

1 Full-Scale Shake Table Test Damage Data Collection Using Terrestrial Laser 2 Scanning Techniques

3 Mohammad Aghababaei¹, Christian Okamoto², Maria Koliou^{3*}, Takuya Nagae⁴, Chris P.
4 Pantelides⁵, Keri L. Ryan⁶, Andre R. Barbosa⁷, Shiling Pei⁸, John W. van de Lindt⁹, Shideh
5 Dashti¹⁰

6 Abstract

7 This paper presents the use of modern survey techniques, particularly Light Detection and Ranging
8 (LiDAR) scanning to collect time-sensitive information before and after shake table experiments.
9 Two full-scale three-story residential buildings were tested simultaneously on the largest shake
10 table in the world. The focus of this study is on the use of LiDAR to document observations during
11 these tests. The challenges experienced during this study prompted the development of a
12 formalized survey procedure using LiDAR scanning techniques, which can be used by other
13 researchers when planning to collect such time-sensitive data from similar experimental programs.
14 In this paper, damage assessment through visual inspection, which is commonly performed during

¹ Ph.D. Student and Graduate Research Assistant, Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, 77843, U.S.A., E-mail: mohammad.aghababaei@tamu.edu

² Former Undergraduate Student, Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, 77843, U.S.A., E-mail: christianokamoto18@tamu.edu

³ Assistant Professor, Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, 77843, U.S.A., E-mail: maria.koliou@tamu.edu (*Corresponding author)

⁴ Associate Professor, Disaster Mitigation Research Center, Nagoya University, Nagoya, Japan, E-mail: nagae@nrgo.ya-u.jp

⁵ Professor, Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT, 84112, U.S.A., E-mail: c.pantelides@utah.edu

⁶ Associate Professor, Department of Civil and Environmental Engineering, University of Nevada Reno, Reno, NV, 89557, U.S.A., Email: klryan@unr.edu

⁷ Associate Professor, School of Civil and Construction Engineering, Oregon State University, Corvallis, OR, 97331, U.S.A., Email: andre.barbosa@oregonstate.edu

⁸ Associate Professor, Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, 80401, U.S.A., Email: spei@mines.edu

⁹ Harold H. Short Endowed Chair Professor and Co-Director – Center of Excellence for Risk-Based Community Resilience Planning, Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, 80523, U.S.A., E-mail: jwv@colostate.edu

¹⁰ Associate Professor, Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, CO, 80309, U.S.A., Email: shideh.dashti@colorado.edu

15 full-scale tests, is compared to post-experiment assessments using post-processed LiDAR derived
16 point clouds. Various examples of damage to structural and nonstructural components, including
17 columns, bracing, partition walls, and façades, are illustrated through post-shaking visual
18 inspections as well as LiDAR derived point clouds. The feasibility of making accurate
19 measurements using LiDAR point clouds, and automatically detecting damage using the point-to-
20 point cloud comparison is presented. Finally, the relationship between observations through
21 traditional instruments (e.g., accelerometers, laser meters, etc.) and LiDAR is discussed. In one
22 example, the measurements from eight laser meters around the buildings are used to validate the
23 measurements obtained using LiDAR point clouds. It is concluded that observations through
24 LiDAR are complementary to those from traditional instruments, while permanent/residual
25 displacements after the tests can be measured from both traditional and modern instruments.

26 **Keywords:** *Damage, Full-scale Shake Table Tests, Terrestrial Laser Scanning, LiDAR, Wood*
27 *Buildings*

28 **Introduction**

29 A wide range of disasters, such as hurricanes, earthquakes, and wildfires threaten the resilience of
30 communities around the world. It has been observed that the frequency of such disasters has
31 increased during recent decades (Aghababaei et al. 2018; NOAA 2020). A great number of studies
32 have focused on a better understanding of hazard loads, their direct and indirect impacts, the
33 restoration of communities in the aftermath, and ways to improve the resilience of communities
34 against these events (Aghababaei et al. 2020; Aghababaei and Mahsuli 2018, 2019; Attary et al.
35 2019; Cornell and Krawinkler 2000; Koliou et al. 2018; Koliou and van de Lindt 2020; Lounis and
36 McAllister 2016; Memari et al. 2018; Zhang et al. 2018). One of the key elements for conducting
37 all of the aforementioned studies is having relevant data. These data can be collected from various
38 resources, spanning from experimental studies to post-disaster field surveys, depending on the
39 objective of each study. In most cases, such data are accessible for a limited amount of time, and
40 vanish rapidly as the community starts to recover. Additionally, full-scale experiments are very
41 costly and need access to unique facilities, and hence, it is of great importance to collect a
42 comprehensive dataset during and after every full-scale test using a variety of instruments.

43 Conventionally, observations from full-scale shake table experiments are collected using
44 traditional instruments, and the damage is recorded using a combination of note taking and
45 ordinary cameras. In contrast, other similar fields of study have adopted advanced data collection
46 techniques, such as post-disaster data collection in the aftermath of hurricanes, earthquakes, among
47 others. One common modern surveying technique used in post-disaster reconnaissance studies is
48 Light Detection and Ranging (LiDAR) scanning, which has been used widely. The next section of
49 this paper discusses previous work and advancements in the use of LiDAR scanning for time-
50 sensitive data collection.

51 ***Literature Review and Research Gaps***

52 To collect time-sensitive data (either during reconnaissance or lab-controlled experimental
53 studies), different forms of survey and instrumentation have been evaluated in the literature,
54 including direct field inspections as well as modern and traditional instrumentation. For example,
55 to collect damage data after natural disasters, field inspections (Aghababaei et al. 2018; van de
56 Lindt et al. 2007), geospatial videos (Curtis and Fagan 2013; Mills et al. 2010), Unmanned Aerial
57 Vehicle (UAV) images (Pinelli et al. 2018), as well as LiDAR scanning (Barbosa et al. 2017;
58 Brando et al. 2017; Zhou et al. 2019) have been employed. Furthermore, to collect time-sensitive
59 data from lab-controlled experimental studies, various methods including a combination of
60 traditional instrumentation (e.g., accelerometers, displacement transducers, etc.) and visual
61 damage inspections (Filiatrault et al. 2010; van de Lindt et al. 2011, 2012), LiDAR scanning
62 (Kashani and Graettinger 2015; Olsen et al. 2010), and digital image correlation (Kramer et al.
63 2016) were utilized. Each method of data collection has been selected depending on the scope of
64 the study and the method's advantages and disadvantages. Recently, various studies have
65 integrated modern technologies, such as remote sensing techniques (Olsen et al. 2010; Soti et al.
66 2020; Zhou et al. 2019), with the data collection efforts as an alternative to traditional
67 reconnaissance field surveys.

68 With regard to LiDAR, a number of studies employed LiDAR point clouds to comprehensively
69 collect 3D data to identify and quantify the damage of the inspected infrastructure. Olsen and
70 Kayen (2013) discussed special considerations when performing LiDAR scanning in post-disaster
71 environments, with respect to procedures during planning, field reconnaissance, collaboration,

72 data acquisition, processing, and analysis. Yu et al. (2017) utilized LiDAR scans to collect damage
73 data from an 18-story building located in Nepal damaged by the 2015 Gorkha earthquake and its
74 aftershocks; these researchers identified and quantified damage in two key building components
75 (coupling beams and infill walls) in different stories using the collected scans. The results
76 presented by Yu et al. (2017) indicate a good correlation with the damage states predicted by the
77 finite element model of the building subject to the recorded earthquakes. A number of studies also
78 used LiDAR data to detect roof damage after severe weather events (Kashani et al. 2016; Kashani
79 and Graettinger 2015). More specifically, Kashani and Graettinger (2015) developed a clustering-
80 based method to automatically detect roof damage using LiDAR data collected after disasters. To
81 develop their algorithm settings, they conducted multiple experiments under controlled conditions
82 inside a laboratory and trained their algorithm using the collected LiDAR data. Olsen et al. (2010)
83 and Kashani and Graettinger (2015) are amongst the few lab-controlled studies utilizing LiDAR
84 scanning instruments to detect damage.

85 Despite the aforementioned advancements in collecting time-sensitive data in other related
86 research fields, to the best knowledge of the authors of the current paper, there is no prior full-
87 scale shake table experimental study in the literature utilizing LiDAR scanning to collect and
88 detect damage. The current study targeted to further demonstrate the feasibility, capabilities, and
89 importance of using such LiDAR scanning survey techniques in full-scale shake table experiments,
90 as well as their advantages and challenges when applied to such experimental programs.

91 ***Advantages, Disadvantages, and Limitations***

92 According to the results of this study, there are advantages, disadvantages, and limitations for
93 using LiDAR scanning to collect time-sensitive data of full-scale shake table tests. The main
94 advantages are as follows:

- 95 (i) The resulting point cloud is comprehensive; it encompasses the observations of all interior
96 and exterior components of the building specimen, its content, and its surrounding in a
97 single dense point cloud.
- 98 (ii) Observations and measurements can be taken after the test specimen is demolished; this
99 significant feature of the resulting point cloud enables researchers, even those not present

100 at the time of the experiment, to observe the results, inspect the building, conduct
101 measurements and perform further analyses.

102 (iii) Using the resulting point cloud, the user can create virtual walkthroughs in the interior and
103 exterior of the test specimen to mimic physical inspections on the shake table between tests.
104 Appropriate computer programs are used to move around and inside the point cloud of the
105 building, zoom in and out, and safely perform detailed measurements for the desired
106 purpose.

107 (iv) Various types of analyses can be conducted using the point clouds in addition to simple
108 measurements. As discussed previously, studies in the literature employed methods to
109 automatically detect damage, and most importantly, *quantify* its extent (Kashani and
110 Graettinger 2015; Yu et al. 2017).

111 There are also disadvantages and limitations in using LiDAR scanning for data collection from
112 full-scale shake table tests. They are listed as follows:

113 (i) LiDAR scanning provides no information about the time history response of the
114 building during shaking; rather, it preserves the state of the building before and after
115 each test. Although this is sufficient to collect permanent deformations of the specimen
116 and the damage incurred, it lacks the time history response of the building.

117 (ii) There are tradeoffs and potential limitations that should be considered with respect to
118 the accuracy of LiDAR scanners. It is worth noting that there are two components to the
119 LiDAR scanners used in this study; one is related to the scanning (point measurements)
120 and the other to imaging (digital photographs). The images allow for the
121 color/pixelization of the point cloud data but are also crucial for damage identification.
122 Scanners are extremely useful to capture objects in the scene, while efficiently and
123 accurately capturing deformations. However, for crack detection and crack width
124 quantification, there is a need to balance the resolution in terms of the point
125 measurement scanning accuracy and the number of pixels of the images or the need to
126 do localized scans, which require knowledge of the locations of the cracks. The balance
127 depends not only on the characteristics of the scanner, but also how they are used and
128 their setup with respect to the objects of interest. For example, in the current study, the
129 scanners used were capable of producing higher resolution scans and images, but at an

130 increased cost in terms of the time taken per scan, which was not compatible with the
131 fast pace of shake-table testing program. As a consequence, there may be limitations in
132 the ability of scanners to collect damage data in an expedited way, especially when
133 collecting data needed to quantify crack locations and widths. In addition, development
134 of algorithms for automatic damage detection are needed since only a few examples are
135 available in the literature for use in structural engineering applications (Soti et al. 2020;
136 Wood et al. 2017).

137 In the following sections, first the scope and objectives of this study are summarized. Second,
138 details of the test specimens as well as the traditional and LiDAR equipment used in this study are
139 presented. Third, the LiDAR scanning procedures adopted are described, and details of the
140 scanning for each phase of the tests are provided. A formalized LiDAR scanning procedure is
141 proposed based on lessons learned during damage assessments. The paper continues with
142 comparison of the damage assessments through visual inspection and LiDAR scans by illustrating
143 various examples of structural and nonstructural components. Thereafter, automatic damage
144 detection using LiDAR point clouds by point-to-point comparison is discussed; an example of
145 automatic damage detection on the eastern wall of Building A on the last test day is presented.
146 Finally, the various types of information acquired using traditional and LiDAR scanning, their
147 complementary role in comprehensive data collection, and the potential of using modern survey
148 techniques in full-scale shake table experiments are discussed.

149 **Objectives and Scope**

150 The current study aimed to advance the use of damage surveying techniques for full-scale shake
151 table tests using LiDAR scanning as an alternative to traditional techniques or as a complementary
152 survey tool. For this purpose, the current study utilized LiDAR scanning to collect as-built
153 geometry of the building specimens as well as damage data of a set of full-scale shake table tests
154 conducted on two wood residential buildings. The tests were conducted in the E-Defense facility
155 in Miki, Japan, as a part of the first stage of a five-year project titled “Tokyo Metropolitan
156 Resilience Project”. The objectives of this study are to:

- 157 (i) Propose a formalized survey procedure for utilizing LiDAR scanning techniques in full-
158 scale shake table tests, based on lessons learned during this project.

- 159 (ii) Present various showcases of measurements conducted and damage detected on
160 structural and nonstructural components as examples of the capabilities of the resulting
161 LiDAR data (containing point clouds and photographs taken by scanner), and compare
162 them with photographs taken by ordinary cameras.
- 163 (iii) Evaluate the accuracy of the measurements, compare them with the results of traditional
164 measurement instruments, and identify the advantages and drawbacks of using LiDAR
165 for full-scale shake table experiments.

