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Generalized measurements, also called positive operator-valued measures (POVMs), can offer advan-
tages over projective measurements in various quantum information tasks. Here, we realize a generalized
measurement of one and two superconducting qubits with high fidelity and in a single experimental setting.
To do so, we propose a hybrid method, the “Naimark-terminated binary tree,” based on a hybridiza-
tion of Naimark’s dilation and binary tree techniques that leverages emerging hardware capabilities for
midcircuit measurements and feed-forward control. Furthermore, we showcase a highly effective use of
approximate compiling to enhance POVM fidelity in noisy conditions. We argue that our hybrid method
scales better toward larger system sizes than its constituent methods and demonstrate its advantage by
performing detector tomography of symmetric, informationally complete POVM (SIC POVM). Detector
fidelity is further improved through a composite error-mitigation strategy that incorporates twirling and a
newly devised conditional readout error mitigation. Looking forward, we expect improvements in approx-
imate compilation and hardware noise for dynamic circuits to enable generalized measurements of larger

multiqubit POVMs on superconducting qubits.
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I. INTRODUCTION

Measuring information accurately and efficiently from
inherently probabilistic systems is a central challenge of
quantum physics. Projective, or von Neumann, measure-
ments are often used in experiments because of their com-
paratively simple realization on many quantum computing
platforms [1]. At the same time, they can be suboptimal
in such tasks as quantum state discrimination [2,3], where
no projective measurement can unambiguously tell two
nonorthogonal states apart with a single shot. General-
ized measurements or positive operator-valued measures
(POVMs) define the most general framework for quantum
measurements, including projective measurement as a spe-
cial case. Among various broad areas [4—6], POVMs allow
for unambiguous state discrimination [2,7], optimal state
tomography [8,9,11], entanglement detection [12], Bell’s
inequalities [13], quantum machine-learning algorithms
[14], and improved observable estimates in variational
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quantum algorithms [15]. Therefore, it is crucial to have
a deterministic protocol, which can be realized in a single
experimental setting to implement a general POVM [16].

Despite the high utility of POVMs, realizing them on
superconducting quantum systems is challenging. In prin-
ciple, any POVM can be realized by a projective mea-
surement in an extended Hilbert space through Naimark’s
dilation [17,18]. Recent efforts involved embedding the
system in the qudit space of superconducting qubits [19]
and trapped ions [20]. However, this requires efficient
discrimination of qudit states, which adds a level of exper-
imental complexity and suffers from readout errors. Alter-
natively, a POVM may be realized by coupling the system
to a number of auxiliary qubits that scales with the size of
the POVM [21,22]. Such implementations, however, raise
concerns about circuit complexity and, hence, scalability
to multiqubit systems. For instance, the large number of
auxiliary qubits required for Naimark’s dilation may not
be readily available or directly connected to the qubits one
intends to measure. Overall, Naimark’s dilation encounters
practical implementation issues due to the complex unitary
operations required in the extended Hilbert space.

A promising alternative is a binary search, which
employs only a single auxiliary qubit to realize general
multiqubit POVMs [23,24]. It involves a sequence of
conditional two-outcome POVMs, requiring cutting-edge
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hardware capabilities such as midcircuit measurements
and feed-forward control [25,26] comprising “dynamic”
or “adaptive” circuits. This scheme has been recently
demonstrated in a specialized experiment with a single
microwave cavity coupled to a transmon qubit [27]. How-
ever, extending the implementation of this scheme to
multiqubit programmable quantum processors requires cir-
cuits with potentially large depths and many feed-forward
operations that limit its fidelity.

To address the limitation imposed on POVM fidelity by
circuit noise, we propose a novel method for single-setting
POVMs on multiqubit systems using dynamic circuits.
Furthermore, we introduce innovative use of approxi-
mate compiling to implement measurements, enhancing
POVM fidelity under noisy conditions [28]. In Sec. III,
we present a hybridization of Naimark’s dilation with
the binary search—an approach that we call “Naimark-
terminated binary tree.” Our hybrid method results in
shorter-depth circuits and scales better toward larger sys-
tems. In Sec. IV, we implement all three methods on
an IBM quantum device and demonstrate the advantage
of our hybrid approach by performing detector tomogra-
phy of symmetric, informationally complete POVM (SIC
POVM) [8,9]. Using our hybrid approach with a compos-
ite error-mitigation strategy, including twirling and newly
devised conditional readout error mitigation (CREM), we
improve the fidelity of two qubit SIC POVM to 70.4 &+
0.1% from 52% and 40% of bare Naimark and binary-tree
approaches, respectively. Our code and data are available
in the Supplemental Material [10].

II. POVM

Formally, a POVM is a set F = {F;} of M positive
semidefinite Hermitian operators, called POVM elements.
Each element F; corresponds to a measurement outcome i
with probability P(i) = Tr(F;p), where p is the state of
the system. POVM elements must satisfy the complete-
ness relation Zf‘il F; =1 to have a normalized probabil-
ity distribution. Unlike projective measurements, POVM
elements are not necessarily orthogonal. We restrict our
attention to POVMs whose elements are linearly indepen-
dent rank-one operators F; = |;)(¥;| where |v;) is not
necessarily normalized. Any higher-rank POVMs can be
obtained by relabeling and mixing the outcomes of rank-
one POVMs with a maximum of @? elements, where d
is the dimension of the system [29]. Note that a POVM
defines only the measurement statistics P(i) but not the
postmeasurement state of the system, which depends on
how the POVM is realized. In fact, we disregard the
postmeasurement state in applications like observable esti-
mation or quantum state tomography (see Appendix E),
where the system is measured only once at the end of the
experiment. Therefore, this paper focuses only on mea-
surement statistics. This allows us to measure both the

system and the auxiliary qubits directly using Naimark’s
dilation and achieve a higher fidelity than binary search at
the cost of destroying the postmeasurement state.

II1. NAIMARK-TERMINATED BINARY TREE

In this section, we propose a novel combination of two
previously known methods for general POVMs, binary
search and Naimark’s dilation. This new hybrid scheme,
the Naimark-terminated binary tree, is more efficient than
its constituent methods. In a nutshell, we perform the
binary search by repeatedly dividing the set of POVM ele-
ments in half to narrow down the search range. When the
number of remaining POVM elements corresponds to the
dimension of the compound system and auxiliary Hilbert
space, we interrupt the binary search and apply Naimark’s
dilation.

We begin with the binary search. As originally detailed
by Andersson and Oi [23], binary search can realize gen-
eral POVM with only a single auxiliary qubit. It, therefore,
reduces the complexity of manipulating an extended sys-
tem and saves the quantum memory space when M is large.
We adopt the notation from Shen et al. [24] to briefly
outline the key steps below; see Appendix H for the full
treatment.

