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Structure and scaling of Kitaev chain across a quantum critical point in real space
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The spatial Kibble-Zurek mechanism (KZM) is applied to the Kitaev chain with inhomogeneous
pairing interactions that vanish in half of the lattice and result in a quantum critical point separating
the superfluid and normal-gas phases in real space. The weakly-interacting BCS theory predicts
scaling behavior of the penetration of the pair wavefunction into the normal-gas region different from
conventional power-law results due to the non-analytic dependence of the BCS order parameter on
the interaction. The Bogoliubov-de Gennes (BdG) equation produces numerical results confirming
the scaling behavior and hints complications in the strong-interaction regime. The limiting case of
the step-function quench reveals the dominance of the BCS coherence length in absence of additional
length scale. Furthermore, the energy spectrum and wavefunctions from the BdG equation show
abundant in-gap states from the normal-gas region in addition to the topological edge states.

I. INTRODUCTION

A quantum phase transition (QPT) occurs when a
change of the Hamiltonian leads to different phases of
matter in the ground state, see Refs. [1–5] for a review.
The transverse-field Ising model (TFIM) serves as an ex-
actly solvable model for a clear demonstration of a QPT
as the magnetic field crosses a critical value and changes
the magnetic order. On the other hand, the BCS theory
of fermionic superfluid provides a mean-field description
of off-diagonal long-range order induced by attractive in-
teractions [6]. Shutting off the pairing interaction at zero
temperature turns the superfluid into a normal Fermi
gas through a QPT. Similar to conventional phase tran-
sitions, universal scaling behavior emerges near a QPT
with diverging correlation length and time.
While conventional ways of studying QPTs focus on

homogeneous systems in the thermodynamic limit, here
we will take a different route and investigate a QPT
in real space induced by an inhomogeneous form of the
Hamiltonian, where a spatially changing parameter re-
sults in a symmetric phase and a symmetry-broken phase
separated by a quantum critical point (QCP) in real
space. Explicitly, we will follow the framework of the
spatial Kibble-Zurek mechanism (KZM) [7–11] to analyze
the remnant of the order parameter from the symmetry-
broken phase into the symmetric phase when the whole
system is in equilibrium. Previous studies of the spa-
tial KZM on the inhomogeneous TFIM [7, 8] and atomic
spinor gases [9] have revealed interesting scaling behav-
ior with exponents reflecting the critical exponents of the
corresponding homogeneous systems. On the other hand,
Ref. [12] shows that the non-analytic expression of the
order parameter of the BCS theory of a Fermi super-
fluid with s-wave pairing leads to more complex scaling
behavior when a QPT in real space is induced by inho-
mogeneous pairing interactions.

∗ heyan ctp@scu.edu.cn
† cchien5@ucmerced.edu

Here we apply the spatial KZM to a p-wave Fermi
superfluid, which in 1D has the form of the Kitaev
chain [13]. The inhomogeneous pairing interaction drops
to zero in real space to generate a QCP separating the
superfluid and normal Fermi gas on the two sides. A
linear ramp of of the interaction introduces a frozen
length scale [10] through the slope of the ramp that
combines with the BCS theory to produce interesting
scaling behavior on the normal-gas side. Another type
of quenches of the interaction profiles, called the step-
function quench, has a sudden drop of the parameter
across the critical point in real space and may be viewed
as a limiting case of the spatial quench as the ramp-
ing rate goes to infinity. A previous study [12] of the
step-function quench of s-wave BCS superfluids in con-
tinuum reveals that the BCS coherence length becomes
the only relevant length scale in the weak-interaction
regime. Moreover, proximity effects of a semi-infinite
Kitaev chain with odd-frequency pairing encountering a
topological critical point have been studied in Ref. [14].
We will set up the Bogoliubov-de Gennes (BdG) equa-

tion [15, 16] of the Kitaev chain of a p-wave Fermi super-
fluid with inhomogeneous interaction profiles to analyze
the structure, scaling behavior, and spectrum as the sys-
tem exhibits a QCP in real space due to the vanishing of
the interactions in part of the lattice. The Kitaev chain
is a paradigm of topological superconductors [17–19] and
may host Majorana bound states [13, 20]. The BdG for-
malism allows us to analyze the energy spectrum of the
Kitaev chain across a QCP in real space. We will show
that, in addition to the topological edge states near zero
energy due to the hard-wall confinement, the normal-
gas region introduces abundant in-gap states localized
in the region with zero pairing interaction. The decay
of Majorana fermions and Andreev bound states across
nanowires interfacing a superconducting and a normal
regions has been studied in Refs. [21–23]. Here we will
focus on the decay of the pairing correlation.
Before presenting our studies, we remark on the dif-

ference between the time-independent KZM studied here
and the time-dependent KZM, which was the original
idea of analyzing structures across phase transitions [24–
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26] and is more common in the literature [10, 27–30].
For the time-dependent KZM, the system is homogeneous
but driven out of equilibrium by a linear ramp of a pa-
rameter in time of the form t/τQ. The scaling is deter-
mined by the quench rate 1/τQ, and topological defects
may emerge in such nonequilibrium settings [31–34]. In
contrast, the spatial KZM keeps the system in equilib-
rium but introduces a linear ramp of a parameter in real
space of the form α(x − xc), where xc is the location of
the transition and α is the quench rate in space. To es-
tablish equilibrium between the two sides of the critical
point in real space produced by the spatially varying pa-
rameter, scaling behavior depending on α will emerge in
the time-independent KZM and reveal properties of the
corresponding homogeneous systems. More contrasts be-
tween time-dependent and time-independent KZMs can
be found in Refs. [10, 12]. While there have been many
theoretical [35–44] and experimental [45–56] studies on
the time-dependent KZM, the time-independent KZM
has been less explored and awaits more investigations.