166 **Test Specimens Description**

167 The five-year project discussed in this paper, the “Tokyo Metropolitan Resilience Project”, is
168 currently in progress in Japan to assess the resilience of the Tokyo urban area (Nagae et al. 2020b).
169 During the first stage of this project, a series of shake table studies on two full-scale wood
170 residential 161.5 m² (1738 ft²) buildings with different structural systems and foundation
171 conditions were conducted at the E-Defense facility. Figure 1 presents photographs from the four
172 corners of the two buildings prior to testing on the shake table. These two three-story buildings
173 represent the trend of construction in densely populated urban areas in Japan (Nagae et al. 2020b).
174 The designs correspond to “Grade-3 construction” according to current Japanese design guidelines
175 (Nagae et al. 2020a). Figure 2 presents the elevation views of the first building, called herein
176 “Building A”. The first and second story were 2.775 m (9.1 ft) tall while the third story was 2.769
177 m (9.08 ft) tall. Plan views of all three floor levels are shown in Figure 3. A kitchen and dining
178 room were located in the first story along with a laundry room and a full bathroom. Three bedrooms
179 were located in the second story and a master bedroom was located in the third story. Additionally,
180 a large living room area was located on the third story of the building. The second building, called
181 herein “Building B”, was identical to Building A architecturally, except for its windows. To avoid
182 repetition, the plan and elevation views of Building B are not presented since the differences are
183 very minor compared to Building A.

184 Building A was constructed using the post-and-beam method. The building had let-in X-braces
185 in both horizontal directions, which were fixed using metal connectors. Figure 4 presents the post-
186 and-beam structure of Building A, where labels in this figure correspond to the grid labels in Figure

187 3. Structural plywood for the exterior walls was attached using nails. This building was initially
188 located on a seismic base-isolation system (test days 1 and 2), but was fixed for test days 3 and 4.

189 Building B was constructed using shear walls. The panels were prefabricated and were
190 composed of vertical and lateral frame elements and shear wall panels that were fixed to sills using
191 nails and metal framing anchors. The design of Building B was similar to typical US wood building
192 designs and construction using wood structural panel shear walls with framing members and
193 blocking, except that in the US larger framing members are used at adjoining panel edges for
194 multiple rows of nails and larger-diameter nails provide for higher strength shear walls (American
195 Wood Council 2015; 2018). In addition, in the US construction, design for shear and overturning
196 provides for properly sized tension and compression chords as well as shear and overturning
197 anchorage. Building B was initially placed on a concrete mat foundation constructed on compacted
198 soil that was contained in a reinforced concrete open-top box, simply referred to as soil box
199 hereafter. Note that the small volume of soil included in this test could not properly represent wave
200 propagation, ground motion attenuation, and radiation damping patterns below the foundation. The
201 foundation conditions were modified for the latter part of the test program.

202 **Instrumentation**

203 This section presents LiDAR scanning data collected in this study, the main features of the
204 equipment used, as well as a summary of traditional instruments utilized and their location.

205 Three LiDAR scanners were used including: (i) two close-range LiDAR scanners (Figure 5a)
206 with an accuracy of 4 mm in 10 meters distance and a scanning distance range of 60 meters, which
207 were used to scan the interior of the buildings, and (ii) a long-range LiDAR scanner (Figure 5b)
208 with an accuracy of 4 mm and a scanning distance range of 1,200 meters, which was suitable for
209 scanning building exteriors. Exterior scans were generally captured from three observation decks
210 around the shake table as indicated in Figure 1, and hence, the close-range scanners could not be
211 utilized for this purpose. In addition to the LiDAR scanners, in order to assemble the scans more
212 efficiently and precisely during post-processing, one total station (Leica Nova TS16I) was utilized
213 to collect the coordinates of multiple targets located around the buildings and on fixed points on
214 the walls of the laboratory.

215 Various types of traditional instruments including triaxial accelerometers, strain gages, and
216 Linear Variable Displacement Transducers (LVDTs) were utilized to measure the responses of the
217 buildings subjected to various shaking intensities during the four days of testing. The traditional
218 instruments used by the authors' team are listed in Table 1, and the accelerometer locations for
219 both buildings are shown in Figure 6. Although not shown in Figure 6, Building B instrumentation
220 also included triaxial accelerometers, one on the soil box and one on the piping inside the soil, and
221 four LVDTs, one at each corner of the building on the soil box in the vertical direction.

222 **Test Sequence and Lidar Scanning Procedure**

223 Table 2 presents the shaking trials on each test day along with the earthquake intensities and base
224 condition. It should be noted that a white noise test was conducted before and after each trial to
225 evaluate the modal features (e.g., frequency, damping, and mode shapes).

226 Experiments started on test day 1 with Building A on a seismic base-isolation system and
227 Building B on a foundation constructed in a soil box by applying JMA 25%, JMA 50%, JR 25%,
228 and JR 50% motions (JMA Kobe and JR Takatori are two recorded motions for the 1995 Kobe
229 earthquake in Japan). Acceleration histories record and acceleration response spectra of JMA
230 100% and JR 100% records are presented in Figure 7 and Figure 8, respectively. On test day 2, the
231 buildings were subjected to 100% JMA and 100% JR. On test day 3, Building A was fixed and
232 Building B was still on the soil box but with twenty cast iron plates inserted between the foundation
233 slab and soil to reduce frictional resistance of the foundation slab (Nagae et al. 2020a). The two
234 buildings were subjected to JMA 25%, JMA 50%, JMA 100%, and JR 100%. On test day 4 (the
235 final test day), both buildings were fixed on the shake table and subjected to the JMA 100% motion
236 only. Plans to apply JR 100% per the excitation schedule were cancelled due to severe damage to
237 Building B during the JMA 100% motion.

238 Table 3 details the scanning sets obtained before, during, and after each test day. This table
239 summarizes the experiment stage of each scanning set operated, whether it included the building
240 interiors, exteriors, or both, and the number of stations (i.e., setups) where scans were conducted
241 for each set. The first two rows of this table represent the pre-test scans conducted for reference
242 and comparison prior to the buildings incurring any damage. One phase of pre-test scanning was
243 conducted using a close-range scanner on both the interior and exterior while the buildings were
244 located outside the laboratory, toward the end of construction and prior to installing furniture.

245 Additional pre-test scans were acquired using both close-range and long-range scanners for the
246 interior and exterior, respectively, after the buildings were moved to the shake table. The second
247 set of pre-test scans provided a benchmark point cloud of the buildings on the shake table and after
248 the furniture was placed inside the buildings.

249 During the experiments, LiDAR scans of both the interior and exterior of the buildings were
250 taken at the beginning and end of each test day, in addition to exterior scans in-between shake-
251 table when the tight testing schedule allowed. The in-between scans were performed from the
252 observation deck using only the long-range LiDAR scanner during the visual inspection timeframe
253 in-between tests.

254 Various challenges were faced when conducting the LiDAR scanning during the experiments
255 as well as during the post-processing stage to assemble the scans together. Consequently, a
256 scanning procedure to collect LiDAR data is proposed for use in future shake table testing, as
257 illustrated in Figure 9. The procedure includes guidelines for performing the scans and post-
258 processing more efficiently according to the lessons learned in this study. These guidelines are:

- 259 i. Before going to the laboratory: Prepare a scanning plan according to the available time for
260 conducting the survey in an efficient and timely manner. This plan should specify the
261 location of scanning stations and assign a corresponding number to each station in order to
262 assemble these scans easier during the data processing stage. The location of stations and
263 their distance are determined based on the testing schedule, the number of available
264 scanners and team members to operate them, and the assigned scanning time. Some
265 scanning stations should be located in the joints connecting the interior and exterior of the
266 building at a closer distance if possible; it is challenging to assemble interior and exterior
267 scans without scans in the joints during registration of the point clouds.
- 268 ii. Pre-test preparations in the laboratory: Place numbered targets inside and outside the
269 building before scanning, which is crucial to assemble scans in a much more efficient
270 manner during the data processing stage. Scanning acquisitions from stations inside and
271 outside the buildings are registered together using their mutual features to form a 3D point
272 cloud of the complete building. A drawing of the targets indicating their location and
273 number should be prepared for future reference to easily locate the scans by inspection into

274 the drawing, and subsequently, assemble them faster. A number of commercial software
275 packages utilized to register the scans have the ability to assemble scans that include mutual
276 targets automatically, which notably helps speed up the registration process. In addition,
277 even if the software does not automatically identify mutual targets to assemble the scans,
278 the scans can be assembled by manually inspecting and locating the common targets. As
279 an illustration of the relative location of the scanning setups and target positions, Figure 10
280 presents the locations of targets and scanning setups in each story for test day 3.

- 281 iii. Technical preparations prior to each scanning day: This step is crucial to avoid delays on
282 the scanning day. Given the variety of devices used in these types of surveys (e.g., close-
283 and long-range LiDAR scanners, tablets, cameras, total station, walkie-talkies, etc.) each
284 of them should be prepared and tested prior to the operation day. Charge all batteries fully
285 for each device the day before scanning since these batteries usually discharge after a
286 certain amount of time. Check the available memory of each device to ensure sufficient
287 space for the operation. To avoid disruptions on the scanning day, back-up instruments are
288 advisable in case of any malfunction. This includes extra batteries, memory, and survey
289 instruments (if available).
- 290 iv. During each scanning day: On the scanning day, divide the instruments among team
291 members based on the number of personnel required to operate each instrument. To operate
292 LiDAR scanners, two persons are needed to operate a long-range scanner and one person
293 (preferably two if possible) is needed to operate a close-range scanner. Initiate scans from
294 the first marked station and continue in accordance with the scanning plan and sequence.
295 Monitor each scanner and prevent others from moving the scanner or blocking its
296 surroundings. In addition, change the batteries of scanners during the scanning day on a
297 pre-determined schedule to avoid disruptions and incomplete scans.
- 298 v. After each scanning day: Transfer the scans acquired immediately into external hard drives,
299 computers, and internet storages, and create backups. This is crucial for preserving and
300 creating redundancy of survey data, especially when there is more than one day of
301 scanning. In addition, document the data effectively by arranging scan files with
302 appropriate names describing the date and phase of the test as well as the location of the
303 stations.

304 **Damage Assessments through Visual Inspection and LiDAR Scans**

305 In this section, various examples of structural and nonstructural damage are presented through
306 visual inspections performed using ordinary cameras as well as post-processed collected LiDAR
307 data. The capabilities of LiDAR scans to detect and quantify damage are presented and discussed
308 in this section. After the registration and post-processing steps, the separately collected LiDAR
309 scan data was used to develop a 3D immersed view of the buildings through a massive point cloud.
310 As an illustration, a screenshot of the 3D view of post-processed registered LiDAR data for test
311 day 2 is presented in Figure 11, which was developed from data for both the interior and exterior
312 scans registered together. One can move around and inside the buildings in the resulting 3D point
313 cloud for various purposes, such as identifying damage, performing measurements, automatically
314 detecting damage, etc. This section continues with examples of structural and nonstructural
315 damage detected through visual inspection and virtual inspections of LiDAR point clouds.
316 Afterwards, as an application of LiDAR point cloud data, instants for the pre-test undamaged state
317 and post-test damage state point clouds are compared through cloud-to-cloud comparison to
318 automatically detect damaged locations.

319 ***Structural Damage***

320 During the first two days of testing, there was no observable structural damage, and hence, neither
321 the cameras nor the LiDAR scanners detected and recorded any structural damage. During test day
322 3, damage to the structural systems of both buildings was identified, but structural elements were
323 not exposed, so damage could not be easily observed. However, in test day 4, major damage
324 occurred in both buildings, and hence, damaged structural elements were exposed due to spalling
325 of the façade, wallboards, and gypsum wallboards on the interior. Damage was observable from
326 photographs taken by cameras as well as the LiDAR scans. As an example, a distorted column in
327 Building B is depicted with a photograph taken by a camera (Figure 12a) as well as a close-up
328 view screenshot of the LiDAR point cloud data (Figure 12b). Similarly, Figure 13 illustrates the
329 structural damage of two elements of ruptured wood bracing on the east and west sides of Building
330 A through photographs and screenshots of the point clouds. The damaged wood bracing on the
331 east side (Figure 13a and b) was exposed because the façade wallboards spalled off the surface,
332 and as a result, both ordinary cameras and LiDAR scanners captured it. Similarly, the damaged
333 wood bracing on the west side (Figure 13c and d) was exposed since the gypsum wallboards

334 spalled off the interior perimeter walls, and the damage was apparent from visual inspections and
335 LiDAR scans. Figure 13b presents a side view of the damaged wood bracing of Figure 13a, from
336 which the out-of-plane buckling of the bracing elements relative to the wall surface was measured,
337 as presented by a color map. The measurement indicates that the wood bracing buckled out-of-
338 plane approximately 0.217 m (0.696 ft) at its ruptured location. Figure 13d illustrates the use of
339 LiDAR scan data to capture high-quality point clouds of the damaged components in three
340 dimensions, while the photographs taken using high-quality cameras (Figure 13c) only provide
341 two-dimensional representations of the damage. Thus, the point cloud data can be used to observe,
342 assess, and conduct quantitative and qualitative measurements virtually from multiple points of
343 view after the experiments have occurred. A number of measurements (such as the distance from
344 the rupture point to the ends of the braces, the dimensions of the bracing elements, etc.) are marked
345 on this point cloud to illustrate how various measurements are obtained using LiDAR point clouds.