To construct the binary search tree, we begin by padding
our set of POVM elements with zero operators until M is
the nearest power of two. In the first step, we split the orig-
inal POVM into two sets of M /2 elements, for example,
as

M/2 M
By:=) F; and By:= Y F; (1)
i=1 i=M/2+1

The ordering of nonzero F; may be arbitrary and corre-
sponds to relabeling the measurement outcomes. The set
{By, B1} constitutes a valid POVM, which can be realized
via an indirect measurement of the system using a sin-
gle auxiliary qubit. Specifically, we measure the auxiliary
qubit after it has interacted with the system via a suitable
coupling unitary, effectively implementing a completely
positive map [1]. The corresponding Kraus operators must
satisfy the isometry condition ASAO + ATAl = /. Since the
POVM {By, B} is complete, we can always find suitable
Kraus operators by taking the square root of the cor-
responding POVM elements: Ay = /By and 4 = /B;.
Finally, we construct the coupling unitary U? by stack-
ing together the two binary Kraus operators 4y and 4; and
completing the remaining matrix elements:

*

U = (j‘l’ *) e UQ2d). )

The unitary operation is followed by the measurement of
the auxiliary qubit in the computational basis. Finally, the
auxiliary qubit is reset in the |0) state.
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After this first partial filtering, we again split the remain-
ing M /2 POVM elements in each branch into M /4 ele-
ments. This time, however, to implement the next step of
partial filtering by measuring a binary POVM, we have to
account for the postmeasurement state by modifying the
Kraus operators for the subsequent steps / > 2 as follows:

K71

Ay = Kyo K1),

)

where we use a binary string 5 of length / to denote the
sequence of measurement outcomes leading to the current
branch in the binary search tree, e.g., b € {0, 1}. Here,

Ky =4/ Zl.bza F; is obtained by aggregating the POVM
elements located in the last level of the branch that starts
from » with indices ranging from a to b. Importantly, at
every filtering step, we partition POVM elements such that
each branch receives at least d nonzero POVM elements.

invertible. It is also worth noting that a unitary transforma-
tion K,y — W0 K,n with arbitrary unitary W, leaves
the measurement statistics invariant and, thus, may have
an optimization potential for constructing the coupling uni-
tary in Eq. (2). As an example, Fig. 1(b) illustrates how a
16-element POVM on a two-qubit system is realized using
the hybrid method. The blue box in Fig. 1(b) aggregates
the corresponding POVM elements.

For POVMs with more than four elements, we con-
tinue bisecting the remaining POVM elements within each
branch until each branch has at most 2d elements in
its leaves. Precisely we arrive at this point after m =
log, (M /2d) iterations. For example, a 16-element POVM
on two-qubits requires a single iteration of binary search,
as shown in Fig. 1(b). At level m the cumulative Kraus
operator is given as

c J— J—

As a result, the matrix K is full rank for / < m, making it Ay = Apony - - Ay Ay = Kyom, “)
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FIG. 1.

Schematic of a two-qubit POVM with M = 16 POVM elements realized through (a) binary tree (blue), (b) hybrid scheme

(blue and red), and (c) Naimark’s dilation (red). Branching occurs after the measurement conditional on the outcome, with the trajectory
defined by a bitstring of previous outcomes. Each scheme terminates with a bitstring of length four corresponding to one of 16 POVM
elements. The number of qubits # and the number of POVM elements M can be arbitrary. Gray panel (d) shows quantum circuit
implementations for methods (a)~(c), ordered from bottom to top. System qubits are in red, and auxiliary qubits are in blue. Binary
search tree and hybrid circuit include midcircuit measurements and unitaries conditional on the classical register (dotted line). Longer

unitary blocks correspond to the higher circuit depth.
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and the conditional postmeasurement state of the system is

Kb(’”) IOKZ(m) 5
B i )
Tr(Kb(m) pr(’”) )

Pgm) =
In principle, we could continue dividing the set of POVM
elements in half, narrowing down the search range until
the target element is found, as shown in Fig. 1(a). This
approach would require log, M — m additional iterations
and a modified construction of Kraus operators for subse-
quent iterations, as detailed in Appendix H.

Instead, we observe that at level m, each branch has
at most 2d elements in its leaves. For example, as illus-
trated in Fig. 1(b), each red box aggregates at most eight
POVM elements. Therefore, at this point, the single auxil-
iary qubit suffices to apply Naimark’s dilation. To account
for the postmeasurement state, we modify the vectors

Y1) to 1) = K,/ [:). The new POVM defined by F; =

|V:) (1| satisfies the completeness relation because

b b
> 1) il = K (Z F;») Koy =1,  (6)

where a and b stand for the first and last indices of aggre-
gated POVM elements at the level m withb —a 4+ 1 = 2d.
Therefore, the modified vectors |;) can be arranged as
column vectors to form a d x 2d array whose rows are
orthonormal 2d-dimensional vectors. Such an array can
always be extended to a 2d x 2d unitary matrix U, as
detailed in Appendix G. By projectively measuring the
compound system in the computational basis after the uni-
tary transformation U', as shown in Fig. 1(b), we obtain

the outcomes |1ﬂieXt)(1ﬂieXt|, where |1/},<m) are the columns
of U. The conditional probability of observing the outcome
i given that a string of previous measurement outcomes
b has been obtained is given by

Tr(Fip)

PG = Te(|9) (Yl pym ) = —————,

(N

which results in the correct measurement statistics P(i) =
Tr(Fip).

Overall, the hybrid scheme involves m = log, (M /2d)
binary search steps and a final level that applies Naimark’s
dilation. This results in a total of m + 1 steps where (n +
1)-qubit unitaries are applied. In contrast, a standard binary
search requires log, M layers of (n + 1)-qubit unitaries.
Therefore, a hybrid circuit has log, d fewer layers. For
instance, the 16-element POVM in Fig. 1 is implemented
through the binary search in log, M = 4 steps, each involv-
ing a unitary acting on n 4+ 1 = 3 qubits. In contrast, hybrid
involves only a single (m =log, (M/2d) = 1) binary
search step and an additional level of conditional Naimark

unitaries, thus requiring two steps of three-qubit unitaries.
Bare Naimark’s dilation realizes the same POVM with
a single application of a four-qubit unitary. Finally, it is
worth noting that when M < 2d, the hybrid scheme sim-
plifies to a single application of Naimark’s dilation without
the need for any binary search steps. For example, a
four-element POVM on a single qubit is most efficiently
realized with a single application of Naimark’s dilation, as
detailed in Appendix A.

IV. EXPERIMENT

In this section, we compare the three methods by imple-
menting SIC POVMs on one and two qubits. The choice of
SIC POVMs as our benchmark is motivated by their exten-
sive study in the literature, particularly for their unique
tomographic properties [9]. Formally, a SIC POVM consist
of M = d* elements F; = 1/d|¢;)(¢;], which have equal
pairwise overlap with each other |(¢i|¢j)|2 =1/d+1)
for i #j. This symmetric property makes this class of
POVMs particularly important in the context of opti-
mal state tomography [20,30] and quantum key distribu-
tion [31,32]. However, practical implementation of SIC
POVMs becomes challenging for more than one qubit.