The rest of the paper is organized as follows. Sec. II
briefly summarizes the Kitaev chain in the homogeneous
case and the BdG formalism for solving an inhomoge-
neous Kitaev chain. Sec. III introduces the spatial and
step-function quenches and reviews their scaling mech-
anisms. Sec. IV presents the profiles, scaling analyses,
energy spectrum, and eigenfunctions of the Kitaev chain
with inhomogeneous pairing interactions. The agree-
ments with the weak-interaction predictions and devi-
ations when the interaction is strong are demonstrated.
We also discuss physical implications and relevance to
previous works. Finally, Sec. V concludes our work.

II. THEORETICAL BACKGROUND OF

KITAEV CHAIN

A. Homogeneous systems

The Kitaev chain is a model of a spinless Fermi super-
fluid with p-wave paring. The Hamiltonian in real space
is given by

H =
∑

i

[

− w(c†i ci+1 + c†i+1ci)− µc†ici +

∆(c†i c
†
i+1 + ci+1ci)

]

. (1)

Here ci and c†i are the fermion annihilation and creation
operators on site i, w is the hopping coefficient, and ∆
is the gap function of the nearest-neighbor pairing. We
set ~ = 1 = kB throughout the paper and use w and
the lattice constant a as the energy and length units,
respectively.

For a homogeneous system with periodic boundary
condition, the Hamiltonian in momentum space in terms

of the Nambu spinor ψ = (ck, c
†
−k)

T is given by

H =

(

−2w cos k − µ −2i∆sink
2i∆sink 2w cos k + µ

)

= d3σ3 + d2σ2. (2)

Here d3 = −2w cos k − µ, d2 = 2∆sin k, and σi with
i = 1, 2, 3 are the Pauli matrices applying to the Nambu
space. The Hamiltonian satisfy the particle-hole symme-
try

σ1H
∗(−k)σ1 = −H(k). (3)

Therefore, this model belongs to the class D, which has
a Z2 index in 1D [19]. The eigenvalues of the above
Hamiltonian are given by

E = ±Ek, Ek =
√

d22 + d23, (4)

The eigenstate of the lower band can be written as

|ψ〉 =
(

vk, i sgn(d2)uk

)T

. (5)

Here uk =
√

Ek+d3

2Ek

and vk =
√

Ek−d3

2Ek

.

The gap function is defined as ∆ = g〈cici+1〉, where
g is the coupling constant of the attraction between the
fermions. Following the BCS theory, the gap equation
for a system of size L at T = 0 is given by

1

g
=

1

L

∑

k

2 sin2 k

Ek
. (6)

For the half-filling case, µ = 0 and the right hand side
becomes

1

2π

∫ 2π

0

sin2 kdk
√

w2 cos2 k +∆2 sin2 k

=
2

πw(1 −∆2/w2)

[

K
(

√

1− ∆2

w2

)

− E(

√

1− ∆2

w2
)
]

.(7)

Here we have used the complete elliptic integral

K(q) =

∫ π/2

0

dx
√

1− q2 sin2 x
,

E(q) =

∫ π/2

0

√

1− q2 sin2 xdx. (8)

For q′ =
√

1− q2 ≪ 1,

K(q) = ln
4

q′
+O((q′)2), E(q) = 1 + O((q′)2). (9)

Since ∆ ≪ w in the weakly-interacting regime, the gap
equation becomes

1

g
≈ 2

πw

(

ln
4w

∆
− 1

)

. (10)
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The gap function at T = 0 in the weakly-interacting
regime thus has the expression

∆ ≈ 4w exp(−πw

2g
− 1). (11)

Since ∆ is non-analytic in g, interesting scaling behavior
will emerge in our study of inhomogeneous systems.
The BCS coherence length at T = 0 is roughly the size

of a Cooper pair [6], which is given by

ξ20 =
〈ψk| − ∇2

k|ψk〉
〈ψk|ψk〉

. (12)

Here ψk = ukvk = ∆sin k
2Ek

is the Cooper pair wavefunc-

tion, and uk, vk are giving below Eq. (5). For the super-
fluid with p-wave pairing, we have

∑

k

〈ψk| − ∇2
k|ψk〉 =

∑

k

(dψk

dk

)2

=
π(w2 + 3∆2)

16w∆
,(13)

∑

k

〈ψk|ψk〉 =
∑

k

ψ2
k =

π∆

2(∆+ w)
. (14)

Thus,

ξ0 ≈ w

2
√
2∆

. (15)

Combining with Eq. (11), one obtains the following scal-
ing behavior of the BCS coherence length for fixed w:

ln(ξ0) ∼ g−1. (16)

The topology of the Kitaev chain is characterized by
the Berry phase in 1D, which is computed as

θ = i

∫ 2π

0

dk〈ψ| ∂
∂k

|ψ〉

=
i

2

∫ 2π

0

dk
∂

∂k
ln[sgn(d2)]

(

1 +
d3
Ek

)

. (17)

One can show that

θ =

{

π, 2w > µ,
0, 2w < µ.

