbers of shots using a noiseless

Qiskit simulator. At lower shots, SIC POVM exhibits a

slight advantage, around 1% at 100 shots and 0.15% at

1000 shots. As the number of shots increases, both meth-

ods converge to zero infidelity at a rate of N
1
2 , evident from

the −1/2 slope of the curves. However, due to noise in

the circuit that implements a SIC POVM, its performance

is considerably lower than that of the Pauli bases. Nev-

ertheless, if the noise level of the device is sufficiently

low, using SIC POVMs for state tomography will be more

efficient.

We investigate the performance of SIC POVM under a

simplistic noise model that applies depolarizing noise to

the CNOT gates. The purpose of this analysis is to showcase

a crossover point where SIC POVM reconstruction yields

a higher fidelity than Pauli bases for a fixed number of 500

shots. Figure 9 shows the corresponding trade-off. At low

depolarizing noise, SIC POVM results in lower infidelity,

which grows as we increase the error. Pauli basis tomogra-

phy is expectedly unaffected by this noise model because

Pauli basis measurements do not include any CNOTs. A

more realistic noise model would include single-qubit and

measurement errors.

APPENDIX G: DETAILS OF NAIMARK’S

DILATION

Any POVM can be realized by a projective measure-

ment in a higher-dimensional Hilbert space by introduc-

ing a number of auxiliary qubits [17]. In general, the

dimension of the required auxiliary system dimension will

depend on the number of POVM elements, the dilation

method, and the ability to perform direct measurements on

the system [50]. One way to extend the Hilbert space is

by, for example, coupling the qubit system to neighbor-

ing qubits on a superconducting chip. Moreover, in the

scope of this paper, we are only interested in the mea-

surement statistics P(i) and disregard the postmeasurement

state of the system. Therefore, we consider the situation

where both the system and auxiliary qubit are measured

directly. The extension of the Hilbert space requires a min-

imal number of nA auxiliary qubits so that the dimension

of the compound system 2n+nA ≥ M . Therefore, the auxil-

iary qubit resource is best utilized when M is a power of 2.

Otherwise, we have to pad our set of POVM elements with

zero operators until M is a power of 2. For a POVM of M

elements we find M unnormalized vectors |ψi〉 such that

Fi = |ψi〉〈ψi|. These vectors can be arranged as column

vectors to form an d × M array whose rows are orthonor-

mal M -dimensional vectors. This fact follows from the

completeness of POVM:
∑M

i=1 Fi = I . Such an array can

always be extended to a M × M unitary matrix, as shown

in Eq. (G1):

U =

»

¼

¼

¼

½

ψ11 . . . ψM1

...
...

ψ1d . . . ψMd

∗ ... ∗

¾

¿

¿

¿

À

∈ U(M ). (G1)

The circuit implementing Naimark’s dilation is con-

structed by preparing the auxiliary qubit in the |0〉⊗nA

state and applying the coupling unitary U†. Finally, by

projectively measuring the compound system in the com-

putational basis after the unitary transformation U†, we

obtain the outcomes |ψext
i 〉〈ψext

i |, where |ψext
i 〉 are the

columns of U†. The probability of observing an outcome

i is given by taking the trace over the auxiliary qubits and
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the system:

P(i) = Tr(|ψext
i 〉〈ψext

i |(ρA ⊗ ρ))

= Tr(|ψi〉〈ψi|ρ)

= Tr(Fiρ).

With this, we fully recover the original POVM measure-

ment statistics P(i) = Tr(Fiρ).

Finally, we illustrate the procedure in Fig. 4(b) for a

four-element POVM on a single-qubit system with the

corresponding circuit depicted in Fig. 4(c). Moreover, an

example of Naimark’s dilation applied to a two-qubit sys-

tem to realize a 16-element POVM is illustrated in Fig. 1(c)

with the circuit shown in Fig. 1(d).

In conclusion, it is worth noting that the way in which

the dilation is realized can be different. For example,

suppose the system of interest harbors more dimensions

than the dimension of its computational subspace, such

as higher-energy states of superconducting qubits [19] or

trapped ions [20]. In that case, the extended Hilbert space

can be a direct sum Hext = H ⊕ HA of the system and

auxiliary spaces [50,51]. Often, such dilation is rather diffi-

cult because one needs to discriminate between qudit states

efficiently.