A. Detector tomography of SIC POVMs

In practice, the realized POVM will differ from the
ideal SIC POVM due to noise in the circuit [33]. To
quantify the quality of POVM implementation, we per-
form detector tomography by preparing an overcomplete
set of initial states and reconstructing the realized POVM
from measurement statistics, as described in Appendix B.
To calculate the fidelity, we represent the POVM as a
measurement channel [34,35]:

M
Er(p) =) Tr(Fip) li)il, ®)

i=1

where the output state Er(p) represents the POVM out-
come probabilities. The POVM fidelity between the target
POVM F and the realized POVM F can be defined as

FD(ng Sﬁ‘) = fS(AgpeASI})’ (9)

where Fs(p,0) = Tr( JPo/p 2 is the conventional
state fidelity. Here, A¢, stands for the normalized Choi
matrix of the quantum channel:

d

1 N N

Aee == > 1DG1@ERUDYG ). (10)
ij=1

The POVM fidelity can be reduced by different noise

sources in the circuit. To mitigate the impact of coher-

ent noise, we employ Pauli twirling on CNOTs, taking five
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twirled instances for each circuit [36-40]. Furthermore,
the effect of imprecise readout is mitigated using readout
error mitigation [41,42]. In circuits involving midcircuit
measurement and feed forward, measurement errors can
propagate through the conditional operations and further
reduce the fidelity. To address these errors, we extended the
standard readout error mitigation to account for error prop-
agation in dynamic circuits. As detailed in Appendix C,
our CREM technique involves taking measurement statis-
tics from additional circuits that provide the necessary
information for the deconvolution of noisy outcome prob-
abilities. Finally, we note that the fidelity of a POVM with
completely random outcomes is 1/2". Therefore, a non-
trivial realization of a POVM should yield a fidelity higher
than 1/2". For example, for one qubit, the baseline fidelity
is 50%, and for two qubits, it is 25%.

B. One-qubit SIC POVM

The one-qubit SIC POVM is implemented using
Naimark’s dilation and binary search, both requiring a
single auxiliary qubit (see Appendix A). In either case,
the circuit can be exactly compiled with a small number
of CNOTs. Naimark’s dilation requires three CNOTs and
binary search results in an average CNOT depth of 4.5.
Figure 2(a) summarizes the highest fidelities achieved with
each method and the impact of readout error mitigation
on ibmg kolkata [43]. While both Naimark’s dilation
and binary tree require one auxiliary qubit for a single-
qubit SIC POVM, there are additional sources of noise that
limit the fidelity of the latter. Specifically, the binary tree
applies two unitaries, which leads to a higher circuit depth.
Moreover, it suffers from additional idle time due to mid-
circuit readout and the delay in processing measurement
outcomes to determine the next unitary operation [26].
This reduces the fidelity of the binary-tree approach. After
readout error mitigation, Naimark achieves a fidelity of
98.4 £ 0.2% while binary tree reaches 90.6 £ 0.2% using
CREM. Naimark’s fidelity increases by 2% due to read-
out error mitigation, while binary’s increases by 1.3%.
The smaller enhancement from readout error mitigation in
binary tree is due to two main factors. Firstly, in our exper-
iment, the auxiliary qubit has a lower readout error than the
system qubit, and therefore, the binary-tree approach is less
affected by those errors compared to Naimark. Secondly,
qubit readout deviates from being a perfect quantum non-
demolition (QND) measurement [44]. Thus, the postmea-
surement state may differ from the recorded measurement
outcome. Such discrepancies are not corrected by CREM
as detailed in Appendix C.

C. Two-qubit SIC POVM

For the two-qubit SIC POVM, exact compilation of
required unitary operations into native gates results in

SHybrid With approximate compiling
Naimark
B Bty () With readout error mitigation
(a) (b)
100 4 98.4%
90.6%
o 751 70.4%
& 65.0%
207 42.1%
25

One-qubit SIC POVM Two-qubit SIC POVM

FIG. 2. Comparison of the highest achieved POVM fidelities
for different implementations of one- (left) and two-qubit (right)
SIC POVMs. The colored bars represent three different meth-
ods: Naimark (red), binary (blue), and hybrid (gray). White bars
represent the improvement from readout error mitigation and
hatched bars represent the improvement from approximate com-
piling. Error bars are obtained from bootstrapping and are too
narrow to be visible.

circuits with a large CNOT count. This limits their applica-
bility on near-term quantum hardware. To overcome this
challenge, we use approximate compiling, which aims to
find shorter circuits for a given unitary at the cost of only
approximating the target unitary. In this approach, we con-
strain both the number and connectivity of CNOT gates
within the circuit, which are interleaved with single-qubit
rotation gates. An optimizer then tries to find the rotation
angles for these single-qubit gates such that the resulting
circuit implements the target unitary as accurately as pos-
sible [28]. We use approximate compiling for all unitaries
involved in the construction of each of the three schemes.
For Naimark’s dilation, the optimization involves compil-
ing a single four-qubit unitary, while for the binary search
and hybrid methods, multiple three-qubit unitaries at dif-
ferent levels are compiled separately and then combined
together to realize the measurement sequence.

When using approximate compiling, we expect a trade-
off between circuit depth and the accuracy of the approx-
imated POVM. For example, a low number of CNOT
results in a large approximation error, as illustrated in the
ideal simulation in Fig. 3. However, deeper circuits will
encounter more noise, and a priori it is unclear which
CNOT depth will result in the optimal performance. To
approach this, we compile and run each algorithm at ten
different CNOT depths, ranging from about 9 to 35, and
for each algorithm, we pick the circuit with the highest
POVM fidelity in the experiment, as shown in Fig. 3.
Additional details of data acquisition can be found in
Appendix J. Finally, Fig. 2(b) summarizes the highest
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FIG. 3. POVM implementation fidelity across varying CNOT

depths for binary tree (blue), Naimark’s dilation (red), and hybrid
(gray) schemes. The line styles represent ideal fidelity (dashed),
depolarizing noise model simulation (dotted), and hardware
fidelity (solid), with the peak hardware fidelity denoted by a
star. The fidelity of a random outcome POVM is denoted by
a horizontal line at Fp = 0.25. Error bars are obtained from
bootstrapping and are smaller than markers.

fidelities achieved on hardware with each method, along
with the effect of readout error mitigation. In addition, the
improvement from approximate compiling is represented
by the difference between the optimal CNOT depth and the
highest CNOT depth. For hybrid and Naimark, the improve-
ment from approximate compiling is substantial. However,
its effect is limited for binary tree due to long idle times in
feed-forward operations, which are the main limiting fac-
tors for fidelity. We observe that the hybrid method results
in the highest fidelity of 70.4 &= 0.1%. Binary tree achieves
a maximum of 42.1 £ 0.1% fidelity, significantly lower
than the best fidelity of 65.0 & 0.1% using Naimark’s dila-
tion. However, it is still higher than the baseline fidelity
of 25%. Even though the binary tree is more efficient
in terms of required CNOT depth, its fidelity is strongly
affected by the high number of feed-forward operations
in the three midcircuit measurements, causing longer idle
times and coherence loss. We confirm this interpretation
with numerical simulations of these experiments with a
noise model inspired by the hardware in Sec. IV D. Finally,
as in the one-qubit experiment, the lower improvement of
only 0.2% from CREM in the binary tree as compared
to the 1.9% for Naimark and 1.8% for the hybrid circuit
is attributed to the comparatively low readout errors on
the auxiliary qubit as well as the non-QND errors in the
auxiliary qubit readout.