346 ***Nonstructural Damage***

347 Visible damage to the building facades was observed during the last two days of testing. Figure 14
348 and Figure 15 present photographs taken from the east and west sides of Buildings A and B on test
349 day 3 and 4, respectively, along with photographs of the damage detected through post-processed
350 LiDAR point clouds. Because of the short distance between the two buildings the façades on the
351 adjacent sides (i.e., Building A west side and Building B east side) were not easily accessible
352 compared to the other two sides, and hence, neither the camera photographs nor the LiDAR scans
353 produced quality acquisitions, as Figure 14b and Figure 15b and 15c also indicate. However, by
354 increasing the number of scans in the region between the buildings and setting scanning stations
355 to maximize the coverage of the walls, it was possible to enhance the quality of the point clouds
356 which should be considered in future studies.

357 Tables 4 and 5 list the measurements for locations of detected damage as labeled in Figure 14
358 and Figure 15 for test days 3 and 4, respectively. Three types of damage are reported for the
359 façades: cracks, spalling of the plasterboards, and façade damage caused by distortion of an
360 exterior column in Building B. The measurements include crack lengths, areas of spalled sections,
361 and the rotation angle relative to vertical of the distorted column. As mentioned earlier in this
362 paper, cracks were detected and quantified using LiDAR data, which contains both point clouds

363 and pictures taken during the scanning. A good resolution of both components of LiDAR data (i.e.,
364 point measurements and color—pixelized) was required for this purpose. To detect damage, the
365 point clouds were viewed from a zoomed-in perspective to inspect each part from a closer view
366 and to distinguish cracks from the shades that are visible in these figures. In addition, panoramic
367 photographs taken by scanners at each scanning station were used to locate visual damage faster
368 and to distinguish between damaged parts and shades. Damage incurred in the buildings was
369 considerably more severe on test day 4 (Figure 15) compared to test day 3 (Figure 14). This damage
370 is readily observed through the camera photographs and from the point clouds. Any type of
371 measurement on the point clouds can be taken to evaluate the extent of the damage, and
372 measurements provided here are just representative examples to illustrate the utility of the resulting
373 point clouds for conducting damage assessments any time after the tests have occurred.

374 Damage to interior walls varied from minor cracks to spalling of gypsum wallboards and
375 buckling of wood studs. A large number of photographs were taken during inspections in order to
376 record the damage of multiple walls in all three stories of each building. LiDAR scans after each
377 test day efficiently captured the damage incurred by partition walls. Figure 16 presents a screenshot
378 of the point clouds of Building A’s east side interior walls after test day 3. In order to observe,
379 inspect, and compare the damage on all east side interior walls of Building A simultaneously, their
380 point clouds were easily cut out of the total point clouds of the two buildings (Figure 11).
381 Compared to visual inspection or camera photographs, LiDAR point clouds uniquely enable the
382 user to easily access and inspect any damaged component, compare similar components
383 simultaneously, and conduct measurements after removal of the specimen from the testing facility.
384 For example, Figure 16 shows that damage to the interior wall surfaces is most severe in the first
385 story, while the least damage occurs in the third story. Users of LiDAR point clouds can zoom in,
386 rotate, and translate these clouds to better observe or measure the extent of damage. To better
387 illustrate, sections A and B of Figure 16 are shown in Figure 17 in a close-up view that was
388 generated by zooming in to the point cloud. Damage states, including cracks and gypsum
389 wallboard spalling, are marked with measurements of the crack length. The LiDAR scanner
390 employed in the current study did not capture hairline cracks on the partition walls, but higher
391 accuracy scanners might be utilized.

392 **Damage Detection by Point-to-Point Comparison**

393 In addition to the measurements performed manually using LiDAR scans, damage was detected
394 automatically by comparing the scans acquired after each test day to the reference scans acquired
395 prior to the start of testing (see scanning schedule in Table 3). For this purpose, a feature called
396 “*cloud to cloud compared*” was utilized to compare point clouds of the damaged and reference
397 undamaged buildings. As an example, a cloud-to-cloud comparison of the exterior plasterboard
398 façade is presented in Figure 18. To process the point clouds for comparison, the east side wall of
399 Building A was cut out of the pre-test scans and test day 4 scans individually, and these scans were
400 cleaned up to eliminate disruptions caused by noise. In addition, windows were deleted from the
401 cloud to prevent false damage detection caused by reflected points. Afterwards, the scans were
402 aligned on top of each other with minor deviation, and the out-of-plane point-to-point distance
403 between the two clouds was computed over the wall area. Figure 18 shows the distance
404 distributions throughout the selected wall; distances below 0.005 meters are white, while distances
405 exceeding 0.005 meters – indicating damage – appear in color according to the colorbar.

406 **Comparison of Traditional and LiDAR Scanning Instrumentation**

407 Since LiDAR scans are acquired after each test, they represent a snapshot of the status of the building
408 after the test is finished, not the whole time-history of the building movement and damage
409 during the shaking. Hence, the permanent displacements of the building and its components can
410 be measured using LiDAR point clouds, but the displacement time history during shaking cannot
411 be measured. As a result, the measurements conducted from point clouds can only be compared to
412 the final values in the time history of the building displacement.

413 As an example, during test day 2, Building B moved (translated and rotated) relative to the soil
414 box during intense shaking (for JMA 100%). Figure 19 presents the recorded input motion on the
415 shake table (for JMA 100%), and the low-pass filtered (30 Hz) displacement history of each corner
416 of Building B relative to the soil box, which was recorded in the x and y direction by laser meters.
417 The measurements at the end of the test (i.e., the permanent displacements) are marked by a red
418 circle in Figure 19. In Figure 20, screenshots of the point clouds before and after the test are
419 presented by red and white colors. For this purpose, the portion of the LiDAR point cloud at the
420 base level (where laser meters were installed) was cut out of the total point clouds acquired both

421 before and after the JMA 100% shake table test. The measurements in all four corners were
422 obtained by computing the distance between the corners of the two point clouds, which indicates
423 the movement of each corner after shaking compared to before shaking. In Figure 20, displacement
424 values from traditional laser meters are reported in green and those from LiDAR point clouds are
425 reported in yellow. As shown in Figure 20, permanent displacements derived from traditional and
426 LiDAR scanners are very consistent except for the x direction of the southwest corner.
427 Examination of the time history of the x-direction movement of this corner (Figure 19c) suggests
428 a malfunction in the performance of the laser meter, which caused it to report the exact same
429 number (507.588 mm) after a jump in its measurement at 17.69 seconds while other laser meters
430 still reflected small oscillations in their time histories. This malfunction could be attributed to an
431 error in the laser meter, local failure/deformation, or damage to the laser meter or its anchorage.

432 These examples have illustrated the capabilities of LiDAR point clouds to be a complementary
433 source of information to traditional instruments during full-scale shake table experiments.
434 Traditional instruments collect the response time history of the building and its components, such
435 as accelerations, displacements, and loads, while LiDAR scanners collect a comprehensive point
436 cloud of the specimen final response containing the permanent displacements as well as detailed
437 damage information of the components of the specimen. While these two survey methods are
438 complementary, they have overlaps as well, such as the example presented in Figure 20 that
439 compared the permanent displacements. Furthermore, recently, methodologies are developed in
440 the literature to optimize the number and location of traditional instruments (Roohi et al. 2019;
441 Roohi and Hernandez 2020). As illustrated, when a traditional instrument records an erroneous
442 measurement, it can be corrected using the LiDAR data. Other examples of permanent
443 displacements that could be measured using LiDAR point clouds include movement of contents
444 inside the specimen, and out-of-plane displacements of walls, facades, and other surfaces. The
445 latter type of measurements are very challenging using traditional survey techniques, while out-
446 of-plane displacement can be easily measured by comparing LiDAR point clouds before and after
447 the test, similar to the automatic damage detection performed in Figure 18.

448 **Summary and Conclusions**

449 This study has focused on the use of LiDAR scanning techniques to collect time-sensitive data
450 during full-scale shake table experiments of buildings. Two full-scale three-story wood residential
451 houses, typical of densely populated urban areas, were tested on the largest shake table in the world
452 at the E-Defense facility in Miki, Japan, as the first stage of a five-year project studying the
453 resilience of metropolitan areas in Japan. The current study utilized LiDAR scanners to collect
454 time-sensitive information during these experiments, and a systematic procedure for using modern
455 survey techniques has been developed based on the lessons learned. The two buildings in this study
456 were identical from the exterior but had notably different structural details. Information about their
457 structural and nonstructural details has been provided, along with their base condition on each test
458 day, and shaking intensity in each testing phase. Damage assessment through visual inspection, as
459 conventionally employed following full-scale shake table tests, was compared to assessments
460 performed using LiDAR point clouds. For this purpose, various examples assessing damage of
461 structural and nonstructural components through both visual inspection and LiDAR point clouds
462 were illustrated. These examples have led to the following conclusions:

463 As a key advantage, LiDAR point clouds have the ability to measure the extent of damage
464 (e.g., crack length) with a high level of accuracy even after the specimens have been removed from
465 the test facility and demolished. Damaged areas or components of the building can be
466 automatically detected by comparing the point clouds collected before and after a shake. This
467 automatic damage detection feature was demonstrated using point clouds on the façade surface of
468 one of the buildings obtained before and after shaking. Finally, LiDAR measurements can be used
469 to complement or validate permanent measurements taken from traditional instruments in addition
470 to their comprehensive damage data collection. Since LiDAR point clouds are collected after the
471 shaking is performed, their measurements are only comparable to the residual/permanent
472 displacements of the buildings and their components, and cannot capture the whole response time
473 history. On the second test day, the building on the soil box experienced a permanent movement
474 that was measured through eight laser meters at the corners of the building. These measurements
475 were validated with acceptable accuracy through measurements performed using LiDAR point
476 clouds acquired before and after the shaking. Furthermore, a discrepancy in the results of one of

477 the laser meters was conclusively attributed to an erroneous measurement of the laser meter based
478 on the comprehensive and consistent information obtained by the LiDAR point clouds.

479 This study concludes that collecting data from full-scale shake table experiments using LiDAR
480 scanners in conjunction with response acquisition instruments (e.g., accelerometers, etc.) results
481 in a comprehensive damage and response dataset, which enables researchers to conduct further
482 analyses and measurements on the test specimens after the tests are completed or even after the
483 specimens are demolished. This is crucial since full-scale shake table tests are costly and need
484 unique facilities to be carried out. To accomplish this, traditional instruments collect the response
485 time history of different parts of the building at discrete locations (e.g., acceleration and
486 displacement) effectively, while LiDAR scans collect the damage observations in a comprehensive
487 and accurate way. In addition to the damage data, LiDAR point clouds provide accurate
488 information about permanent changes after the shaking, such as permanent/residual displacements,
489 out-of-plane displacement of the walls and surfaces, and movement of the contents inside the
490 building.

491 **Data Availability Statement**

492 Some or all data, models, or code that support the findings of this study are available from the
493 corresponding author upon reasonable request.

494 **Acknowledgements**

495 This study is funded by the US National Science Foundation (NSF) under Award No. CMMI
496 1829433 and 1829412. This financial support is greatly appreciated. Data was collected in part
497 using equipment provided by the NSF as part of the RAPID Facility, a component of the NHERI
498 under Award No. CMMI 1611820. Any opinions, findings, conclusions, and recommendations
499 presented in this paper are those of the authors and do not necessarily reflect the views of NSF.
500 The authors would also like to acknowledge the Japanese team led by Prof. Takuya Nagae for their
501 collaboration and support during the testing phase.