(18)

The bulk-boundary correspondence of topological sys-
tems [17–19] relates the topological index in the bulk with
the localized edge states at the boundary. Localized edge
states with zero eigen-energy appear in the Kitaev chain
with open boundary condition when the Berry phase of
the corresponding system with periodic boundary condi-
tion takes the nontrivial value θ = π. When θ = 0 in a
periodic Kitaev chain, the system is topologically trivial
and there is no localized edge state in the corresponding
open chain. We mention that the Kitaev chain of Eq. (1)
has both particle-hole and time-reversal symmetries and
therefore belongs to the BDI symmetry class [19]. Its
topological index can be any integer. However, for the
specific model of Eq. (1), the number of localized edge
states can only be zero or one, which corresponds to the
index of Eq. (18). We mention that there are studies on
thermal transport [57] and periodic driving [58] of the
Kitaev chain out of equilibrium.

Figure 1. Illustration of the Kitaev chain with inhomogeneous
pairing interactions (red solid line). A linear ramp (sudden
drop) corresponds to a spatial (step-function) quench. The
nearest-neighbor pairing gap ∆ and hopping coefficient w are
also shown.

B. BdG equation for inhomogeneous cases

Here we consider a Kitaev chain with a spatially de-
pendent coupling constant gi, as illustrated in Fig. 1.
The Hamiltonian is similar to Eq. (1) with a spatially
dependent gap function

∆i = gi〈cici+1〉. (19)

Explicitly,

H =
∑

i,j

[

Tijc
†
i cj +

1

2
Vijc

†
ic

†
j +

1

2
Vijcjci

]

, (20)

where Tij = −w(δi+1,j + δi,j+1) − µδij and Vij =
∆i(δi+1,j − δi,j+1). The Hamiltonian can be diagonal-
ized by a real-space Bogoliubov transformation [59] via

ηn =
∑

j

(

un,jcj + vn,jc
†
j

)

, η†n =
∑

j

(

un,jc
†
j + vn,jcj

)

.

(21)

Here un and vn are real coefficients. In order to have ηn
as fermion operators, the following orthonormal relations
are imposed:

∑

j

(

um,jun,j + um,jun,j

)

= δmn,

∑

j

(

um,jvn,j + vm,jun,j

)

= 0. (22)

The Hamiltonian after the diagonalization becomes

H =
∑

n

Enη
†
nηn. (23)

The anti-commutation relations between ηn then lead to

[ηm, H ] = Emηm. (24)

Substituting Eq. (20) and Eq. (21) into Eq. (24), we ar-
rived at the BdG equations

∑

j

(

Tijun,j + Vijvn,j

)

= Enun,j , (25)

∑

j

(

Vjiun,j − Tijvn,j

)

= Envn,j . (26)
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The BdG equation has a particle-hole symmetry that
pairs each En > 0 state with a En < 0 state, which
allows us to further simplify the expressions.
Making use of the inverse Bogoliubov transformation

cj =
∑

n

(

un,jηn + vn,jη
†
n

)

, c†j =
∑

n

(

un,jη
†
n + vn,jηn

)

,

(27)

we find that the pairing gap is determined by ∆i =
∑

n

[

giun,ivn,i+1[1 − f(En)] + giun,i+1vn,if(En)
]

. Here

f(x) = 1/(ex/T +1) is the Fermi function. At T = 0, the
gap function at site i is given by

∆i =
∑

n

[

giun,ivn,i+1Θ(En) + giun,i+1vn,iΘ(−En)
]

,

(28)

where Θ(x) is the step function. We remark that for the
p-wave pairing of the Kitaev chain, the coefficients un,
vn may be chosen real [59] to simplify the expressions.
The BdG equation is solved by iterations. A trial form

of ∆i and a given µ are plugged into Eq. (25). After the
diagonalization, the eigenvalues and eigenfunctions are
found. A new gap function is then assembled according
to Eq. (28). A new iteration begins until the convergence
condition (1/L)

∑

i ||∆new
i |− |∆old

i || < ǫ. Here ∆new
i and

∆old
i are the profiles of the gap function between two

adjacent iterations and L is the lattice size. We use ǫ =
10−4 in our calculation. After the iteration converges,
the ground-state density at site i can be obtain by

ni = 〈c†i ci〉 =
∑

n

[

u2
n,iΘ(En) + v2n,iΘ(−En)

]

. (29)

III. QUENCH OF INTERACTION IN SPACE

When the pairing coupling constant g vanishes, the
ground state of the Kitaev chain changes from a super-
fluid to a spin-polarized normal Fermi gas. With spatially
inhomogeneous interactions, a quantum transition in real
space may emerge as g drops to zero. While many pos-
sible inhomogeneous profiles of the interactions may be
postulated, here we follow Ref. [12] and investigate two
types of interaction quenches in real space illustrated in
Fig. 1. The spatial quench has a linear ramp of the in-
teraction while the step-function quench has an abrupt
drop. The formal may apply to systems with a gradual
change of the pairing interactions as the system transits
from the superfluid to the normal gas while the latter
models systems with a distinct interface between the two
regions.
Since the gap function shown in Eq. (28) vanishes when

gi = 0, it does not reflect the penetration of the pair-
ing into the normal-gas phase. Instead, we analyze the
pair wavefunction Fj = 〈cjcj+1〉, which decays into the
normal-gas phase and exhibits interesting scaling behav-
ior.

A. Spatial quench

We consider a linear ramp of the pairing interaction,
which allows for an analysis of the scaling behavior ac-
cording to the spatial KZM. The coupling constant g lin-
early drops to zero inside the interval L

2 − L1 < i < L
2

with the profile

gi =











g0, 1 ≤ i ≤ L/2− L1,

g0
L/2− i

L1
, L/2− L1 ≤ i ≤ L/2,

0, L/2 < i ≤ L.