D. Noise analysis

CNOT gates are significantly noisier than single-qubit
gates. Therefore, their count is a key noise metric. How-
ever, in the context of dynamic circuits, fidelity may further
degrade due to idle times from midcircuit measurements
and feed-forward operations. Each conditional unitary in
binary and hybrid circuits involves verifying the unitary’s
condition, with a time cost comparable to that of a CNOT
gate’s duration.

To provide a phenomenological explanation for the two-
qubit SIC POVM results, we perform a noisy simulation
using a depolarizing noise model. Firstly, to model the
fidelity decay due to CNOT depth, we attach a depolariz-
ing error ecNoT = 1.5% to every CNOT gate. Secondly, we
associate a depolarizing error €;q. = 5% with each mea-
surement and feed-forward operation. This is motivated
by the comparatively long measurement and feed-forward
times, usually multiple times longer than the CNOT gate
time [26]. We choose the depolarizing errors heuristically,
and the error values are consistent with recent experi-
ments on analogous devices [26,44,45]. The binary tree is
impacted the most by this second kind of error because
it has three midcircuit measurements and 14 feed-forward
cases, as shown in Fig. 1(d). In contrast, the hybrid only
has one midcircuit measurement and two feed-forward
cases. On the other hand, Naimark’s circuit requires the
highest CNOT depth for approximate compilation and is,
therefore, additionally affected by the approximation error,
as shown in Fig. 3. Overall, the hybrid scheme outperforms
its constituents across all CNOT depths, consistent with the
experimental results. Despite the phenomenological nature
of our noise model, we achieved notable agreement with
the experimental data, suggesting that the error model cap-
tures the two major noise sources. An extended analysis
of the performance of the three schemes in different noise
regimes can be found in Appendix I.

E. Scaling to larger systems

We now discuss the resource costs of the three algo-
rithms when scaling to larger systems. As an illustrative
example, we focus on POVMs with M = d*> elements,
such as informationally complete POVMs [8], and extend
this discussion in Appendix D. Naimark’s dilation realizes
a POVM with M = d* elements through a single uni-
tary acting on log, M = 2n qubits followed by a layer of
end-circuit measurements. For an n-qubit system, Naimark
thus requires » auxiliary qubits. Notably, end-circuit mea-
surements can usually be executed in parallel, effectively
counting as a single measurement step. Binary search uti-
lizes log, M = 2n layers of (n + 1)-qubit unitaries, inter-
leaved by 2n — 1 midcircuit measurements and a final
end-circuit measurement. Of these 2n unitaries, 2n — 1
are conditional. In contrast, the hybrid uses log, (M /d) =
n layers of (n + 1)-qubit unitaries, interleaved by n — 1
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midcircuit measurements and terminating with » + 1 end-
circuit measurements. Thus, the hybrid approach requires
half as many layers compared to binary. Additionally,
its final #» + 1 end-circuit measurements can also be par-
allelized, providing yet another advantage over binary.
For both binary and hybrid, each midcircuit measurement
is followed by resetting the auxiliary qubit. This reset
can be achieved at minimal cost by applying an X gate
conditional on the measurement outcome (active reset).

We consider all unitaries in the binary search and
Naimark’s dilation as generic. Therefore, an upper bound
of O(4") cNOTs required for decomposing a generic n-
qubit unitary [46] serves as a common cost unit for the
circuit depth of all three schemes. Consequently, the CNOT
depths for Naimark, binary, and hybrid schemes scale as
016", 02n x 4", and O(n x 4"1), respectively. We
conclude that the hybrid scheme requires asymptotically
the shortest circuit. Furthermore, since the number of mid-
circuit measurements and conditional operations increases
only linearly with system size, the CNOT depth emerges
as the critical cost factor for larger systems. Finally, in
Appendix I, we provide further analysis on the impact
of noise from midcircuit measurements and conditional
operations in the two-qubit experiment.

V. CONCLUSION

In conclusion, we introduce a new approach for imple-
menting single-setting POVMs on multiqubit supercon-
ducting systems using dynamic circuits. Our method
results in shorter-depth circuits and outperforms both
Naimark’s dilation and binary tree in implementing
a two-qubit SIC POVM. We further demonstrate that
approximate compiling is an effective approach to realizing
generalized measurements under noisy conditions. In addi-
tion, we devise a new CREM technique to combat error
propagation in dynamic circuits and enhance the fidelity.
We limit our implementation to two-qubit POVMs, as our
attempts to extend this approach to three-qubit POVMs
resulted in prohibitively large circuit depths in the order of
hundreds of CNOTs, surpassing any previously successful
implementation on similar hardware. We, therefore, expect
that implementing higher-dimensional POVMs using our
approach will require improvements in hardware, such
as faster feed forward and more efficient approximate
compiling techniques. For example, an optimized com-
piling strategy could exploit the unitary freedom in the
definition of Kraus operators in Eq. (3) or try permuta-
tions of POVM elements. Nevertheless, our results open
new possibilities in the near future. For example, parallel
execution of products of two-qubit POVMs would allow
multiple qubits to be covered on the chip, a strategy with
potential implications for multiqubit state tomography or
classical shadows [20]. We also suggest incorporating our
hybrid approach in the development of hardware-efficient,

parametric POVMs, which has proven to be an effective
technique for targeted applications [15].

Note added—Recently, we became aware of a related
but independently developed error-mitigation technique
for mid-circuit measurements [47].
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APPENDIX A: ONE-QUBIT POVM
IMPLEMENTATION

A single-qubit rank-one POVM can have at most M = 4
linearly independent elements. Using Naimark’s dilation,
we can realize such a POVM with a single auxiliary qubit
by applying a suitable coupling unitary and measuring the
system and auxiliary qubit in the computational basis, as
detailed in Appendix G. Therefore, a single-qubit POVM
is a special case where the dimension of unitaries for
the binary tree and Naimark’s dilation coincide. In this
case, we do not expect binary to offer any advantage over
Naimark because it requires two layers of two-qubit uni-
taries, as shown in Fig. 4. Finally, our hybrid approach
simplifies to a single application of Naimark’s dilation
because there is no need for partial filtering.

The advantage of Naimark over binary is confirmed by
the higher fidelities obtained in the one-qubit realization of
a SIC POVM in Sec. IV B.