502 **References**

503 Aghababaei, M., Koliou, M., Pilkington, S., Mahmoud, H.M., van de Lindt, J.W., Curtis, A., Smith, S.,
504 Ajayakumar, J. and Watson, M. (2020). "Validation of Time-Dependent Repair Recovery of the

- 505 Building Stock following the 2011 Joplin Tornado.” *Natural Hazards Review* (Special
506 Issue/Collection on “Enabling Resilient and Sustainable Communities”), American Society of Civil
507 Engineers, 21(4), 10.1061/(ASCE)NH.1527-6996.0000408.
- 508 Aghababaei, M., Koliou, M., and Paal, S. G. (2018). “Performance Assessment of Building Infrastructure
509 Impacted by the 2017 Hurricane Harvey in the Port Aransas Region.” *Journal of Performance of
510 Constructed Facilities*, 32(5), 04018069.
- 511 Aghababaei, M., Koliou, M., Watson, M., and Xiao, Y. (2020). “Quantifying post-disaster business
512 recovery through Bayesian methods.” *Structure and Infrastructure Engineering*, 1-19.
- 513 Aghababaei, M., and Mahsuli, M. (2018). “Detailed Seismic Risk Analysis of Buildings Using Structural
514 Reliability Methods.” *Probabilistic Engineering Mechanics*, 53, 23–38.
- 515 Aghababaei, M., and Mahsuli, M. (2019). “Component damage models for detailed seismic risk analysis
516 using structural reliability methods.” *Structural Safety*, 76, pp.108-122.
- 517 American Wood Council (2015). “Special Design Provisions for Wind and Seismic.” *SDPWS-2015*,
518 Leesburg, VA.
- 519 American Wood Council 2018. “National Design Specifications (NDS) for Wood Construction.”
520 *ANSI/AWC NDS-2018*, Leesburg, VA.
- 521 Attary, N., van de Lindt, J. W., Mahmoud, H., and Smith, S. (2019). “Hindcasting Community-Level
522 Damage to the Interdependent Buildings and Electric Power Network after the 2011 Joplin, Missouri,
523 Tornado.” *Natural Hazards Review*, American Society of Civil Engineers, 20(1), p.04018027.
- 524 Barbosa, A. R., Fahnestock, L. A., Fick, D. R., Gautam, D., Soti, R., Wood, R., Moaveni, B., Stavridis, A.,
525 Olsen, M. J., and Rodrigues, H. (2017). “Performance of medium-to-high rise reinforced concrete
526 frame buildings with masonry infill in the 2015 Gorkha, Nepal, earthquake.” *Earthquake Spectra*,
527 SAGE Publications Sage UK: London, England, 33(1_suppl), 197–218.
- 528 Brando, G., Rapone, D., Spacone, E., O’Banion, M. S., Olsen, M. J., Barbosa, A. R., Faggella, M., Gigliotti,
529 R., Liberatore, D., and Russo, S. (2017). “Damage reconnaissance of unreinforced masonry bearing
530 wall buildings after the 2015 Gorkha, Nepal, Earthquake.” *Earthquake Spectra*, SAGE Publications
531 Sage UK: London, England, 33(1_suppl), 243–273.
- 532 Cornell, C. A., and Krawinkler, H. (2000). “Progress and challenges in seismic performance assessment.”
533 *PEER Center News*, 3(2), 1–4.
- 534 Curtis, A., and Fagan, W. F. (2013). “Capturing damage assessment with a spatial video: An example of a
535 building and street-scale analysis of tornado-related mortality in Joplin, Missouri, 2011.” *Annals of
536 the Association of American Geographers*, Taylor & Francis, 103(6), 1522–1538.
- 537 Filiault, A., Christovasilis, I. P., Wanitkorkul, A., and van de Lindt, J. W. (2010). “Experimental Seismic
538 Response of a Full-Scale Light-Frame Wood Building.” *Journal of Structural Engineering*, American
539 Society of Civil Engineers, 136(3), 246–254.
- 540 Kashani, A. G., and Graettinger, A. J. (2015). “Cluster-Based Roof Covering Damage Detection in Ground-
541 Based Lidar Data.” *Automation in Construction*, Elsevier B.V., 58, 19–27.
- 542 Kashani, A. G., Graettinger, A. J., and Dao, T. (2016). “Lidar-Based Methodology to Evaluate Fragility
543 Models for Tornado-Induced Roof Damage.” *Natural Hazards Review*, American Society of Civil
544 Engineers, 17(3), 1–9.
- 545 Koliou, M., and van de Lindt, J. W. (2020). “Development of Building Restoration Functions for use in
546 Community Recovery Planning to Tornadoes.” *Natural Hazards Review*, American Society of Civil
547 Engineers, 21(2), 04020004.

- 548 Koliou, M., van de Lindt, J. W., McAllister, T. P., Ellingwood, B. R., Dillard, M., and Cutler, H. (2018).
549 “State of the research in community resilience: progress and challenges.” *Sustainable and Resilient*
550 *Infrastructure*, Taylor & Francis, 9689, 1–21.
- 551 Kramer, A., Barbosa, A. R., and Sinha, A. (2016). “Performance of steel energy dissipators connected to
552 cross-laminated timber wall panels subjected to tension and cyclic loading.” *Journal of Structural*
553 *Engineering*, American Society of Civil Engineers, 142(4), E4015013.
- 554 van de Lindt, J. W., Gupta, R., Pei, S., Tachibana, K., Araki, Y., Rammer, D., and Isoda, H. (2012).
555 “Damage assessment of a full-scale six-story wood-frame building following triaxial shake table
556 tests.” *Journal of performance of constructed facilities*, American Society of Civil Engineers, 26(1),
557 17–25.
- 558 van de Lindt, J. W., Pryor, S. E., and Pei, S. (2011). “Shake table testing of a full-scale seven-story steel-
559 wood apartment building.” *Engineering Structures*, Elsevier Ltd, 33(3), 757–766.
- 560 Lounis, Z., and McAllister, T. P. (2016). “Risk-Based Decision Making for Sustainable and Resilient
561 Infrastructure Systems.” *Journal of Structural Engineering*, American Society of Civil Engineers,
562 142(9), F4016005.
- 563 Memari, M., Ameri, M. R., Pilkington, S. F., Mahmoud, H., Attary, N., van de Lindt, J. W., and Masoomi,
564 H. (2018). “Minimal Building Fragility Portfolio for Damage Assessment of Communities Subjected
565 to Tornadoes.” *Journal of Structural Engineering*, American Society of Civil Engineers, 144(7),
566 04018072.
- 567 Mills, J. W., Curtis, A., Kennedy, B., Kennedy, S. W., and Edwards, J. D. (2010). “Geospatial video for
568 field data collection.” *Applied Geography*, Elsevier, 30(4), 533–547.
- 569 Nagae, T., Uwadan, S., Takaya, K., Yenigodan, C., Yamada, S., Kashiwa, H., Hayashi, K., Takahashi, T.,
570 and Inoue, T. (2020a). “Sliding-Rocking Combined Actions at Base Foundation Influencing Global
571 and Local Deformations of Upper Wood Structure” *17th World Conference on Earthquake*
572 *Engineering*, 17WCEE, Sendai, Japan.
- 573 Nagae, T., Uwadan, S., Yenigodan, C., Yamada, S., Kashiwa, H., Hayashi, K., Takahashi, T., and Inoue,
574 T. (2020b). “The 2019 Full-Scale Shake Table Test Program of Wood Dwellings, *17th World*
575 *Conference on Earthquake Engineering*, 17WCEE, Sendai, Japan.
- 576 NOAA (National Oceanic and Atmospheric Administration). 2020. “Billion-dollar weather and climate
577 disasters: Time series.” Accessed June 21, 2020. <https://www.ncdc.noaa.gov/billions/time-series>.
- 578 Olsen, M. J., Kuester, F., Chang, B. J., and Hutchinson, T. C. (2010). “Terrestrial laser scanning-based
579 structural damage assessment.” *Journal of Computing in Civil Engineering*, American Society of Civil
580 Engineers, 24(3), 264–272.
- 581 Pinelli, J.-P., Roueche, D., Kijewski-Correa, T., Plaz, F., Prevatt, D., Zisis, I., Elawady, A., Haan, F., Pei,
582 S., Gurley, K., Rasouli, A., Refan, M., Rhode-Barbarigos, L., and Moravej, M. (2018). “Overview of
583 damage observed in regional construction during the passage of Hurricane Irma over the state of
584 Florida.” Proc., ASCE Forensic, 18.
- 585 Roohi, M.; Hernandez, E.M. Performance-based Post-earthquake Decision-making for Instrumented
586 Buildings. arXiv 2020, arXiv:2002.11702.
- 587 Roohi, M., Hernandez, E. M., & Rosowsky, D. (2019). “Nonlinear seismic response reconstruction and
588 performance assessment of instrumented wood- frame buildings—Validation using NEESWood
589 Capstone full- scale tests.” *Structural Control and Health Monitoring*, 26(9), e2373.

- 590 Soti, R., Abdulrahman, L., Barbosa, A. R., Wood, R. L., Mohammadi, M. E., and Olsen, M. J. (2020).
591 “Case study: Post-earthquake model updating of a heritage pagoda masonry temple using AEM and
592 FEM.” *Engineering Structures*, Elsevier, 206, 109950.
- 593 Wood, R.L., Mohammadi, M.E., Barbosa, A.R., Soti, R., Abdulrahman, L., Kawan, C.K., Shakya, M.,
594 Olsen, M.J. (2017). “Damage Assessment and Modeling of the Five Tiered Pagoda Style Nyatapola
595 Temple.” *Earthquake Spectra*, 33(1_suppl), 377-384.
- 596 Yu, H., Mohammed, M. A., Mohammadi, M. E., Moaveni, B., Barbosa, A. R., Stavridis, A., and Wood, R.
597 L. (2017). “Structural identification of an 18-story RC building in Nepal using post-earthquake
598 ambient vibration and lidar data.” *Frontiers in Built Environment*, 3, p.11.
- 599 Zhang, W., Lin, P., Wang, N., Nicholson, C., and Xue, X. (2018). “Probabilistic Prediction of Postdisaster
600 Functionality Loss of Community Building Portfolios Considering Utility Disruptions.” *Journal of
601 Structural Engineering*, American Society of Civil Engineers, 144(4), p.04018015.
- 602 Zhou, Z., Gong, J., and Hu, X. (2019). “Community-scale multi-level post-hurricane damage assessment
603 of residential buildings using multi-temporal airborne LiDAR data.” *Automation in Construction*,
604 Elsevier, 98, 30–45.
- 605

Table 1: Summary of the traditional instruments used in each building.

Instrument type	Number	Description
Building A		
Uniaxial accelerometer	16	Two transverse at the edges, one longitudinal and one vertical in the middle of each floor slab and the roof
Building B		
Uniaxial accelerometer	16	Two transverse at the edges, one longitudinal and one vertical in the middle of each floor slab and the roof
Triaxial accelerometer	2	One on the soil box surface and one on the piping inside the soil box
LVDT	4	One at each corner of the building in the vertical direction

Table 2: Buildings foundation condition and shaking intensities at each test day.

Building ID	Test day 1		Test day 2		Test day 3		Test day 4	
	Testing Configuration Variables							
	Base condition	Shaking intensities	Base condition	Shaking intensities	Base condition	Shaking intensities	Base condition	Shaking intensities
Building A	Base-isolation	JMA 25% JMA 50%	Base-isolation	JMA 100%	Fixed	JMA 25% JMA 50%	Fixed	JMA 100%
	Soil-box	JR 25% JR 50%	Soil-box	JR 100%		Soil-box with cast iron plates	JR 100%	

JMA=Kobe – Japan Meteorological Agency record

JR=Takatori – Japan Railway record

612

Table 3: Details of scanning operations conducted before, during, and after each test day.

Day of testing	Shaking phase	Interior or Exterior	Number of scanning stations
Before tests outside the laboratory	No shaking	Interior and exterior using close-range scanner	61
Before tests after buildings placed on the shake table	No shaking	Interior	40
		Exterior	22
	After JMA 50% (see Table 2)	Exterior	11
Day 1	After JR 50% (see Table 2)	Interior	39
		Exterior	19
	After JMA 100% (see Table 2)	Exterior	9
Day 2	After JR 100% (see Table 2)	Interior	45
		Exterior	19
	Pre-test (reference)	Exterior	9
Day 3	After JR 100% (see Table 2)	Interior	46
		Exterior	18
Day 4	After JMA 100% (see Table 2)	Interior	5
		Exterior	33

613

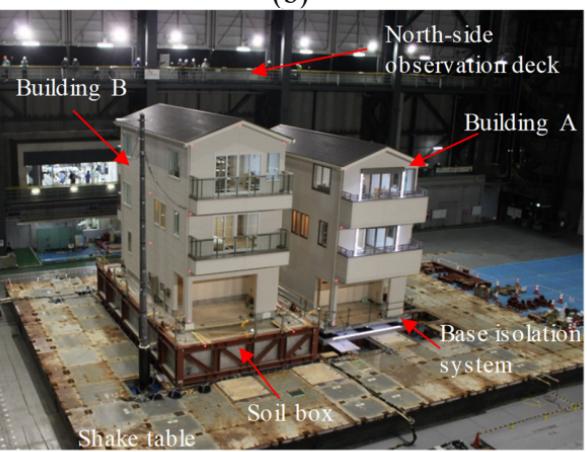
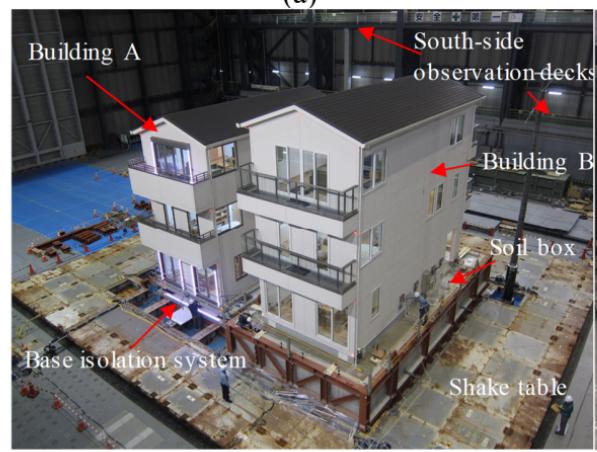
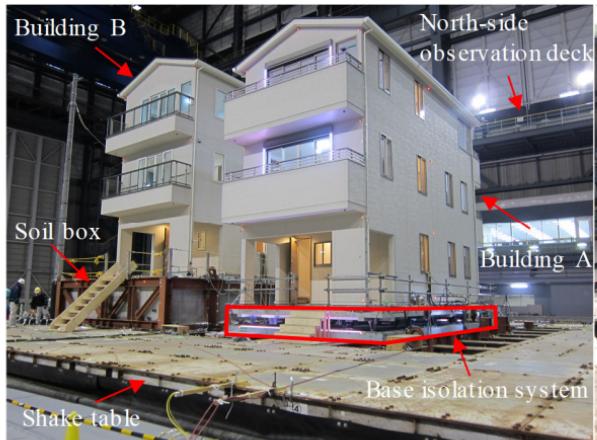
614

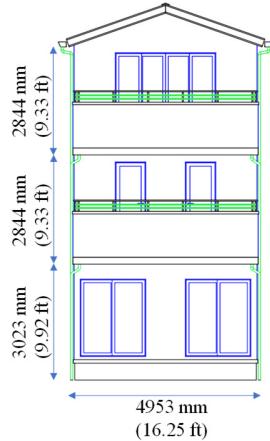
615

Table 4: The façade damage measurements detected using LiDAR scans on test day 3.