(30)

As a consequence, a real-space QCP at xc = L/2 emerges
as gi drops to zero, separating the superfluid phase on the
left and the normal phase on the right. The ramp of the
interaction profile introduces a slope α = g0/(L1), which
plays the role of the quench rate of the time-dependent
KZM [10].

Near the QCP at xc = L/2, we may write g0 − α(x −
xc) = −αy, where y = (x− xc − g0/α). In the ramp, the
coherence length freezes at ξ = ξfr due to the drop of
the interaction, which then introduces the frozen inter-
action strength gfr ∼ αξfr . From Eq. (11) in the weakly
interacting regime, the frozen coherence length leads to
∆fr ∼ exp(−1/gfr) ∼ exp(1/(αξfr)). Since the ramp oc-
curs in the superfluid regime, the BCS coherence length
given by Eq. (15) leads to a consistent equation for ξfr,
given by ξfr ∼ (1/∆fr) ∼ exp(−1/(αξfr)). The frozen
coherence length determines the correlation on the other
side of the QCP, so the characteristic length ξF of the pair
wavefunction on the normal-gas region is determined by
ξfr. Therefore, we obtain the scaling

ξF ln(ξF ) ∼ 1/α. (31)

The result is different from the power-law scaling be-
havior of the spatial KZM in magnetic systems [7, 8] be-
cause the order parameter of the BCS theory, which is the
gap function, is nonanalytic in the interaction strength
even in the weakly interacting regime. The correlation
length is thus dominated by the nonanalytic behavior
and exhibits interesting scaling behavior as the system
crosses a superfluid to normal-gas QCP in real space. We
mention if the correlation length diverges near the critical
point according to a power law ξ ∼ ǫ−ν like the TFIM,
where ǫmeasures the distance to the transition, the freez-
ing length ξfr occurs when ǫfr ∼ αξfr, where α is the

slope of the spatial quench. Therefore, ξ ∼ α−ν/(1+ν)

for the conventional characteristic length from the spa-
tial KZM. We remark that if the non power-law scaling
is viewed as a limiting case with ν → ∞, as proposed
in Ref. [42] for some particular types of time-dependent
KZM, the argument will lead to ξ ∼ 1/α, which differs
from Eq. (31) by a logarithmic correction.
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B. Step-function quench

The step-function quench with a sudden drop of the
coupling constant g in the middle of the chain may be
considered as a limiting case of the spatial quench when
the ramp is infinitely narrow. Explicitly, the location-
dependent coupling constant follows the equation

gi =

{
g0, 1 ≤ i ≤ L/2,
0, L/2 < i ≤ L.

(32)

When gi drops to zero, the system transitions from a su-
perfluid to a normal gas. Therefore, a QCP in real space
is present at xc = L/2. The sudden drop of the pairing
interaction leaves no additional length scale other than
the BCS coherence length for the fermion pairs. There-
fore, the characteristic length ξF of the penetration of
the pair wavefunction F in the normal region is expected
to follow the scaling relation

ln(ξF ) ∼ g−1
0 (33)

in the weak interaction regime similar to that of the BCS
coherence length of Eq. (15) in the bulk of the superfluid
region.

IV. RESULTS AND DISCUSSIONS

A. Scaling analyses

Here we show our solutions of the BdG equation with
open boundary condition. Up to 1000 sites in the sys-
tem have been analyzed to obtain the scaling behavior of
the pair wavefunction in the normal-gas region. We first
show the profiles of the gap function, Fj , and density as
functions of the site index for a selected case undergo-
ing a spatial quench in Fig. 2. Due to the vanishing
gi at xc = L/2, the gap function drops to zero at xc as
well. However, the pair wavefunction continuously ex-
tends into the normal-gas region. On the other hand,
the density is basically flat across the QCP in real space,
as pairing in the BCS regime does not introduce drastic
changes to the expression of the density. The introduc-
tion of a linear ramp in the interaction profile results in
interesting scaling behavior, which we will analyze here.
To fit the decay of the pair wavefunction F in the

normal-gas region, we refine the grid and zoom in the
right-half of the solutions. For s-wave pairing in con-
tinuum, it has been shown [60–62] that the decay of F
in the normal-gas region at zero temperature follows the
power-law form

F (x) ∼ ξF
x− xc

, (34)

which also defines the characteristic length ξF in an in-
homogeneous Fermi superfluid. In other words, ξF mea-
sures the typical range of penetration of the pair wave-
function F . Although here we study p-wave pairing in

Δ
F

Figure 2. Profiles of (a) the gap function, (b) pair wavefunc-
tion Fi = 〈cici+1〉, and (c) density as functions of the site
index of a spatial quench. Here g0 = 1, μ = 0, L = 500, and
the ramp width is L1 = 50.

a lattice system, we found the power-law form still fits
our data well, as shown in Fig. 3 (a). The fitting allows
us to extract the characteristic length ξF for a particular
set of parameters. After collecting more values of ξF as
a function of the ramp slope α = g0/L1 of the pairing in-
teractions, we compare the data with the functional form
of Eq. (31) from the spatial KZM in the weak-interaction
regime, as shown in Fig. 3 (b). The agreement between
the numerical simulations and analytic formula in the
weak-interaction regime shows the universal behavior of
the spatial KZM applied to p-wave Fermi superfluids de-
scribed by the mean-field BCS theory in the ground state.
Away from the weak-interaction regime when 1/α be-
comes small, however, the characteristic length ξF starts
to deviate from the weak-interaction prediction because
the analytic expression (31) no longer applies although
the fitting of F by Eq (34) still works.