APPENDIX B: DETECTOR TOMOGRAPHY

Detector tomography is used to reconstruct an unknown
detector, or a POVM in the present work. In many aspects,
it is similar to state tomography, where an unknown state is
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FIG. 4. Schematic representation of a single qubit POVM with
M=4 POVM elements realized through (a) binary tree (blue), and
(b) Naimark’s dilation (red). Branching occurs after the measure-
ment conditional on the outcome, with the trajectory defined by
a bitstring of previous outcomes. Each scheme terminates with a
bitstring of length two corresponding to one of four POVM ele-
ments. Gray panel (c) shows quantum circuit implementations
for methods (a) and (b). System qubits are in red, and auxiliary
qubits are in blue. Binary tree includes a single midcircuit mea-
surement and two unitaries conditional on the classical register
(dotted line).

reconstructed from the measurement statistics of a known
detector. In contrast, in detector tomography, we aim to
reconstruct an unknown detector by preparing and mea-
suring a set of known initial states. To elaborate, for a
specific known state p;, the probability of getting a mea-
surement outcome F,, is given by p,,; = tr(F,0;). Every
F,, can be expressed using multiqubit Pauli matrices: F,, =

ZZ; Jmikok. This leads to the probability equation:

d2

Pmi = mektr(akpi),

k=1

(BI)

which is linear and analogous to state tomography. We
define the matrix S as the matrix containing trace values
that are specific to the set of initial states:

tr(o101) tr(o2 1)
tr(o102) tr(o,202)

- ; )
o1 o tr(opp)

Then, by writing fm as the vector of coefficients in front of
Pauli matrices in the expansion of F),, and p,, as the vector
of corresponding probabilities determined from the exper-
iment, we find the solution to p,, = Sfm by computing the
least-squares estimate:

fo = TS5, (B3)

The procedure above has to be repeated for every unknown
POVM element F,,. In general, the least-squares esti-
mate is not guaranteed to produce a non-negative F,,
especially with few measurement samples. Therefore, the
Choi matrix in Eq. (10) of the reconstructed POVM may
have small negative eigenvalues. To impose the non-
negativity, one can rescale the eigenvalues of the Choi
matrix from least squares, effectively projecting it onto the
set of quantum states [48,49]. This procedure corresponds
to computing the maximum-likelihood estimate under the
assumption of Gaussian noise [48]. In our experiments,
however, we take sufficient measurement samples such
that rescaling is only necessary for a few POVM elements.
In particular, rescaling has no effect on fidelities within the
statistical uncertainty.

For a two-qubit experiment, 36 Pauli basis states were
used, making the set of initial states overcomplete. Con-
sequently, the matrix S had dimensions 36 x 16. We also
used an overcomplete set of six Pauli basis states for a
one-qubit experiment, resulting in a 6 x 4 matrix. In prin-
ciple, only @ initial states are fundamentally required
to form a complete basis. However, using extra states
improves the estimation accuracy and compensates for
the state-dependent performance of a particular POVM
implementation.

APPENDIX C: CONDITIONAL READOUT ERROR
MITIGATION

Imprecise multiqubit measurements can be described
using a classical probabilistic model. Measurement errors
arise from random misclassification of correct outcomes,
represented by a confusion matrix M, where M;; = p(ilj)
is the probability of misclassifying j as i. Here, i and j
are computational basis states. Observed probabilities (P)
are obtained by applying the confusion matrix to ideal
probabilities (Q): P = MQ. For example, for the case of
measuring one qubit (i € 0,1), the confusion matrix is

given as
. 1—60 €1
M_< €0 1—61 )

For instance, the probability of obtaining 0 is the sum of the
probability (1 — €g) of correctly identifying 0 as 0 and the
probability €; of misclassifying 1 as 0. Error-free probabil-
ities O can be obtained by inverting the confusion matrix:
O = M~'P. In general, measuring n qubits in the compu-
tational basis can result in any of 2” computational states
with some unique probability. Therefore, to characterize
the full confusion matrix M, one needs to obtain 4" matrix
elements through calibration. Often, however, it is justified
to assume that readout errors are local, i.e., the probability
of misclassifying the state of some qubit is independent of
the states of other qubits. This allows us to construct the

(CD)
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global confusion matrix M as the tensor product of n 2 x 2
confusion matrices M;, one for each qubit:

M=M,QM,_ 1 ®...Q0 M. (€2)
The situation is different with dynamic circuits, which
enable midcircuit measurements, allowing subsequent
gates to be conditional on these measurement outcomes.
For instance, consider the two-qubit circuit in Fig. 5. A uni-
tary operation U prior to the first midcircuit measurement
encompasses the circuit’s unitary segment. After measur-
ing qubit g, the result is stored in the first bit of the
classical register. Subsequently, the circuit applies Uy if the
measurement reports 0 and U if 1. We see that if a bit-flip
error occurs during the midcircuit measurement, then not
only is the wrong measurement outcome recorded, but also
the wrong condition is triggered, and the wrong unitary
is applied. Moreover, the unitaries now act on the flipped
postmeasurement state of qubit ¢;. In this way, the mea-
surement error from midcircuit measurement propagates
through the circuit, affecting the evolution of the quantum
state. To account for this error propagation, consider the
second circuit in Fig. 5. The second circuit, which we call a
conditional calibration circuit, differs from the original cir-
cuits in that the conditions of the two unitaries are inverted,
and an X gate flips the postmeasurement state. Notice that
if a bit flip occurs during the midcircuit measurement in the
second circuit, the subsequent state evolution will corre-
spond to the case when no bit-flip occurs in the first circuit.
Denote €X as the probability of misclassifying the state i

on qubit g;; P and Q as the noisy and ideal probabilities
for the original circuit; and P and O as the corresponding
probabilities for the conditional calibration circuit. Also,
Pj; denotes the probability of measuring ¢; in state j and
¢ in state i. We can now express the noisy probability Py
of obtaining the outcome 00 as

Poo = (1 — )1 — €})Qn + (1 — €2} Qo
=+ 612(1 — E(l))Ql() + EIZEIIQH.

We see that the noisy probability Py includes four different
scenarios:

(1) The ideal case scenario when no readout error
occurs during both midcircuit and end-circuit mea-
surement with probability (1 — €2)(1 — €}).

The outcome 01 is misclassified as 00 with prob-
ability (1 — €2)e] due to the error on the midcir-
cuit measurement. However, the subsequent state
evolution corresponds to the error-free scenario.
The outcome 10 is misclassified as 00 with proba-
bility ef(l — 65) due to the error on the end-circuit
measurement.

The outcome 11 is misclassified as 00 with prob-
ability e’e! due to errors on both measurements,
whereby the effective state evolution is unaffected
by measurement errors.

)

3)

(4)

In a similar manner we can obtain expressions for Py, P,
and Pqy:

Py = €p(1 — €) Q00 + (1 — €2)(1 — €N Qo1 + €4€2010 + (1 — €)X O,
Pio= (1 —€)e2Quo + €21 001 + (1 — (1 —)010 + € (1 — D) 011,
P = e(l)engo +e5(1 —€])Q01 + €5(1 — €010+ (1 —eH(1 —eHOn.

Following the same logic, we obtain the expression for Poo, Po1, P1o, and Py;. It is convenient to write

Poo Qoo Qoo
Py l—¢ € 1—¢ € Ooi On
_ — (M, QM
Py |:( € 1—¢f ® €l 1—¢f Q1o [ 2 ® 1] Q1o
Py On On

and
Poo 1 1 , , Ooo Ooo
Py [(1 —e € ) (1 —€ € )] Oo1 On
~ = ~ = M M ~
Py € 1—e€ ® € 1—¢f O1o [ 2 1] O1o
Py On On
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Original dynamic
circuit

9 —
T 00
|
Conditional calibration Z:m U, |U, )
circuit l

FIG. 5. Conditional readout error mitigation. (a) Original two-
qubit circuit with a unitary applied to ¢; and ¢,, followed by a
midcircuit measurement, with subsequent operations conditioned
on the measurement’s outcome. (b) Conditional calibration cir-
cuit replicating the original with the feed-forward conditions
exchanged, and the postmeasurement state flipped.