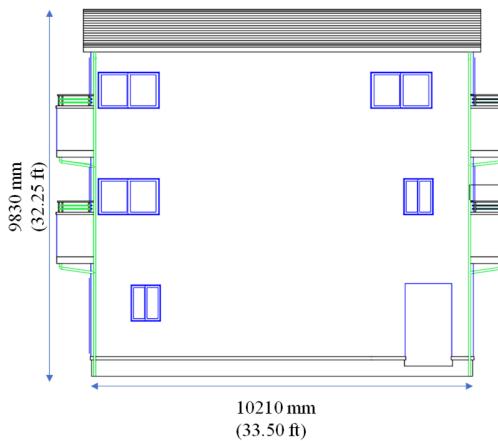
Building A			Building B		
<i>Cracks</i>		<i>Damaged areas</i>		<i>Cracks</i>	
Label	Length (m)	Label	Area (m ²)	Label	Length (m)
A-E-2	0.545	A-E-1	1.679	B-E-1	0.266
A-E-3	1.010			B-E-2	0.527
A-E-4	1.610			B-W-1	1.148
A-E-5	0.878			B-W-2	0.538
A-E-6	0.768				
A-W-1	0.550				
A-W-2	0.798				

616

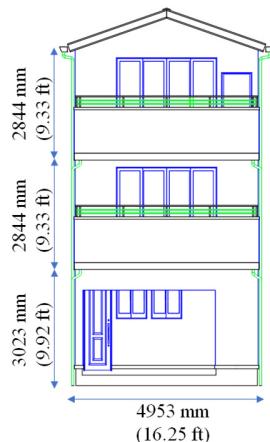



617

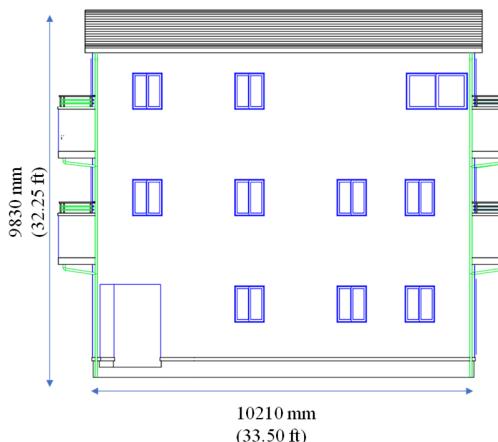

Table 5: Façade damage measurements detected using LiDAR scans on test day 4.

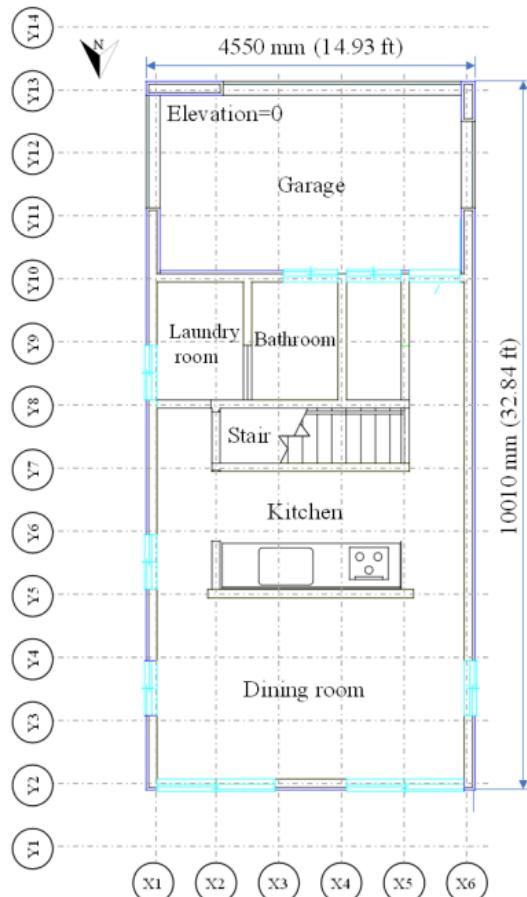
Building A				Building B					
<u>Cracks</u>		<u>Damaged areas</u>		<u>Cracks</u>		<u>Damaged areas</u>		<u>Distorted column</u>	
Label	Length (m)	Label	Area (m ²)	Label	Length (m)	Label	Area (m ²)	Label	Angle (degree ^o)
A-E-1	1.611	A-E-2	3.125	B-E-1	0.840	B-W-3	0.659	B-W-6	9.880
A-E-4	1.019	A-E-3	2.500	B-E-2	0.914	B-W-7	1.278		
A-E-5	1.220	A-E-14	2.025	B-E-3	0.458				
A-E-6	1.924			B-E-4	0.608				
A-E-7	1.945			B-E-5	0.337				
A-E-8	1.684			B-E-6	1.485				
A-E-9	0.968			B-W-1	1.600				
A-E-10	1.539			B-W-2	0.561				
A-E-11	0.594			B-W-4	1.506				
A-E-12	1.394			B-W-5	0.997				
A-E-13	0.904								
A-W-1	1.443								
A-W-2	1.487								
A-W-3	0.500								

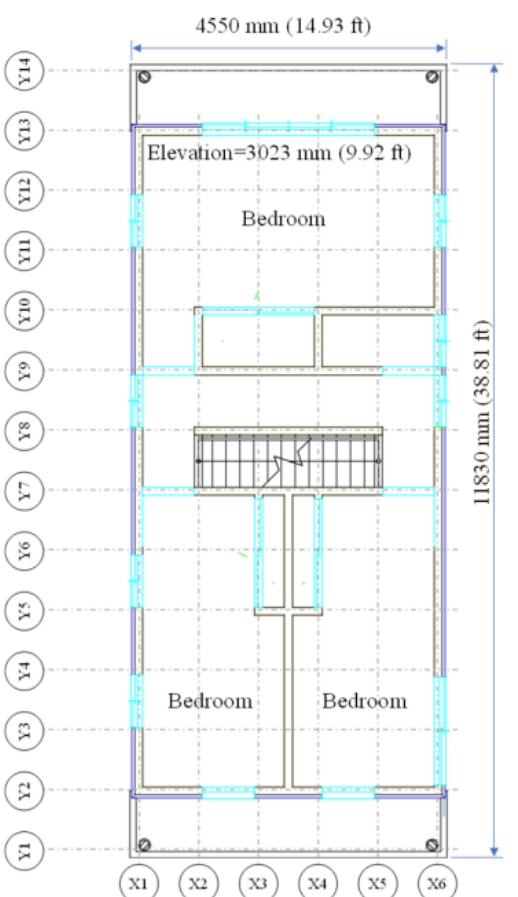

- 621 Figure 1: Photographs of the two wood residential buildings tested in this study from the four
622 corners of the shake table: (a) Southeast, (b) Northeast, (c) Northwest, and (d) Southwest.
- 623 Figure 2: Building A elevation view: (a) north side, (b) west side, (c) south side, and (d) east side.
- 624 Figure 3: Building A architectural layout floor plans for: (a) story 1, (b) story 2, and (c) story 3.
- 625 Figure 4: Wood bracing details of Building A at each cross section.
- 626 Figure 5: LiDAR scanners used: (a) close-range scanner to scan building interiors, (b) long-range
627 scanner to scan building exteriors (view from the south-side observation deck level 2).
- 628 Figure 6: Accelerometer locations on each floor of Buildings A and B.
- 629 Figure 7: (a) and (b) JMA 100% record in x and y directions, and (c) and (d) their calculated
630 acceleration response spectra.
- 631 Figure 8: (a) and (b) JR 100% record in x and y directions, and (c) and (d) their calculated
632 acceleration response spectra.
- 633 Figure 9: Overview of LiDAR scanning procedure for full-scale shake table tests.
- 634 Figure 10: Relative location of the interior scanning setups and target locations after test day 3.
- 635 Figure 11: A screenshot of the 3D point cloud of the two buildings using collected LiDAR scans.
- 636 Figure 12: Distorted column in Building B after test day 4: (a) a photograph taken by a camera and
637 (b) a screenshot of the column from LiDAR point clouds.
- 638 Figure 13: Damage to two wood bracing elements on (a), (b) the east side, and (c), (d) the west
639 side; (a) and (c) are camera photographs, and (b) and (d) are screenshots of the collected LiDAR
640 point clouds.
- 641 Figure 14: Façade damage detected using LiDAR scans after test day 3 on: (a) Building A east
642 side, (b) Building A west side, (c) Building B east side, and (d) Building B west side.
- 643 Figure 15: Façade damage detected using LiDAR scans after test day 4 on: (a) Building A east
644 side, (b) Building A west side, (c) Building B east side, and (d) Building B west side.
- 645 Figure 16: East side interior walls of Building A after test day 3.
- 646 Figure 17: Close-up view of sections (a) A and (b) B from Figure 16 – Building A, test day 3.
- 647 Figure 18: Damage detected on the Building A – east side exterior façade using cloud to cloud
648 comparison.
- 649 Figure 19: Time history of recorded motion on shake table and displacement measurements using
650 traditional instruments at the corners of Building B: (a) southwest, (b) southeast, (c) northwest,
651 and (d) northeast corners.

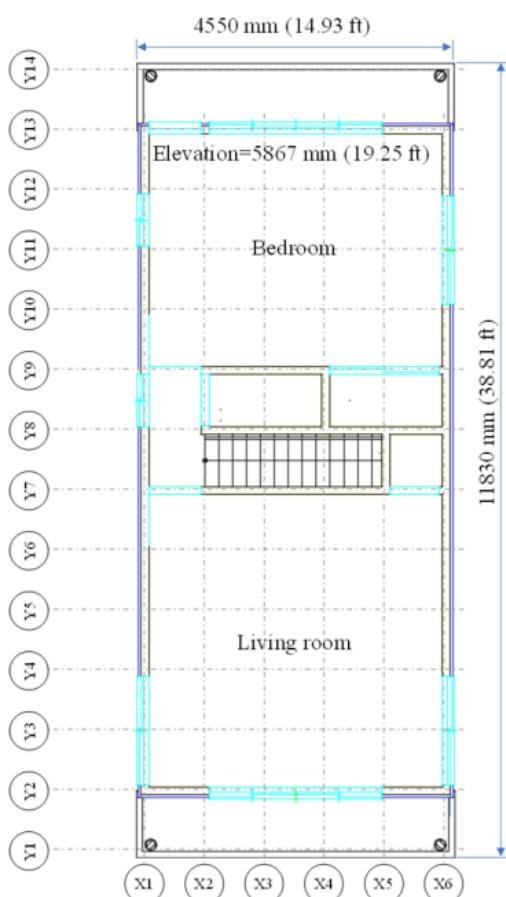
652 Figure 20: Screenshot of point clouds of Building B before (red point clouds) and after (white
653 point clouds) JMA 100% shaking on test day 2 and measurements (in mm) using LiDAR scans
654 (shown in green) and traditional instruments (shown in yellow).

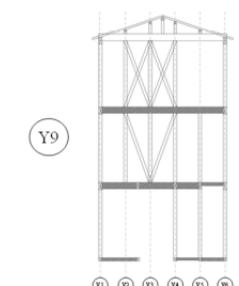
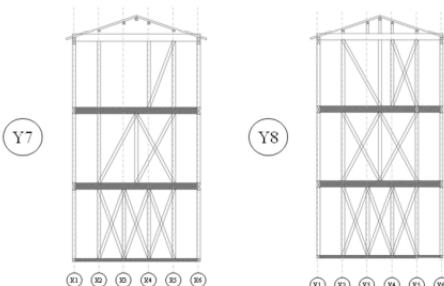
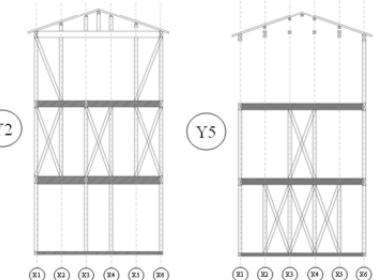
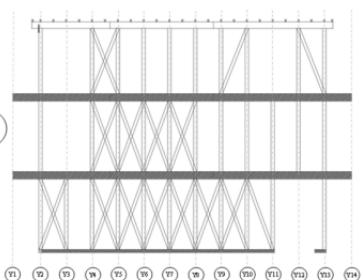
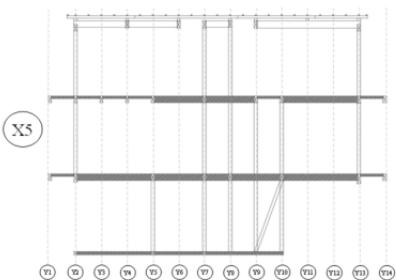
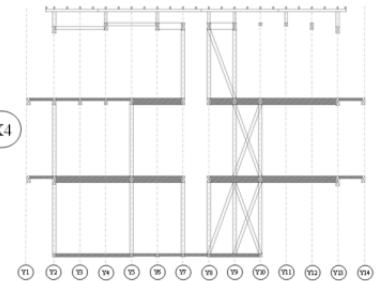
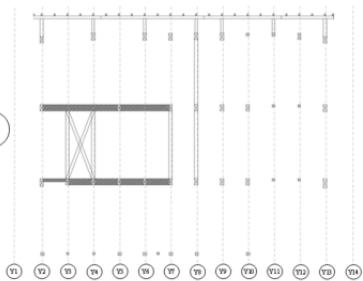
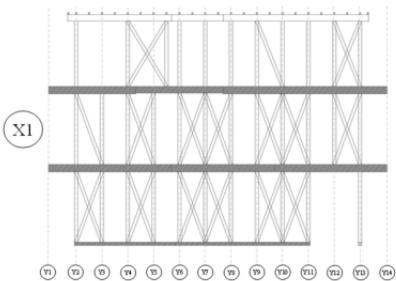