On the other hand, the profiles of the gap function Δ,
pair wavefunction Fj = 〈cjcj+1〉, and density as func-
tions of the site index following a step-function quench
are show in Fig. 4. At first look, they are very simi-
lar to their counterparts in the spatial quench. However,
the vanishing of the width of the ramp leads to a differ-
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Figure 3. (a) Fitting of the pair wavefunction F by Eq. (34)
in the normal-gas region in a spatial quench. Here g0 = 1,
μ = 0, L = 1000, and the ramp width is L1 = 100. (b)
The characteristic length ξF extracted from the fitting of F
in the normal-gas region as a function of 1/α (red dots). The
black line is Eq. (31). A deviation from the weak-interaction
prediction is visible when 1/α decreases.

ent scaling analysis for the step-function quench because
there is no longer an additional length scale (from the
slope) as the system crosses the QCP in real space.
The fitting of F in the normal-gas region of a selected

step-function quench case with the form of Eq. (34) is
shown in Fig. 5 (a), which allows us to extract the value
of the characteristic length ξF for this set of parame-
ters. By extracting ξF as a function of g0, we show the
scaling behavior of ξF in Fig 5 (b). One can see that
the scaling agrees with Eq. (33) in the weak-interaction
regime. Therefore, the BCS coherence length on the su-
perfluid side determines the penetration of the pair wave-
function into the normal-gas region because there is no
additional length scale in a step-function quench across
the QCP in real space. As g0 increases, ξF shows a de-
viation from the weak-interaction prediction. The rea-
son is because the BCS gap function deviates from the
weak-interaction expression (11) as g0 increases since we
have verified the fitting of F by Eq. (34) still works well
when g0 is large. To visualize the deviation of Δ from
the weak-interaction expression, we show in Fig 5 (b) the
gap function of a homogeneous Kitaev chain compared to
the weak-interaction formula (11).

Δ
F

Figure 4. Profiles of (a) the gap function, (b) pair wavefunc-
tion Fi = 〈cici+1〉, and (c) density as functions of the site
index for a step-function quench of Eq. (32). Here we assume
g0 = 1, μ = 0, and the system size is L = 500.

We have two remarks about the results: (I) Our solu-
tions to the BdG equation only cover a limited range of
the interaction or its slope. If g0 or α is too small, the
bulk gap becomes exponentially small due to Eq. (11). It
is difficult for the numerical iterations to converge. The
small value of the pair wavefunction also makes it chal-
lenging to extract the correct value on the normal-gas
side. On the other hand, if g0 is too large or the slope
is too steep, the convergence of the BdG equation be-
comes slow because a small adjustment may lead to a
substantial change in the related quantities. Moreover,
a strong pairing interaction on the left side pushes the
system away from the BCS regime, making it challeng-
ing to have a continuous connection with the normal-gas
region on the right. Nevertheless, we managed to obtain
enough results to demonstrate the agreements of the scal-
ing behavior in the weak-interaction regime and the de-
viations from the weak-interaction predictions away from
that regime. (II) We have checked other values of μ
and found that while there are quantitative changes in
the density profile, the scaling behavior of both spatial
quench and step-function quench remain the same as the
μ = 0 case for a reasonable range of the interaction pro-
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Figure 5. (a) Fitting of the pair wavefunction F in the normal-
gas region by Eq. (34). Here g0 = 1, μ = 0 with L = 1000. (b)
ln ξF as a function of 1/g0 (red dots) and the BCS coherence
length of the superfluid region in the weak-interaction regime
(black line). (c) ln(Δ) as a function of 1/g for a uniform
Kitaev chain with μ = 0 (red dots). The black line shows
Eq. (11) from the weak-interaction regime. Deviations from
the weak-interaction predictions are observable in (b) and (c).

files. An illustration of the profiles of Δ, F , and density
for the case with μ = 0.5 in a step-function quench is
shown in Fig. 6. While there are wiggles in the den-
sity profile, the pair wavefunction remains smooth and
its penetration in the normal-gas region follows the same
scaling as that of the μ = 0 case, so we will not repeat the
results here. Meanwhile, the larger value of μ leads to a
slight mismatch of the densities between the superfluid

Δ
F

Figure 6. Profiles of (a) Δ, (b) F , and (c) density for a step-
function quench with μ = 0.5. Here g0 = 1 and L = 500.

and normal regions, as shown in Fig. 6 (c).

B. Energy spectrum and eigenstates

Here we investigate the states of the Kitaev chain in
the presence of a hard-wall box potential and spatially
varying pairing interactions. The BdG equation allows
us to analyze both the energy spectrum and the profiles
of individual states. Panel (a) of Fig. 7 shows the eigen-
energies and panels (b), (c), (d) plot some selected states
for a step-function quench. To contrast the features from
the inhomogeneous interaction profile with the homoge-
neous one, we plot in the same panel the energy spectrum
of a similar system with a homogeneous interaction pro-
file of g0. While the bulk bands are alike, one can see
that there are many in-gap states for the step-function
quench case. We will show that there are two types of
in-gap states, one from the localization at the hard wall
on the superfluid side and the other from the unpaired
fermions on the right half of the chain.
For the step-function case, some selected wave func-

tions un in the bulk band, near zero energy, and inside
the energy gap as functions of the site index from the
BdG equation are shown in Fig. 7 (b), (c), (d). Panel
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Figure 7. (a) Energy spectra of a step-function quenched
system (small red dots) and a homogeneous system (large
blue circles). For the step-function quench, the wavefunction
u of a typical bulk state in the upper band, an edge state near
zero energy, and a normal-gas state with E ≈ 0.3 are shown
in (b), (c), and (d), respectively. Here v behaves similarly as
u, and L = 100 for better visualization of the wavefunctions.