Here, M; denotes the confusion matrix on qubit ¢;. In
a similar manner to the standard readout error mitiga-
tion, we can invert the Kronecker product (M, &) M, D=
My '@ M; " to obtain error-free probabilities Q. As a
byproduct, we also obtain error-free probabilities O for
the conditional calibration circuit. It is worth noting that
the described postprocessing requires obtaining probabili-
ties for two circuits (original and calibration circuit), which
doubles the total number of samples.

The described procedure extends to multiple midcircuit
measurements. The number of required conditional cal-
ibration circuits (including the original circuit) is given
by the number of possible combinations of measurement
errors, which is 2"mid where 7,4 is the number of mid-
circuit measurements. Therefore, the sampling overhead
scales exponentially with 7,;4, which makes this technique
feasible only for a few numbers of midcircuit measure-
ments. Note that the underlying assumption we made about
the nature of readout errors is that readout is perfectly
QND. In this setting, CREM can correct readout errors. In
reality, the readout of qubits is not perfectly QND, which
can result in inconsistencies between the postmeasurement
state and the measurement outcome. For example, a qubit
can decay during the measurement pulse. Moreover, apply-
ing measurements can cause leakage from the computation
subspace to other states outside of the computational space.
These errors contribute to non-QND measurement errors,

FIG. 6. Two-qubit circuit modeling non-QND readout errors
as postmeasurement bit flip with probability eqgnp. The “cor-
rectable” error is modeled as a premeasurement bit flip with
probability €.

@ Without CREM
- —=E=10%  serees £=20%

@ With CREM
—e=30%

Hellinger distance
=}
-
o
1

0.05
0.00 +
&onp
FIG. 7. [Illustration of the increase in Hellinger distance

between the noisy and noiseless probability distributions with
the rise of non-QND error rate egnp, comparing outcomes with
(blue) and without (red) CREM across different “correctable”
error rates €. In the presence of both errors, CREM removes the
contribution of “correctable” errors.

which alter the state after the measurement [44]. In mid-
circuit measurements, these errors affect the subsequent
computations, whereas in final measurements they mani-
fest as initialization errors in the next round. CREM does
not account for non-QND errors. To illustrate how CREM
performs in the presence of non-QND errors, we use a sim-
ple noise model that includes random bit flips before and
after the noiseless measurement pulse. The correspond-
ing two-qubit circuit is shown in Fig. 6. The random bit
flip before the measurement occurs with probability € and
represents the error that misclassifies the qubit state but
leaves the postmeasurement state consistent with the mea-
surement outcome. The random bit flip with probability
eonp after the measurement represents the non-QNDness
of the readout. The measurement on the second qubit is
ideal, and the unitaries in the circuit are chosen randomly.
By sweeping the non-QND error €gnp, as shown in Fig. 7,
we observe that the Hellinger distance between the noisy
and ideal measurement outcome distributions increases for
both mitigated and unmitigated results. However, the error
of unmitigated results also grows with €, while mitigated
results are independent of €. Therefore, in a realistic set-
ting, where both kinds of errors are present, CREM takes
out the contribution of the first type of error.

APPENDIX D: RESOURCE ESTIMATE

In Sec. IV E of the main text, we discuss the upper bound
on the number of CNOTs for all three schemes for POVMs
with M = d?. Here, we extend the discussion to POVMs
with M < d2, still assuming that POVM elements are lin-
early independent rank-one operators. As follows from the
main text, Naimark’s dilation requires a single [log, M-
qubit unitary. The binary-tree scheme requires n + 1-qubit
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TABLE I. Upper bounds on the number of CNOTs required for POVM implementation.
M Naimark Binary Hybrid
oM M < 2n+1 4n+1 (n + l) X 4n+l 4n+1
2l o M o< 4 M? log, M x 41 (logy M — n) x 41
Example for a minimal IC POVM
M =4" 16" 2n x 4"F1 n x 411

unitaries to be implemented [log, M times. Finally, the
hybrid scheme requires # + 1-qubit unitaries to be imple-
mented [log, g”—,,] times. Table I provides asymptotic upper
bounds on the number of CNOTs. For clarity, we treat the
case when 2" < M < 2"*! separately. We first pad the
POVM with zero operators to the nearest power of two.
That is, if a given POVM initially has 2" < M < 2"*! ele-
ments, we pad it until M = 2"*!. The POVM with M =
2"*1 elements can be most efficiently implemented with
Naimark’s dilation using a single auxiliary qubit. Binary
search requires (n + 1) partial filtering steps, while the
hybrid scheme coincides with Naimark’s dilation, as in
the case of one-qubit SIC POVM in Appendix IV B. An
important example is a minimal informationally complete
POVM, i.e., a POVM with 4" linearly independent POVM
elements, such as SIC POVM. In this case, the hybrid
scheme results in a circuit with half the length compared
to the binary search, as shown in Table 1.

In summary, the hybrid scheme yields a shorter circuit
than the binary search tree for any system size and number
of POVM elements. It outperforms Naimark’s dilation for
M > 2"+ while coinciding with Naimark’s dilation when
M < 2n+1 .

APPENDIX E: STATE TOMOGRAPHY

Quantum state tomography is one of the prominent
examples where the choice of measurement plays a central
role. A typical approach to perform state reconstruction of
a multiqubit system is to perform tomographic measure-
ments on each individual qubit using each of the Pauli
bases. For an n-qubit system, this requires 3” measurement
settings, a number which grows exponentially with the sys-
tem size, making it impractical for large numbers of qubits.
Moreover, Pauli bases are known to be suboptimal for state
tomography, requiring more samples than necessary due
to the informational redundancy of its projectors. The last
aspect is investigated in more detail in Appendix F.

SIC POVMs, in contrast, are known to be sample-
optimal for state tomography [9]. In the previous sec-
tions, we performed the detector tomography by assuming
perfect knowledge of the prepared states to obtain the
tomographic information about the implemented POVM.
Conversely, we could assume the perfect knowledge of the
detector (SIC POVM) to reconstruct the prepared quantum

states. Of course, since the implemented POVM is imper-
fect, the resulting reconstruction fidelity will deviate from
the ideal.

Notably, we do not need to perform any additional
measurements to the ones obtained for detector tomog-
raphy. We simply recast the problem and use the ideal
SIC POVM and the measurement statistics to perform
the linear inversion. In practice, the reconstructed states
may not be physical due to small negative eigenvalues.
To address this problem without significant computational
overhead, we rescale the eigenvalues of each reconstructed
density matrix to make it positive semidefinite [48]. Figure
8 shows the average reconstruction fidelities of the six
single-qubit Pauli basis states and the 36 two-qubit Pauli
basis states. Here, for the two-qubit experiment, we used
the optimal CNOT depths determined in Sec. IV. We see
that, overall, the achieved peak fidelities by each algorithm
agree closely with the corresponding POVM fidelities.