(a)


(b)

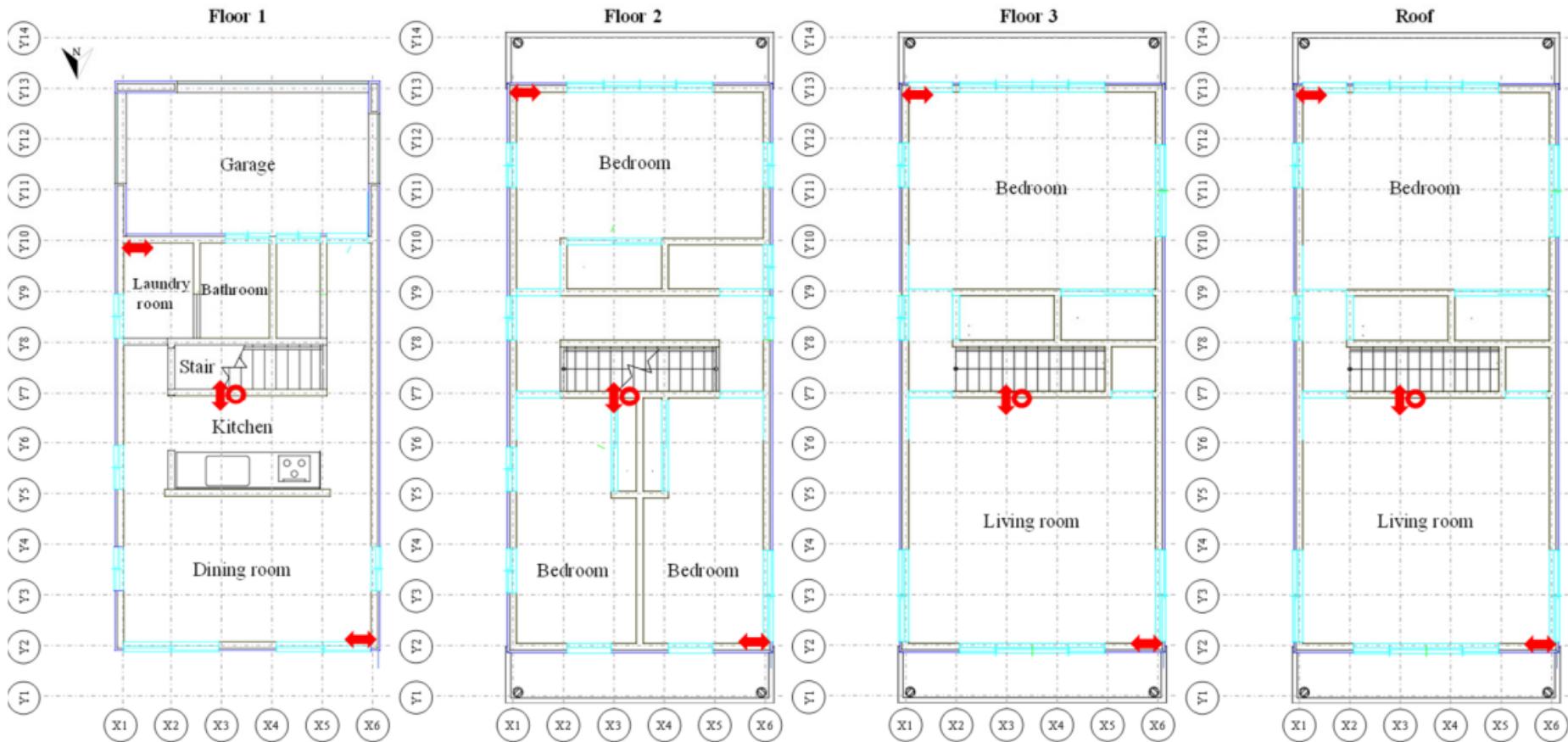

(c)

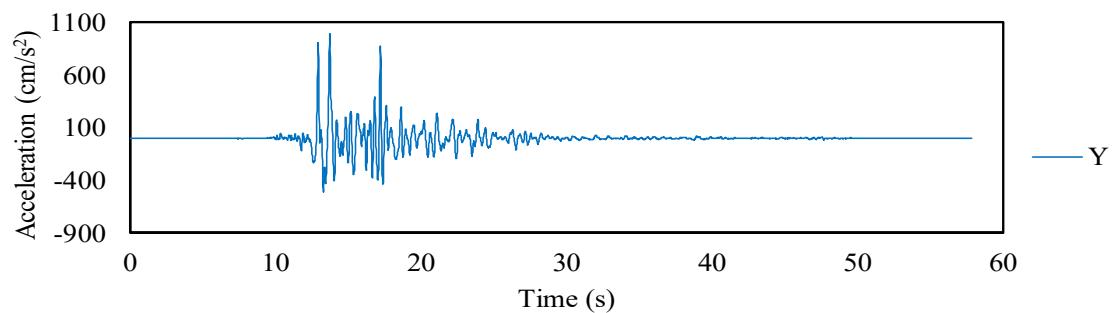
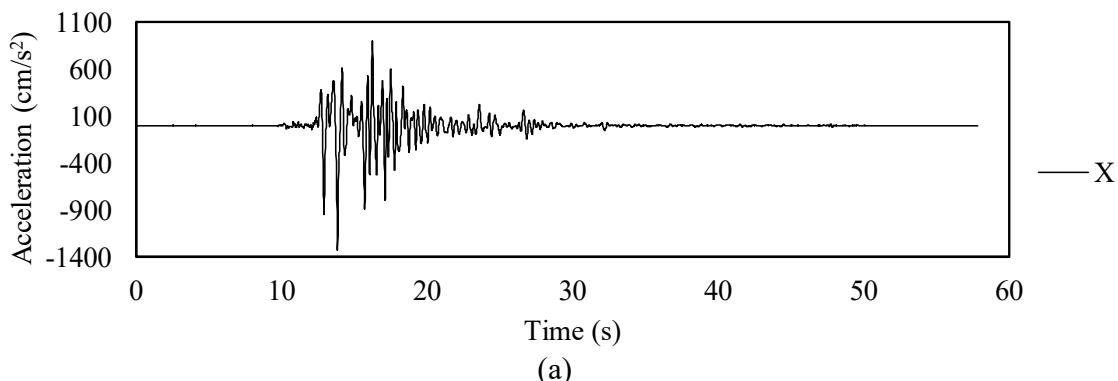

(d)









(a)

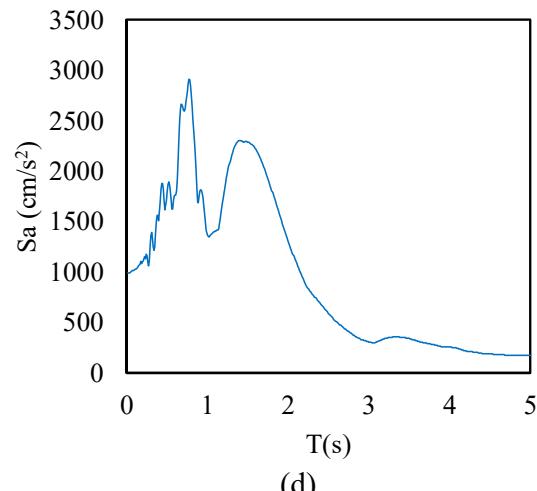
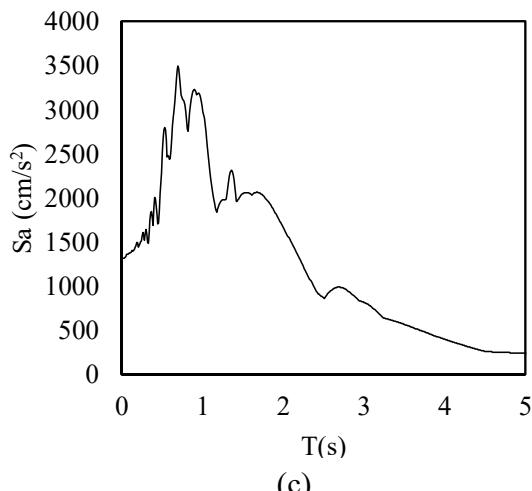
(b)

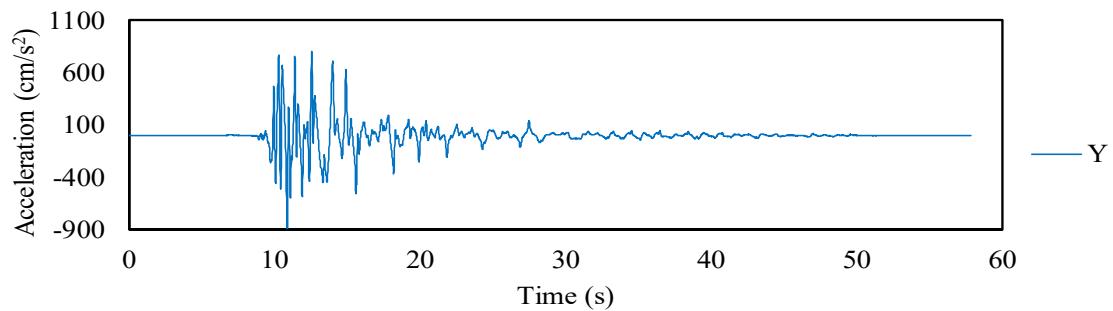
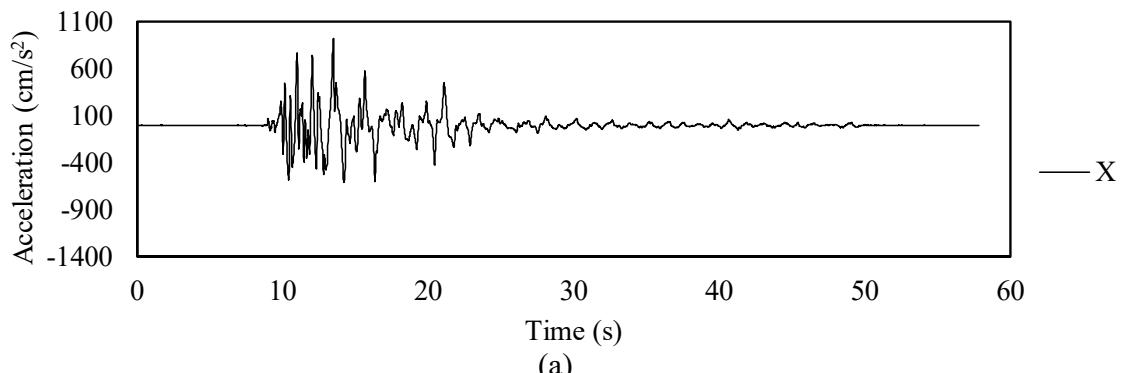
(c)


1000 2000 4000 8000 10000 mm

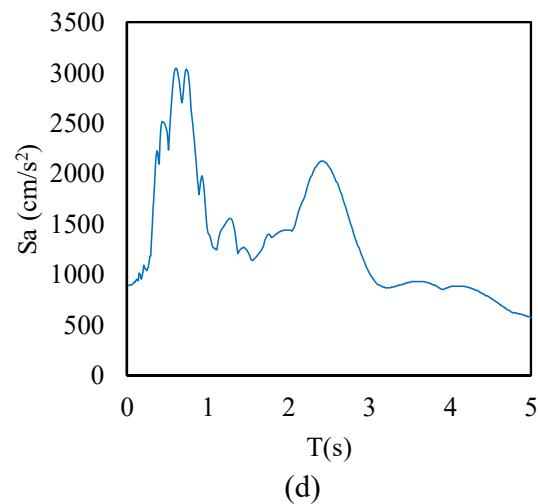
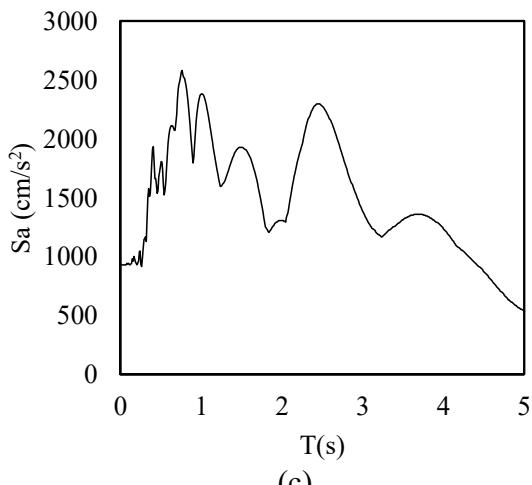


(a)

(b)



→ Uniaxial accelerometer (Y) ↘ Uniaxial accelerometer (X) ○ Uniaxial accelerometer (Z)