APPENDIX H: DETAILS OF THE BINARY-TREE

CONSTRUCTION

In this section, we outline the key steps of the binary

tree protocol using the notation from Shen et al. [24]. A

detailed treatment can be found in Andersson et al. [23]

and Shen et al. [24]. To construct the binary search tree,

we begin by padding our set of POVM elements with zero

operators until M is the nearest power of 2. At the first level

l = 1, we find a suitable Kraus operator A0 for the coupling

unitary from the diagonalization of B0 = V0D2
0V

†

0, result-

ing in A0 = V0D0V
†

0. Here, D0 is a diagonal matrix with

non-negative eigenvalues because B0 is positive Hermi-

tian. We analogously construct A1 = V1D1V
†

1 from B1 =
V1D2

1V
†

1. As detailed in the main text, we implement this

binary POVM via an indirect measurement of the system

by constructing a suitable coupling unitary.

After the initial two-outcome POVM, the postmeasure-

ment state of the system, denoted as ρb(1) , will depend on

the measurement outcome. For instance, if the auxiliary

qubit is measured in the |0〉 state, the postmeasurement

state ρ0 can be expressed as

ρ0 = A0ρA
†

0

Tr(A0ρA
†

0)
, (H1)

where ρ represents the initial state of the system. There-

fore, the measurement of the auxiliary qubit causes branch-

ing, effectively performing partial filtering. This procedure

may be seen as a quantum instrument that combines the

classical measurement outcome with the conditional post-

measurement quantum state of the system [34]. The subse-

quent binary POVMs must take this postmeasurement state

into account. Therefore, we modify the Kraus operators for

all subsequent steps l ≥ 2 as follows:

Ab(l) = Kb(l)K
+
b(l−1)+

1√
2

Qb(l−1) , (H2)

where Kb(l) =
√

∑b
i=a Fi is obtained by aggregating the

POVM elements located in the last level of the branch that

starts from b(l) with indices ranging from a to b. The choice

of Kb(l) is not unique because an arbitrary unitary transfor-

mation Kb(l) → Wb(l)Kb(l) leaves the measurement statistics

invariant. In contrast to the construction of Kraus operators

for the hybrid scheme, Kb(l−1) will not be invertible if the

number of remaining nonzero POVM elements is smaller

than the system’s dimension. Therefore, K+
b(l−1) denotes

the Moore-Penrose pseudoinverse of Kb(l−1) , and Qb(l−1)

ensures that the pair of binary Kraus operators generates

a complete POVM.

Overall, the construction of corresponding binary Kraus

operators in Eq. (H2) follows a sequential process:

(1) First, we form Bb(l) = ∑b
i=a Fi by aggregating the

POVM elements located in the leaves of the

branch that starts from b(l). This results in Bb(l) =
Vb(l)D2

b(l)V
†

b(l) .

(2) Next, we create Kb(l) = Vb(l)Db(l)V
†

b(l) that satisfies

the condition K
†

b(l)Kb(l) = Bb(l) .

(3) We compute K+
b(l−1) , which represents the Moore-

Penrose pseudoinverse of Kb(l−1) which was obtained

in the previous level.

(4) Then, we construct the support projection matrix

of Db(l−1) , denoted as Pb(l−1) , where (Pb(l−1))ij =
sign[(Db(l−1))ij ].

(5) Lastly, Qb(l−1) = I − Vb(l−1)Pb(l−1)V
†

b(l−1) ensures that

the pair of binary Kraus operators generates a valid

POVM:
∑

{0,1} A
†

b(l)Ab(l) = I .

This construction ensures that the matrix 2 is unitary and

that the cumulative Kraus operator

Ac

b(L) = Ab(L) · · · Ab(2)Ab(1) (H3)

corresponds to the correct POVM element: A
c†

b(L)A
c

b(L) = Fi

with i = b(L) + 1, as shown in the Appendix to the paper

by Shen et al. [24].

Each time, the coupling unitary applied will depend

on the sequence of previous measurement outcomes that

define the current branch. Therefore, the scheme requires

midcircuit measurements and feed forward. It is worth
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(a) (b) (c)

FIG. 10. Noisy simulation of the two-qubit POVM for the binary tree (blue), Naimark’s dilation (red), and hybrid (gray) schemes

under various noise regimes. For each scheme, and for each combination of εidle and εCNOT, the fidelity is computed for 10 circuits

at varying CNOT depths and the highest fidelity value is plotted. The gray-shaded area indicates the regime where the simulations best

agree with the experimental results obtained on hardware.

noting that the system is never measured directly dur-

ing the binary search. This fact makes this approach also

applicable to quantum channels, as shown by Shen et al.