APPENDIX F: RESOURCE OVERHEAD OF STATE
TOMOGRAPHY

In the context of state tomography with Pauli basis,
we need 3" different measurement settings, each yielding
d outcomes. The total number of measurement outcomes

() Naimark () Hybrid
(O Binary () With readout error mitigation
100 4 98.4%
89.3%
w 75 73.5%
& 65.3%
50 47.4%
25
One-qubit states Two-qubit states
FIG. 8. Comparison of the highest achieved (average) state

fidelities for different implementations of one- (left) and two-
qubit (right) SIC POVMs. The colored bars represent three
different methods: Naimark (red), binary (blue), and hybrid
(gray). White bars represent the improvement from readout error
mitigation.

030315-11



PETR IVASHKOV et al.

PRX QUANTUM 5, 030315 (2024)

() =
E §§. -@- Pauli bases
>
\§§‘ -e- SIC POVM
IS
~
o 1071 3 ‘%
4 ] S
I S
- b N
h
S
h 8
tx
‘\
1072 h
10! 102 103 104
Shots
(b)
0.08 - —¢ - Pauli bases ’,/0
-¢- SIC POVM /”
7
0.07 -
& e
L 0.06 ol
— . - 7,
7
&~ P o--0—-06—-90
0.05 H -l _o-—-e" ~e~
s
[ 3
0.000 0.001 0.002 0.003 0.004
EcnoT

FIG. 9. Comparison of the infidelity of state reconstruction
between Pauli bases (red) and SIC POVM (gray) as a function
of the number of measurement shots (a) and the CNOT gate error
rate (b). In (a), the simulation is noiseless, and in (b), the number
of shots is fixed at 500.

exceeds the d> — 1 parameters of a d-dimensional density
matrix. Therefore, Pauli bases provide redundant informa-
tion, which results in a higher variance in the fidelity of the
reconstructed state [31].

SIC POVMs, however, are proven optimal for state
tomography [9]. This is observed in Fig. 9 by compar-
ing the infidelity of reconstruction for a two-qubit SIC
POVM with varying numbers of shots using a noiseless
Qiskit simulator. At lower shots, SIC POVM exhibits a
slight advantage, around 1% at 100 shots and 0.15% at
1000 shots. As the number of shots increases, both meth-

ods converge to zero infidelity at a rate of N %, evident from
the —1/2 slope of the curves. However, due to noise in
the circuit that implements a SIC POVM, its performance
is considerably lower than that of the Pauli bases. Nev-
ertheless, if the noise level of the device is sufficiently
low, using SIC POVMs for state tomography will be more
efficient.

We investigate the performance of SIC POVM under a
simplistic noise model that applies depolarizing noise to
the CNOT gates. The purpose of this analysis is to showcase
a crossover point where SIC POVM reconstruction yields
a higher fidelity than Pauli bases for a fixed number of 500
shots. Figure 9 shows the corresponding trade-off. At low

depolarizing noise, SIC POVM results in lower infidelity,
which grows as we increase the error. Pauli basis tomogra-
phy is expectedly unaffected by this noise model because
Pauli basis measurements do not include any CNOTs. A
more realistic noise model would include single-qubit and
measurement errors.

APPENDIX G: DETAILS OF NAIMARK’S
DILATION

Any POVM can be realized by a projective measure-
ment in a higher-dimensional Hilbert space by introduc-
ing a number of auxiliary qubits [17]. In general, the
dimension of the required auxiliary system dimension will
depend on the number of POVM elements, the dilation
method, and the ability to perform direct measurements on
the system [50]. One way to extend the Hilbert space is
by, for example, coupling the qubit system to neighbor-
ing qubits on a superconducting chip. Moreover, in the
scope of this paper, we are only interested in the mea-
surement statistics P (i) and disregard the postmeasurement
state of the system. Therefore, we consider the situation
where both the system and auxiliary qubit are measured
directly. The extension of the Hilbert space requires a min-
imal number of 7,4 auxiliary qubits so that the dimension
of the compound system 2"*"4 > M. Therefore, the auxil-
iary qubit resource is best utilized when M is a power of 2.
Otherwise, we have to pad our set of POVM elements with
zero operators until M is a power of 2. For a POVM of M
elements we find M unnormalized vectors |v;) such that
F; = |¥;)(¥;]. These vectors can be arranged as column
vectors to form an d x M array whose rows are orthonor-
mal M-dimensional vectors. This fact follows from the
completeness of POVM: Zf‘il F; = 1I. Such an array can
always be extended to a M x M unitary matrix, as shown
in Eq. (G1):

Vi ... Yan
v=| s . g |evon. @
* : *

The circuit implementing Naimark’s dilation is con-
structed by preparing the auxiliary qubit in the |0)®"4
state and applying the coupling unitary U'. Finally, by
projectively measuring the compound system in the com-
putational basis after the unitary transformation U', we
obtain the outcomes |YF*)(y ™|, where [y¢fX') are the
columns of U'. The probability of observing an outcome
i is given by taking the trace over the auxiliary qubits and
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the system:

P() = Tr([Y 7)Y (W (04 ® p))
= Tr(|y:) (il p)
= Tr(F;p).

With this, we fully recover the original POVM measure-
ment statistics P (i) = Tr(F;p).

Finally, we illustrate the procedure in Fig. 4(b) for a
four-element POVM on a single-qubit system with the
corresponding circuit depicted in Fig. 4(c). Moreover, an
example of Naimark’s dilation applied to a two-qubit sys-
tem to realize a 16-element POVM is illustrated in Fig. 1(c)
with the circuit shown in Fig. 1(d).

In conclusion, it is worth noting that the way in which
the dilation is realized can be different. For example,
suppose the system of interest harbors more dimensions
than the dimension of its computational subspace, such
as higher-energy states of superconducting qubits [19] or
trapped ions [20]. In that case, the extended Hilbert space
can be a direct sum Hey = H & Hy of the system and
auxiliary spaces [50,51]. Often, such dilation is rather diffi-
cult because one needs to discriminate between qudit states
efficiently.

APPENDIX H: DETAILS OF THE BINARY-TREE
CONSTRUCTION

In this section, we outline the key steps of the binary
tree protocol using the notation from Shen et al. [24]. A
detailed treatment can be found in Andersson ef al. [23]
and Shen et al. [24]. To construct the binary search tree,
we begin by padding our set of POVM elements with zero
operators until M is the nearest power of 2. At the first level
! = 1, we find a suitable Kraus operator 4 for the coupling
unitary from the diagonalization of By = VD} Vg, result-
ing in A9 = VoyDy Vg. Here, Dy is a diagonal matrix with
non-negative eigenvalues because By is positive Hermi-
tian. We analogously construct 4, = V1D, VI from B| =

VD3 VJ{. As detailed in the main text, we implement this
binary POVM via an indirect measurement of the system
by constructing a suitable coupling unitary.