JMA 100%-x direction



JMA 100%-y direction

JR 100%-x direction

JR 100%-y direction

Before going to the laboratory

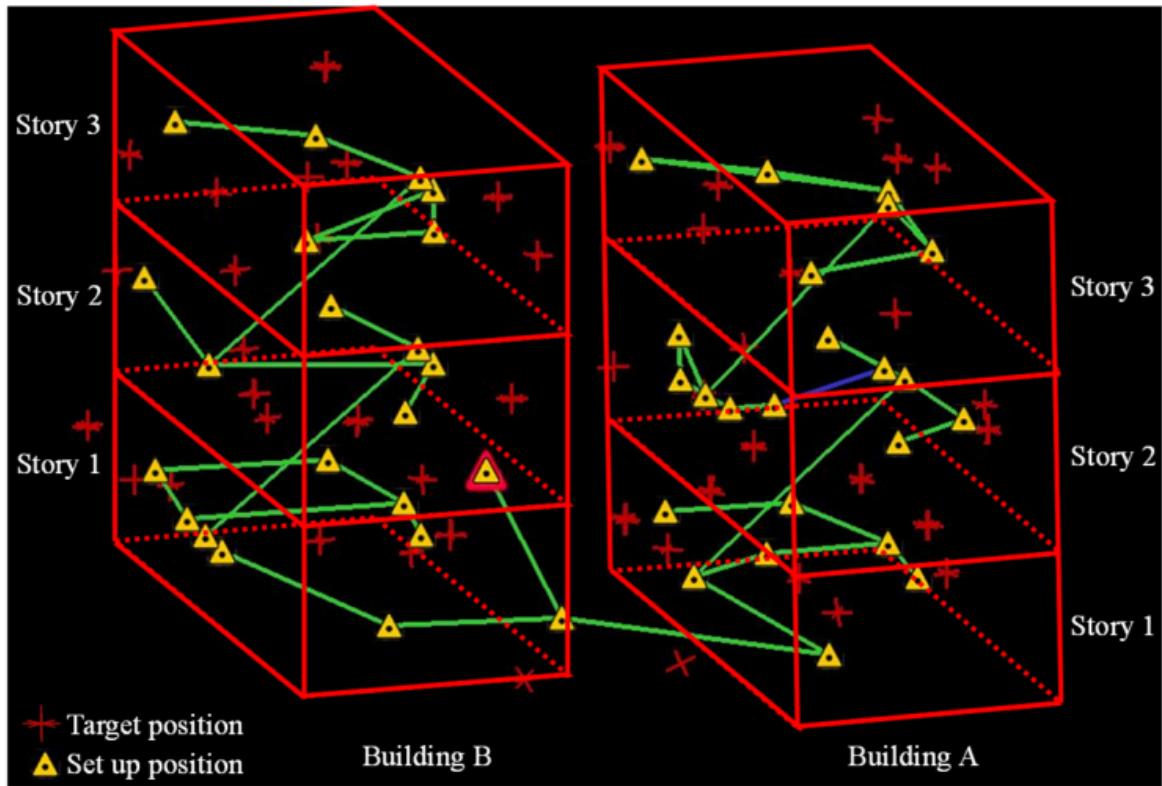
1. Determine the types of instruments needed and the number of each available
2. Prepare scanning station maps
3. Prepare numbered target maps
4. Prepare appropriate numbered targets

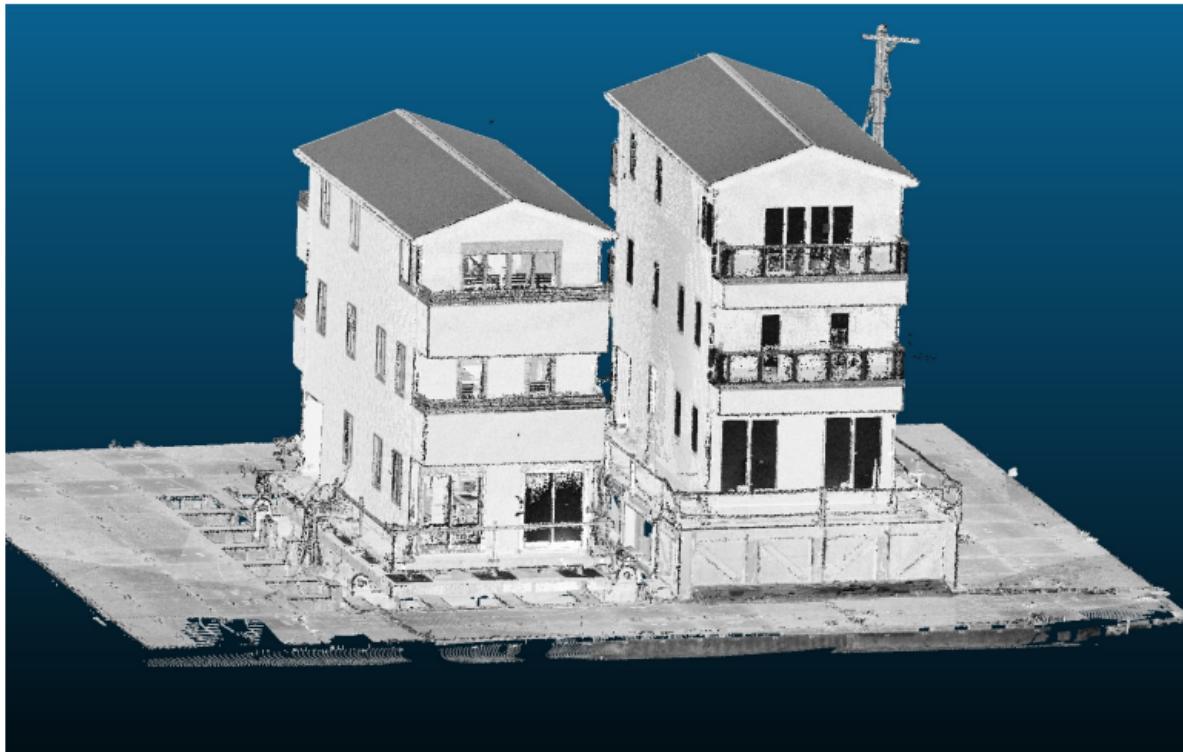
Pre-test preparations in the laboratory

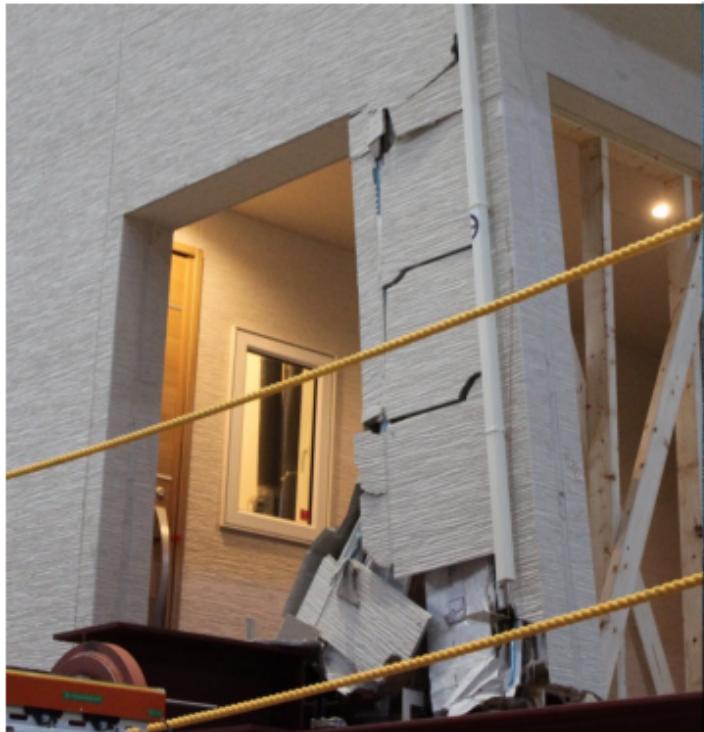
1. Put targets inside and outside the buildings
2. Mark the scanning stations on the ground and floors

Technical preparations prior to each scanning day

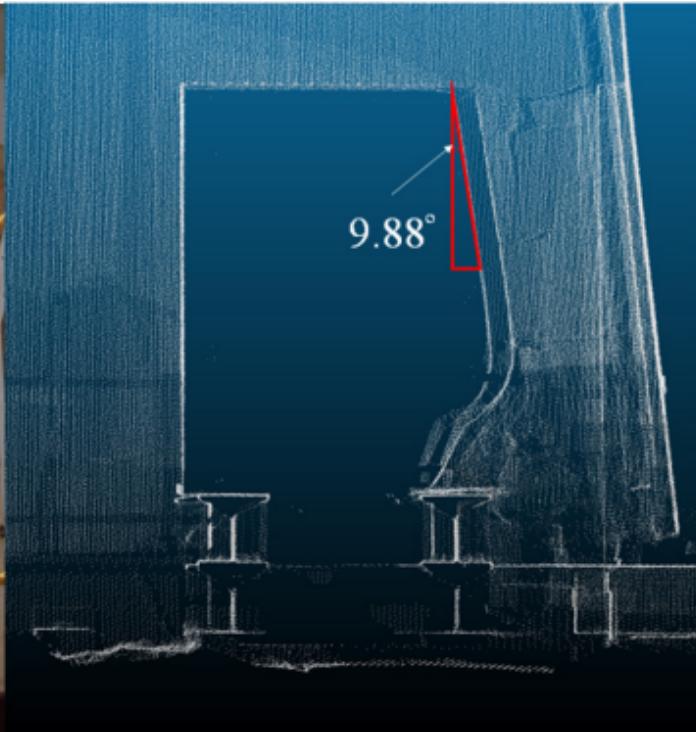
1. Check if all devices work correctly
2. Batteries should be fully charged one day before each testing day
3. Check the available memory of each device
4. Carry back-up instruments if possible in case of malfunction

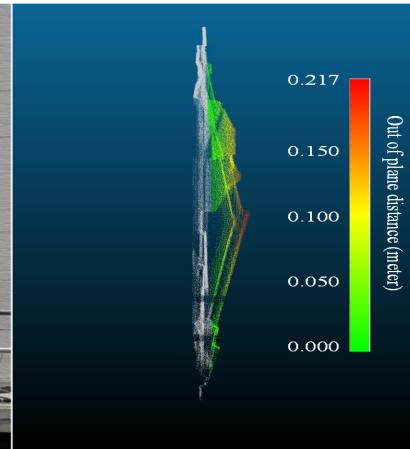

During each scanning day


1. Divide devices between the team members as planned (preferably two team members for each scanner)
2. Start the scans from the first station as declared in the scanning plan prepared before the tests
3. Make sure nobody disrupts the scans or moves the scanner during the operations
4. Change the batteries of each scanner before they run out of charge to avoid disruption and incomplete scans


After each scanning day

1. Transfer all acquired scans immediately
2. Arrange the scans in folders with appropriate names and descriptions to avoid future confusion


Registration and post-processing


(a)

(b)

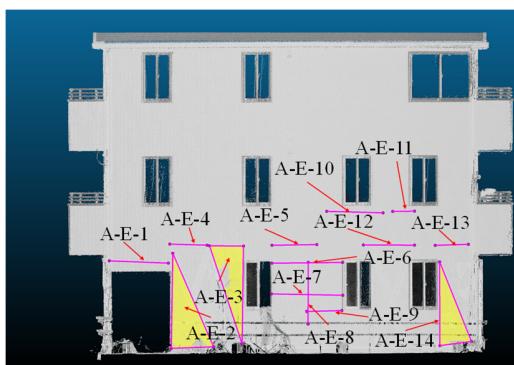
(a)

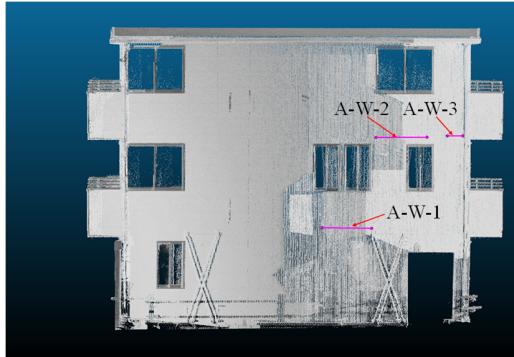
(b)

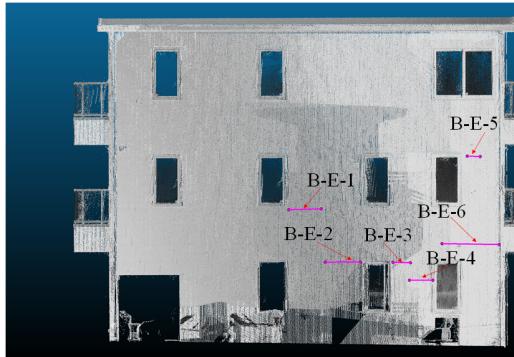
(c)

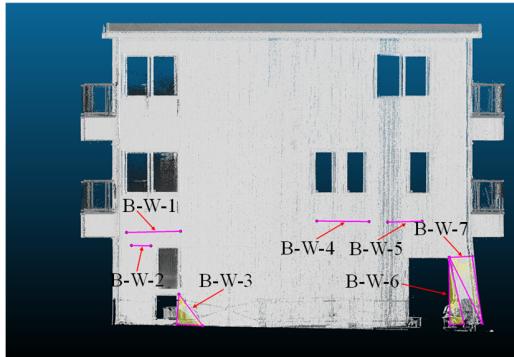
(d)

(a)