(b) is a bulk state with its amplitude spreading over the
whole chain. Panel (c) shows the state near E = 0, which
localizes at the left hard wall. The hard wall may be
viewed as a boundary between the fermions and vacuum,
so a localized edge state can be trapped there in the topo-
logical regime. This type of in-gap states is also present
when the profile of g0 is uniform. According to Eq. (18),
the system is indeed topological when µ = 0 for the half-
filling case. Finally, panel (d) shows a state inside the
energy gap but away from E = 0. It displays non-zero
amplitude only in the region where gi = 0, thereby rep-
resenting a normal-gas state due to the vanishing pairing
interaction on the right half. We remark that the states
shown in panels (c) and (d) have similar profiles except
for the localized state on the left end in the zero-energy
case.

C. Implications

While the spatial KZM of TFIM has been shown to ex-
hibit power-law scaling of the decaying order parameter
in the symmetric phase [7, 8], the non-analytic behavior
of the BCS theory leads to complicated scaling behav-
ior, as pointed out in Ref. [12] and here. Our results
thus demonstrate the variety and versatility of the spa-
tial KZM as a general framework. While the freezing of
the coherence length due to the linear ramp applies to
general types of phase transitions, the scaling behavior
depends on the functional forms from the underlying sys-
tems. The peculiar scaling of the BCS theory across a
QPT in real space thus provides another exotic feature

of fermionic superfluids. We remark that if a bosonic
system is considered instead, turning off the interaction
between bosons leaves a Bose-Einstein condensate of non-
interacting bosons at T = 0, which is still considered as a
symmetry-broken phase and makes it different from the
fermionic case studied here.

There are several differences between the p-wave su-
perfluid and the s-wave one studied in Ref. [12]: (1)
The p-wave pairing is between single-component (spin-
polarized) fermions while the s-wave pairing is between
two-component fermions. When physical systems are
concerned, the s-wave case corresponds to a conventional
superconductor next to a normal metal while the p-wave
case corresponds to a triplet superconductor next to a
ferromagnet. (2) The p-wave pairing is between adja-
cent lattice sites while the s-wave pairing is onsite. As a
consequence, the pair wavefunction F is onsite for s-wave
pairing but between adjacent sites for p-wave pairing. (3)
The Kitaev chain describes a topological superfluid with
properties absent in the s-wave model. The topology of
the Kitaev is expected to host Majorana bound states at
the edge, as shown in Fig. 7 (c).

Nevertheless, we have shown that the functional forms
of the order parameters represented by the gap functions
and the BCS coherence lengths are similar for the s-
wave and p-wave pairing cases in the weak-interaction
regime, as a consequence of the BCS mean-field theory
in the weak-pairing limit. Thus, their scaling behaviors
are shown to be similar at least in that regime. The scal-
ing analyses also show the universal applications of the
frameworks of the spatial KZM and spatial quench to
spatially inhomogeneous systems.

Meanwhile, it is easier to push the p-wave case away
from the weak-pairing limit than its s-wave counterpart
since the nearest-neighbor pairing of the p-wave case
complicates the energy dispersion and gap function. This
allows us to demonstrate the deviations of the Kitaev
chain from the analytic expressions derived in the weak-
pairing limit, as shown in Figs. 3 and 5. In contrast,
Ref. [12] did not explore the deviations from the weak-
pairing regime due to numerical complications as it will
take much stronger interactions to explore the deviations.
Away from the weak-pairing regime, the s-wave and p-
wave cases may exhibit more quantitatively different be-
haviors due to the different gap equations. We remark
that the mean-field treatment of the Kitaev chain in this
work renders it integrable, thereby escaping the eigen-
value thermalization hypothesis [63]. Future studies of
more complex systems with beyond mean-field interac-
tions and disorder may connect to interesting phenomena
such as many-body localization [64, 65].

There have been many attempts to realize the Ki-
taev chain, including those using quantum dots [66]
and theoretical work cautioning some subtleties [67] (see
also Ref. [68] for a review). Moreover, quantum simu-
lators or computers also offer insights into the Kitaev
chain [69–73]. Since the attractive interactions are in-
duced or effective in most settings, it may be possible to
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tune the attraction in real space by varying the chemi-
cal or physical properties, such as the composition, elec-
tric or magnetic field, strain, light-matter interactions
or other means, of the systems or simulators of the Ki-
taev chain to generate the inhomogeneous interactions
studied in this work. Furthermore, p-wave pairing may
also arise in possible triplet superconductivity induced
by proximity effect in superconductor-ferromagnet het-
erostructures [74]. Therefore, the penetration of super-
conducting correlation across a critical point in real space
discussed here may apply to those composite systems if
the interactions can be controlled by chemical composi-
tions, lattice structures, or other means.