After the initial two-outcome POVM, the postmeasure-
ment state of the system, denoted as p,), will depend on
the measurement outcome. For instance, if the auxiliary
qubit is measured in the |0) state, the postmeasurement
state py can be expressed as

AopA}

po=—"—"=, (HT)
Tr(4opAg)

where p represents the initial state of the system. There-

fore, the measurement of the auxiliary qubit causes branch-

ing, effectively performing partial filtering. This procedure

may be seen as a quantum instrument that combines the
classical measurement outcome with the conditional post-
measurement quantum state of the system [34]. The subse-
quent binary POVMs must take this postmeasurement state
into account. Therefore, we modify the Kraus operators for
all subsequent steps / > 2 as follows:

1
+
Ay = Kyo K,y +—=0Opu-v,

7 (H2)

where Kyo =4/ Zf’:a F; is obtained by aggregating the
POVM elements located in the last level of the branch that
starts from 5’ with indices ranging from a to b. The choice
of K, is not unique because an arbitrary unitary transfor-
mation K,y — W,uK,a leaves the measurement statistics
invariant. In contrast to the construction of Kraus operators
for the hybrid scheme, K, ¢-1) will not be invertible if the
number of remaining nonzero POVM elements is smaller
than the system’s dimension. Therefore, K;,_l) denotes
the Moore-Penrose pseudoinverse of K-, and Qpu-1
ensures that the pair of binary Kraus operators generates
a complete POVM.

Overall, the construction of corresponding binary Kraus
operators in Eq. (H2) follows a sequential process:

(1) First, we form B,y = Zf:a F; by aggregating the
POVM elements located in the leaves of the
branch that starts from 5. This results in B,o =
Vi D2, V7.

(2) Next, we create K,o) = VyoDyo Vi(,)

that satisfies
the condition K;(Z)Kba) = B,u.

(3) We compute K;{,_D, which represents the Moore-
Penrose pseudoinverse of K;¢-1) which was obtained
in the previous level.

(4) Then, we construct the support projection matrix
of Dyu-1, denoted as Pyo-1), where (Pyu-1); =
sign[(Dyu-1)i; -

(5) Lastly, Qpe-1y =1 — Vyu-1yPpa-1 VZU_D ensures that
the pair of binary Kraus operators generates a valid

POVM: Y0y Al Ay = 1.

This construction ensures that the matrix 2 is unitary and
that the cumulative Kraus operator

Ay = Ay - Ay Ay (H3)

corresponds to the correct POVM element: AZ?L)AZ(L) =F;

with i = b + 1, as shown in the Appendix to the paper
by Shen et al. [24].

Each time, the coupling unitary applied will depend
on the sequence of previous measurement outcomes that
define the current branch. Therefore, the scheme requires
midcircuit measurements and feed forward. It is worth
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FIG. 10. Noisy simulation of the two-qubit POVM for the binary tree (blue), Naimark’s dilation (red), and hybrid (gray) schemes
under various noise regimes. For each scheme, and for each combination of €;q. and ecnoT, the fidelity is computed for 10 circuits
at varying CNOT depths and the highest fidelity value is plotted. The gray-shaded area indicates the regime where the simulations best

agree with the experimental results obtained on hardware.

noting that the system is never measured directly dur-
ing the binary search. This fact makes this approach also
applicable to quantum channels, as shown by Shen et al.
[24].

In contrast to Naimark’s dilation, which involves a
single M-dimensional unitary applied to a set of log,M
qubits, the binary scheme requires a total of log, M unitary
operations, each acting on n + 1 qubits.

APPENDIX I: EXTENDED NOISE ANALYSIS

In Sec. IV D of the main text, we employ a simple phe-
nomenological noise model to explain the experimental
results of the two-qubit experiment. The two hyperpa-
rameters of this model, ecnoT and €jqe, represent the
depolarizing errors associated with each CNOT gate and
each measurement and feed-forward operation, respec-
tively. While this model does not account for complex
noise processes such as correlated errors, leakage, 7' fluc-
tuations, or measurement-induced control errors, which
may occur on real superconducting qubit platforms [44],
the close agreement with the experimental results in Fig. 3
suggests that it effectively captures the main error contribu-
tions from noisy CNOT gates and noise related to midcircuit
measurements and idle time.

Here, we apply the same model to qualitatively under-
stand the different noise regimes affecting the performance
of our hybrid approach. Figure 10 displays noisy simu-
lations of the two-qubit SIC POVM across various error
regimes. For each combination of €4, and ecnoT, We per-
form simulations for all three schemes at different depths,
selecting for each scheme the depth that yields the highest
fidelity. These fidelity levels are depicted in Fig. 10.

Figure 10(a) represents the regime with comparatively
high €4, where the binary scheme is most affected due

to a large number of conditional operations and midcircuit
measurements. In the range ecnoT & 1-2%, we observe
the best agreement with our experimental results. We thus
conclude that the gray-shaded area in Fig. 10(a) corre-
sponds to the current hardware regime. Figures 10(b) and
10(c) show lower €4 regimes, potentially achievable with
faster midcircuit measurements and conditional operations
or through effective error-suppression techniques such as
dynamical decoupling [52]. In these conditions, we expect
the hybrid scheme to offer a more significant advantage
over Naimark. Importantly, in all scenarios, the fidelity of
Naimark decays fastest with increasing ecnoT due to its
higher CNOT depth.

Overall, while the fidelity improvements offered by the
hybrid approach depend on noise from conditional opera-
tions and midcircuit measurements, the exponential growth
of CNOT depth with the system size is more detrimental
compared to the linear scaling of midcircuit measure-
ments, as detailed in Sec. IV E. Thus, while it is possible
that the hybrid scheme might not offer an advantage for
smaller system sizes on some experimental platforms with,
e.g., high-quality CNOTs and poor-quality conditional oper-
ations, we expect hybrid to outperform its constituents
on larger systems. In particular, we demonstrate that the
hybrid approach already provides an advantage in a two-
qubit system for IBM quantum devices.

APPENDIX J: DATA ACQUISITION

We conducted both one- and two-qubit experiments on
ibmg kolkata, a 27-qubit quantum processor [43]. For
the one-qubit experiment, exact compiling was utilized.
For the two-qubit experiment, we applied approximate
compiling across ten different CNOT depths for all three
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methods, yielding different levels of approximation accu-
racy. Subsequently, for each circuit, we generated five
twirled instances by inserting random Pauli gates before
and after CNOT gates. For each twirled instance, we pre-
pared 36 two-qubit Pauli basis states and took 4000 mea-
surement samples for each state and instance, totaling
20000 samples per circuit per basis state. The collected
measurement statistics were then used to reconstruct the
POVMs as outlined in Appendix B. From the reconstructed
POVMs, we computed point estimates for the fidelities
of each circuit. To estimate confidence intervals for the
fidelity values, we used bootstrapping, resampling the
measurement statistics to obtain a set of estimates from
which we calculated the standard deviation. We executed
300 bootstrap instances for each circuit depth. The result-
ing confidence intervals, typically ranging from 0.1% to
0.2%, were too narrow to be visible on the plots in the
main text. Overall, the experimental data was collected
over the span of 2 h, well within the typical noise drift
timescale. Nevertheless, to mitigate any potential biases
from the slowly drifting noise environment, we random-
ized the order of all circuits before submission to the
quantum backend.
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