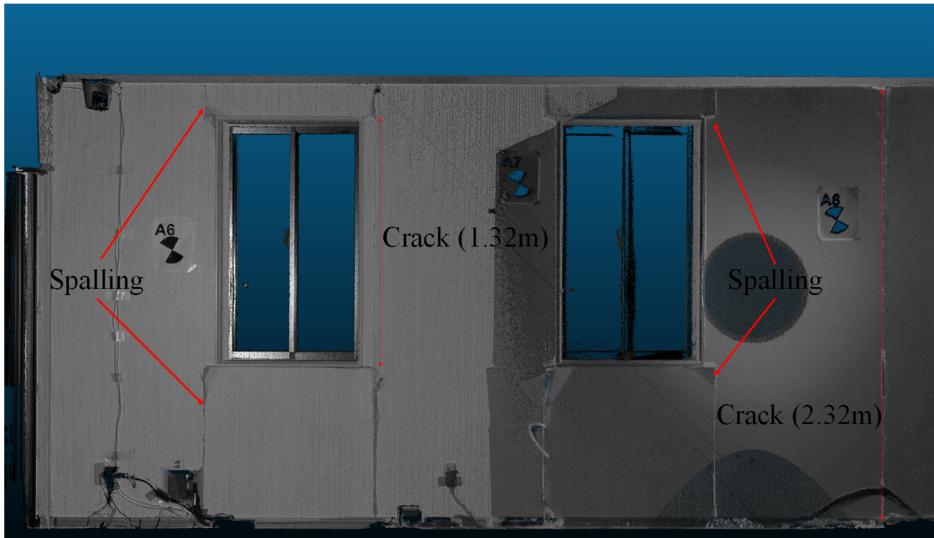

(b)

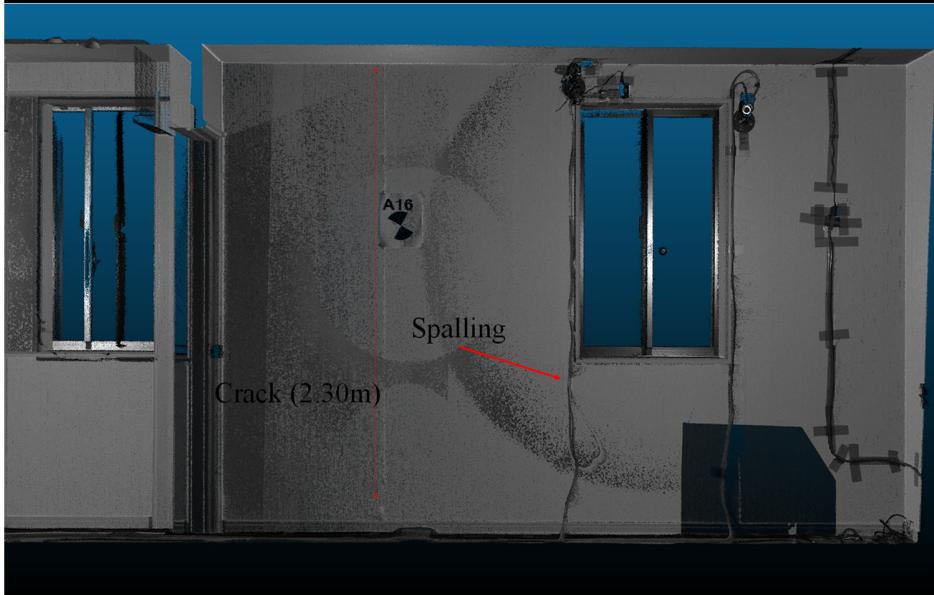

(c)

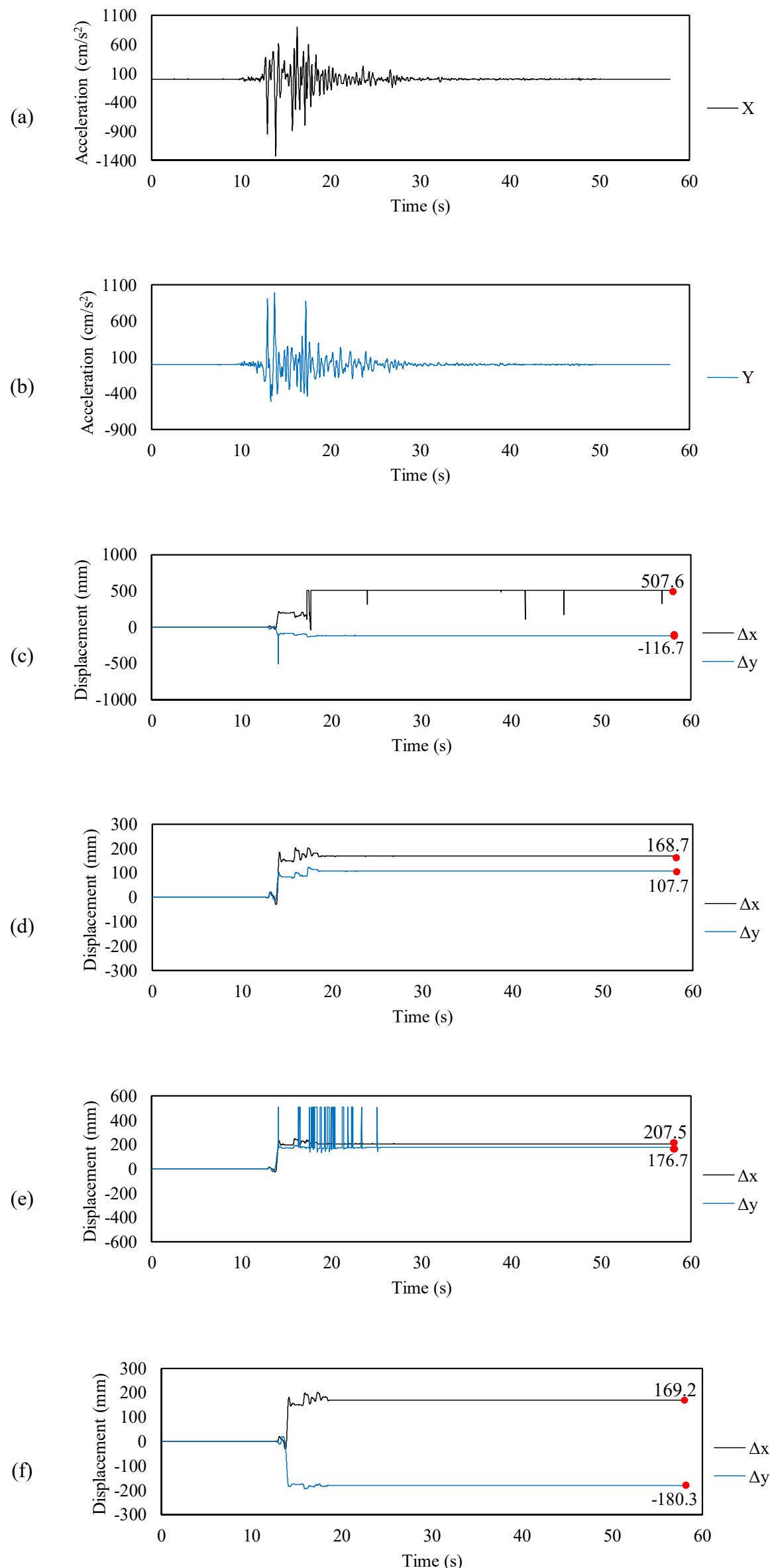

(d)


(a)

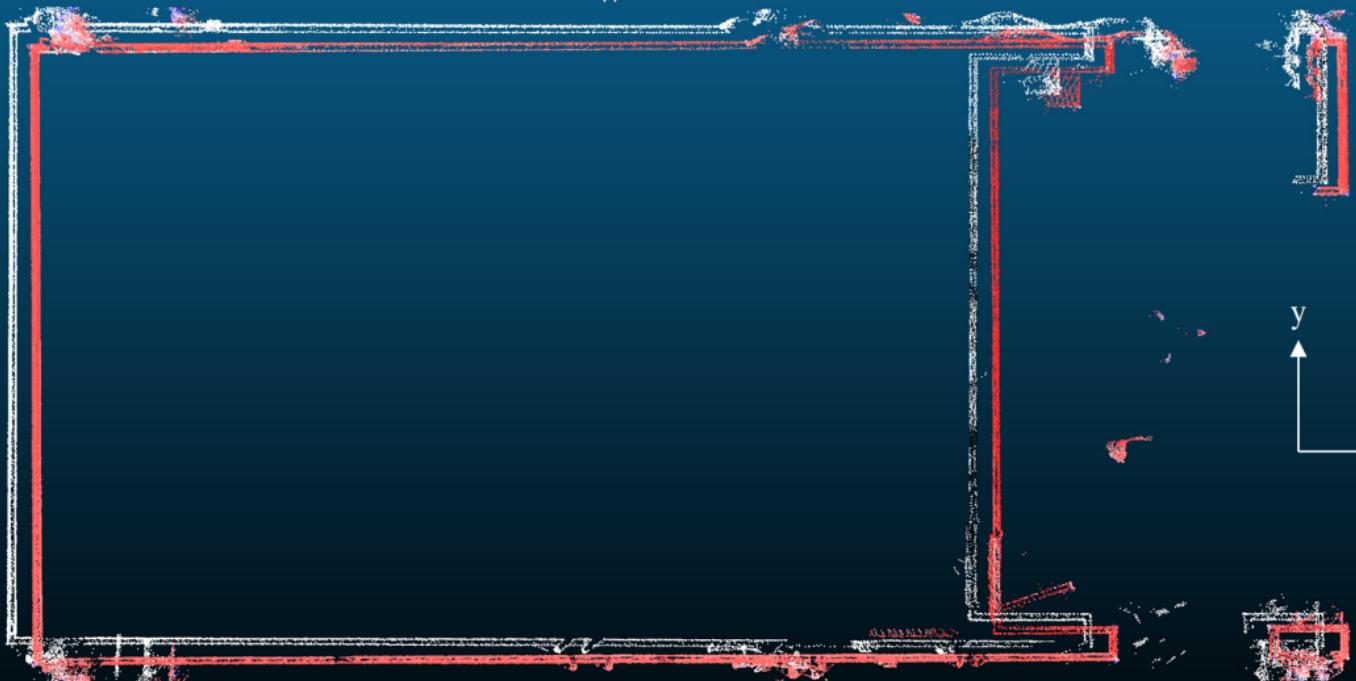
(b)


(c)


(d)


(a)

(b)



$\Delta x=168.3$ $\Delta x=169.2$
 $\Delta y=158.3$ $\Delta y=180.3$

$\Delta x=166.0$ $\Delta x=168.7$
 $\Delta y=94.4$ $\Delta y=107.7$

$\Delta x=204.8$ $\Delta x=207.5$
 $\Delta y=168.4$ $\Delta y=176.7$

$\Delta x=191.9$ $\Delta x=507.6$
 $\Delta y=100.0$ $\Delta y=116.7$

Figure 1: Photographs of the two wood residential buildings tested in this study from the four corners of the shake table: (a) Southeast, (b) Northeast, (c) Northwest, and (d) Southwest.

Figure 2: Building A elevation view: (a) north side, (b) west side, (c) south side, and (d) east side.

Figure 3: Building A architectural layout floor plans for: (a) story 1, (b) story 2, and (c) story 3.

Figure 4: Wood bracing details of Building A at each cross section.

Figure 5: LiDAR scanners used: (a) close-range scanner to scan building interiors, (b) long-range scanner to scan building exteriors (view from the south-side observation deck level 2).

Figure 6: Accelerometer locations on each floor of Buildings A and B.

Figure 7: (a) and (b) JMA 100% record in x and y directions, and (c) and (d) their calculated acceleration response spectra.

Figure 8: (a) and (b) JR 100% record in x and y directions, and (c) and (d) their calculated acceleration response spectra.

Figure 9: Overview of LiDAR scanning procedure for full-scale shake table tests.

Figure 10: Relative location of the interior scanning setups and target locations after test day 3.

Figure 11: A screenshot of the 3D point cloud of the two buildings using collected LiDAR scans.

Figure 12: Distorted column in Building B after test day 4: (a) a photograph taken by a camera and (b) a screenshot of the column from LiDAR point clouds.

Figure 13: Damage to two wood bracing elements on (a), (b) the east side, and (c), (d) the west side; (a) and (c) are camera photographs, and (b) and (d) are screenshots of the collected LiDAR point clouds.

Figure 14: Façade damage detected using LiDAR scans after test day 3 on: (a) Building A east side, (b) Building A west side, (c) Building B east side, and (d) Building B west side.

Figure 15: Façade damage detected using LiDAR scans after test day 4 on: (a) Building A east side, (b) Building A west side, (c) Building B east side, and (d) Building B west side.

Figure 16: East side interior walls of Building A after test day 3.

Figure 17: Close-up view of sections (a) A and (b) B from Figure 16 – Building A, test day 3.

Figure 18: Damage detected on the Building A – east side exterior façade using cloud to cloud comparison.

Figure 19: Time history of recorded motion on shake table and displacement measurements using traditional instruments at the corners of Building B: (a) southwest, (b) southeast, (c) northwest, and (d) northeast corners.

Figure 20: Screenshot of point clouds of Building B before (red point clouds) and after (white point clouds) JMA 100% shaking on test day 2 and measurements (in mm) using LiDAR scans (shown in green) and traditional instruments (shown in yellow).