V. CONCLUSION

The BdG equation of a p-wave Fermi superfluid de-
scribed by the Kitaev chain with inhomogeneous pair-
ing interaction profiles has revealed how the remnant
of the pair wavefunction survives in the normal-gas re-

gion as the system in equilibrium exhibits a quantum
critical point in real space. The mean-field BCS anal-
ysis leads to scaling behavior of the spatial and step-
function quenches confirmed by the BdG equation in the
weak- and intermediate- interaction regimes. The lin-
ear ramp of the spatial quench introduces an additional
length scale from the slope, resulting in the spatial KZM,
while the step-function quench is dominated by the BCS
coherence length on the superfluid side. The energy spec-
trum and eigenfunctions further distinguish the topolog-
ical edge states from the normal-gas states. Our study
thus offers another example of using inhomogeneity to
explore complex quantum systems.
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[36] M. Uhlmann, R. Schützhold, and U. R. Fischer,
System size scaling of topological defect creation in
a second-order dynamical quantum phase transition,
New J. Phys. 12, 095020 (2010).

[37] A. Polkovnikov, Universal adiabatic dynam-
ics in the vicinity of a quantum critical point,
Phys. Rev. B 72, 161201(R) (2005).

[38] G. L. Warner and A. J. Leggett, Quench dynamics of a
superfluid fermi gas, Phys. Rev. B 71, 134514 (2005).

[39] K. Shimizu, Y. Kuno, T. Hirano, and I. Ichinose, Dy-
namics of a quantum phase transition in the bose-
hubbard model: Kibble-zurek mechanism and beyond,
Phys. Rev. A 97, 033626 (2018).

[40] F. M. Cucchietti, B. Damski, J. Dziarmaga, and
W. H. Zurek, Dynamics of the bose-hubbard model:
Transition from a mott insulator to a superfluid,
Phys. Rev. A 75, 023603 (2007).

[41] J. Dziarmaga, M. Tylutki, and W. H. Zurek,
Quench from mott insulator to superfluid,
Phys. Rev. B 86, 144521 (2012).

[42] B. Gardas, J. Dziarmaga, and W. H. Zurek, Dynamics
of the quantum phase transition in the one-dimensional
bose-hubbard model: Excitations and correlations in-
duced by a quench, Phys. Rev. B 95, 104306 (2017).

[43] Y. Machida and K. Kasamatsu, Application of the inho-
mogeneous kibble-zurek mechanism to quench dynamics
in the transition from a mott insulator to a superfluid in
a finite system, Phys. Rev. A 103, 013310 (2021).

[44] K. Sim, R. Chitra, and P. Molignini, Quench dynamics
and scaling laws in topological nodal loop semimetals,

Phys. Rev. B 106, 224302 (2022).
[45] R. Monaco, J. Mygind, and R. J. Rivers, Zurek-kibble

domain structures: The dynamics of spontaneous vor-
tex formation in annular josephson tunnel junctions,
Phys. Rev. Lett. 89, 080603 (2002).

[46] S. Ulm, J. Rossnagel, G. Jacob, C. Deguenther, S. T.
Dawkins, U. G. Poschinger, R. Nigmatullin, A. Retzker,
M. B. Plenio, F. Schmidt-Kaler, and K. Singer, Observa-
tion of the kibble-zurek scaling law for defect formation
in ion crystals, Nat. Commun. 4, 2290 (2013).

[47] K. Pyka, J. Keller, H. L. Partner, R. Nigmatullin,
T. Burgermeister, D. M. Meier, K. Kuhlmann, A. Ret-
zker, M. B. Plenio, W. H. Zurek, A. del Campo, and T. E.
Mehlstaeubler, Topological defect formation and sponta-
neous symmetry breaking in ion coulomb crystals, Nat.
Commun. 4, 2291 (2013).

[48] N. Navon, A. L. Gaunt, R. P. Smith, and Z. Hadzibabic,
Critical dynamics of spontaneous symmetry breaking
in a homogeneous bose gas, Science 347, 167 (2015),
https://www.science.org/doi/pdf/10.1126/science.1258676.

[49] S. Braun, M. Friesdorf, S. S. Hodgman, M. Schreiber,
J. P. Ronzheimer, A. Riera, M. del Rey,
I. Bloch, J. Eisert, and U. Schneider, Emer-
gence of coherence and the dynamics of quan-
tum phase transitions, PNAS 112, 3641 (2015),
https://www.pnas.org/doi/pdf/10.1073/pnas.1408861112.

[50] D. Chen, M. White, C. Borries, and B. De-
Marco, Quantum quench of an atomic mott insulator,
Phys. Rev. Lett. 106, 235304 (2011).

[51] A. Keesling, A. Omran, H. Levine, H. Bernien, H. Pich-
ler, S. Choi, R. Samajdar, S. Schwartz, P. Silvi,
S. Sachdev, P. Zoller, M. Endres, M. Greiner, V. Vuletic,
and M. D. Lukin, Quantum kibble-zurek mechanism and
critical dynamics on a programmable rydberg simulator,
Nature 568, 207 (2019).

[52] M. Anquez, B. A. Robbins, H. M. Bharath, M. Bogus-
lawski, T. M. Hoang, and M. S. Chapman, Quantum
kibble-zurek mechanism in a spin-1 bose-einstein conden-
sate, Phys. Rev. Lett. 116, 155301 (2016).

[53] B.-W. Li, Y.-K. Wu, Q.-X. Mei, R. Yao, W.-Q. Lian, M.-
L. Cai, Y. Wang, B.-X. Qi, L. Yao, L. He, Z.-C. Zhou,
and L.-M. Duan, Probing critical behavior of long-range
transverse-field ising model through quantum kibble-
zurek mechanism, PRX Quantum 4, 010302 (2023).