[24].

In contrast to Naimark’s dilation, which involves a

single M -dimensional unitary applied to a set of log2M

qubits, the binary scheme requires a total of log2M unitary

operations, each acting on n + 1 qubits.

APPENDIX I: EXTENDED NOISE ANALYSIS

In Sec. IV D of the main text, we employ a simple phe-

nomenological noise model to explain the experimental

results of the two-qubit experiment. The two hyperpa-

rameters of this model, εCNOT and εidle, represent the

depolarizing errors associated with each CNOT gate and

each measurement and feed-forward operation, respec-

tively. While this model does not account for complex

noise processes such as correlated errors, leakage, T1 fluc-

tuations, or measurement-induced control errors, which

may occur on real superconducting qubit platforms [44],

the close agreement with the experimental results in Fig. 3

suggests that it effectively captures the main error contribu-

tions from noisy CNOT gates and noise related to midcircuit

measurements and idle time.

Here, we apply the same model to qualitatively under-

stand the different noise regimes affecting the performance

of our hybrid approach. Figure 10 displays noisy simu-

lations of the two-qubit SIC POVM across various error

regimes. For each combination of εidle and εCNOT, we per-

form simulations for all three schemes at different depths,

selecting for each scheme the depth that yields the highest

fidelity. These fidelity levels are depicted in Fig. 10.

Figure 10(a) represents the regime with comparatively

high εidle, where the binary scheme is most affected due

to a large number of conditional operations and midcircuit

measurements. In the range εCNOT ≈ 1–2%, we observe

the best agreement with our experimental results. We thus

conclude that the gray-shaded area in Fig. 10(a) corre-

sponds to the current hardware regime. Figures 10(b) and

10(c) show lower εidle regimes, potentially achievable with

faster midcircuit measurements and conditional operations

or through effective error-suppression techniques such as

dynamical decoupling [52]. In these conditions, we expect

the hybrid scheme to offer a more significant advantage

over Naimark. Importantly, in all scenarios, the fidelity of

Naimark decays fastest with increasing εCNOT due to its

higher CNOT depth.

Overall, while the fidelity improvements offered by the

hybrid approach depend on noise from conditional opera-

tions and midcircuit measurements, the exponential growth

of CNOT depth with the system size is more detrimental

compared to the linear scaling of midcircuit measure-

ments, as detailed in Sec. IV E. Thus, while it is possible

that the hybrid scheme might not offer an advantage for

smaller system sizes on some experimental platforms with,

e.g., high-quality CNOTs and poor-quality conditional oper-

ations, we expect hybrid to outperform its constituents

on larger systems. In particular, we demonstrate that the

hybrid approach already provides an advantage in a two-

qubit system for IBM quantum devices.

APPENDIX J: DATA ACQUISITION

We conducted both one- and two-qubit experiments on

ibmq_kolkata, a 27-qubit quantum processor [43]. For

the one-qubit experiment, exact compiling was utilized.

For the two-qubit experiment, we applied approximate

compiling across ten different CNOT depths for all three
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methods, yielding different levels of approximation accu-

racy. Subsequently, for each circuit, we generated five

twirled instances by inserting random Pauli gates before

and after CNOT gates. For each twirled instance, we pre-

pared 36 two-qubit Pauli basis states and took 4000 mea-

surement samples for each state and instance, totaling

20 000 samples per circuit per basis state. The collected

measurement statistics were then used to reconstruct the

POVMs as outlined in Appendix B. From the reconstructed

POVMs, we computed point estimates for the fidelities

of each circuit. To estimate confidence intervals for the

fidelity values, we used bootstrapping, resampling the

measurement statistics to obtain a set of estimates from

which we calculated the standard deviation. We executed

300 bootstrap instances for each circuit depth. The result-

ing confidence intervals, typically ranging from 0.1% to

0.2%, were too narrow to be visible on the plots in the

main text. Overall, the experimental data was collected

over the span of 2 h, well within the typical noise drift

timescale. Nevertheless, to mitigate any potential biases

from the slowly drifting noise environment, we random-

ized the order of all circuits before submission to the

quantum backend.
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