[54] S. Deutschländer, P. Dillmann, G. Maret,
and P. Keim, Kibble–zurek mechanism in col-
loidal monolayers, PNAS 112, 6925 (2015),
https://www.pnas.org/doi/pdf/10.1073/pnas.1500763112.

[55] B. Ko, J. W. Park, and Y. Shin, Kibble-zurek universality
in a strongly interacting fermi superfluid, Nat. Phys. 15,
1227 (2019).

[56] X.-P. Liu, X.-C. Yao, Y. Deng, Y.-X. Wang, X.-
Q. Wang, X. Li, Q. Chen, Y.-A. Chen, and J.-W.
Pan, Dynamic formation of quasicondensate and spon-
taneous vortices in a strongly interacting fermi gas,
Phys. Rev. Res. 3, 043115 (2021).

[57] Y. He and C.-C. Chien, Particle and thermal transport
through one dimensional topological systems via lindblad
formalism, Physics Letters A 473, 128826 (2023).

[58] P. Molignini, W. Chen, and R. Chitra, Universal quan-
tum criticality in static and floquet-majorana chains,
Phys. Rev. B 98, 125129 (2018).

[59] E. Lieb, T. Schultz, and D. Mattis, Two sol-
uble models of an antiferromagnetic chain,

https://doi.org/https://doi.org/10.1016/0370-1573(80)90091-5
https://doi.org/10.1016/s0370-1573(96)00009-9
https://doi.org/10.1103/PhysRevLett.78.2519
https://doi.org/10.1103/PhysRevLett.83.1707
https://doi.org/10.1103/PhysRevLett.88.137004
https://doi.org/10.1103/PhysRevLett.95.245701
https://doi.org/10.1103/PhysRevLett.95.105701
https://doi.org/10.1088/1367-2630/aa65bc
https://doi.org/10.1103/physrevlett.129.260407
https://doi.org/10.1103/PhysRevD.81.025017
https://doi.org/10.1088/1367-2630/12/9/095020
https://doi.org/10.1103/PhysRevB.72.161201
https://doi.org/10.1103/PhysRevB.71.134514
https://doi.org/10.1103/PhysRevA.97.033626
https://doi.org/10.1103/PhysRevA.75.023603
https://doi.org/10.1103/PhysRevB.86.144521
https://doi.org/10.1103/PhysRevB.95.104306
https://doi.org/10.1103/PhysRevA.103.013310
https://doi.org/10.1103/PhysRevB.106.224302
https://doi.org/10.1103/PhysRevLett.89.080603
https://doi.org/10.1126/science.1258676
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.1258676
https://doi.org/10.1073/pnas.1408861112
https://arxiv.org/abs/https://www.pnas.org/doi/pdf/10.1073/pnas.1408861112
https://doi.org/10.1103/PhysRevLett.106.235304
https://doi.org/10.1103/PhysRevLett.116.155301
https://doi.org/10.1103/PRXQuantum.4.010302
https://doi.org/10.1073/pnas.1500763112
https://arxiv.org/abs/https://www.pnas.org/doi/pdf/10.1073/pnas.1500763112
https://doi.org/10.1103/PhysRevResearch.3.043115
https://doi.org/https://doi.org/10.1016/j.physleta.2023.128826
https://doi.org/10.1103/PhysRevB.98.125129


11

Annals of Physics 16, 407 (1961).
[60] G. Deutscher and P. de Gennes, Proximity effects, pp

1005-34 of Superconductivity. Vols. 1 and 2. Parks, R. D.
(ed.). New York, Marcel Dekker, Inc., 1969 (1969).

[61] D. S. Falk, Superconductors with plane boundaries,
Phys. Rev. 132, 1576 (1963).

[62] W. Silvert, Spatial dependence of pair correla-
tion functions in nonhomogeneous superconductors,
Rev. Mod. Phys. 36, 251 (1964).

[63] J. M. Deutsch, Eigenstate thermalization hypothesis,
Reports on Progress in Physics 81, 082001 (2018).

[64] E. Altman, Many-body localization and quantum ther-
malization, Nature Physics 14, 979 (2018).

[65] D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Col-
loquium: Many-body localization, thermalization, and
entanglement, Rev. Mod. Phys. 91, 021001 (2019).

[66] T. Dvir, G. Wang, N. van Loo, C.-X. Liu, G. P. Mazur,
A. Bordin, S. L. D. ten Haaf, J.-Y. Wang, D. van Driel,
F. Zatelli, X. Li, F. K. Malinowski, S. Gazibegovic,
G. Badawy, E. P. A. M. Bakkers, M. Wimmer, and L. P.
Kouwenhoven, Realization of a minimal kitaev chain in
coupled quantum dots, Nature 614, 445 (2023).

[67] H. Pan and S. Das Sarma, Majorana
nanowires, kitaev chains, and spin models,
Phys. Rev. B 107, 035440 (2023).

[68] F. v. Oppen, Y. Peng, and F. Pientka, Topolog-
ical superconducting phases in one dimension, in
Topological Aspects of Condensed Matter Physics: Lecture Notes of the Les Houches Summer School: Volume 103, August 2014

(Oxford University Press, 2017)
https://academic.oup.com/book/0/chapter/203983732/chapter-pdf/45122673/acprof-9780198785781-chapter-9.pdf.

[69] J. P. T. Stenger, N. T. Bronn, D. J. Egger, and D. Pekker,
Simulating the dynamics of braiding of majorana zero
modes using an ibm quantum computer, Phys. Rev. Re-
search 3, 033171 (2021).
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